]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/loop-iv.c
C++: more location wrapper nodes (PR c++/43064, PR c++/43486)
[thirdparty/gcc.git] / gcc / loop-iv.c
CommitLineData
f9cce2dc 1/* Rtl-level induction variable analysis.
8e8f6434 2 Copyright (C) 2004-2018 Free Software Foundation, Inc.
48e1416a 3
f9cce2dc 4This file is part of GCC.
48e1416a 5
f9cce2dc 6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
8c4c00c1 8Free Software Foundation; either version 3, or (at your option) any
f9cce2dc 9later version.
48e1416a 10
f9cce2dc 11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
48e1416a 15
f9cce2dc 16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
f9cce2dc 19
3f37d465 20/* This is a simple analysis of induction variables of the loop. The major use
21 is for determining the number of iterations of a loop for loop unrolling,
22 doloop optimization and branch prediction. The iv information is computed
23 on demand.
24
2e49e3bc 25 Induction variables are analyzed by walking the use-def chains. When
26 a basic induction variable (biv) is found, it is cached in the bivs
27 hash table. When register is proved to be a biv, its description
28 is stored to DF_REF_DATA of the def reference.
3f37d465 29
30 The analysis works always with one loop -- you must call
31 iv_analysis_loop_init (loop) for it. All the other functions then work with
32 this loop. When you need to work with another loop, just call
33 iv_analysis_loop_init for it. When you no longer need iv analysis, call
34 iv_analysis_done () to clean up the memory.
35
36 The available functions are:
48e1416a 37
601e68ad 38 iv_analyze (insn, mode, reg, iv): Stores the description of the induction
39 variable corresponding to the use of register REG in INSN to IV, given
40 that REG has mode MODE. Returns true if REG is an induction variable
41 in INSN. false otherwise. If a use of REG is not found in INSN,
42 the following insns are scanned (so that we may call this function
43 on insns returned by get_condition).
3f37d465 44 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv
45 corresponding to DEF, which is a register defined in INSN.
601e68ad 46 iv_analyze_expr (insn, mode, expr, iv): Stores to IV the description of iv
3f37d465 47 corresponding to expression EXPR evaluated at INSN. All registers used bu
601e68ad 48 EXPR must also be used in INSN. MODE is the mode of EXPR.
3072d30e 49*/
f9cce2dc 50
51#include "config.h"
52#include "system.h"
53#include "coretypes.h"
9ef16211 54#include "backend.h"
f9cce2dc 55#include "rtl.h"
9ef16211 56#include "df.h"
ad7b10a2 57#include "memmodel.h"
7c29e30e 58#include "emit-rtl.h"
59#include "diagnostic-core.h"
f9cce2dc 60#include "cfgloop.h"
7e3cc681 61#include "intl.h"
b9ed1410 62#include "dumpfile.h"
b25bc675 63#include "rtl-iter.h"
f9cce2dc 64
3f37d465 65/* Possible return values of iv_get_reaching_def. */
f9cce2dc 66
3f37d465 67enum iv_grd_result
f9cce2dc 68{
3f37d465 69 /* More than one reaching def, or reaching def that does not
70 dominate the use. */
71 GRD_INVALID,
f9cce2dc 72
3f37d465 73 /* The use is trivial invariant of the loop, i.e. is not changed
74 inside the loop. */
75 GRD_INVARIANT,
f9cce2dc 76
3f37d465 77 /* The use is reached by initial value and a value from the
78 previous iteration. */
79 GRD_MAYBE_BIV,
80
81 /* The use has single dominating def. */
82 GRD_SINGLE_DOM
83};
84
85/* Information about a biv. */
86
87struct biv_entry
88{
89 unsigned regno; /* The register of the biv. */
90 struct rtx_iv iv; /* Value of the biv. */
f9cce2dc 91};
92
3072d30e 93static bool clean_slate = true;
94
95static unsigned int iv_ref_table_size = 0;
96
97/* Table of rtx_ivs indexed by the df_ref uid field. */
98static struct rtx_iv ** iv_ref_table;
99
3f37d465 100/* Induction variable stored at the reference. */
9af5ce0c 101#define DF_REF_IV(REF) iv_ref_table[DF_REF_ID (REF)]
102#define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID (REF)] = (IV)
f9cce2dc 103
3f37d465 104/* The current loop. */
f9cce2dc 105
3f37d465 106static struct loop *current_loop;
f9cce2dc 107
d9dd21a8 108/* Hashtable helper. */
109
298e7f9a 110struct biv_entry_hasher : free_ptr_hash <biv_entry>
d9dd21a8 111{
9969c043 112 typedef rtx_def *compare_type;
113 static inline hashval_t hash (const biv_entry *);
114 static inline bool equal (const biv_entry *, const rtx_def *);
d9dd21a8 115};
116
117/* Returns hash value for biv B. */
118
119inline hashval_t
9969c043 120biv_entry_hasher::hash (const biv_entry *b)
d9dd21a8 121{
122 return b->regno;
123}
124
125/* Compares biv B and register R. */
126
127inline bool
9969c043 128biv_entry_hasher::equal (const biv_entry *b, const rtx_def *r)
d9dd21a8 129{
130 return b->regno == REGNO (r);
131}
132
3f37d465 133/* Bivs of the current loop. */
f9cce2dc 134
c1f445d2 135static hash_table<biv_entry_hasher> *bivs;
f9cce2dc 136
601e68ad 137static bool iv_analyze_op (rtx_insn *, scalar_int_mode, rtx, struct rtx_iv *);
f9cce2dc 138
aedb7bf8 139/* Return the RTX code corresponding to the IV extend code EXTEND. */
140static inline enum rtx_code
141iv_extend_to_rtx_code (enum iv_extend_code extend)
142{
143 switch (extend)
144 {
145 case IV_SIGN_EXTEND:
146 return SIGN_EXTEND;
147 case IV_ZERO_EXTEND:
148 return ZERO_EXTEND;
149 case IV_UNKNOWN_EXTEND:
150 return UNKNOWN;
151 }
152 gcc_unreachable ();
153}
154
f9cce2dc 155/* Dumps information about IV to FILE. */
156
157extern void dump_iv_info (FILE *, struct rtx_iv *);
158void
159dump_iv_info (FILE *file, struct rtx_iv *iv)
160{
161 if (!iv->base)
162 {
163 fprintf (file, "not simple");
164 return;
165 }
166
bf9fa951 167 if (iv->step == const0_rtx
168 && !iv->first_special)
169 fprintf (file, "invariant ");
f9cce2dc 170
171 print_rtl (file, iv->base);
bf9fa951 172 if (iv->step != const0_rtx)
173 {
174 fprintf (file, " + ");
175 print_rtl (file, iv->step);
176 fprintf (file, " * iteration");
177 }
f9cce2dc 178 fprintf (file, " (in %s)", GET_MODE_NAME (iv->mode));
179
180 if (iv->mode != iv->extend_mode)
181 fprintf (file, " %s to %s",
aedb7bf8 182 rtx_name[iv_extend_to_rtx_code (iv->extend)],
f9cce2dc 183 GET_MODE_NAME (iv->extend_mode));
184
185 if (iv->mult != const1_rtx)
186 {
187 fprintf (file, " * ");
188 print_rtl (file, iv->mult);
189 }
190 if (iv->delta != const0_rtx)
191 {
192 fprintf (file, " + ");
193 print_rtl (file, iv->delta);
194 }
195 if (iv->first_special)
196 fprintf (file, " (first special)");
197}
198
48e1416a 199static void
3072d30e 200check_iv_ref_table_size (void)
201{
9af5ce0c 202 if (iv_ref_table_size < DF_DEFS_TABLE_SIZE ())
3072d30e 203 {
204 unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
4077bf7a 205 iv_ref_table = XRESIZEVEC (struct rtx_iv *, iv_ref_table, new_size);
48e1416a 206 memset (&iv_ref_table[iv_ref_table_size], 0,
3072d30e 207 (new_size - iv_ref_table_size) * sizeof (struct rtx_iv *));
208 iv_ref_table_size = new_size;
209 }
210}
211
212
f9cce2dc 213/* Checks whether REG is a well-behaved register. */
214
215static bool
216simple_reg_p (rtx reg)
217{
218 unsigned r;
219
220 if (GET_CODE (reg) == SUBREG)
221 {
222 if (!subreg_lowpart_p (reg))
223 return false;
224 reg = SUBREG_REG (reg);
225 }
226
227 if (!REG_P (reg))
228 return false;
229
230 r = REGNO (reg);
231 if (HARD_REGISTER_NUM_P (r))
232 return false;
233
234 if (GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
235 return false;
236
f9cce2dc 237 return true;
238}
239
3f37d465 240/* Clears the information about ivs stored in df. */
f9cce2dc 241
3f37d465 242static void
243clear_iv_info (void)
f9cce2dc 244{
3072d30e 245 unsigned i, n_defs = DF_DEFS_TABLE_SIZE ();
3f37d465 246 struct rtx_iv *iv;
f9cce2dc 247
3072d30e 248 check_iv_ref_table_size ();
3f37d465 249 for (i = 0; i < n_defs; i++)
f9cce2dc 250 {
3072d30e 251 iv = iv_ref_table[i];
252 if (iv)
253 {
254 free (iv);
255 iv_ref_table[i] = NULL;
256 }
f9cce2dc 257 }
f9cce2dc 258
c1f445d2 259 bivs->empty ();
f9cce2dc 260}
261
f9cce2dc 262
263/* Prepare the data for an induction variable analysis of a LOOP. */
264
265void
266iv_analysis_loop_init (struct loop *loop)
267{
3f37d465 268 current_loop = loop;
f9cce2dc 269
3f37d465 270 /* Clear the information from the analysis of the previous loop. */
3072d30e 271 if (clean_slate)
b818d1a9 272 {
3072d30e 273 df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN);
c1f445d2 274 bivs = new hash_table<biv_entry_hasher> (10);
3072d30e 275 clean_slate = false;
b818d1a9 276 }
277 else
278 clear_iv_info ();
f9cce2dc 279
3072d30e 280 /* Get rid of the ud chains before processing the rescans. Then add
281 the problem back. */
282 df_remove_problem (df_chain);
283 df_process_deferred_rescans ();
ea9538fb 284 df_set_flags (DF_RD_PRUNE_DEAD_DEFS);
3072d30e 285 df_chain_add_problem (DF_UD_CHAIN);
c56a6318 286 df_note_add_problem ();
67e23d6f 287 df_analyze_loop (loop);
3072d30e 288 if (dump_file)
774f8797 289 df_dump_region (dump_file);
3072d30e 290
291 check_iv_ref_table_size ();
f9cce2dc 292}
293
3f37d465 294/* Finds the definition of REG that dominates loop latch and stores
295 it to DEF. Returns false if there is not a single definition
c102b5b9 296 dominating the latch. If REG has no definition in loop, DEF
3f37d465 297 is set to NULL and true is returned. */
f9cce2dc 298
3f37d465 299static bool
ed6e85ae 300latch_dominating_def (rtx reg, df_ref *def)
f9cce2dc 301{
ed6e85ae 302 df_ref single_rd = NULL, adef;
c102b5b9 303 unsigned regno = REGNO (reg);
3072d30e 304 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (current_loop->latch);
f9cce2dc 305
ed6e85ae 306 for (adef = DF_REG_DEF_CHAIN (regno); adef; adef = DF_REF_NEXT_REG (adef))
f9cce2dc 307 {
ed6e85ae 308 if (!bitmap_bit_p (df->blocks_to_analyze, DF_REF_BBNO (adef))
f53d14b1 309 || !bitmap_bit_p (&bb_info->out, DF_REF_ID (adef)))
3f37d465 310 continue;
311
c102b5b9 312 /* More than one reaching definition. */
3f37d465 313 if (single_rd)
c102b5b9 314 return false;
315
316 if (!just_once_each_iteration_p (current_loop, DF_REF_BB (adef)))
317 return false;
3f37d465 318
319 single_rd = adef;
f9cce2dc 320 }
f9cce2dc 321
3f37d465 322 *def = single_rd;
323 return true;
324}
f9cce2dc 325
3f37d465 326/* Gets definition of REG reaching its use in INSN and stores it to DEF. */
f9cce2dc 327
3f37d465 328static enum iv_grd_result
3eeb4f9a 329iv_get_reaching_def (rtx_insn *insn, rtx reg, df_ref *def)
3f37d465 330{
c102b5b9 331 df_ref use, adef;
3f37d465 332 basic_block def_bb, use_bb;
3eeb4f9a 333 rtx_insn *def_insn;
c102b5b9 334 bool dom_p;
48e1416a 335
3f37d465 336 *def = NULL;
337 if (!simple_reg_p (reg))
338 return GRD_INVALID;
339 if (GET_CODE (reg) == SUBREG)
340 reg = SUBREG_REG (reg);
341 gcc_assert (REG_P (reg));
f9cce2dc 342
3072d30e 343 use = df_find_use (insn, reg);
3f37d465 344 gcc_assert (use != NULL);
f9cce2dc 345
3f37d465 346 if (!DF_REF_CHAIN (use))
347 return GRD_INVARIANT;
f9cce2dc 348
c102b5b9 349 /* More than one reaching def. */
3f37d465 350 if (DF_REF_CHAIN (use)->next)
c102b5b9 351 return GRD_INVALID;
86709046 352
c102b5b9 353 adef = DF_REF_CHAIN (use)->ref;
605dec4e 354
355 /* We do not handle setting only part of the register. */
31cbcee1 356 if (DF_REF_FLAGS (adef) & DF_REF_READ_WRITE)
605dec4e 357 return GRD_INVALID;
358
3f37d465 359 def_insn = DF_REF_INSN (adef);
360 def_bb = DF_REF_BB (adef);
361 use_bb = BLOCK_FOR_INSN (insn);
f9cce2dc 362
3f37d465 363 if (use_bb == def_bb)
3072d30e 364 dom_p = (DF_INSN_LUID (def_insn) < DF_INSN_LUID (insn));
3f37d465 365 else
