]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/local-alloc.c
alias.c (record_set, [...]): Constify.
[thirdparty/gcc.git] / gcc / local-alloc.c
CommitLineData
2bbd3819 1/* Allocate registers within a basic block, for GNU compiler.
d050d723 2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
6fb5fa3c
DB
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
2bbd3819 5
1322177d 6This file is part of GCC.
2bbd3819 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
1322177d 11version.
2bbd3819 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
2bbd3819
RS
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
2bbd3819 21
2bbd3819
RS
22/* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
64e3a413 51
2bbd3819
RS
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
a300b8d9
JW
58/* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
6cad67d2
JL
60 here if their preferred class is likely to be used by spills. */
61
2bbd3819 62#include "config.h"
670ee920 63#include "system.h"
4977bab6
ZW
64#include "coretypes.h"
65#include "tm.h"
cff9f8d5 66#include "hard-reg-set.h"
2bbd3819 67#include "rtl.h"
6baf1cc8 68#include "tm_p.h"
2bbd3819 69#include "flags.h"
2bbd3819 70#include "regs.h"
49ad7cfa 71#include "function.h"
2bbd3819 72#include "insn-config.h"
624a8b3a 73#include "insn-attr.h"
2bbd3819
RS
74#include "recog.h"
75#include "output.h"
2e107e9e 76#include "toplev.h"
a4d3961a 77#include "except.h"
902197eb 78#include "integrate.h"
d7f88d86
BS
79#include "reload.h"
80#include "ggc.h"
ef330312
PB
81#include "timevar.h"
82#include "tree-pass.h"
6fb5fa3c
DB
83#include "df.h"
84#include "dbgcnt.h"
85
2bbd3819
RS
86\f
87/* Next quantity number available for allocation. */
88
89static int next_qty;
90
f5143c46 91/* Information we maintain about each quantity. */
a1ed7bdb
JH
92struct qty
93{
94 /* The number of refs to quantity Q. */
2bbd3819 95
a1ed7bdb 96 int n_refs;
2bbd3819 97
b2aec5c0
JH
98 /* The frequency of uses of quantity Q. */
99
100 int freq;
101
a1ed7bdb
JH
102 /* Insn number (counting from head of basic block)
103 where quantity Q was born. -1 if birth has not been recorded. */
2bbd3819 104
a1ed7bdb 105 int birth;
2bbd3819 106
a1ed7bdb
JH
107 /* Insn number (counting from head of basic block)
108 where given quantity died. Due to the way tying is done,
109 and the fact that we consider in this pass only regs that die but once,
110 a quantity can die only once. Each quantity's life span
111 is a set of consecutive insns. -1 if death has not been recorded. */
2bbd3819 112
a1ed7bdb 113 int death;
2bbd3819 114
a1ed7bdb
JH
115 /* Number of words needed to hold the data in given quantity.
116 This depends on its machine mode. It is used for these purposes:
ba228239 117 1. It is used in computing the relative importance of qtys,
a1ed7bdb
JH
118 which determines the order in which we look for regs for them.
119 2. It is used in rules that prevent tying several registers of
120 different sizes in a way that is geometrically impossible
121 (see combine_regs). */
2bbd3819 122
a1ed7bdb 123 int size;
2bbd3819 124
a1ed7bdb 125 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
2bbd3819 126
a1ed7bdb 127 int n_calls_crossed;
2bbd3819 128
95c37cdb
JJ
129 /* Number of times a reg tied to given qty lives across a CALL_INSN
130 that might throw. */
131
132 int n_throwing_calls_crossed;
133
a1ed7bdb
JH
134 /* The register number of one pseudo register whose reg_qty value is Q.
135 This register should be the head of the chain
136 maintained in reg_next_in_qty. */
2bbd3819 137
a1ed7bdb 138 int first_reg;
2bbd3819 139
a1ed7bdb
JH
140 /* Reg class contained in (smaller than) the preferred classes of all
141 the pseudo regs that are tied in given quantity.
142 This is the preferred class for allocating that quantity. */
143
144 enum reg_class min_class;
2bbd3819 145
a1ed7bdb
JH
146 /* Register class within which we allocate given qty if we can't get
147 its preferred class. */
2bbd3819 148
a1ed7bdb 149 enum reg_class alternate_class;
2bbd3819 150
a1ed7bdb
JH
151 /* This holds the mode of the registers that are tied to given qty,
152 or VOIDmode if registers with differing modes are tied together. */
2bbd3819 153
a1ed7bdb 154 enum machine_mode mode;
2bbd3819 155
a1ed7bdb
JH
156 /* the hard reg number chosen for given quantity,
157 or -1 if none was found. */
2bbd3819 158
a1ed7bdb 159 short phys_reg;
a1ed7bdb 160};
2bbd3819 161
a1ed7bdb 162static struct qty *qty;
2bbd3819 163
a1ed7bdb 164/* These fields are kept separately to speedup their clearing. */
2bbd3819 165
a1ed7bdb
JH
166/* We maintain two hard register sets that indicate suggested hard registers
167 for each quantity. The first, phys_copy_sugg, contains hard registers
168 that are tied to the quantity by a simple copy. The second contains all
169 hard registers that are tied to the quantity via an arithmetic operation.
2bbd3819 170
a1ed7bdb
JH
171 The former register set is given priority for allocation. This tends to
172 eliminate copy insns. */
2bbd3819 173
a1ed7bdb
JH
174/* Element Q is a set of hard registers that are suggested for quantity Q by
175 copy insns. */
2bbd3819 176
a1ed7bdb 177static HARD_REG_SET *qty_phys_copy_sugg;
2bbd3819 178
a1ed7bdb
JH
179/* Element Q is a set of hard registers that are suggested for quantity Q by
180 arithmetic insns. */
181
182static HARD_REG_SET *qty_phys_sugg;
183
184/* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
2bbd3819 185
a1ed7bdb 186static short *qty_phys_num_copy_sugg;
0f64b8f6 187
a1ed7bdb 188/* Element Q is the number of suggested registers in qty_phys_sugg. */
0f64b8f6 189
a1ed7bdb 190static short *qty_phys_num_sugg;
2bbd3819 191
2bbd3819
RS
192/* If (REG N) has been assigned a quantity number, is a register number
193 of another register assigned the same quantity number, or -1 for the
a1ed7bdb 194 end of the chain. qty->first_reg point to the head of this chain. */
2bbd3819 195
aabf56ce 196static int *reg_next_in_qty;
2bbd3819
RS
197
198/* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
199 if it is >= 0,
200 of -1 if this register cannot be allocated by local-alloc,
201 or -2 if not known yet.
202
203 Note that if we see a use or death of pseudo register N with
204 reg_qty[N] == -2, register N must be local to the current block. If
205 it were used in more than one block, we would have reg_qty[N] == -1.
206 This relies on the fact that if reg_basic_block[N] is >= 0, register N
207 will not appear in any other block. We save a considerable number of
208 tests by exploiting this.
209
210 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
211 be referenced. */
212
213static int *reg_qty;
214
215/* The offset (in words) of register N within its quantity.
216 This can be nonzero if register N is SImode, and has been tied
217 to a subreg of a DImode register. */
218
219static char *reg_offset;
220
221/* Vector of substitutions of register numbers,
222 used to map pseudo regs into hardware regs.
223 This is set up as a result of register allocation.
224 Element N is the hard reg assigned to pseudo reg N,
225 or is -1 if no hard reg was assigned.
226 If N is a hard reg number, element N is N. */
227
228short *reg_renumber;
229
230/* Set of hard registers live at the current point in the scan
231 of the instructions in a basic block. */
232
233static HARD_REG_SET regs_live;
234
235/* Each set of hard registers indicates registers live at a particular
236 point in the basic block. For N even, regs_live_at[N] says which
237 hard registers are needed *after* insn N/2 (i.e., they may not
238 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
239
240 If an object is to conflict with the inputs of insn J but not the
241 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
242 if it is to conflict with the outputs of insn J but not the inputs of
243 insn J + 1, it is said to die at index J*2 + 1. */
244
245static HARD_REG_SET *regs_live_at;
246
247/* Communicate local vars `insn_number' and `insn'
248 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
249static int this_insn_number;
250static rtx this_insn;
251
bf6d9fd7
JW
252struct equivalence
253{
254 /* Set when an attempt should be made to replace a register
5ca9299f 255 with the associated src_p entry. */
bf6d9fd7
JW
256
257 char replace;
258
259 /* Set when a REG_EQUIV note is found or created. Use to
260 keep track of what memory accesses might be created later,
261 e.g. by reload. */
262
263 rtx replacement;
68342d36 264
5ca9299f 265 rtx *src_p;
c25a4c25 266
bf6d9fd7
JW
267 /* Loop depth is used to recognize equivalences which appear
268 to be present within the same loop (or in an inner loop). */
269
270 int loop_depth;
271
272 /* The list of each instruction which initializes this register. */
273
274 rtx init_insns;
d7f88d86
BS
275
276 /* Nonzero if this had a preexisting REG_EQUIV note. */
277
278 int is_arg_equivalence;
bf6d9fd7
JW
279};
280
281/* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
282 structure for that register. */
283
284static struct equivalence *reg_equiv;
135eb61c 285
3f1b9b1b
JL
286/* Nonzero if we recorded an equivalence for a LABEL_REF. */
287static int recorded_label_ref;
288
0c20a65f 289static void alloc_qty (int, enum machine_mode, int, int);
7bc980e1 290static void validate_equiv_mem_from_store (rtx, const_rtx, void *);
0c20a65f
AJ
291static int validate_equiv_mem (rtx, rtx, rtx);
292static int equiv_init_varies_p (rtx);
293static int equiv_init_movable_p (rtx, int);
294static int contains_replace_regs (rtx);
295static int memref_referenced_p (rtx, rtx);
296static int memref_used_between_p (rtx, rtx, rtx);
297static void update_equiv_regs (void);
7bc980e1 298static void no_equiv (rtx, const_rtx, void *);
0c20a65f
AJ
299static void block_alloc (int);
300static int qty_sugg_compare (int, int);
301static int qty_sugg_compare_1 (const void *, const void *);
302static int qty_compare (int, int);
303static int qty_compare_1 (const void *, const void *);
304static int combine_regs (rtx, rtx, int, int, rtx, int);
305static int reg_meets_class_p (int, enum reg_class);
306static void update_qty_class (int, int);
7bc980e1 307static void reg_is_set (rtx, const_rtx, void *);
0c20a65f
AJ
308static void reg_is_born (rtx, int);
309static void wipe_dead_reg (rtx, int);
310static int find_free_reg (enum reg_class, enum machine_mode, int, int, int,
311 int, int);
312static void mark_life (int, enum machine_mode, int);
313static void post_mark_life (int, enum machine_mode, int, int, int);
314static int no_conflict_p (rtx, rtx, rtx);
315static int requires_inout (const char *);
2bbd3819
RS
316\f
317/* Allocate a new quantity (new within current basic block)
318 for register number REGNO which is born at index BIRTH
319 within the block. MODE and SIZE are info on reg REGNO. */
320
321static void
0c20a65f 322alloc_qty (int regno, enum machine_mode mode, int size, int birth)
2bbd3819 323{
b3694847 324 int qtyno = next_qty++;
2bbd3819 325
a1ed7bdb 326 reg_qty[regno] = qtyno;
2bbd3819
RS
327 reg_offset[regno] = 0;
328 reg_next_in_qty[regno] = -1;
329
a1ed7bdb
JH
330 qty[qtyno].first_reg = regno;
331 qty[qtyno].size = size;
332 qty[qtyno].mode = mode;
333 qty[qtyno].birth = birth;
334 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
95c37cdb 335 qty[qtyno].n_throwing_calls_crossed = REG_N_THROWING_CALLS_CROSSED (regno);
a1ed7bdb
JH
336 qty[qtyno].min_class = reg_preferred_class (regno);
337 qty[qtyno].alternate_class = reg_alternate_class (regno);
338 qty[qtyno].n_refs = REG_N_REFS (regno);
b2aec5c0 339 qty[qtyno].freq = REG_FREQ (regno);
2bbd3819
RS
340}
341\f
2bbd3819
RS
342/* Main entry point of this file. */
343
57c8b089 344static int
0c20a65f 345local_alloc (void)
2bbd3819 346{
e0082a72 347 int i;
2bbd3819 348 int max_qty;
e0082a72 349 basic_block b;
2bbd3819 350
3f1b9b1b
JL
351 /* We need to keep track of whether or not we recorded a LABEL_REF so
352 that we know if the jump optimizer needs to be rerun. */
353 recorded_label_ref = 0;
354
2bbd3819
RS
355 /* Leaf functions and non-leaf functions have different needs.
