]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/lambda-code.c
tree-flow-inline.h (get_stmt_operands): Remove.
[thirdparty/gcc.git] / gcc / lambda-code.c
CommitLineData
36d59cf7 1/* Loop transformation code generation
6a6305e4 2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
36d59cf7
DB
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
26#include "errors.h"
27#include "ggc.h"
28#include "tree.h"
29#include "target.h"
30#include "rtl.h"
31#include "basic-block.h"
32#include "diagnostic.h"
33#include "tree-flow.h"
34#include "tree-dump.h"
35#include "timevar.h"
36#include "cfgloop.h"
37#include "expr.h"
38#include "optabs.h"
39#include "tree-chrec.h"
40#include "tree-data-ref.h"
41#include "tree-pass.h"
42#include "tree-scalar-evolution.h"
43#include "vec.h"
44#include "lambda.h"
45
46/* This loop nest code generation is based on non-singular matrix
47 math.
48
49 A little terminology and a general sketch of the algorithm. See "A singular
6cb38cd4 50 loop transformation framework based on non-singular matrices" by Wei Li and
36d59cf7
DB
51 Keshav Pingali for formal proofs that the various statements below are
52 correct.
53
464f49d8 54 A loop iteration space represents the points traversed by the loop. A point in the
36d59cf7 55 iteration space can be represented by a vector of size <loop depth>. You can
1f838355 56 therefore represent the iteration space as an integral combinations of a set
36d59cf7
DB
57 of basis vectors.
58
59 A loop iteration space is dense if every integer point between the loop
60 bounds is a point in the iteration space. Every loop with a step of 1
61 therefore has a dense iteration space.
62
63 for i = 1 to 3, step 1 is a dense iteration space.
64
65 A loop iteration space is sparse if it is not dense. That is, the iteration
66 space skips integer points that are within the loop bounds.
67
68 for i = 1 to 3, step 2 is a sparse iteration space, because the integer point
69 2 is skipped.
70
71 Dense source spaces are easy to transform, because they don't skip any
72 points to begin with. Thus we can compute the exact bounds of the target
73 space using min/max and floor/ceil.
74
75 For a dense source space, we take the transformation matrix, decompose it
76 into a lower triangular part (H) and a unimodular part (U).
6cb38cd4
KH
77 We then compute the auxiliary space from the unimodular part (source loop
78 nest . U = auxiliary space) , which has two important properties:
36d59cf7
DB
79 1. It traverses the iterations in the same lexicographic order as the source
80 space.
81 2. It is a dense space when the source is a dense space (even if the target
82 space is going to be sparse).
83
6cb38cd4 84 Given the auxiliary space, we use the lower triangular part to compute the
36d59cf7
DB
85 bounds in the target space by simple matrix multiplication.
86 The gaps in the target space (IE the new loop step sizes) will be the
87 diagonals of the H matrix.
88
89 Sparse source spaces require another step, because you can't directly compute
6cb38cd4 90 the exact bounds of the auxiliary and target space from the sparse space.
36d59cf7
DB
91 Rather than try to come up with a separate algorithm to handle sparse source
92 spaces directly, we just find a legal transformation matrix that gives you
93 the sparse source space, from a dense space, and then transform the dense
94 space.
95
96 For a regular sparse space, you can represent the source space as an integer
97 lattice, and the base space of that lattice will always be dense. Thus, we
98 effectively use the lattice to figure out the transformation from the lattice
99 base space, to the sparse iteration space (IE what transform was applied to
100 the dense space to make it sparse). We then compose this transform with the
101 transformation matrix specified by the user (since our matrix transformations
102 are closed under composition, this is okay). We can then use the base space
103 (which is dense) plus the composed transformation matrix, to compute the rest
104 of the transform using the dense space algorithm above.
105
106 In other words, our sparse source space (B) is decomposed into a dense base
107 space (A), and a matrix (L) that transforms A into B, such that A.L = B.
108 We then compute the composition of L and the user transformation matrix (T),
109 so that T is now a transform from A to the result, instead of from B to the
110 result.
111 IE A.(LT) = result instead of B.T = result
112 Since A is now a dense source space, we can use the dense source space
113 algorithm above to compute the result of applying transform (LT) to A.
114
115 Fourier-Motzkin elimination is used to compute the bounds of the base space
116 of the lattice. */
117
f67d92e9 118
f67d92e9
DB
119DEF_VEC_GC_P(int);
120
121static bool perfect_nestify (struct loops *,
122 struct loop *, VEC (tree) *,
123 VEC (tree) *, VEC (int) *, VEC (tree) *);
36d59cf7
DB
124/* Lattice stuff that is internal to the code generation algorithm. */
125
126typedef struct
127{
128 /* Lattice base matrix. */
129 lambda_matrix base;
130 /* Lattice dimension. */
131 int dimension;
132 /* Origin vector for the coefficients. */
133 lambda_vector origin;
134 /* Origin matrix for the invariants. */
135 lambda_matrix origin_invariants;
136 /* Number of invariants. */
137 int invariants;
138} *lambda_lattice;
139
140#define LATTICE_BASE(T) ((T)->base)
141#define LATTICE_DIMENSION(T) ((T)->dimension)
142#define LATTICE_ORIGIN(T) ((T)->origin)
143#define LATTICE_ORIGIN_INVARIANTS(T) ((T)->origin_invariants)
144#define LATTICE_INVARIANTS(T) ((T)->invariants)
145
146static bool lle_equal (lambda_linear_expression, lambda_linear_expression,
147 int, int);
148static lambda_lattice lambda_lattice_new (int, int);
149static lambda_lattice lambda_lattice_compute_base (lambda_loopnest);
150
151static tree find_induction_var_from_exit_cond (struct loop *);
152
153/* Create a new lambda body vector. */
154
155lambda_body_vector
156lambda_body_vector_new (int size)
157{
158 lambda_body_vector ret;
159
160 ret = ggc_alloc (sizeof (*ret));
161 LBV_COEFFICIENTS (ret) = lambda_vector_new (size);
162 LBV_SIZE (ret) = size;
163 LBV_DENOMINATOR (ret) = 1;
164 return ret;
165}
166
167/* Compute the new coefficients for the vector based on the
168 *inverse* of the transformation matrix. */
169
170lambda_body_vector
171lambda_body_vector_compute_new (lambda_trans_matrix transform,
172 lambda_body_vector vect)
173{
174 lambda_body_vector temp;
175 int depth;
176
177 /* Make sure the matrix is square. */
599eabdb 178 gcc_assert (LTM_ROWSIZE (transform) == LTM_COLSIZE (transform));
36d59cf7
DB
179
180 depth = LTM_ROWSIZE (transform);
181
182 temp = lambda_body_vector_new (depth);
183 LBV_DENOMINATOR (temp) =
184 LBV_DENOMINATOR (vect) * LTM_DENOMINATOR (transform);
185 lambda_vector_matrix_mult (LBV_COEFFICIENTS (vect), depth,
186 LTM_MATRIX (transform), depth,
187 LBV_COEFFICIENTS (temp));
188 LBV_SIZE (temp) = LBV_SIZE (vect);
189 return temp;
190}
191
192/* Print out a lambda body vector. */
193
194void
195print_lambda_body_vector (FILE * outfile, lambda_body_vector body)
196{
197 print_lambda_vector (outfile, LBV_COEFFICIENTS (body), LBV_SIZE (body));
198}
199
200/* Return TRUE if two linear expressions are equal. */
201
202static bool
203lle_equal (lambda_linear_expression lle1, lambda_linear_expression lle2,
204 int depth, int invariants)
205{
206 int i;
207
208 if (lle1 == NULL || lle2 == NULL)
209 return false;
210 if (LLE_CONSTANT (lle1) != LLE_CONSTANT (lle2))
211 return false;
212 if (LLE_DENOMINATOR (lle1) != LLE_DENOMINATOR (lle2))
213 return false;
214 for (i = 0; i < depth; i++)
215 if (LLE_COEFFICIENTS (lle1)[i] != LLE_COEFFICIENTS (lle2)[i])
216 return false;
217 for (i = 0; i < invariants; i++)
218 if (LLE_INVARIANT_COEFFICIENTS (lle1)[i] !=
219 LLE_INVARIANT_COEFFICIENTS (lle2)[i])
220 return false;
221 return true;
222}
223
224/* Create a new linear expression with dimension DIM, and total number
225 of invariants INVARIANTS. */
226
227lambda_linear_expression
228lambda_linear_expression_new (int dim, int invariants)
229{
230 lambda_linear_expression ret;
231
232 ret = ggc_alloc_cleared (sizeof (*ret));
233
234 LLE_COEFFICIENTS (ret) = lambda_vector_new (dim);
235 LLE_CONSTANT (ret) = 0;
236 LLE_INVARIANT_COEFFICIENTS (ret) = lambda_vector_new (invariants);
237 LLE_DENOMINATOR (ret) = 1;
238 LLE_NEXT (ret) = NULL;
239
240 return ret;
241}
242
243/* Print out a linear expression EXPR, with SIZE coefficients, to OUTFILE.
244 The starting letter used for variable names is START. */
245
246static void
247print_linear_expression (FILE * outfile, lambda_vector expr, int size,
248 char start)
249{
250 int i;
251 bool first = true;
252 for (i = 0; i < size; i++)
253 {
254 if (expr[i] != 0)
255 {
256 if (first)
257 {
258 if (expr[i] < 0)
259 fprintf (outfile, "-");
260 first = false;
261 }
262 else if (expr[i] > 0)
263 fprintf (outfile, " + ");
264 else
265 fprintf (outfile, " - ");
266 if (abs (expr[i]) == 1)
267 fprintf (outfile, "%c", start + i);
268 else
269 fprintf (outfile, "%d%c", abs (expr[i]), start + i);
270 }
271 }
272}
273
274/* Print out a lambda linear expression structure, EXPR, to OUTFILE. The
275 depth/number of coefficients is given by DEPTH, the number of invariants is
276 given by INVARIANTS, and the character to start variable names with is given
277 by START. */
278
279void
280print_lambda_linear_expression (FILE * outfile,
281 lambda_linear_expression expr,
282 int depth, int invariants, char start)
283{
284 fprintf (outfile, "\tLinear expression: ");
285 print_linear_expression (outfile, LLE_COEFFICIENTS (expr), depth, start);
286 fprintf (outfile, " constant: %d ", LLE_CONSTANT (expr));
287 fprintf (outfile, " invariants: ");
288 print_linear_expression (outfile, LLE_INVARIANT_COEFFICIENTS (expr),
289 invariants, 'A');
290 fprintf (outfile, " denominator: %d\n", LLE_DENOMINATOR (expr));
291}
292
293/* Print a lambda loop structure LOOP to OUTFILE. The depth/number of
294 coefficients is given by DEPTH, the number of invariants is
295 given by INVARIANTS, and the character to start variable names with is given
8c27b7d4 296 by START. */
36d59cf7
DB
297
298void
299print_lambda_loop (FILE * outfile, lambda_loop loop, int depth,
300 int invariants, char start)
301{
302 int step;
303 lambda_linear_expression expr;
304
599eabdb 305 gcc_assert (loop);
36d59cf7
DB
306
307 expr = LL_LINEAR_OFFSET (loop);
308 step = LL_STEP (loop);
309 fprintf (outfile, " step size = %d \n", step);
310
311 if (expr)
312 {
313 fprintf (outfile, " linear offset: \n");
314 print_lambda_linear_expression (outfile, expr, depth, invariants,
315 start);
316 }
317
318 fprintf (outfile, " lower bound: \n");
319 for (expr = LL_LOWER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
320 print_lambda_linear_expression (outfile, expr, depth, invariants, start);
321 fprintf (outfile, " upper bound: \n");
322 for (expr = LL_UPPER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
323 print_lambda_linear_expression (outfile, expr, depth, invariants, start);
324}
325
326/* Create a new loop nest structure with DEPTH loops, and INVARIANTS as the
327 number of invariants. */
328
329lambda_loopnest
330lambda_loopnest_new (int depth, int invariants)
331{
332 lambda_loopnest ret;
333 ret = ggc_alloc (sizeof (*ret));
334
335 LN_LOOPS (ret) = ggc_alloc_cleared (depth * sizeof (lambda_loop));
336 LN_DEPTH (ret) = depth;
337 LN_INVARIANTS (ret) = invariants;
338
339 return ret;
340}
341
342/* Print a lambda loopnest structure, NEST, to OUTFILE. The starting
343 character to use for loop names is given by START. */
344
345void
346print_lambda_loopnest (FILE * outfile, lambda_loopnest nest, char start)
347{
348 int i;
349 for (i = 0; i < LN_DEPTH (nest); i++)
350 {
351 fprintf (outfile, "Loop %c\n", start + i);
352 print_lambda_loop (outfile, LN_LOOPS (nest)[i], LN_DEPTH (nest),
353 LN_INVARIANTS (nest), 'i');
354 fprintf (outfile, "\n");
355 }
356}
357
358/* Allocate a new lattice structure of DEPTH x DEPTH, with INVARIANTS number
471854f8 359 of invariants. */
36d59cf7
DB
360
361static lambda_lattice
362lambda_lattice_new (int depth, int invariants)
363{
364 lambda_lattice ret;
365 ret = ggc_alloc (sizeof (*ret));
366 LATTICE_BASE (ret) = lambda_matrix_new (depth, depth);
367 LATTICE_ORIGIN (ret) = lambda_vector_new (depth);
368 LATTICE_ORIGIN_INVARIANTS (ret) = lambda_matrix_new (depth, invariants);
369 LATTICE_DIMENSION (ret) = depth;
370 LATTICE_INVARIANTS (ret) = invariants;
371 return ret;
372}
373
374/* Compute the lattice base for NEST. The lattice base is essentially a
375 non-singular transform from a dense base space to a sparse iteration space.