366 dom_p = dominated_by_p (CDI_DOMINATORS, use_bb, def_bb);
f9cce2dc 367
3f37d465 368 if (dom_p)
369 {
370 *def = adef;
371 return GRD_SINGLE_DOM;
f9cce2dc 372 }
3f37d465 373
374 /* The definition does not dominate the use. This is still OK if
375 this may be a use of a biv, i.e. if the def_bb dominates loop
c102b5b9 376 latch. */
377 if (just_once_each_iteration_p (current_loop, def_bb))
3f37d465 378 return GRD_MAYBE_BIV;
379
380 return GRD_INVALID;
f9cce2dc 381}
382
383/* Sets IV to invariant CST in MODE. Always returns true (just for
384 consistency with other iv manipulation functions that may fail). */
385
386static bool
601e68ad 387iv_constant (struct rtx_iv *iv, scalar_int_mode mode, rtx cst)
f9cce2dc 388{
f9cce2dc 389 iv->mode = mode;
390 iv->base = cst;
391 iv->step = const0_rtx;
392 iv->first_special = false;
aedb7bf8 393 iv->extend = IV_UNKNOWN_EXTEND;
f9cce2dc 394 iv->extend_mode = iv->mode;
395 iv->delta = const0_rtx;
396 iv->mult = const1_rtx;
397
398 return true;
399}
400
401/* Evaluates application of subreg to MODE on IV. */
402
403static bool
601e68ad 404iv_subreg (struct rtx_iv *iv, scalar_int_mode mode)
f9cce2dc 405{
bf9fa951 406 /* If iv is invariant, just calculate the new value. */
407 if (iv->step == const0_rtx
408 && !iv->first_special)
409 {
410 rtx val = get_iv_value (iv, const0_rtx);
28573ae7 411 val = lowpart_subreg (mode, val,
412 iv->extend == IV_UNKNOWN_EXTEND
413 ? iv->mode : iv->extend_mode);
bf9fa951 414
415 iv->base = val;
aedb7bf8 416 iv->extend = IV_UNKNOWN_EXTEND;
bf9fa951 417 iv->mode = iv->extend_mode = mode;
418 iv->delta = const0_rtx;
419 iv->mult = const1_rtx;
420 return true;
421 }
422
f9cce2dc 423 if (iv->extend_mode == mode)
424 return true;
425
426 if (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (iv->mode))
427 return false;
428
aedb7bf8 429 iv->extend = IV_UNKNOWN_EXTEND;
f9cce2dc 430 iv->mode = mode;
431
432 iv->base = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
433 simplify_gen_binary (MULT, iv->extend_mode,
434 iv->base, iv->mult));
435 iv->step = simplify_gen_binary (MULT, iv->extend_mode, iv->step, iv->mult);
436 iv->mult = const1_rtx;
437 iv->delta = const0_rtx;
438 iv->first_special = false;
439
440 return true;
441}
442
443/* Evaluates application of EXTEND to MODE on IV. */
444
445static bool
601e68ad 446iv_extend (struct rtx_iv *iv, enum iv_extend_code extend, scalar_int_mode mode)
f9cce2dc 447{
bf9fa951 448 /* If iv is invariant, just calculate the new value. */
449 if (iv->step == const0_rtx
450 && !iv->first_special)
451 {
452 rtx val = get_iv_value (iv, const0_rtx);
28573ae7 453 if (iv->extend_mode != iv->mode
454 && iv->extend != IV_UNKNOWN_EXTEND
455 && iv->extend != extend)
456 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
aedb7bf8 457 val = simplify_gen_unary (iv_extend_to_rtx_code (extend), mode,
28573ae7 458 val,
459 iv->extend == extend
460 ? iv->extend_mode : iv->mode);
bf9fa951 461 iv->base = val;
aedb7bf8 462 iv->extend = IV_UNKNOWN_EXTEND;
bf9fa951 463 iv->mode = iv->extend_mode = mode;
464 iv->delta = const0_rtx;
465 iv->mult = const1_rtx;
466 return true;
467 }
468
f9cce2dc 469 if (mode != iv->extend_mode)
470 return false;
471
aedb7bf8 472 if (iv->extend != IV_UNKNOWN_EXTEND
f9cce2dc 473 && iv->extend != extend)
474 return false;
475
476 iv->extend = extend;
477
478 return true;
479}
480
481/* Evaluates negation of IV. */
482
483static bool
484iv_neg (struct rtx_iv *iv)
485{
aedb7bf8 486 if (iv->extend == IV_UNKNOWN_EXTEND)
f9cce2dc 487 {
488 iv->base = simplify_gen_unary (NEG, iv->extend_mode,
489 iv->base, iv->extend_mode);
490 iv->step = simplify_gen_unary (NEG, iv->extend_mode,
491 iv->step, iv->extend_mode);
492 }
493 else
494 {
495 iv->delta = simplify_gen_unary (NEG, iv->extend_mode,
496 iv->delta, iv->extend_mode);
497 iv->mult = simplify_gen_unary (NEG, iv->extend_mode,
498 iv->mult, iv->extend_mode);
499 }
500
501 return true;
502}
503
504/* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */
505
506static bool
507iv_add (struct rtx_iv *iv0, struct rtx_iv *iv1, enum rtx_code op)
508{
601e68ad 509 scalar_int_mode mode;
f9cce2dc 510 rtx arg;
511
aab2cf92 512 /* Extend the constant to extend_mode of the other operand if necessary. */
aedb7bf8 513 if (iv0->extend == IV_UNKNOWN_EXTEND
f9cce2dc 514 && iv0->mode == iv0->extend_mode
515 && iv0->step == const0_rtx
516 && GET_MODE_SIZE (iv0->extend_mode) < GET_MODE_SIZE (iv1->extend_mode))
517 {
518 iv0->extend_mode = iv1->extend_mode;
519 iv0->base = simplify_gen_unary (ZERO_EXTEND, iv0->extend_mode,
520 iv0->base, iv0->mode);
521 }
aedb7bf8 522 if (iv1->extend == IV_UNKNOWN_EXTEND
f9cce2dc 523 && iv1->mode == iv1->extend_mode
524 && iv1->step == const0_rtx
525 && GET_MODE_SIZE (iv1->extend_mode) < GET_MODE_SIZE (iv0->extend_mode))
526 {
527 iv1->extend_mode = iv0->extend_mode;
528 iv1->base = simplify_gen_unary (ZERO_EXTEND, iv1->extend_mode,
529 iv1->base, iv1->mode);
530 }
531
532 mode = iv0->extend_mode;
533 if (mode != iv1->extend_mode)
534 return false;
535
aedb7bf8 536 if (iv0->extend == IV_UNKNOWN_EXTEND
537 && iv1->extend == IV_UNKNOWN_EXTEND)
f9cce2dc 538 {
539 if (iv0->mode != iv1->mode)
540 return false;
541
542 iv0->base = simplify_gen_binary (op, mode, iv0->base, iv1->base);
543 iv0->step = simplify_gen_binary (op, mode, iv0->step, iv1->step);
544
545 return true;
546 }
547
548 /* Handle addition of constant. */
aedb7bf8 549 if (iv1->extend == IV_UNKNOWN_EXTEND
f9cce2dc 550 && iv1->mode == mode
551 && iv1->step == const0_rtx)
552 {
553 iv0->delta = simplify_gen_binary (op, mode, iv0->delta, iv1->base);
554 return true;
555 }
556
aedb7bf8 557 if (iv0->extend == IV_UNKNOWN_EXTEND
f9cce2dc 558 && iv0->mode == mode
559 && iv0->step == const0_rtx)
560 {
561 arg = iv0->base;
562 *iv0 = *iv1;
563 if (op == MINUS
564 && !iv_neg (iv0))
565 return false;
566
567 iv0->delta = simplify_gen_binary (PLUS, mode, iv0->delta, arg);
568 return true;
569 }
570
571 return false;
572}
573
574/* Evaluates multiplication of IV by constant CST. */
575
576static bool
577iv_mult (struct rtx_iv *iv, rtx mby)
578{
601e68ad 579 scalar_int_mode mode = iv->extend_mode;
f9cce2dc 580
581 if (GET_MODE (mby) != VOIDmode
582 && GET_MODE (mby) != mode)
583 return false;
584
aedb7bf8 585 if (iv->extend == IV_UNKNOWN_EXTEND)
f9cce2dc 586 {
587 iv->base = simplify_gen_binary (MULT, mode, iv->base, mby);
588 iv->step = simplify_gen_binary (MULT, mode, iv->step, mby);
589 }
590 else
591 {
592 iv->delta = simplify_gen_binary (MULT, mode, iv->delta, mby);
593 iv->mult = simplify_gen_binary (MULT, mode, iv->mult, mby);
594 }
595
596 return true;
597}
598
567c3006 599/* Evaluates shift of IV by constant CST. */
600
601static bool
602iv_shift (struct rtx_iv *iv, rtx mby)
603{
601e68ad 604 scalar_int_mode mode = iv->extend_mode;
567c3006 605
606 if (GET_MODE (mby) != VOIDmode
607 && GET_MODE (mby) != mode)
608 return false;
609
aedb7bf8 610 if (iv->extend == IV_UNKNOWN_EXTEND)
567c3006 611 {
612 iv->base = simplify_gen_binary (ASHIFT, mode, iv->base, mby);
613 iv->step = simplify_gen_binary (ASHIFT, mode, iv->step, mby);
614 }
615 else
616 {
617 iv->delta = simplify_gen_binary (ASHIFT, mode, iv->delta, mby);
618 iv->mult = simplify_gen_binary (ASHIFT, mode, iv->mult, mby);
619 }
620
621 return true;
622}
623
f9cce2dc 624/* The recursive part of get_biv_step. Gets the value of the single value
3f37d465 625 defined by DEF wrto initial value of REG inside loop, in shape described
f9cce2dc 626 at get_biv_step. */
627
628static bool
601e68ad 629get_biv_step_1 (df_ref def, scalar_int_mode outer_mode, rtx reg,
630 rtx *inner_step, scalar_int_mode *inner_mode,
631 enum iv_extend_code *extend,
f9cce2dc 632 rtx *outer_step)
633{
a6ed3419 634 rtx set, rhs, op0 = NULL_RTX, op1 = NULL_RTX;
a4f59596 635 rtx next, nextr;
f9cce2dc 636 enum rtx_code code;
3eeb4f9a 637 rtx_insn *insn = DF_REF_INSN (def);
ed6e85ae 638 df_ref next_def;
3f37d465 639 enum iv_grd_result res;
f9cce2dc 640
641 set = single_set (insn);
3f37d465 642 if (!set)
643 return false;
644
f9cce2dc 645 rhs = find_reg_equal_equiv_note (insn);
a6629703 646 if (rhs)
647 rhs = XEXP (rhs, 0);
648 else
f9cce2dc 649 rhs = SET_SRC (set);
f9cce2dc 650
651 code = GET_CODE (rhs);
652 switch (code)
653 {
654 case SUBREG:
655 case REG:
656 next = rhs;
657 break;
658
659 case PLUS:
660 case MINUS:
661 op0 = XEXP (rhs, 0);
662 op1 = XEXP (rhs, 1);
663
664 if (code == PLUS && CONSTANT_P (op0))
a4f59596 665 std::swap (op0, op1);
f9cce2dc 666
667 if (!simple_reg_p (op0)
668 || !CONSTANT_P (op1))
669 return false;
670
671 if (GET_MODE (rhs) != outer_mode)
672 {
673 /* ppc64 uses expressions like
674
675 (set x:SI (plus:SI (subreg:SI y:DI) 1)).
676
677 this is equivalent to
678
679 (set x':DI (plus:DI y:DI 1))
680 (set x:SI (subreg:SI (x':DI)). */
681 if (GET_CODE (op0) != SUBREG)
682 return false;
683 if (GET_MODE (SUBREG_REG (op0)) != outer_mode)
684 return false;
685 }
686
687 next = op0;
688 break;
689
690 case SIGN_EXTEND:
691 case ZERO_EXTEND:
692 if (GET_MODE (rhs) != outer_mode)
693 return false;
694
695 op0 = XEXP (rhs, 0);
696 if (!simple_reg_p (op0))
697 return false;
698
699 next = op0;
700 break;
701
702 default:
703 return false;
704 }
705
706 if (GET_CODE (next) == SUBREG)
707 {
708 if (!subreg_lowpart_p (next))
709 return false;
710
711 nextr = SUBREG_REG (next);
712 if (GET_MODE (nextr) != outer_mode)
713 return false;
714 }
715 else
716 nextr = next;
717
3f37d465 718 res = iv_get_reaching_def (insn, nextr, &next_def);
719
720 if (res == GRD_INVALID || res == GRD_INVARIANT)
f9cce2dc 721 return false;
722
3f37d465 723 if (res == GRD_MAYBE_BIV)
f9cce2dc 724 {
725 if (!rtx_equal_p (nextr, reg))
726 return false;
727
728 *inner_step = const0_rtx;
aedb7bf8 729 *extend = IV_UNKNOWN_EXTEND;
f9cce2dc 730 *inner_mode = outer_mode;
731 *outer_step = const0_rtx;
732 }
601e68ad 733 else if (!get_biv_step_1 (next_def, outer_mode, reg,
734 inner_step, inner_mode, extend,
f9cce2dc 735 outer_step))
736 return false;
737
738 if (GET_CODE (next) == SUBREG)
739 {
4c53345c 740 scalar_int_mode amode;
741 if (!is_a <scalar_int_mode> (GET_MODE (next), &amode)
742 || GET_MODE_SIZE (amode) > GET_MODE_SIZE (*inner_mode))
f9cce2dc 743 return false;
744
745 *inner_mode = amode;
746 *inner_step = simplify_gen_binary (PLUS, outer_mode,
747 *inner_step, *outer_step);
748 *outer_step = const0_rtx;
aedb7bf8 749 *extend = IV_UNKNOWN_EXTEND;
f9cce2dc 750 }
751
752 switch (code)
753 {
754 case REG:
755 case SUBREG:
756 break;
757
758 case PLUS:
759 case MINUS:
760 if (*inner_mode == outer_mode
761 /* See comment in previous switch. */
762 || GET_MODE (rhs) != outer_mode)
763 *inner_step = simplify_gen_binary (code, outer_mode,
764 *inner_step, op1);
765 else
766 *outer_step = simplify_gen_binary (code, outer_mode,
767 *outer_step, op1);
768 break;
769
770 case SIGN_EXTEND:
771 case ZERO_EXTEND:
972e95af 772 gcc_assert (GET_MODE (op0) == *inner_mode
aedb7bf8 773 && *extend == IV_UNKNOWN_EXTEND
972e95af 774 && *outer_step == const0_rtx);
f9cce2dc 775
aedb7bf8 776 *extend = (code == SIGN_EXTEND) ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
f9cce2dc 777 break;
778
779 default:
3f37d465 780 return false;
f9cce2dc 781 }
782
783 return true;
784}
785
786/* Gets the operation on register REG inside loop, in shape
787
788 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP))
789
3f37d465 790 If the operation cannot be described in this shape, return false.