356 If defined, let the machine say what kind of ordering we
357 should use. */
358#ifdef ORDER_REGS_FOR_LOCAL_ALLOC
359 ORDER_REGS_FOR_LOCAL_ALLOC;
360#endif
361
362 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
363 registers. */
d7f88d86 364 update_equiv_regs ();
2bbd3819
RS
365
366 /* This sets the maximum number of quantities we can have. Quantity
34f89b5f
BS
367 numbers start at zero and we can have one for each pseudo. */
368 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
2bbd3819
RS
369
370 /* Allocate vectors of temporary data.
371 See the declarations of these variables, above,
372 for what they mean. */
373
5ed6ace5
MD
374 qty = XNEWVEC (struct qty, max_qty);
375 qty_phys_copy_sugg = XNEWVEC (HARD_REG_SET, max_qty);
376 qty_phys_num_copy_sugg = XNEWVEC (short, max_qty);
377 qty_phys_sugg = XNEWVEC (HARD_REG_SET, max_qty);
378 qty_phys_num_sugg = XNEWVEC (short, max_qty);
2bbd3819 379
5ed6ace5
MD
380 reg_qty = XNEWVEC (int, max_regno);
381 reg_offset = XNEWVEC (char, max_regno);
382 reg_next_in_qty = XNEWVEC (int, max_regno);
2bbd3819 383
2bbd3819
RS
384 /* Determine which pseudo-registers can be allocated by local-alloc.
385 In general, these are the registers used only in a single block and
611bbf2a 386 which only die once.
2bbd3819
RS
387
388 We need not be concerned with which block actually uses the register
389 since we will never see it outside that block. */
390
391 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
392 {
6fb5fa3c 393 if (REG_BASIC_BLOCK (i) >= NUM_FIXED_BLOCKS && REG_N_DEATHS (i) == 1)
2bbd3819
RS
394 reg_qty[i] = -2;
395 else
396 reg_qty[i] = -1;
397 }
398
399 /* Force loop below to initialize entire quantity array. */
400 next_qty = max_qty;
401
402 /* Allocate each block's local registers, block by block. */
403
e0082a72 404 FOR_EACH_BB (b)
2bbd3819
RS
405 {
406 /* NEXT_QTY indicates which elements of the `qty_...'
407 vectors might need to be initialized because they were used
408 for the previous block; it is set to the entire array before
409 block 0. Initialize those, with explicit loop if there are few,
410 else with bzero and bcopy. Do not initialize vectors that are
411 explicit set by `alloc_qty'. */
412
413 if (next_qty < 6)
414 {
415 for (i = 0; i < next_qty; i++)
416 {
2bbd3819 417 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
51b86d8b 418 qty_phys_num_copy_sugg[i] = 0;
2bbd3819 419 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
51b86d8b 420 qty_phys_num_sugg[i] = 0;
2bbd3819
RS
421 }
422 }
423 else
424 {
425#define CLEAR(vector) \
703ad42b 426 memset ((vector), 0, (sizeof (*(vector))) * next_qty);
2bbd3819 427
2bbd3819 428 CLEAR (qty_phys_copy_sugg);
51b86d8b 429 CLEAR (qty_phys_num_copy_sugg);
2bbd3819 430 CLEAR (qty_phys_sugg);
51b86d8b 431 CLEAR (qty_phys_num_sugg);
2bbd3819
RS
432 }
433
434 next_qty = 0;
435
e0082a72 436 block_alloc (b->index);
2bbd3819 437 }
83cbe7e4 438
a1ed7bdb 439 free (qty);
75c6bd46
RH
440 free (qty_phys_copy_sugg);
441 free (qty_phys_num_copy_sugg);
442 free (qty_phys_sugg);
e7749837 443 free (qty_phys_num_sugg);
75c6bd46 444
83cbe7e4
RH
445 free (reg_qty);
446 free (reg_offset);
447 free (reg_next_in_qty);
75c6bd46 448
3f1b9b1b 449 return recorded_label_ref;
2bbd3819
RS
450}
451\f
2bbd3819
RS
452/* Used for communication between the following two functions: contains
453 a MEM that we wish to ensure remains unchanged. */
454static rtx equiv_mem;
455
456/* Set nonzero if EQUIV_MEM is modified. */
457static int equiv_mem_modified;
458
459/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
460 Called via note_stores. */
461
462static void
7bc980e1 463validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
0c20a65f 464 void *data ATTRIBUTE_UNUSED)
2bbd3819 465{
f8cfc6aa 466 if ((REG_P (dest)
2bbd3819 467 && reg_overlap_mentioned_p (dest, equiv_mem))
3c0cb5de 468 || (MEM_P (dest)
9ae8ffe7 469 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
2bbd3819
RS
470 equiv_mem_modified = 1;
471}
472
473/* Verify that no store between START and the death of REG invalidates
474 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
475 by storing into an overlapping memory location, or with a non-const
476 CALL_INSN.
477
478 Return 1 if MEMREF remains valid. */
479
480static int
0c20a65f 481validate_equiv_mem (rtx start, rtx reg, rtx memref)
2bbd3819
RS
482{
483 rtx insn;
484 rtx note;
485
486 equiv_mem = memref;
487 equiv_mem_modified = 0;
488
489 /* If the memory reference has side effects or is volatile, it isn't a
490 valid equivalence. */
491 if (side_effects_p (memref))
492 return 0;
493
494 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
495 {
2c3c49de 496 if (! INSN_P (insn))
2bbd3819
RS
497 continue;
498
499 if (find_reg_note (insn, REG_DEAD, reg))
500 return 1;
501
389fdba0 502 if (CALL_P (insn) && ! MEM_READONLY_P (memref)
24a28584 503 && ! CONST_OR_PURE_CALL_P (insn))
2bbd3819
RS
504 return 0;
505
84832317 506 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
2bbd3819
RS
507
508 /* If a register mentioned in MEMREF is modified via an
509 auto-increment, we lose the equivalence. Do the same if one
510 dies; although we could extend the life, it doesn't seem worth
511 the trouble. */
512
513 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
514 if ((REG_NOTE_KIND (note) == REG_INC
515 || REG_NOTE_KIND (note) == REG_DEAD)
f8cfc6aa 516 && REG_P (XEXP (note, 0))
2bbd3819
RS
517 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
518 return 0;
519 }
520
521 return 0;
522}
a1729519 523
bf6d9fd7
JW
524/* Returns zero if X is known to be invariant. */
525
526static int
0c20a65f 527equiv_init_varies_p (rtx x)
bf6d9fd7 528{
b3694847
SS
529 RTX_CODE code = GET_CODE (x);
530 int i;
531 const char *fmt;
bf6d9fd7
JW
532
533 switch (code)
534 {
535 case MEM:
389fdba0 536 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
bf6d9fd7 537
bf6d9fd7
JW
538 case CONST:
539 case CONST_INT:
540 case CONST_DOUBLE:
69ef87e2 541 case CONST_VECTOR:
bf6d9fd7
JW
542 case SYMBOL_REF:
543 case LABEL_REF:
544 return 0;
545
546 case REG:
e38fe8e0 547 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
bf6d9fd7
JW
548
549 case ASM_OPERANDS:
550 if (MEM_VOLATILE_P (x))
551 return 1;
552
5d3cc252 553 /* Fall through. */
bf6d9fd7
JW
554
555 default:
556 break;
557 }
558
559 fmt = GET_RTX_FORMAT (code);
560 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
561 if (fmt[i] == 'e')
562 {
563 if (equiv_init_varies_p (XEXP (x, i)))
564 return 1;
565 }
566 else if (fmt[i] == 'E')
567 {
568 int j;
569 for (j = 0; j < XVECLEN (x, i); j++)
570 if (equiv_init_varies_p (XVECEXP (x, i, j)))
571 return 1;
572 }
573
574 return 0;
575}
576
cc2902df 577/* Returns nonzero if X (used to initialize register REGNO) is movable.
bf6d9fd7
JW
578 X is only movable if the registers it uses have equivalent initializations
579 which appear to be within the same loop (or in an inner loop) and movable
580 or if they are not candidates for local_alloc and don't vary. */
a1729519
JW
581
582static int
0c20a65f 583equiv_init_movable_p (rtx x, int regno)
bf6d9fd7
JW
584{
585 int i, j;
586 const char *fmt;
587 enum rtx_code code = GET_CODE (x);
588
589 switch (code)
590 {
591 case SET:
592 return equiv_init_movable_p (SET_SRC (x), regno);
593
d9068c61 594 case CC0:
bf6d9fd7
JW
595 case CLOBBER:
596 return 0;
597
598 case PRE_INC:
599 case PRE_DEC:
600 case POST_INC:
601 case POST_DEC:
602 case PRE_MODIFY:
603 case POST_MODIFY:
604 return 0;
605
606 case REG:
607 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
608 && reg_equiv[REGNO (x)].replace)
6fb5fa3c 609 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS && ! rtx_varies_p (x, 0));
bf6d9fd7
JW
610
611 case UNSPEC_VOLATILE:
612 return 0;
613
614 case ASM_OPERANDS:
615 if (MEM_VOLATILE_P (x))
616 return 0;
617
5d3cc252 618 /* Fall through. */
bf6d9fd7
JW
619
620 default:
621 break;
622 }
623
624 fmt = GET_RTX_FORMAT (code);
625 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
626 switch (fmt[i])
627 {
628 case 'e':
629 if (! equiv_init_movable_p (XEXP (x, i), regno))
630 return 0;
631 break;
632 case 'E':
633 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
634 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
635 return 0;
636 break;
637 }
638
639 return 1;
640}
641
642/* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
643
644static int
0c20a65f 645contains_replace_regs (rtx x)
a1729519
JW
646{
647 int i, j;
6f7d635c 648 const char *fmt;
a1729519
JW
649 enum rtx_code code = GET_CODE (x);
650
651 switch (code)
652 {
653 case CONST_INT:
654 case CONST:
655 case LABEL_REF:
656 case SYMBOL_REF:
657 case CONST_DOUBLE:
69ef87e2 658 case CONST_VECTOR:
a1729519
JW
659 case PC:
660 case CC0:
661 case HIGH:
a1729519
JW
662 return 0;
663
664 case REG:
bf6d9fd7 665 return reg_equiv[REGNO (x)].replace;
1d300e19
KG
666
667 default:
668 break;
a1729519
JW
669 }
670
671 fmt = GET_RTX_FORMAT (code);
672 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
673 switch (fmt[i])
674 {
675 case 'e':
bf6d9fd7 676 if (contains_replace_regs (XEXP (x, i)))
a1729519
JW
677 return 1;
678 break;
679 case 'E':
680 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
bf6d9fd7 681 if (contains_replace_regs (XVECEXP (x, i, j)))
a1729519
JW
682 return 1;
683 break;
684 }
685
686 return 0;
687}
2bbd3819
RS
688\f
689/* TRUE if X references a memory location that would be affected by a store
690 to MEMREF. */
691
692static int
0c20a65f 693memref_referenced_p (rtx memref, rtx x)
2bbd3819
RS
694{
695 int i, j;
6f7d635c 696 const char *fmt;
2bbd3819
RS
697 enum rtx_code code = GET_CODE (x);
698
699 switch (code)
700 {
2bbd3819
RS
701 case CONST_INT:
702 case CONST:
703 case LABEL_REF:
704 case SYMBOL_REF:
705 case CONST_DOUBLE:
69ef87e2 706 case CONST_VECTOR:
2bbd3819
RS
707 case PC:
708 case CC0:
709 case HIGH:
710 case LO_SUM:
711 return 0;
712
c25a4c25 713 case REG:
bf6d9fd7 714 return (reg_equiv[REGNO (x)].replacement
3298a1b1 715 && memref_referenced_p (memref,
bf6d9fd7 716 reg_equiv[REGNO (x)].replacement));
c25a4c25 717
2bbd3819 718 case MEM:
9ae8ffe7 719 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
2bbd3819
RS
720 return 1;
721 break;
722
723 case SET:
724 /* If we are setting a MEM, it doesn't count (its address does), but any
725 other SET_DEST that has a MEM in it is referencing the MEM. */
3c0cb5de 726 if (MEM_P (SET_DEST (x)))
2bbd3819
RS
727 {
728 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
729 return 1;
730 }
731 else if (memref_referenced_p (memref, SET_DEST (x)))
732 return 1;
733
734 return memref_referenced_p (memref, SET_SRC (x));
64e3a413 735
e9a25f70
JL
736 default:
737 break;
2bbd3819
RS
738 }
739
740 fmt = GET_RTX_FORMAT (code);
741 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
742 switch (fmt[i])
743 {
744 case 'e':
745 if (memref_referenced_p (memref, XEXP (x, i)))
746 return 1;
747 break;
748 case 'E':
749 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
750 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
751 return 1;
752 break;
753 }
754
755 return 0;
756}
757
758/* TRUE if some insn in the range (START, END] references a memory location
759 that would be affected by a store to MEMREF. */
760
761static int
0c20a65f 762memref_used_between_p (rtx memref, rtx start, rtx end)
2bbd3819
RS
763{
764 rtx insn;
765
766 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
767 insn = NEXT_INSN (insn))
301a8f95
ZD
768 {
769 if (!INSN_P (insn))
770 continue;
771
772 if (memref_referenced_p (memref, PATTERN (insn)))
773 return 1;
774
775 /* Nonconst functions may access memory. */
776 if (CALL_P (insn)
777 && (! CONST_OR_PURE_CALL_P (insn)
778 || pure_call_p (insn)))
779 return 1;
780 }
2bbd3819
RS
781
782 return 0;
783}
784\f
2bbd3819
RS
785/* Find registers that are equivalent to a single value throughout the
786 compilation (either because they can be referenced in memory or are set once
787 from a single constant). Lower their priority for a register.
