]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/loop-iv.c
re PR tree-optimization/60903 (ICE: in verify_loop_structure, at cfgloop.c:1647:...
[thirdparty/gcc.git] / gcc / loop-iv.c
CommitLineData
50654f6c 1/* Rtl-level induction variable analysis.
23a5b65a 2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
b8698a0f 3
50654f6c 4This file is part of GCC.
b8698a0f 5
50654f6c
ZD
6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
9dcd6f09 8Free Software Foundation; either version 3, or (at your option) any
50654f6c 9later version.
b8698a0f 10
50654f6c
ZD
11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
b8698a0f 15
50654f6c 16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
50654f6c 19
03fd2215
ZD
20/* This is a simple analysis of induction variables of the loop. The major use
21 is for determining the number of iterations of a loop for loop unrolling,
22 doloop optimization and branch prediction. The iv information is computed
23 on demand.
24
2b49e1a0
KZ
25 Induction variables are analyzed by walking the use-def chains. When
26 a basic induction variable (biv) is found, it is cached in the bivs
27 hash table. When register is proved to be a biv, its description
28 is stored to DF_REF_DATA of the def reference.
03fd2215
ZD
29
30 The analysis works always with one loop -- you must call
31 iv_analysis_loop_init (loop) for it. All the other functions then work with
32 this loop. When you need to work with another loop, just call
33 iv_analysis_loop_init for it. When you no longer need iv analysis, call
34 iv_analysis_done () to clean up the memory.
35
36 The available functions are:
b8698a0f 37
03fd2215
ZD
38 iv_analyze (insn, reg, iv): Stores the description of the induction variable
39 corresponding to the use of register REG in INSN to IV. Returns true if
40 REG is an induction variable in INSN. false otherwise.
41 If use of REG is not found in INSN, following insns are scanned (so that
42 we may call this function on insn returned by get_condition).
43 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv
44 corresponding to DEF, which is a register defined in INSN.
45 iv_analyze_expr (insn, rhs, mode, iv): Stores to IV the description of iv
46 corresponding to expression EXPR evaluated at INSN. All registers used bu
47 EXPR must also be used in INSN.
6fb5fa3c 48*/
50654f6c
ZD
49
50#include "config.h"
51#include "system.h"
52#include "coretypes.h"
53#include "tm.h"
54#include "rtl.h"
55#include "hard-reg-set.h"
7932a3db 56#include "obstack.h"
50654f6c
ZD
57#include "basic-block.h"
58#include "cfgloop.h"
59#include "expr.h"
f9cc1a70 60#include "intl.h"
718f9c0f 61#include "diagnostic-core.h"
03fd2215 62#include "df.h"
4a8fb1a1 63#include "hash-table.h"
7ee2468b 64#include "dumpfile.h"
50654f6c 65
03fd2215 66/* Possible return values of iv_get_reaching_def. */
50654f6c 67
03fd2215 68enum iv_grd_result
50654f6c 69{
03fd2215
ZD
70 /* More than one reaching def, or reaching def that does not
71 dominate the use. */
72 GRD_INVALID,
50654f6c 73
03fd2215
ZD
74 /* The use is trivial invariant of the loop, i.e. is not changed
75 inside the loop. */
76 GRD_INVARIANT,
50654f6c 77
03fd2215
ZD
78 /* The use is reached by initial value and a value from the
79 previous iteration. */
80 GRD_MAYBE_BIV,
81
82 /* The use has single dominating def. */
83 GRD_SINGLE_DOM
84};
85
86/* Information about a biv. */
87
88struct biv_entry
89{
90 unsigned regno; /* The register of the biv. */
91 struct rtx_iv iv; /* Value of the biv. */
50654f6c
ZD
92};
93
6fb5fa3c
DB
94static bool clean_slate = true;
95
96static unsigned int iv_ref_table_size = 0;
97
98/* Table of rtx_ivs indexed by the df_ref uid field. */
99static struct rtx_iv ** iv_ref_table;
100
03fd2215 101/* Induction variable stored at the reference. */
c3284718
RS
102#define DF_REF_IV(REF) iv_ref_table[DF_REF_ID (REF)]
103#define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID (REF)] = (IV)
50654f6c 104
03fd2215 105/* The current loop. */
50654f6c 106
03fd2215 107static struct loop *current_loop;
50654f6c 108
4a8fb1a1
LC
109/* Hashtable helper. */
110
111struct biv_entry_hasher : typed_free_remove <biv_entry>
112{
113 typedef biv_entry value_type;
114 typedef rtx_def compare_type;
115 static inline hashval_t hash (const value_type *);
116 static inline bool equal (const value_type *, const compare_type *);
117};
118
119/* Returns hash value for biv B. */
120
121inline hashval_t
122biv_entry_hasher::hash (const value_type *b)
123{
124 return b->regno;
125}
126
127/* Compares biv B and register R. */
128
129inline bool
130biv_entry_hasher::equal (const value_type *b, const compare_type *r)
131{
132 return b->regno == REGNO (r);
133}
134
03fd2215 135/* Bivs of the current loop. */
50654f6c 136
4a8fb1a1 137static hash_table <biv_entry_hasher> bivs;
50654f6c 138
03fd2215 139static bool iv_analyze_op (rtx, rtx, struct rtx_iv *);
50654f6c 140
1c1ad7bb
SB
141/* Return the RTX code corresponding to the IV extend code EXTEND. */
142static inline enum rtx_code
143iv_extend_to_rtx_code (enum iv_extend_code extend)
144{
145 switch (extend)
146 {
147 case IV_SIGN_EXTEND:
148 return SIGN_EXTEND;
149 case IV_ZERO_EXTEND:
150 return ZERO_EXTEND;
151 case IV_UNKNOWN_EXTEND:
152 return UNKNOWN;
153 }
154 gcc_unreachable ();
155}
156
50654f6c
ZD
157/* Dumps information about IV to FILE. */
158
159extern void dump_iv_info (FILE *, struct rtx_iv *);
160void
161dump_iv_info (FILE *file, struct rtx_iv *iv)
162{
163 if (!iv->base)
164 {
165 fprintf (file, "not simple");
166 return;
167 }
168
6797f908
ZD
169 if (iv->step == const0_rtx
170 && !iv->first_special)
171 fprintf (file, "invariant ");
50654f6c
ZD
172
173 print_rtl (file, iv->base);
6797f908
ZD
174 if (iv->step != const0_rtx)
175 {
176 fprintf (file, " + ");
177 print_rtl (file, iv->step);
178 fprintf (file, " * iteration");
179 }
50654f6c
ZD
180 fprintf (file, " (in %s)", GET_MODE_NAME (iv->mode));
181
182 if (iv->mode != iv->extend_mode)
183 fprintf (file, " %s to %s",
1c1ad7bb 184 rtx_name[iv_extend_to_rtx_code (iv->extend)],
50654f6c
ZD
185 GET_MODE_NAME (iv->extend_mode));
186
187 if (iv->mult != const1_rtx)
188 {
189 fprintf (file, " * ");
190 print_rtl (file, iv->mult);
191 }
192 if (iv->delta != const0_rtx)
193 {
194 fprintf (file, " + ");
195 print_rtl (file, iv->delta);
196 }
197 if (iv->first_special)
198 fprintf (file, " (first special)");
199}
200
6c3b938d
RS
201/* Generates a subreg to get the least significant part of EXPR (in mode
202 INNER_MODE) to OUTER_MODE. */
50654f6c 203
6c3b938d
RS
204rtx
205lowpart_subreg (enum machine_mode outer_mode, rtx expr,
206 enum machine_mode inner_mode)
50654f6c 207{
6c3b938d
RS
208 return simplify_gen_subreg (outer_mode, expr, inner_mode,
209 subreg_lowpart_offset (outer_mode, inner_mode));
50654f6c
ZD
210}
211
b8698a0f 212static void
6fb5fa3c
DB
213check_iv_ref_table_size (void)
214{
c3284718 215 if (iv_ref_table_size < DF_DEFS_TABLE_SIZE ())
6fb5fa3c
DB
216 {
217 unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
d3bfe4de 218 iv_ref_table = XRESIZEVEC (struct rtx_iv *, iv_ref_table, new_size);
b8698a0f 219 memset (&iv_ref_table[iv_ref_table_size], 0,
6fb5fa3c
DB
220 (new_size - iv_ref_table_size) * sizeof (struct rtx_iv *));
221 iv_ref_table_size = new_size;
222 }
223}
224
225
50654f6c
ZD
226/* Checks whether REG is a well-behaved register. */
227
228static bool
229simple_reg_p (rtx reg)
230{
231 unsigned r;
232
233 if (GET_CODE (reg) == SUBREG)
234 {
235 if (!subreg_lowpart_p (reg))
236 return false;
237 reg = SUBREG_REG (reg);
238 }
239
240 if (!REG_P (reg))
241 return false;
242
243 r = REGNO (reg);
244 if (HARD_REGISTER_NUM_P (r))
245 return false;
246
247 if (GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
248 return false;
249
50654f6c
ZD
250 return true;
251}
252
03fd2215 253/* Clears the information about ivs stored in df. */
50654f6c 254
03fd2215
ZD
255static void
256clear_iv_info (void)
50654f6c 257{
6fb5fa3c 258 unsigned i, n_defs = DF_DEFS_TABLE_SIZE ();
03fd2215 259 struct rtx_iv *iv;
50654f6c 260
6fb5fa3c 261 check_iv_ref_table_size ();
03fd2215 262 for (i = 0; i < n_defs; i++)
50654f6c 263 {
6fb5fa3c
DB
264 iv = iv_ref_table[i];
265 if (iv)
266 {
267 free (iv);
268 iv_ref_table[i] = NULL;
269 }
50654f6c 270 }
50654f6c 271
4a8fb1a1 272 bivs.empty ();
50654f6c
ZD
273}
274
50654f6c
ZD
275
276/* Prepare the data for an induction variable analysis of a LOOP. */
277
278void
279iv_analysis_loop_init (struct loop *loop)
280{
03fd2215 281 current_loop = loop;
50654f6c 282
03fd2215 283 /* Clear the information from the analysis of the previous loop. */
6fb5fa3c 284 if (clean_slate)
7faaba28 285 {
6fb5fa3c 286 df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN);
4a8fb1a1 287 bivs.create (10);
6fb5fa3c 288 clean_slate = false;
7faaba28
ZD
289 }
290 else
291 clear_iv_info ();
50654f6c 292
6fb5fa3c
DB
293 /* Get rid of the ud chains before processing the rescans. Then add
294 the problem back. */
295 df_remove_problem (df_chain);
296 df_process_deferred_rescans ();
7b19209f 297 df_set_flags (DF_RD_PRUNE_DEAD_DEFS);
6fb5fa3c 298 df_chain_add_problem (DF_UD_CHAIN);
c580edc8 299 df_note_add_problem ();
7be64667 300 df_analyze_loop (loop);
6fb5fa3c 301 if (dump_file)
ffd640ed 302 df_dump_region (dump_file);
6fb5fa3c
DB
303
304 check_iv_ref_table_size ();
50654f6c
ZD
305}
306
03fd2215
ZD
307/* Finds the definition of REG that dominates loop latch and stores
308 it to DEF. Returns false if there is not a single definition
309 dominating the latch. If REG has no definition in loop, DEF
310 is set to NULL and true is returned. */
50654f6c 311
03fd2215 312static bool
57512f53 313latch_dominating_def (rtx reg, df_ref *def)
50654f6c 314{
57512f53 315 df_ref single_rd = NULL, adef;
03fd2215 316 unsigned regno = REGNO (reg);
6fb5fa3c 317 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (current_loop->latch);
50654f6c 318
57512f53 319 for (adef = DF_REG_DEF_CHAIN (regno); adef; adef = DF_REF_NEXT_REG (adef))
50654f6c 320 {
57512f53 321 if (!bitmap_bit_p (df->blocks_to_analyze, DF_REF_BBNO (adef))
b33a91c9 322 || !bitmap_bit_p (&bb_info->out, DF_REF_ID (adef)))
03fd2215
ZD
323 continue;
324
325 /* More than one reaching definition. */
326 if (single_rd)
327 return false;
328
329 if (!just_once_each_iteration_p (current_loop, DF_REF_BB (adef)))
330 return false;
331
332 single_rd = adef;
50654f6c 333 }
50654f6c 334
03fd2215
ZD
335 *def = single_rd;
336 return true;
337}
50654f6c 338
03fd2215 339/* Gets definition of REG reaching its use in INSN and stores it to DEF. */
50654f6c 340
03fd2215 341static enum iv_grd_result
57512f53 342iv_get_reaching_def (rtx insn, rtx reg, df_ref *def)
03fd2215 343{
57512f53 344 df_ref use, adef;
03fd2215
ZD
345 basic_block def_bb, use_bb;
346 rtx def_insn;
347 bool dom_p;
b8698a0f 348
03fd2215
ZD
349 *def = NULL;
350 if (!simple_reg_p (reg))
351 return GRD_INVALID;
352 if (GET_CODE (reg) == SUBREG)
353 reg = SUBREG_REG (reg);
354 gcc_assert (REG_P (reg));
50654f6c 355
6fb5fa3c 356 use = df_find_use (insn, reg);
03fd2215 357 gcc_assert (use != NULL);
50654f6c 358
03fd2215
ZD
359 if (!DF_REF_CHAIN (use))
360 return GRD_INVARIANT;
50654f6c 361
03fd2215
ZD
362 /* More than one reaching def. */
363 if (DF_REF_CHAIN (use)->next)
364 return GRD_INVALID;
50654f6c 365
03fd2215 366 adef = DF_REF_CHAIN (use)->ref;
6848da6a
ZD
367
368 /* We do not handle setting only part of the register. */
57512f53 369 if (DF_REF_FLAGS (adef) & DF_REF_READ_WRITE)
6848da6a
ZD
370 return GRD_INVALID;
371
03fd2215
ZD
372 def_insn = DF_REF_INSN (adef);
373 def_bb = DF_REF_BB (adef);