791 LAST_DEF is the definition of REG that dominates loop latch. */
f9cce2dc 792
793static bool
601e68ad 794get_biv_step (df_ref last_def, scalar_int_mode outer_mode, rtx reg,
795 rtx *inner_step, scalar_int_mode *inner_mode,
796 enum iv_extend_code *extend, rtx *outer_step)
f9cce2dc 797{
601e68ad 798 if (!get_biv_step_1 (last_def, outer_mode, reg,
799 inner_step, inner_mode, extend,
f9cce2dc 800 outer_step))
801 return false;
802
601e68ad 803 gcc_assert ((*inner_mode == outer_mode) != (*extend != IV_UNKNOWN_EXTEND));
804 gcc_assert (*inner_mode != outer_mode || *outer_step == const0_rtx);
f9cce2dc 805
806 return true;
807}
808
3f37d465 809/* Records information that DEF is induction variable IV. */
810
811static void
ed6e85ae 812record_iv (df_ref def, struct rtx_iv *iv)
3f37d465 813{
4c36ffe6 814 struct rtx_iv *recorded_iv = XNEW (struct rtx_iv);
3f37d465 815
816 *recorded_iv = *iv;
3072d30e 817 check_iv_ref_table_size ();
3f37d465 818 DF_REF_IV_SET (def, recorded_iv);
819}
820
821/* If DEF was already analyzed for bivness, store the description of the biv to
822 IV and return true. Otherwise return false. */
823
824static bool
825analyzed_for_bivness_p (rtx def, struct rtx_iv *iv)
826{
c1f445d2 827 struct biv_entry *biv = bivs->find_with_hash (def, REGNO (def));
3f37d465 828
829 if (!biv)
830 return false;
831
832 *iv = biv->iv;
833 return true;
834}
835
836static void
837record_biv (rtx def, struct rtx_iv *iv)
838{
4c36ffe6 839 struct biv_entry *biv = XNEW (struct biv_entry);
c1f445d2 840 biv_entry **slot = bivs->find_slot_with_hash (def, REGNO (def), INSERT);
3f37d465 841
842 biv->regno = REGNO (def);
843 biv->iv = *iv;
844 gcc_assert (!*slot);
845 *slot = biv;
846}
847
f9cce2dc 848/* Determines whether DEF is a biv and if so, stores its description
601e68ad 849 to *IV. OUTER_MODE is the mode of DEF. */
f9cce2dc 850
851static bool
601e68ad 852iv_analyze_biv (scalar_int_mode outer_mode, rtx def, struct rtx_iv *iv)
f9cce2dc 853{
f9cce2dc 854 rtx inner_step, outer_step;
601e68ad 855 scalar_int_mode inner_mode;
aedb7bf8 856 enum iv_extend_code extend;
ed6e85ae 857 df_ref last_def;
f9cce2dc 858
450d042a 859 if (dump_file)
f9cce2dc 860 {
4133d091 861 fprintf (dump_file, "Analyzing ");
450d042a 862 print_rtl (dump_file, def);
863 fprintf (dump_file, " for bivness.\n");
f9cce2dc 864 }
48e1416a 865
f9cce2dc 866 if (!REG_P (def))
867 {
868 if (!CONSTANT_P (def))
869 return false;
870
601e68ad 871 return iv_constant (iv, outer_mode, def);
f9cce2dc 872 }
873
3f37d465 874 if (!latch_dominating_def (def, &last_def))
f9cce2dc 875 {
450d042a 876 if (dump_file)
877 fprintf (dump_file, " not simple.\n");
f9cce2dc 878 return false;
879 }
880
3f37d465 881 if (!last_def)
601e68ad 882 return iv_constant (iv, outer_mode, def);
3f37d465 883
884 if (analyzed_for_bivness_p (def, iv))
f9cce2dc 885 {
450d042a 886 if (dump_file)
887 fprintf (dump_file, " already analysed.\n");
f9cce2dc 888 return iv->base != NULL_RTX;
889 }
890
601e68ad 891 if (!get_biv_step (last_def, outer_mode, def, &inner_step, &inner_mode,
892 &extend, &outer_step))
f9cce2dc 893 {
894 iv->base = NULL_RTX;
895 goto end;
896 }
897
898 /* Loop transforms base to es (base + inner_step) + outer_step,
899 where es means extend of subreg between inner_mode and outer_mode.
900 The corresponding induction variable is
901
902 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */
903
904 iv->base = simplify_gen_binary (MINUS, outer_mode, def, outer_step);
905 iv->step = simplify_gen_binary (PLUS, outer_mode, inner_step, outer_step);
906 iv->mode = inner_mode;
907 iv->extend_mode = outer_mode;
908 iv->extend = extend;
909 iv->mult = const1_rtx;
910 iv->delta = outer_step;
911 iv->first_special = inner_mode != outer_mode;
912
450d042a 913 end:
914 if (dump_file)
f9cce2dc 915 {
450d042a 916 fprintf (dump_file, " ");
917 dump_iv_info (dump_file, iv);
918 fprintf (dump_file, "\n");
f9cce2dc 919 }
920
3f37d465 921 record_biv (def, iv);
f9cce2dc 922 return iv->base != NULL_RTX;
923}
924
48e1416a 925/* Analyzes expression RHS used at INSN and stores the result to *IV.
3f37d465 926 The mode of the induction variable is MODE. */
f9cce2dc 927
3f37d465 928bool
601e68ad 929iv_analyze_expr (rtx_insn *insn, scalar_int_mode mode, rtx rhs,
3eeb4f9a 930 struct rtx_iv *iv)
f9cce2dc 931{
dfcf26a5 932 rtx mby = NULL_RTX;
3f37d465 933 rtx op0 = NULL_RTX, op1 = NULL_RTX;
934 struct rtx_iv iv0, iv1;
935 enum rtx_code code = GET_CODE (rhs);
601e68ad 936 scalar_int_mode omode = mode;
f9cce2dc 937
3f37d465 938 iv->base = NULL_RTX;
939 iv->step = NULL_RTX;
f9cce2dc 940
3f37d465 941 gcc_assert (GET_MODE (rhs) == mode || GET_MODE (rhs) == VOIDmode);
f9cce2dc 942
3f37d465 943 if (CONSTANT_P (rhs)
944 || REG_P (rhs)
945 || code == SUBREG)
601e68ad 946 return iv_analyze_op (insn, mode, rhs, iv);
f9cce2dc 947
3f37d465 948 switch (code)
f9cce2dc 949 {
3f37d465 950 case REG:
951 op0 = rhs;
952 break;
f9cce2dc 953
3f37d465 954 case SIGN_EXTEND:
955 case ZERO_EXTEND:
956 case NEG:
957 op0 = XEXP (rhs, 0);
601e68ad 958 /* We don't know how many bits there are in a sign-extended constant. */
959 if (!is_a <scalar_int_mode> (GET_MODE (op0), &omode))
960 return false;
3f37d465 961 break;
962
963 case PLUS:
964 case MINUS:
965 op0 = XEXP (rhs, 0);
966 op1 = XEXP (rhs, 1);
967 break;
968
969 case MULT:
970 op0 = XEXP (rhs, 0);
971 mby = XEXP (rhs, 1);
972 if (!CONSTANT_P (mby))
dfcf26a5 973 std::swap (op0, mby);
3f37d465 974 if (!CONSTANT_P (mby))
975 return false;
976 break;
f9cce2dc 977
3f37d465 978 case ASHIFT:
979 op0 = XEXP (rhs, 0);
980 mby = XEXP (rhs, 1);
981 if (!CONSTANT_P (mby))
982 return false;
983 break;
984
985 default:
f9cce2dc 986 return false;
987 }
988
3f37d465 989 if (op0
601e68ad 990 && !iv_analyze_expr (insn, omode, op0, &iv0))
3f37d465 991 return false;
f9cce2dc 992
3f37d465 993 if (op1
601e68ad 994 && !iv_analyze_expr (insn, omode, op1, &iv1))
f9cce2dc 995 return false;
996
3f37d465 997 switch (code)
f9cce2dc 998 {
3f37d465 999 case SIGN_EXTEND:
aedb7bf8 1000 if (!iv_extend (&iv0, IV_SIGN_EXTEND, mode))
1001 return false;
1002 break;
1003
3f37d465 1004 case ZERO_EXTEND:
aedb7bf8 1005 if (!iv_extend (&iv0, IV_ZERO_EXTEND, mode))
3f37d465 1006 return false;
1007 break;
1008
1009 case NEG:
1010 if (!iv_neg (&iv0))
f9cce2dc 1011 return false;
3f37d465 1012 break;
f9cce2dc 1013
3f37d465 1014 case PLUS:
1015 case MINUS:
1016 if (!iv_add (&iv0, &iv1, code))
f9cce2dc 1017 return false;
3f37d465 1018 break;
f9cce2dc 1019
3f37d465 1020 case MULT:
1021 if (!iv_mult (&iv0, mby))
1022 return false;
1023 break;
1024
1025 case ASHIFT:
1026 if (!iv_shift (&iv0, mby))
1027 return false;
1028 break;
1029
1030 default:
1031 break;
f9cce2dc 1032 }
1033
3f37d465 1034 *iv = iv0;
1035 return iv->base != NULL_RTX;
1036}
1037
1038/* Analyzes iv DEF and stores the result to *IV. */
1039
1040static bool
ed6e85ae 1041iv_analyze_def (df_ref def, struct rtx_iv *iv)
3f37d465 1042{
3eeb4f9a 1043 rtx_insn *insn = DF_REF_INSN (def);
3f37d465 1044 rtx reg = DF_REF_REG (def);
1045 rtx set, rhs;
f9cce2dc 1046
450d042a 1047 if (dump_file)
f9cce2dc 1048 {
666137bc 1049 fprintf (dump_file, "Analyzing def of ");
3f37d465 1050 print_rtl (dump_file, reg);
450d042a 1051 fprintf (dump_file, " in insn ");
1052 print_rtl_single (dump_file, insn);
f9cce2dc 1053 }
48e1416a 1054
3072d30e 1055 check_iv_ref_table_size ();
3f37d465 1056 if (DF_REF_IV (def))
f9cce2dc 1057 {
450d042a 1058 if (dump_file)
1059 fprintf (dump_file, " already analysed.\n");
3f37d465 1060 *iv = *DF_REF_IV (def);
f9cce2dc 1061 return iv->base != NULL_RTX;
1062 }
1063
f9cce2dc 1064 iv->base = NULL_RTX;
1065 iv->step = NULL_RTX;
1066
601e68ad 1067 scalar_int_mode mode;
1068 if (!REG_P (reg) || !is_a <scalar_int_mode> (GET_MODE (reg), &mode))
3072d30e 1069 return false;
1070
f9cce2dc 1071 set = single_set (insn);
3072d30e 1072 if (!set)
1073 return false;
1074
1075 if (!REG_P (SET_DEST (set)))
3f37d465 1076 return false;
1077
3072d30e 1078 gcc_assert (SET_DEST (set) == reg);
f9cce2dc 1079 rhs = find_reg_equal_equiv_note (insn);
a6629703 1080 if (rhs)
1081 rhs = XEXP (rhs, 0);
1082 else
f9cce2dc 1083 rhs = SET_SRC (set);
f9cce2dc 1084
601e68ad 1085 iv_analyze_expr (insn, mode, rhs, iv);
3f37d465 1086 record_iv (def, iv);
1087
1088 if (dump_file)
f9cce2dc 1089 {
3f37d465 1090 print_rtl (dump_file, reg);
1091 fprintf (dump_file, " in insn ");
1092 print_rtl_single (dump_file, insn);
1093 fprintf (dump_file, " is ");
1094 dump_iv_info (dump_file, iv);
1095 fprintf (dump_file, "\n");
f9cce2dc 1096 }
f9cce2dc 1097
3f37d465 1098 return iv->base != NULL_RTX;
1099}
f9cce2dc 1100
601e68ad 1101/* Analyzes operand OP of INSN and stores the result to *IV. MODE is the
1102 mode of OP. */
f9cce2dc 1103
3f37d465 1104static bool
601e68ad 1105iv_analyze_op (rtx_insn *insn, scalar_int_mode mode, rtx op, struct rtx_iv *iv)
3f37d465 1106{
ed6e85ae 1107 df_ref def = NULL;
3f37d465 1108 enum iv_grd_result res;
567c3006 1109
3f37d465 1110 if (dump_file)
1111 {
666137bc 1112 fprintf (dump_file, "Analyzing operand ");
3f37d465 1113 print_rtl (dump_file, op);
1114 fprintf (dump_file, " of insn ");
1115 print_rtl_single (dump_file, insn);
1116 }
567c3006 1117
e54e3d9f 1118 if (function_invariant_p (op))
3f37d465 1119 res = GRD_INVARIANT;
1120 else if (GET_CODE (op) == SUBREG)
1121 {
601e68ad 1122 scalar_int_mode inner_mode;
1123 if (!subreg_lowpart_p (op)
1124 || !is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op)), &inner_mode))
3f37d465 1125 return false;
f9cce2dc 1126
601e68ad 1127 if (!iv_analyze_op (insn, inner_mode, SUBREG_REG (op), iv))
3f37d465 1128 return false;
f9cce2dc 1129
601e68ad 1130 return iv_subreg (iv, mode);
3f37d465 1131 }
1132 else
f9cce2dc 1133 {
3f37d465 1134 res = iv_get_reaching_def (insn, op, &def);
1135 if (res == GRD_INVALID)
f9cce2dc 1136 {
3f37d465 1137 if (dump_file)
1138 fprintf (dump_file, " not simple.\n");
1139 return false;
f9cce2dc 1140 }
1141 }
1142
3f37d465 1143 if (res == GRD_INVARIANT)
f9cce2dc 1144 {
601e68ad 1145 iv_constant (iv, mode, op);
f9cce2dc 1146
3f37d465 1147 if (dump_file)
f9cce2dc 1148 {
3f37d465 1149 fprintf (dump_file, " ");
1150 dump_iv_info (dump_file, iv);
1151 fprintf (dump_file, "\n");
f9cce2dc 1152 }
3f37d465 1153 return true;
f9cce2dc 1154 }
1155
3f37d465 1156 if (res == GRD_MAYBE_BIV)
601e68ad 1157 return iv_analyze_biv (mode, op, iv);
f9cce2dc 1158
3f37d465 1159 return iv_analyze_def (def, iv);
1160}
f9cce2dc 1161
601e68ad 1162/* Analyzes value VAL at INSN and stores the result to *IV. MODE is the
1163 mode of VAL. */
f9cce2dc 1164
3f37d465 1165bool
601e68ad 1166iv_analyze (rtx_insn *insn, scalar_int_mode mode, rtx val, struct rtx_iv *iv)
3f37d465 1167{
1168 rtx reg;
f9cce2dc 1169
3f37d465 1170 /* We must find the insn in that val is used, so that we get to UD chains.