788
789 If such a register is only referenced once, try substituting its value
790 into the using insn. If it succeeds, we can eliminate the register
d7f88d86
BS
791 completely.
792
793 Initialize the REG_EQUIV_INIT array of initializing insns. */
2bbd3819
RS
794
795static void
0c20a65f 796update_equiv_regs (void)
2bbd3819 797{
2bbd3819 798 rtx insn;
e0082a72 799 basic_block bb;
bf6d9fd7 800 int loop_depth;
6fb5fa3c
DB
801 bitmap cleared_regs;
802
5ed6ace5 803 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
d7f88d86
BS
804 reg_equiv_init = ggc_alloc_cleared (max_regno * sizeof (rtx));
805 reg_equiv_init_size = max_regno;
2bbd3819
RS
806
807 init_alias_analysis ();
808
2bbd3819
RS
809 /* Scan the insns and find which registers have equivalences. Do this
810 in a separate scan of the insns because (due to -fcse-follow-jumps)
811 a register can be set below its use. */
e0082a72 812 FOR_EACH_BB (bb)
2bbd3819 813 {
2ab0437e 814 loop_depth = bb->loop_depth;
2bbd3819 815
a813c111
SB
816 for (insn = BB_HEAD (bb);
817 insn != NEXT_INSN (BB_END (bb));
818 insn = NEXT_INSN (insn))
2bbd3819 819 {
2ab0437e
JH
820 rtx note;
821 rtx set;
822 rtx dest, src;
823 int regno;
2bbd3819 824
2ab0437e
JH
825 if (! INSN_P (insn))
826 continue;
135eb61c 827
2ab0437e
JH
828 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
829 if (REG_NOTE_KIND (note) == REG_INC)
830 no_equiv (XEXP (note, 0), note, NULL);
135eb61c 831
2ab0437e 832 set = single_set (insn);
135eb61c 833
2ab0437e
JH
834 /* If this insn contains more (or less) than a single SET,
835 only mark all destinations as having no known equivalence. */
836 if (set == 0)
135eb61c 837 {
2ab0437e
JH
838 note_stores (PATTERN (insn), no_equiv, NULL);
839 continue;
135eb61c 840 }
2ab0437e
JH
841 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
842 {
843 int i;
135eb61c 844
2ab0437e
JH
845 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
846 {
847 rtx part = XVECEXP (PATTERN (insn), 0, i);
848 if (part != set)
849 note_stores (part, no_equiv, NULL);
850 }
851 }
2bbd3819 852
2ab0437e
JH
853 dest = SET_DEST (set);
854 src = SET_SRC (set);
855
d7f88d86
BS
856 /* See if this is setting up the equivalence between an argument
857 register and its stack slot. */
858 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
859 if (note)
2ab0437e 860 {
d7f88d86
BS
861 gcc_assert (REG_P (dest));
862 regno = REGNO (dest);
863
864 /* Note that we don't want to clear reg_equiv_init even if there
865 are multiple sets of this register. */
866 reg_equiv[regno].is_arg_equivalence = 1;
867
868 /* Record for reload that this is an equivalencing insn. */
869 if (rtx_equal_p (src, XEXP (note, 0)))
870 reg_equiv_init[regno]
871 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
872
873 /* Continue normally in case this is a candidate for
874 replacements. */
2ab0437e 875 }
2bbd3819 876
d7f88d86
BS
877 if (!optimize)
878 continue;
879
2ab0437e
JH
880 /* We only handle the case of a pseudo register being set
881 once, or always to the same value. */
882 /* ??? The mn10200 port breaks if we add equivalences for
883 values that need an ADDRESS_REGS register and set them equivalent
884 to a MEM of a pseudo. The actual problem is in the over-conservative
885 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
886 calculate_needs, but we traditionally work around this problem
887 here by rejecting equivalences when the destination is in a register
888 that's likely spilled. This is fragile, of course, since the
889 preferred class of a pseudo depends on all instructions that set
890 or use it. */
891
f8cfc6aa 892 if (!REG_P (dest)
2ab0437e
JH
893 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
894 || reg_equiv[regno].init_insns == const0_rtx
895 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
d7f88d86 896 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
2ab0437e 897 {
4d6922ee 898 /* This might be setting a SUBREG of a pseudo, a pseudo that is
2ab0437e
JH
899 also set somewhere else to a constant. */
900 note_stores (set, no_equiv, NULL);
901 continue;
902 }
903
904 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
905
906 /* cse sometimes generates function invariants, but doesn't put a
907 REG_EQUAL note on the insn. Since this note would be redundant,
3d238248
JJ
908 there's no point creating it earlier than here. */
909 if (! note && ! rtx_varies_p (src, 0))
3e916873 910 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2ab0437e
JH
911
912 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
913 since it represents a function call */
914 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
915 note = NULL_RTX;
916
6fb5fa3c 917 if (DF_REG_DEF_COUNT (regno) != 1
2ab0437e
JH
918 && (! note
919 || rtx_varies_p (XEXP (note, 0), 0)
920 || (reg_equiv[regno].replacement
921 && ! rtx_equal_p (XEXP (note, 0),
922 reg_equiv[regno].replacement))))
923 {
924 no_equiv (dest, set, NULL);
925 continue;
926 }
927 /* Record this insn as initializing this register. */
928 reg_equiv[regno].init_insns
929 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
930
931 /* If this register is known to be equal to a constant, record that
932 it is always equivalent to the constant. */
6fb5fa3c 933 if (DF_REG_DEF_COUNT (regno) == 1
a31830a7
SB
934 && note && ! rtx_varies_p (XEXP (note, 0), 0))
935 {
936 rtx note_value = XEXP (note, 0);
937 remove_note (insn, note);
938 set_unique_reg_note (insn, REG_EQUIV, note_value);
939 }
2ab0437e
JH
940
941 /* If this insn introduces a "constant" register, decrease the priority
942 of that register. Record this insn if the register is only used once
943 more and the equivalence value is the same as our source.
944
945 The latter condition is checked for two reasons: First, it is an
946 indication that it may be more efficient to actually emit the insn
947 as written (if no registers are available, reload will substitute
948 the equivalence). Secondly, it avoids problems with any registers
949 dying in this insn whose death notes would be missed.
950
951 If we don't have a REG_EQUIV note, see if this insn is loading
952 a register used only in one basic block from a MEM. If so, and the
953 MEM remains unchanged for the life of the register, add a REG_EQUIV
954 note. */
955
956 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
957
6fb5fa3c 958 if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3c0cb5de 959 && MEM_P (SET_SRC (set))
2ab0437e 960 && validate_equiv_mem (insn, dest, SET_SRC (set)))
a31830a7 961 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
2ab0437e
JH
962
963 if (note)
68342d36 964 {
2ab0437e 965 int regno = REGNO (dest);
d7f88d86
BS
966 rtx x = XEXP (note, 0);
967
968 /* If we haven't done so, record for reload that this is an
969 equivalencing insn. */
1929b998 970 if (!reg_equiv[regno].is_arg_equivalence)
d7f88d86
BS
971 reg_equiv_init[regno]
972 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
2ab0437e
JH
973
974 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
975 We might end up substituting the LABEL_REF for uses of the
976 pseudo here or later. That kind of transformation may turn an
977 indirect jump into a direct jump, in which case we must rerun the
978 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
d7f88d86
BS
979 if (GET_CODE (x) == LABEL_REF
980 || (GET_CODE (x) == CONST
981 && GET_CODE (XEXP (x, 0)) == PLUS
982 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
2ab0437e
JH
983 recorded_label_ref = 1;
984
d7f88d86 985 reg_equiv[regno].replacement = x;
5ca9299f 986 reg_equiv[regno].src_p = &SET_SRC (set);
2ab0437e
JH
987 reg_equiv[regno].loop_depth = loop_depth;
988
989 /* Don't mess with things live during setjmp. */
990 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
991 {
992 /* Note that the statement below does not affect the priority
993 in local-alloc! */
994 REG_LIVE_LENGTH (regno) *= 2;
995
2ab0437e
JH
996 /* If the register is referenced exactly twice, meaning it is
997 set once and used once, indicate that the reference may be
998 replaced by the equivalence we computed above. Do this
999 even if the register is only used in one block so that
1000 dependencies can be handled where the last register is
1001 used in a different block (i.e. HIGH / LO_SUM sequences)
1002 and to reduce the number of registers alive across
1003 calls. */
1004
d7f88d86
BS
1005 if (REG_N_REFS (regno) == 2
1006 && (rtx_equal_p (x, src)
1007 || ! equiv_init_varies_p (src))
1008 && NONJUMP_INSN_P (insn)
1009 && equiv_init_movable_p (PATTERN (insn), regno))
1010 reg_equiv[regno].replace = 1;
2ab0437e 1011 }
68342d36 1012 }
2bbd3819
RS
1013 }
1014 }
1015
d7f88d86
BS
1016 if (!optimize)
1017 goto out;
1018
1019 /* A second pass, to gather additional equivalences with memory. This needs
1020 to be done after we know which registers we are going to replace. */
1021
1022 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1023 {
1024 rtx set, src, dest;
1025 unsigned regno;
1026
1027 if (! INSN_P (insn))
1028 continue;
1029
1030 set = single_set (insn);
1031 if (! set)
1032 continue;
1033
1034 dest = SET_DEST (set);
1035 src = SET_SRC (set);
1036
1037 /* If this sets a MEM to the contents of a REG that is only used
1038 in a single basic block, see if the register is always equivalent
1039 to that memory location and if moving the store from INSN to the
1040 insn that set REG is safe. If so, put a REG_EQUIV note on the
1041 initializing insn.
