]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/lower-subreg.c
re PR fortran/68426 (Simplification of SPREAD with a derived type element is unimplem...
[thirdparty/gcc.git] / gcc / lower-subreg.c
CommitLineData
e53a16e7 1/* Decompose multiword subregs.
a5544970 2 Copyright (C) 2007-2019 Free Software Foundation, Inc.
e53a16e7
ILT
3 Contributed by Richard Henderson <rth@redhat.com>
4 Ian Lance Taylor <iant@google.com>
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
e53a16e7
ILT
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
e53a16e7
ILT
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
c7131fb2 25#include "backend.h"
e53a16e7 26#include "rtl.h"
957060b5
AM
27#include "tree.h"
28#include "cfghooks.h"
c7131fb2 29#include "df.h"
4d0cdd0c 30#include "memmodel.h"
e53a16e7 31#include "tm_p.h"
957060b5 32#include "expmed.h"
e53a16e7 33#include "insn-config.h"
957060b5
AM
34#include "emit-rtl.h"
35#include "recog.h"
60393bbc
AM
36#include "cfgrtl.h"
37#include "cfgbuild.h"
8d074192 38#include "dce.h"
e53a16e7 39#include "expr.h"
e53a16e7 40#include "tree-pass.h"
af4ba423 41#include "lower-subreg.h"
cf55cb6a 42#include "rtl-iter.h"
99e1629f 43#include "target.h"
e53a16e7 44
e53a16e7
ILT
45
46/* Decompose multi-word pseudo-registers into individual
af4ba423
KZ
47 pseudo-registers when possible and profitable. This is possible
48 when all the uses of a multi-word register are via SUBREG, or are
49 copies of the register to another location. Breaking apart the
50 register permits more CSE and permits better register allocation.
51 This is profitable if the machine does not have move instructions
52 to do this.
53
54 This pass only splits moves with modes that are wider than
d7fde18c
JJ
55 word_mode and ASHIFTs, LSHIFTRTs, ASHIFTRTs and ZERO_EXTENDs with
56 integer modes that are twice the width of word_mode. The latter
57 could be generalized if there was a need to do this, but the trend in
af4ba423
KZ
58 architectures is to not need this.
59
60 There are two useful preprocessor defines for use by maintainers:
61
62 #define LOG_COSTS 1
63
64 if you wish to see the actual cost estimates that are being used
65 for each mode wider than word mode and the cost estimates for zero
66 extension and the shifts. This can be useful when port maintainers
67 are tuning insn rtx costs.
68
69 #define FORCE_LOWERING 1
70
71 if you wish to test the pass with all the transformation forced on.
72 This can be useful for finding bugs in the transformations. */
73
74#define LOG_COSTS 0
75#define FORCE_LOWERING 0
e53a16e7
ILT
76
77/* Bit N in this bitmap is set if regno N is used in a context in
78 which we can decompose it. */
79static bitmap decomposable_context;
80
81/* Bit N in this bitmap is set if regno N is used in a context in
82 which it can not be decomposed. */
83static bitmap non_decomposable_context;
84
402464a0
BS
85/* Bit N in this bitmap is set if regno N is used in a subreg
86 which changes the mode but not the size. This typically happens
87 when the register accessed as a floating-point value; we want to
88 avoid generating accesses to its subwords in integer modes. */
89static bitmap subreg_context;
90
e53a16e7
ILT
91/* Bit N in the bitmap in element M of this array is set if there is a
92 copy from reg M to reg N. */
9771b263 93static vec<bitmap> reg_copy_graph;
e53a16e7 94
af4ba423
KZ
95struct target_lower_subreg default_target_lower_subreg;
96#if SWITCHABLE_TARGET
97struct target_lower_subreg *this_target_lower_subreg
98 = &default_target_lower_subreg;
99#endif
100
101#define twice_word_mode \
102 this_target_lower_subreg->x_twice_word_mode
103#define choices \
104 this_target_lower_subreg->x_choices
105
8536340f
RS
106/* Return true if MODE is a mode we know how to lower. When returning true,
107 store its byte size in *BYTES and its word size in *WORDS. */
108
109static inline bool
110interesting_mode_p (machine_mode mode, unsigned int *bytes,
111 unsigned int *words)
112{
cf098191
RS
113 if (!GET_MODE_SIZE (mode).is_constant (bytes))
114 return false;
8536340f
RS
115 *words = CEIL (*bytes, UNITS_PER_WORD);
116 return true;
117}
118
af4ba423
KZ
119/* RTXes used while computing costs. */
120struct cost_rtxes {
121 /* Source and target registers. */
122 rtx source;
123 rtx target;
124
125 /* A twice_word_mode ZERO_EXTEND of SOURCE. */
126 rtx zext;
127
128 /* A shift of SOURCE. */
129 rtx shift;
130
131 /* A SET of TARGET. */
132 rtx set;
133};
134
135/* Return the cost of a CODE shift in mode MODE by OP1 bits, using the
136 rtxes in RTXES. SPEED_P selects between the speed and size cost. */
137
138static int
139shift_cost (bool speed_p, struct cost_rtxes *rtxes, enum rtx_code code,
ef4bddc2 140 machine_mode mode, int op1)
af4ba423 141{
af4ba423
KZ
142 PUT_CODE (rtxes->shift, code);
143 PUT_MODE (rtxes->shift, mode);
144 PUT_MODE (rtxes->source, mode);
abd3c800 145 XEXP (rtxes->shift, 1) = gen_int_shift_amount (mode, op1);
e548c9df 146 return set_src_cost (rtxes->shift, mode, speed_p);
af4ba423
KZ
147}
148
149/* For each X in the range [0, BITS_PER_WORD), set SPLITTING[X]
150 to true if it is profitable to split a double-word CODE shift
151 of X + BITS_PER_WORD bits. SPEED_P says whether we are testing
152 for speed or size profitability.