1171 Since the function is sometimes called on result of get_condition,
1172 this does not necessarily have to be directly INSN; scan also the
1173 following insns. */
1174 if (simple_reg_p (val))
1175 {
1176 if (GET_CODE (val) == SUBREG)
1177 reg = SUBREG_REG (val);
1178 else
1179 reg = val;
567c3006 1180
3072d30e 1181 while (!df_find_use (insn, reg))
3f37d465 1182 insn = NEXT_INSN (insn);
f9cce2dc 1183 }
1184
601e68ad 1185 return iv_analyze_op (insn, mode, val, iv);
3f37d465 1186}
f9cce2dc 1187
3f37d465 1188/* Analyzes definition of DEF in INSN and stores the result to IV. */
f9cce2dc 1189
3f37d465 1190bool
3eeb4f9a 1191iv_analyze_result (rtx_insn *insn, rtx def, struct rtx_iv *iv)
3f37d465 1192{
ed6e85ae 1193 df_ref adef;
f9cce2dc 1194
3072d30e 1195 adef = df_find_def (insn, def);
3f37d465 1196 if (!adef)
1197 return false;
1198
1199 return iv_analyze_def (adef, iv);
f9cce2dc 1200}
1201
3f37d465 1202/* Checks whether definition of register REG in INSN is a basic induction
601e68ad 1203 variable. MODE is the mode of REG.
1204
1205 IV analysis must have been initialized (via a call to
a9989fb4 1206 iv_analysis_loop_init) for this function to produce a result. */
1207
1208bool
601e68ad 1209biv_p (rtx_insn *insn, scalar_int_mode mode, rtx reg)
a9989fb4 1210{
1211 struct rtx_iv iv;
ed6e85ae 1212 df_ref def, last_def;
a9989fb4 1213
3f37d465 1214 if (!simple_reg_p (reg))
a9989fb4 1215 return false;
1216
3072d30e 1217 def = df_find_def (insn, reg);
3f37d465 1218 gcc_assert (def != NULL);
1219 if (!latch_dominating_def (reg, &last_def))
1220 return false;
1221 if (last_def != def)
a9989fb4 1222 return false;
1223
601e68ad 1224 if (!iv_analyze_biv (mode, reg, &iv))
3f37d465 1225 return false;
1226
1227 return iv.step != const0_rtx;
a9989fb4 1228}
1229
f9cce2dc 1230/* Calculates value of IV at ITERATION-th iteration. */
1231
1232rtx
1233get_iv_value (struct rtx_iv *iv, rtx iteration)
1234{
1235 rtx val;
1236
1237 /* We would need to generate some if_then_else patterns, and so far
1238 it is not needed anywhere. */
972e95af 1239 gcc_assert (!iv->first_special);
f9cce2dc 1240
1241 if (iv->step != const0_rtx && iteration != const0_rtx)
1242 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->base,
1243 simplify_gen_binary (MULT, iv->extend_mode,
1244 iv->step, iteration));
1245 else
1246 val = iv->base;
1247
1248 if (iv->extend_mode == iv->mode)
1249 return val;
1250
c0efe3c3 1251 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
f9cce2dc 1252
aedb7bf8 1253 if (iv->extend == IV_UNKNOWN_EXTEND)
f9cce2dc 1254 return val;
1255
aedb7bf8 1256 val = simplify_gen_unary (iv_extend_to_rtx_code (iv->extend),
1257 iv->extend_mode, val, iv->mode);
f9cce2dc 1258 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
1259 simplify_gen_binary (MULT, iv->extend_mode,
1260 iv->mult, val));
1261
1262 return val;
1263}
1264
1265/* Free the data for an induction variable analysis. */
1266
1267void
1268iv_analysis_done (void)
1269{
3072d30e 1270 if (!clean_slate)
f9cce2dc 1271 {
3f37d465 1272 clear_iv_info ();
3072d30e 1273 clean_slate = true;
314966f4 1274 df_finish_pass (true);
c1f445d2 1275 delete bivs;
1276 bivs = NULL;
3072d30e 1277 free (iv_ref_table);
1278 iv_ref_table = NULL;
1279 iv_ref_table_size = 0;
f9cce2dc 1280 }
1281}
1282
1283/* Computes inverse to X modulo (1 << MOD). */
1284
3a4303e7 1285static uint64_t
1286inverse (uint64_t x, int mod)
f9cce2dc 1287{
3a4303e7 1288 uint64_t mask =
1289 ((uint64_t) 1 << (mod - 1) << 1) - 1;
1290 uint64_t rslt = 1;
f9cce2dc 1291 int i;
1292
1293 for (i = 0; i < mod - 1; i++)
1294 {
1295 rslt = (rslt * x) & mask;
1296 x = (x * x) & mask;
1297 }
1298
1299 return rslt;
1300}
1301
13033283 1302/* Checks whether any register in X is in set ALT. */
f9cce2dc 1303
13033283 1304static bool
1305altered_reg_used (const_rtx x, bitmap alt)
f9cce2dc 1306{
13033283 1307 subrtx_iterator::array_type array;
1308 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1309 {
1310 const_rtx x = *iter;
1311 if (REG_P (x) && REGNO_REG_SET_P (alt, REGNO (x)))
1312 return true;
1313 }
1314 return false;
f9cce2dc 1315}
1316
1317/* Marks registers altered by EXPR in set ALT. */
1318
1319static void
81a410b1 1320mark_altered (rtx expr, const_rtx by ATTRIBUTE_UNUSED, void *alt)
f9cce2dc 1321{
1322 if (GET_CODE (expr) == SUBREG)
1323 expr = SUBREG_REG (expr);
1324 if (!REG_P (expr))
1325 return;
1326
4077bf7a 1327 SET_REGNO_REG_SET ((bitmap) alt, REGNO (expr));
f9cce2dc 1328}
1329
1330/* Checks whether RHS is simple enough to process. */
1331
1332static bool
1333simple_rhs_p (rtx rhs)
1334{
1335 rtx op0, op1;
1336
e54e3d9f 1337 if (function_invariant_p (rhs)
b06b27dd 1338 || (REG_P (rhs) && !HARD_REGISTER_P (rhs)))
f9cce2dc 1339 return true;
1340
1341 switch (GET_CODE (rhs))
1342 {
1343 case PLUS:
1344 case MINUS:
b908751e 1345 case AND:
f9cce2dc 1346 op0 = XEXP (rhs, 0);
1347 op1 = XEXP (rhs, 1);
b908751e 1348 /* Allow reg OP const and reg OP reg. */
b718fe63 1349 if (!(REG_P (op0) && !HARD_REGISTER_P (op0))
cf36214f 1350 && !function_invariant_p (op0))
b718fe63 1351 return false;
1352 if (!(REG_P (op1) && !HARD_REGISTER_P (op1))
cf36214f 1353 && !function_invariant_p (op1))
b718fe63 1354 return false;
f9cce2dc 1355
b718fe63 1356 return true;
1357
1358 case ASHIFT:
b908751e 1359 case ASHIFTRT:
1360 case LSHIFTRT:
1361 case MULT:
b718fe63 1362 op0 = XEXP (rhs, 0);
1363 op1 = XEXP (rhs, 1);
b908751e 1364 /* Allow reg OP const. */
b718fe63 1365 if (!(REG_P (op0) && !HARD_REGISTER_P (op0)))
1366 return false;
cf36214f 1367 if (!function_invariant_p (op1))
b718fe63 1368 return false;
1369
1370 return true;
f9cce2dc 1371
1372 default:
1373 return false;
1374 }
1375}
1376
b25bc675 1377/* If REGNO has a single definition, return its known value, otherwise return
1378 null. */
767cb310 1379
b25bc675 1380static rtx
1381find_single_def_src (unsigned int regno)
767cb310 1382{
767cb310 1383 df_ref adef;
3a40262c 1384 rtx set, src;
767cb310 1385
3a40262c 1386 for (;;)
1387 {
1388 rtx note;
1389 adef = DF_REG_DEF_CHAIN (regno);
1390 if (adef == NULL || DF_REF_NEXT_REG (adef) != NULL
b25bc675 1391 || DF_REF_IS_ARTIFICIAL (adef))
1392 return NULL_RTX;
3a40262c 1393
1394 set = single_set (DF_REF_INSN (adef));
1395 if (set == NULL || !REG_P (SET_DEST (set))
1396 || REGNO (SET_DEST (set)) != regno)
b25bc675 1397 return NULL_RTX;
767cb310 1398
3a40262c 1399 note = find_reg_equal_equiv_note (DF_REF_INSN (adef));
1400
1401 if (note && function_invariant_p (XEXP (note, 0)))
1402 {
1403 src = XEXP (note, 0);
1404 break;
1405 }
1406 src = SET_SRC (set);
1407
1408 if (REG_P (src))
1409 {
1410 regno = REGNO (src);
1411 continue;
1412 }
1413 break;
1414 }
1415 if (!function_invariant_p (src))
b25bc675 1416 return NULL_RTX;
1417
1418 return src;
1419}
1420
1421/* If any registers in *EXPR that have a single definition, try to replace
1422 them with the known-equivalent values. */
767cb310 1423
b25bc675 1424static void
1425replace_single_def_regs (rtx *expr)
1426{
1427 subrtx_var_iterator::array_type array;
1428 repeat:
1429 FOR_EACH_SUBRTX_VAR (iter, array, *expr, NONCONST)
1430 {
1431 rtx x = *iter;
1432 if (REG_P (x))
1433 if (rtx new_x = find_single_def_src (REGNO (x)))
1434 {
1435 *expr = simplify_replace_rtx (*expr, x, new_x);
1436 goto repeat;
1437 }
1438 }
767cb310 1439}
1440
9bb5f693 1441/* A subroutine of simplify_using_initial_values, this function examines INSN
1442 to see if it contains a suitable set that we can use to make a replacement.
1443 If it is suitable, return true and set DEST and SRC to the lhs and rhs of
1444 the set; return false otherwise. */
f9cce2dc 1445
9bb5f693 1446static bool
3eeb4f9a 1447suitable_set_for_replacement (rtx_insn *insn, rtx *dest, rtx *src)
f9cce2dc 1448{
1449 rtx set = single_set (insn);
1b425b8e 1450 rtx lhs = NULL_RTX, rhs;
f9cce2dc 1451
9bb5f693 1452 if (!set)
1453 return false;
f9cce2dc 1454
9bb5f693 1455 lhs = SET_DEST (set);
1456 if (!REG_P (lhs))
1457 return false;
f9cce2dc 1458
1459 rhs = find_reg_equal_equiv_note (insn);
a6629703 1460 if (rhs)
1461 rhs = XEXP (rhs, 0);
1462 else
f9cce2dc 1463 rhs = SET_SRC (set);
1464
1465 if (!simple_rhs_p (rhs))
9bb5f693 1466 return false;
f9cce2dc 1467
9bb5f693 1468 *dest = lhs;
1469 *src = rhs;
1470 return true;
f9cce2dc 1471}
1472
767cb310 1473/* Using the data returned by suitable_set_for_replacement, replace DEST
1474 with SRC in *EXPR and return the new expression. Also call
1475 replace_single_def_regs if the replacement changed something. */
1476static void
1477replace_in_expr (rtx *expr, rtx dest, rtx src)
1478{
1479 rtx old = *expr;
1480 *expr = simplify_replace_rtx (*expr, dest, src);
1481 if (old == *expr)
1482 return;
b25bc675 1483 replace_single_def_regs (expr);
767cb310 1484}
1485
f9cce2dc 1486/* Checks whether A implies B. */
1487
1488static bool
1489implies_p (rtx a, rtx b)
1490{
dfcf26a5 1491 rtx op0, op1, opb0, opb1;
3754d046 1492 machine_mode mode;
f9cce2dc 1493
a6d46489 1494 if (rtx_equal_p (a, b))
1495 return true;
1496
f9cce2dc 1497 if (GET_CODE (a) == EQ)
1498 {
1499 op0 = XEXP (a, 0);
1500 op1 = XEXP (a, 1);
1501
a6d46489 1502 if (REG_P (op0)
1503 || (GET_CODE (op0) == SUBREG
1504 && REG_P (SUBREG_REG (op0))))
f9cce2dc 1505 {
dfcf26a5 1506 rtx r = simplify_replace_rtx (b, op0, op1);
f9cce2dc 1507 if (r == const_true_rtx)
1508 return true;
1509 }
1510
a6d46489 1511 if (REG_P (op1)
1512 || (GET_CODE (op1) == SUBREG
1513 && REG_P (SUBREG_REG (op1))))
f9cce2dc 1514 {
dfcf26a5 1515 rtx r = simplify_replace_rtx (b, op1, op0);
f9cce2dc 1516 if (r == const_true_rtx)
1517 return true;
1518 }
1519 }
1520
731d95c8 1521 if (b == const_true_rtx)
1522 return true;
1523
1524 if ((GET_RTX_CLASS (GET_CODE (a)) != RTX_COMM_COMPARE
1525 && GET_RTX_CLASS (GET_CODE (a)) != RTX_COMPARE)
1526 || (GET_RTX_CLASS (GET_CODE (b)) != RTX_COMM_COMPARE
1527 && GET_RTX_CLASS (GET_CODE (b)) != RTX_COMPARE))
1528 return false;
1529
1530 op0 = XEXP (a, 0);
1531 op1 = XEXP (a, 1);
1532 opb0 = XEXP (b, 0);
1533 opb1 = XEXP (b, 1);
1534
1535 mode = GET_MODE (op0);
1536 if (mode != GET_MODE (opb0))
1537 mode = VOIDmode;
1538 else if (mode == VOIDmode)
1539 {
1540 mode = GET_MODE (op1);
1541 if (mode != GET_MODE (opb1))
1542 mode = VOIDmode;
1543 }
1544
a6629703 1545 /* A < B implies A + 1 <= B. */
1546 if ((GET_CODE (a) == GT || GET_CODE (a) == LT)
1547 && (GET_CODE (b) == GE || GET_CODE (b) == LE))
1548 {
a6629703 1549
1550 if (GET_CODE (a) == GT)
dfcf26a5 1551 std::swap (op0, op1);
a6629703 1552
1553 if (GET_CODE (b) == GE)
dfcf26a5 1554 std::swap (opb0, opb1);
a6629703 1555
873983a1 1556 if (SCALAR_INT_MODE_P (mode)
a6629703 1557 && rtx_equal_p (op1, opb1)
1558 && simplify_gen_binary (MINUS, mode, opb0, op0) == const1_rtx)
1559 return true;
731d95c8 1560 return false;
1561 }
1562
1563 /* A < B or A > B imply A != B. TODO: Likewise
1564 A + n < B implies A != B + n if neither wraps. */
1565 if (GET_CODE (b) == NE
1566 && (GET_CODE (a) == GT || GET_CODE (a) == GTU
1567 || GET_CODE (a) == LT || GET_CODE (a) == LTU))
1568 {
1569 if (rtx_equal_p (op0, opb0)
1570 && rtx_equal_p (op1, opb1))
1571 return true;
a6629703 1572 }
1573
731d95c8 1574 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */
1575 if (GET_CODE (a) == NE
1576 && op1 == const0_rtx)
1577 {
1578 if ((GET_CODE (b) == GTU
1579 && opb1 == const0_rtx)
1580 || (GET_CODE (b) == GEU
1581 && opb1 == const1_rtx))
1582 return rtx_equal_p (op0, opb0);
1583 }
1584
1585 /* A != N is equivalent to A - (N + 1) <u -1. */
1586 if (GET_CODE (a) == NE
971ba038 1587 && CONST_INT_P (op1)
731d95c8 1588 && GET_CODE (b) == LTU
1589 && opb1 == constm1_rtx
1590 && GET_CODE (opb0) == PLUS
971ba038 1591 && CONST_INT_P (XEXP (opb0, 1))
731d95c8 1592 /* Avoid overflows. */
1593 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1594 != ((unsigned HOST_WIDE_INT)1
1595 << (HOST_BITS_PER_WIDE_INT - 1)) - 1)
1596 && INTVAL (XEXP (opb0, 1)) + 1 == -INTVAL (op1))
1597 return rtx_equal_p (op0, XEXP (opb0, 0));
1598
1599 /* Likewise, A != N implies A - N > 0. */
1600 if (GET_CODE (a) == NE
971ba038 1601 && CONST_INT_P (op1))
731d95c8 1602 {
1603 if (GET_CODE (b) == GTU
1604 && GET_CODE (opb0) == PLUS
1605 && opb1 == const0_rtx
971ba038 1606 && CONST_INT_P (XEXP (opb0, 1))
731d95c8 1607 /* Avoid overflows. */
1608 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
edc19fd0 1609 != (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
731d95c8 1610 && rtx_equal_p (XEXP (opb0, 0), op0))
1611 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1612 if (GET_CODE (b) == GEU
1613 && GET_CODE (opb0) == PLUS
1614 && opb1 == const1_rtx
971ba038 1615 && CONST_INT_P (XEXP (opb0, 1))
731d95c8 1616 /* Avoid overflows. */
1617 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
edc19fd0 1618 != (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
731d95c8 1619 && rtx_equal_p (XEXP (opb0, 0), op0))
1620 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1621 }
1622
1623 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */
1624 if ((GET_CODE (a) == GT || GET_CODE (a) == GE)
971ba038 1625 && CONST_INT_P (op1)
731d95c8 1626 && ((GET_CODE (a) == GT && op1 == constm1_rtx)
1627 || INTVAL (op1) >= 0)
1628 && GET_CODE (b) == LTU
971ba038 1629 && CONST_INT_P (opb1)
27440859 1630 && rtx_equal_p (op0, opb0))
731d95c8 1631 return INTVAL (opb1) < 0;
1632
f9cce2dc 1633 return false;
1634}
1635
1636/* Canonicalizes COND so that
1637
1638 (1) Ensure that operands are ordered according to
1639 swap_commutative_operands_p.