1042
1043 Don't add a REG_EQUIV note if the insn already has one. The existing
1044 REG_EQUIV is likely more useful than the one we are adding.
1045
1046 If one of the regs in the address has reg_equiv[REGNO].replace set,
1047 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
1048 optimization may move the set of this register immediately before
1049 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
1050 the mention in the REG_EQUIV note would be to an uninitialized
1051 pseudo. */
1052
1053 if (MEM_P (dest) && REG_P (src)
1054 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
6fb5fa3c
DB
1055 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
1056 && DF_REG_DEF_COUNT (regno) == 1
d7f88d86
BS
1057 && reg_equiv[regno].init_insns != 0
1058 && reg_equiv[regno].init_insns != const0_rtx
1059 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
1060 REG_EQUIV, NULL_RTX)
1061 && ! contains_replace_regs (XEXP (dest, 0)))
1062 {
1063 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
1064 if (validate_equiv_mem (init_insn, src, dest)
8800a9b3
SB
1065 && ! memref_used_between_p (dest, init_insn, insn)
1066 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
1067 multiple sets. */
1068 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
d7f88d86 1069 {
d7f88d86
BS
1070 /* This insn makes the equivalence, not the one initializing
1071 the register. */
1072 reg_equiv_init[regno]
1073 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
6fb5fa3c 1074 df_notes_rescan (init_insn);
d7f88d86
BS
1075 }
1076 }
1077 }
1078
6fb5fa3c 1079 cleared_regs = BITMAP_ALLOC (NULL);
2e1253f3
ILT
1080 /* Now scan all regs killed in an insn to see if any of them are
1081 registers only used that once. If so, see if we can replace the
ccb4e87e 1082 reference with the equivalent form. If we can, delete the
2e1253f3 1083 initializing reference and this register will go away. If we
4d6922ee 1084 can't replace the reference, and the initializing reference is
bf6d9fd7
JW
1085 within the same loop (or in an inner loop), then move the register
1086 initialization just before the use, so that they are in the same
2ab0437e 1087 basic block. */
e0082a72 1088 FOR_EACH_BB_REVERSE (bb)
2bbd3819 1089 {
2ab0437e 1090 loop_depth = bb->loop_depth;
a813c111
SB
1091 for (insn = BB_END (bb);
1092 insn != PREV_INSN (BB_HEAD (bb));
1093 insn = PREV_INSN (insn))
2e1253f3 1094 {
2ab0437e
JH
1095 rtx link;
1096
1097 if (! INSN_P (insn))
1098 continue;
1099
2f39b6ca
UW
1100 /* Don't substitute into a non-local goto, this confuses CFG. */
1101 if (JUMP_P (insn)
1102 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
1103 continue;
1104
2ab0437e 1105 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2e1253f3 1106 {
2ab0437e
JH
1107 if (REG_NOTE_KIND (link) == REG_DEAD
1108 /* Make sure this insn still refers to the register. */
1109 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
2e1253f3 1110 {
2ab0437e
JH
1111 int regno = REGNO (XEXP (link, 0));
1112 rtx equiv_insn;
1113
1114 if (! reg_equiv[regno].replace
1115 || reg_equiv[regno].loop_depth < loop_depth)
1116 continue;
1117
1118 /* reg_equiv[REGNO].replace gets set only when
1119 REG_N_REFS[REGNO] is 2, i.e. the register is set
1120 once and used once. (If it were only set, but not used,
1121 flow would have deleted the setting insns.) Hence
1122 there can only be one insn in reg_equiv[REGNO].init_insns. */
b5e624c6
NS
1123 gcc_assert (reg_equiv[regno].init_insns
1124 && !XEXP (reg_equiv[regno].init_insns, 1));
2ab0437e 1125 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
2e1253f3 1126
2ab0437e
JH
1127 /* We may not move instructions that can throw, since
1128 that changes basic block boundaries and we are not
1129 prepared to adjust the CFG to match. */
1130 if (can_throw_internal (equiv_insn))
1131 continue;
2e1253f3 1132
2ab0437e
JH
1133 if (asm_noperands (PATTERN (equiv_insn)) < 0
1134 && validate_replace_rtx (regno_reg_rtx[regno],
5ca9299f 1135 *(reg_equiv[regno].src_p), insn))
bf6d9fd7 1136 {
2ab0437e
JH
1137 rtx equiv_link;
1138 rtx last_link;
1139 rtx note;
1140
1141 /* Find the last note. */
1142 for (last_link = link; XEXP (last_link, 1);
1143 last_link = XEXP (last_link, 1))
1144 ;
1145
1146 /* Append the REG_DEAD notes from equiv_insn. */
1147 equiv_link = REG_NOTES (equiv_insn);
1148 while (equiv_link)
bf6d9fd7 1149 {
2ab0437e
JH
1150 note = equiv_link;
1151 equiv_link = XEXP (equiv_link, 1);
1152 if (REG_NOTE_KIND (note) == REG_DEAD)
1153 {
1154 remove_note (equiv_insn, note);
1155 XEXP (last_link, 1) = note;
1156 XEXP (note, 1) = NULL_RTX;
1157 last_link = note;
1158 }
bf6d9fd7 1159 }
bf6d9fd7 1160
2ab0437e 1161 remove_death (regno, insn);
6fb5fa3c 1162 SET_REG_N_REFS (regno, 0);
2ab0437e 1163 REG_FREQ (regno) = 0;
ca6c03ca 1164 delete_insn (equiv_insn);
e11e816e 1165
2ab0437e
JH
1166 reg_equiv[regno].init_insns
1167 = XEXP (reg_equiv[regno].init_insns, 1);
ccb4e87e 1168
d7f88d86 1169 reg_equiv_init[regno] = NULL_RTX;
6fb5fa3c 1170 bitmap_set_bit (cleared_regs, regno);
2ab0437e
JH
1171 }
1172 /* Move the initialization of the register to just before
1173 INSN. Update the flow information. */
1174 else if (PREV_INSN (insn) != equiv_insn)
1175 {
1176 rtx new_insn;
2e1253f3 1177
2ab0437e
JH
1178 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
1179 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
1180 REG_NOTES (equiv_insn) = 0;
2e1253f3 1181
41806d92
NS
1182 /* Make sure this insn is recognized before
1183 reload begins, otherwise
1184 eliminate_regs_in_insn will die. */
2ab0437e 1185 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
cad33336 1186
ca6c03ca 1187 delete_insn (equiv_insn);
2e1253f3 1188
2ab0437e 1189 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
96af667a 1190
e0082a72 1191 REG_BASIC_BLOCK (regno) = bb->index;
2ab0437e 1192 REG_N_CALLS_CROSSED (regno) = 0;
95c37cdb 1193 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
2ab0437e 1194 REG_LIVE_LENGTH (regno) = 2;
2e1253f3 1195
a813c111
SB
1196 if (insn == BB_HEAD (bb))
1197 BB_HEAD (bb) = PREV_INSN (insn);
2e1253f3 1198
599c25e2
RH
1199 reg_equiv_init[regno]
1200 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
6fb5fa3c 1201 bitmap_set_bit (cleared_regs, regno);
2ab0437e 1202 }
2e1253f3
ILT
1203 }
1204 }
1205 }
2bbd3819 1206 }
e05e2395 1207
6fb5fa3c
DB
1208 if (!bitmap_empty_p (cleared_regs))
1209 FOR_EACH_BB (bb)
1210 {
1211 bitmap_and_compl_into (DF_RA_LIVE_IN (bb), cleared_regs);
1212 if (DF_RA_LIVE_TOP (bb))
1213 bitmap_and_compl_into (DF_RA_LIVE_TOP (bb), cleared_regs);
1214 bitmap_and_compl_into (DF_RA_LIVE_OUT (bb), cleared_regs);
1215 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
1216 if (DF_LR_TOP (bb))
1217 bitmap_and_compl_into (DF_LR_TOP (bb), cleared_regs);
1218 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
1219 }
1220
1221 BITMAP_FREE (cleared_regs);
25e4379f 1222
d7f88d86 1223 out:
e05e2395 1224 /* Clean up. */
6fb5fa3c 1225
e05e2395 1226 end_alias_analysis ();
bf6d9fd7 1227 free (reg_equiv);
2bbd3819 1228}
135eb61c
R
1229
1230/* Mark REG as having no known equivalence.
3d042e77 1231 Some instructions might have been processed before and furnished
135eb61c
R
1232 with REG_EQUIV notes for this register; these notes will have to be
1233 removed.
1234 STORE is the piece of RTL that does the non-constant / conflicting
1235 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1236 but needs to be there because this function is called from note_stores. */
1237static void
7bc980e1 1238no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
135eb61c
R
1239{
1240 int regno;
1241 rtx list;
1242
f8cfc6aa 1243 if (!REG_P (reg))
135eb61c
R
1244 return;
1245 regno = REGNO (reg);
bf6d9fd7 1246 list = reg_equiv[regno].init_insns;
135eb61c
R
1247 if (list == const0_rtx)
1248 return;
d7f88d86
BS
1249 reg_equiv[regno].init_insns = const0_rtx;
1250 reg_equiv[regno].replacement = NULL_RTX;
1251 /* This doesn't matter for equivalences made for argument registers, we
1252 should keep their initialization insns. */
1253 if (reg_equiv[regno].is_arg_equivalence)
1254 return;
1255 reg_equiv_init[regno] = NULL_RTX;
135eb61c
R
1256 for (; list; list = XEXP (list, 1))
1257 {
1258 rtx insn = XEXP (list, 0);
1259 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1260 }
135eb61c 1261}
2bbd3819
RS
1262\f
1263/* Allocate hard regs to the pseudo regs used only within block number B.
1264 Only the pseudos that die but once can be handled. */
1265
1266static void
0c20a65f 1267block_alloc (int b)
2bbd3819 1268{
b3694847
SS
1269 int i, q;
1270 rtx insn;
902197eb 1271 rtx note, hard_reg;
2bbd3819
RS
1272 int insn_number = 0;
1273 int insn_count = 0;
1274 int max_uid = get_max_uid ();
aabf56ce 1275 int *qty_order;
2bbd3819
RS
1276 int no_conflict_combined_regno = -1;
1277
1278 /* Count the instructions in the basic block. */
1279
a813c111 1280 insn = BB_END (BASIC_BLOCK (b));
2bbd3819
RS
1281 while (1)
1282 {
4b4bf941 1283 if (!NOTE_P (insn))
b5e624c6
NS
1284 {
1285 ++insn_count;
1286 gcc_assert (insn_count <= max_uid);
1287 }
a813c111 1288 if (insn == BB_HEAD (BASIC_BLOCK (b)))
2bbd3819
RS
1289 break;
1290 insn = PREV_INSN (insn);
1291 }
1292
1293 /* +2 to leave room for a post_mark_life at the last insn and for
1294 the birth of a CLOBBER in the first insn. */
5ed6ace5 1295 regs_live_at = XCNEWVEC (HARD_REG_SET, 2 * insn_count + 2);
2bbd3819
RS
1296
1297 /* Initialize table of hardware registers currently live. */
1298
6fb5fa3c 1299 REG_SET_TO_HARD_REG_SET (regs_live, DF_LR_TOP (BASIC_BLOCK (b)));
2bbd3819
RS
1300
1301 /* This loop scans the instructions of the basic block
1302 and assigns quantities to registers.
1303 It computes which registers to tie. */
1304
a813c111 1305 insn = BB_HEAD (BASIC_BLOCK (b));
2bbd3819
RS
1306 while (1)
1307 {
4b4bf941 1308 if (!NOTE_P (insn))
2bbd3819
RS
1309 insn_number++;
1310
2c3c49de 1311 if (INSN_P (insn))
2bbd3819 1312 {
b3694847
SS
1313 rtx link, set;
1314 int win = 0;
1315 rtx r0, r1 = NULL_RTX;
2bbd3819
RS
1316 int combined_regno = -1;
1317 int i;
2bbd3819
RS
1318
1319 this_insn_number = insn_number;
1320 this_insn = insn;
1321
0a578fee 1322 extract_insn (insn);
2bbd3819
RS
1323 which_alternative = -1;
1324
1325 /* Is this insn suitable for tying two registers?
1326 If so, try doing that.
1327 Suitable insns are those with at least two operands and where
1328 operand 0 is an output that is a register that is not
1329 earlyclobber.
7aba0f0b
RK
1330
1331 We can tie operand 0 with some operand that dies in this insn.
1332 First look for operands that are required to be in the same
1333 register as operand 0. If we find such, only try tying that
1334 operand or one that can be put into that operand if the
1335 operation is commutative. If we don't find an operand
1336 that is required to be in the same register as operand 0,
1337 we can tie with any operand.