376 We use it so that we don't have to specially handle the case of a sparse
377 iteration space in other parts of the algorithm. As a result, this routine
378 only does something interesting (IE produce a matrix that isn't the
379 identity matrix) if NEST is a sparse space. */
380
381static lambda_lattice
382lambda_lattice_compute_base (lambda_loopnest nest)
383{
384 lambda_lattice ret;
385 int depth, invariants;
386 lambda_matrix base;
387
388 int i, j, step;
389 lambda_loop loop;
390 lambda_linear_expression expression;
391
392 depth = LN_DEPTH (nest);
393 invariants = LN_INVARIANTS (nest);
394
395 ret = lambda_lattice_new (depth, invariants);
396 base = LATTICE_BASE (ret);
397 for (i = 0; i < depth; i++)
398 {
399 loop = LN_LOOPS (nest)[i];
599eabdb 400 gcc_assert (loop);
36d59cf7
DB
401 step = LL_STEP (loop);
402 /* If we have a step of 1, then the base is one, and the
403 origin and invariant coefficients are 0. */
404 if (step == 1)
405 {
406 for (j = 0; j < depth; j++)
407 base[i][j] = 0;
408 base[i][i] = 1;
409 LATTICE_ORIGIN (ret)[i] = 0;
410 for (j = 0; j < invariants; j++)
411 LATTICE_ORIGIN_INVARIANTS (ret)[i][j] = 0;
412 }
413 else
414 {
415 /* Otherwise, we need the lower bound expression (which must
416 be an affine function) to determine the base. */
417 expression = LL_LOWER_BOUND (loop);
464f49d8 418 gcc_assert (expression && !LLE_NEXT (expression)
599eabdb 419 && LLE_DENOMINATOR (expression) == 1);
36d59cf7
DB
420
421 /* The lower triangular portion of the base is going to be the
422 coefficient times the step */
423 for (j = 0; j < i; j++)
424 base[i][j] = LLE_COEFFICIENTS (expression)[j]
425 * LL_STEP (LN_LOOPS (nest)[j]);
426 base[i][i] = step;
427 for (j = i + 1; j < depth; j++)
428 base[i][j] = 0;
429
430 /* Origin for this loop is the constant of the lower bound
431 expression. */
432 LATTICE_ORIGIN (ret)[i] = LLE_CONSTANT (expression);
433
434 /* Coefficient for the invariants are equal to the invariant
435 coefficients in the expression. */
436 for (j = 0; j < invariants; j++)
437 LATTICE_ORIGIN_INVARIANTS (ret)[i][j] =
438 LLE_INVARIANT_COEFFICIENTS (expression)[j];
439 }
440 }
441 return ret;
442}
443
444/* Compute the greatest common denominator of two numbers (A and B) using
445 Euclid's algorithm. */
446
447static int
448gcd (int a, int b)
449{
450
451 int x, y, z;
452
453 x = abs (a);
454 y = abs (b);
455
456 while (x > 0)
457 {
458 z = y % x;
459 y = x;
460 x = z;
461 }
462
463 return (y);
464}
465
466/* Compute the greatest common denominator of a VECTOR of SIZE numbers. */
467
468static int
469gcd_vector (lambda_vector vector, int size)
470{
471 int i;
472 int gcd1 = 0;
473
474 if (size > 0)
475 {
476 gcd1 = vector[0];
477 for (i = 1; i < size; i++)
478 gcd1 = gcd (gcd1, vector[i]);
479 }
480 return gcd1;
481}
482
483/* Compute the least common multiple of two numbers A and B . */
484
485static int
486lcm (int a, int b)
487{
488 return (abs (a) * abs (b) / gcd (a, b));
489}
490
feb075f4 491/* Perform Fourier-Motzkin elimination to calculate the bounds of the
aabcd309 492 auxiliary nest.
464f49d8 493 Fourier-Motzkin is a way of reducing systems of linear inequalities so that
feb075f4
DB
494 it is easy to calculate the answer and bounds.
495 A sketch of how it works:
496 Given a system of linear inequalities, ai * xj >= bk, you can always
497 rewrite the constraints so they are all of the form
498 a <= x, or x <= b, or x >= constant for some x in x1 ... xj (and some b
499 in b1 ... bk, and some a in a1...ai)
500 You can then eliminate this x from the non-constant inequalities by
501 rewriting these as a <= b, x >= constant, and delete the x variable.
502 You can then repeat this for any remaining x variables, and then we have
503 an easy to use variable <= constant (or no variables at all) form that we
504 can construct our bounds from.
505
506 In our case, each time we eliminate, we construct part of the bound from
507 the ith variable, then delete the ith variable.
508
509 Remember the constant are in our vector a, our coefficient matrix is A,
510 and our invariant coefficient matrix is B.
511
512 SIZE is the size of the matrices being passed.
513 DEPTH is the loop nest depth.
514 INVARIANTS is the number of loop invariants.
515 A, B, and a are the coefficient matrix, invariant coefficient, and a
516 vector of constants, respectively. */
517
518static lambda_loopnest
519compute_nest_using_fourier_motzkin (int size,
520 int depth,
521 int invariants,
522 lambda_matrix A,
523 lambda_matrix B,
524 lambda_vector a)
525{
526
527 int multiple, f1, f2;
528 int i, j, k;
529 lambda_linear_expression expression;
530 lambda_loop loop;
531 lambda_loopnest auxillary_nest;
532 lambda_matrix swapmatrix, A1, B1;
533 lambda_vector swapvector, a1;
534 int newsize;
535
536 A1 = lambda_matrix_new (128, depth);
537 B1 = lambda_matrix_new (128, invariants);
538 a1 = lambda_vector_new (128);
539
540 auxillary_nest = lambda_loopnest_new (depth, invariants);
541
542 for (i = depth - 1; i >= 0; i--)
543 {
544 loop = lambda_loop_new ();
545 LN_LOOPS (auxillary_nest)[i] = loop;
546 LL_STEP (loop) = 1;
547
548 for (j = 0; j < size; j++)
549 {
550 if (A[j][i] < 0)
551 {
552 /* Any linear expression in the matrix with a coefficient less
553 than 0 becomes part of the new lower bound. */
554 expression = lambda_linear_expression_new (depth, invariants);
555
556 for (k = 0; k < i; k++)
557 LLE_COEFFICIENTS (expression)[k] = A[j][k];
558
559 for (k = 0; k < invariants; k++)
560 LLE_INVARIANT_COEFFICIENTS (expression)[k] = -1 * B[j][k];
561
562 LLE_DENOMINATOR (expression) = -1 * A[j][i];
563 LLE_CONSTANT (expression) = -1 * a[j];
564
565 /* Ignore if identical to the existing lower bound. */
566 if (!lle_equal (LL_LOWER_BOUND (loop),
567 expression, depth, invariants))
568 {
569 LLE_NEXT (expression) = LL_LOWER_BOUND (loop);
570 LL_LOWER_BOUND (loop) = expression;
571 }
572
573 }
574 else if (A[j][i] > 0)
575 {
576 /* Any linear expression with a coefficient greater than 0
471854f8 577 becomes part of the new upper bound. */
feb075f4
DB
578 expression = lambda_linear_expression_new (depth, invariants);
579 for (k = 0; k < i; k++)
580 LLE_COEFFICIENTS (expression)[k] = -1 * A[j][k];
581
582 for (k = 0; k < invariants; k++)
583 LLE_INVARIANT_COEFFICIENTS (expression)[k] = B[j][k];
584
585 LLE_DENOMINATOR (expression) = A[j][i];
586 LLE_CONSTANT (expression) = a[j];
587
588 /* Ignore if identical to the existing upper bound. */
589 if (!lle_equal (LL_UPPER_BOUND (loop),
590 expression, depth, invariants))
591 {
592 LLE_NEXT (expression) = LL_UPPER_BOUND (loop);
593 LL_UPPER_BOUND (loop) = expression;
594 }
595
596 }
597 }
598
599 /* This portion creates a new system of linear inequalities by deleting
600 the i'th variable, reducing the system by one variable. */
601 newsize = 0;
602 for (j = 0; j < size; j++)
603 {
604 /* If the coefficient for the i'th variable is 0, then we can just
605 eliminate the variable straightaway. Otherwise, we have to
606 multiply through by the coefficients we are eliminating. */
607 if (A[j][i] == 0)
608 {
609 lambda_vector_copy (A[j], A1[newsize], depth);
610 lambda_vector_copy (B[j], B1[newsize], invariants);
611 a1[newsize] = a[j];
612 newsize++;
613 }
614 else if (A[j][i] > 0)
615 {
616 for (k = 0; k < size; k++)
617 {
618 if (A[k][i] < 0)
619 {
620 multiple = lcm (A[j][i], A[k][i]);
621 f1 = multiple / A[j][i];
622 f2 = -1 * multiple / A[k][i];
623
624 lambda_vector_add_mc (A[j], f1, A[k], f2,
625 A1[newsize], depth);
626 lambda_vector_add_mc (B[j], f1, B[k], f2,
627 B1[newsize], invariants);
628 a1[newsize] = f1 * a[j] + f2 * a[k];
629 newsize++;
630 }
631 }
632 }
633 }
634
635 swapmatrix = A;
636 A = A1;
637 A1 = swapmatrix;
638
639 swapmatrix = B;
640 B = B1;
641 B1 = swapmatrix;
642
643 swapvector = a;
644 a = a1;
645 a1 = swapvector;
646
647 size = newsize;
648 }
649
650 return auxillary_nest;
651}
652
36d59cf7 653/* Compute the loop bounds for the auxiliary space NEST.
c4bda9f0
DB
654 Input system used is Ax <= b. TRANS is the unimodular transformation.
655 Given the original nest, this function will
656 1. Convert the nest into matrix form, which consists of a matrix for the
657 coefficients, a matrix for the
658 invariant coefficients, and a vector for the constants.
659 2. Use the matrix form to calculate the lattice base for the nest (which is
660 a dense space)
661 3. Compose the dense space transform with the user specified transform, to
662 get a transform we can easily calculate transformed bounds for.
663 4. Multiply the composed transformation matrix times the matrix form of the
664 loop.
665 5. Transform the newly created matrix (from step 4) back into a loop nest
666 using fourier motzkin elimination to figure out the bounds. */
36d59cf7
DB
667
668static lambda_loopnest
669lambda_compute_auxillary_space (lambda_loopnest nest,
670 lambda_trans_matrix trans)
671{
feb075f4
DB
672 lambda_matrix A, B, A1, B1;
673 lambda_vector a, a1;
36d59cf7 674 lambda_matrix invertedtrans;
30a6aaed 675 int depth, invariants, size;
feb075f4 676 int i, j;
36d59cf7
DB
677 lambda_loop loop;
678 lambda_linear_expression expression;
679 lambda_lattice lattice;
680
36d59cf7
DB
681 depth = LN_DEPTH (nest);
682 invariants = LN_INVARIANTS (nest);
683
684 /* Unfortunately, we can't know the number of constraints we'll have
685 ahead of time, but this should be enough even in ridiculous loop nest
686 cases. We abort if we go over this limit. */
687 A = lambda_matrix_new (128, depth);
688 B = lambda_matrix_new (128, invariants);
689 a = lambda_vector_new (128);
690
691 A1 = lambda_matrix_new (128, depth);
692 B1 = lambda_matrix_new (128, invariants);
693 a1 = lambda_vector_new (128);
694
695 /* Store the bounds in the equation matrix A, constant vector a, and
696 invariant matrix B, so that we have Ax <= a + B.