374 use_bb = BLOCK_FOR_INSN (insn);
50654f6c 375
03fd2215 376 if (use_bb == def_bb)
6fb5fa3c 377 dom_p = (DF_INSN_LUID (def_insn) < DF_INSN_LUID (insn));
03fd2215
ZD
378 else
379 dom_p = dominated_by_p (CDI_DOMINATORS, use_bb, def_bb);
50654f6c 380
03fd2215
ZD
381 if (dom_p)
382 {
383 *def = adef;
384 return GRD_SINGLE_DOM;
50654f6c 385 }
03fd2215
ZD
386
387 /* The definition does not dominate the use. This is still OK if
388 this may be a use of a biv, i.e. if the def_bb dominates loop
389 latch. */
390 if (just_once_each_iteration_p (current_loop, def_bb))
391 return GRD_MAYBE_BIV;
392
393 return GRD_INVALID;
50654f6c
ZD
394}
395
396/* Sets IV to invariant CST in MODE. Always returns true (just for
397 consistency with other iv manipulation functions that may fail). */
398
399static bool
400iv_constant (struct rtx_iv *iv, rtx cst, enum machine_mode mode)
401{
402 if (mode == VOIDmode)
403 mode = GET_MODE (cst);
404
50654f6c
ZD
405 iv->mode = mode;
406 iv->base = cst;
407 iv->step = const0_rtx;
408 iv->first_special = false;
1c1ad7bb 409 iv->extend = IV_UNKNOWN_EXTEND;
50654f6c
ZD
410 iv->extend_mode = iv->mode;
411 iv->delta = const0_rtx;
412 iv->mult = const1_rtx;
413
414 return true;
415}
416
417/* Evaluates application of subreg to MODE on IV. */
418
419static bool
420iv_subreg (struct rtx_iv *iv, enum machine_mode mode)
421{
6797f908
ZD
422 /* If iv is invariant, just calculate the new value. */
423 if (iv->step == const0_rtx
424 && !iv->first_special)
425 {
426 rtx val = get_iv_value (iv, const0_rtx);
50fae5a6
JJ
427 val = lowpart_subreg (mode, val,
428 iv->extend == IV_UNKNOWN_EXTEND
429 ? iv->mode : iv->extend_mode);
6797f908
ZD
430
431 iv->base = val;
1c1ad7bb 432 iv->extend = IV_UNKNOWN_EXTEND;
6797f908
ZD
433 iv->mode = iv->extend_mode = mode;
434 iv->delta = const0_rtx;
435 iv->mult = const1_rtx;
436 return true;
437 }
438
50654f6c
ZD
439 if (iv->extend_mode == mode)
440 return true;
441
442 if (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (iv->mode))
443 return false;
444
1c1ad7bb 445 iv->extend = IV_UNKNOWN_EXTEND;
50654f6c
ZD
446 iv->mode = mode;
447
448 iv->base = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
449 simplify_gen_binary (MULT, iv->extend_mode,
450 iv->base, iv->mult));
451 iv->step = simplify_gen_binary (MULT, iv->extend_mode, iv->step, iv->mult);
452 iv->mult = const1_rtx;
453 iv->delta = const0_rtx;
454 iv->first_special = false;
455
456 return true;
457}
458
459/* Evaluates application of EXTEND to MODE on IV. */
460
461static bool
1c1ad7bb 462iv_extend (struct rtx_iv *iv, enum iv_extend_code extend, enum machine_mode mode)
50654f6c 463{
6797f908
ZD
464 /* If iv is invariant, just calculate the new value. */
465 if (iv->step == const0_rtx
466 && !iv->first_special)
467 {
468 rtx val = get_iv_value (iv, const0_rtx);
50fae5a6
JJ
469 if (iv->extend_mode != iv->mode
470 && iv->extend != IV_UNKNOWN_EXTEND
471 && iv->extend != extend)
472 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
1c1ad7bb 473 val = simplify_gen_unary (iv_extend_to_rtx_code (extend), mode,
50fae5a6
JJ
474 val,
475 iv->extend == extend
476 ? iv->extend_mode : iv->mode);
6797f908 477 iv->base = val;
1c1ad7bb 478 iv->extend = IV_UNKNOWN_EXTEND;
6797f908
ZD
479 iv->mode = iv->extend_mode = mode;
480 iv->delta = const0_rtx;
481 iv->mult = const1_rtx;
482 return true;
483 }
484
50654f6c
ZD
485 if (mode != iv->extend_mode)
486 return false;
487
1c1ad7bb 488 if (iv->extend != IV_UNKNOWN_EXTEND
50654f6c
ZD
489 && iv->extend != extend)
490 return false;
491
492 iv->extend = extend;
493
494 return true;
495}
496
497/* Evaluates negation of IV. */
498
499static bool
500iv_neg (struct rtx_iv *iv)
501{
1c1ad7bb 502 if (iv->extend == IV_UNKNOWN_EXTEND)
50654f6c
ZD
503 {
504 iv->base = simplify_gen_unary (NEG, iv->extend_mode,
505 iv->base, iv->extend_mode);
506 iv->step = simplify_gen_unary (NEG, iv->extend_mode,
507 iv->step, iv->extend_mode);
508 }
509 else
510 {
511 iv->delta = simplify_gen_unary (NEG, iv->extend_mode,
512 iv->delta, iv->extend_mode);
513 iv->mult = simplify_gen_unary (NEG, iv->extend_mode,
514 iv->mult, iv->extend_mode);
515 }
516
517 return true;
518}
519
520/* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */
521
522static bool
523iv_add (struct rtx_iv *iv0, struct rtx_iv *iv1, enum rtx_code op)
524{
525 enum machine_mode mode;
526 rtx arg;
527
a1105617 528 /* Extend the constant to extend_mode of the other operand if necessary. */
1c1ad7bb 529 if (iv0->extend == IV_UNKNOWN_EXTEND
50654f6c
ZD
530 && iv0->mode == iv0->extend_mode
531 && iv0->step == const0_rtx
532 && GET_MODE_SIZE (iv0->extend_mode) < GET_MODE_SIZE (iv1->extend_mode))
533 {
534 iv0->extend_mode = iv1->extend_mode;
535 iv0->base = simplify_gen_unary (ZERO_EXTEND, iv0->extend_mode,
536 iv0->base, iv0->mode);
537 }
1c1ad7bb 538 if (iv1->extend == IV_UNKNOWN_EXTEND
50654f6c
ZD
539 && iv1->mode == iv1->extend_mode
540 && iv1->step == const0_rtx
541 && GET_MODE_SIZE (iv1->extend_mode) < GET_MODE_SIZE (iv0->extend_mode))
542 {
543 iv1->extend_mode = iv0->extend_mode;
544 iv1->base = simplify_gen_unary (ZERO_EXTEND, iv1->extend_mode,
545 iv1->base, iv1->mode);
546 }
547
548 mode = iv0->extend_mode;
549 if (mode != iv1->extend_mode)
550 return false;
551
1c1ad7bb
SB
552 if (iv0->extend == IV_UNKNOWN_EXTEND
553 && iv1->extend == IV_UNKNOWN_EXTEND)
50654f6c
ZD
554 {
555 if (iv0->mode != iv1->mode)
556 return false;
557
558 iv0->base = simplify_gen_binary (op, mode, iv0->base, iv1->base);
559 iv0->step = simplify_gen_binary (op, mode, iv0->step, iv1->step);
560
561 return true;
562 }
563
564 /* Handle addition of constant. */
1c1ad7bb 565 if (iv1->extend == IV_UNKNOWN_EXTEND
50654f6c
ZD
566 && iv1->mode == mode
567 && iv1->step == const0_rtx)
568 {
569 iv0->delta = simplify_gen_binary (op, mode, iv0->delta, iv1->base);
570 return true;
571 }
572
1c1ad7bb 573 if (iv0->extend == IV_UNKNOWN_EXTEND
50654f6c
ZD
574 && iv0->mode == mode
575 && iv0->step == const0_rtx)
576 {
577 arg = iv0->base;
578 *iv0 = *iv1;
579 if (op == MINUS
580 && !iv_neg (iv0))
581 return false;
582
583 iv0->delta = simplify_gen_binary (PLUS, mode, iv0->delta, arg);
584 return true;
585 }
586
587 return false;
588}
589
590/* Evaluates multiplication of IV by constant CST. */
591
592static bool
593iv_mult (struct rtx_iv *iv, rtx mby)
594{
595 enum machine_mode mode = iv->extend_mode;
596
597 if (GET_MODE (mby) != VOIDmode
598 && GET_MODE (mby) != mode)
599 return false;
600
1c1ad7bb 601 if (iv->extend == IV_UNKNOWN_EXTEND)
50654f6c
ZD
602 {
603 iv->base = simplify_gen_binary (MULT, mode, iv->base, mby);
604 iv->step = simplify_gen_binary (MULT, mode, iv->step, mby);
605 }
606 else
607 {
608 iv->delta = simplify_gen_binary (MULT, mode, iv->delta, mby);
609 iv->mult = simplify_gen_binary (MULT, mode, iv->mult, mby);
610 }
611
612 return true;
613}
614
abe0d774
RE
615/* Evaluates shift of IV by constant CST. */
616
617static bool
618iv_shift (struct rtx_iv *iv, rtx mby)
619{
620 enum machine_mode mode = iv->extend_mode;
621
622 if (GET_MODE (mby) != VOIDmode
623 && GET_MODE (mby) != mode)
624 return false;
625
1c1ad7bb 626 if (iv->extend == IV_UNKNOWN_EXTEND)
abe0d774
RE
627 {
628 iv->base = simplify_gen_binary (ASHIFT, mode, iv->base, mby);
629 iv->step = simplify_gen_binary (ASHIFT, mode, iv->step, mby);
630 }
631 else
632 {
633 iv->delta = simplify_gen_binary (ASHIFT, mode, iv->delta, mby);
634 iv->mult = simplify_gen_binary (ASHIFT, mode, iv->mult, mby);
635 }
636
637 return true;
638}
639
50654f6c 640/* The recursive part of get_biv_step. Gets the value of the single value
03fd2215 641 defined by DEF wrto initial value of REG inside loop, in shape described
50654f6c
ZD
642 at get_biv_step. */
643
644static bool
57512f53 645get_biv_step_1 (df_ref def, rtx reg,
50654f6c 646 rtx *inner_step, enum machine_mode *inner_mode,
1c1ad7bb 647 enum iv_extend_code *extend, enum machine_mode outer_mode,
50654f6c
ZD
648 rtx *outer_step)
649{
3c3f4b56 650 rtx set, rhs, op0 = NULL_RTX, op1 = NULL_RTX;
03fd2215 651 rtx next, nextr, tmp;
50654f6c 652 enum rtx_code code;
03fd2215 653 rtx insn = DF_REF_INSN (def);
57512f53 654 df_ref next_def;
03fd2215 655 enum iv_grd_result res;
50654f6c
ZD
656
657 set = single_set (insn);
03fd2215
ZD
658 if (!set)
659 return false;
660
50654f6c 661 rhs = find_reg_equal_equiv_note (insn);
0aea6467
ZD
662 if (rhs)
663 rhs = XEXP (rhs, 0);
664 else
50654f6c 665 rhs = SET_SRC (set);
50654f6c
ZD
666
667 code = GET_CODE (rhs);
668 switch (code)
669 {
670 case SUBREG:
671 case REG:
672 next = rhs;
673 break;
674
675 case PLUS:
676 case MINUS:
677 op0 = XEXP (rhs, 0);
678 op1 = XEXP (rhs, 1);
679
680 if (code == PLUS && CONSTANT_P (op0))
681 {
682 tmp = op0; op0 = op1; op1 = tmp;
683 }
684
685 if (!simple_reg_p (op0)
686 || !CONSTANT_P (op1))
687 return false;
688
689 if (GET_MODE (rhs) != outer_mode)
690 {
691 /* ppc64 uses expressions like
692
693 (set x:SI (plus:SI (subreg:SI y:DI) 1)).
694
695 this is equivalent to
696
697 (set x':DI (plus:DI y:DI 1))
698 (set x:SI (subreg:SI (x':DI)). */
699 if (GET_CODE (op0) != SUBREG)
700 return false;
701 if (GET_MODE (SUBREG_REG (op0)) != outer_mode)
702 return false;
703 }
704
705 next = op0;
706 break;
707
708 case SIGN_EXTEND:
709 case ZERO_EXTEND:
710 if (GET_MODE (rhs) != outer_mode)
711 return false;
712
713 op0 = XEXP (rhs, 0);
714 if (!simple_reg_p (op0))
715 return false;
716
717 next = op0;
718 break;
719
720 default:
721 return false;
722 }
723
724 if (GET_CODE (next) == SUBREG)
725 {
726 if (!subreg_lowpart_p (next))
727 return false;
728
729 nextr = SUBREG_REG (next);
730 if (GET_MODE (nextr) != outer_mode)
731 return false;
732 }
733 else
734 nextr = next;
735
03fd2215
ZD
736 res = iv_get_reaching_def (insn, nextr, &next_def);
737
738 if (res == GRD_INVALID || res == GRD_INVARIANT)
50654f6c
ZD
739 return false;
740
03fd2215 741 if (res == GRD_MAYBE_BIV)
50654f6c
ZD
742 {
743 if (!rtx_equal_p (nextr, reg))
744 return false;
745
746 *inner_step = const0_rtx;
1c1ad7bb 747 *extend = IV_UNKNOWN_EXTEND;
50654f6c
ZD
748 *inner_mode = outer_mode;
749 *outer_step = const0_rtx;
750 }
03fd2215 751 else if (!get_biv_step_1 (next_def, reg,
50654f6c
ZD
752 inner_step, inner_mode, extend, outer_mode,
753 outer_step))
754 return false;
755
756 if (GET_CODE (next) == SUBREG)
757 {
758 enum machine_mode amode = GET_MODE (next);
759
760 if (GET_MODE_SIZE (amode) > GET_MODE_SIZE (*inner_mode))
761 return false;
762
763 *inner_mode = amode;
764 *inner_step = simplify_gen_binary (PLUS, outer_mode,
765 *inner_step, *outer_step);
766 *outer_step = const0_rtx;
1c1ad7bb 767 *extend = IV_UNKNOWN_EXTEND;
50654f6c
ZD
768 }
769
770 switch (code)
771 {
772 case REG:
773 case SUBREG:
774 break;
775
776 case PLUS:
777 case MINUS:
778 if (*inner_mode == outer_mode
779 /* See comment in previous switch. */
780 || GET_MODE (rhs) != outer_mode)
781 *inner_step = simplify_gen_binary (code, outer_mode,
782 *inner_step, op1);
783 else
784 *outer_step = simplify_gen_binary (code, outer_mode,
785 *outer_step, op1);
786 break;
787
788 case SIGN_EXTEND:
789 case ZERO_EXTEND:
b5e624c6 790 gcc_assert (GET_MODE (op0) == *inner_mode
1c1ad7bb 791 && *extend == IV_UNKNOWN_EXTEND
b5e624c6 792 && *outer_step == const0_rtx);
50654f6c 793
1c1ad7bb 794 *extend = (code == SIGN_EXTEND) ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
50654f6c
ZD
795 break;
796
797 default:
03fd2215 798 return false;
50654f6c
ZD
799 }
800
801 return true;
802}
803
804/* Gets the operation on register REG inside loop, in shape
805
806 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP))