153
154 Use the rtxes in RTXES to calculate costs. WORD_MOVE_ZERO_COST is
155 the cost of moving zero into a word-mode register. WORD_MOVE_COST
156 is the cost of moving between word registers. */
157
158static void
159compute_splitting_shift (bool speed_p, struct cost_rtxes *rtxes,
160 bool *splitting, enum rtx_code code,
161 int word_move_zero_cost, int word_move_cost)
162{
d7fde18c 163 int wide_cost, narrow_cost, upper_cost, i;
af4ba423
KZ
164
165 for (i = 0; i < BITS_PER_WORD; i++)
166 {
167 wide_cost = shift_cost (speed_p, rtxes, code, twice_word_mode,
168 i + BITS_PER_WORD);
169 if (i == 0)
170 narrow_cost = word_move_cost;
171 else
172 narrow_cost = shift_cost (speed_p, rtxes, code, word_mode, i);
173
d7fde18c
JJ
174 if (code != ASHIFTRT)
175 upper_cost = word_move_zero_cost;
176 else if (i == BITS_PER_WORD - 1)
177 upper_cost = word_move_cost;
178 else
179 upper_cost = shift_cost (speed_p, rtxes, code, word_mode,
180 BITS_PER_WORD - 1);
181
af4ba423
KZ
182 if (LOG_COSTS)
183 fprintf (stderr, "%s %s by %d: original cost %d, split cost %d + %d\n",
184 GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (code),
d7fde18c 185 i + BITS_PER_WORD, wide_cost, narrow_cost, upper_cost);
af4ba423 186
d7fde18c 187 if (FORCE_LOWERING || wide_cost >= narrow_cost + upper_cost)
af4ba423
KZ
188 splitting[i] = true;
189 }
190}
191
192/* Compute what we should do when optimizing for speed or size; SPEED_P
193 selects which. Use RTXES for computing costs. */
194
195static void
196compute_costs (bool speed_p, struct cost_rtxes *rtxes)
197{
198 unsigned int i;
199 int word_move_zero_cost, word_move_cost;
200
69523a7c 201 PUT_MODE (rtxes->target, word_mode);
af4ba423 202 SET_SRC (rtxes->set) = CONST0_RTX (word_mode);
69523a7c 203 word_move_zero_cost = set_rtx_cost (rtxes->set, speed_p);
af4ba423
KZ
204
205 SET_SRC (rtxes->set) = rtxes->source;
69523a7c 206 word_move_cost = set_rtx_cost (rtxes->set, speed_p);
af4ba423
KZ
207
208 if (LOG_COSTS)
209 fprintf (stderr, "%s move: from zero cost %d, from reg cost %d\n",
210 GET_MODE_NAME (word_mode), word_move_zero_cost, word_move_cost);
211
212 for (i = 0; i < MAX_MACHINE_MODE; i++)
213 {
ef4bddc2 214 machine_mode mode = (machine_mode) i;
8536340f
RS
215 unsigned int size, factor;
216 if (interesting_mode_p (mode, &size, &factor) && factor > 1)
af4ba423 217 {
8536340f 218 unsigned int mode_move_cost;
af4ba423
KZ
219
220 PUT_MODE (rtxes->target, mode);
221 PUT_MODE (rtxes->source, mode);
69523a7c 222 mode_move_cost = set_rtx_cost (rtxes->set, speed_p);
af4ba423
KZ
223
224 if (LOG_COSTS)
225 fprintf (stderr, "%s move: original cost %d, split cost %d * %d\n",
226 GET_MODE_NAME (mode), mode_move_cost,
227 word_move_cost, factor);
228
229 if (FORCE_LOWERING || mode_move_cost >= word_move_cost * factor)
230 {
231 choices[speed_p].move_modes_to_split[i] = true;
232 choices[speed_p].something_to_do = true;
233 }
234 }
235 }
236
237 /* For the moves and shifts, the only case that is checked is one
238 where the mode of the target is an integer mode twice the width
239 of the word_mode.
240
241 If it is not profitable to split a double word move then do not
242 even consider the shifts or the zero extension. */
243 if (choices[speed_p].move_modes_to_split[(int) twice_word_mode])
244 {
245 int zext_cost;
246
247 /* The only case here to check to see if moving the upper part with a
248 zero is cheaper than doing the zext itself. */
af4ba423 249 PUT_MODE (rtxes->source, word_mode);
e548c9df 250 zext_cost = set_src_cost (rtxes->zext, twice_word_mode, speed_p);
af4ba423
KZ
251
252 if (LOG_COSTS)
253 fprintf (stderr, "%s %s: original cost %d, split cost %d + %d\n",
254 GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (ZERO_EXTEND),
255 zext_cost, word_move_cost, word_move_zero_cost);
256
257 if (FORCE_LOWERING || zext_cost >= word_move_cost + word_move_zero_cost)
258 choices[speed_p].splitting_zext = true;
259
260 compute_splitting_shift (speed_p, rtxes,
261 choices[speed_p].splitting_ashift, ASHIFT,
262 word_move_zero_cost, word_move_cost);
263 compute_splitting_shift (speed_p, rtxes,
264 choices[speed_p].splitting_lshiftrt, LSHIFTRT,
265 word_move_zero_cost, word_move_cost);
d7fde18c
JJ
266 compute_splitting_shift (speed_p, rtxes,
267 choices[speed_p].splitting_ashiftrt, ASHIFTRT,
268 word_move_zero_cost, word_move_cost);
af4ba423
KZ
269 }
270}
271
272/* Do one-per-target initialisation. This involves determining
273 which operations on the machine are profitable. If none are found,
274 then the pass just returns when called. */
275
276void
277init_lower_subreg (void)
278{
279 struct cost_rtxes rtxes;
280
281 memset (this_target_lower_subreg, 0, sizeof (*this_target_lower_subreg));
282
490d0f6c 283 twice_word_mode = GET_MODE_2XWIDER_MODE (word_mode).require ();
af4ba423 284
c3dc5e66
RS
285 rtxes.target = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
286 rtxes.source = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
f7df4a84 287 rtxes.set = gen_rtx_SET (rtxes.target, rtxes.source);
af4ba423
KZ
288 rtxes.zext = gen_rtx_ZERO_EXTEND (twice_word_mode, rtxes.source);
289 rtxes.shift = gen_rtx_ASHIFT (twice_word_mode, rtxes.source, const0_rtx);
290
291 if (LOG_COSTS)
292 fprintf (stderr, "\nSize costs\n==========\n\n");
293 compute_costs (false, &rtxes);
294
295 if (LOG_COSTS)
296 fprintf (stderr, "\nSpeed costs\n===========\n\n");
297 compute_costs (true, &rtxes);
298}
2b54c30f
ILT
299
300static bool
301simple_move_operand (rtx x)
302{
303 if (GET_CODE (x) == SUBREG)
304 x = SUBREG_REG (x);
305
306 if (!OBJECT_P (x))
307 return false;
308
309 if (GET_CODE (x) == LABEL_REF
310 || GET_CODE (x) == SYMBOL_REF
7e0c3f57
ILT
311 || GET_CODE (x) == HIGH
312 || GET_CODE (x) == CONST)
2b54c30f
ILT
313 return false;
314
315 if (MEM_P (x)
316 && (MEM_VOLATILE_P (x)
5bfed9a9 317 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x))))
2b54c30f
ILT
318 return false;
319
320 return true;
321}
322
38e60111
PB
323/* If X is an operator that can be treated as a simple move that we
324 can split, then return the operand that is operated on. */
325
326static rtx
327operand_for_swap_move_operator (rtx x)
328{
329 /* A word sized rotate of a register pair is equivalent to swapping
330 the registers in the register pair. */
331 if (GET_CODE (x) == ROTATE
332 && GET_MODE (x) == twice_word_mode
333 && simple_move_operand (XEXP (x, 0))
334 && CONST_INT_P (XEXP (x, 1))
335 && INTVAL (XEXP (x, 1)) == BITS_PER_WORD)
336 return XEXP (x, 0);
337
338 return NULL_RTX;