697 This requires a little equation rearranging so that everything is on the
698 correct side of the inequality. */
699 size = 0;
700 for (i = 0; i < depth; i++)
701 {
702 loop = LN_LOOPS (nest)[i];
703
704 /* First we do the lower bound. */
705 if (LL_STEP (loop) > 0)
706 expression = LL_LOWER_BOUND (loop);
707 else
708 expression = LL_UPPER_BOUND (loop);
709
710 for (; expression != NULL; expression = LLE_NEXT (expression))
711 {
712 /* Fill in the coefficient. */
713 for (j = 0; j < i; j++)
714 A[size][j] = LLE_COEFFICIENTS (expression)[j];
715
716 /* And the invariant coefficient. */
717 for (j = 0; j < invariants; j++)
718 B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
719
720 /* And the constant. */
721 a[size] = LLE_CONSTANT (expression);
722
723 /* Convert (2x+3y+2+b)/4 <= z to 2x+3y-4z <= -2-b. IE put all
724 constants and single variables on */
725 A[size][i] = -1 * LLE_DENOMINATOR (expression);
726 a[size] *= -1;
727 for (j = 0; j < invariants; j++)
728 B[size][j] *= -1;
729
730 size++;
731 /* Need to increase matrix sizes above. */
599eabdb
DB
732 gcc_assert (size <= 127);
733
36d59cf7
DB
734 }
735
736 /* Then do the exact same thing for the upper bounds. */
737 if (LL_STEP (loop) > 0)
738 expression = LL_UPPER_BOUND (loop);
739 else
740 expression = LL_LOWER_BOUND (loop);
741
742 for (; expression != NULL; expression = LLE_NEXT (expression))
743 {
744 /* Fill in the coefficient. */
745 for (j = 0; j < i; j++)
746 A[size][j] = LLE_COEFFICIENTS (expression)[j];
747
748 /* And the invariant coefficient. */
749 for (j = 0; j < invariants; j++)
750 B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
751
752 /* And the constant. */
753 a[size] = LLE_CONSTANT (expression);
754
755 /* Convert z <= (2x+3y+2+b)/4 to -2x-3y+4z <= 2+b. */
756 for (j = 0; j < i; j++)
757 A[size][j] *= -1;
758 A[size][i] = LLE_DENOMINATOR (expression);
759 size++;
760 /* Need to increase matrix sizes above. */
599eabdb
DB
761 gcc_assert (size <= 127);
762
36d59cf7
DB
763 }
764 }
765
766 /* Compute the lattice base x = base * y + origin, where y is the
767 base space. */
768 lattice = lambda_lattice_compute_base (nest);
769
770 /* Ax <= a + B then becomes ALy <= a+B - A*origin. L is the lattice base */
771
772 /* A1 = A * L */
773 lambda_matrix_mult (A, LATTICE_BASE (lattice), A1, size, depth, depth);
774
775 /* a1 = a - A * origin constant. */
776 lambda_matrix_vector_mult (A, size, depth, LATTICE_ORIGIN (lattice), a1);
777 lambda_vector_add_mc (a, 1, a1, -1, a1, size);
778
779 /* B1 = B - A * origin invariant. */
780 lambda_matrix_mult (A, LATTICE_ORIGIN_INVARIANTS (lattice), B1, size, depth,
781 invariants);
782 lambda_matrix_add_mc (B, 1, B1, -1, B1, size, invariants);
783
784 /* Now compute the auxiliary space bounds by first inverting U, multiplying
785 it by A1, then performing fourier motzkin. */
786
787 invertedtrans = lambda_matrix_new (depth, depth);
788
789 /* Compute the inverse of U. */
30a6aaed
KH
790 lambda_matrix_inverse (LTM_MATRIX (trans),
791 invertedtrans, depth);
36d59cf7
DB
792
793 /* A = A1 inv(U). */
794 lambda_matrix_mult (A1, invertedtrans, A, size, depth, depth);
795
feb075f4
DB
796 return compute_nest_using_fourier_motzkin (size, depth, invariants,
797 A, B1, a1);
36d59cf7
DB
798}
799
800/* Compute the loop bounds for the target space, using the bounds of
c4bda9f0
DB
801 the auxiliary nest AUXILLARY_NEST, and the triangular matrix H.
802 The target space loop bounds are computed by multiplying the triangular
aabcd309 803 matrix H by the auxiliary nest, to get the new loop bounds. The sign of
c4bda9f0
DB
804 the loop steps (positive or negative) is then used to swap the bounds if
805 the loop counts downwards.
36d59cf7
DB
806 Return the target loopnest. */
807
808static lambda_loopnest
809lambda_compute_target_space (lambda_loopnest auxillary_nest,
810 lambda_trans_matrix H, lambda_vector stepsigns)
811{
812 lambda_matrix inverse, H1;
813 int determinant, i, j;
814 int gcd1, gcd2;
815 int factor;
816
817 lambda_loopnest target_nest;
818 int depth, invariants;
819 lambda_matrix target;
820
821 lambda_loop auxillary_loop, target_loop;
822 lambda_linear_expression expression, auxillary_expr, target_expr, tmp_expr;
823
824 depth = LN_DEPTH (auxillary_nest);
825 invariants = LN_INVARIANTS (auxillary_nest);
826
827 inverse = lambda_matrix_new (depth, depth);
828 determinant = lambda_matrix_inverse (LTM_MATRIX (H), inverse, depth);
829
830 /* H1 is H excluding its diagonal. */
831 H1 = lambda_matrix_new (depth, depth);
832 lambda_matrix_copy (LTM_MATRIX (H), H1, depth, depth);
833
834 for (i = 0; i < depth; i++)
835 H1[i][i] = 0;
836
837 /* Computes the linear offsets of the loop bounds. */
838 target = lambda_matrix_new (depth, depth);
839 lambda_matrix_mult (H1, inverse, target, depth, depth, depth);
840
841 target_nest = lambda_loopnest_new (depth, invariants);
842
843 for (i = 0; i < depth; i++)
844 {
845
846 /* Get a new loop structure. */
847 target_loop = lambda_loop_new ();
848 LN_LOOPS (target_nest)[i] = target_loop;
849
850 /* Computes the gcd of the coefficients of the linear part. */
851 gcd1 = gcd_vector (target[i], i);
852
ea4b7848 853 /* Include the denominator in the GCD. */
36d59cf7
DB
854 gcd1 = gcd (gcd1, determinant);
855
ea4b7848 856 /* Now divide through by the gcd. */
36d59cf7
DB
857 for (j = 0; j < i; j++)
858 target[i][j] = target[i][j] / gcd1;
859
860 expression = lambda_linear_expression_new (depth, invariants);
861 lambda_vector_copy (target[i], LLE_COEFFICIENTS (expression), depth);
862 LLE_DENOMINATOR (expression) = determinant / gcd1;
863 LLE_CONSTANT (expression) = 0;
864 lambda_vector_clear (LLE_INVARIANT_COEFFICIENTS (expression),
865 invariants);
866 LL_LINEAR_OFFSET (target_loop) = expression;
867 }
868
ea4b7848 869 /* For each loop, compute the new bounds from H. */
36d59cf7
DB
870 for (i = 0; i < depth; i++)
871 {
872 auxillary_loop = LN_LOOPS (auxillary_nest)[i];
873 target_loop = LN_LOOPS (target_nest)[i];
874 LL_STEP (target_loop) = LTM_MATRIX (H)[i][i];
875 factor = LTM_MATRIX (H)[i][i];
876
877 /* First we do the lower bound. */
878 auxillary_expr = LL_LOWER_BOUND (auxillary_loop);
879
880 for (; auxillary_expr != NULL;
881 auxillary_expr = LLE_NEXT (auxillary_expr))
882 {
883 target_expr = lambda_linear_expression_new (depth, invariants);
884 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
885 depth, inverse, depth,
886 LLE_COEFFICIENTS (target_expr));
887 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
888 LLE_COEFFICIENTS (target_expr), depth,
889 factor);
890
891 LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
892 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
893 LLE_INVARIANT_COEFFICIENTS (target_expr),
894 invariants);
895 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
896 LLE_INVARIANT_COEFFICIENTS (target_expr),
897 invariants, factor);
898 LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
899
900 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
901 {
902 LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
903 * determinant;
904 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
905 (target_expr),
906 LLE_INVARIANT_COEFFICIENTS
907 (target_expr), invariants,
908 determinant);
909 LLE_DENOMINATOR (target_expr) =
910 LLE_DENOMINATOR (target_expr) * determinant;
911 }
912 /* Find the gcd and divide by it here, rather than doing it
913 at the tree level. */
914 gcd1 = gcd_vector (LLE_COEFFICIENTS (target_expr), depth);
915 gcd2 = gcd_vector (LLE_INVARIANT_COEFFICIENTS (target_expr),
916 invariants);
917 gcd1 = gcd (gcd1, gcd2);
918 gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
919 gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
920 for (j = 0; j < depth; j++)
921 LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
922 for (j = 0; j < invariants; j++)
923 LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
924 LLE_CONSTANT (target_expr) /= gcd1;
925 LLE_DENOMINATOR (target_expr) /= gcd1;
926 /* Ignore if identical to existing bound. */
927 if (!lle_equal (LL_LOWER_BOUND (target_loop), target_expr, depth,
928 invariants))
929 {
930 LLE_NEXT (target_expr) = LL_LOWER_BOUND (target_loop);
931 LL_LOWER_BOUND (target_loop) = target_expr;
932 }
933 }
934 /* Now do the upper bound. */
935 auxillary_expr = LL_UPPER_BOUND (auxillary_loop);
936
937 for (; auxillary_expr != NULL;
938 auxillary_expr = LLE_NEXT (auxillary_expr))
939 {
940 target_expr = lambda_linear_expression_new (depth, invariants);
941 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
942 depth, inverse, depth,
943 LLE_COEFFICIENTS (target_expr));
944 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
945 LLE_COEFFICIENTS (target_expr), depth,
946 factor);
947 LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
948 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
949 LLE_INVARIANT_COEFFICIENTS (target_expr),
950 invariants);
951 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
952 LLE_INVARIANT_COEFFICIENTS (target_expr),
953 invariants, factor);
954 LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
955
956 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
957 {
958 LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
959 * determinant;
960 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
961 (target_expr),
962 LLE_INVARIANT_COEFFICIENTS
963 (target_expr), invariants,
964 determinant);
965 LLE_DENOMINATOR (target_expr) =
966 LLE_DENOMINATOR (target_expr) * determinant;
967 }
968 /* Find the gcd and divide by it here, instead of at the
969 tree level. */
970 gcd1 = gcd_vector (LLE_COEFFICIENTS (target_expr), depth);
971 gcd2 = gcd_vector (LLE_INVARIANT_COEFFICIENTS (target_expr),
972 invariants);
973 gcd1 = gcd (gcd1, gcd2);
974 gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
975 gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
976 for (j = 0; j < depth; j++)
977 LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
978 for (j = 0; j < invariants; j++)
979 LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
980 LLE_CONSTANT (target_expr) /= gcd1;
981 LLE_DENOMINATOR (target_expr) /= gcd1;
982 /* Ignore if equal to existing bound. */
983 if (!lle_equal (LL_UPPER_BOUND (target_loop), target_expr, depth,
984 invariants))
985 {
986 LLE_NEXT (target_expr) = LL_UPPER_BOUND (target_loop);
987 LL_UPPER_BOUND (target_loop) = target_expr;
988 }
989 }
990 }
991 for (i = 0; i < depth; i++)
992 {
993 target_loop = LN_LOOPS (target_nest)[i];
994 /* If necessary, exchange the upper and lower bounds and negate
995 the step size. */
996 if (stepsigns[i] < 0)
997 {
998 LL_STEP (target_loop) *= -1;
999 tmp_expr = LL_LOWER_BOUND (target_loop);
1000 LL_LOWER_BOUND (target_loop) = LL_UPPER_BOUND (target_loop);
1001 LL_UPPER_BOUND (target_loop) = tmp_expr;
1002 }
1003 }
1004 return target_nest;
1005}
1006
1007/* Compute the step signs of TRANS, using TRANS and stepsigns. Return the new
1008 result. */
1009
1010static lambda_vector
1011lambda_compute_step_signs (lambda_trans_matrix trans, lambda_vector stepsigns)
1012{
1013 lambda_matrix matrix, H;
1014 int size;
1015 lambda_vector newsteps;
1016 int i, j, factor, minimum_column;
1017 int temp;
1018
1019 matrix = LTM_MATRIX (trans);
1020 size = LTM_ROWSIZE (trans);
1021 H = lambda_matrix_new (size, size);
1022
1023 newsteps = lambda_vector_new (size);
1024 lambda_vector_copy (stepsigns, newsteps, size);
1025
1026 lambda_matrix_copy (matrix, H, size, size);
1027
1028 for (j = 0; j < size; j++)
1029 {
1030 lambda_vector row;
1031 row = H[j];
1032 for (i = j; i < size; i++)
1033 if (row[i] < 0)
1034 lambda_matrix_col_negate (H, size, i);
1035 while (lambda_vector_first_nz (row, size, j + 1) < size)
1036 {
1037 minimum_column = lambda_vector_min_nz (row, size, j);
1038 lambda_matrix_col_exchange (H, size, j, minimum_column);
1039
1040 temp = newsteps[j];
1041 newsteps[j] = newsteps[minimum_column];
1042 newsteps[minimum_column] = temp;
1043
1044 for (i = j + 1; i < size; i++)
1045 {
1046 factor = row[i] / row[j];
1047 lambda_matrix_col_add (H, size, j, i, -1 * factor);
1048 }
1049 }
1050 }
1051 return newsteps;
1052}
1053
1054/* Transform NEST according to TRANS, and return the new loopnest.