807
03fd2215
ZD
808 If the operation cannot be described in this shape, return false.
809 LAST_DEF is the definition of REG that dominates loop latch. */
50654f6c
ZD
810
811static bool
57512f53 812get_biv_step (df_ref last_def, rtx reg, rtx *inner_step,
1c1ad7bb 813 enum machine_mode *inner_mode, enum iv_extend_code *extend,
03fd2215 814 enum machine_mode *outer_mode, rtx *outer_step)
50654f6c
ZD
815{
816 *outer_mode = GET_MODE (reg);
817
03fd2215 818 if (!get_biv_step_1 (last_def, reg,
50654f6c
ZD
819 inner_step, inner_mode, extend, *outer_mode,
820 outer_step))
821 return false;
822
1c1ad7bb 823 gcc_assert ((*inner_mode == *outer_mode) != (*extend != IV_UNKNOWN_EXTEND));
b5e624c6 824 gcc_assert (*inner_mode != *outer_mode || *outer_step == const0_rtx);
50654f6c
ZD
825
826 return true;
827}
828
03fd2215
ZD
829/* Records information that DEF is induction variable IV. */
830
831static void
57512f53 832record_iv (df_ref def, struct rtx_iv *iv)
03fd2215 833{
5ed6ace5 834 struct rtx_iv *recorded_iv = XNEW (struct rtx_iv);
03fd2215
ZD
835
836 *recorded_iv = *iv;
6fb5fa3c 837 check_iv_ref_table_size ();
03fd2215
ZD
838 DF_REF_IV_SET (def, recorded_iv);
839}
840
841/* If DEF was already analyzed for bivness, store the description of the biv to
842 IV and return true. Otherwise return false. */
843
844static bool
845analyzed_for_bivness_p (rtx def, struct rtx_iv *iv)
846{
4a8fb1a1 847 struct biv_entry *biv = bivs.find_with_hash (def, REGNO (def));
03fd2215
ZD
848
849 if (!biv)
850 return false;
851
852 *iv = biv->iv;
853 return true;
854}
855
856static void
857record_biv (rtx def, struct rtx_iv *iv)
858{
5ed6ace5 859 struct biv_entry *biv = XNEW (struct biv_entry);
4a8fb1a1 860 biv_entry **slot = bivs.find_slot_with_hash (def, REGNO (def), INSERT);
03fd2215
ZD
861
862 biv->regno = REGNO (def);
863 biv->iv = *iv;
864 gcc_assert (!*slot);
865 *slot = biv;
866}
867
50654f6c
ZD
868/* Determines whether DEF is a biv and if so, stores its description
869 to *IV. */
870
871static bool
6d4e0ecc 872iv_analyze_biv (rtx def, struct rtx_iv *iv)
50654f6c 873{
50654f6c
ZD
874 rtx inner_step, outer_step;
875 enum machine_mode inner_mode, outer_mode;
1c1ad7bb 876 enum iv_extend_code extend;
57512f53 877 df_ref last_def;
50654f6c 878
c263766c 879 if (dump_file)
50654f6c 880 {
cc9795d4 881 fprintf (dump_file, "Analyzing ");
c263766c
RH
882 print_rtl (dump_file, def);
883 fprintf (dump_file, " for bivness.\n");
50654f6c 884 }
b8698a0f 885
50654f6c
ZD
886 if (!REG_P (def))
887 {
888 if (!CONSTANT_P (def))
889 return false;
890
891 return iv_constant (iv, def, VOIDmode);
892 }
893
03fd2215 894 if (!latch_dominating_def (def, &last_def))
50654f6c 895 {
c263766c
RH
896 if (dump_file)
897 fprintf (dump_file, " not simple.\n");
50654f6c
ZD
898 return false;
899 }
900
03fd2215
ZD
901 if (!last_def)
902 return iv_constant (iv, def, VOIDmode);
903
904 if (analyzed_for_bivness_p (def, iv))
50654f6c 905 {
c263766c
RH
906 if (dump_file)
907 fprintf (dump_file, " already analysed.\n");
50654f6c
ZD
908 return iv->base != NULL_RTX;
909 }
910
03fd2215 911 if (!get_biv_step (last_def, def, &inner_step, &inner_mode, &extend,
50654f6c
ZD
912 &outer_mode, &outer_step))
913 {
914 iv->base = NULL_RTX;
915 goto end;
916 }
917
918 /* Loop transforms base to es (base + inner_step) + outer_step,
919 where es means extend of subreg between inner_mode and outer_mode.
920 The corresponding induction variable is
921
922 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */
923
924 iv->base = simplify_gen_binary (MINUS, outer_mode, def, outer_step);
925 iv->step = simplify_gen_binary (PLUS, outer_mode, inner_step, outer_step);
926 iv->mode = inner_mode;
927 iv->extend_mode = outer_mode;
928 iv->extend = extend;
929 iv->mult = const1_rtx;
930 iv->delta = outer_step;
931 iv->first_special = inner_mode != outer_mode;
932
c263766c
RH
933 end:
934 if (dump_file)
50654f6c 935 {
c263766c
RH
936 fprintf (dump_file, " ");
937 dump_iv_info (dump_file, iv);
938 fprintf (dump_file, "\n");
50654f6c
ZD
939 }
940
03fd2215 941 record_biv (def, iv);
50654f6c
ZD
942 return iv->base != NULL_RTX;
943}
944
b8698a0f 945/* Analyzes expression RHS used at INSN and stores the result to *IV.
03fd2215 946 The mode of the induction variable is MODE. */
50654f6c 947
03fd2215
ZD
948bool
949iv_analyze_expr (rtx insn, rtx rhs, enum machine_mode mode, struct rtx_iv *iv)
50654f6c 950{
03fd2215
ZD
951 rtx mby = NULL_RTX, tmp;
952 rtx op0 = NULL_RTX, op1 = NULL_RTX;
953 struct rtx_iv iv0, iv1;
954 enum rtx_code code = GET_CODE (rhs);
955 enum machine_mode omode = mode;
50654f6c 956
03fd2215
ZD
957 iv->mode = VOIDmode;
958 iv->base = NULL_RTX;
959 iv->step = NULL_RTX;
50654f6c 960
03fd2215 961 gcc_assert (GET_MODE (rhs) == mode || GET_MODE (rhs) == VOIDmode);
50654f6c 962
03fd2215
ZD
963 if (CONSTANT_P (rhs)
964 || REG_P (rhs)
965 || code == SUBREG)
50654f6c 966 {
03fd2215
ZD
967 if (!iv_analyze_op (insn, rhs, iv))
968 return false;
b8698a0f 969
03fd2215 970 if (iv->mode == VOIDmode)
50654f6c 971 {
03fd2215
ZD
972 iv->mode = mode;
973 iv->extend_mode = mode;
50654f6c 974 }
03fd2215
ZD
975
976 return true;
50654f6c
ZD
977 }
978
03fd2215 979 switch (code)
50654f6c 980 {
03fd2215
ZD
981 case REG:
982 op0 = rhs;
983 break;
50654f6c 984
03fd2215
ZD
985 case SIGN_EXTEND:
986 case ZERO_EXTEND:
987 case NEG:
988 op0 = XEXP (rhs, 0);
989 omode = GET_MODE (op0);
990 break;
991
992 case PLUS:
993 case MINUS:
994 op0 = XEXP (rhs, 0);
995 op1 = XEXP (rhs, 1);
996 break;
997
998 case MULT:
999 op0 = XEXP (rhs, 0);
1000 mby = XEXP (rhs, 1);
1001 if (!CONSTANT_P (mby))
50654f6c 1002 {
03fd2215
ZD
1003 tmp = op0;
1004 op0 = mby;
1005 mby = tmp;
50654f6c 1006 }
03fd2215
ZD
1007 if (!CONSTANT_P (mby))
1008 return false;
1009 break;
50654f6c 1010
03fd2215
ZD
1011 case ASHIFT:
1012 op0 = XEXP (rhs, 0);
1013 mby = XEXP (rhs, 1);
1014 if (!CONSTANT_P (mby))
1015 return false;
1016 break;
1017
1018 default:
50654f6c
ZD
1019 return false;
1020 }
1021
03fd2215
ZD
1022 if (op0
1023 && !iv_analyze_expr (insn, op0, omode, &iv0))
1024 return false;
50654f6c 1025
03fd2215
ZD
1026 if (op1
1027 && !iv_analyze_expr (insn, op1, omode, &iv1))
50654f6c
ZD
1028 return false;
1029
03fd2215 1030 switch (code)
50654f6c 1031 {
03fd2215 1032 case SIGN_EXTEND:
1c1ad7bb
SB
1033 if (!iv_extend (&iv0, IV_SIGN_EXTEND, mode))
1034 return false;
1035 break;
1036
03fd2215 1037 case ZERO_EXTEND:
1c1ad7bb 1038 if (!iv_extend (&iv0, IV_ZERO_EXTEND, mode))
03fd2215
ZD
1039 return false;
1040 break;
1041
1042 case NEG:
1043 if (!iv_neg (&iv0))
50654f6c 1044 return false;
03fd2215 1045 break;
50654f6c 1046
03fd2215
ZD
1047 case PLUS:
1048 case MINUS:
1049 if (!iv_add (&iv0, &iv1, code))
50654f6c 1050 return false;
03fd2215 1051 break;
50654f6c 1052
03fd2215
ZD
1053 case MULT:
1054 if (!iv_mult (&iv0, mby))
1055 return false;
1056 break;
1057
1058 case ASHIFT:
1059 if (!iv_shift (&iv0, mby))
1060 return false;
1061 break;
1062
1063 default:
1064 break;
50654f6c
ZD
1065 }
1066
03fd2215
ZD
1067 *iv = iv0;
1068 return iv->base != NULL_RTX;
1069}
1070
1071/* Analyzes iv DEF and stores the result to *IV. */
1072
1073static bool
57512f53 1074iv_analyze_def (df_ref def, struct rtx_iv *iv)
03fd2215
ZD
1075{
1076 rtx insn = DF_REF_INSN (def);
1077 rtx reg = DF_REF_REG (def);
1078 rtx set, rhs;
50654f6c 1079
c263766c 1080 if (dump_file)
50654f6c 1081 {
4dad0aca 1082 fprintf (dump_file, "Analyzing def of ");
03fd2215 1083 print_rtl (dump_file, reg);
c263766c
RH
1084 fprintf (dump_file, " in insn ");
1085 print_rtl_single (dump_file, insn);
50654f6c 1086 }
b8698a0f 1087
6fb5fa3c 1088 check_iv_ref_table_size ();
03fd2215 1089 if (DF_REF_IV (def))
50654f6c 1090 {
c263766c
RH
1091 if (dump_file)
1092 fprintf (dump_file, " already analysed.\n");
03fd2215 1093 *iv = *DF_REF_IV (def);
50654f6c
ZD
1094 return iv->base != NULL_RTX;
1095 }
1096
1097 iv->mode = VOIDmode;
1098 iv->base = NULL_RTX;
1099 iv->step = NULL_RTX;
1100
6fb5fa3c
DB
1101 if (!REG_P (reg))
1102 return false;
1103
50654f6c 1104 set = single_set (insn);
6fb5fa3c
DB
1105 if (!set)
1106 return false;
1107
1108 if (!REG_P (SET_DEST (set)))
03fd2215
ZD
1109 return false;
1110
6fb5fa3c 1111 gcc_assert (SET_DEST (set) == reg);
50654f6c 1112 rhs = find_reg_equal_equiv_note (insn);
0aea6467
ZD
1113 if (rhs)
1114 rhs = XEXP (rhs, 0);
1115 else
50654f6c 1116 rhs = SET_SRC (set);
50654f6c 1117
03fd2215
ZD
1118 iv_analyze_expr (insn, rhs, GET_MODE (reg), iv);
1119 record_iv (def, iv);
1120
1121 if (dump_file)
50654f6c 1122 {
03fd2215
ZD
1123 print_rtl (dump_file, reg);
1124 fprintf (dump_file, " in insn ");
1125 print_rtl_single (dump_file, insn);
1126 fprintf (dump_file, " is ");
1127 dump_iv_info (dump_file, iv);
1128 fprintf (dump_file, "\n");
50654f6c 1129 }
50654f6c 1130
03fd2215
ZD
1131 return iv->base != NULL_RTX;
1132}
50654f6c 1133
03fd2215 1134/* Analyzes operand OP of INSN and stores the result to *IV. */
50654f6c 1135
03fd2215
ZD
1136static bool
1137iv_analyze_op (rtx insn, rtx op, struct rtx_iv *iv)
1138{
57512f53 1139 df_ref def = NULL;
03fd2215 1140 enum iv_grd_result res;
abe0d774 1141
03fd2215
ZD
1142 if (dump_file)
1143 {
4dad0aca 1144 fprintf (dump_file, "Analyzing operand ");
03fd2215
ZD
1145 print_rtl (dump_file, op);
1146 fprintf (dump_file, " of insn ");
1147 print_rtl_single (dump_file, insn);
1148 }
abe0d774 1149
cdf1bf8b 1150 if (function_invariant_p (op))
03fd2215
ZD
1151 res = GRD_INVARIANT;
1152 else if (GET_CODE (op) == SUBREG)
1153 {
1154 if (!subreg_lowpart_p (op))
1155 return false;
50654f6c 1156
03fd2215
ZD
1157 if (!iv_analyze_op (insn, SUBREG_REG (op), iv))
1158 return false;
50654f6c 1159
03fd2215
ZD
1160 return iv_subreg (iv, GET_MODE (op));
1161 }
1162 else
50654f6c 1163 {
03fd2215
ZD
1164 res = iv_get_reaching_def (insn, op, &def);
1165 if (res == GRD_INVALID)
50654f6c 1166 {
03fd2215
ZD
1167 if (dump_file)
1168 fprintf (dump_file, " not simple.\n");
1169 return false;
50654f6c
ZD
1170 }
1171 }
1172
03fd2215 1173 if (res == GRD_INVARIANT)
50654f6c 1174 {
03fd2215 1175 iv_constant (iv, op, VOIDmode);
50654f6c 1176
03fd2215 1177 if (dump_file)
50654f6c 1178 {
03fd2215
ZD
1179 fprintf (dump_file, " ");
1180 dump_iv_info (dump_file, iv);
1181 fprintf (dump_file, "\n");
50654f6c 1182 }
03fd2215 1183 return true;
50654f6c
ZD
1184 }
1185
03fd2215
ZD
1186 if (res == GRD_MAYBE_BIV)
1187 return iv_analyze_biv (op, iv);
50654f6c 1188
03fd2215
ZD
1189 return iv_analyze_def (def, iv);
1190}
50654f6c 1191
03fd2215 1192/* Analyzes value VAL at INSN and stores the result to *IV. */
50654f6c 1193
03fd2215
ZD
1194bool
1195iv_analyze (rtx insn, rtx val, struct rtx_iv *iv)
1196{
1197 rtx reg;
50654f6c 1198
03fd2215
ZD
1199 /* We must find the insn in that val is used, so that we get to UD chains.