339}
340
af4ba423
KZ
341/* If INSN is a single set between two objects that we want to split,
342 return the single set. SPEED_P says whether we are optimizing
343 INSN for speed or size.
344
345 INSN should have been passed to recog and extract_insn before this
346 is called. */
e53a16e7
ILT
347
348static rtx
e967cc2f 349simple_move (rtx_insn *insn, bool speed_p)
e53a16e7 350{
38e60111 351 rtx x, op;
e53a16e7 352 rtx set;
ef4bddc2 353 machine_mode mode;
e53a16e7
ILT
354
355 if (recog_data.n_operands != 2)
356 return NULL_RTX;
357
358 set = single_set (insn);
359 if (!set)
360 return NULL_RTX;
361
362 x = SET_DEST (set);
363 if (x != recog_data.operand[0] && x != recog_data.operand[1])
364 return NULL_RTX;
2b54c30f 365 if (!simple_move_operand (x))
e53a16e7
ILT
366 return NULL_RTX;
367
368 x = SET_SRC (set);
38e60111
PB
369 if ((op = operand_for_swap_move_operator (x)) != NULL_RTX)
370 x = op;
371
e53a16e7
ILT
372 if (x != recog_data.operand[0] && x != recog_data.operand[1])
373 return NULL_RTX;
2b54c30f
ILT
374 /* For the src we can handle ASM_OPERANDS, and it is beneficial for
375 things like x86 rdtsc which returns a DImode value. */
376 if (GET_CODE (x) != ASM_OPERANDS
377 && !simple_move_operand (x))
e53a16e7
ILT
378 return NULL_RTX;
379
380 /* We try to decompose in integer modes, to avoid generating
381 inefficient code copying between integer and floating point
382 registers. That means that we can't decompose if this is a
383 non-integer mode for which there is no integer mode of the same
384 size. */
576fe41a 385 mode = GET_MODE (SET_DEST (set));
e53a16e7 386 if (!SCALAR_INT_MODE_P (mode)
fffbab82 387 && !int_mode_for_size (GET_MODE_BITSIZE (mode), 0).exists ())
e53a16e7
ILT
388 return NULL_RTX;
389
1f64a081
ILT
390 /* Reject PARTIAL_INT modes. They are used for processor specific
391 purposes and it's probably best not to tamper with them. */
392 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
393 return NULL_RTX;
394
af4ba423
KZ
395 if (!choices[speed_p].move_modes_to_split[(int) mode])
396 return NULL_RTX;
397
e53a16e7
ILT
398 return set;
399}
400
401/* If SET is a copy from one multi-word pseudo-register to another,
402 record that in reg_copy_graph. Return whether it is such a
403 copy. */
404
405static bool
406find_pseudo_copy (rtx set)
407{
408 rtx dest = SET_DEST (set);
409 rtx src = SET_SRC (set);
38e60111 410 rtx op;
e53a16e7
ILT
411 unsigned int rd, rs;
412 bitmap b;
413
38e60111
PB
414 if ((op = operand_for_swap_move_operator (src)) != NULL_RTX)
415 src = op;
416
e53a16e7
ILT
417 if (!REG_P (dest) || !REG_P (src))
418 return false;
419
420 rd = REGNO (dest);
421 rs = REGNO (src);
422 if (HARD_REGISTER_NUM_P (rd) || HARD_REGISTER_NUM_P (rs))
423 return false;
424
9771b263 425 b = reg_copy_graph[rs];
e53a16e7
ILT
426 if (b == NULL)
427 {
428 b = BITMAP_ALLOC (NULL);
9771b263 429 reg_copy_graph[rs] = b;
e53a16e7
ILT
430 }
431
432 bitmap_set_bit (b, rd);
433
434 return true;
435}
436
437/* Look through the registers in DECOMPOSABLE_CONTEXT. For each case
438 where they are copied to another register, add the register to
439 which they are copied to DECOMPOSABLE_CONTEXT. Use
440 NON_DECOMPOSABLE_CONTEXT to limit this--we don't bother to track
441 copies of registers which are in NON_DECOMPOSABLE_CONTEXT. */
442
443static void
444propagate_pseudo_copies (void)
445{
0e3de1d4 446 auto_bitmap queue, propagate;
e53a16e7
ILT
447
448 bitmap_copy (queue, decomposable_context);
449 do
450 {
451 bitmap_iterator iter;
452 unsigned int i;
453
454 bitmap_clear (propagate);
455
456 EXECUTE_IF_SET_IN_BITMAP (queue, 0, i, iter)
457 {
9771b263 458 bitmap b = reg_copy_graph[i];
e53a16e7
ILT
459 if (b)
460 bitmap_ior_and_compl_into (propagate, b, non_decomposable_context);
461 }
462
463 bitmap_and_compl (queue, propagate, decomposable_context);
464 bitmap_ior_into (decomposable_context, propagate);
465 }
466 while (!bitmap_empty_p (queue));
e53a16e7
ILT
467}
468
469/* A pointer to one of these values is passed to
a36a1928 470 find_decomposable_subregs. */
e53a16e7
ILT
471
472enum classify_move_insn
473{
474 /* Not a simple move from one location to another. */
475 NOT_SIMPLE_MOVE,
c2c47e8f
UW
476 /* A simple move we want to decompose. */
477 DECOMPOSABLE_SIMPLE_MOVE,
478 /* Any other simple move. */
e53a16e7
ILT
479 SIMPLE_MOVE
480};
481
a36a1928
RS
482/* If we find a SUBREG in *LOC which we could use to decompose a
483 pseudo-register, set a bit in DECOMPOSABLE_CONTEXT. If we find an
484 unadorned register which is not a simple pseudo-register copy,
485 DATA will point at the type of move, and we set a bit in
486 DECOMPOSABLE_CONTEXT or NON_DECOMPOSABLE_CONTEXT as appropriate. */
e53a16e7 487
a36a1928
RS
488static void
489find_decomposable_subregs (rtx *loc, enum classify_move_insn *pcmi)
e53a16e7 490{
a36a1928
RS
491 subrtx_var_iterator::array_type array;
492 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
e53a16e7 493 {
a36a1928
RS
494 rtx x = *iter;
495 if (GET_CODE (x) == SUBREG)
496 {
497 rtx inner = SUBREG_REG (x);
498 unsigned int regno, outer_size, inner_size, outer_words, inner_words;
e53a16e7 499
a36a1928
RS
500 if (!REG_P (inner))
501 continue;
e53a16e7 502
a36a1928
RS
503 regno = REGNO (inner);
504 if (HARD_REGISTER_NUM_P (regno))
505 {
506 iter.skip_subrtxes ();
507 continue;
508 }
e53a16e7 509
8536340f
RS
510 if (!interesting_mode_p (GET_MODE (x), &outer_size, &outer_words)
511 || !interesting_mode_p (GET_MODE (inner), &inner_size,
512 &inner_words))
513 continue;
e53a16e7 514
a36a1928
RS
515 /* We only try to decompose single word subregs of multi-word
516 registers. When we find one, we return -1 to avoid iterating
517 over the inner register.