1055 This involves
1056 1. Computing a lattice base for the transformation
1057 2. Composing the dense base with the specified transformation (TRANS)
1058 3. Decomposing the combined transformation into a lower triangular portion,
1059 and a unimodular portion.
aabcd309
KH
1060 4. Computing the auxiliary nest using the unimodular portion.
1061 5. Computing the target nest using the auxiliary nest and the lower
36d59cf7
DB
1062 triangular portion. */
1063
1064lambda_loopnest
1065lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans)
1066{
1067 lambda_loopnest auxillary_nest, target_nest;
1068
1069 int depth, invariants;
1070 int i, j;
1071 lambda_lattice lattice;
1072 lambda_trans_matrix trans1, H, U;
1073 lambda_loop loop;
1074 lambda_linear_expression expression;
1075 lambda_vector origin;
1076 lambda_matrix origin_invariants;
1077 lambda_vector stepsigns;
1078 int f;
1079
1080 depth = LN_DEPTH (nest);
1081 invariants = LN_INVARIANTS (nest);
1082
1083 /* Keep track of the signs of the loop steps. */
1084 stepsigns = lambda_vector_new (depth);
1085 for (i = 0; i < depth; i++)
1086 {
1087 if (LL_STEP (LN_LOOPS (nest)[i]) > 0)
1088 stepsigns[i] = 1;
1089 else
1090 stepsigns[i] = -1;
1091 }
1092
1093 /* Compute the lattice base. */
1094 lattice = lambda_lattice_compute_base (nest);
1095 trans1 = lambda_trans_matrix_new (depth, depth);
1096
1097 /* Multiply the transformation matrix by the lattice base. */
1098
1099 lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_BASE (lattice),
1100 LTM_MATRIX (trans1), depth, depth, depth);
1101
1102 /* Compute the Hermite normal form for the new transformation matrix. */
1103 H = lambda_trans_matrix_new (depth, depth);
1104 U = lambda_trans_matrix_new (depth, depth);
1105 lambda_matrix_hermite (LTM_MATRIX (trans1), depth, LTM_MATRIX (H),
1106 LTM_MATRIX (U));
1107
1108 /* Compute the auxiliary loop nest's space from the unimodular
1109 portion. */
1110 auxillary_nest = lambda_compute_auxillary_space (nest, U);
1111
1112 /* Compute the loop step signs from the old step signs and the
1113 transformation matrix. */
1114 stepsigns = lambda_compute_step_signs (trans1, stepsigns);
1115
1116 /* Compute the target loop nest space from the auxiliary nest and
1117 the lower triangular matrix H. */
1118 target_nest = lambda_compute_target_space (auxillary_nest, H, stepsigns);
1119 origin = lambda_vector_new (depth);
1120 origin_invariants = lambda_matrix_new (depth, invariants);
1121 lambda_matrix_vector_mult (LTM_MATRIX (trans), depth, depth,
1122 LATTICE_ORIGIN (lattice), origin);
1123 lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_ORIGIN_INVARIANTS (lattice),
1124 origin_invariants, depth, depth, invariants);
1125
1126 for (i = 0; i < depth; i++)
1127 {
1128 loop = LN_LOOPS (target_nest)[i];
1129 expression = LL_LINEAR_OFFSET (loop);
1130 if (lambda_vector_zerop (LLE_COEFFICIENTS (expression), depth))
1131 f = 1;
1132 else
1133 f = LLE_DENOMINATOR (expression);
1134
1135 LLE_CONSTANT (expression) += f * origin[i];
1136
1137 for (j = 0; j < invariants; j++)
1138 LLE_INVARIANT_COEFFICIENTS (expression)[j] +=
1139 f * origin_invariants[i][j];
1140 }
1141
1142 return target_nest;
1143
1144}
1145
1146/* Convert a gcc tree expression EXPR to a lambda linear expression, and
1147 return the new expression. DEPTH is the depth of the loopnest.
1148 OUTERINDUCTIONVARS is an array of the induction variables for outer loops
1149 in this nest. INVARIANTS is the array of invariants for the loop. EXTRA
1150 is the amount we have to add/subtract from the expression because of the
1151 type of comparison it is used in. */
1152
1153static lambda_linear_expression
1154gcc_tree_to_linear_expression (int depth, tree expr,
1155 VEC(tree) *outerinductionvars,
1156 VEC(tree) *invariants, int extra)
1157{
1158 lambda_linear_expression lle = NULL;
1159 switch (TREE_CODE (expr))
1160 {
1161 case INTEGER_CST:
1162 {
1163 lle = lambda_linear_expression_new (depth, 2 * depth);
1164 LLE_CONSTANT (lle) = TREE_INT_CST_LOW (expr);
1165 if (extra != 0)
464f49d8 1166 LLE_CONSTANT (lle) += extra;
36d59cf7
DB
1167
1168 LLE_DENOMINATOR (lle) = 1;
1169 }
1170 break;
1171 case SSA_NAME:
1172 {
1173 tree iv, invar;
1174 size_t i;
1175 for (i = 0; VEC_iterate (tree, outerinductionvars, i, iv); i++)
1176 if (iv != NULL)
1177 {
1178 if (SSA_NAME_VAR (iv) == SSA_NAME_VAR (expr))
1179 {
1180 lle = lambda_linear_expression_new (depth, 2 * depth);
1181 LLE_COEFFICIENTS (lle)[i] = 1;
1182 if (extra != 0)
1183 LLE_CONSTANT (lle) = extra;
1184
1185 LLE_DENOMINATOR (lle) = 1;
1186 }
1187 }
1188 for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
1189 if (invar != NULL)
1190 {
1191 if (SSA_NAME_VAR (invar) == SSA_NAME_VAR (expr))
1192 {
1193 lle = lambda_linear_expression_new (depth, 2 * depth);
1194 LLE_INVARIANT_COEFFICIENTS (lle)[i] = 1;
1195 if (extra != 0)
1196 LLE_CONSTANT (lle) = extra;
1197 LLE_DENOMINATOR (lle) = 1;
1198 }
1199 }
1200 }
1201 break;
1202 default:
1203 return NULL;
1204 }
1205
1206 return lle;
1207}
1208
464f49d8
DB
1209/* Return the depth of the loopnest NEST */
1210
1211static int
1212depth_of_nest (struct loop *nest)
1213{
1214 size_t depth = 0;
1215 while (nest)
1216 {
1217 depth++;
1218 nest = nest->inner;
1219 }
1220 return depth;
1221}
1222
1223
36d59cf7
DB
1224/* Return true if OP is invariant in LOOP and all outer loops. */
1225
1226static bool
feb075f4 1227invariant_in_loop_and_outer_loops (struct loop *loop, tree op)
36d59cf7 1228{
f67d92e9
DB
1229 if (is_gimple_min_invariant (op))
1230 return true;
36d59cf7
DB
1231 if (loop->depth == 0)
1232 return true;
feb075f4
DB
1233 if (!expr_invariant_in_loop_p (loop, op))
1234 return false;
1235 if (loop->outer
1236 && !invariant_in_loop_and_outer_loops (loop->outer, op))
1237 return false;
1238 return true;
36d59cf7
DB
1239}
1240
1241/* Generate a lambda loop from a gcc loop LOOP. Return the new lambda loop,
1242 or NULL if it could not be converted.
1243 DEPTH is the depth of the loop.
1244 INVARIANTS is a pointer to the array of loop invariants.
1245 The induction variable for this loop should be stored in the parameter
1246 OURINDUCTIONVAR.
1247 OUTERINDUCTIONVARS is an array of induction variables for outer loops. */
1248
1249static lambda_loop
1250gcc_loop_to_lambda_loop (struct loop *loop, int depth,
1251 VEC (tree) ** invariants,
1252 tree * ourinductionvar,
f67d92e9
DB
1253 VEC (tree) * outerinductionvars,
1254 VEC (tree) ** lboundvars,
1255 VEC (tree) ** uboundvars,
1256 VEC (int) ** steps)
36d59cf7
DB
1257{
1258 tree phi;
1259 tree exit_cond;
1260 tree access_fn, inductionvar;
1261 tree step;
1262 lambda_loop lloop = NULL;
1263 lambda_linear_expression lbound, ubound;
1264 tree test;
1265 int stepint;
1266 int extra = 0;
464f49d8 1267 tree lboundvar, uboundvar, uboundresult;
36d59cf7
DB
1268 use_optype uses;
1269
f67d92e9 1270 /* Find out induction var and exit condition. */
36d59cf7 1271 inductionvar = find_induction_var_from_exit_cond (loop);
36d59cf7
DB
1272 exit_cond = get_loop_exit_condition (loop);
1273
1274 if (inductionvar == NULL || exit_cond == NULL)
1275 {
1276 if (dump_file && (dump_flags & TDF_DETAILS))
1277 fprintf (dump_file,
1278 "Unable to convert loop: Cannot determine exit condition or induction variable for loop.\n");
1279 return NULL;
1280 }
1281
1282 test = TREE_OPERAND (exit_cond, 0);
36d59cf7 1283
36d59cf7
DB
1284 if (SSA_NAME_DEF_STMT (inductionvar) == NULL_TREE)
1285 {
1286
1287 if (dump_file && (dump_flags & TDF_DETAILS))
1288 fprintf (dump_file,
1289 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1290
1291 return NULL;
1292 }
1293
1294 phi = SSA_NAME_DEF_STMT (inductionvar);
1295 if (TREE_CODE (phi) != PHI_NODE)
1296 {
36d59cf7
DB
1297 uses = STMT_USE_OPS (phi);
1298
1299 if (!uses)
1300 {
1301
1302 if (dump_file && (dump_flags & TDF_DETAILS))
1303 fprintf (dump_file,
1304 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1305
1306 return NULL;
1307 }
1308
1309 phi = USE_OP (uses, 0);
1310 phi = SSA_NAME_DEF_STMT (phi);
1311 if (TREE_CODE (phi) != PHI_NODE)
1312 {
1313
1314 if (dump_file && (dump_flags & TDF_DETAILS))
1315 fprintf (dump_file,
1316 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1317 return NULL;
1318 }
1319
1320 }
464f49d8 1321
f67d92e9
DB
1322 /* The induction variable name/version we want to put in the array is the
1323 result of the induction variable phi node. */
1324 *ourinductionvar = PHI_RESULT (phi);
36d59cf7
DB
1325 access_fn = instantiate_parameters
1326 (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
464f49d8 1327 if (access_fn == chrec_dont_know)
36d59cf7
DB
1328 {
1329 if (dump_file && (dump_flags & TDF_DETAILS))
1330 fprintf (dump_file,
464f49d8 1331 "Unable to convert loop: Access function for induction variable phi is unknown\n");
36d59cf7
DB
1332
1333 return NULL;
1334 }
1335
1336 step = evolution_part_in_loop_num (access_fn, loop->num);
1337 if (!step || step == chrec_dont_know)
1338 {
1339 if (dump_file && (dump_flags & TDF_DETAILS))
1340 fprintf (dump_file,
1341 "Unable to convert loop: Cannot determine step of loop.\n");
1342
1343 return NULL;
1344 }
1345 if (TREE_CODE (step) != INTEGER_CST)
1346 {
1347
1348 if (dump_file && (dump_flags & TDF_DETAILS))
1349 fprintf (dump_file,
1350 "Unable to convert loop: Step of loop is not integer.\n");
1351 return NULL;
1352 }
1353
1354 stepint = TREE_INT_CST_LOW (step);
1355
1356 /* Only want phis for induction vars, which will have two
1357 arguments. */
1358 if (PHI_NUM_ARGS (phi) != 2)
1359 {
1360 if (dump_file && (dump_flags & TDF_DETAILS))
1361 fprintf (dump_file,
1362 "Unable to convert loop: PHI node for induction variable has >2 arguments\n");
1363 return NULL;
1364 }
1365
1366 /* Another induction variable check. One argument's source should be
1367 in the loop, one outside the loop. */
1368 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src)
1369 && flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 1)->src))
1370 {
1371
1372 if (dump_file && (dump_flags & TDF_DETAILS))
1373 fprintf (dump_file,
1374 "Unable to convert loop: PHI edges both inside loop, or both outside loop.\n");
1375
1376 return NULL;
1377 }
1378
1379 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src))
f67d92e9
DB
1380 {
1381 lboundvar = PHI_ARG_DEF (phi, 1);
1382 lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1383 outerinductionvars, *invariants,
1384 0);
1385 }
36d59cf7 1386 else
f67d92e9
DB
1387 {
1388 lboundvar = PHI_ARG_DEF (phi, 0);
1389 lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1390 outerinductionvars, *invariants,
1391 0);
1392 }
1393
36d59cf7
DB
1394 if (!lbound)
1395 {
1396
1397 if (dump_file && (dump_flags & TDF_DETAILS))
1398 fprintf (dump_file,
1399 "Unable to convert loop: Cannot convert lower bound to linear expression\n");
1400
1401 return NULL;
1402 }
599eabdb
DB
1403 /* One part of the test may be a loop invariant tree. */
1404 if (TREE_CODE (TREE_OPERAND (test, 1)) == SSA_NAME
feb075f4 1405 && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 1)))
599eabdb
DB
1406 VEC_safe_push (tree, *invariants, TREE_OPERAND (test, 1));
1407 else if (TREE_CODE (TREE_OPERAND (test, 0)) == SSA_NAME
feb075f4 1408 && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 0)))
599eabdb
DB
1409 VEC_safe_push (tree, *invariants, TREE_OPERAND (test, 0));
1410
1411 /* The non-induction variable part of the test is the upper bound variable.