1200 Since the function is sometimes called on result of get_condition,
1201 this does not necessarily have to be directly INSN; scan also the
1202 following insns. */
1203 if (simple_reg_p (val))
1204 {
1205 if (GET_CODE (val) == SUBREG)
1206 reg = SUBREG_REG (val);
1207 else
1208 reg = val;
abe0d774 1209
6fb5fa3c 1210 while (!df_find_use (insn, reg))
03fd2215 1211 insn = NEXT_INSN (insn);
50654f6c
ZD
1212 }
1213
03fd2215
ZD
1214 return iv_analyze_op (insn, val, iv);
1215}
50654f6c 1216
03fd2215 1217/* Analyzes definition of DEF in INSN and stores the result to IV. */
50654f6c 1218
03fd2215
ZD
1219bool
1220iv_analyze_result (rtx insn, rtx def, struct rtx_iv *iv)
1221{
57512f53 1222 df_ref adef;
50654f6c 1223
6fb5fa3c 1224 adef = df_find_def (insn, def);
03fd2215
ZD
1225 if (!adef)
1226 return false;
1227
1228 return iv_analyze_def (adef, iv);
50654f6c
ZD
1229}
1230
03fd2215 1231/* Checks whether definition of register REG in INSN is a basic induction
113d659a
ZD
1232 variable. IV analysis must have been initialized (via a call to
1233 iv_analysis_loop_init) for this function to produce a result. */
1234
1235bool
1236biv_p (rtx insn, rtx reg)
1237{
1238 struct rtx_iv iv;
57512f53 1239 df_ref def, last_def;
113d659a 1240
03fd2215 1241 if (!simple_reg_p (reg))
113d659a
ZD
1242 return false;
1243
6fb5fa3c 1244 def = df_find_def (insn, reg);
03fd2215
ZD
1245 gcc_assert (def != NULL);
1246 if (!latch_dominating_def (reg, &last_def))
1247 return false;
1248 if (last_def != def)
113d659a
ZD
1249 return false;
1250
03fd2215
ZD
1251 if (!iv_analyze_biv (reg, &iv))
1252 return false;
1253
1254 return iv.step != const0_rtx;
113d659a
ZD
1255}
1256
50654f6c
ZD
1257/* Calculates value of IV at ITERATION-th iteration. */
1258
1259rtx
1260get_iv_value (struct rtx_iv *iv, rtx iteration)
1261{
1262 rtx val;
1263
1264 /* We would need to generate some if_then_else patterns, and so far
1265 it is not needed anywhere. */
b5e624c6 1266 gcc_assert (!iv->first_special);
50654f6c
ZD
1267
1268 if (iv->step != const0_rtx && iteration != const0_rtx)
1269 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->base,
1270 simplify_gen_binary (MULT, iv->extend_mode,
1271 iv->step, iteration));
1272 else
1273 val = iv->base;
1274
1275 if (iv->extend_mode == iv->mode)
1276 return val;
1277
6c3b938d 1278 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
50654f6c 1279
1c1ad7bb 1280 if (iv->extend == IV_UNKNOWN_EXTEND)
50654f6c
ZD
1281 return val;
1282
1c1ad7bb
SB
1283 val = simplify_gen_unary (iv_extend_to_rtx_code (iv->extend),
1284 iv->extend_mode, val, iv->mode);
50654f6c
ZD
1285 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
1286 simplify_gen_binary (MULT, iv->extend_mode,
1287 iv->mult, val));
1288
1289 return val;
1290}
1291
1292/* Free the data for an induction variable analysis. */
1293
1294void
1295iv_analysis_done (void)
1296{
6fb5fa3c 1297 if (!clean_slate)
50654f6c 1298 {
03fd2215 1299 clear_iv_info ();
6fb5fa3c 1300 clean_slate = true;
0d475361 1301 df_finish_pass (true);
4a8fb1a1 1302 bivs.dispose ();
6fb5fa3c
DB
1303 free (iv_ref_table);
1304 iv_ref_table = NULL;
1305 iv_ref_table_size = 0;
50654f6c
ZD
1306 }
1307}
1308
1309/* Computes inverse to X modulo (1 << MOD). */
1310
1311static unsigned HOST_WIDEST_INT
1312inverse (unsigned HOST_WIDEST_INT x, int mod)
1313{
1314 unsigned HOST_WIDEST_INT mask =
1315 ((unsigned HOST_WIDEST_INT) 1 << (mod - 1) << 1) - 1;
1316 unsigned HOST_WIDEST_INT rslt = 1;
1317 int i;
1318
1319 for (i = 0; i < mod - 1; i++)
1320 {
1321 rslt = (rslt * x) & mask;
1322 x = (x * x) & mask;
1323 }
1324
1325 return rslt;
1326}
1327
50654f6c
ZD
1328/* Checks whether register *REG is in set ALT. Callback for for_each_rtx. */
1329
1330static int
1331altered_reg_used (rtx *reg, void *alt)
1332{
1333 if (!REG_P (*reg))
1334 return 0;
1335
d3bfe4de 1336 return REGNO_REG_SET_P ((bitmap) alt, REGNO (*reg));
50654f6c
ZD
1337}
1338
1339/* Marks registers altered by EXPR in set ALT. */
1340
1341static void
7bc980e1 1342mark_altered (rtx expr, const_rtx by ATTRIBUTE_UNUSED, void *alt)
50654f6c
ZD
1343{
1344 if (GET_CODE (expr) == SUBREG)
1345 expr = SUBREG_REG (expr);
1346 if (!REG_P (expr))
1347 return;
1348
d3bfe4de 1349 SET_REGNO_REG_SET ((bitmap) alt, REGNO (expr));
50654f6c
ZD
1350}
1351
1352/* Checks whether RHS is simple enough to process. */
1353
1354static bool
1355simple_rhs_p (rtx rhs)
1356{
1357 rtx op0, op1;
1358
cdf1bf8b 1359 if (function_invariant_p (rhs)
4aa97413 1360 || (REG_P (rhs) && !HARD_REGISTER_P (rhs)))
50654f6c
ZD
1361 return true;
1362
1363 switch (GET_CODE (rhs))
1364 {
1365 case PLUS:
1366 case MINUS:
b30321cd 1367 case AND:
50654f6c
ZD
1368 op0 = XEXP (rhs, 0);
1369 op1 = XEXP (rhs, 1);
b30321cd 1370 /* Allow reg OP const and reg OP reg. */
dc5b3407 1371 if (!(REG_P (op0) && !HARD_REGISTER_P (op0))
ce72fe6c 1372 && !function_invariant_p (op0))
dc5b3407
ZD
1373 return false;
1374 if (!(REG_P (op1) && !HARD_REGISTER_P (op1))
ce72fe6c 1375 && !function_invariant_p (op1))
dc5b3407 1376 return false;
50654f6c 1377
dc5b3407
ZD
1378 return true;
1379
1380 case ASHIFT:
b30321cd
BS
1381 case ASHIFTRT:
1382 case LSHIFTRT:
1383 case MULT:
dc5b3407
ZD
1384 op0 = XEXP (rhs, 0);
1385 op1 = XEXP (rhs, 1);
b30321cd 1386 /* Allow reg OP const. */
dc5b3407
ZD
1387 if (!(REG_P (op0) && !HARD_REGISTER_P (op0)))
1388 return false;
ce72fe6c 1389 if (!function_invariant_p (op1))
dc5b3407
ZD
1390 return false;
1391
1392 return true;
50654f6c
ZD
1393
1394 default:
1395 return false;
1396 }
1397}
1398
60081874
BS
1399/* If REG has a single definition, replace it with its known value in EXPR.
1400 Callback for for_each_rtx. */
1401
1402static int
1403replace_single_def_regs (rtx *reg, void *expr1)
1404{
1405 unsigned regno;
1406 df_ref adef;
f63426af 1407 rtx set, src;
60081874
BS
1408 rtx *expr = (rtx *)expr1;
1409
1410 if (!REG_P (*reg))
1411 return 0;
1412
1413 regno = REGNO (*reg);
f63426af
BS
1414 for (;;)
1415 {
1416 rtx note;
1417 adef = DF_REG_DEF_CHAIN (regno);
1418 if (adef == NULL || DF_REF_NEXT_REG (adef) != NULL
1419 || DF_REF_IS_ARTIFICIAL (adef))
1420 return -1;
1421
1422 set = single_set (DF_REF_INSN (adef));
1423 if (set == NULL || !REG_P (SET_DEST (set))
1424 || REGNO (SET_DEST (set)) != regno)
1425 return -1;
60081874 1426
f63426af
BS
1427 note = find_reg_equal_equiv_note (DF_REF_INSN (adef));
1428
1429 if (note && function_invariant_p (XEXP (note, 0)))
1430 {
1431 src = XEXP (note, 0);
1432 break;
1433 }
1434 src = SET_SRC (set);
1435
1436 if (REG_P (src))
1437 {
1438 regno = REGNO (src);
1439 continue;
1440 }
1441 break;
1442 }
1443 if (!function_invariant_p (src))
60081874
BS
1444 return -1;
1445
f63426af 1446 *expr = simplify_replace_rtx (*expr, *reg, src);
60081874
BS
1447 return 1;
1448}
1449
ed853664
BS
1450/* A subroutine of simplify_using_initial_values, this function examines INSN
1451 to see if it contains a suitable set that we can use to make a replacement.
1452 If it is suitable, return true and set DEST and SRC to the lhs and rhs of
1453 the set; return false otherwise. */
50654f6c 1454
ed853664
BS
1455static bool
1456suitable_set_for_replacement (rtx insn, rtx *dest, rtx *src)
50654f6c
ZD
1457{
1458 rtx set = single_set (insn);
cddbddb7 1459 rtx lhs = NULL_RTX, rhs;
50654f6c 1460
ed853664
BS
1461 if (!set)
1462 return false;
50654f6c 1463
ed853664
BS
1464 lhs = SET_DEST (set);
1465 if (!REG_P (lhs))
1466 return false;
50654f6c
ZD
1467
1468 rhs = find_reg_equal_equiv_note (insn);
0aea6467
ZD
1469 if (rhs)
1470 rhs = XEXP (rhs, 0);
1471 else
50654f6c
ZD
1472 rhs = SET_SRC (set);
1473
1474 if (!simple_rhs_p (rhs))
ed853664 1475 return false;
50654f6c 1476
ed853664
BS
1477 *dest = lhs;
1478 *src = rhs;
1479 return true;
50654f6c
ZD
1480}
1481
60081874
BS
1482/* Using the data returned by suitable_set_for_replacement, replace DEST
1483 with SRC in *EXPR and return the new expression. Also call
1484 replace_single_def_regs if the replacement changed something. */
1485static void
1486replace_in_expr (rtx *expr, rtx dest, rtx src)
1487{
1488 rtx old = *expr;
1489 *expr = simplify_replace_rtx (*expr, dest, src);
1490 if (old == *expr)
1491 return;
1492 while (for_each_rtx (expr, replace_single_def_regs, expr) != 0)
1493 continue;
1494}
1495
50654f6c
ZD
1496/* Checks whether A implies B. */
1497
1498static bool
1499implies_p (rtx a, rtx b)
1500{
0aea6467
ZD
1501 rtx op0, op1, opb0, opb1, r;
1502 enum machine_mode mode;
50654f6c 1503
cca1130d
BS
1504 if (rtx_equal_p (a, b))
1505 return true;
1506
50654f6c
ZD
1507 if (GET_CODE (a) == EQ)
1508 {
1509 op0 = XEXP (a, 0);
1510 op1 = XEXP (a, 1);
1511
cca1130d
BS
1512 if (REG_P (op0)
1513 || (GET_CODE (op0) == SUBREG
1514 && REG_P (SUBREG_REG (op0))))
50654f6c
ZD
1515 {
1516 r = simplify_replace_rtx (b, op0, op1);
1517 if (r == const_true_rtx)
1518 return true;
1519 }
1520
cca1130d
BS
1521 if (REG_P (op1)
1522 || (GET_CODE (op1) == SUBREG
1523 && REG_P (SUBREG_REG (op1))))
50654f6c
ZD
1524 {
1525 r = simplify_replace_rtx (b, op1, op0);
1526 if (r == const_true_rtx)
1527 return true;
1528 }
1529 }
1530
60683019
BS
1531 if (b == const_true_rtx)
1532 return true;
1533
1534 if ((GET_RTX_CLASS (GET_CODE (a)) != RTX_COMM_COMPARE
1535 && GET_RTX_CLASS (GET_CODE (a)) != RTX_COMPARE)
1536 || (GET_RTX_CLASS (GET_CODE (b)) != RTX_COMM_COMPARE
1537 && GET_RTX_CLASS (GET_CODE (b)) != RTX_COMPARE))
1538 return false;
1539
1540 op0 = XEXP (a, 0);
1541 op1 = XEXP (a, 1);
1542 opb0 = XEXP (b, 0);
1543 opb1 = XEXP (b, 1);
1544
1545 mode = GET_MODE (op0);
1546 if (mode != GET_MODE (opb0))
1547 mode = VOIDmode;
1548 else if (mode == VOIDmode)
1549 {
1550 mode = GET_MODE (op1);
1551 if (mode != GET_MODE (opb1))
1552 mode = VOIDmode;
1553 }
1554
0aea6467
ZD
1555 /* A < B implies A + 1 <= B. */
1556 if ((GET_CODE (a) == GT || GET_CODE (a) == LT)
1557 && (GET_CODE (b) == GE || GET_CODE (b) == LE))
1558 {
0aea6467
ZD
1559
1560 if (GET_CODE (a) == GT)
1561 {
1562 r = op0;
1563 op0 = op1;
1564 op1 = r;
1565 }
1566
1567 if (GET_CODE (b) == GE)
1568 {
1569 r = opb0;
1570 opb0 = opb1;
1571 opb1 = r;
1572 }
1573
d4538829 1574 if (SCALAR_INT_MODE_P (mode)
0aea6467
ZD
1575 && rtx_equal_p (op1, opb1)
1576 && simplify_gen_binary (MINUS, mode, opb0, op0) == const1_rtx)
1577 return true;
60683019
BS
1578 return false;
1579 }
1580
1581 /* A < B or A > B imply A != B. TODO: Likewise
1582 A + n < B implies A != B + n if neither wraps. */
1583 if (GET_CODE (b) == NE
1584 && (GET_CODE (a) == GT || GET_CODE (a) == GTU
1585 || GET_CODE (a) == LT || GET_CODE (a) == LTU))
1586 {
1587 if (rtx_equal_p (op0, opb0)
1588 && rtx_equal_p (op1, opb1))
1589 return true;
0aea6467
ZD
1590 }
1591
60683019
BS
1592 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */
1593 if (GET_CODE (a) == NE
1594 && op1 == const0_rtx)
1595 {
1596 if ((GET_CODE (b) == GTU
1597 && opb1 == const0_rtx)
1598 || (GET_CODE (b) == GEU
1599 && opb1 == const1_rtx))
1600 return rtx_equal_p (op0, opb0);
1601 }
1602
1603 /* A != N is equivalent to A - (N + 1) <u -1. */
1604 if (GET_CODE (a) == NE
481683e1 1605 && CONST_INT_P (op1)
60683019
BS
1606 && GET_CODE (b) == LTU
1607 && opb1 == constm1_rtx
1608 && GET_CODE (opb0) == PLUS
481683e1 1609 && CONST_INT_P (XEXP (opb0, 1))
60683019
BS
1610 /* Avoid overflows. */
1611 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1612 != ((unsigned HOST_WIDE_INT)1
1613 << (HOST_BITS_PER_WIDE_INT - 1)) - 1)
1614 && INTVAL (XEXP (opb0, 1)) + 1 == -INTVAL (op1))
1615 return rtx_equal_p (op0, XEXP (opb0, 0));
1616
1617 /* Likewise, A != N implies A - N > 0. */
1618 if (GET_CODE (a) == NE
481683e1 1619 && CONST_INT_P (op1))
60683019
BS
1620 {
1621 if (GET_CODE (b) == GTU
1622 && GET_CODE (opb0) == PLUS
1623 && opb1 == const0_rtx
481683e1 1624 && CONST_INT_P (XEXP (opb0, 1))
60683019
BS
1625 /* Avoid overflows. */
1626 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1627 != ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
1628 && rtx_equal_p (XEXP (opb0, 0), op0))
1629 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1630 if (GET_CODE (b) == GEU
1631 && GET_CODE (opb0) == PLUS
1632 && opb1 == const1_rtx
481683e1 1633 && CONST_INT_P (XEXP (opb0, 1))
60683019
BS
1634 /* Avoid overflows. */
1635 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1636 != ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
1637 && rtx_equal_p (XEXP (opb0, 0), op0))
1638 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1639 }
1640
1641 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */
1642 if ((GET_CODE (a) == GT || GET_CODE (a) == GE)
481683e1 1643 && CONST_INT_P (op1)
60683019
BS
1644 && ((GET_CODE (a) == GT && op1 == constm1_rtx)
1645 || INTVAL (op1) >= 0)
1646 && GET_CODE (b) == LTU
481683e1 1647 && CONST_INT_P (opb1)
b1c92d54 1648 && rtx_equal_p (op0, opb0))
60683019
BS
1649 return INTVAL (opb1) < 0;
1650
50654f6c
ZD
1651 return false;
1652}
1653
1654/* Canonicalizes COND so that
1655
1656 (1) Ensure that operands are ordered according to
1657 swap_commutative_operands_p.