e53a16e7 518
a36a1928
RS
519 ??? This doesn't allow, e.g., DImode subregs of TImode values
520 on 32-bit targets. We would need to record the way the
521 pseudo-register was used, and only decompose if all the uses
522 were the same number and size of pieces. Hopefully this
523 doesn't happen much. */
e53a16e7 524
75b5bc01
JJ
525 if (outer_words == 1
526 && inner_words > 1
527 /* Don't allow to decompose floating point subregs of
528 multi-word pseudos if the floating point mode does
529 not have word size, because otherwise we'd generate
530 a subreg with that floating mode from a different
531 sized integral pseudo which is not allowed by
532 validate_subreg. */
533 && (!FLOAT_MODE_P (GET_MODE (x))
534 || outer_size == UNITS_PER_WORD))
a36a1928
RS
535 {
536 bitmap_set_bit (decomposable_context, regno);
537 iter.skip_subrtxes ();
538 continue;
539 }
03743286 540
a36a1928
RS
541 /* If this is a cast from one mode to another, where the modes
542 have the same size, and they are not tieable, then mark this
543 register as non-decomposable. If we decompose it we are
544 likely to mess up whatever the backend is trying to do. */
545 if (outer_words > 1
546 && outer_size == inner_size
99e1629f 547 && !targetm.modes_tieable_p (GET_MODE (x), GET_MODE (inner)))
a36a1928
RS
548 {
549 bitmap_set_bit (non_decomposable_context, regno);
550 bitmap_set_bit (subreg_context, regno);
551 iter.skip_subrtxes ();
552 continue;
553 }
03743286 554 }
a36a1928 555 else if (REG_P (x))
e53a16e7 556 {
8536340f 557 unsigned int regno, size, words;
a36a1928
RS
558
559 /* We will see an outer SUBREG before we see the inner REG, so
560 when we see a plain REG here it means a direct reference to
561 the register.
562
563 If this is not a simple copy from one location to another,
564 then we can not decompose this register. If this is a simple
565 copy we want to decompose, and the mode is right,
566 then we mark the register as decomposable.
567 Otherwise we don't say anything about this register --
568 it could be decomposed, but whether that would be
569 profitable depends upon how it is used elsewhere.
570
571 We only set bits in the bitmap for multi-word
572 pseudo-registers, since those are the only ones we care about
573 and it keeps the size of the bitmaps down. */
574
575 regno = REGNO (x);
576 if (!HARD_REGISTER_NUM_P (regno)
8536340f
RS
577 && interesting_mode_p (GET_MODE (x), &size, &words)
578 && words > 1)
e53a16e7 579 {
a36a1928
RS
580 switch (*pcmi)
581 {
582 case NOT_SIMPLE_MOVE:
583 bitmap_set_bit (non_decomposable_context, regno);
584 break;
585 case DECOMPOSABLE_SIMPLE_MOVE:
99e1629f 586 if (targetm.modes_tieable_p (GET_MODE (x), word_mode))
a36a1928
RS
587 bitmap_set_bit (decomposable_context, regno);
588 break;
589 case SIMPLE_MOVE:
590 break;
591 default:
592 gcc_unreachable ();
593 }
e53a16e7
ILT
594 }
595 }
a36a1928
RS
596 else if (MEM_P (x))
597 {
598 enum classify_move_insn cmi_mem = NOT_SIMPLE_MOVE;
2b54c30f 599
a36a1928
RS
600 /* Any registers used in a MEM do not participate in a
601 SIMPLE_MOVE or DECOMPOSABLE_SIMPLE_MOVE. Do our own recursion
602 here, and return -1 to block the parent's recursion. */
603 find_decomposable_subregs (&XEXP (x, 0), &cmi_mem);
604 iter.skip_subrtxes ();
605 }
2b54c30f 606 }
e53a16e7
ILT
607}
608
609/* Decompose REGNO into word-sized components. We smash the REG node
610 in place. This ensures that (1) something goes wrong quickly if we
611 fail to make some replacement, and (2) the debug information inside
612 the symbol table is automatically kept up to date. */
613
614static void
615decompose_register (unsigned int regno)
616{
617 rtx reg;
8536340f 618 unsigned int size, words, i;
e53a16e7
ILT
619 rtvec v;
620
621 reg = regno_reg_rtx[regno];
622
623 regno_reg_rtx[regno] = NULL_RTX;
e53a16e7 624
8536340f
RS
625 if (!interesting_mode_p (GET_MODE (reg), &size, &words))
626 gcc_unreachable ();
e53a16e7
ILT
627
628 v = rtvec_alloc (words);
629 for (i = 0; i < words; ++i)
630 RTVEC_ELT (v, i) = gen_reg_rtx_offset (reg, word_mode, i * UNITS_PER_WORD);
631
632 PUT_CODE (reg, CONCATN);
633 XVEC (reg, 0) = v;
634
635 if (dump_file)
636 {
637 fprintf (dump_file, "; Splitting reg %u ->", regno);
638 for (i = 0; i < words; ++i)
639 fprintf (dump_file, " %u", REGNO (XVECEXP (reg, 0, i)));
640 fputc ('\n', dump_file);
641 }
642}
643
644/* Get a SUBREG of a CONCATN. */
645
646static rtx
91914e56 647simplify_subreg_concatn (machine_mode outermode, rtx op, poly_uint64 orig_byte)
e53a16e7 648{
8536340f 649 unsigned int outer_size, outer_words, inner_size, inner_words;
ef4bddc2 650 machine_mode innermode, partmode;
e53a16e7
ILT
651 rtx part;
652 unsigned int final_offset;
91914e56 653 unsigned int byte;
e53a16e7 654
8536340f
RS
655 innermode = GET_MODE (op);
656 if (!interesting_mode_p (outermode, &outer_size, &outer_words)
657 || !interesting_mode_p (innermode, &inner_size, &inner_words))
658 gcc_unreachable ();
659
91914e56
RS
660 /* Must be constant if interesting_mode_p passes. */
661 byte = orig_byte.to_constant ();
e53a16e7 662 gcc_assert (GET_CODE (op) == CONCATN);
8536340f 663 gcc_assert (byte % outer_size == 0);
e53a16e7 664
8536340f
RS
665 gcc_assert (byte < inner_size);
666 if (outer_size > inner_size)
2ab9a4a5 667 return NULL_RTX;
e53a16e7 668
8536340f 669 inner_size /= XVECLEN (op, 0);
e53a16e7 670 part = XVECEXP (op, 0, byte / inner_size);
695ae295
UB
671 partmode = GET_MODE (part);
672
61b2290a 673 final_offset = byte % inner_size;
8536340f 674 if (final_offset + outer_size > inner_size)
61b2290a
RS
675 return NULL_RTX;
676
822a55a0
UB
677 /* VECTOR_CSTs in debug expressions are expanded into CONCATN instead of
678 regular CONST_VECTORs. They have vector or integer modes, depending
679 on the capabilities of the target. Cope with them. */
680 if (partmode == VOIDmode && VECTOR_MODE_P (innermode))