1412 */
1413 if (TREE_OPERAND (test, 0) == inductionvar)
1414 uboundvar = TREE_OPERAND (test, 1);
1415 else
1416 uboundvar = TREE_OPERAND (test, 0);
1417
36d59cf7
DB
1418
1419 /* We only size the vectors assuming we have, at max, 2 times as many
1420 invariants as we do loops (one for each bound).
1421 This is just an arbitrary number, but it has to be matched against the
1422 code below. */
599eabdb
DB
1423 gcc_assert (VEC_length (tree, *invariants) <= (unsigned int) (2 * depth));
1424
36d59cf7 1425
8c27b7d4 1426 /* We might have some leftover. */
36d59cf7
DB
1427 if (TREE_CODE (test) == LT_EXPR)
1428 extra = -1 * stepint;
1429 else if (TREE_CODE (test) == NE_EXPR)
1430 extra = -1 * stepint;
599eabdb
DB
1431 else if (TREE_CODE (test) == GT_EXPR)
1432 extra = -1 * stepint;
464f49d8
DB
1433 else if (TREE_CODE (test) == EQ_EXPR)
1434 extra = 1 * stepint;
1435
1436 ubound = gcc_tree_to_linear_expression (depth, uboundvar,
36d59cf7
DB
1437 outerinductionvars,
1438 *invariants, extra);
464f49d8
DB
1439 uboundresult = build (PLUS_EXPR, TREE_TYPE (uboundvar), uboundvar,
1440 build_int_cst (TREE_TYPE (uboundvar), extra));
1441 VEC_safe_push (tree, *uboundvars, uboundresult);
f67d92e9
DB
1442 VEC_safe_push (tree, *lboundvars, lboundvar);
1443 VEC_safe_push (int, *steps, stepint);
36d59cf7
DB
1444 if (!ubound)
1445 {
36d59cf7
DB
1446 if (dump_file && (dump_flags & TDF_DETAILS))
1447 fprintf (dump_file,
1448 "Unable to convert loop: Cannot convert upper bound to linear expression\n");
1449 return NULL;
1450 }
1451
1452 lloop = lambda_loop_new ();
1453 LL_STEP (lloop) = stepint;
1454 LL_LOWER_BOUND (lloop) = lbound;
1455 LL_UPPER_BOUND (lloop) = ubound;
1456 return lloop;
1457}
1458
1459/* Given a LOOP, find the induction variable it is testing against in the exit
1460 condition. Return the induction variable if found, NULL otherwise. */
1461
1462static tree
1463find_induction_var_from_exit_cond (struct loop *loop)
1464{
1465 tree expr = get_loop_exit_condition (loop);
599eabdb 1466 tree ivarop;
36d59cf7
DB
1467 tree test;
1468 if (expr == NULL_TREE)
1469 return NULL_TREE;
1470 if (TREE_CODE (expr) != COND_EXPR)
1471 return NULL_TREE;
1472 test = TREE_OPERAND (expr, 0);
6615c446 1473 if (!COMPARISON_CLASS_P (test))
36d59cf7 1474 return NULL_TREE;
464f49d8
DB
1475
1476 /* Find the side that is invariant in this loop. The ivar must be the other
1477 side. */
1478
1479 if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 0)))
599eabdb 1480 ivarop = TREE_OPERAND (test, 1);
464f49d8
DB
1481 else if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 1)))
1482 ivarop = TREE_OPERAND (test, 0);
1483 else
1484 return NULL_TREE;
1485
599eabdb 1486 if (TREE_CODE (ivarop) != SSA_NAME)
36d59cf7 1487 return NULL_TREE;
599eabdb 1488 return ivarop;
36d59cf7
DB
1489}
1490
4c254e68 1491DEF_VEC_GC_P(lambda_loop);
36d59cf7
DB
1492/* Generate a lambda loopnest from a gcc loopnest LOOP_NEST.
1493 Return the new loop nest.
1494 INDUCTIONVARS is a pointer to an array of induction variables for the
1495 loopnest that will be filled in during this process.
1496 INVARIANTS is a pointer to an array of invariants that will be filled in
1497 during this process. */
1498
1499lambda_loopnest
f67d92e9
DB
1500gcc_loopnest_to_lambda_loopnest (struct loops *currloops,
1501 struct loop * loop_nest,
36d59cf7 1502 VEC (tree) **inductionvars,
f67d92e9
DB
1503 VEC (tree) **invariants,
1504 bool need_perfect_nest)
36d59cf7
DB
1505{
1506 lambda_loopnest ret;
1507 struct loop *temp;
1508 int depth = 0;
1509 size_t i;
464f49d8
DB
1510 VEC (lambda_loop) *loops = NULL;
1511 VEC (tree) *uboundvars = NULL;
1512 VEC (tree) *lboundvars = NULL;
1513 VEC (int) *steps = NULL;
36d59cf7
DB
1514 lambda_loop newloop;
1515 tree inductionvar = NULL;
464f49d8
DB
1516
1517 depth = depth_of_nest (loop_nest);
36d59cf7
DB
1518 temp = loop_nest;
1519 while (temp)
1520 {
1521 newloop = gcc_loop_to_lambda_loop (temp, depth, invariants,
f67d92e9
DB
1522 &inductionvar, *inductionvars,
1523 &lboundvars, &uboundvars,
1524 &steps);
36d59cf7
DB
1525 if (!newloop)
1526 return NULL;
1527 VEC_safe_push (tree, *inductionvars, inductionvar);
1528 VEC_safe_push (lambda_loop, loops, newloop);
1529 temp = temp->inner;
1530 }
464f49d8 1531 if (need_perfect_nest)
f67d92e9 1532 {
464f49d8
DB
1533 if (!perfect_nestify (currloops, loop_nest,
1534 lboundvars, uboundvars, steps, *inductionvars))
1535 {
1536 if (dump_file)
1537 fprintf (dump_file, "Not a perfect loop nest and couldn't convert to one.\n");
1538 return NULL;
1539 }
1540 else if (dump_file)
1541 fprintf (dump_file, "Successfully converted loop nest to perfect loop nest.\n");
1542
1543
f67d92e9 1544 }
36d59cf7
DB
1545 ret = lambda_loopnest_new (depth, 2 * depth);
1546 for (i = 0; VEC_iterate (lambda_loop, loops, i, newloop); i++)
1547 LN_LOOPS (ret)[i] = newloop;
1548
1549 return ret;
1550
1551}
1552
464f49d8 1553
36d59cf7
DB
1554/* Convert a lambda body vector LBV to a gcc tree, and return the new tree.
1555 STMTS_TO_INSERT is a pointer to a tree where the statements we need to be
1556 inserted for us are stored. INDUCTION_VARS is the array of induction
464f49d8
DB
1557 variables for the loop this LBV is from. TYPE is the tree type to use for
1558 the variables and trees involved. */
36d59cf7
DB
1559
1560static tree
464f49d8
DB
1561lbv_to_gcc_expression (lambda_body_vector lbv,
1562 tree type, VEC (tree) *induction_vars,
1563 tree * stmts_to_insert)
36d59cf7
DB
1564{
1565 tree stmts, stmt, resvar, name;
464f49d8 1566 tree iv;
36d59cf7
DB
1567 size_t i;
1568 tree_stmt_iterator tsi;
1569
1570 /* Create a statement list and a linear expression temporary. */
1571 stmts = alloc_stmt_list ();
464f49d8 1572 resvar = create_tmp_var (type, "lbvtmp");
36d59cf7
DB
1573 add_referenced_tmp_var (resvar);
1574
1575 /* Start at 0. */
1576 stmt = build (MODIFY_EXPR, void_type_node, resvar, integer_zero_node);
1577 name = make_ssa_name (resvar, stmt);
1578 TREE_OPERAND (stmt, 0) = name;
1579 tsi = tsi_last (stmts);
1580 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1581
464f49d8 1582 for (i = 0; VEC_iterate (tree, induction_vars, i, iv); i++)
36d59cf7
DB
1583 {
1584 if (LBV_COEFFICIENTS (lbv)[i] != 0)
1585 {
1586 tree newname;
464f49d8
DB
1587 tree coeffmult;
1588
36d59cf7 1589 /* newname = coefficient * induction_variable */
464f49d8 1590 coeffmult = build_int_cst (type, LBV_COEFFICIENTS (lbv)[i]);
36d59cf7 1591 stmt = build (MODIFY_EXPR, void_type_node, resvar,
464f49d8
DB
1592 fold (build (MULT_EXPR, type, iv, coeffmult)));
1593
36d59cf7
DB
1594 newname = make_ssa_name (resvar, stmt);
1595 TREE_OPERAND (stmt, 0) = newname;
464f49d8 1596 fold_stmt (&stmt);
36d59cf7
DB
1597 tsi = tsi_last (stmts);
1598 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
464f49d8 1599
36d59cf7
DB
1600 /* name = name + newname */
1601 stmt = build (MODIFY_EXPR, void_type_node, resvar,
464f49d8 1602 build (PLUS_EXPR, type, name, newname));
36d59cf7
DB
1603 name = make_ssa_name (resvar, stmt);
1604 TREE_OPERAND (stmt, 0) = name;
464f49d8 1605 fold_stmt (&stmt);
36d59cf7
DB
1606 tsi = tsi_last (stmts);
1607 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
464f49d8 1608
36d59cf7
DB
1609 }
1610 }
1611
1612 /* Handle any denominator that occurs. */
1613 if (LBV_DENOMINATOR (lbv) != 1)
1614 {
464f49d8 1615 tree denominator = build_int_cst (type, LBV_DENOMINATOR (lbv));
36d59cf7 1616 stmt = build (MODIFY_EXPR, void_type_node, resvar,
464f49d8 1617 build (CEIL_DIV_EXPR, type, name, denominator));
36d59cf7
DB
1618 name = make_ssa_name (resvar, stmt);
1619 TREE_OPERAND (stmt, 0) = name;
464f49d8 1620 fold_stmt (&stmt);
36d59cf7
DB
1621 tsi = tsi_last (stmts);
1622 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1623 }
1624 *stmts_to_insert = stmts;
1625 return name;
1626}
1627
1628/* Convert a linear expression from coefficient and constant form to a
1629 gcc tree.
1630 Return the tree that represents the final value of the expression.
1631 LLE is the linear expression to convert.
1632 OFFSET is the linear offset to apply to the expression.
464f49d8 1633 TYPE is the tree type to use for the variables and math.
36d59cf7
DB
1634 INDUCTION_VARS is a vector of induction variables for the loops.
1635 INVARIANTS is a vector of the loop nest invariants.
1636 WRAP specifies what tree code to wrap the results in, if there is more than
1637 one (it is either MAX_EXPR, or MIN_EXPR).