1338
2bbd3819
RS
1339 Subregs in place of regs are also ok.
1340
1341 If tying is done, WIN is set nonzero. */
1342
d29c259b
RH
1343 if (optimize
1344 && recog_data.n_operands > 1
1ccbefce 1345 && recog_data.constraints[0][0] == '='
19af6455 1346 && recog_data.constraints[0][1] != '&')
2bbd3819 1347 {
3061cc54 1348 /* If non-negative, is an operand that must match operand 0. */
7aba0f0b 1349 int must_match_0 = -1;
3061cc54
RK
1350 /* Counts number of alternatives that require a match with
1351 operand 0. */
1352 int n_matching_alts = 0;
7aba0f0b 1353
1ccbefce 1354 for (i = 1; i < recog_data.n_operands; i++)
3061cc54 1355 {
1ccbefce 1356 const char *p = recog_data.constraints[i];
84b72302 1357 int this_match = requires_inout (p);
3061cc54
RK
1358
1359 n_matching_alts += this_match;
1ccbefce 1360 if (this_match == recog_data.n_alternatives)
3061cc54
RK
1361 must_match_0 = i;
1362 }
2bbd3819 1363
1ccbefce
RH
1364 r0 = recog_data.operand[0];
1365 for (i = 1; i < recog_data.n_operands; i++)
2bbd3819 1366 {
7aba0f0b
RK
1367 /* Skip this operand if we found an operand that
1368 must match operand 0 and this operand isn't it
1369 and can't be made to be it by commutativity. */
1370
1371 if (must_match_0 >= 0 && i != must_match_0
1372 && ! (i == must_match_0 + 1
1ccbefce 1373 && recog_data.constraints[i-1][0] == '%')
7aba0f0b 1374 && ! (i == must_match_0 - 1
1ccbefce 1375 && recog_data.constraints[i][0] == '%'))
7aba0f0b 1376 continue;
3061cc54
RK
1377
1378 /* Likewise if each alternative has some operand that
64e3a413 1379 must match operand zero. In that case, skip any
3061cc54
RK
1380 operand that doesn't list operand 0 since we know that
1381 the operand always conflicts with operand 0. We
3d042e77 1382 ignore commutativity in this case to keep things simple. */
1ccbefce
RH
1383 if (n_matching_alts == recog_data.n_alternatives
1384 && 0 == requires_inout (recog_data.constraints[i]))
3061cc54 1385 continue;
2bbd3819 1386
1ccbefce 1387 r1 = recog_data.operand[i];
2bbd3819 1388
7aba0f0b
RK
1389 /* If the operand is an address, find a register in it.
1390 There may be more than one register, but we only try one
1391 of them. */
ccfc6cc8 1392 if (recog_data.constraints[i][0] == 'p'
97488870
R
1393 || EXTRA_ADDRESS_CONSTRAINT (recog_data.constraints[i][0],
1394 recog_data.constraints[i]))
7aba0f0b
RK
1395 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1396 r1 = XEXP (r1, 0);
1397
902197eb
DD
1398 /* Avoid making a call-saved register unnecessarily
1399 clobbered. */
1400 hard_reg = get_hard_reg_initial_reg (cfun, r1);
1401 if (hard_reg != NULL_RTX)
1402 {
f8cfc6aa 1403 if (REG_P (hard_reg)
f85d8f69
NS
1404 && REGNO (hard_reg) < FIRST_PSEUDO_REGISTER
1405 && !call_used_regs[REGNO (hard_reg)])
902197eb
DD
1406 continue;
1407 }
1408
f8cfc6aa 1409 if (REG_P (r0) || GET_CODE (r0) == SUBREG)
7aba0f0b
RK
1410 {
1411 /* We have two priorities for hard register preferences.
1412 If we have a move insn or an insn whose first input
1413 can only be in the same register as the output, give
1414 priority to an equivalence found from that insn. */
1415 int may_save_copy
1ccbefce 1416 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
64e3a413 1417
f8cfc6aa 1418 if (REG_P (r1) || GET_CODE (r1) == SUBREG)
7aba0f0b
RK
1419 win = combine_regs (r1, r0, may_save_copy,
1420 insn_number, insn, 0);
1421 }
662347c5
JL
1422 if (win)
1423 break;
2bbd3819
RS
1424 }
1425 }
1426
1427 /* Recognize an insn sequence with an ultimate result
1428 which can safely overlap one of the inputs.
1429 The sequence begins with a CLOBBER of its result,
1430 and ends with an insn that copies the result to itself
1431 and has a REG_EQUAL note for an equivalent formula.
1432 That note indicates what the inputs are.
1433 The result and the input can overlap if each insn in
1434 the sequence either doesn't mention the input
1435 or has a REG_NO_CONFLICT note to inhibit the conflict.
1436
1437 We do the combining test at the CLOBBER so that the
1438 destination register won't have had a quantity number
1439 assigned, since that would prevent combining. */
1440
d29c259b
RH
1441 if (optimize
1442 && GET_CODE (PATTERN (insn)) == CLOBBER
2bbd3819 1443 && (r0 = XEXP (PATTERN (insn), 0),
f8cfc6aa 1444 REG_P (r0))
b1ec3c92 1445 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
a6665f8c 1446 && XEXP (link, 0) != 0
4b4bf941 1447 && NONJUMP_INSN_P (XEXP (link, 0))
2bbd3819
RS
1448 && (set = single_set (XEXP (link, 0))) != 0
1449 && SET_DEST (set) == r0 && SET_SRC (set) == r0
b1ec3c92
CH
1450 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1451 NULL_RTX)) != 0)
2bbd3819 1452 {
f8cfc6aa 1453 if (r1 = XEXP (note, 0), REG_P (r1)
2bbd3819
RS
1454 /* Check that we have such a sequence. */
1455 && no_conflict_p (insn, r0, r1))
1456 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1457 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1458 && (r1 = XEXP (XEXP (note, 0), 0),
f8cfc6aa 1459 REG_P (r1) || GET_CODE (r1) == SUBREG)
2bbd3819
RS
1460 && no_conflict_p (insn, r0, r1))
1461 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1462
1463 /* Here we care if the operation to be computed is
1464 commutative. */
ec8e098d 1465 else if (COMMUTATIVE_P (XEXP (note, 0))
2bbd3819 1466 && (r1 = XEXP (XEXP (note, 0), 1),
f8cfc6aa 1467 (REG_P (r1) || GET_CODE (r1) == SUBREG))
2bbd3819
RS
1468 && no_conflict_p (insn, r0, r1))
1469 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1470
1471 /* If we did combine something, show the register number
1472 in question so that we know to ignore its death. */
1473 if (win)
1474 no_conflict_combined_regno = REGNO (r1);
1475 }
1476
1477 /* If registers were just tied, set COMBINED_REGNO
1478 to the number of the register used in this insn
1479 that was tied to the register set in this insn.
1480 This register's qty should not be "killed". */
1481
1482 if (win)
1483 {
1484 while (GET_CODE (r1) == SUBREG)
1485 r1 = SUBREG_REG (r1);
1486 combined_regno = REGNO (r1);
1487 }
1488
1489 /* Mark the death of everything that dies in this instruction,
1490 except for anything that was just combined. */
1491
1492 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1493 if (REG_NOTE_KIND (link) == REG_DEAD
f8cfc6aa 1494 && REG_P (XEXP (link, 0))
770ae6cc
RK
1495 && combined_regno != (int) REGNO (XEXP (link, 0))
1496 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1497 || ! find_reg_note (insn, REG_NO_CONFLICT,
1498 XEXP (link, 0))))
2bbd3819
RS
1499 wipe_dead_reg (XEXP (link, 0), 0);
1500
1501 /* Allocate qty numbers for all registers local to this block
1502 that are born (set) in this instruction.
1503 A pseudo that already has a qty is not changed. */
1504
84832317 1505 note_stores (PATTERN (insn), reg_is_set, NULL);
2bbd3819
RS
1506
1507 /* If anything is set in this insn and then unused, mark it as dying
1508 after this insn, so it will conflict with our outputs. This
1509 can't match with something that combined, and it doesn't matter
1510 if it did. Do this after the calls to reg_is_set since these
1511 die after, not during, the current insn. */
1512
1513 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1514 if (REG_NOTE_KIND (link) == REG_UNUSED
f8cfc6aa 1515 && REG_P (XEXP (link, 0)))
2bbd3819
RS
1516 wipe_dead_reg (XEXP (link, 0), 1);
1517
64e3a413 1518 /* If this is an insn that has a REG_RETVAL note pointing at a
2bbd3819
RS
1519 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1520 block, so clear any register number that combined within it. */
b1ec3c92 1521 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
4b4bf941 1522 && NONJUMP_INSN_P (XEXP (note, 0))
2bbd3819
RS
1523 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1524 no_conflict_combined_regno = -1;
1525 }
1526
1527 /* Set the registers live after INSN_NUMBER. Note that we never
1528 record the registers live before the block's first insn, since no
1529 pseudos we care about are live before that insn. */
1530
1531 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1532 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1533
a813c111 1534 if (insn == BB_END (BASIC_BLOCK (b)))
2bbd3819
RS
1535 break;
1536
1537 insn = NEXT_INSN (insn);
1538 }
1539
1540 /* Now every register that is local to this basic block
1541 should have been given a quantity, or else -1 meaning ignore it.
64e3a413 1542 Every quantity should have a known birth and death.
2bbd3819 1543
51b86d8b
RK
1544 Order the qtys so we assign them registers in order of the
1545 number of suggested registers they need so we allocate those with
1546 the most restrictive needs first. */
2bbd3819 1547
5ed6ace5 1548 qty_order = XNEWVEC (int, next_qty);
2bbd3819
RS
1549 for (i = 0; i < next_qty; i++)
1550 qty_order[i] = i;
1551
1552#define EXCHANGE(I1, I2) \
1553 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1554
1555 switch (next_qty)
1556 {
1557 case 3:
1558 /* Make qty_order[2] be the one to allocate last. */
51b86d8b 1559 if (qty_sugg_compare (0, 1) > 0)
2bbd3819 1560 EXCHANGE (0, 1);
51b86d8b 1561 if (qty_sugg_compare (1, 2) > 0)
2bbd3819
RS
1562 EXCHANGE (2, 1);
1563
0f41302f 1564 /* ... Fall through ... */
2bbd3819
RS
1565 case 2:
1566 /* Put the best one to allocate in qty_order[0]. */
51b86d8b 1567 if (qty_sugg_compare (0, 1) > 0)
2bbd3819
RS
1568 EXCHANGE (0, 1);
1569
0f41302f 1570 /* ... Fall through ... */
2bbd3819
RS
1571
1572 case 1:
1573 case 0:
1574 /* Nothing to do here. */
1575 break;
1576
1577 default:
51b86d8b 1578 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
2bbd3819
RS
1579 }
1580
1581 /* Try to put each quantity in a suggested physical register, if it has one.
1582 This may cause registers to be allocated that otherwise wouldn't be, but
1583 this seems acceptable in local allocation (unlike global allocation). */
1584 for (i = 0; i < next_qty; i++)
1585 {
1586 q = qty_order[i];
51b86d8b 1587 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
a1ed7bdb
JH
1588 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1589 0, 1, qty[q].birth, qty[q].death);
2bbd3819 1590 else
a1ed7bdb 1591 qty[q].phys_reg = -1;
2bbd3819
RS
1592 }
1593
64e3a413
KH
1594 /* Order the qtys so we assign them registers in order of
1595 decreasing length of life. Normally call qsort, but if we
51b86d8b
RK
1596 have only a very small number of quantities, sort them ourselves. */
1597
1598 for (i = 0; i < next_qty; i++)
1599 qty_order[i] = i;
1600
1601#define EXCHANGE(I1, I2) \
1602 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1603
1604 switch (next_qty)
1605 {
1606 case 3:
1607 /* Make qty_order[2] be the one to allocate last. */
1608 if (qty_compare (0, 1) > 0)
1609 EXCHANGE (0, 1);
1610 if (qty_compare (1, 2) > 0)
1611 EXCHANGE (2, 1);
1612
0f41302f 1613 /* ... Fall through ... */
51b86d8b
RK
1614 case 2:
1615 /* Put the best one to allocate in qty_order[0]. */
1616 if (qty_compare (0, 1) > 0)
1617 EXCHANGE (0, 1);
1618
0f41302f 1619 /* ... Fall through ... */
51b86d8b
RK
1620
1621 case 1:
1622 case 0:
1623 /* Nothing to do here. */
1624 break;
1625
1626 default:
1627 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1628 }
1629
2bbd3819
RS
1630 /* Now for each qty that is not a hardware register,
1631 look for a hardware register to put it in.
1632 First try the register class that is cheapest for this qty,
1633 if there is more than one class. */
1634
1635 for (i = 0; i < next_qty; i++)
1636 {
1637 q = qty_order[i];
a1ed7bdb 1638 if (qty[q].phys_reg < 0)
2bbd3819 1639 {
624a8b3a
JL
1640#ifdef INSN_SCHEDULING
1641 /* These values represent the adjusted lifetime of a qty so
1642 that it conflicts with qtys which appear near the start/end
1643 of this qty's lifetime.
1644
1645 The purpose behind extending the lifetime of this qty is to
1646 discourage the register allocator from creating false
1647 dependencies.
64e3a413 1648
f63d1bf7 1649 The adjustment value is chosen to indicate that this qty
996e9683 1650 conflicts with all the qtys in the instructions immediately
624a8b3a
JL
1651 before and after the lifetime of this qty.