1658 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly
1659 for GE, GEU, and LEU. */
1660
1661rtx
1662canon_condition (rtx cond)
1663{
1664 rtx tem;
1665 rtx op0, op1;
1666 enum rtx_code code;
1667 enum machine_mode mode;
1668
1669 code = GET_CODE (cond);
1670 op0 = XEXP (cond, 0);
1671 op1 = XEXP (cond, 1);
1672
1673 if (swap_commutative_operands_p (op0, op1))
1674 {
1675 code = swap_condition (code);
1676 tem = op0;
1677 op0 = op1;
1678 op1 = tem;
1679 }
1680
1681 mode = GET_MODE (op0);
1682 if (mode == VOIDmode)
1683 mode = GET_MODE (op1);
b5e624c6 1684 gcc_assert (mode != VOIDmode);
50654f6c 1685
481683e1 1686 if (CONST_INT_P (op1)
50654f6c
ZD
1687 && GET_MODE_CLASS (mode) != MODE_CC
1688 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
1689 {
1690 HOST_WIDE_INT const_val = INTVAL (op1);
1691 unsigned HOST_WIDE_INT uconst_val = const_val;
1692 unsigned HOST_WIDE_INT max_val
1693 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode);
1694
1695 switch (code)
1696 {
1697 case LE:
1698 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
1699 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
1700 break;
1701
1702 /* When cross-compiling, const_val might be sign-extended from
1703 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
1704 case GE:
1705 if ((HOST_WIDE_INT) (const_val & max_val)
1706 != (((HOST_WIDE_INT) 1
1707 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
1708 code = GT, op1 = gen_int_mode (const_val - 1, mode);
1709 break;
1710
1711 case LEU:
1712 if (uconst_val < max_val)
1713 code = LTU, op1 = gen_int_mode (uconst_val + 1, mode);
1714 break;
1715
1716 case GEU:
1717 if (uconst_val != 0)
1718 code = GTU, op1 = gen_int_mode (uconst_val - 1, mode);
1719 break;
1720
1721 default:
1722 break;
1723 }
1724 }
1725
1726 if (op0 != XEXP (cond, 0)
1727 || op1 != XEXP (cond, 1)
1728 || code != GET_CODE (cond)
1729 || GET_MODE (cond) != SImode)
1730 cond = gen_rtx_fmt_ee (code, SImode, op0, op1);
1731
1732 return cond;
1733}
1734
1735/* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the
1736 set of altered regs. */
1737
1738void
1739simplify_using_condition (rtx cond, rtx *expr, regset altered)
1740{
1741 rtx rev, reve, exp = *expr;
1742
50654f6c
ZD
1743 /* If some register gets altered later, we do not really speak about its
1744 value at the time of comparison. */
1745 if (altered
1746 && for_each_rtx (&cond, altered_reg_used, altered))
1747 return;
1748
1569e190
BS
1749 if (GET_CODE (cond) == EQ
1750 && REG_P (XEXP (cond, 0)) && CONSTANT_P (XEXP (cond, 1)))
1751 {
1752 *expr = simplify_replace_rtx (*expr, XEXP (cond, 0), XEXP (cond, 1));
1753 return;
1754 }
1755
1756 if (!COMPARISON_P (exp))
1757 return;
1758
50654f6c
ZD
1759 rev = reversed_condition (cond);
1760 reve = reversed_condition (exp);
1761
1762 cond = canon_condition (cond);
1763 exp = canon_condition (exp);
1764 if (rev)
1765 rev = canon_condition (rev);
1766 if (reve)
1767 reve = canon_condition (reve);
1768
1769 if (rtx_equal_p (exp, cond))
1770 {
1771 *expr = const_true_rtx;
1772 return;
1773 }
1774
50654f6c
ZD
1775 if (rev && rtx_equal_p (exp, rev))
1776 {
1777 *expr = const0_rtx;
1778 return;
1779 }
1780
1781 if (implies_p (cond, exp))
1782 {
1783 *expr = const_true_rtx;
1784 return;
1785 }
b8698a0f 1786
50654f6c
ZD
1787 if (reve && implies_p (cond, reve))
1788 {
1789 *expr = const0_rtx;
1790 return;
1791 }
1792
1793 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must
1794 be false. */
1795 if (rev && implies_p (exp, rev))
1796 {
1797 *expr = const0_rtx;
1798 return;
1799 }
1800
1801 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */
1802 if (rev && reve && implies_p (reve, rev))
1803 {
1804 *expr = const_true_rtx;
1805 return;
1806 }
1807
1808 /* We would like to have some other tests here. TODO. */
1809
1810 return;
1811}
1812
1813/* Use relationship between A and *B to eventually eliminate *B.
1814 OP is the operation we consider. */
1815
1816static void
1817eliminate_implied_condition (enum rtx_code op, rtx a, rtx *b)
1818{
b5e624c6 1819 switch (op)
50654f6c 1820 {
b5e624c6 1821 case AND:
50654f6c
ZD
1822 /* If A implies *B, we may replace *B by true. */
1823 if (implies_p (a, *b))
1824 *b = const_true_rtx;
b5e624c6
NS
1825 break;
1826
1827 case IOR:
50654f6c
ZD
1828 /* If *B implies A, we may replace *B by false. */
1829 if (implies_p (*b, a))
1830 *b = const0_rtx;
b5e624c6
NS
1831 break;
1832
1833 default:
1834 gcc_unreachable ();
50654f6c 1835 }
50654f6c
ZD
1836}
1837
1838/* Eliminates the conditions in TAIL that are implied by HEAD. OP is the
1839 operation we consider. */
1840
1841static void
1842eliminate_implied_conditions (enum rtx_code op, rtx *head, rtx tail)
1843{
1844 rtx elt;
1845
1846 for (elt = tail; elt; elt = XEXP (elt, 1))
1847 eliminate_implied_condition (op, *head, &XEXP (elt, 0));
1848 for (elt = tail; elt; elt = XEXP (elt, 1))
1849 eliminate_implied_condition (op, XEXP (elt, 0), head);
1850}
1851
1852/* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR
1853 is a list, its elements are assumed to be combined using OP. */
1854
1855static void
1856simplify_using_initial_values (struct loop *loop, enum rtx_code op, rtx *expr)
1857{
ed853664 1858 bool expression_valid;
1569e190 1859 rtx head, tail, insn, cond_list, last_valid_expr;
50654f6c 1860 rtx neutral, aggr;
ed853664 1861 regset altered, this_altered;
50654f6c
ZD
1862 edge e;
1863
1864 if (!*expr)
1865 return;
1866
1867 if (CONSTANT_P (*expr))
1868 return;
1869
1870 if (GET_CODE (*expr) == EXPR_LIST)
1871 {
1872 head = XEXP (*expr, 0);
1873 tail = XEXP (*expr, 1);
1874
1875 eliminate_implied_conditions (op, &head, tail);
1876
b5e624c6 1877 switch (op)
50654f6c 1878 {
b5e624c6 1879 case AND:
50654f6c
ZD
1880 neutral = const_true_rtx;
1881 aggr = const0_rtx;
b5e624c6
NS
1882 break;
1883
1884 case IOR:
50654f6c
ZD
1885 neutral = const0_rtx;
1886 aggr = const_true_rtx;
b5e624c6 1887 break;
50654f6c 1888
b5e624c6
NS
1889 default:
1890 gcc_unreachable ();
1891 }
b8698a0f 1892
f822d252 1893 simplify_using_initial_values (loop, UNKNOWN, &head);
50654f6c
ZD
1894 if (head == aggr)
1895 {
1896 XEXP (*expr, 0) = aggr;
1897 XEXP (*expr, 1) = NULL_RTX;
1898 return;
1899 }
1900 else if (head == neutral)
1901 {
1902 *expr = tail;
1903 simplify_using_initial_values (loop, op, expr);
1904 return;
1905 }
1906 simplify_using_initial_values (loop, op, &tail);
1907
1908 if (tail && XEXP (tail, 0) == aggr)
1909 {
1910 *expr = tail;
1911 return;
1912 }
b8698a0f 1913
50654f6c
ZD
1914 XEXP (*expr, 0) = head;
1915 XEXP (*expr, 1) = tail;
1916 return;
1917 }
1918
b5e624c6 1919 gcc_assert (op == UNKNOWN);
50654f6c 1920
60081874
BS
1921 for (;;)
1922 if (for_each_rtx (expr, replace_single_def_regs, expr) == 0)
1923 break;
1924 if (CONSTANT_P (*expr))
1925 return;
1926
50654f6c 1927 e = loop_preheader_edge (loop);
fefa31b5 1928 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
50654f6c
ZD
1929 return;
1930
04389919 1931 altered = ALLOC_REG_SET (&reg_obstack);
ed853664 1932 this_altered = ALLOC_REG_SET (&reg_obstack);
50654f6c 1933
ed853664
BS
1934 expression_valid = true;
1935 last_valid_expr = *expr;
1569e190 1936 cond_list = NULL_RTX;
50654f6c
ZD
1937 while (1)
1938 {
1939 insn = BB_END (e->src);
1940 if (any_condjump_p (insn))
1941 {
45d09c02 1942 rtx cond = get_condition (BB_END (e->src), NULL, false, true);
1569e190 1943
50654f6c
ZD
1944 if (cond && (e->flags & EDGE_FALLTHRU))
1945 cond = reversed_condition (cond);
1946 if (cond)
1947 {
1569e190 1948 rtx old = *expr;
50654f6c 1949 simplify_using_condition (cond, expr, altered);
1569e190
BS
1950 if (old != *expr)
1951 {
1952 rtx note;
1953 if (CONSTANT_P (*expr))
1954 goto out;
1955 for (note = cond_list; note; note = XEXP (note, 1))
1956 {
1957 simplify_using_condition (XEXP (note, 0), expr, altered);
1958 if (CONSTANT_P (*expr))
1959 goto out;
1960 }
1961 }
1962 cond_list = alloc_EXPR_LIST (0, cond, cond_list);
50654f6c
ZD
1963 }
1964 }
1965
1966 FOR_BB_INSNS_REVERSE (e->src, insn)
1967 {
ed853664 1968 rtx src, dest;
1569e190 1969 rtx old = *expr;
ed853664 1970
50654f6c
ZD
1971 if (!INSN_P (insn))
1972 continue;
ed853664
BS
1973
1974 CLEAR_REG_SET (this_altered);
1975 note_stores (PATTERN (insn), mark_altered, this_altered);
1976 if (CALL_P (insn))
50654f6c 1977 {
ed853664 1978 /* Kill all call clobbered registers. */
c7fb4c7a
SB
1979 unsigned int i;
1980 hard_reg_set_iterator hrsi;
1981 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1982 0, i, hrsi)
1983 SET_REGNO_REG_SET (this_altered, i);
50654f6c 1984 }
ed853664
BS
1985
1986 if (suitable_set_for_replacement (insn, &dest, &src))
48982394 1987 {
1569e190
BS
1988 rtx *pnote, *pnote_next;
1989
60081874 1990 replace_in_expr (expr, dest, src);
ed853664
BS
1991 if (CONSTANT_P (*expr))
1992 goto out;
1569e190
BS
1993
1994 for (pnote = &cond_list; *pnote; pnote = pnote_next)
1995 {
1996 rtx note = *pnote;
1997 rtx old_cond = XEXP (note, 0);
1998
1999 pnote_next = &XEXP (note, 1);
60081874
BS
2000 replace_in_expr (&XEXP (note, 0), dest, src);
2001
1569e190
BS
2002 /* We can no longer use a condition that has been simplified
2003 to a constant, and simplify_using_condition will abort if
2004 we try. */
2005 if (CONSTANT_P (XEXP (note, 0)))
2006 {
2007 *pnote = *pnote_next;
2008 pnote_next = pnote;
2009 free_EXPR_LIST_node (note);
2010 }
2011 /* Retry simplifications with this condition if either the
2012 expression or the condition changed. */
2013 else if (old_cond != XEXP (note, 0) || old != *expr)
2014 simplify_using_condition (XEXP (note, 0), expr, altered);
2015 }
48982394 2016 }
ed853664 2017 else
4fc2e37d
EB
2018 {
2019 rtx *pnote, *pnote_next;
2020
2021 /* If we did not use this insn to make a replacement, any overlap
2022 between stores in this insn and our expression will cause the
2023 expression to become invalid. */
2024 if (for_each_rtx (expr, altered_reg_used, this_altered))
2025 goto out;
2026
2027 /* Likewise for the conditions. */
2028 for (pnote = &cond_list; *pnote; pnote = pnote_next)
2029 {
2030 rtx note = *pnote;
2031 rtx old_cond = XEXP (note, 0);
2032
2033 pnote_next = &XEXP (note, 1);
2034 if (for_each_rtx (&old_cond, altered_reg_used, this_altered))
2035 {
2036 *pnote = *pnote_next;
2037 pnote_next = pnote;
2038 free_EXPR_LIST_node (note);
2039 }
2040 }
2041 }
ed853664 2042
1569e190
BS
2043 if (CONSTANT_P (*expr))
2044 goto out;
2045
ed853664
BS
2046 IOR_REG_SET (altered, this_altered);
2047
2048 /* If the expression now contains regs that have been altered, we
2049 can't return it to the caller. However, it is still valid for
2050 further simplification, so keep searching to see if we can
2051 eventually turn it into a constant. */
2052 if (for_each_rtx (expr, altered_reg_used, altered))
2053 expression_valid = false;
2054 if (expression_valid)
2055 last_valid_expr = *expr;
50654f6c
ZD
2056 }
2057
c5cbcccf 2058 if (!single_pred_p (e->src)
fefa31b5 2059 || single_pred (e->src) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
50654f6c 2060 break;
c5cbcccf 2061 e = single_pred_edge (e->src);
50654f6c
ZD
2062 }
2063
ed853664 2064 out:
1569e190 2065 free_EXPR_LIST_list (&cond_list);
ed853664
BS
2066 if (!CONSTANT_P (*expr))
2067 *expr = last_valid_expr;
50654f6c 2068 FREE_REG_SET (altered);
ed853664 2069 FREE_REG_SET (this_altered);
50654f6c
ZD
2070}
2071
2072/* Transforms invariant IV into MODE. Adds assumptions based on the fact
2073 that IV occurs as left operands of comparison COND and its signedness
2074 is SIGNED_P to DESC. */
2075
2076static void
2077shorten_into_mode (struct rtx_iv *iv, enum machine_mode mode,