1638 STMTS_TO_INSERT Is a pointer to the statement list we fill in with
1639 statements that need to be inserted for the linear expression. */
1640
1641static tree
1642lle_to_gcc_expression (lambda_linear_expression lle,
1643 lambda_linear_expression offset,
464f49d8 1644 tree type,
36d59cf7
DB
1645 VEC(tree) *induction_vars,
1646 VEC(tree) *invariants,
1647 enum tree_code wrap, tree * stmts_to_insert)
1648{
1649 tree stmts, stmt, resvar, name;
1650 size_t i;
1651 tree_stmt_iterator tsi;
464f49d8
DB
1652 tree iv, invar;
1653 VEC(tree) *results = NULL;
36d59cf7
DB
1654
1655 name = NULL_TREE;
1656 /* Create a statement list and a linear expression temporary. */
1657 stmts = alloc_stmt_list ();
464f49d8 1658 resvar = create_tmp_var (type, "lletmp");
36d59cf7 1659 add_referenced_tmp_var (resvar);
36d59cf7
DB
1660
1661 /* Build up the linear expressions, and put the variable representing the
1662 result in the results array. */
1663 for (; lle != NULL; lle = LLE_NEXT (lle))
1664 {
1665 /* Start at name = 0. */
1666 stmt = build (MODIFY_EXPR, void_type_node, resvar, integer_zero_node);
1667 name = make_ssa_name (resvar, stmt);
1668 TREE_OPERAND (stmt, 0) = name;
464f49d8 1669 fold_stmt (&stmt);
36d59cf7
DB
1670 tsi = tsi_last (stmts);
1671 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1672
1673 /* First do the induction variables.
1674 at the end, name = name + all the induction variables added
1675 together. */
464f49d8 1676 for (i = 0; VEC_iterate (tree, induction_vars, i, iv); i++)
36d59cf7
DB
1677 {
1678 if (LLE_COEFFICIENTS (lle)[i] != 0)
1679 {
1680 tree newname;
1681 tree mult;
1682 tree coeff;
1683
1684 /* mult = induction variable * coefficient. */
1685 if (LLE_COEFFICIENTS (lle)[i] == 1)
1686 {
1687 mult = VEC_index (tree, induction_vars, i);
1688 }
1689 else
1690 {
464f49d8 1691 coeff = build_int_cst (type,
36d59cf7 1692 LLE_COEFFICIENTS (lle)[i]);
464f49d8 1693 mult = fold (build (MULT_EXPR, type, iv, coeff));
36d59cf7
DB
1694 }
1695
1696 /* newname = mult */
1697 stmt = build (MODIFY_EXPR, void_type_node, resvar, mult);
1698 newname = make_ssa_name (resvar, stmt);
1699 TREE_OPERAND (stmt, 0) = newname;
464f49d8 1700 fold_stmt (&stmt);
36d59cf7
DB
1701 tsi = tsi_last (stmts);
1702 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1703
1704 /* name = name + newname */
1705 stmt = build (MODIFY_EXPR, void_type_node, resvar,
464f49d8 1706 build (PLUS_EXPR, type, name, newname));
36d59cf7
DB
1707 name = make_ssa_name (resvar, stmt);
1708 TREE_OPERAND (stmt, 0) = name;
464f49d8 1709 fold_stmt (&stmt);
36d59cf7
DB
1710 tsi = tsi_last (stmts);
1711 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1712 }
1713 }
1714
1715 /* Handle our invariants.
1716 At the end, we have name = name + result of adding all multiplied
1717 invariants. */
464f49d8 1718 for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
36d59cf7
DB
1719 {
1720 if (LLE_INVARIANT_COEFFICIENTS (lle)[i] != 0)
1721 {
1722 tree newname;
1723 tree mult;
1724 tree coeff;
464f49d8 1725 int invcoeff = LLE_INVARIANT_COEFFICIENTS (lle)[i];
36d59cf7 1726 /* mult = invariant * coefficient */
464f49d8 1727 if (invcoeff == 1)
36d59cf7 1728 {
464f49d8 1729 mult = invar;
36d59cf7
DB
1730 }
1731 else
1732 {
464f49d8
DB
1733 coeff = build_int_cst (type, invcoeff);
1734 mult = fold (build (MULT_EXPR, type, invar, coeff));
36d59cf7
DB
1735 }
1736
1737 /* newname = mult */
1738 stmt = build (MODIFY_EXPR, void_type_node, resvar, mult);
1739 newname = make_ssa_name (resvar, stmt);
1740 TREE_OPERAND (stmt, 0) = newname;
464f49d8 1741 fold_stmt (&stmt);
36d59cf7
DB
1742 tsi = tsi_last (stmts);
1743 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1744
1745 /* name = name + newname */
1746 stmt = build (MODIFY_EXPR, void_type_node, resvar,
464f49d8 1747 build (PLUS_EXPR, type, name, newname));
36d59cf7
DB
1748 name = make_ssa_name (resvar, stmt);
1749 TREE_OPERAND (stmt, 0) = name;
464f49d8 1750 fold_stmt (&stmt);
36d59cf7
DB
1751 tsi = tsi_last (stmts);
1752 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1753 }
1754 }
1755
1756 /* Now handle the constant.
1757 name = name + constant. */
1758 if (LLE_CONSTANT (lle) != 0)
1759 {
1760 stmt = build (MODIFY_EXPR, void_type_node, resvar,
464f49d8
DB
1761 build (PLUS_EXPR, type, name,
1762 build_int_cst (type, LLE_CONSTANT (lle))));
36d59cf7
DB
1763 name = make_ssa_name (resvar, stmt);
1764 TREE_OPERAND (stmt, 0) = name;
464f49d8 1765 fold_stmt (&stmt);
36d59cf7
DB
1766 tsi = tsi_last (stmts);
1767 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1768 }
1769
1770 /* Now handle the offset.
1771 name = name + linear offset. */
1772 if (LLE_CONSTANT (offset) != 0)
1773 {
1774 stmt = build (MODIFY_EXPR, void_type_node, resvar,
464f49d8
DB
1775 build (PLUS_EXPR, type, name,
1776 build_int_cst (type, LLE_CONSTANT (offset))));
36d59cf7
DB
1777 name = make_ssa_name (resvar, stmt);
1778 TREE_OPERAND (stmt, 0) = name;
464f49d8 1779 fold_stmt (&stmt);
36d59cf7
DB
1780 tsi = tsi_last (stmts);
1781 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1782 }
1783
1784 /* Handle any denominator that occurs. */
1785 if (LLE_DENOMINATOR (lle) != 1)
1786 {
1787 if (wrap == MAX_EXPR)
1788 stmt = build (MODIFY_EXPR, void_type_node, resvar,
464f49d8
DB
1789 build (CEIL_DIV_EXPR, type, name,
1790 build_int_cst (type, LLE_DENOMINATOR (lle))));
36d59cf7
DB
1791 else if (wrap == MIN_EXPR)
1792 stmt = build (MODIFY_EXPR, void_type_node, resvar,
464f49d8
DB
1793 build (FLOOR_DIV_EXPR, type, name,
1794 build_int_cst (type, LLE_DENOMINATOR (lle))));
36d59cf7 1795 else
599eabdb 1796 gcc_unreachable();
36d59cf7
DB
1797
1798 /* name = {ceil, floor}(name/denominator) */
1799 name = make_ssa_name (resvar, stmt);
1800 TREE_OPERAND (stmt, 0) = name;
1801 tsi = tsi_last (stmts);
1802 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1803 }
1804 VEC_safe_push (tree, results, name);
1805 }
1806
1807 /* Again, out of laziness, we don't handle this case yet. It's not
1808 hard, it just hasn't occurred. */
599eabdb
DB
1809 gcc_assert (VEC_length (tree, results) <= 2);
1810
36d59cf7
DB
1811 /* We may need to wrap the results in a MAX_EXPR or MIN_EXPR. */
1812 if (VEC_length (tree, results) > 1)
1813 {
1814 tree op1 = VEC_index (tree, results, 0);
1815 tree op2 = VEC_index (tree, results, 1);
1816 stmt = build (MODIFY_EXPR, void_type_node, resvar,
464f49d8 1817 build (wrap, type, op1, op2));
36d59cf7
DB
1818 name = make_ssa_name (resvar, stmt);
1819 TREE_OPERAND (stmt, 0) = name;
1820 tsi = tsi_last (stmts);
1821 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1822 }
1823
1824 *stmts_to_insert = stmts;
1825 return name;
1826}
1827
1828/* Transform a lambda loopnest NEW_LOOPNEST, which had TRANSFORM applied to
1829 it, back into gcc code. This changes the
1830 loops, their induction variables, and their bodies, so that they
1831 match the transformed loopnest.
1832 OLD_LOOPNEST is the loopnest before we've replaced it with the new
1833 loopnest.
1834 OLD_IVS is a vector of induction variables from the old loopnest.
1835 INVARIANTS is a vector of loop invariants from the old loopnest.
1836 NEW_LOOPNEST is the new lambda loopnest to replace OLD_LOOPNEST with.
1837 TRANSFORM is the matrix transform that was applied to OLD_LOOPNEST to get
1838 NEW_LOOPNEST. */
464f49d8 1839
36d59cf7
DB
1840void
1841lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
1842 VEC(tree) *old_ivs,
1843 VEC(tree) *invariants,
1844 lambda_loopnest new_loopnest,
1845 lambda_trans_matrix transform)
1846{
1847
1848 struct loop *temp;
1849 size_t i = 0;
1850 size_t depth = 0;
464f49d8
DB
1851 VEC(tree) *new_ivs = NULL;
1852 tree oldiv;
1853
36d59cf7 1854 block_stmt_iterator bsi;
36d59cf7
DB
1855
1856 if (dump_file)
1857 {
1858 transform = lambda_trans_matrix_inverse (transform);
1859 fprintf (dump_file, "Inverse of transformation matrix:\n");
1860 print_lambda_trans_matrix (dump_file, transform);
1861 }
464f49d8 1862 depth = depth_of_nest (old_loopnest);
36d59cf7
DB
1863 temp = old_loopnest;
1864
1865 while (temp)
1866 {
1867 lambda_loop newloop;
1868 basic_block bb;
13cf6837 1869 edge exit;
36d59cf7
DB
1870 tree ivvar, ivvarinced, exitcond, stmts;
1871 enum tree_code testtype;
1872 tree newupperbound, newlowerbound;
1873 lambda_linear_expression offset;
464f49d8 1874 tree type;
92d2b330 1875 bool insert_after;
e5e656a4 1876 tree inc_stmt;
464f49d8
DB
1877
1878 oldiv = VEC_index (tree, old_ivs, i);
1879 type = TREE_TYPE (oldiv);
1880
36d59cf7
DB
1881 /* First, build the new induction variable temporary */
1882
464f49d8 1883 ivvar = create_tmp_var (type, "lnivtmp");
36d59cf7
DB
1884 add_referenced_tmp_var (ivvar);
1885
1886 VEC_safe_push (tree, new_ivs, ivvar);
1887
1888 newloop = LN_LOOPS (new_loopnest)[i];
1889
1890 /* Linear offset is a bit tricky to handle. Punt on the unhandled
8c27b7d4 1891 cases for now. */
36d59cf7 1892 offset = LL_LINEAR_OFFSET (newloop);
464f49d8 1893
599eabdb
DB
1894 gcc_assert (LLE_DENOMINATOR (offset) == 1 &&
1895 lambda_vector_zerop (LLE_COEFFICIENTS (offset), depth));
464f49d8 1896
36d59cf7 1897 /* Now build the new lower bounds, and insert the statements
8c27b7d4 1898 necessary to generate it on the loop preheader. */
36d59cf7
DB
1899 newlowerbound = lle_to_gcc_expression (LL_LOWER_BOUND (newloop),
1900 LL_LINEAR_OFFSET (newloop),
464f49d8 1901 type,
36d59cf7
DB
1902 new_ivs,
1903 invariants, MAX_EXPR, &stmts);
1904 bsi_insert_on_edge (loop_preheader_edge (temp), stmts);
8e731e4e 1905 bsi_commit_edge_inserts ();
36d59cf7
DB
1906 /* Build the new upper bound and insert its statements in the
1907 basic block of the exit condition */
1908 newupperbound = lle_to_gcc_expression (LL_UPPER_BOUND (newloop),
1909 LL_LINEAR_OFFSET (newloop),
464f49d8 1910 type,
36d59cf7
DB
1911 new_ivs,
1912 invariants, MIN_EXPR, &stmts);
13cf6837 1913 exit = temp->single_exit;
36d59cf7
DB
1914 exitcond = get_loop_exit_condition (temp);
1915 bb = bb_for_stmt (exitcond);
1916 bsi = bsi_start (bb);
1917 bsi_insert_after (&bsi, stmts, BSI_NEW_STMT);
1918
92d2b330 1919 /* Create the new iv. */
36d59cf7 1920
92d2b330 1921 standard_iv_increment_position (temp, &bsi, &insert_after);
36d59cf7 1922 create_iv (newlowerbound,
464f49d8 1923 build_int_cst (type, LL_STEP (newloop)),
92d2b330 1924 ivvar, temp, &bsi, insert_after, &ivvar,
e5e656a4
DB
1925 NULL);
1926
1927 /* Unfortunately, the incremented ivvar that create_iv inserted may not
1928 dominate the block containing the exit condition.