681 partmode = GET_MODE_INNER (innermode);
682 else if (partmode == VOIDmode)
61b2290a
RS
683 partmode = mode_for_size (inner_size * BITS_PER_UNIT,
684 GET_MODE_CLASS (innermode), 0).require ();
e53a16e7 685
695ae295 686 return simplify_gen_subreg (outermode, part, partmode, final_offset);
e53a16e7
ILT
687}
688
689/* Wrapper around simplify_gen_subreg which handles CONCATN. */
690
691static rtx
ef4bddc2
RS
692simplify_gen_subreg_concatn (machine_mode outermode, rtx op,
693 machine_mode innermode, unsigned int byte)
e53a16e7 694{
0e6c5b58
ILT
695 rtx ret;
696
e53a16e7
ILT
697 /* We have to handle generating a SUBREG of a SUBREG of a CONCATN.
698 If OP is a SUBREG of a CONCATN, then it must be a simple mode
699 change with the same size and offset 0, or it must extract a
700 part. We shouldn't see anything else here. */
701 if (GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == CONCATN)
702 {
703 rtx op2;
704
cf098191
RS
705 if (known_eq (GET_MODE_SIZE (GET_MODE (op)),
706 GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
91914e56 707 && known_eq (SUBREG_BYTE (op), 0))
e53a16e7
ILT
708 return simplify_gen_subreg_concatn (outermode, SUBREG_REG (op),
709 GET_MODE (SUBREG_REG (op)), byte);
710
711 op2 = simplify_subreg_concatn (GET_MODE (op), SUBREG_REG (op),
712 SUBREG_BYTE (op));
713 if (op2 == NULL_RTX)
714 {
715 /* We don't handle paradoxical subregs here. */
03a95621
RS
716 gcc_assert (!paradoxical_subreg_p (outermode, GET_MODE (op)));
717 gcc_assert (!paradoxical_subreg_p (op));
e53a16e7
ILT
718 op2 = simplify_subreg_concatn (outermode, SUBREG_REG (op),
719 byte + SUBREG_BYTE (op));
720 gcc_assert (op2 != NULL_RTX);
721 return op2;
722 }
723
724 op = op2;
725 gcc_assert (op != NULL_RTX);
726 gcc_assert (innermode == GET_MODE (op));
727 }
0e6c5b58 728
e53a16e7
ILT
729 if (GET_CODE (op) == CONCATN)
730 return simplify_subreg_concatn (outermode, op, byte);
0e6c5b58
ILT
731
732 ret = simplify_gen_subreg (outermode, op, innermode, byte);
733
734 /* If we see an insn like (set (reg:DI) (subreg:DI (reg:SI) 0)) then
735 resolve_simple_move will ask for the high part of the paradoxical
736 subreg, which does not have a value. Just return a zero. */
737 if (ret == NULL_RTX
03a95621 738 && paradoxical_subreg_p (op))
0e6c5b58
ILT
739 return CONST0_RTX (outermode);
740
741 gcc_assert (ret != NULL_RTX);
742 return ret;
e53a16e7
ILT
743}
744
745/* Return whether we should resolve X into the registers into which it
746 was decomposed. */
747
748static bool
749resolve_reg_p (rtx x)
750{
751 return GET_CODE (x) == CONCATN;
752}
753
754/* Return whether X is a SUBREG of a register which we need to
755 resolve. */
756
757static bool
758resolve_subreg_p (rtx x)
759{
760 if (GET_CODE (x) != SUBREG)
761 return false;
762 return resolve_reg_p (SUBREG_REG (x));
763}
764
cf55cb6a 765/* Look for SUBREGs in *LOC which need to be decomposed. */
e53a16e7 766
cf55cb6a
RS
767static bool
768resolve_subreg_use (rtx *loc, rtx insn)
e53a16e7 769{
cf55cb6a
RS
770 subrtx_ptr_iterator::array_type array;
771 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
e53a16e7 772 {
cf55cb6a
RS
773 rtx *loc = *iter;
774 rtx x = *loc;
775 if (resolve_subreg_p (x))
e53a16e7 776 {
cf55cb6a
RS
777 x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x),
778 SUBREG_BYTE (x));
e53a16e7 779
cf55cb6a
RS
780 /* It is possible for a note to contain a reference which we can
781 decompose. In this case, return 1 to the caller to indicate
782 that the note must be removed. */
783 if (!x)
784 {
785 gcc_assert (!insn);
786 return true;
787 }
e53a16e7 788
cf55cb6a
RS
789 validate_change (insn, loc, x, 1);
790 iter.skip_subrtxes ();
791 }
792 else if (resolve_reg_p (x))
793 /* Return 1 to the caller to indicate that we found a direct
794 reference to a register which is being decomposed. This can
795 happen inside notes, multiword shift or zero-extend
796 instructions. */
797 return true;
e53a16e7
ILT
798 }
799
cf55cb6a 800 return false;
e53a16e7
ILT
801}
802
e53a16e7
ILT
803/* Resolve any decomposed registers which appear in register notes on
804 INSN. */
805
806static void
e967cc2f 807resolve_reg_notes (rtx_insn *insn)
e53a16e7
ILT
808{
809 rtx *pnote, note;
810
811 note = find_reg_equal_equiv_note (insn);
812 if (note)
813 {
6fb5fa3c 814 int old_count = num_validated_changes ();
cf55cb6a 815 if (resolve_subreg_use (&XEXP (note, 0), NULL_RTX))
4a8cae83 816 remove_note (insn, note);
6fb5fa3c
DB
817 else
818 if (old_count != num_validated_changes ())
819 df_notes_rescan (insn);
e53a16e7
ILT
820 }
821
822 pnote = &REG_NOTES (insn);
823 while (*pnote != NULL_RTX)
824 {
60564289 825 bool del = false;
e53a16e7
ILT
826
827 note = *pnote;
828 switch (REG_NOTE_KIND (note))
829 {
6fb5fa3c
DB
830 case REG_DEAD:
831 case REG_UNUSED:
e53a16e7 832 if (resolve_reg_p (XEXP (note, 0)))
60564289 833 del = true;
e53a16e7
ILT
834 break;
835
836 default:
837 break;
838 }
839
60564289 840 if (del)
e53a16e7
ILT
841 *pnote = XEXP (note, 1);
842 else
843 pnote = &XEXP (note, 1);
844 }
845}
846
2b54c30f 847/* Return whether X can be decomposed into subwords. */
e53a16e7
ILT
848
849static bool
2b54c30f 850can_decompose_p (rtx x)
e53a16e7
ILT
851{
852 if (REG_P (x))
853 {
854 unsigned int regno = REGNO (x);
855
856 if (HARD_REGISTER_NUM_P (regno))
488c8379 857 {
8536340f 858 unsigned int byte, num_bytes, num_words;
488c8379 859
8536340f
RS
860 if (!interesting_mode_p (GET_MODE (x), &num_bytes, &num_words))
861 return false;
488c8379
RS
862 for (byte = 0; byte < num_bytes; byte += UNITS_PER_WORD)
863 if (simplify_subreg_regno (regno, GET_MODE (x), byte, word_mode) < 0)
864 return false;
865 return true;
866 }
e53a16e7 867 else
402464a0 868 return !bitmap_bit_p (subreg_context, regno);
e53a16e7
ILT
869 }
870
2b54c30f 871 return true;
e53a16e7
ILT
872}
873
38e60111
PB
874/* OPND is a concatn operand this is used with a simple move operator.