1640 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly
1641 for GE, GEU, and LEU. */
1642
1643rtx
1644canon_condition (rtx cond)
1645{
f9cce2dc 1646 rtx op0, op1;
1647 enum rtx_code code;
3754d046 1648 machine_mode mode;
f9cce2dc 1649
1650 code = GET_CODE (cond);
1651 op0 = XEXP (cond, 0);
1652 op1 = XEXP (cond, 1);
1653
1654 if (swap_commutative_operands_p (op0, op1))
1655 {
1656 code = swap_condition (code);
dfcf26a5 1657 std::swap (op0, op1);
f9cce2dc 1658 }
1659
1660 mode = GET_MODE (op0);
1661 if (mode == VOIDmode)
1662 mode = GET_MODE (op1);
972e95af 1663 gcc_assert (mode != VOIDmode);
f9cce2dc 1664
63401591 1665 if (CONST_SCALAR_INT_P (op1) && GET_MODE_CLASS (mode) != MODE_CC)
f9cce2dc 1666 {
63401591 1667 rtx_mode_t const_val (op1, mode);
f9cce2dc 1668
1669 switch (code)
1670 {
1671 case LE:
63401591 1672 if (wi::ne_p (const_val, wi::max_value (mode, SIGNED)))
1673 {
1674 code = LT;
1675 op1 = immed_wide_int_const (wi::add (const_val, 1), mode);
1676 }
f9cce2dc 1677 break;
1678
f9cce2dc 1679 case GE:
63401591 1680 if (wi::ne_p (const_val, wi::min_value (mode, SIGNED)))
1681 {
1682 code = GT;
1683 op1 = immed_wide_int_const (wi::sub (const_val, 1), mode);
1684 }
f9cce2dc 1685 break;
1686
1687 case LEU:
63401591 1688 if (wi::ne_p (const_val, -1))
1689 {
1690 code = LTU;
1691 op1 = immed_wide_int_const (wi::add (const_val, 1), mode);
1692 }
f9cce2dc 1693 break;
1694
1695 case GEU:
63401591 1696 if (wi::ne_p (const_val, 0))
1697 {
1698 code = GTU;
1699 op1 = immed_wide_int_const (wi::sub (const_val, 1), mode);
1700 }
f9cce2dc 1701 break;
1702
1703 default:
1704 break;
1705 }
1706 }
1707
1708 if (op0 != XEXP (cond, 0)
1709 || op1 != XEXP (cond, 1)
1710 || code != GET_CODE (cond)
1711 || GET_MODE (cond) != SImode)
1712 cond = gen_rtx_fmt_ee (code, SImode, op0, op1);
1713
1714 return cond;
1715}
1716
b99ab275 1717/* Reverses CONDition; returns NULL if we cannot. */
1718
1719static rtx
1720reversed_condition (rtx cond)
1721{
1722 enum rtx_code reversed;
1723 reversed = reversed_comparison_code (cond, NULL);
1724 if (reversed == UNKNOWN)
1725 return NULL_RTX;
1726 else
1727 return gen_rtx_fmt_ee (reversed,
1728 GET_MODE (cond), XEXP (cond, 0),
1729 XEXP (cond, 1));
1730}
1731
f9cce2dc 1732/* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the
1733 set of altered regs. */
1734
1735void
1736simplify_using_condition (rtx cond, rtx *expr, regset altered)
1737{
1738 rtx rev, reve, exp = *expr;
1739
f9cce2dc 1740 /* If some register gets altered later, we do not really speak about its
1741 value at the time of comparison. */
13033283 1742 if (altered && altered_reg_used (cond, altered))
f9cce2dc 1743 return;
1744
7f7a6f4a 1745 if (GET_CODE (cond) == EQ
1746 && REG_P (XEXP (cond, 0)) && CONSTANT_P (XEXP (cond, 1)))
1747 {
1748 *expr = simplify_replace_rtx (*expr, XEXP (cond, 0), XEXP (cond, 1));
1749 return;
1750 }
1751
1752 if (!COMPARISON_P (exp))
1753 return;
1754
f9cce2dc 1755 rev = reversed_condition (cond);
1756 reve = reversed_condition (exp);
1757
1758 cond = canon_condition (cond);
1759 exp = canon_condition (exp);
1760 if (rev)
1761 rev = canon_condition (rev);
1762 if (reve)
1763 reve = canon_condition (reve);
1764
1765 if (rtx_equal_p (exp, cond))
1766 {
1767 *expr = const_true_rtx;
1768 return;
1769 }
1770
f9cce2dc 1771 if (rev && rtx_equal_p (exp, rev))
1772 {
1773 *expr = const0_rtx;
1774 return;
1775 }
1776
1777 if (implies_p (cond, exp))
1778 {
1779 *expr = const_true_rtx;
1780 return;
1781 }
48e1416a 1782
f9cce2dc 1783 if (reve && implies_p (cond, reve))
1784 {
1785 *expr = const0_rtx;
1786 return;
1787 }
1788
1789 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must
1790 be false. */
1791 if (rev && implies_p (exp, rev))
1792 {
1793 *expr = const0_rtx;
1794 return;
1795 }
1796
1797 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */
1798 if (rev && reve && implies_p (reve, rev))
1799 {
1800 *expr = const_true_rtx;
1801 return;
1802 }
1803
1804 /* We would like to have some other tests here. TODO. */
1805
1806 return;
1807}
1808
1809/* Use relationship between A and *B to eventually eliminate *B.
1810 OP is the operation we consider. */
1811
1812static void
1813eliminate_implied_condition (enum rtx_code op, rtx a, rtx *b)
1814{
972e95af 1815 switch (op)
f9cce2dc 1816 {
972e95af 1817 case AND:
f9cce2dc 1818 /* If A implies *B, we may replace *B by true. */
1819 if (implies_p (a, *b))
1820 *b = const_true_rtx;
972e95af 1821 break;
1822
1823 case IOR:
f9cce2dc 1824 /* If *B implies A, we may replace *B by false. */
1825 if (implies_p (*b, a))
1826 *b = const0_rtx;
972e95af 1827 break;
1828
1829 default:
1830 gcc_unreachable ();
f9cce2dc 1831 }
f9cce2dc 1832}
1833
1834/* Eliminates the conditions in TAIL that are implied by HEAD. OP is the
1835 operation we consider. */
1836
1837static void
1838eliminate_implied_conditions (enum rtx_code op, rtx *head, rtx tail)
1839{
1840 rtx elt;
1841
1842 for (elt = tail; elt; elt = XEXP (elt, 1))
1843 eliminate_implied_condition (op, *head, &XEXP (elt, 0));
1844 for (elt = tail; elt; elt = XEXP (elt, 1))
1845 eliminate_implied_condition (op, XEXP (elt, 0), head);
1846}
1847
1848/* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR
1849 is a list, its elements are assumed to be combined using OP. */
1850
1851static void
1852simplify_using_initial_values (struct loop *loop, enum rtx_code op, rtx *expr)
1853{
9bb5f693 1854 bool expression_valid;
8e56831f 1855 rtx head, tail, last_valid_expr;
1856 rtx_expr_list *cond_list;
3eeb4f9a 1857 rtx_insn *insn;
f9cce2dc 1858 rtx neutral, aggr;
9bb5f693 1859 regset altered, this_altered;
f9cce2dc 1860 edge e;
1861
1862 if (!*expr)
1863 return;
1864
1865 if (CONSTANT_P (*expr))
1866 return;
1867
1868 if (GET_CODE (*expr) == EXPR_LIST)
1869 {
1870 head = XEXP (*expr, 0);
1871 tail = XEXP (*expr, 1);
1872
1873 eliminate_implied_conditions (op, &head, tail);
1874
972e95af 1875 switch (op)
f9cce2dc 1876 {
972e95af 1877 case AND:
f9cce2dc 1878 neutral = const_true_rtx;
1879 aggr = const0_rtx;
972e95af 1880 break;
1881
1882 case IOR:
f9cce2dc 1883 neutral = const0_rtx;
1884 aggr = const_true_rtx;
972e95af 1885 break;
f9cce2dc 1886
972e95af 1887 default:
1888 gcc_unreachable ();
1889 }
48e1416a 1890
21f1e711 1891 simplify_using_initial_values (loop, UNKNOWN, &head);
f9cce2dc 1892 if (head == aggr)
1893 {
1894 XEXP (*expr, 0) = aggr;
1895 XEXP (*expr, 1) = NULL_RTX;
1896 return;
1897 }
1898 else if (head == neutral)
1899 {
1900 *expr = tail;
1901 simplify_using_initial_values (loop, op, expr);
1902 return;
1903 }
1904 simplify_using_initial_values (loop, op, &tail);
1905
1906 if (tail && XEXP (tail, 0) == aggr)
1907 {
1908 *expr = tail;
1909 return;
1910 }
48e1416a 1911
f9cce2dc 1912 XEXP (*expr, 0) = head;
1913 XEXP (*expr, 1) = tail;
1914 return;
1915 }
1916
972e95af 1917 gcc_assert (op == UNKNOWN);
f9cce2dc 1918
b25bc675 1919 replace_single_def_regs (expr);
767cb310 1920 if (CONSTANT_P (*expr))
1921 return;
1922
f9cce2dc 1923 e = loop_preheader_edge (loop);
34154e27 1924 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
f9cce2dc 1925 return;
1926
ae85a37a 1927 altered = ALLOC_REG_SET (&reg_obstack);
9bb5f693 1928 this_altered = ALLOC_REG_SET (&reg_obstack);
f9cce2dc 1929
9bb5f693 1930 expression_valid = true;
1931 last_valid_expr = *expr;
8e56831f 1932 cond_list = NULL;
f9cce2dc 1933 while (1)
1934 {
1935 insn = BB_END (e->src);
1936 if (any_condjump_p (insn))
1937 {
a255f65a 1938 rtx cond = get_condition (BB_END (e->src), NULL, false, true);
7f7a6f4a 1939
f9cce2dc 1940 if (cond && (e->flags & EDGE_FALLTHRU))
1941 cond = reversed_condition (cond);
1942 if (cond)
1943 {
7f7a6f4a 1944 rtx old = *expr;
f9cce2dc 1945 simplify_using_condition (cond, expr, altered);
7f7a6f4a 1946 if (old != *expr)
1947 {
1948 rtx note;
1949 if (CONSTANT_P (*expr))
1950 goto out;
1951 for (note = cond_list; note; note = XEXP (note, 1))
1952 {
1953 simplify_using_condition (XEXP (note, 0), expr, altered);
1954 if (CONSTANT_P (*expr))
1955 goto out;
1956 }
1957 }
1958 cond_list = alloc_EXPR_LIST (0, cond, cond_list);
f9cce2dc 1959 }
1960 }
1961
1962 FOR_BB_INSNS_REVERSE (e->src, insn)
1963 {
9bb5f693 1964 rtx src, dest;
7f7a6f4a 1965 rtx old = *expr;
9bb5f693 1966
f9cce2dc 1967 if (!INSN_P (insn))
1968 continue;
9bb5f693 1969
1970 CLEAR_REG_SET (this_altered);
1971 note_stores (PATTERN (insn), mark_altered, this_altered);
1972 if (CALL_P (insn))
f9cce2dc 1973 {
9bb5f693 1974 /* Kill all call clobbered registers. */
24ec6636 1975 unsigned int i;
1976 hard_reg_set_iterator hrsi;
1977 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1978 0, i, hrsi)
1979 SET_REGNO_REG_SET (this_altered, i);
f9cce2dc 1980 }
9bb5f693 1981
1982 if (suitable_set_for_replacement (insn, &dest, &src))
9676249d 1983 {
8e56831f 1984 rtx_expr_list **pnote, **pnote_next;
7f7a6f4a 1985
767cb310 1986 replace_in_expr (expr, dest, src);
9bb5f693 1987 if (CONSTANT_P (*expr))
1988 goto out;
7f7a6f4a 1989
1990 for (pnote = &cond_list; *pnote; pnote = pnote_next)
1991 {
9ed997be 1992 rtx_expr_list *note = *pnote;
7f7a6f4a 1993 rtx old_cond = XEXP (note, 0);
1994
8e56831f 1995 pnote_next = (rtx_expr_list **)&XEXP (note, 1);
767cb310 1996 replace_in_expr (&XEXP (note, 0), dest, src);
1997
7f7a6f4a 1998 /* We can no longer use a condition that has been simplified
1999 to a constant, and simplify_using_condition will abort if
2000 we try. */
2001 if (CONSTANT_P (XEXP (note, 0)))
2002 {
2003 *pnote = *pnote_next;
2004 pnote_next = pnote;
2005 free_EXPR_LIST_node (note);
2006 }
2007 /* Retry simplifications with this condition if either the
2008 expression or the condition changed. */
2009 else if (old_cond != XEXP (note, 0) || old != *expr)
2010 simplify_using_condition (XEXP (note, 0), expr, altered);
2011 }
9676249d 2012 }
9bb5f693 2013 else
1c18ed19 2014 {
8e56831f 2015 rtx_expr_list **pnote, **pnote_next;
1c18ed19 2016
2017 /* If we did not use this insn to make a replacement, any overlap
2018 between stores in this insn and our expression will cause the
2019 expression to become invalid. */
13033283 2020 if (altered_reg_used (*expr, this_altered))
1c18ed19 2021 goto out;
2022
2023 /* Likewise for the conditions. */
2024 for (pnote = &cond_list; *pnote; pnote = pnote_next)
2025 {
9ed997be 2026 rtx_expr_list *note = *pnote;
1c18ed19 2027 rtx old_cond = XEXP (note, 0);
2028
8e56831f 2029 pnote_next = (rtx_expr_list **)&XEXP (note, 1);
13033283 2030 if (altered_reg_used (old_cond, this_altered))
1c18ed19 2031 {
2032 *pnote = *pnote_next;
2033 pnote_next = pnote;
2034 free_EXPR_LIST_node (note);
2035 }
2036 }
2037 }
9bb5f693 2038
7f7a6f4a 2039 if (CONSTANT_P (*expr))
2040 goto out;
2041
9bb5f693 2042 IOR_REG_SET (altered, this_altered);
2043
2044 /* If the expression now contains regs that have been altered, we
2045 can't return it to the caller. However, it is still valid for
2046 further simplification, so keep searching to see if we can
2047 eventually turn it into a constant. */
13033283 2048 if (altered_reg_used (*expr, altered))
9bb5f693 2049 expression_valid = false;
2050 if (expression_valid)
2051 last_valid_expr = *expr;
f9cce2dc 2052 }
2053
ea091dfd 2054 if (!single_pred_p (e->src)
34154e27 2055 || single_pred (e->src) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