1929 So we simply create our own incremented iv to use in the new exit
1930 test, and let redundancy elimination sort it out. */
1931 inc_stmt = build (PLUS_EXPR, type,
1932 ivvar, build_int_cst (type, LL_STEP (newloop)));
1933 inc_stmt = build (MODIFY_EXPR, void_type_node, SSA_NAME_VAR (ivvar),
1934 inc_stmt);
1935 ivvarinced = make_ssa_name (SSA_NAME_VAR (ivvar), inc_stmt);
1936 TREE_OPERAND (inc_stmt, 0) = ivvarinced;
1937 bsi = bsi_for_stmt (exitcond);
1938 bsi_insert_before (&bsi, inc_stmt, BSI_SAME_STMT);
36d59cf7
DB
1939
1940 /* Replace the exit condition with the new upper bound
1941 comparison. */
464f49d8 1942
36d59cf7 1943 testtype = LL_STEP (newloop) >= 0 ? LE_EXPR : GE_EXPR;
464f49d8 1944
13cf6837
DB
1945 /* We want to build a conditional where true means exit the loop, and
1946 false means continue the loop.
1947 So swap the testtype if this isn't the way things are.*/
1948
1949 if (exit->flags & EDGE_FALSE_VALUE)
464f49d8 1950 testtype = swap_tree_comparison (testtype);
13cf6837 1951
36d59cf7
DB
1952 COND_EXPR_COND (exitcond) = build (testtype,
1953 boolean_type_node,
464f49d8 1954 newupperbound, ivvarinced);
f430bae8 1955 update_stmt (exitcond);
36d59cf7
DB
1956 VEC_replace (tree, new_ivs, i, ivvar);
1957
1958 i++;
1959 temp = temp->inner;
1960 }
464f49d8 1961
f67d92e9
DB
1962 /* Rewrite uses of the old ivs so that they are now specified in terms of
1963 the new ivs. */
464f49d8
DB
1964
1965 for (i = 0; VEC_iterate (tree, old_ivs, i, oldiv); i++)
f67d92e9 1966 {
f430bae8
AM
1967 imm_use_iterator imm_iter;
1968 use_operand_p imm_use;
1969 tree oldiv_def;
1970 tree oldiv_stmt = SSA_NAME_DEF_STMT (oldiv);
1971
1972 gcc_assert (TREE_CODE (oldiv_stmt) == PHI_NODE
1973 || NUM_DEFS (STMT_DEF_OPS (oldiv_stmt)) == 1);
1974 if (TREE_CODE (oldiv_stmt) == PHI_NODE)
1975 oldiv_def = PHI_RESULT (oldiv_stmt);
1976 else
1977 oldiv_def = DEF_OP (STMT_DEF_OPS (oldiv_stmt), 0);
1978
1979 FOR_EACH_IMM_USE_SAFE (imm_use, imm_iter, oldiv_def)
f67d92e9 1980 {
f430bae8 1981 tree stmt = USE_STMT (imm_use);
feb075f4
DB
1982 use_operand_p use_p;
1983 ssa_op_iter iter;
464f49d8 1984 gcc_assert (TREE_CODE (stmt) != PHI_NODE);
feb075f4 1985 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
f67d92e9 1986 {
feb075f4 1987 if (USE_FROM_PTR (use_p) == oldiv)
f67d92e9
DB
1988 {
1989 tree newiv, stmts;
464f49d8 1990 lambda_body_vector lbv, newlbv;
f67d92e9
DB
1991 /* Compute the new expression for the induction
1992 variable. */
1993 depth = VEC_length (tree, new_ivs);
1994 lbv = lambda_body_vector_new (depth);
1995 LBV_COEFFICIENTS (lbv)[i] = 1;
464f49d8
DB
1996
1997 newlbv = lambda_body_vector_compute_new (transform, lbv);
1998
1999 newiv = lbv_to_gcc_expression (newlbv, TREE_TYPE (oldiv),
2000 new_ivs, &stmts);
1a1804c2 2001 bsi = bsi_for_stmt (stmt);
f67d92e9
DB
2002 /* Insert the statements to build that
2003 expression. */
2004 bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
feb075f4 2005 propagate_value (use_p, newiv);
f430bae8 2006 update_stmt (stmt);
f67d92e9
DB
2007
2008 }
2009 }
2010 }
2011 }
36d59cf7
DB
2012}
2013
f67d92e9 2014
36d59cf7 2015/* Returns true when the vector V is lexicographically positive, in
b01d837f 2016 other words, when the first nonzero element is positive. */
36d59cf7
DB
2017
2018static bool
f67d92e9
DB
2019lambda_vector_lexico_pos (lambda_vector v,
2020 unsigned n)
36d59cf7
DB
2021{
2022 unsigned i;
2023 for (i = 0; i < n; i++)
2024 {
2025 if (v[i] == 0)
2026 continue;
2027 if (v[i] < 0)
2028 return false;
2029 if (v[i] > 0)
2030 return true;
2031 }
2032 return true;
2033}
2034
f67d92e9
DB
2035
2036/* Return TRUE if this is not interesting statement from the perspective of
2037 determining if we have a perfect loop nest. */
2038
2039static bool
2040not_interesting_stmt (tree stmt)
2041{
2042 /* Note that COND_EXPR's aren't interesting because if they were exiting the
2043 loop, we would have already failed the number of exits tests. */
2044 if (TREE_CODE (stmt) == LABEL_EXPR
2045 || TREE_CODE (stmt) == GOTO_EXPR
2046 || TREE_CODE (stmt) == COND_EXPR)
2047 return true;
2048 return false;
2049}
2050
2051/* Return TRUE if PHI uses DEF for it's in-the-loop edge for LOOP. */
2052
2053static bool
2054phi_loop_edge_uses_def (struct loop *loop, tree phi, tree def)
2055{
2056 int i;
2057 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
2058 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, i)->src))
2059 if (PHI_ARG_DEF (phi, i) == def)
2060 return true;
2061 return false;
2062}
2063
2064/* Return TRUE if STMT is a use of PHI_RESULT. */
2065
2066static bool
2067stmt_uses_phi_result (tree stmt, tree phi_result)
2068{
2069 use_optype uses = STMT_USE_OPS (stmt);
2070
2071 /* This is conservatively true, because we only want SIMPLE bumpers
471854f8 2072 of the form x +- constant for our pass. */
f67d92e9
DB
2073 if (NUM_USES (uses) != 1)
2074 return false;
2075 if (USE_OP (uses, 0) == phi_result)
2076 return true;
2077
2078 return false;
2079}
2080
2081/* STMT is a bumper stmt for LOOP if the version it defines is used in the
2082 in-loop-edge in a phi node, and the operand it uses is the result of that
2083 phi node.
2084 I.E. i_29 = i_3 + 1
2085 i_3 = PHI (0, i_29); */
2086
2087static bool
2088stmt_is_bumper_for_loop (struct loop *loop, tree stmt)
2089{
2090 tree use;
2091 tree def;
2092 def_optype defs = STMT_DEF_OPS (stmt);
f430bae8
AM
2093 imm_use_iterator iter;
2094 use_operand_p use_p;
f67d92e9
DB
2095
2096 if (NUM_DEFS (defs) != 1)
2097 return false;
2098 def = DEF_OP (defs, 0);
f430bae8 2099 FOR_EACH_IMM_USE_FAST (use_p, iter, def)
f67d92e9 2100 {
f430bae8 2101 use = USE_STMT (use_p);
f67d92e9
DB
2102 if (TREE_CODE (use) == PHI_NODE)
2103 {
2104 if (phi_loop_edge_uses_def (loop, use, def))
2105 if (stmt_uses_phi_result (stmt, PHI_RESULT (use)))
2106 return true;
2107 }
2108 }
2109 return false;
2110}
464f49d8
DB
2111
2112
f67d92e9
DB
2113/* Return true if LOOP is a perfect loop nest.
2114 Perfect loop nests are those loop nests where all code occurs in the
2115 innermost loop body.
2116 If S is a program statement, then
2117
454ff5cb 2118 i.e.
f67d92e9
DB
2119 DO I = 1, 20
2120 S1
2121 DO J = 1, 20
2122 ...
2123 END DO
2124 END DO
2125 is not a perfect loop nest because of S1.
2126
2127 DO I = 1, 20
2128 DO J = 1, 20
2129 S1
2130 ...
2131 END DO
2132 END DO
2133 is a perfect loop nest.
2134
2135 Since we don't have high level loops anymore, we basically have to walk our
2136 statements and ignore those that are there because the loop needs them (IE
2137 the induction variable increment, and jump back to the top of the loop). */
2138
2139bool
2140perfect_nest_p (struct loop *loop)
2141{
2142 basic_block *bbs;
2143 size_t i;
2144 tree exit_cond;
2145
2146 if (!loop->inner)
2147 return true;
2148 bbs = get_loop_body (loop);
2149 exit_cond = get_loop_exit_condition (loop);
2150 for (i = 0; i < loop->num_nodes; i++)
2151 {
2152 if (bbs[i]->loop_father == loop)
2153 {
2154 block_stmt_iterator bsi;
2155 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
2156 {
2157 tree stmt = bsi_stmt (bsi);
2158 if (stmt == exit_cond
2159 || not_interesting_stmt (stmt)
2160 || stmt_is_bumper_for_loop (loop, stmt))
2161 continue;
2162 free (bbs);
2163 return false;
2164 }
2165 }
2166 }
2167 free (bbs);
2168 /* See if the inner loops are perfectly nested as well. */
2169 if (loop->inner)
2170 return perfect_nest_p (loop->inner);
2171 return true;
2172}
2173
f67d92e9
DB
2174/* Replace the USES of tree X in STMT with tree Y */
2175
2176static void
2177replace_uses_of_x_with_y (tree stmt, tree x, tree y)
2178{
2179 use_optype uses = STMT_USE_OPS (stmt);
2180 size_t i;
2181 for (i = 0; i < NUM_USES (uses); i++)
2182 {
2183 if (USE_OP (uses, i) == x)
2184 SET_USE_OP (uses, i, y);
2185 }
2186}
2187
471854f8 2188/* Return TRUE if STMT uses tree OP in it's uses. */
f67d92e9
DB
2189
2190static bool
2191stmt_uses_op (tree stmt, tree op)
2192{
2193 use_optype uses = STMT_USE_OPS (stmt);
2194 size_t i;
2195 for (i = 0; i < NUM_USES (uses); i++)
2196 {
2197 if (USE_OP (uses, i) == op)
2198 return true;
2199 }
2200 return false;
2201}
2202
2203/* Return TRUE if LOOP is an imperfect nest that we can convert to a perfect
2204 one. LOOPIVS is a vector of induction variables, one per loop.
2205 ATM, we only handle imperfect nests of depth 2, where all of the statements
2206 occur after the inner loop. */
2207
2208static bool
2209can_convert_to_perfect_nest (struct loop *loop,
2210 VEC (tree) *loopivs)
2211{
2212 basic_block *bbs;
903a33c9 2213 tree exit_condition, phi;
f67d92e9
DB
2214 size_t i;
2215 block_stmt_iterator bsi;
903a33c9 2216 basic_block exitdest;
f67d92e9
DB
2217
2218 /* Can't handle triply nested+ loops yet. */
2219 if (!loop->inner || loop->inner->inner)
2220 return false;
2221
2222 /* We only handle moving the after-inner-body statements right now, so make
2223 sure all the statements we need to move are located in that position. */
2224 bbs = get_loop_body (loop);
2225 exit_condition = get_loop_exit_condition (loop);
2226 for (i = 0; i < loop->num_nodes; i++)
2227 {
2228 if (bbs[i]->loop_father == loop)
2229 {
2230 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
2231 {
2232 size_t j;
2233 tree stmt = bsi_stmt (bsi);
2234 if (stmt == exit_condition
2235 || not_interesting_stmt (stmt)
2236 || stmt_is_bumper_for_loop (loop, stmt))
2237 continue;
2238 /* If the statement uses inner loop ivs, we == screwed. */
2239 for (j = 1; j < VEC_length (tree, loopivs); j++)
2240 if (stmt_uses_op (stmt, VEC_index (tree, loopivs, j)))
2241 {
2242 free (bbs);
2243 return false;
2244 }
2245
2246 /* If the bb of a statement we care about isn't dominated by
471854f8 2247 the header of the inner loop, then we are also screwed. */
f67d92e9
DB
2248 if (!dominated_by_p (CDI_DOMINATORS,
2249 bb_for_stmt (stmt),
2250 loop->inner->header))
2251 {
2252 free (bbs);
2253 return false;
2254 }
2255 }
2256 }
2257 }
903a33c9
DB
2258
2259 /* We also need to make sure the loop exit only has simple copy phis in it,
2260 otherwise we don't know how to transform it into a perfect nest right
2261 now. */
2262 exitdest = loop->single_exit->dest;
2263
2264 for (phi = phi_nodes (exitdest); phi; phi = PHI_CHAIN (phi))
2265 if (PHI_NUM_ARGS (phi) != 1)
2266 return false;
2267
f67d92e9
DB
2268 return true;
2269}
2270
2271/* Transform the loop nest into a perfect nest, if possible.