875 Return a new rtx with the concatn's operands swapped. */
876
877static rtx
878resolve_operand_for_swap_move_operator (rtx opnd)
879{
880 gcc_assert (GET_CODE (opnd) == CONCATN);
881 rtx concatn = copy_rtx (opnd);
882 rtx op0 = XVECEXP (concatn, 0, 0);
883 rtx op1 = XVECEXP (concatn, 0, 1);
884 XVECEXP (concatn, 0, 0) = op1;
885 XVECEXP (concatn, 0, 1) = op0;
886 return concatn;
887}
888
e53a16e7
ILT
889/* Decompose the registers used in a simple move SET within INSN. If
890 we don't change anything, return INSN, otherwise return the start
891 of the sequence of moves. */
892
e967cc2f
DM
893static rtx_insn *
894resolve_simple_move (rtx set, rtx_insn *insn)
e53a16e7 895{
38e60111 896 rtx src, dest, real_dest, src_op;
e967cc2f 897 rtx_insn *insns;
ef4bddc2 898 machine_mode orig_mode, dest_mode;
8536340f 899 unsigned int orig_size, words;
e53a16e7
ILT
900 bool pushing;
901
902 src = SET_SRC (set);
903 dest = SET_DEST (set);
904 orig_mode = GET_MODE (dest);
905
8536340f
RS
906 if (!interesting_mode_p (orig_mode, &orig_size, &words))
907 gcc_unreachable ();
af4ba423 908 gcc_assert (words > 1);
e53a16e7
ILT
909
910 start_sequence ();
911
912 /* We have to handle copying from a SUBREG of a decomposed reg where
913 the SUBREG is larger than word size. Rather than assume that we
914 can take a word_mode SUBREG of the destination, we copy to a new
915 register and then copy that to the destination. */
916
917 real_dest = NULL_RTX;
918
38e60111
PB
919 if ((src_op = operand_for_swap_move_operator (src)) != NULL_RTX)
920 {
921 if (resolve_reg_p (dest))
922 {
923 /* DEST is a CONCATN, so swap its operands and strip
924 SRC's operator. */
925 dest = resolve_operand_for_swap_move_operator (dest);
926 src = src_op;
927 }
928 else if (resolve_reg_p (src_op))
929 {
930 /* SRC is an operation on a CONCATN, so strip the operator and
931 swap the CONCATN's operands. */
932 src = resolve_operand_for_swap_move_operator (src_op);
933 }
934 }
935
e53a16e7
ILT
936 if (GET_CODE (src) == SUBREG
937 && resolve_reg_p (SUBREG_REG (src))
91914e56 938 && (maybe_ne (SUBREG_BYTE (src), 0)
cf098191 939 || maybe_ne (orig_size, GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))))
e53a16e7
ILT
940 {
941 real_dest = dest;
942 dest = gen_reg_rtx (orig_mode);
943 if (REG_P (real_dest))
944 REG_ATTRS (dest) = REG_ATTRS (real_dest);
945 }
946
947 /* Similarly if we are copying to a SUBREG of a decomposed reg where
948 the SUBREG is larger than word size. */
949
950 if (GET_CODE (dest) == SUBREG
951 && resolve_reg_p (SUBREG_REG (dest))
91914e56 952 && (maybe_ne (SUBREG_BYTE (dest), 0)
cf098191
RS
953 || maybe_ne (orig_size,
954 GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))))
e53a16e7 955 {
e967cc2f
DM
956 rtx reg, smove;
957 rtx_insn *minsn;
e53a16e7
ILT
958
959 reg = gen_reg_rtx (orig_mode);
960 minsn = emit_move_insn (reg, src);
961 smove = single_set (minsn);
962 gcc_assert (smove != NULL_RTX);
963 resolve_simple_move (smove, minsn);
964 src = reg;
965 }
966
967 /* If we didn't have any big SUBREGS of decomposed registers, and
968 neither side of the move is a register we are decomposing, then
969 we don't have to do anything here. */
970
971 if (src == SET_SRC (set)
972 && dest == SET_DEST (set)
973 && !resolve_reg_p (src)
974 && !resolve_subreg_p (src)
975 && !resolve_reg_p (dest)
976 && !resolve_subreg_p (dest))
977 {
978 end_sequence ();
979 return insn;
980 }
981
30d18db4
ILT
982 /* It's possible for the code to use a subreg of a decomposed
983 register while forming an address. We need to handle that before
984 passing the address to emit_move_insn. We pass NULL_RTX as the
985 insn parameter to resolve_subreg_use because we can not validate
986 the insn yet. */
987 if (MEM_P (src) || MEM_P (dest))
988 {
989 int acg;
990
991 if (MEM_P (src))
cf55cb6a 992 resolve_subreg_use (&XEXP (src, 0), NULL_RTX);
30d18db4 993 if (MEM_P (dest))
cf55cb6a 994 resolve_subreg_use (&XEXP (dest, 0), NULL_RTX);
30d18db4
ILT
995 acg = apply_change_group ();
996 gcc_assert (acg);
997 }
998
e53a16e7
ILT
999 /* If SRC is a register which we can't decompose, or has side
1000 effects, we need to move via a temporary register. */
1001
2b54c30f 1002 if (!can_decompose_p (src)
e53a16e7
ILT
1003 || side_effects_p (src)
1004 || GET_CODE (src) == ASM_OPERANDS)
1005 {
1006 rtx reg;
1007
1008 reg = gen_reg_rtx (orig_mode);
ce5d49a8 1009
760edf20
TS
1010 if (AUTO_INC_DEC)
1011 {
d8485bdb 1012 rtx_insn *move = emit_move_insn (reg, src);
760edf20
TS