f9cce2dc 2056 break;
ea091dfd 2057 e = single_pred_edge (e->src);
f9cce2dc 2058 }
2059
9bb5f693 2060 out:
7f7a6f4a 2061 free_EXPR_LIST_list (&cond_list);
9bb5f693 2062 if (!CONSTANT_P (*expr))
2063 *expr = last_valid_expr;
f9cce2dc 2064 FREE_REG_SET (altered);
9bb5f693 2065 FREE_REG_SET (this_altered);
f9cce2dc 2066}
2067
2068/* Transforms invariant IV into MODE. Adds assumptions based on the fact
2069 that IV occurs as left operands of comparison COND and its signedness
2070 is SIGNED_P to DESC. */
2071
2072static void
601e68ad 2073shorten_into_mode (struct rtx_iv *iv, scalar_int_mode mode,
f9cce2dc 2074 enum rtx_code cond, bool signed_p, struct niter_desc *desc)
2075{
2076 rtx mmin, mmax, cond_over, cond_under;
2077
a6629703 2078 get_mode_bounds (mode, signed_p, iv->extend_mode, &mmin, &mmax);
f9cce2dc 2079 cond_under = simplify_gen_relational (LT, SImode, iv->extend_mode,
2080 iv->base, mmin);
2081 cond_over = simplify_gen_relational (GT, SImode, iv->extend_mode,
2082 iv->base, mmax);
2083
2084 switch (cond)
2085 {
2086 case LE:
2087 case LT:
2088 case LEU:
2089 case LTU:
2090 if (cond_under != const0_rtx)
2091 desc->infinite =
2092 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2093 if (cond_over != const0_rtx)
2094 desc->noloop_assumptions =
2095 alloc_EXPR_LIST (0, cond_over, desc->noloop_assumptions);
2096 break;
2097
2098 case GE:
2099 case GT:
2100 case GEU:
2101 case GTU:
2102 if (cond_over != const0_rtx)
2103 desc->infinite =
2104 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2105 if (cond_under != const0_rtx)
2106 desc->noloop_assumptions =
2107 alloc_EXPR_LIST (0, cond_under, desc->noloop_assumptions);
2108 break;
2109
2110 case NE:
2111 if (cond_over != const0_rtx)
2112 desc->infinite =
2113 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2114 if (cond_under != const0_rtx)
2115 desc->infinite =
2116 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2117 break;
2118
2119 default:
972e95af 2120 gcc_unreachable ();
f9cce2dc 2121 }
2122
2123 iv->mode = mode;
aedb7bf8 2124 iv->extend = signed_p ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
f9cce2dc 2125}
2126
2127/* Transforms IV0 and IV1 compared by COND so that they are both compared as
aab2cf92 2128 subregs of the same mode if possible (sometimes it is necessary to add
f9cce2dc 2129 some assumptions to DESC). */
2130
2131static bool
2132canonicalize_iv_subregs (struct rtx_iv *iv0, struct rtx_iv *iv1,
2133 enum rtx_code cond, struct niter_desc *desc)
2134{
601e68ad 2135 scalar_int_mode comp_mode;
f9cce2dc 2136 bool signed_p;
2137
2138 /* If the ivs behave specially in the first iteration, or are
2139 added/multiplied after extending, we ignore them. */
2140 if (iv0->first_special || iv0->mult != const1_rtx || iv0->delta != const0_rtx)
2141 return false;
2142 if (iv1->first_special || iv1->mult != const1_rtx || iv1->delta != const0_rtx)
2143 return false;
2144
2145 /* If there is some extend, it must match signedness of the comparison. */
2146 switch (cond)
2147 {
2148 case LE:
2149 case LT:
aedb7bf8 2150 if (iv0->extend == IV_ZERO_EXTEND
2151 || iv1->extend == IV_ZERO_EXTEND)
f9cce2dc 2152 return false;
2153 signed_p = true;
2154 break;
2155
2156 case LEU:
2157 case LTU:
aedb7bf8 2158 if (iv0->extend == IV_SIGN_EXTEND
2159 || iv1->extend == IV_SIGN_EXTEND)
f9cce2dc 2160 return false;
2161 signed_p = false;
2162 break;
2163
2164 case NE:
aedb7bf8 2165 if (iv0->extend != IV_UNKNOWN_EXTEND
2166 && iv1->extend != IV_UNKNOWN_EXTEND
f9cce2dc 2167 && iv0->extend != iv1->extend)
2168 return false;
2169
2170 signed_p = false;
aedb7bf8 2171 if (iv0->extend != IV_UNKNOWN_EXTEND)
2172 signed_p = iv0->extend == IV_SIGN_EXTEND;
2173 if (iv1->extend != IV_UNKNOWN_EXTEND)
2174 signed_p = iv1->extend == IV_SIGN_EXTEND;
f9cce2dc 2175 break;
2176
2177 default:
972e95af 2178 gcc_unreachable ();
f9cce2dc 2179 }
2180
2181 /* Values of both variables should be computed in the same mode. These
2182 might indeed be different, if we have comparison like
2183
2184 (compare (subreg:SI (iv0)) (subreg:SI (iv1)))
2185
2186 and iv0 and iv1 are both ivs iterating in SI mode, but calculated
2187 in different modes. This does not seem impossible to handle, but
2188 it hardly ever occurs in practice.
48e1416a 2189
f9cce2dc 2190 The only exception is the case when one of operands is invariant.
2191 For example pentium 3 generates comparisons like
2192 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we
2193 definitely do not want this prevent the optimization. */
2194 comp_mode = iv0->extend_mode;
2195 if (GET_MODE_BITSIZE (comp_mode) < GET_MODE_BITSIZE (iv1->extend_mode))
2196 comp_mode = iv1->extend_mode;
2197
2198 if (iv0->extend_mode != comp_mode)
2199 {
2200 if (iv0->mode != iv0->extend_mode
2201 || iv0->step != const0_rtx)
2202 return false;
2203
2204 iv0->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2205 comp_mode, iv0->base, iv0->mode);
2206 iv0->extend_mode = comp_mode;
2207 }
2208
2209 if (iv1->extend_mode != comp_mode)
2210 {
2211 if (iv1->mode != iv1->extend_mode
2212 || iv1->step != const0_rtx)
2213 return false;
2214
2215 iv1->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2216 comp_mode, iv1->base, iv1->mode);
2217 iv1->extend_mode = comp_mode;
2218 }
2219
2220 /* Check that both ivs belong to a range of a single mode. If one of the
2221 operands is an invariant, we may need to shorten it into the common
2222 mode. */
2223 if (iv0->mode == iv0->extend_mode
2224 && iv0->step == const0_rtx
2225 && iv0->mode != iv1->mode)
2226 shorten_into_mode (iv0, iv1->mode, cond, signed_p, desc);
2227
2228 if (iv1->mode == iv1->extend_mode
2229 && iv1->step == const0_rtx
2230 && iv0->mode != iv1->mode)
2231 shorten_into_mode (iv1, iv0->mode, swap_condition (cond), signed_p, desc);
2232
2233 if (iv0->mode != iv1->mode)
2234 return false;
2235
2236 desc->mode = iv0->mode;
2237 desc->signed_p = signed_p;
2238
2239 return true;
2240}
2241
8fb72e03 2242/* Tries to estimate the maximum number of iterations in LOOP, and return the
2243 result. This function is called from iv_number_of_iterations with
f77c1bb0 2244 a number of fields in DESC already filled in. OLD_NITER is the original
2245 expression for the number of iterations, before we tried to simplify it. */
c9d59418 2246
3a4303e7 2247static uint64_t
f77c1bb0 2248determine_max_iter (struct loop *loop, struct niter_desc *desc, rtx old_niter)
c9d59418 2249{
2250 rtx niter = desc->niter_expr;
731d95c8 2251 rtx mmin, mmax, cmp;
3a4303e7 2252 uint64_t nmax, inc;
2253 uint64_t andmax = 0;
4678223d 2254
2255 /* We used to look for constant operand 0 of AND,
2256 but canonicalization should always make this impossible. */
2257 gcc_checking_assert (GET_CODE (niter) != AND
2258 || !CONST_INT_P (XEXP (niter, 0)));
c9d59418 2259
2260 if (GET_CODE (niter) == AND
4678223d 2261 && CONST_INT_P (XEXP (niter, 1)))
c9d59418 2262 {
4678223d 2263 andmax = UINTVAL (XEXP (niter, 1));
2264 niter = XEXP (niter, 0);
c9d59418 2265 }
2266
2267 get_mode_bounds (desc->mode, desc->signed_p, desc->mode, &mmin, &mmax);
06b8401d 2268 nmax = UINTVAL (mmax) - UINTVAL (mmin);
c9d59418 2269
2270 if (GET_CODE (niter) == UDIV)
2271 {
971ba038 2272 if (!CONST_INT_P (XEXP (niter, 1)))
8fb72e03 2273 return nmax;
c9d59418 2274 inc = INTVAL (XEXP (niter, 1));
2275 niter = XEXP (niter, 0);
2276 }
2277 else
2278 inc = 1;
2279
731d95c8 2280 /* We could use a binary search here, but for now improving the upper
2281 bound by just one eliminates one important corner case. */
f77c1bb0 2282 cmp = simplify_gen_relational (desc->signed_p ? LT : LTU, VOIDmode,
2283 desc->mode, old_niter, mmax);
731d95c8 2284 simplify_using_initial_values (loop, UNKNOWN, &cmp);
2285 if (cmp == const_true_rtx)
c9d59418 2286 {
731d95c8 2287 nmax--;
c9d59418 2288
731d95c8 2289 if (dump_file)
2290 fprintf (dump_file, ";; improved upper bound by one.\n");
c9d59418 2291 }
4678223d 2292 nmax /= inc;
2293 if (andmax)
2294 nmax = MIN (nmax, andmax);
2295 if (dump_file)
f03df321 2296 fprintf (dump_file, ";; Determined upper bound %" PRId64".\n",
4678223d 2297 nmax);
2298 return nmax;
c9d59418 2299}
2300
f9cce2dc 2301/* Computes number of iterations of the CONDITION in INSN in LOOP and stores
2302 the result into DESC. Very similar to determine_number_of_iterations
2303 (basically its rtl version), complicated by things like subregs. */
2304
d9918998 2305static void
3eeb4f9a 2306iv_number_of_iterations (struct loop *loop, rtx_insn *insn, rtx condition,
f9cce2dc 2307 struct niter_desc *desc)
2308{
3f37d465 2309 rtx op0, op1, delta, step, bound, may_xform, tmp, tmp0, tmp1;
a4f59596 2310 struct rtx_iv iv0, iv1;
a6629703 2311 rtx assumption, may_not_xform;
f9cce2dc 2312 enum rtx_code cond;
601e68ad 2313 machine_mode nonvoid_mode;
2314 scalar_int_mode comp_mode;
a6629703 2315 rtx mmin, mmax, mode_mmin, mode_mmax;
83088155 2316 uint64_t s, size, d, inv, max, up, down;
2317 int64_t inc, step_val;
f9cce2dc 2318 int was_sharp = false;
1e8e4a1d 2319 rtx old_niter;
f8f90b50 2320 bool step_is_pow2;
f9cce2dc 2321
2322 /* The meaning of these assumptions is this:
2323 if !assumptions
2324 then the rest of information does not have to be valid
2325 if noloop_assumptions then the loop does not roll
2326 if infinite then this exit is never used */
2327
2328 desc->assumptions = NULL_RTX;
2329 desc->noloop_assumptions = NULL_RTX;
2330 desc->infinite = NULL_RTX;
2331 desc->simple_p = true;
2332
2333 desc->const_iter = false;
2334 desc->niter_expr = NULL_RTX;
f9cce2dc 2335
2336 cond = GET_CODE (condition);
972e95af 2337 gcc_assert (COMPARISON_P (condition));
f9cce2dc 2338
601e68ad 2339 nonvoid_mode = GET_MODE (XEXP (condition, 0));
2340 if (nonvoid_mode == VOIDmode)
2341 nonvoid_mode = GET_MODE (XEXP (condition, 1));
f9cce2dc 2342 /* The constant comparisons should be folded. */
601e68ad 2343 gcc_assert (nonvoid_mode != VOIDmode);
f9cce2dc 2344
2345 /* We only handle integers or pointers. */
601e68ad 2346 scalar_int_mode mode;
2347 if (!is_a <scalar_int_mode> (nonvoid_mode, &mode))
f9cce2dc 2348 goto fail;
2349
2350 op0 = XEXP (condition, 0);
601e68ad 2351 if (!iv_analyze (insn, mode, op0, &iv0))
f9cce2dc 2352 goto fail;
48e1416a 2353
f9cce2dc 2354 op1 = XEXP (condition, 1);
601e68ad 2355 if (!iv_analyze (insn, mode, op1, &iv1))
f9cce2dc 2356 goto fail;
f9cce2dc 2357
2358 if (GET_MODE_BITSIZE (iv0.extend_mode) > HOST_BITS_PER_WIDE_INT
2359 || GET_MODE_BITSIZE (iv1.extend_mode) > HOST_BITS_PER_WIDE_INT)
2360 goto fail;
2361
2362 /* Check condition and normalize it. */
2363
2364 switch (cond)
2365 {
2366 case GE:
2367 case GT:
2368 case GEU:
2369 case GTU:
a4f59596 2370 std::swap (iv0, iv1);
f9cce2dc 2371 cond = swap_condition (cond);
2372 break;
2373 case NE:
2374 case LE:
2375 case LEU:
2376 case LT:
2377 case LTU:
2378 break;
2379 default:
2380 goto fail;
2381 }
2382
2383 /* Handle extends. This is relatively nontrivial, so we only try in some
2384 easy cases, when we can canonicalize the ivs (possibly by adding some
2385 assumptions) to shape subreg (base + i * step). This function also fills
2386 in desc->mode and desc->signed_p. */
2387
2388 if (!canonicalize_iv_subregs (&iv0, &iv1, cond, desc))
2389 goto fail;
2390
2391 comp_mode = iv0.extend_mode;
2392 mode = iv0.mode;