2078 enum rtx_code cond, bool signed_p, struct niter_desc *desc)
2079{
2080 rtx mmin, mmax, cond_over, cond_under;
2081
0aea6467 2082 get_mode_bounds (mode, signed_p, iv->extend_mode, &mmin, &mmax);
50654f6c
ZD
2083 cond_under = simplify_gen_relational (LT, SImode, iv->extend_mode,
2084 iv->base, mmin);
2085 cond_over = simplify_gen_relational (GT, SImode, iv->extend_mode,
2086 iv->base, mmax);
2087
2088 switch (cond)
2089 {
2090 case LE:
2091 case LT:
2092 case LEU:
2093 case LTU:
2094 if (cond_under != const0_rtx)
2095 desc->infinite =
2096 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2097 if (cond_over != const0_rtx)
2098 desc->noloop_assumptions =
2099 alloc_EXPR_LIST (0, cond_over, desc->noloop_assumptions);
2100 break;
2101
2102 case GE:
2103 case GT:
2104 case GEU:
2105 case GTU:
2106 if (cond_over != const0_rtx)
2107 desc->infinite =
2108 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2109 if (cond_under != const0_rtx)
2110 desc->noloop_assumptions =
2111 alloc_EXPR_LIST (0, cond_under, desc->noloop_assumptions);
2112 break;
2113
2114 case NE:
2115 if (cond_over != const0_rtx)
2116 desc->infinite =
2117 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2118 if (cond_under != const0_rtx)
2119 desc->infinite =
2120 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2121 break;
2122
2123 default:
b5e624c6 2124 gcc_unreachable ();
50654f6c
ZD
2125 }
2126
2127 iv->mode = mode;
1c1ad7bb 2128 iv->extend = signed_p ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
50654f6c
ZD
2129}
2130
2131/* Transforms IV0 and IV1 compared by COND so that they are both compared as
a1105617 2132 subregs of the same mode if possible (sometimes it is necessary to add
50654f6c
ZD
2133 some assumptions to DESC). */
2134
2135static bool
2136canonicalize_iv_subregs (struct rtx_iv *iv0, struct rtx_iv *iv1,
2137 enum rtx_code cond, struct niter_desc *desc)
2138{
2139 enum machine_mode comp_mode;
2140 bool signed_p;
2141
2142 /* If the ivs behave specially in the first iteration, or are
2143 added/multiplied after extending, we ignore them. */
2144 if (iv0->first_special || iv0->mult != const1_rtx || iv0->delta != const0_rtx)
2145 return false;
2146 if (iv1->first_special || iv1->mult != const1_rtx || iv1->delta != const0_rtx)
2147 return false;
2148
2149 /* If there is some extend, it must match signedness of the comparison. */
2150 switch (cond)
2151 {
2152 case LE:
2153 case LT:
1c1ad7bb
SB
2154 if (iv0->extend == IV_ZERO_EXTEND
2155 || iv1->extend == IV_ZERO_EXTEND)
50654f6c
ZD
2156 return false;
2157 signed_p = true;
2158 break;
2159
2160 case LEU:
2161 case LTU:
1c1ad7bb
SB
2162 if (iv0->extend == IV_SIGN_EXTEND
2163 || iv1->extend == IV_SIGN_EXTEND)
50654f6c
ZD
2164 return false;
2165 signed_p = false;
2166 break;
2167
2168 case NE:
1c1ad7bb
SB
2169 if (iv0->extend != IV_UNKNOWN_EXTEND
2170 && iv1->extend != IV_UNKNOWN_EXTEND
50654f6c
ZD
2171 && iv0->extend != iv1->extend)
2172 return false;
2173
2174 signed_p = false;
1c1ad7bb
SB
2175 if (iv0->extend != IV_UNKNOWN_EXTEND)
2176 signed_p = iv0->extend == IV_SIGN_EXTEND;
2177 if (iv1->extend != IV_UNKNOWN_EXTEND)
2178 signed_p = iv1->extend == IV_SIGN_EXTEND;
50654f6c
ZD
2179 break;
2180
2181 default:
b5e624c6 2182 gcc_unreachable ();
50654f6c
ZD
2183 }
2184
2185 /* Values of both variables should be computed in the same mode. These
2186 might indeed be different, if we have comparison like
2187
2188 (compare (subreg:SI (iv0)) (subreg:SI (iv1)))
2189
2190 and iv0 and iv1 are both ivs iterating in SI mode, but calculated
2191 in different modes. This does not seem impossible to handle, but
2192 it hardly ever occurs in practice.
b8698a0f 2193
50654f6c
ZD
2194 The only exception is the case when one of operands is invariant.
2195 For example pentium 3 generates comparisons like
2196 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we
2197 definitely do not want this prevent the optimization. */
2198 comp_mode = iv0->extend_mode;
2199 if (GET_MODE_BITSIZE (comp_mode) < GET_MODE_BITSIZE (iv1->extend_mode))
2200 comp_mode = iv1->extend_mode;
2201
2202 if (iv0->extend_mode != comp_mode)
2203 {
2204 if (iv0->mode != iv0->extend_mode
2205 || iv0->step != const0_rtx)
2206 return false;
2207
2208 iv0->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2209 comp_mode, iv0->base, iv0->mode);
2210 iv0->extend_mode = comp_mode;
2211 }
2212
2213 if (iv1->extend_mode != comp_mode)
2214 {
2215 if (iv1->mode != iv1->extend_mode
2216 || iv1->step != const0_rtx)
2217 return false;
2218
2219 iv1->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2220 comp_mode, iv1->base, iv1->mode);
2221 iv1->extend_mode = comp_mode;
2222 }
2223
2224 /* Check that both ivs belong to a range of a single mode. If one of the
2225 operands is an invariant, we may need to shorten it into the common
2226 mode. */
2227 if (iv0->mode == iv0->extend_mode
2228 && iv0->step == const0_rtx
2229 && iv0->mode != iv1->mode)
2230 shorten_into_mode (iv0, iv1->mode, cond, signed_p, desc);
2231
2232 if (iv1->mode == iv1->extend_mode
2233 && iv1->step == const0_rtx
2234 && iv0->mode != iv1->mode)
2235 shorten_into_mode (iv1, iv0->mode, swap_condition (cond), signed_p, desc);
2236
2237 if (iv0->mode != iv1->mode)
2238 return false;
2239
2240 desc->mode = iv0->mode;
2241 desc->signed_p = signed_p;
2242
2243 return true;
2244}
2245
daa57386
RG
2246/* Tries to estimate the maximum number of iterations in LOOP, and return the
2247 result. This function is called from iv_number_of_iterations with
28af33b0
BS
2248 a number of fields in DESC already filled in. OLD_NITER is the original
2249 expression for the number of iterations, before we tried to simplify it. */
c67dc1a3
BS
2250
2251static unsigned HOST_WIDEST_INT
28af33b0 2252determine_max_iter (struct loop *loop, struct niter_desc *desc, rtx old_niter)
c67dc1a3
BS
2253{
2254 rtx niter = desc->niter_expr;
60683019 2255 rtx mmin, mmax, cmp;
c67dc1a3 2256 unsigned HOST_WIDEST_INT nmax, inc;
43ffba00
JH
2257 unsigned HOST_WIDEST_INT andmax = 0;
2258
2259 /* We used to look for constant operand 0 of AND,
2260 but canonicalization should always make this impossible. */
2261 gcc_checking_assert (GET_CODE (niter) != AND
2262 || !CONST_INT_P (XEXP (niter, 0)));
c67dc1a3
BS
2263
2264 if (GET_CODE (niter) == AND
43ffba00 2265 && CONST_INT_P (XEXP (niter, 1)))
c67dc1a3 2266 {
43ffba00
JH
2267 andmax = UINTVAL (XEXP (niter, 1));
2268 niter = XEXP (niter, 0);
c67dc1a3
BS
2269 }
2270
2271 get_mode_bounds (desc->mode, desc->signed_p, desc->mode, &mmin, &mmax);
2272 nmax = INTVAL (mmax) - INTVAL (mmin);
2273
2274 if (GET_CODE (niter) == UDIV)
2275 {
481683e1 2276 if (!CONST_INT_P (XEXP (niter, 1)))
daa57386 2277 return nmax;
c67dc1a3
BS
2278 inc = INTVAL (XEXP (niter, 1));
2279 niter = XEXP (niter, 0);
2280 }
2281 else
2282 inc = 1;
2283
60683019
BS
2284 /* We could use a binary search here, but for now improving the upper
2285 bound by just one eliminates one important corner case. */
28af33b0
BS
2286 cmp = simplify_gen_relational (desc->signed_p ? LT : LTU, VOIDmode,
2287 desc->mode, old_niter, mmax);
60683019
BS
2288 simplify_using_initial_values (loop, UNKNOWN, &cmp);
2289 if (cmp == const_true_rtx)
c67dc1a3 2290 {
60683019 2291 nmax--;
c67dc1a3 2292
60683019
BS
2293 if (dump_file)
2294 fprintf (dump_file, ";; improved upper bound by one.\n");
c67dc1a3 2295 }
43ffba00
JH
2296 nmax /= inc;
2297 if (andmax)
2298 nmax = MIN (nmax, andmax);
2299 if (dump_file)
2300 fprintf (dump_file, ";; Determined upper bound "HOST_WIDEST_INT_PRINT_DEC".\n",
2301 nmax);
2302 return nmax;
c67dc1a3
BS
2303}
2304
50654f6c
ZD
2305/* Computes number of iterations of the CONDITION in INSN in LOOP and stores
2306 the result into DESC. Very similar to determine_number_of_iterations
2307 (basically its rtl version), complicated by things like subregs. */
2308
e3715ebd 2309static void
50654f6c
ZD
2310iv_number_of_iterations (struct loop *loop, rtx insn, rtx condition,
2311 struct niter_desc *desc)
2312{
03fd2215 2313 rtx op0, op1, delta, step, bound, may_xform, tmp, tmp0, tmp1;
50654f6c 2314 struct rtx_iv iv0, iv1, tmp_iv;
0aea6467 2315 rtx assumption, may_not_xform;
50654f6c
ZD
2316 enum rtx_code cond;
2317 enum machine_mode mode, comp_mode;
0aea6467 2318 rtx mmin, mmax, mode_mmin, mode_mmax;
daa57386 2319 unsigned HOST_WIDEST_INT s, size, d, inv, max;
6b9b7b4c 2320 HOST_WIDEST_INT up, down, inc, step_val;
50654f6c 2321 int was_sharp = false;
fe3f617f 2322 rtx old_niter;
6b9b7b4c 2323 bool step_is_pow2;
50654f6c
ZD
2324
2325 /* The meaning of these assumptions is this:
2326 if !assumptions
2327 then the rest of information does not have to be valid
2328 if noloop_assumptions then the loop does not roll
2329 if infinite then this exit is never used */
2330
2331 desc->assumptions = NULL_RTX;
2332 desc->noloop_assumptions = NULL_RTX;
2333 desc->infinite = NULL_RTX;
2334 desc->simple_p = true;
2335
2336 desc->const_iter = false;
2337 desc->niter_expr = NULL_RTX;
50654f6c
ZD
2338
2339 cond = GET_CODE (condition);
b5e624c6 2340 gcc_assert (COMPARISON_P (condition));
50654f6c
ZD
2341
2342 mode = GET_MODE (XEXP (condition, 0));
2343 if (mode == VOIDmode)
2344 mode = GET_MODE (XEXP (condition, 1));
2345 /* The constant comparisons should be folded. */
b5e624c6 2346 gcc_assert (mode != VOIDmode);
50654f6c
ZD
2347
2348 /* We only handle integers or pointers. */
2349 if (GET_MODE_CLASS (mode) != MODE_INT
2350 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
2351 goto fail;
2352
2353 op0 = XEXP (condition, 0);
03fd2215 2354 if (!iv_analyze (insn, op0, &iv0))
50654f6c
ZD
2355 goto fail;
2356 if (iv0.extend_mode == VOIDmode)
2357 iv0.mode = iv0.extend_mode = mode;
b8698a0f 2358
50654f6c 2359 op1 = XEXP (condition, 1);
03fd2215 2360 if (!iv_analyze (insn, op1, &iv1))
50654f6c
ZD
2361 goto fail;
2362 if (iv1.extend_mode == VOIDmode)
2363 iv1.mode = iv1.extend_mode = mode;
2364
2365 if (GET_MODE_BITSIZE (iv0.extend_mode) > HOST_BITS_PER_WIDE_INT
2366 || GET_MODE_BITSIZE (iv1.extend_mode) > HOST_BITS_PER_WIDE_INT)
2367 goto fail;
2368
2369 /* Check condition and normalize it. */
2370
2371 switch (cond)
2372 {
2373 case GE:
2374 case GT:
2375 case GEU:
2376 case GTU:
2377 tmp_iv = iv0; iv0 = iv1; iv1 = tmp_iv;
2378 cond = swap_condition (cond);
2379 break;
2380 case NE:
2381 case LE:
2382 case LEU:
2383 case LT:
2384 case LTU:
2385 break;
2386 default:
2387 goto fail;
2388 }
2389
2390 /* Handle extends. This is relatively nontrivial, so we only try in some
2391 easy cases, when we can canonicalize the ivs (possibly by adding some
2392 assumptions) to shape subreg (base + i * step). This function also fills
2393 in desc->mode and desc->signed_p. */
2394
2395 if (!canonicalize_iv_subregs (&iv0, &iv1, cond, desc))
2396 goto fail;
2397
2398 comp_mode = iv0.extend_mode;
2399 mode = iv0.mode;
2400 size = GET_MODE_BITSIZE (mode);
0aea6467 2401 get_mode_bounds (mode, (cond == LE || cond == LT), comp_mode, &mmin, &mmax);
6c3b938d
RS
2402 mode_mmin = lowpart_subreg (mode, mmin, comp_mode);
2403 mode_mmax = lowpart_subreg (mode, mmax, comp_mode);
50654f6c 2404
481683e1 2405 if (!CONST_INT_P (iv0.step) || !CONST_INT_P (iv1.step))
50654f6c
ZD
2406 goto fail;
2407
2408 /* We can take care of the case of two induction variables chasing each other
2409 if the test is NE. I have never seen a loop using it, but still it is
2410 cool. */
2411 if (iv0.step != const0_rtx && iv1.step != const0_rtx)
2412 {
2413 if (cond != NE)
2414 goto fail;
2415
2416 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2417 iv1.step = const0_rtx;