1013 if (MEM_P (src))
1014 {
1015 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
1016 if (note)
1017 add_reg_note (move, REG_INC, XEXP (note, 0));
1018 }
1019 }
1020 else
1021 emit_move_insn (reg, src);
1022
e53a16e7
ILT
1023 src = reg;
1024 }
1025
1026 /* If DEST is a register which we can't decompose, or has side
1027 effects, we need to first move to a temporary register. We
1028 handle the common case of pushing an operand directly. We also
1029 go through a temporary register if it holds a floating point
1030 value. This gives us better code on systems which can't move
1031 data easily between integer and floating point registers. */
1032
1033 dest_mode = orig_mode;
1034 pushing = push_operand (dest, dest_mode);
2b54c30f 1035 if (!can_decompose_p (dest)
e53a16e7
ILT
1036 || (side_effects_p (dest) && !pushing)
1037 || (!SCALAR_INT_MODE_P (dest_mode)
1038 && !resolve_reg_p (dest)
1039 && !resolve_subreg_p (dest)))
1040 {
1041 if (real_dest == NULL_RTX)
1042 real_dest = dest;
1043 if (!SCALAR_INT_MODE_P (dest_mode))
636bfdfa 1044 dest_mode = int_mode_for_mode (dest_mode).require ();
e53a16e7
ILT
1045 dest = gen_reg_rtx (dest_mode);
1046 if (REG_P (real_dest))
1047 REG_ATTRS (dest) = REG_ATTRS (real_dest);
1048 }
1049
1050 if (pushing)
1051 {
1052 unsigned int i, j, jinc;
1053
8536340f 1054 gcc_assert (orig_size % UNITS_PER_WORD == 0);
e53a16e7
ILT
1055 gcc_assert (GET_CODE (XEXP (dest, 0)) != PRE_MODIFY);
1056 gcc_assert (GET_CODE (XEXP (dest, 0)) != POST_MODIFY);
1057
1058 if (WORDS_BIG_ENDIAN == STACK_GROWS_DOWNWARD)
1059 {
1060 j = 0;
1061 jinc = 1;
1062 }
1063 else
1064 {
1065 j = words - 1;
1066 jinc = -1;
1067 }
1068
1069 for (i = 0; i < words; ++i, j += jinc)
1070 {
1071 rtx temp;
1072
1073 temp = copy_rtx (XEXP (dest, 0));
1074 temp = adjust_automodify_address_nv (dest, word_mode, temp,
1075 j * UNITS_PER_WORD);
1076 emit_move_insn (temp,
1077 simplify_gen_subreg_concatn (word_mode, src,
1078 orig_mode,
1079 j * UNITS_PER_WORD));
1080 }
1081 }
1082 else
1083 {
1084 unsigned int i;
1085
1086 if (REG_P (dest) && !HARD_REGISTER_NUM_P (REGNO (dest)))
c41c1387 1087 emit_clobber (dest);
e53a16e7
ILT
1088
1089 for (i = 0; i < words; ++i)
1090 emit_move_insn (simplify_gen_subreg_concatn (word_mode, dest,
1091 dest_mode,
1092 i * UNITS_PER_WORD),
1093 simplify_gen_subreg_concatn (word_mode, src,
1094 orig_mode,
1095 i * UNITS_PER_WORD));
1096 }
1097
1098 if (real_dest != NULL_RTX)
1099 {
e967cc2f
DM
1100 rtx mdest, smove;
1101 rtx_insn *minsn;
e53a16e7
ILT
1102
1103 if (dest_mode == orig_mode)
1104 mdest = dest;
1105 else
1106 mdest = simplify_gen_subreg (orig_mode, dest, GET_MODE (dest), 0);
1107 minsn = emit_move_insn (real_dest, mdest);
1108
760edf20 1109 if (AUTO_INC_DEC && MEM_P (real_dest)
ce5d49a8
ZC
1110 && !(resolve_reg_p (real_dest) || resolve_subreg_p (real_dest)))
1111 {
1112 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
1113 if (note)
1114 add_reg_note (minsn, REG_INC, XEXP (note, 0));
1115 }
ce5d49a8 1116
e53a16e7
ILT
1117 smove = single_set (minsn);
1118 gcc_assert (smove != NULL_RTX);
1119
1120 resolve_simple_move (smove, minsn);
1121 }
1122
1123 insns = get_insns ();
1124 end_sequence ();
1125
1d65f45c 1126 copy_reg_eh_region_note_forward (insn, insns, NULL_RTX);
73663bb7 1127
e53a16e7
ILT
1128 emit_insn_before (insns, insn);
1129
82981227 1130 /* If we get here via self-recursion, then INSN is not yet in the insns
6873ecab
SB
1131 chain and delete_insn will fail. We only want to remove INSN from the
1132 current sequence. See PR56738. */
1133 if (in_sequence_p ())
1134 remove_insn (insn);
1135 else
1136 delete_insn (insn);
e53a16e7
ILT
1137
1138 return insns;
1139}
1140
1141/* Change a CLOBBER of a decomposed register into a CLOBBER of the
1142 component registers. Return whether we changed something. */
1143
1144static bool
e967cc2f 1145resolve_clobber (rtx pat, rtx_insn *insn)
e53a16e7 1146{
d70dcf29 1147 rtx reg;
ef4bddc2 1148 machine_mode orig_mode;
8536340f 1149 unsigned int orig_size, words, i;
7e0c3f57 1150 int ret;
e53a16e7
ILT
1151
1152 reg = XEXP (pat, 0);
9a5a8e58 1153 if (!resolve_reg_p (reg) && !resolve_subreg_p (reg))
e53a16e7
ILT
1154 return false;
1155
1156 orig_mode = GET_MODE (reg);
8536340f
RS
1157 if (!interesting_mode_p (orig_mode, &orig_size, &words))
1158 gcc_unreachable ();
e53a16e7 1159
7e0c3f57
ILT
1160 ret = validate_change (NULL_RTX, &XEXP (pat, 0),
1161 simplify_gen_subreg_concatn (word_mode, reg,
1162 orig_mode, 0),
1163 0);