1652
1653 Experiments have shown that higher values tend to hurt
1654 overall code performance.
1655
1656 If allocation using the extended lifetime fails we will try
1657 again with the qty's unadjusted lifetime. */
a1ed7bdb 1658 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
996e9683 1659 int fake_death = MIN (insn_number * 2 + 1,
a1ed7bdb 1660 qty[q].death + 2 - qty[q].death % 2);
624a8b3a
JL
1661#endif
1662
2bbd3819
RS
1663 if (N_REG_CLASSES > 1)
1664 {
624a8b3a
JL
1665#ifdef INSN_SCHEDULING
1666 /* We try to avoid using hard registers allocated to qtys which
1667 are born immediately after this qty or die immediately before
1668 this qty.
1669
1670 This optimization is only appropriate when we will run
1671 a scheduling pass after reload and we are not optimizing
1672 for code size. */
6fb5fa3c 1673 if (flag_schedule_insns_after_reload && dbg_cnt (local_alloc_for_sched)
c358412f
JL
1674 && !optimize_size
1675 && !SMALL_REGISTER_CLASSES)
624a8b3a 1676 {
64e3a413 1677 qty[q].phys_reg = find_free_reg (qty[q].min_class,
a1ed7bdb 1678 qty[q].mode, q, 0, 0,
624a8b3a 1679 fake_birth, fake_death);
a1ed7bdb 1680 if (qty[q].phys_reg >= 0)
624a8b3a
JL
1681 continue;
1682 }
1683#endif
64e3a413 1684 qty[q].phys_reg = find_free_reg (qty[q].min_class,
a1ed7bdb
JH
1685 qty[q].mode, q, 0, 0,
1686 qty[q].birth, qty[q].death);
1687 if (qty[q].phys_reg >= 0)
2bbd3819
RS
1688 continue;
1689 }
1690
624a8b3a
JL
1691#ifdef INSN_SCHEDULING
1692 /* Similarly, avoid false dependencies. */
6fb5fa3c 1693 if (flag_schedule_insns_after_reload && dbg_cnt (local_alloc_for_sched)
c358412f
JL
1694 && !optimize_size
1695 && !SMALL_REGISTER_CLASSES
a1ed7bdb
JH
1696 && qty[q].alternate_class != NO_REGS)
1697 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1698 qty[q].mode, q, 0, 0,
624a8b3a
JL
1699 fake_birth, fake_death);
1700#endif
a1ed7bdb
JH
1701 if (qty[q].alternate_class != NO_REGS)
1702 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1703 qty[q].mode, q, 0, 0,
1704 qty[q].birth, qty[q].death);
2bbd3819
RS
1705 }
1706 }
1707
1708 /* Now propagate the register assignments
1709 to the pseudo regs belonging to the qtys. */
1710
1711 for (q = 0; q < next_qty; q++)
a1ed7bdb 1712 if (qty[q].phys_reg >= 0)
2bbd3819 1713 {
a1ed7bdb
JH
1714 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1715 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
2bbd3819 1716 }
ff154f78
MM
1717
1718 /* Clean up. */
1719 free (regs_live_at);
1720 free (qty_order);
2bbd3819
RS
1721}
1722\f
1723/* Compare two quantities' priority for getting real registers.
1724 We give shorter-lived quantities higher priority.
6dc42e49
RS
1725 Quantities with more references are also preferred, as are quantities that
1726 require multiple registers. This is the identical prioritization as
2bbd3819
RS
1727 done by global-alloc.
1728
1729 We used to give preference to registers with *longer* lives, but using
1730 the same algorithm in both local- and global-alloc can speed up execution
1731 of some programs by as much as a factor of three! */
1732
2f23fcc9
RK
1733/* Note that the quotient will never be bigger than
1734 the value of floor_log2 times the maximum number of
a08b2604
JH
1735 times a register can occur in one insn (surely less than 100)
1736 weighted by frequency (max REG_FREQ_MAX).
1737 Multiplying this by 10000/REG_FREQ_MAX can't overflow.
2f23fcc9
RK
1738 QTY_CMP_PRI is also used by qty_sugg_compare. */
1739
1740#define QTY_CMP_PRI(q) \
b2aec5c0 1741 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
a08b2604 1742 / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
2f23fcc9 1743
2bbd3819 1744static int
0c20a65f 1745qty_compare (int q1, int q2)
2bbd3819 1746{
2f23fcc9 1747 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
2bbd3819
RS
1748}
1749
1750static int
0c20a65f 1751qty_compare_1 (const void *q1p, const void *q2p)
2bbd3819 1752{
b3694847
SS
1753 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1754 int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
2f23fcc9
RK
1755
1756 if (tem != 0)
1757 return tem;
1758
2bbd3819
RS
1759 /* If qtys are equally good, sort by qty number,
1760 so that the results of qsort leave nothing to chance. */
2f23fcc9 1761 return q1 - q2;
2bbd3819
RS
1762}
1763\f
51b86d8b
RK
1764/* Compare two quantities' priority for getting real registers. This version
1765 is called for quantities that have suggested hard registers. First priority
1766 goes to quantities that have copy preferences, then to those that have
1767 normal preferences. Within those groups, quantities with the lower
9faa82d8 1768 number of preferences have the highest priority. Of those, we use the same
51b86d8b
RK
1769 algorithm as above. */
1770
2f23fcc9
RK
1771#define QTY_CMP_SUGG(q) \
1772 (qty_phys_num_copy_sugg[q] \
1773 ? qty_phys_num_copy_sugg[q] \
1774 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1775
51b86d8b 1776static int
0c20a65f 1777qty_sugg_compare (int q1, int q2)
51b86d8b 1778{
b3694847 1779 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
2f23fcc9
RK
1780
1781 if (tem != 0)
1782 return tem;
64e3a413 1783
2f23fcc9 1784 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
51b86d8b
RK
1785}
1786
1787static int
0c20a65f 1788qty_sugg_compare_1 (const void *q1p, const void *q2p)
51b86d8b 1789{
b3694847
SS
1790 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1791 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
2f23fcc9
RK
1792
1793 if (tem != 0)
1794 return tem;
1795
1796 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1797 if (tem != 0)
1798 return tem;
51b86d8b
RK
1799
1800 /* If qtys are equally good, sort by qty number,
1801 so that the results of qsort leave nothing to chance. */
2f23fcc9 1802 return q1 - q2;
51b86d8b 1803}
2f23fcc9
RK
1804
1805#undef QTY_CMP_SUGG
1806#undef QTY_CMP_PRI
51b86d8b 1807\f
2bbd3819
RS
1808/* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1809 Returns 1 if have done so, or 0 if cannot.
1810
1811 Combining registers means marking them as having the same quantity
1812 and adjusting the offsets within the quantity if either of
a5342656 1813 them is a SUBREG.
2bbd3819
RS
1814
1815 We don't actually combine a hard reg with a pseudo; instead
1816 we just record the hard reg as the suggestion for the pseudo's quantity.
1817 If we really combined them, we could lose if the pseudo lives
70128ad9 1818 across an insn that clobbers the hard reg (eg, movmem).
2bbd3819 1819
cc2902df 1820 ALREADY_DEAD is nonzero if USEDREG is known to be dead even though
2bbd3819
RS
1821 there is no REG_DEAD note on INSN. This occurs during the processing
1822 of REG_NO_CONFLICT blocks.
1823
a5342656 1824 MAY_SAVE_COPY is nonzero if this insn is simply copying USEDREG to
2bbd3819
RS
1825 SETREG or if the input and output must share a register.
1826 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
64e3a413 1827
2bbd3819
RS
1828 There are elaborate checks for the validity of combining. */
1829
2bbd3819 1830static int
0c20a65f
AJ
1831combine_regs (rtx usedreg, rtx setreg, int may_save_copy, int insn_number,
1832 rtx insn, int already_dead)
2bbd3819 1833{
b3694847
SS
1834 int ureg, sreg;
1835 int offset = 0;
2bbd3819 1836 int usize, ssize;
b3694847 1837 int sqty;
2bbd3819
RS
1838
1839 /* Determine the numbers and sizes of registers being used. If a subreg
6dc42e49 1840 is present that does not change the entire register, don't consider
2bbd3819
RS
1841 this a copy insn. */
1842
1843 while (GET_CODE (usedreg) == SUBREG)
1844 {
44a5da09
GS
1845 rtx subreg = SUBREG_REG (usedreg);
1846
f8cfc6aa 1847 if (REG_P (subreg))
44a5da09
GS
1848 {
1849 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1850 may_save_copy = 0;
1851
1852 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1853 offset += subreg_regno_offset (REGNO (subreg),
1854 GET_MODE (subreg),
1855 SUBREG_BYTE (usedreg),
1856 GET_MODE (usedreg));
1857 else
1858 offset += (SUBREG_BYTE (usedreg)
1859 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1860 }
1861
1862 usedreg = subreg;
2bbd3819 1863 }
44a5da09 1864
f8cfc6aa 1865 if (!REG_P (usedreg))
2bbd3819 1866 return 0;
44a5da09 1867
2bbd3819 1868 ureg = REGNO (usedreg);
ddef6bc7 1869 if (ureg < FIRST_PSEUDO_REGISTER)
66fd46b6 1870 usize = hard_regno_nregs[ureg][GET_MODE (usedreg)];
ddef6bc7
JJ
1871 else
1872 usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
1873 + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
1874 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
2bbd3819
RS
1875
1876 while (GET_CODE (setreg) == SUBREG)
1877 {
44a5da09
GS
1878 rtx subreg = SUBREG_REG (setreg);
1879
f8cfc6aa 1880 if (REG_P (subreg))
44a5da09
GS
1881 {
1882 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1883 may_save_copy = 0;
1884
1885 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1886 offset -= subreg_regno_offset (REGNO (subreg),
1887 GET_MODE (subreg),
1888 SUBREG_BYTE (setreg),
1889 GET_MODE (setreg));
1890 else
1891 offset -= (SUBREG_BYTE (setreg)
1892 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1893 }
1894
1895 setreg = subreg;
2bbd3819 1896 }
44a5da09 1897
f8cfc6aa 1898 if (!REG_P (setreg))
2bbd3819 1899 return 0;
44a5da09 1900
2bbd3819 1901 sreg = REGNO (setreg);
ddef6bc7 1902 if (sreg < FIRST_PSEUDO_REGISTER)
66fd46b6 1903 ssize = hard_regno_nregs[sreg][GET_MODE (setreg)];
ddef6bc7
JJ
1904 else
1905 ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
1906 + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
1907 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
2bbd3819
RS
1908
1909 /* If UREG is a pseudo-register that hasn't already been assigned a
1910 quantity number, it means that it is not local to this block or dies
1911 more than once. In either event, we can't do anything with it. */
1912 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1913 /* Do not combine registers unless one fits within the other. */
1914 || (offset > 0 && usize + offset > ssize)
1915 || (offset < 0 && usize + offset < ssize)
1916 /* Do not combine with a smaller already-assigned object
0f41302f 1917 if that smaller object is already combined with something bigger. */
2bbd3819 1918 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
a1ed7bdb 1919 && usize < qty[reg_qty[ureg]].size)
2bbd3819
RS
1920 /* Can't combine if SREG is not a register we can allocate. */
1921 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1922 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1923 These have already been taken care of. This probably wouldn't
1924 combine anyway, but don't take any chances. */
1925 || (ureg >= FIRST_PSEUDO_REGISTER
1926 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1927 /* Don't tie something to itself. In most cases it would make no
1928 difference, but it would screw up if the reg being tied to itself
1929 also dies in this insn. */
1930 || ureg == sreg
1931 /* Don't try to connect two different hardware registers. */
1932 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1933 /* Don't connect two different machine modes if they have different
1934 implications as to which registers may be used. */
1935 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1936 return 0;
1937
1938 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1939 qty_phys_sugg for the pseudo instead of tying them.