2418 }
2419
3461a16e
JJ
2420 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2421 iv1.step = lowpart_subreg (mode, iv1.step, comp_mode);
2422
50654f6c
ZD
2423 /* This is either infinite loop or the one that ends immediately, depending
2424 on initial values. Unswitching should remove this kind of conditions. */
2425 if (iv0.step == const0_rtx && iv1.step == const0_rtx)
2426 goto fail;
2427
6b9b7b4c
ZD
2428 if (cond != NE)
2429 {
2430 if (iv0.step == const0_rtx)
2431 step_val = -INTVAL (iv1.step);
2432 else
6e17f9c1 2433 step_val = INTVAL (iv0.step);
6b9b7b4c
ZD
2434
2435 /* Ignore loops of while (i-- < 10) type. */
2436 if (step_val < 0)
2437 goto fail;
2438
2439 step_is_pow2 = !(step_val & (step_val - 1));
2440 }
2441 else
2442 {
2443 /* We do not care about whether the step is power of two in this
2444 case. */
2445 step_is_pow2 = false;
2446 step_val = 0;
2447 }
50654f6c
ZD
2448
2449 /* Some more condition normalization. We must record some assumptions
2450 due to overflows. */
2451 switch (cond)
2452 {
2453 case LT:
2454 case LTU:
2455 /* We want to take care only of non-sharp relationals; this is easy,
2456 as in cases the overflow would make the transformation unsafe
2457 the loop does not roll. Seemingly it would make more sense to want
2458 to take care of sharp relationals instead, as NE is more similar to
2459 them, but the problem is that here the transformation would be more
2460 difficult due to possibly infinite loops. */
2461 if (iv0.step == const0_rtx)
2462 {
6c3b938d 2463 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
0aea6467
ZD
2464 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2465 mode_mmax);
50654f6c 2466 if (assumption == const_true_rtx)
4fbe4f91 2467 goto zero_iter_simplify;
50654f6c
ZD
2468 iv0.base = simplify_gen_binary (PLUS, comp_mode,
2469 iv0.base, const1_rtx);
2470 }
2471 else
2472 {
6c3b938d 2473 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
0aea6467
ZD
2474 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2475 mode_mmin);
50654f6c 2476 if (assumption == const_true_rtx)
4fbe4f91 2477 goto zero_iter_simplify;
50654f6c
ZD
2478 iv1.base = simplify_gen_binary (PLUS, comp_mode,
2479 iv1.base, constm1_rtx);
2480 }
2481
2482 if (assumption != const0_rtx)
2483 desc->noloop_assumptions =
2484 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2485 cond = (cond == LT) ? LE : LEU;
2486
2487 /* It will be useful to be able to tell the difference once more in
2488 LE -> NE reduction. */
2489 was_sharp = true;
2490 break;
2491 default: ;
2492 }
2493
2494 /* Take care of trivially infinite loops. */
2495 if (cond != NE)
2496 {
2497 if (iv0.step == const0_rtx)
2498 {
6c3b938d 2499 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
0aea6467 2500 if (rtx_equal_p (tmp, mode_mmin))
50654f6c
ZD
2501 {
2502 desc->infinite =
2503 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
4fbe4f91
ZD
2504 /* Fill in the remaining fields somehow. */
2505 goto zero_iter_simplify;
50654f6c
ZD
2506 }
2507 }
2508 else
2509 {
6c3b938d 2510 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
0aea6467 2511 if (rtx_equal_p (tmp, mode_mmax))
50654f6c
ZD
2512 {
2513 desc->infinite =
2514 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
4fbe4f91
ZD
2515 /* Fill in the remaining fields somehow. */
2516 goto zero_iter_simplify;
50654f6c
ZD
2517 }
2518 }
2519 }
2520
2521 /* If we can we want to take care of NE conditions instead of size
2522 comparisons, as they are much more friendly (most importantly
2523 this takes care of special handling of loops with step 1). We can
2524 do it if we first check that upper bound is greater or equal to
2525 lower bound, their difference is constant c modulo step and that
2526 there is not an overflow. */
2527 if (cond != NE)
2528 {
2529 if (iv0.step == const0_rtx)
2530 step = simplify_gen_unary (NEG, comp_mode, iv1.step, comp_mode);
2531 else
2532 step = iv0.step;
3461a16e 2533 step = lowpart_subreg (mode, step, comp_mode);
50654f6c 2534 delta = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
6c3b938d 2535 delta = lowpart_subreg (mode, delta, comp_mode);
50654f6c
ZD
2536 delta = simplify_gen_binary (UMOD, mode, delta, step);
2537 may_xform = const0_rtx;
0aea6467 2538 may_not_xform = const_true_rtx;
50654f6c 2539
481683e1 2540 if (CONST_INT_P (delta))
50654f6c
ZD
2541 {
2542 if (was_sharp && INTVAL (delta) == INTVAL (step) - 1)
2543 {
2544 /* A special case. We have transformed condition of type
2545 for (i = 0; i < 4; i += 4)
2546 into
2547 for (i = 0; i <= 3; i += 4)
2548 obviously if the test for overflow during that transformation
2549 passed, we cannot overflow here. Most importantly any
2550 loop with sharp end condition and step 1 falls into this
a1105617 2551 category, so handling this case specially is definitely
50654f6c
ZD
2552 worth the troubles. */
2553 may_xform = const_true_rtx;
2554 }
2555 else if (iv0.step == const0_rtx)
2556 {
2557 bound = simplify_gen_binary (PLUS, comp_mode, mmin, step);
2558 bound = simplify_gen_binary (MINUS, comp_mode, bound, delta);
6c3b938d
RS
2559 bound = lowpart_subreg (mode, bound, comp_mode);
2560 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
50654f6c
ZD
2561 may_xform = simplify_gen_relational (cond, SImode, mode,
2562 bound, tmp);
0aea6467
ZD
2563 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2564 SImode, mode,
2565 bound, tmp);
50654f6c
ZD
2566 }
2567 else
2568 {
2569 bound = simplify_gen_binary (MINUS, comp_mode, mmax, step);
2570 bound = simplify_gen_binary (PLUS, comp_mode, bound, delta);
6c3b938d
RS
2571 bound = lowpart_subreg (mode, bound, comp_mode);
2572 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
50654f6c
ZD
2573 may_xform = simplify_gen_relational (cond, SImode, mode,
2574 tmp, bound);
0aea6467
ZD
2575 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2576 SImode, mode,
2577 tmp, bound);
50654f6c
ZD
2578 }
2579 }
2580
2581 if (may_xform != const0_rtx)
2582 {
2583 /* We perform the transformation always provided that it is not
2584 completely senseless. This is OK, as we would need this assumption
2585 to determine the number of iterations anyway. */
2586 if (may_xform != const_true_rtx)
0aea6467
ZD
2587 {
2588 /* If the step is a power of two and the final value we have
2589 computed overflows, the cycle is infinite. Otherwise it
2590 is nontrivial to compute the number of iterations. */
6b9b7b4c 2591 if (step_is_pow2)
0aea6467
ZD
2592 desc->infinite = alloc_EXPR_LIST (0, may_not_xform,
2593 desc->infinite);
2594 else
2595 desc->assumptions = alloc_EXPR_LIST (0, may_xform,
2596 desc->assumptions);
2597 }
50654f6c
ZD
2598
2599 /* We are going to lose some information about upper bound on
2600 number of iterations in this step, so record the information
2601 here. */
2602 inc = INTVAL (iv0.step) - INTVAL (iv1.step);
481683e1 2603 if (CONST_INT_P (iv1.base))
50654f6c
ZD
2604 up = INTVAL (iv1.base);
2605 else
0aea6467 2606 up = INTVAL (mode_mmax) - inc;
481683e1 2607 down = INTVAL (CONST_INT_P (iv0.base)
0aea6467
ZD
2608 ? iv0.base
2609 : mode_mmin);
daa57386 2610 max = (up - down) / inc + 1;
bcd8d322
JH
2611 if (!desc->infinite
2612 && !desc->assumptions)
2613 record_niter_bound (loop, double_int::from_uhwi (max),
2614 false, true);
50654f6c
ZD
2615
2616 if (iv0.step == const0_rtx)
2617 {
2618 iv0.base = simplify_gen_binary (PLUS, comp_mode, iv0.base, delta);
2619 iv0.base = simplify_gen_binary (MINUS, comp_mode, iv0.base, step);
2620 }
2621 else
2622 {
2623 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, delta);
2624 iv1.base = simplify_gen_binary (PLUS, comp_mode, iv1.base, step);
2625 }
2626
6c3b938d
RS
2627 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2628 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
50654f6c
ZD
2629 assumption = simplify_gen_relational (reverse_condition (cond),
2630 SImode, mode, tmp0, tmp1);
2631 if (assumption == const_true_rtx)
4fbe4f91 2632 goto zero_iter_simplify;
50654f6c
ZD
2633 else if (assumption != const0_rtx)
2634 desc->noloop_assumptions =
2635 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2636 cond = NE;
2637 }
2638 }
2639
2640 /* Count the number of iterations. */
2641 if (cond == NE)
2642 {
2643 /* Everything we do here is just arithmetics modulo size of mode. This
2644 makes us able to do more involved computations of number of iterations
2645 than in other cases. First transform the condition into shape
2646 s * i <> c, with s positive. */
2647 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2648 iv0.base = const0_rtx;
2649 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2650 iv1.step = const0_rtx;
2651 if (INTVAL (iv0.step) < 0)
2652 {
2653 iv0.step = simplify_gen_unary (NEG, comp_mode, iv0.step, mode);
2654 iv1.base = simplify_gen_unary (NEG, comp_mode, iv1.base, mode);
2655 }
6c3b938d 2656 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
50654f6c
ZD
2657
2658 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
2659 is infinite. Otherwise, the number of iterations is
2660 (inverse(s/d) * (c/d)) mod (size of mode/d). */
2661 s = INTVAL (iv0.step); d = 1;
2662 while (s % 2 != 1)
2663 {
2664 s /= 2;
2665 d *= 2;
2666 size--;
2667 }
2668 bound = GEN_INT (((unsigned HOST_WIDEST_INT) 1 << (size - 1 ) << 1) - 1);
2669
6c3b938d 2670 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
69a59f0f 2671 tmp = simplify_gen_binary (UMOD, mode, tmp1, gen_int_mode (d, mode));
50654f6c
ZD
2672 assumption = simplify_gen_relational (NE, SImode, mode, tmp, const0_rtx);
2673 desc->infinite = alloc_EXPR_LIST (0, assumption, desc->infinite);
2674
69a59f0f 2675 tmp = simplify_gen_binary (UDIV, mode, tmp1, gen_int_mode (d, mode));
0aea6467 2676 inv = inverse (s, size);
bb80db7b 2677 tmp = simplify_gen_binary (MULT, mode, tmp, gen_int_mode (inv, mode));
50654f6c
ZD
2678 desc->niter_expr = simplify_gen_binary (AND, mode, tmp, bound);
2679 }
2680 else
2681 {
2682 if (iv1.step == const0_rtx)
2683 /* Condition in shape a + s * i <= b
2684 We must know that b + s does not overflow and a <= b + s and then we
2685 can compute number of iterations as (b + s - a) / s. (It might
2686 seem that we in fact could be more clever about testing the b + s
2687 overflow condition using some information about b - a mod s,
2688 but it was already taken into account during LE -> NE transform). */
2689 {
2690 step = iv0.step;
6c3b938d
RS
2691 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2692 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
50654f6c 2693
0aea6467 2694 bound = simplify_gen_binary (MINUS, mode, mode_mmax,
6c3b938d
RS
2695 lowpart_subreg (mode, step,
2696 comp_mode));
6b9b7b4c
ZD
2697 if (step_is_pow2)
2698 {
2699 rtx t0, t1;
2700
2701 /* If s is power of 2, we know that the loop is infinite if
2702 a % s <= b % s and b + s overflows. */
2703 assumption = simplify_gen_relational (reverse_condition (cond),
2704 SImode, mode,
2705 tmp1, bound);
2706
2707 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2708 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2709 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2710 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2711 desc->infinite =
2712 alloc_EXPR_LIST (0, assumption, desc->infinite);
2713 }
2714 else
2715 {
2716 assumption = simplify_gen_relational (cond, SImode, mode,
2717 tmp1, bound);
2718 desc->assumptions =
2719 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2720 }
50654f6c
ZD
2721
2722 tmp = simplify_gen_binary (PLUS, comp_mode, iv1.base, iv0.step);