4765975c 2393 size = GET_MODE_PRECISION (mode);
a6629703 2394 get_mode_bounds (mode, (cond == LE || cond == LT), comp_mode, &mmin, &mmax);
c0efe3c3 2395 mode_mmin = lowpart_subreg (mode, mmin, comp_mode);
2396 mode_mmax = lowpart_subreg (mode, mmax, comp_mode);
f9cce2dc 2397
971ba038 2398 if (!CONST_INT_P (iv0.step) || !CONST_INT_P (iv1.step))
f9cce2dc 2399 goto fail;
2400
2401 /* We can take care of the case of two induction variables chasing each other
2402 if the test is NE. I have never seen a loop using it, but still it is
2403 cool. */
2404 if (iv0.step != const0_rtx && iv1.step != const0_rtx)
2405 {
2406 if (cond != NE)
2407 goto fail;
2408
2409 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2410 iv1.step = const0_rtx;
2411 }
2412
e4bef271 2413 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2414 iv1.step = lowpart_subreg (mode, iv1.step, comp_mode);
2415
f9cce2dc 2416 /* This is either infinite loop or the one that ends immediately, depending
2417 on initial values. Unswitching should remove this kind of conditions. */
2418 if (iv0.step == const0_rtx && iv1.step == const0_rtx)
2419 goto fail;
2420
f8f90b50 2421 if (cond != NE)
2422 {
2423 if (iv0.step == const0_rtx)
2424 step_val = -INTVAL (iv1.step);
2425 else
15943825 2426 step_val = INTVAL (iv0.step);
f8f90b50 2427
2428 /* Ignore loops of while (i-- < 10) type. */
2429 if (step_val < 0)
2430 goto fail;
2431
2432 step_is_pow2 = !(step_val & (step_val - 1));
2433 }
2434 else
2435 {
2436 /* We do not care about whether the step is power of two in this
2437 case. */
2438 step_is_pow2 = false;
2439 step_val = 0;
2440 }
f9cce2dc 2441
2442 /* Some more condition normalization. We must record some assumptions
2443 due to overflows. */
2444 switch (cond)
2445 {
2446 case LT:
2447 case LTU:
2448 /* We want to take care only of non-sharp relationals; this is easy,
2449 as in cases the overflow would make the transformation unsafe
2450 the loop does not roll. Seemingly it would make more sense to want
2451 to take care of sharp relationals instead, as NE is more similar to
2452 them, but the problem is that here the transformation would be more
2453 difficult due to possibly infinite loops. */
2454 if (iv0.step == const0_rtx)
2455 {
c0efe3c3 2456 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
a6629703 2457 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2458 mode_mmax);
f9cce2dc 2459 if (assumption == const_true_rtx)
f30c7901 2460 goto zero_iter_simplify;
f9cce2dc 2461 iv0.base = simplify_gen_binary (PLUS, comp_mode,
2462 iv0.base, const1_rtx);
2463 }
2464 else
2465 {
c0efe3c3 2466 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
a6629703 2467 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2468 mode_mmin);
f9cce2dc 2469 if (assumption == const_true_rtx)
f30c7901 2470 goto zero_iter_simplify;
f9cce2dc 2471 iv1.base = simplify_gen_binary (PLUS, comp_mode,
2472 iv1.base, constm1_rtx);
2473 }
2474
2475 if (assumption != const0_rtx)
2476 desc->noloop_assumptions =
2477 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2478 cond = (cond == LT) ? LE : LEU;
2479
2480 /* It will be useful to be able to tell the difference once more in
2481 LE -> NE reduction. */
2482 was_sharp = true;
2483 break;
2484 default: ;
2485 }
2486
2487 /* Take care of trivially infinite loops. */
2488 if (cond != NE)
2489 {
2490 if (iv0.step == const0_rtx)
2491 {
c0efe3c3 2492 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
a6629703 2493 if (rtx_equal_p (tmp, mode_mmin))
f9cce2dc 2494 {
2495 desc->infinite =
2496 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
f30c7901 2497 /* Fill in the remaining fields somehow. */
2498 goto zero_iter_simplify;
f9cce2dc 2499 }
2500 }
2501 else
2502 {
c0efe3c3 2503 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
a6629703 2504 if (rtx_equal_p (tmp, mode_mmax))
f9cce2dc 2505 {
2506 desc->infinite =
2507 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
f30c7901 2508 /* Fill in the remaining fields somehow. */
2509 goto zero_iter_simplify;
f9cce2dc 2510 }
2511 }
2512 }
2513
2514 /* If we can we want to take care of NE conditions instead of size
2515 comparisons, as they are much more friendly (most importantly
2516 this takes care of special handling of loops with step 1). We can
2517 do it if we first check that upper bound is greater or equal to
2518 lower bound, their difference is constant c modulo step and that
2519 there is not an overflow. */
2520 if (cond != NE)
2521 {
2522 if (iv0.step == const0_rtx)
2523 step = simplify_gen_unary (NEG, comp_mode, iv1.step, comp_mode);
2524 else
2525 step = iv0.step;
e4bef271 2526 step = lowpart_subreg (mode, step, comp_mode);
f9cce2dc 2527 delta = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
c0efe3c3 2528 delta = lowpart_subreg (mode, delta, comp_mode);
f9cce2dc 2529 delta = simplify_gen_binary (UMOD, mode, delta, step);
2530 may_xform = const0_rtx;
a6629703 2531 may_not_xform = const_true_rtx;
f9cce2dc 2532
971ba038 2533 if (CONST_INT_P (delta))
f9cce2dc 2534 {
2535 if (was_sharp && INTVAL (delta) == INTVAL (step) - 1)
2536 {
2537 /* A special case. We have transformed condition of type
2538 for (i = 0; i < 4; i += 4)
2539 into
2540 for (i = 0; i <= 3; i += 4)
2541 obviously if the test for overflow during that transformation
2542 passed, we cannot overflow here. Most importantly any
2543 loop with sharp end condition and step 1 falls into this
aab2cf92 2544 category, so handling this case specially is definitely
f9cce2dc 2545 worth the troubles. */
2546 may_xform = const_true_rtx;
2547 }
2548 else if (iv0.step == const0_rtx)
2549 {
2550 bound = simplify_gen_binary (PLUS, comp_mode, mmin, step);
2551 bound = simplify_gen_binary (MINUS, comp_mode, bound, delta);
c0efe3c3 2552 bound = lowpart_subreg (mode, bound, comp_mode);
2553 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
f9cce2dc 2554 may_xform = simplify_gen_relational (cond, SImode, mode,
2555 bound, tmp);
a6629703 2556 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2557 SImode, mode,
2558 bound, tmp);
f9cce2dc 2559 }
2560 else
2561 {
2562 bound = simplify_gen_binary (MINUS, comp_mode, mmax, step);
2563 bound = simplify_gen_binary (PLUS, comp_mode, bound, delta);
c0efe3c3 2564 bound = lowpart_subreg (mode, bound, comp_mode);
2565 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
f9cce2dc 2566 may_xform = simplify_gen_relational (cond, SImode, mode,
2567 tmp, bound);
a6629703 2568 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2569 SImode, mode,
2570 tmp, bound);
f9cce2dc 2571 }
2572 }
2573
2574 if (may_xform != const0_rtx)
2575 {
2576 /* We perform the transformation always provided that it is not
2577 completely senseless. This is OK, as we would need this assumption
2578 to determine the number of iterations anyway. */
2579 if (may_xform != const_true_rtx)
a6629703 2580 {
2581 /* If the step is a power of two and the final value we have
2582 computed overflows, the cycle is infinite. Otherwise it
2583 is nontrivial to compute the number of iterations. */
f8f90b50 2584 if (step_is_pow2)
a6629703 2585 desc->infinite = alloc_EXPR_LIST (0, may_not_xform,
2586 desc->infinite);
2587 else
2588 desc->assumptions = alloc_EXPR_LIST (0, may_xform,
2589 desc->assumptions);
2590 }
f9cce2dc 2591
2592 /* We are going to lose some information about upper bound on
2593 number of iterations in this step, so record the information
2594 here. */
2595 inc = INTVAL (iv0.step) - INTVAL (iv1.step);
971ba038 2596 if (CONST_INT_P (iv1.base))
f9cce2dc 2597 up = INTVAL (iv1.base);
2598 else
a6629703 2599 up = INTVAL (mode_mmax) - inc;
971ba038 2600 down = INTVAL (CONST_INT_P (iv0.base)
a6629703 2601 ? iv0.base
2602 : mode_mmin);
83088155 2603 max = (up - down) / inc + 1;
43780738 2604 if (!desc->infinite
2605 && !desc->assumptions)
e913b5cd 2606 record_niter_bound (loop, max, false, true);
f9cce2dc 2607
2608 if (iv0.step == const0_rtx)
2609 {
2610 iv0.base = simplify_gen_binary (PLUS, comp_mode, iv0.base, delta);
2611 iv0.base = simplify_gen_binary (MINUS, comp_mode, iv0.base, step);
2612 }
2613 else
2614 {
2615 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, delta);
2616 iv1.base = simplify_gen_binary (PLUS, comp_mode, iv1.base, step);
2617 }
2618
c0efe3c3 2619 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2620 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
f9cce2dc 2621 assumption = simplify_gen_relational (reverse_condition (cond),
2622 SImode, mode, tmp0, tmp1);
2623 if (assumption == const_true_rtx)
f30c7901 2624 goto zero_iter_simplify;
f9cce2dc 2625 else if (assumption != const0_rtx)
2626 desc->noloop_assumptions =
2627 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2628 cond = NE;
2629 }
2630 }
2631
2632 /* Count the number of iterations. */
2633 if (cond == NE)
2634 {
2635 /* Everything we do here is just arithmetics modulo size of mode. This
2636 makes us able to do more involved computations of number of iterations
2637 than in other cases. First transform the condition into shape
2638 s * i <> c, with s positive. */
2639 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2640 iv0.base = const0_rtx;
2641 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2642 iv1.step = const0_rtx;
2643 if (INTVAL (iv0.step) < 0)
2644 {
e913b5cd 2645 iv0.step = simplify_gen_unary (NEG, comp_mode, iv0.step, comp_mode);
2646 iv1.base = simplify_gen_unary (NEG, comp_mode, iv1.base, comp_mode);
f9cce2dc 2647 }
c0efe3c3 2648 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
f9cce2dc 2649
2650 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
2651 is infinite. Otherwise, the number of iterations is
2652 (inverse(s/d) * (c/d)) mod (size of mode/d). */
2653 s = INTVAL (iv0.step); d = 1;
2654 while (s % 2 != 1)
2655 {
2656 s /= 2;
2657 d *= 2;
2658 size--;
2659 }
3a4303e7 2660 bound = GEN_INT (((uint64_t) 1 << (size - 1 ) << 1) - 1);
f9cce2dc 2661
c0efe3c3 2662 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
5d5ee71f 2663 tmp = simplify_gen_binary (UMOD, mode, tmp1, gen_int_mode (d, mode));
f9cce2dc 2664 assumption = simplify_gen_relational (NE, SImode, mode, tmp, const0_rtx);
2665 desc->infinite = alloc_EXPR_LIST (0, assumption, desc->infinite);
2666
5d5ee71f 2667 tmp = simplify_gen_binary (UDIV, mode, tmp1, gen_int_mode (d, mode));
a6629703 2668 inv = inverse (s, size);
69e41517 2669 tmp = simplify_gen_binary (MULT, mode, tmp, gen_int_mode (inv, mode));
f9cce2dc 2670 desc->niter_expr = simplify_gen_binary (AND, mode, tmp, bound);
2671 }
2672 else
2673 {
2674 if (iv1.step == const0_rtx)
2675 /* Condition in shape a + s * i <= b
2676 We must know that b + s does not overflow and a <= b + s and then we
2677 can compute number of iterations as (b + s - a) / s. (It might
2678 seem that we in fact could be more clever about testing the b + s
2679 overflow condition using some information about b - a mod s,
2680 but it was already taken into account during LE -> NE transform). */
2681 {
2682 step = iv0.step;
c0efe3c3 2683 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2684 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
f9cce2dc 2685
a6629703 2686 bound = simplify_gen_binary (MINUS, mode, mode_mmax,
c0efe3c3 2687 lowpart_subreg (mode, step,
2688 comp_mode));