1940
1941 Return "failure" so that the lifespan of UREG is terminated here;
1942 that way the two lifespans will be disjoint and nothing will prevent
1943 the pseudo reg from being given this hard reg. */
1944
1945 if (ureg < FIRST_PSEUDO_REGISTER)
1946 {
1947 /* Allocate a quantity number so we have a place to put our
1948 suggestions. */
1949 if (reg_qty[sreg] == -2)
1950 reg_is_born (setreg, 2 * insn_number);
1951
1952 if (reg_qty[sreg] >= 0)
1953 {
51b86d8b
RK
1954 if (may_save_copy
1955 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
2bbd3819
RS
1956 {
1957 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
51b86d8b 1958 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
2bbd3819 1959 }
51b86d8b 1960 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
2bbd3819
RS
1961 {
1962 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
51b86d8b 1963 qty_phys_num_sugg[reg_qty[sreg]]++;
2bbd3819
RS
1964 }
1965 }
1966 return 0;
1967 }
1968
1969 /* Similarly for SREG a hard register and UREG a pseudo register. */
1970
1971 if (sreg < FIRST_PSEUDO_REGISTER)
1972 {
51b86d8b
RK
1973 if (may_save_copy
1974 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
2bbd3819
RS
1975 {
1976 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
51b86d8b 1977 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
2bbd3819 1978 }
51b86d8b 1979 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
2bbd3819
RS
1980 {
1981 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
51b86d8b 1982 qty_phys_num_sugg[reg_qty[ureg]]++;
2bbd3819
RS
1983 }
1984 return 0;
1985 }
1986
1987 /* At this point we know that SREG and UREG are both pseudos.
1988 Do nothing if SREG already has a quantity or is a register that we
1989 don't allocate. */
1990 if (reg_qty[sreg] >= -1
1991 /* If we are not going to let any regs live across calls,
1992 don't tie a call-crossing reg to a non-call-crossing reg. */
1993 || (current_function_has_nonlocal_label
b1f21e0a
MM
1994 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1995 != (REG_N_CALLS_CROSSED (sreg) > 0))))
2bbd3819
RS
1996 return 0;
1997
1998 /* We don't already know about SREG, so tie it to UREG
1999 if this is the last use of UREG, provided the classes they want
2000 are compatible. */
2001
2002 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
a1ed7bdb 2003 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
2bbd3819
RS
2004 {
2005 /* Add SREG to UREG's quantity. */
2006 sqty = reg_qty[ureg];
2007 reg_qty[sreg] = sqty;
2008 reg_offset[sreg] = reg_offset[ureg] + offset;
a1ed7bdb
JH
2009 reg_next_in_qty[sreg] = qty[sqty].first_reg;
2010 qty[sqty].first_reg = sreg;
2bbd3819 2011
a1ed7bdb 2012 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
2bbd3819
RS
2013 update_qty_class (sqty, sreg);
2014
2015 /* Update info about quantity SQTY. */
a1ed7bdb 2016 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
95c37cdb
JJ
2017 qty[sqty].n_throwing_calls_crossed
2018 += REG_N_THROWING_CALLS_CROSSED (sreg);
a1ed7bdb 2019 qty[sqty].n_refs += REG_N_REFS (sreg);
b2aec5c0 2020 qty[sqty].freq += REG_FREQ (sreg);
2bbd3819
RS
2021 if (usize < ssize)
2022 {
b3694847 2023 int i;
2bbd3819 2024
a1ed7bdb 2025 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
2bbd3819
RS
2026 reg_offset[i] -= offset;
2027
a1ed7bdb
JH
2028 qty[sqty].size = ssize;
2029 qty[sqty].mode = GET_MODE (setreg);
2bbd3819
RS
2030 }
2031 }
2032 else
2033 return 0;
2034
2035 return 1;
2036}
2037\f
2038/* Return 1 if the preferred class of REG allows it to be tied
2039 to a quantity or register whose class is CLASS.
2040 True if REG's reg class either contains or is contained in CLASS. */
2041
2042static int
0c20a65f 2043reg_meets_class_p (int reg, enum reg_class class)
2bbd3819 2044{
b3694847 2045 enum reg_class rclass = reg_preferred_class (reg);
2bbd3819
RS
2046 return (reg_class_subset_p (rclass, class)
2047 || reg_class_subset_p (class, rclass));
2048}
2049
a1ed7bdb 2050/* Update the class of QTYNO assuming that REG is being tied to it. */
2bbd3819
RS
2051
2052static void
0c20a65f 2053update_qty_class (int qtyno, int reg)
2bbd3819
RS
2054{
2055 enum reg_class rclass = reg_preferred_class (reg);
a1ed7bdb
JH
2056 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
2057 qty[qtyno].min_class = rclass;
e4600702
RK
2058
2059 rclass = reg_alternate_class (reg);
a1ed7bdb
JH
2060 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
2061 qty[qtyno].alternate_class = rclass;
2bbd3819
RS
2062}
2063\f
2064/* Handle something which alters the value of an rtx REG.
2065
2066 REG is whatever is set or clobbered. SETTER is the rtx that
2067 is modifying the register.
2068
2069 If it is not really a register, we do nothing.
2070 The file-global variables `this_insn' and `this_insn_number'
2071 carry info from `block_alloc'. */
2072
2073static void
7bc980e1 2074reg_is_set (rtx reg, const_rtx setter, void *data ATTRIBUTE_UNUSED)
2bbd3819
RS
2075{
2076 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2077 a hard register. These may actually not exist any more. */
2078
2079 if (GET_CODE (reg) != SUBREG
f8cfc6aa 2080 && !REG_P (reg))
2bbd3819
RS
2081 return;
2082
2083 /* Mark this register as being born. If it is used in a CLOBBER, mark
2084 it as being born halfway between the previous insn and this insn so that
2085 it conflicts with our inputs but not the outputs of the previous insn. */
2086
2087 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2088}
2089\f
2090/* Handle beginning of the life of register REG.
2091 BIRTH is the index at which this is happening. */
2092
2093static void
0c20a65f 2094reg_is_born (rtx reg, int birth)
2bbd3819 2095{
b3694847 2096 int regno;
64e3a413 2097
2bbd3819 2098 if (GET_CODE (reg) == SUBREG)
ddef6bc7
JJ
2099 {
2100 regno = REGNO (SUBREG_REG (reg));
2101 if (regno < FIRST_PSEUDO_REGISTER)
6f9e3578 2102 regno = subreg_regno (reg);
ddef6bc7 2103 }
2bbd3819
RS
2104 else
2105 regno = REGNO (reg);
2106
2107 if (regno < FIRST_PSEUDO_REGISTER)
2108 {
2109 mark_life (regno, GET_MODE (reg), 1);
2110
2111 /* If the register was to have been born earlier that the present
2112 insn, mark it as live where it is actually born. */
2113 if (birth < 2 * this_insn_number)
2114 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2115 }
2116 else
2117 {
2118 if (reg_qty[regno] == -2)
2119 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2120
2121 /* If this register has a quantity number, show that it isn't dead. */
2122 if (reg_qty[regno] >= 0)
a1ed7bdb 2123 qty[reg_qty[regno]].death = -1;
2bbd3819
RS
2124 }
2125}
2126
cc2902df 2127/* Record the death of REG in the current insn. If OUTPUT_P is nonzero,
2bbd3819 2128 REG is an output that is dying (i.e., it is never used), otherwise it
333e0f7d
RS
2129 is an input (the normal case).
2130 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2bbd3819
RS
2131
2132static void
0c20a65f 2133wipe_dead_reg (rtx reg, int output_p)
2bbd3819 2134{
b3694847 2135 int regno = REGNO (reg);
2bbd3819 2136
333e0f7d
RS
2137 /* If this insn has multiple results,
2138 and the dead reg is used in one of the results,
2139 extend its life to after this insn,
64e3a413 2140 so it won't get allocated together with any other result of this insn.
941c63ac
JL
2141
2142 It is unsafe to use !single_set here since it will ignore an unused
2143 output. Just because an output is unused does not mean the compiler
2144 can assume the side effect will not occur. Consider if REG appears
2145 in the address of an output and we reload the output. If we allocate
2146 REG to the same hard register as an unused output we could set the hard
2147 register before the output reload insn. */
333e0f7d 2148 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
941c63ac 2149 && multiple_sets (this_insn))
333e0f7d
RS
2150 {
2151 int i;
2152 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2153 {
2154 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2155 if (GET_CODE (set) == SET
f8cfc6aa 2156 && !REG_P (SET_DEST (set))
333e0f7d
RS
2157 && !rtx_equal_p (reg, SET_DEST (set))
2158 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2159 output_p = 1;
2160 }
2161 }
2162
c182df0b
RK
2163 /* If this register is used in an auto-increment address, then extend its
2164 life to after this insn, so that it won't get allocated together with
2165 the result of this insn. */
2166 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2167 output_p = 1;
2168
2bbd3819
RS
2169 if (regno < FIRST_PSEUDO_REGISTER)
2170 {
2171 mark_life (regno, GET_MODE (reg), 0);
2172
2173 /* If a hard register is dying as an output, mark it as in use at
2174 the beginning of this insn (the above statement would cause this
2175 not to happen). */
2176 if (output_p)
2177 post_mark_life (regno, GET_MODE (reg), 1,
64e3a413 2178 2 * this_insn_number, 2 * this_insn_number + 1);
2bbd3819
RS
2179 }
2180
2181 else if (reg_qty[regno] >= 0)
a1ed7bdb 2182 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2bbd3819
RS
2183}
2184\f
2185/* Find a block of SIZE words of hard regs in reg_class CLASS
2186 that can hold something of machine-mode MODE
2187 (but actually we test only the first of the block for holding MODE)
2188 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2189 and return the number of the first of them.
64e3a413 2190 Return -1 if such a block cannot be found.
a1ed7bdb 2191 If QTYNO crosses calls, insist on a register preserved by calls,
2bbd3819
RS
2192 unless ACCEPT_CALL_CLOBBERED is nonzero.
2193
cc2902df 2194 If JUST_TRY_SUGGESTED is nonzero, only try to see if the suggested
2bbd3819
RS
2195 register is available. If not, return -1. */
2196
2197static int
0c20a65f
AJ
2198find_free_reg (enum reg_class class, enum machine_mode mode, int qtyno,
2199 int accept_call_clobbered, int just_try_suggested,
2200 int born_index, int dead_index)
2bbd3819 2201{
b3694847 2202 int i, ins;
cff9f8d5 2203 HARD_REG_SET first_used, used;
2bbd3819 2204#ifdef ELIMINABLE_REGS
8b60264b 2205 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2bbd3819
RS
2206#endif
2207
2208 /* Validate our parameters. */
b5e624c6 2209 gcc_assert (born_index >= 0 && born_index <= dead_index);
2bbd3819
RS
2210
2211 /* Don't let a pseudo live in a reg across a function call
2212 if we might get a nonlocal goto. */
2213 if (current_function_has_nonlocal_label
a1ed7bdb 2214 && qty[qtyno].n_calls_crossed > 0)
2bbd3819
RS
2215 return -1;
2216
2217 if (accept_call_clobbered)
2218 COPY_HARD_REG_SET (used, call_fixed_reg_set);
a1ed7bdb 2219 else if (qty[qtyno].n_calls_crossed == 0)
2bbd3819
RS
2220 COPY_HARD_REG_SET (used, fixed_reg_set);
2221 else
2222 COPY_HARD_REG_SET (used, call_used_reg_set);
2223
6cad67d2 2224 if (accept_call_clobbered)
c09be6c4 2225 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
6cad67d2 2226
2bbd3819
RS
2227 for (ins = born_index; ins < dead_index; ins++)
2228 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2229
2230 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2231
2232 /* Don't use the frame pointer reg in local-alloc even if
2233 we may omit the frame pointer, because if we do that and then we
2234 need a frame pointer, reload won't know how to move the pseudo
2235 to another hard reg. It can move only regs made by global-alloc.