6c3b938d 2723 tmp = lowpart_subreg (mode, tmp, comp_mode);
50654f6c
ZD
2724 assumption = simplify_gen_relational (reverse_condition (cond),
2725 SImode, mode, tmp0, tmp);
2726
2727 delta = simplify_gen_binary (PLUS, mode, tmp1, step);
2728 delta = simplify_gen_binary (MINUS, mode, delta, tmp0);
2729 }
2730 else
2731 {
2732 /* Condition in shape a <= b - s * i
2733 We must know that a - s does not overflow and a - s <= b and then
2734 we can again compute number of iterations as (b - (a - s)) / s. */
2735 step = simplify_gen_unary (NEG, mode, iv1.step, mode);
6c3b938d
RS
2736 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2737 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
50654f6c 2738
c9eb8097 2739 bound = simplify_gen_binary (PLUS, mode, mode_mmin,
6c3b938d 2740 lowpart_subreg (mode, step, comp_mode));
6b9b7b4c
ZD
2741 if (step_is_pow2)
2742 {
2743 rtx t0, t1;
2744
2745 /* If s is power of 2, we know that the loop is infinite if
2746 a % s <= b % s and a - s overflows. */
2747 assumption = simplify_gen_relational (reverse_condition (cond),
2748 SImode, mode,
2749 bound, tmp0);
2750
2751 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2752 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2753 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2754 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2755 desc->infinite =
2756 alloc_EXPR_LIST (0, assumption, desc->infinite);
2757 }
2758 else
2759 {
2760 assumption = simplify_gen_relational (cond, SImode, mode,
2761 bound, tmp0);
2762 desc->assumptions =
2763 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2764 }
50654f6c
ZD
2765
2766 tmp = simplify_gen_binary (PLUS, comp_mode, iv0.base, iv1.step);
6c3b938d 2767 tmp = lowpart_subreg (mode, tmp, comp_mode);
50654f6c
ZD
2768 assumption = simplify_gen_relational (reverse_condition (cond),
2769 SImode, mode,
2770 tmp, tmp1);
2771 delta = simplify_gen_binary (MINUS, mode, tmp0, step);
2772 delta = simplify_gen_binary (MINUS, mode, tmp1, delta);
2773 }
2774 if (assumption == const_true_rtx)
4fbe4f91 2775 goto zero_iter_simplify;
50654f6c
ZD
2776 else if (assumption != const0_rtx)
2777 desc->noloop_assumptions =
2778 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2779 delta = simplify_gen_binary (UDIV, mode, delta, step);
2780 desc->niter_expr = delta;
2781 }
2782
fe3f617f
ZD
2783 old_niter = desc->niter_expr;
2784
50654f6c
ZD
2785 simplify_using_initial_values (loop, AND, &desc->assumptions);
2786 if (desc->assumptions
2787 && XEXP (desc->assumptions, 0) == const0_rtx)
2788 goto fail;
2789 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2790 simplify_using_initial_values (loop, IOR, &desc->infinite);
f822d252 2791 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
50654f6c
ZD
2792
2793 /* Rerun the simplification. Consider code (created by copying loop headers)
2794
2795 i = 0;
2796
2797 if (0 < n)
2798 {
2799 do
2800 {
2801 i++;
2802 } while (i < n);
2803 }
2804
2805 The first pass determines that i = 0, the second pass uses it to eliminate
2806 noloop assumption. */
2807
2808 simplify_using_initial_values (loop, AND, &desc->assumptions);
2809 if (desc->assumptions
2810 && XEXP (desc->assumptions, 0) == const0_rtx)
2811 goto fail;
2812 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2813 simplify_using_initial_values (loop, IOR, &desc->infinite);
f822d252 2814 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
50654f6c 2815
689ba89d
ZD
2816 if (desc->noloop_assumptions
2817 && XEXP (desc->noloop_assumptions, 0) == const_true_rtx)
2818 goto zero_iter;
2819
481683e1 2820 if (CONST_INT_P (desc->niter_expr))
50654f6c
ZD
2821 {
2822 unsigned HOST_WIDEST_INT val = INTVAL (desc->niter_expr);
2823
2824 desc->const_iter = true;
e3a8f1fa 2825 desc->niter = val & GET_MODE_MASK (desc->mode);
bcd8d322
JH
2826 if (!desc->infinite
2827 && !desc->assumptions)
2828 record_niter_bound (loop, double_int::from_uhwi (desc->niter),
2829 false, true);
50654f6c 2830 }
fe3f617f
ZD
2831 else
2832 {
daa57386 2833 max = determine_max_iter (loop, desc, old_niter);
8386a7ea
JH
2834 if (!max)
2835 goto zero_iter_simplify;
bcd8d322
JH
2836 if (!desc->infinite
2837 && !desc->assumptions)
2838 record_niter_bound (loop, double_int::from_uhwi (max),
2839 false, true);
fe3f617f
ZD
2840
2841 /* simplify_using_initial_values does a copy propagation on the registers
2842 in the expression for the number of iterations. This prolongs life
2843 ranges of registers and increases register pressure, and usually
2844 brings no gain (and if it happens to do, the cse pass will take care
2845 of it anyway). So prevent this behavior, unless it enabled us to
2846 derive that the number of iterations is a constant. */
2847 desc->niter_expr = old_niter;
2848 }
50654f6c
ZD
2849
2850 return;
2851
4fbe4f91
ZD
2852zero_iter_simplify:
2853 /* Simplify the assumptions. */
2854 simplify_using_initial_values (loop, AND, &desc->assumptions);
2855 if (desc->assumptions
2856 && XEXP (desc->assumptions, 0) == const0_rtx)
2857 goto fail;
2858 simplify_using_initial_values (loop, IOR, &desc->infinite);
50654f6c 2859
4fbe4f91 2860 /* Fallthru. */
50654f6c
ZD
2861zero_iter:
2862 desc->const_iter = true;
2863 desc->niter = 0;
e3a8f1fa
JH
2864 record_niter_bound (loop, double_int_zero,
2865 true, true);
4fbe4f91 2866 desc->noloop_assumptions = NULL_RTX;
50654f6c
ZD
2867 desc->niter_expr = const0_rtx;
2868 return;
4fbe4f91
ZD
2869
2870fail:
2871 desc->simple_p = false;
2872 return;
50654f6c
ZD
2873}
2874
2875/* Checks whether E is a simple exit from LOOP and stores its description
f2dca510 2876 into DESC. */
50654f6c
ZD
2877
2878static void
2879check_simple_exit (struct loop *loop, edge e, struct niter_desc *desc)
2880{
2881 basic_block exit_bb;
2882 rtx condition, at;
628f6a4e 2883 edge ein;
50654f6c
ZD
2884
2885 exit_bb = e->src;
2886 desc->simple_p = false;
2887
2888 /* It must belong directly to the loop. */
2889 if (exit_bb->loop_father != loop)
2890 return;
2891
2892 /* It must be tested (at least) once during any iteration. */
2893 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit_bb))
2894 return;
2895
2896 /* It must end in a simple conditional jump. */
2897 if (!any_condjump_p (BB_END (exit_bb)))
2898 return;
2899
628f6a4e
BE
2900 ein = EDGE_SUCC (exit_bb, 0);
2901 if (ein == e)
2902 ein = EDGE_SUCC (exit_bb, 1);
50654f6c
ZD
2903
2904 desc->out_edge = e;
628f6a4e 2905 desc->in_edge = ein;
50654f6c
ZD
2906
2907 /* Test whether the condition is suitable. */
628f6a4e 2908 if (!(condition = get_condition (BB_END (ein->src), &at, false, false)))
50654f6c
ZD
2909 return;
2910
628f6a4e 2911 if (ein->flags & EDGE_FALLTHRU)
50654f6c
ZD
2912 {
2913 condition = reversed_condition (condition);
2914 if (!condition)
2915 return;
2916 }
2917
2918 /* Check that we are able to determine number of iterations and fill
2919 in information about it. */
2920 iv_number_of_iterations (loop, at, condition, desc);
2921}
2922
f2dca510 2923/* Finds a simple exit of LOOP and stores its description into DESC. */
50654f6c
ZD
2924
2925void
2926find_simple_exit (struct loop *loop, struct niter_desc *desc)
2927{
2928 unsigned i;
2929 basic_block *body;
2930 edge e;
2931 struct niter_desc act;
2932 bool any = false;
628f6a4e 2933 edge_iterator ei;
50654f6c
ZD
2934
2935 desc->simple_p = false;
2936 body = get_loop_body (loop);
2937
2938 for (i = 0; i < loop->num_nodes; i++)
2939 {
628f6a4e 2940 FOR_EACH_EDGE (e, ei, body[i]->succs)
50654f6c
ZD
2941 {
2942 if (flow_bb_inside_loop_p (loop, e->dest))
2943 continue;
b8698a0f 2944
50654f6c
ZD
2945 check_simple_exit (loop, e, &act);
2946 if (!act.simple_p)
2947 continue;
2948
50654f6c
ZD
2949 if (!any)
2950 any = true;
4fbe4f91
ZD
2951 else
2952 {
2953 /* Prefer constant iterations; the less the better. */
2954 if (!act.const_iter
2955 || (desc->const_iter && act.niter >= desc->niter))
2956 continue;
2957
2958 /* Also if the actual exit may be infinite, while the old one
2959 not, prefer the old one. */
2960 if (act.infinite && !desc->infinite)
2961 continue;
2962 }
b8698a0f 2963
50654f6c
ZD
2964 *desc = act;
2965 }
2966 }
2967
c263766c 2968 if (dump_file)
50654f6c
ZD
2969 {
2970 if (desc->simple_p)
2971 {
c263766c
RH
2972 fprintf (dump_file, "Loop %d is simple:\n", loop->num);
2973 fprintf (dump_file, " simple exit %d -> %d\n",
50654f6c
ZD
2974 desc->out_edge->src->index,
2975 desc->out_edge->dest->index);
2976 if (desc->assumptions)
2977 {
c263766c
RH
2978 fprintf (dump_file, " assumptions: ");
2979 print_rtl (dump_file, desc->assumptions);
2980 fprintf (dump_file, "\n");
50654f6c
ZD
2981 }
2982 if (desc->noloop_assumptions)
2983 {
c263766c
RH
2984 fprintf (dump_file, " does not roll if: ");
2985 print_rtl (dump_file, desc->noloop_assumptions);
2986 fprintf (dump_file, "\n");
50654f6c
ZD
2987 }
2988 if (desc->infinite)
2989 {
c263766c
RH
2990 fprintf (dump_file, " infinite if: ");
2991 print_rtl (dump_file, desc->infinite);
2992 fprintf (dump_file, "\n");
50654f6c
ZD
2993 }
2994
c263766c
RH
2995 fprintf (dump_file, " number of iterations: ");
2996 print_rtl (dump_file, desc->niter_expr);
2997 fprintf (dump_file, "\n");
50654f6c 2998
e3a8f1fa 2999 fprintf (dump_file, " upper bound: %li\n",
1ef88893 3000 (long)get_max_loop_iterations_int (loop));
e3a8f1fa 3001 fprintf (dump_file, " realistic bound: %li\n",
1ef88893 3002 (long)get_estimated_loop_iterations_int (loop));
50654f6c
ZD
3003 }
3004 else
c263766c 3005 fprintf (dump_file, "Loop %d is not simple.\n", loop->num);
50654f6c
ZD
3006 }
3007
3008 free (body);
3009}
3010
3011/* Creates a simple loop description of LOOP if it was not computed
3012 already. */
3013
3014struct niter_desc *
3015get_simple_loop_desc (struct loop *loop)
3016{
3017 struct niter_desc *desc = simple_loop_desc (loop);
3018
3019 if (desc)
3020 return desc;
3021
1242bc9d
R
3022 /* At least desc->infinite is not always initialized by
3023 find_simple_loop_exit. */
ef23e6a2 3024 desc = ggc_alloc_cleared_niter_desc ();
50654f6c
ZD
3025 iv_analysis_loop_init (loop);
3026 find_simple_exit (loop, desc);
ef23e6a2 3027 loop->simple_loop_desc = desc;
50654f6c 3028
f9cc1a70
PB
3029 if (desc->simple_p && (desc->assumptions || desc->infinite))
3030 {
b8698a0f 3031 const char *wording;
f9cc1a70 3032
b8698a0f 3033 /* Assume that no overflow happens and that the loop is finite.
f9cc1a70
PB
3034 We already warned at the tree level if we ran optimizations there. */
3035 if (!flag_tree_loop_optimize && warn_unsafe_loop_optimizations)
3036 {
3037 if (desc->infinite)
3038 {
b8698a0f 3039 wording =
f9cc1a70
PB
3040 flag_unsafe_loop_optimizations
3041 ? N_("assuming that the loop is not infinite")
3042 : N_("cannot optimize possibly infinite loops");
3043 warning (OPT_Wunsafe_loop_optimizations, "%s",
3044 gettext (wording));
3045 }
3046 if (desc->assumptions)
3047 {
b8698a0f 3048 wording =
f9cc1a70
PB
3049 flag_unsafe_loop_optimizations
3050 ? N_("assuming that the loop counter does not overflow")
3051 : N_("cannot optimize loop, the loop counter may overflow");
3052 warning (OPT_Wunsafe_loop_optimizations, "%s",
3053 gettext (wording));
3054 }
3055 }
3056
3057 if (flag_unsafe_loop_optimizations)
3058 {
3059 desc->assumptions = NULL_RTX;
3060 desc->infinite = NULL_RTX;
3061 }
3062 }
3063
50654f6c
ZD
3064 return desc;
3065}
3066
3067/* Releases simple loop description for LOOP. */
3068
3069void
3070free_simple_loop_desc (struct loop *loop)
3071{
3072 struct niter_desc *desc = simple_loop_desc (loop);
3073
3074 if (!desc)
3075 return;
3076
ef23e6a2
RB
3077 ggc_free (desc);
3078 loop->simple_loop_desc = NULL;
50654f6c 3079}