f8f90b50 2689 if (step_is_pow2)
2690 {
2691 rtx t0, t1;
2692
2693 /* If s is power of 2, we know that the loop is infinite if
2694 a % s <= b % s and b + s overflows. */
2695 assumption = simplify_gen_relational (reverse_condition (cond),
2696 SImode, mode,
2697 tmp1, bound);
2698
2699 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2700 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2701 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2702 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2703 desc->infinite =
2704 alloc_EXPR_LIST (0, assumption, desc->infinite);
2705 }
2706 else
2707 {
2708 assumption = simplify_gen_relational (cond, SImode, mode,
2709 tmp1, bound);
2710 desc->assumptions =
2711 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2712 }
f9cce2dc 2713
2714 tmp = simplify_gen_binary (PLUS, comp_mode, iv1.base, iv0.step);
c0efe3c3 2715 tmp = lowpart_subreg (mode, tmp, comp_mode);
f9cce2dc 2716 assumption = simplify_gen_relational (reverse_condition (cond),
2717 SImode, mode, tmp0, tmp);
2718
2719 delta = simplify_gen_binary (PLUS, mode, tmp1, step);
2720 delta = simplify_gen_binary (MINUS, mode, delta, tmp0);
2721 }
2722 else
2723 {
2724 /* Condition in shape a <= b - s * i
2725 We must know that a - s does not overflow and a - s <= b and then
2726 we can again compute number of iterations as (b - (a - s)) / s. */
2727 step = simplify_gen_unary (NEG, mode, iv1.step, mode);
c0efe3c3 2728 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2729 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
f9cce2dc 2730
58379c86 2731 bound = simplify_gen_binary (PLUS, mode, mode_mmin,
c0efe3c3 2732 lowpart_subreg (mode, step, comp_mode));
f8f90b50 2733 if (step_is_pow2)
2734 {
2735 rtx t0, t1;
2736
2737 /* If s is power of 2, we know that the loop is infinite if
2738 a % s <= b % s and a - s overflows. */
2739 assumption = simplify_gen_relational (reverse_condition (cond),
2740 SImode, mode,
2741 bound, tmp0);
2742
2743 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2744 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2745 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2746 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2747 desc->infinite =
2748 alloc_EXPR_LIST (0, assumption, desc->infinite);
2749 }
2750 else
2751 {
2752 assumption = simplify_gen_relational (cond, SImode, mode,
2753 bound, tmp0);
2754 desc->assumptions =
2755 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2756 }
f9cce2dc 2757
2758 tmp = simplify_gen_binary (PLUS, comp_mode, iv0.base, iv1.step);
c0efe3c3 2759 tmp = lowpart_subreg (mode, tmp, comp_mode);
f9cce2dc 2760 assumption = simplify_gen_relational (reverse_condition (cond),
2761 SImode, mode,
2762 tmp, tmp1);
2763 delta = simplify_gen_binary (MINUS, mode, tmp0, step);
2764 delta = simplify_gen_binary (MINUS, mode, tmp1, delta);
2765 }
2766 if (assumption == const_true_rtx)
f30c7901 2767 goto zero_iter_simplify;
f9cce2dc 2768 else if (assumption != const0_rtx)
2769 desc->noloop_assumptions =
2770 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2771 delta = simplify_gen_binary (UDIV, mode, delta, step);
2772 desc->niter_expr = delta;
2773 }
2774
1e8e4a1d 2775 old_niter = desc->niter_expr;
2776
f9cce2dc 2777 simplify_using_initial_values (loop, AND, &desc->assumptions);
2778 if (desc->assumptions
2779 && XEXP (desc->assumptions, 0) == const0_rtx)
2780 goto fail;
2781 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2782 simplify_using_initial_values (loop, IOR, &desc->infinite);
21f1e711 2783 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
f9cce2dc 2784
2785 /* Rerun the simplification. Consider code (created by copying loop headers)
2786
2787 i = 0;
2788
2789 if (0 < n)
2790 {
2791 do
2792 {
2793 i++;
2794 } while (i < n);
2795 }
2796
2797 The first pass determines that i = 0, the second pass uses it to eliminate
2798 noloop assumption. */
2799
2800 simplify_using_initial_values (loop, AND, &desc->assumptions);
2801 if (desc->assumptions
2802 && XEXP (desc->assumptions, 0) == const0_rtx)
2803 goto fail;
2804 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2805 simplify_using_initial_values (loop, IOR, &desc->infinite);
21f1e711 2806 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
f9cce2dc 2807
2d49f824 2808 if (desc->noloop_assumptions
2809 && XEXP (desc->noloop_assumptions, 0) == const_true_rtx)
2810 goto zero_iter;
2811
971ba038 2812 if (CONST_INT_P (desc->niter_expr))
f9cce2dc 2813 {
3a4303e7 2814 uint64_t val = INTVAL (desc->niter_expr);
f9cce2dc 2815
2816 desc->const_iter = true;
a9ef9877 2817 desc->niter = val & GET_MODE_MASK (desc->mode);
43780738 2818 if (!desc->infinite
2819 && !desc->assumptions)
e913b5cd 2820 record_niter_bound (loop, desc->niter, false, true);
f9cce2dc 2821 }
1e8e4a1d 2822 else
2823 {
8fb72e03 2824 max = determine_max_iter (loop, desc, old_niter);
9ce07db4 2825 if (!max)
2826 goto zero_iter_simplify;
43780738 2827 if (!desc->infinite
2828 && !desc->assumptions)
e913b5cd 2829 record_niter_bound (loop, max, false, true);
1e8e4a1d 2830
2831 /* simplify_using_initial_values does a copy propagation on the registers
2832 in the expression for the number of iterations. This prolongs life
2833 ranges of registers and increases register pressure, and usually
2834 brings no gain (and if it happens to do, the cse pass will take care
2835 of it anyway). So prevent this behavior, unless it enabled us to
2836 derive that the number of iterations is a constant. */
2837 desc->niter_expr = old_niter;
2838 }
f9cce2dc 2839
2840 return;
2841
f30c7901 2842zero_iter_simplify:
2843 /* Simplify the assumptions. */
2844 simplify_using_initial_values (loop, AND, &desc->assumptions);
2845 if (desc->assumptions
2846 && XEXP (desc->assumptions, 0) == const0_rtx)
2847 goto fail;
2848 simplify_using_initial_values (loop, IOR, &desc->infinite);
f9cce2dc 2849
f30c7901 2850 /* Fallthru. */
f9cce2dc 2851zero_iter:
2852 desc->const_iter = true;
2853 desc->niter = 0;
e913b5cd 2854 record_niter_bound (loop, 0, true, true);
f30c7901 2855 desc->noloop_assumptions = NULL_RTX;
f9cce2dc 2856 desc->niter_expr = const0_rtx;
2857 return;
f30c7901 2858
2859fail:
2860 desc->simple_p = false;
2861 return;
f9cce2dc 2862}
2863
2864/* Checks whether E is a simple exit from LOOP and stores its description
9c1ccc0f 2865 into DESC. */
f9cce2dc 2866
2867static void
2868check_simple_exit (struct loop *loop, edge e, struct niter_desc *desc)
2869{
2870 basic_block exit_bb;
2d650f54 2871 rtx condition;
2872 rtx_insn *at;
cd665a06 2873 edge ein;
f9cce2dc 2874
2875 exit_bb = e->src;
2876 desc->simple_p = false;
2877
2878 /* It must belong directly to the loop. */
2879 if (exit_bb->loop_father != loop)
2880 return;
2881
2882 /* It must be tested (at least) once during any iteration. */
c102b5b9 2883 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit_bb))
f9cce2dc 2884 return;
2885
2886 /* It must end in a simple conditional jump. */
2887 if (!any_condjump_p (BB_END (exit_bb)))
2888 return;
2889
cd665a06 2890 ein = EDGE_SUCC (exit_bb, 0);
2891 if (ein == e)
2892 ein = EDGE_SUCC (exit_bb, 1);
f9cce2dc 2893
2894 desc->out_edge = e;
cd665a06 2895 desc->in_edge = ein;
f9cce2dc 2896
2897 /* Test whether the condition is suitable. */
cd665a06 2898 if (!(condition = get_condition (BB_END (ein->src), &at, false, false)))
f9cce2dc 2899 return;
2900
cd665a06 2901 if (ein->flags & EDGE_FALLTHRU)
f9cce2dc 2902 {
2903 condition = reversed_condition (condition);
2904 if (!condition)
2905 return;
2906 }
2907
2908 /* Check that we are able to determine number of iterations and fill
2909 in information about it. */
2d650f54 2910 iv_number_of_iterations (loop, at, condition, desc);
f9cce2dc 2911}
2912
9c1ccc0f 2913/* Finds a simple exit of LOOP and stores its description into DESC. */
f9cce2dc 2914
2915void
2916find_simple_exit (struct loop *loop, struct niter_desc *desc)
2917{
2918 unsigned i;
2919 basic_block *body;
2920 edge e;
2921 struct niter_desc act;
2922 bool any = false;
cd665a06 2923 edge_iterator ei;
f9cce2dc 2924
2925 desc->simple_p = false;
2926 body = get_loop_body (loop);
2927
2928 for (i = 0; i < loop->num_nodes; i++)
2929 {
cd665a06 2930 FOR_EACH_EDGE (e, ei, body[i]->succs)
f9cce2dc 2931 {
2932 if (flow_bb_inside_loop_p (loop, e->dest))
2933 continue;
48e1416a 2934
f9cce2dc 2935 check_simple_exit (loop, e, &act);
2936 if (!act.simple_p)
2937 continue;
2938
f9cce2dc 2939 if (!any)
2940 any = true;
f30c7901 2941 else
2942 {
2943 /* Prefer constant iterations; the less the better. */
2944 if (!act.const_iter
2945 || (desc->const_iter && act.niter >= desc->niter))
2946 continue;
2947
2948 /* Also if the actual exit may be infinite, while the old one
2949 not, prefer the old one. */
2950 if (act.infinite && !desc->infinite)
2951 continue;
2952 }
48e1416a 2953
f9cce2dc 2954 *desc = act;
2955 }
2956 }
2957
450d042a 2958 if (dump_file)
f9cce2dc 2959 {
2960 if (desc->simple_p)
2961 {
450d042a 2962 fprintf (dump_file, "Loop %d is simple:\n", loop->num);
2963 fprintf (dump_file, " simple exit %d -> %d\n",
f9cce2dc 2964 desc->out_edge->src->index,
2965 desc->out_edge->dest->index);
2966 if (desc->assumptions)
2967 {
450d042a 2968 fprintf (dump_file, " assumptions: ");
2969 print_rtl (dump_file, desc->assumptions);
2970 fprintf (dump_file, "\n");
f9cce2dc 2971 }
2972 if (desc->noloop_assumptions)
2973 {
450d042a 2974 fprintf (dump_file, " does not roll if: ");
2975 print_rtl (dump_file, desc->noloop_assumptions);
2976 fprintf (dump_file, "\n");
f9cce2dc 2977 }
2978 if (desc->infinite)
2979 {
450d042a 2980 fprintf (dump_file, " infinite if: ");
2981 print_rtl (dump_file, desc->infinite);
2982 fprintf (dump_file, "\n");
f9cce2dc 2983 }
2984
450d042a 2985 fprintf (dump_file, " number of iterations: ");
2986 print_rtl (dump_file, desc->niter_expr);
2987 fprintf (dump_file, "\n");
f9cce2dc 2988
a9ef9877 2989 fprintf (dump_file, " upper bound: %li\n",
4e948f5a 2990 (long)get_max_loop_iterations_int (loop));
53b01069 2991 fprintf (dump_file, " likely upper bound: %li\n",
2992 (long)get_likely_max_loop_iterations_int (loop));
a9ef9877 2993 fprintf (dump_file, " realistic bound: %li\n",
4e948f5a 2994 (long)get_estimated_loop_iterations_int (loop));
f9cce2dc 2995 }
2996 else
450d042a 2997 fprintf (dump_file, "Loop %d is not simple.\n", loop->num);
f9cce2dc 2998 }
2999
3000 free (body);
3001}
3002
3003/* Creates a simple loop description of LOOP if it was not computed
3004 already. */
3005
3006struct niter_desc *
3007get_simple_loop_desc (struct loop *loop)
3008{
3009 struct niter_desc *desc = simple_loop_desc (loop);
3010
3011 if (desc)
3012 return desc;
3013
242753ba 3014 /* At least desc->infinite is not always initialized by
3015 find_simple_loop_exit. */
25a27413 3016 desc = ggc_cleared_alloc<niter_desc> ();
f9cce2dc 3017 iv_analysis_loop_init (loop);
3018 find_simple_exit (loop, desc);
427286b3 3019 loop->simple_loop_desc = desc;
f9cce2dc 3020 return desc;
3021}
3022
3023/* Releases simple loop description for LOOP. */
3024
3025void
3026free_simple_loop_desc (struct loop *loop)
3027{
3028 struct niter_desc *desc = simple_loop_desc (loop);
3029
3030 if (!desc)
3031 return;
3032
427286b3 3033 ggc_free (desc);
3034 loop->simple_loop_desc = NULL;
f9cce2dc 3035}