2236
2237 This is true of any register that can be eliminated. */
2238#ifdef ELIMINABLE_REGS
b6a1cbae 2239 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2bbd3819 2240 SET_HARD_REG_BIT (used, eliminables[i].from);
c2618f05
DE
2241#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2242 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
0f41302f 2243 that it might be eliminated into. */
c2618f05
DE
2244 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2245#endif
2bbd3819
RS
2246#else
2247 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2248#endif
2249
cff9f8d5
AH
2250#ifdef CANNOT_CHANGE_MODE_CLASS
2251 cannot_change_mode_set_regs (&used, mode, qty[qtyno].first_reg);
0f64b8f6
RK
2252#endif
2253
2bbd3819
RS
2254 /* Normally, the registers that can be used for the first register in
2255 a multi-register quantity are the same as those that can be used for
2256 subsequent registers. However, if just trying suggested registers,
2257 restrict our consideration to them. If there are copy-suggested
2258 register, try them. Otherwise, try the arithmetic-suggested
2259 registers. */
2260 COPY_HARD_REG_SET (first_used, used);
2261
2262 if (just_try_suggested)
2263 {
a1ed7bdb
JH
2264 if (qty_phys_num_copy_sugg[qtyno] != 0)
2265 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2bbd3819 2266 else
a1ed7bdb 2267 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2bbd3819
RS
2268 }
2269
2bbd3819 2270 /* If at least one would be suitable, test each hard reg. */
56b138ae
RS
2271 if (!hard_reg_set_subset_p (reg_class_contents[(int) ALL_REGS], first_used))
2272 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2273 {
2bbd3819 2274#ifdef REG_ALLOC_ORDER
56b138ae 2275 int regno = reg_alloc_order[i];
2bbd3819 2276#else
56b138ae 2277 int regno = i;
2bbd3819 2278#endif
56b138ae
RS
2279 if (!TEST_HARD_REG_BIT (first_used, regno)
2280 && HARD_REGNO_MODE_OK (regno, mode)
2281 && (qty[qtyno].n_calls_crossed == 0
2282 || accept_call_clobbered
2283 || !HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2284 {
2285 int j;
2286 int size1 = hard_regno_nregs[regno][mode];
2287 j = 1;
2288 while (j < size1 && !TEST_HARD_REG_BIT (used, regno + j))
2289 j++;
2290 if (j == size1)
2291 {
2292 /* Mark that this register is in use between its birth
2293 and death insns. */
2294 post_mark_life (regno, mode, 1, born_index, dead_index);
2295 return regno;
2296 }
2bbd3819 2297#ifndef REG_ALLOC_ORDER
56b138ae
RS
2298 /* Skip starting points we know will lose. */
2299 i += j;
2bbd3819 2300#endif
56b138ae
RS
2301 }
2302 }
2bbd3819 2303
2bbd3819
RS
2304 /* If we are just trying suggested register, we have just tried copy-
2305 suggested registers, and there are arithmetic-suggested registers,
2306 try them. */
64e3a413 2307
2bbd3819
RS
2308 /* If it would be profitable to allocate a call-clobbered register
2309 and save and restore it around calls, do that. */
a1ed7bdb
JH
2310 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2311 && qty_phys_num_sugg[qtyno] != 0)
2bbd3819
RS
2312 {
2313 /* Don't try the copy-suggested regs again. */
a1ed7bdb
JH
2314 qty_phys_num_copy_sugg[qtyno] = 0;
2315 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2bbd3819
RS
2316 born_index, dead_index);
2317 }
2318
e19f5192
RK
2319 /* We need not check to see if the current function has nonlocal
2320 labels because we don't put any pseudos that are live over calls in
95c37cdb
JJ
2321 registers in that case. Avoid putting pseudos crossing calls that
2322 might throw into call used registers. */
e19f5192 2323
2bbd3819
RS
2324 if (! accept_call_clobbered
2325 && flag_caller_saves
2326 && ! just_try_suggested
a1ed7bdb 2327 && qty[qtyno].n_calls_crossed != 0
95c37cdb 2328 && qty[qtyno].n_throwing_calls_crossed == 0
64e3a413
KH
2329 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2330 qty[qtyno].n_calls_crossed))
2bbd3819 2331 {
a1ed7bdb 2332 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2bbd3819
RS
2333 if (i >= 0)
2334 caller_save_needed = 1;
2335 return i;
2336 }
2337 return -1;
2338}
2339\f
2340/* Mark that REGNO with machine-mode MODE is live starting from the current
cc2902df 2341 insn (if LIFE is nonzero) or dead starting at the current insn (if LIFE
2bbd3819
RS
2342 is zero). */
2343
2344static void
0c20a65f 2345mark_life (int regno, enum machine_mode mode, int life)
2bbd3819 2346{
2bbd3819 2347 if (life)
09e18274 2348 add_to_hard_reg_set (&regs_live, mode, regno);
2bbd3819 2349 else
09e18274 2350 remove_from_hard_reg_set (&regs_live, mode, regno);
2bbd3819
RS
2351}
2352
2353/* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
cc2902df 2354 is nonzero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2bbd3819
RS
2355 to insn number DEATH (exclusive). */
2356
2357static void
0c20a65f
AJ
2358post_mark_life (int regno, enum machine_mode mode, int life, int birth,
2359 int death)
2bbd3819 2360{
49a27995 2361 HARD_REG_SET this_reg;
2bbd3819
RS
2362
2363 CLEAR_HARD_REG_SET (this_reg);
09e18274 2364 add_to_hard_reg_set (&this_reg, mode, regno);
2bbd3819
RS
2365
2366 if (life)
2367 while (birth < death)
2368 {
2369 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2370 birth++;
2371 }
2372 else
2373 while (birth < death)
2374 {
2375 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2376 birth++;
2377 }
2378}
2379\f
2380/* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2381 is the register being clobbered, and R1 is a register being used in
2382 the equivalent expression.
2383
2384 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2385 in which it is used, return 1.
2386
2387 Otherwise, return 0. */
2388
2389static int
0c20a65f 2390no_conflict_p (rtx insn, rtx r0 ATTRIBUTE_UNUSED, rtx r1)
2bbd3819
RS
2391{
2392 int ok = 0;
b1ec3c92 2393 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2bbd3819
RS
2394 rtx p, last;
2395
2396 /* If R1 is a hard register, return 0 since we handle this case
2397 when we scan the insns that actually use it. */
2398
2399 if (note == 0
f8cfc6aa
JQ
2400 || (REG_P (r1) && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2401 || (GET_CODE (r1) == SUBREG && REG_P (SUBREG_REG (r1))
2bbd3819
RS
2402 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2403 return 0;
2404
2405 last = XEXP (note, 0);
2406
2407 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2c3c49de 2408 if (INSN_P (p))
2bbd3819
RS
2409 {
2410 if (find_reg_note (p, REG_DEAD, r1))
2411 ok = 1;
2412
8bb19658
JW
2413 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2414 some earlier optimization pass has inserted instructions into
2415 the sequence, and it is not safe to perform this optimization.
2416 Note that emit_no_conflict_block always ensures that this is
2417 true when these sequences are created. */
2418 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2bbd3819
RS
2419 return 0;
2420 }
64e3a413 2421
2bbd3819
RS
2422 return ok;
2423}
2424\f
3061cc54
RK
2425/* Return the number of alternatives for which the constraint string P
2426 indicates that the operand must be equal to operand 0 and that no register
2427 is acceptable. */
2bbd3819
RS
2428
2429static int
0c20a65f 2430requires_inout (const char *p)
2bbd3819
RS
2431{
2432 char c;
2433 int found_zero = 0;
3061cc54
RK
2434 int reg_allowed = 0;
2435 int num_matching_alts = 0;
97488870 2436 int len;
2bbd3819 2437
dd1b7476 2438 for ( ; (c = *p); p += len)
97488870
R
2439 {
2440 len = CONSTRAINT_LEN (c, p);
2441 switch (c)
2442 {
2443 case '=': case '+': case '?':
2444 case '#': case '&': case '!':
2445 case '*': case '%':
2446 case 'm': case '<': case '>': case 'V': case 'o':
2447 case 'E': case 'F': case 'G': case 'H':
2448 case 's': case 'i': case 'n':
2449 case 'I': case 'J': case 'K': case 'L':
2450 case 'M': case 'N': case 'O': case 'P':
2451 case 'X':
2452 /* These don't say anything we care about. */
2453 break;
2bbd3819 2454
97488870
R
2455 case ',':
2456 if (found_zero && ! reg_allowed)
2457 num_matching_alts++;
3061cc54 2458
97488870
R
2459 found_zero = reg_allowed = 0;
2460 break;
3061cc54 2461
97488870
R
2462 case '0':
2463 found_zero = 1;
2464 break;
3061cc54 2465
97488870
R
2466 case '1': case '2': case '3': case '4': case '5':
2467 case '6': case '7': case '8': case '9':
2468 /* Skip the balance of the matching constraint. */
2469 do
2470 p++;
2471 while (ISDIGIT (*p));
2472 len = 0;
2473 break;
84b72302 2474
97488870
R
2475 default:
2476 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS
2477 && !EXTRA_ADDRESS_CONSTRAINT (c, p))
2478 break;
5d3cc252 2479 /* Fall through. */
97488870
R
2480 case 'p':
2481 case 'g': case 'r':
2482 reg_allowed = 1;
c2cba7a9 2483 break;
97488870
R
2484 }
2485 }
2bbd3819 2486
3061cc54
RK
2487 if (found_zero && ! reg_allowed)
2488 num_matching_alts++;
2489
2490 return num_matching_alts;
2bbd3819
RS
2491}
2492\f
2493void
0c20a65f 2494dump_local_alloc (FILE *file)
2bbd3819 2495{
b3694847 2496 int i;
2bbd3819
RS
2497 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2498 if (reg_renumber[i] != -1)
2499 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2500}
ef330312
PB
2501
2502/* Run old register allocator. Return TRUE if we must exit
2503 rest_of_compilation upon return. */
c2924966 2504static unsigned int
ef330312
PB
2505rest_of_handle_local_alloc (void)
2506{
2507 int rebuild_notes;
6fb5fa3c
DB
2508 int max_regno = max_reg_num ();
2509
2510 df_note_add_problem ();
89a95777
KZ
2511
2512 if (optimize > 1)
2513 df_remove_problem (df_live);
2514 /* Create a new version of df that has the special version of UR if
2515 we are doing optimization. */
6fb5fa3c 2516 if (optimize)
89a95777 2517 df_urec_add_problem ();
6fb5fa3c
DB
2518 df_analyze ();
2519 regstat_init_n_sets_and_refs ();
2520 regstat_compute_ri ();
2521
2522 /* There is just too much going on in the register allocators to
2523 keep things up to date. At the end we have to rescan anyway
2524 because things change when the reload_completed flag is set.
2525 So we just turn off scanning and we will rescan by hand. */
2526 df_set_flags (DF_NO_INSN_RESCAN);
2527
2528
2529 /* If we are not optimizing, then this is the only place before
2530 register allocation where dataflow is done. And that is needed
2531 to generate these warnings. */
2532 if (warn_clobbered)
2533 generate_setjmp_warnings ();
ef330312
PB
2534
2535 /* Determine if the current function is a leaf before running reload
2536 since this can impact optimizations done by the prologue and
2537 epilogue thus changing register elimination offsets. */
2538 current_function_is_leaf = leaf_function_p ();
2539
ef330312 2540 /* And the reg_equiv_memory_loc array. */
43b373a2
KH
2541 VEC_safe_grow (rtx, gc, reg_equiv_memory_loc_vec, max_regno);
2542 memset (VEC_address (rtx, reg_equiv_memory_loc_vec), 0,
2543 sizeof (rtx) * max_regno);
2544 reg_equiv_memory_loc = VEC_address (rtx, reg_equiv_memory_loc_vec);
ef330312
PB
2545
2546 allocate_initial_values (reg_equiv_memory_loc);
2547
6fb5fa3c 2548 regclass (get_insns (), max_regno);
ef330312
PB
2549 rebuild_notes = local_alloc ();
2550
2551 /* Local allocation may have turned an indirect jump into a direct
2552 jump. If so, we must rebuild the JUMP_LABEL fields of jumping
2553 instructions. */
2554 if (rebuild_notes)
2555 {
2556 timevar_push (TV_JUMP);
2557
2558 rebuild_jump_labels (get_insns ());
2559 purge_all_dead_edges ();
ef330312
PB
2560 timevar_pop (TV_JUMP);
2561 }
2562
5b4fdb20 2563 if (dump_file && (dump_flags & TDF_DETAILS))
ef330312
PB
2564 {
2565 timevar_push (TV_DUMP);
5b4fdb20 2566 dump_flow_info (dump_file, dump_flags);
ef330312
PB
2567 dump_local_alloc (dump_file);
2568 timevar_pop (TV_DUMP);
2569 }
c2924966 2570 return 0;
ef330312
PB
2571}
2572
2573struct tree_opt_pass pass_local_alloc =
2574{
2575 "lreg", /* name */
2576 NULL, /* gate */
2577 rest_of_handle_local_alloc, /* execute */
2578 NULL, /* sub */
2579 NULL, /* next */
2580 0, /* static_pass_number */
2581 TV_LOCAL_ALLOC, /* tv_id */
2582 0, /* properties_required */
2583 0, /* properties_provided */
2584 0, /* properties_destroyed */
2585 0, /* todo_flags_start */
2586 TODO_dump_func |
2587 TODO_ggc_collect, /* todo_flags_finish */
2588 'l' /* letter */
2589};
2590