2272 LOOPS is the current struct loops *
2273 LOOP is the loop nest to transform into a perfect nest
2274 LBOUNDS are the lower bounds for the loops to transform
2275 UBOUNDS are the upper bounds for the loops to transform
2276 STEPS is the STEPS for the loops to transform.
2277 LOOPIVS is the induction variables for the loops to transform.
2278
2279 Basically, for the case of
2280
2281 FOR (i = 0; i < 50; i++)
2282 {
2283 FOR (j =0; j < 50; j++)
2284 {
2285 <whatever>
2286 }
2287 <some code>
2288 }
2289
2290 This function will transform it into a perfect loop nest by splitting the
2291 outer loop into two loops, like so:
2292
2293 FOR (i = 0; i < 50; i++)
2294 {
2295 FOR (j = 0; j < 50; j++)
2296 {
2297 <whatever>
2298 }
2299 }
2300
2301 FOR (i = 0; i < 50; i ++)
2302 {
2303 <some code>
2304 }
2305
2306 Return FALSE if we can't make this loop into a perfect nest. */
2307static bool
2308perfect_nestify (struct loops *loops,
2309 struct loop *loop,
2310 VEC (tree) *lbounds,
2311 VEC (tree) *ubounds,
2312 VEC (int) *steps,
2313 VEC (tree) *loopivs)
2314{
2315 basic_block *bbs;
2316 tree exit_condition;
2317 tree then_label, else_label, cond_stmt;
2318 basic_block preheaderbb, headerbb, bodybb, latchbb, olddest;
2319 size_t i;
2320 block_stmt_iterator bsi;
92d2b330 2321 bool insert_after;
f67d92e9
DB
2322 edge e;
2323 struct loop *newloop;
2324 tree phi;
2325 tree uboundvar;
2326 tree stmt;
464f49d8
DB
2327 tree oldivvar, ivvar, ivvarinced;
2328 VEC (tree) *phis = NULL;
f67d92e9
DB
2329
2330 if (!can_convert_to_perfect_nest (loop, loopivs))
2331 return false;
2332
f67d92e9
DB
2333 /* Create the new loop */
2334
2335 olddest = loop->single_exit->dest;
2336 preheaderbb = loop_split_edge_with (loop->single_exit, NULL);
2337 headerbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2338
eae600b9 2339 /* Push the exit phi nodes that we are moving. */
f67d92e9
DB
2340 for (phi = phi_nodes (olddest); phi; phi = PHI_CHAIN (phi))
2341 {
f67d92e9
DB
2342 VEC_safe_push (tree, phis, PHI_RESULT (phi));
2343 VEC_safe_push (tree, phis, PHI_ARG_DEF (phi, 0));
f67d92e9 2344 }
c5cbcccf 2345 e = redirect_edge_and_branch (single_succ_edge (preheaderbb), headerbb);
464f49d8 2346
eae600b9
DB
2347 /* Remove the exit phis from the old basic block. Make sure to set
2348 PHI_RESULT to null so it doesn't get released. */
464f49d8 2349 while (phi_nodes (olddest) != NULL)
eae600b9
DB
2350 {
2351 SET_PHI_RESULT (phi_nodes (olddest), NULL);
d19e3ef6 2352 remove_phi_node (phi_nodes (olddest), NULL);
eae600b9 2353 }
464f49d8 2354
eae600b9 2355 /* and add them back to the new basic block. */
f67d92e9
DB
2356 while (VEC_length (tree, phis) != 0)
2357 {
2358 tree def;
2359 tree phiname;
2360 def = VEC_pop (tree, phis);
464f49d8 2361 phiname = VEC_pop (tree, phis);
f67d92e9 2362 phi = create_phi_node (phiname, preheaderbb);
c5cbcccf 2363 add_phi_arg (phi, def, single_pred_edge (preheaderbb));
464f49d8 2364 }
71882046 2365 flush_pending_stmts (e);
464f49d8 2366
f67d92e9
DB
2367 bodybb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2368 latchbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2369 make_edge (headerbb, bodybb, EDGE_FALLTHRU);
2370 then_label = build1 (GOTO_EXPR, void_type_node, tree_block_label (latchbb));
2371 else_label = build1 (GOTO_EXPR, void_type_node, tree_block_label (olddest));
2372 cond_stmt = build (COND_EXPR, void_type_node,
2373 build (NE_EXPR, boolean_type_node,
2374 integer_one_node,
2375 integer_zero_node),
2376 then_label, else_label);
2377 bsi = bsi_start (bodybb);
2378 bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT);
2379 e = make_edge (bodybb, olddest, EDGE_FALSE_VALUE);
2380 make_edge (bodybb, latchbb, EDGE_TRUE_VALUE);
2381 make_edge (latchbb, headerbb, EDGE_FALLTHRU);
2382
2383 /* Update the loop structures. */
2384 newloop = duplicate_loop (loops, loop, olddest->loop_father);
2385 newloop->header = headerbb;
2386 newloop->latch = latchbb;
2387 newloop->single_exit = e;
2388 add_bb_to_loop (latchbb, newloop);
2389 add_bb_to_loop (bodybb, newloop);
2390 add_bb_to_loop (headerbb, newloop);
f67d92e9
DB
2391 set_immediate_dominator (CDI_DOMINATORS, bodybb, headerbb);
2392 set_immediate_dominator (CDI_DOMINATORS, headerbb, preheaderbb);
2393 set_immediate_dominator (CDI_DOMINATORS, preheaderbb,
2394 loop->single_exit->src);
2395 set_immediate_dominator (CDI_DOMINATORS, latchbb, bodybb);
2396 set_immediate_dominator (CDI_DOMINATORS, olddest, bodybb);
2397 /* Create the new iv. */
2398 ivvar = create_tmp_var (integer_type_node, "perfectiv");
2399 add_referenced_tmp_var (ivvar);
92d2b330 2400 standard_iv_increment_position (newloop, &bsi, &insert_after);
f67d92e9 2401 create_iv (VEC_index (tree, lbounds, 0),
464f49d8 2402 build_int_cst (integer_type_node, VEC_index (int, steps, 0)),
92d2b330 2403 ivvar, newloop, &bsi, insert_after, &ivvar, &ivvarinced);
f67d92e9
DB
2404
2405 /* Create the new upper bound. This may be not just a variable, so we copy
2406 it to one just in case. */
2407
2408 exit_condition = get_loop_exit_condition (newloop);
2409 uboundvar = create_tmp_var (integer_type_node, "uboundvar");
2410 add_referenced_tmp_var (uboundvar);
2411 stmt = build (MODIFY_EXPR, void_type_node, uboundvar,
2412 VEC_index (tree, ubounds, 0));
2413 uboundvar = make_ssa_name (uboundvar, stmt);
2414 TREE_OPERAND (stmt, 0) = uboundvar;
92d2b330
SP
2415
2416 if (insert_after)
2417 bsi_insert_after (&bsi, stmt, BSI_SAME_STMT);
2418 else
2419 bsi_insert_before (&bsi, stmt, BSI_SAME_STMT);
2420
464f49d8 2421 COND_EXPR_COND (exit_condition) = build (GE_EXPR,
f67d92e9 2422 boolean_type_node,
464f49d8
DB
2423 uboundvar,
2424 ivvarinced);
f67d92e9
DB
2425
2426 bbs = get_loop_body (loop);
2427 /* Now replace the induction variable in the moved statements with the
2428 correct loop induction variable. */
464f49d8 2429 oldivvar = VEC_index (tree, loopivs, 0);
f67d92e9
DB
2430 for (i = 0; i < loop->num_nodes; i++)
2431 {
2432 block_stmt_iterator tobsi = bsi_last (bodybb);
2433 if (bbs[i]->loop_father == loop)
2434 {
2435 /* Note that the bsi only needs to be explicitly incremented
2436 when we don't move something, since it is automatically
2437 incremented when we do. */
2438 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi);)
2439 {
2440 tree stmt = bsi_stmt (bsi);
2441 if (stmt == exit_condition
2442 || not_interesting_stmt (stmt)
2443 || stmt_is_bumper_for_loop (loop, stmt))
2444 {
2445 bsi_next (&bsi);
2446 continue;
2447 }
464f49d8 2448 replace_uses_of_x_with_y (stmt, oldivvar, ivvar);
f67d92e9
DB
2449 bsi_move_before (&bsi, &tobsi);
2450 }
2451 }
2452 }
2453 free (bbs);
f67d92e9
DB
2454 return perfect_nest_p (loop);
2455}
2456
36d59cf7
DB
2457/* Return true if TRANS is a legal transformation matrix that respects
2458 the dependence vectors in DISTS and DIRS. The conservative answer
2459 is false.
2460
2461 "Wolfe proves that a unimodular transformation represented by the
2462 matrix T is legal when applied to a loop nest with a set of
2463 lexicographically non-negative distance vectors RDG if and only if
2464 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
454ff5cb 2465 i.e.: if and only if it transforms the lexicographically positive
36d59cf7
DB
2466 distance vectors to lexicographically positive vectors. Note that
2467 a unimodular matrix must transform the zero vector (and only it) to
2468 the zero vector." S.Muchnick. */
2469
2470bool
f67d92e9
DB
2471lambda_transform_legal_p (lambda_trans_matrix trans,
2472 int nb_loops,
2473 varray_type dependence_relations)
36d59cf7
DB
2474{
2475 unsigned int i;
2476 lambda_vector distres;
2477 struct data_dependence_relation *ddr;
2478
2479#if defined ENABLE_CHECKING
f67d92e9
DB
2480 if (LTM_COLSIZE (trans) != nb_loops
2481 || LTM_ROWSIZE (trans) != nb_loops)
2482 abort ();
36d59cf7
DB
2483#endif
2484
2485 /* When there is an unknown relation in the dependence_relations, we
2486 know that it is no worth looking at this loop nest: give up. */
f67d92e9 2487 ddr = (struct data_dependence_relation *)
36d59cf7
DB
2488 VARRAY_GENERIC_PTR (dependence_relations, 0);
2489 if (ddr == NULL)
2490 return true;
2491 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2492 return false;
2493
2494 distres = lambda_vector_new (nb_loops);
2495
2496 /* For each distance vector in the dependence graph. */
2497 for (i = 0; i < VARRAY_ACTIVE_SIZE (dependence_relations); i++)
2498 {
f67d92e9 2499 ddr = (struct data_dependence_relation *)
464f49d8 2500 VARRAY_GENERIC_PTR (dependence_relations, i);
f67d92e9 2501
36d59cf7 2502 /* Don't care about relations for which we know that there is no
f67d92e9
DB
2503 dependence, nor about read-read (aka. output-dependences):
2504 these data accesses can happen in any order. */
36d59cf7
DB
2505 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
2506 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
2507 continue;
464f49d8 2508
36d59cf7
DB
2509 /* Conservatively answer: "this transformation is not valid". */
2510 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2511 return false;
464f49d8
DB
2512
2513 /* If the dependence could not be captured by a distance vector,
2514 conservatively answer that the transform is not valid. */
2515 if (DDR_DIST_VECT (ddr) == NULL)
2516 return false;
36d59cf7
DB
2517
2518 /* Compute trans.dist_vect */
f67d92e9 2519 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
36d59cf7
DB
2520 DDR_DIST_VECT (ddr), distres);
2521
2522 if (!lambda_vector_lexico_pos (distres, nb_loops))
2523 return false;
2524 }
36d59cf7
DB
2525 return true;
2526}