6fb5fa3c 1164 df_insn_rescan (insn);
7e0c3f57
ILT
1165 gcc_assert (ret != 0);
1166
e53a16e7
ILT
1167 for (i = words - 1; i > 0; --i)
1168 {
1169 rtx x;
1170
9a5a8e58
ILT
1171 x = simplify_gen_subreg_concatn (word_mode, reg, orig_mode,
1172 i * UNITS_PER_WORD);
e53a16e7
ILT
1173 x = gen_rtx_CLOBBER (VOIDmode, x);
1174 emit_insn_after (x, insn);
1175 }
1176
d4fd3465
ILT
1177 resolve_reg_notes (insn);
1178
e53a16e7
ILT
1179 return true;
1180}
1181
1182/* A USE of a decomposed register is no longer meaningful. Return
1183 whether we changed something. */
1184
1185static bool
e967cc2f 1186resolve_use (rtx pat, rtx_insn *insn)
e53a16e7
ILT
1187{
1188 if (resolve_reg_p (XEXP (pat, 0)) || resolve_subreg_p (XEXP (pat, 0)))
1189 {
1190 delete_insn (insn);
1191 return true;
1192 }
d4fd3465
ILT
1193
1194 resolve_reg_notes (insn);
1195
e53a16e7
ILT
1196 return false;
1197}
1198
b5b8b0ac
AO
1199/* A VAR_LOCATION can be simplified. */
1200
1201static void
e967cc2f 1202resolve_debug (rtx_insn *insn)
b5b8b0ac 1203{
f2d3f347
RS
1204 subrtx_ptr_iterator::array_type array;
1205 FOR_EACH_SUBRTX_PTR (iter, array, &PATTERN (insn), NONCONST)
1206 {
1207 rtx *loc = *iter;
1208 rtx x = *loc;
1209 if (resolve_subreg_p (x))
1210 {
1211 x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x),
1212 SUBREG_BYTE (x));
1213
1214 if (x)
1215 *loc = x;
1216 else
1217 x = copy_rtx (*loc);
1218 }
1219 if (resolve_reg_p (x))
1220 *loc = copy_rtx (x);
1221 }
b5b8b0ac
AO
1222
1223 df_insn_rescan (insn);
1224
1225 resolve_reg_notes (insn);
1226}
1227
af4ba423
KZ
1228/* Check if INSN is a decomposable multiword-shift or zero-extend and
1229 set the decomposable_context bitmap accordingly. SPEED_P is true
1230 if we are optimizing INSN for speed rather than size. Return true
1231 if INSN is decomposable. */
e0892570 1232
af4ba423 1233static bool
e967cc2f 1234find_decomposable_shift_zext (rtx_insn *insn, bool speed_p)
e0892570
AK
1235{
1236 rtx set;
1237 rtx op;
1238 rtx op_operand;
1239
1240 set = single_set (insn);
1241 if (!set)
af4ba423 1242 return false;
e0892570
AK
1243
1244 op = SET_SRC (set);
1245 if (GET_CODE (op) != ASHIFT
1246 && GET_CODE (op) != LSHIFTRT
d7fde18c 1247 && GET_CODE (op) != ASHIFTRT
e0892570 1248 && GET_CODE (op) != ZERO_EXTEND)
af4ba423 1249 return false;
e0892570
AK
1250
1251 op_operand = XEXP (op, 0);
1252 if (!REG_P (SET_DEST (set)) || !REG_P (op_operand)
1253 || HARD_REGISTER_NUM_P (REGNO (SET_DEST (set)))
1254 || HARD_REGISTER_NUM_P (REGNO (op_operand))
af4ba423
KZ
1255 || GET_MODE (op) != twice_word_mode)
1256 return false;
e0892570
AK
1257
1258 if (GET_CODE (op) == ZERO_EXTEND)
1259 {
1260 if (GET_MODE (op_operand) != word_mode
af4ba423
KZ
1261 || !choices[speed_p].splitting_zext)
1262 return false;
e0892570
AK
1263 }
1264 else /* left or right shift */
1265 {
af4ba423
KZ
1266 bool *splitting = (GET_CODE (op) == ASHIFT
1267 ? choices[speed_p].splitting_ashift
d7fde18c
JJ
1268 : GET_CODE (op) == ASHIFTRT
1269 ? choices[speed_p].splitting_ashiftrt
af4ba423 1270 : choices[speed_p].splitting_lshiftrt);
481683e1 1271 if (!CONST_INT_P (XEXP (op, 1))
af4ba423
KZ
1272 || !IN_RANGE (INTVAL (XEXP (op, 1)), BITS_PER_WORD,
1273 2 * BITS_PER_WORD - 1)
1274 || !splitting[INTVAL (XEXP (op, 1)) - BITS_PER_WORD])
1275 return false;
1276
1277 bitmap_set_bit (decomposable_context, REGNO (op_operand));
e0892570
AK
1278 }
1279
1280 bitmap_set_bit (decomposable_context, REGNO (SET_DEST (set)));
1281
af4ba423 1282 return true;
e0892570
AK
1283}
1284
1285/* Decompose a more than word wide shift (in INSN) of a multiword
1286 pseudo or a multiword zero-extend of a wordmode pseudo into a move
1287 and 'set to zero' insn. Return a pointer to the new insn when a
1288 replacement was done. */
1289
e967cc2f
DM
1290static rtx_insn *
1291resolve_shift_zext (rtx_insn *insn)
e0892570
AK
1292{
1293 rtx set;
1294 rtx op;
1295 rtx op_operand;
e967cc2f 1296 rtx_insn *insns;
d7fde18c 1297 rtx src_reg, dest_reg, dest_upper, upper_src = NULL_RTX;
e0892570 1298 int src_reg_num, dest_reg_num, offset1, offset2, src_offset;
e4dc9904 1299 scalar_int_mode inner_mode;
e0892570
AK
1300
1301 set = single_set (insn);
1302 if (!set)
e967cc2f 1303 return NULL;
e0892570
AK
1304
1305 op = SET_SRC (set);
1306 if (GET_CODE (op) != ASHIFT
1307 && GET_CODE (op) != LSHIFTRT
d7fde18c 1308 && GET_CODE (op) != ASHIFTRT
e0892570 1309 && GET_CODE (op) != ZERO_EXTEND)
e967cc2f 1310 return NULL;
e0892570
AK
1311
1312 op_operand = XEXP (op, 0);
e4dc9904
RS
1313 if (!is_a <scalar_int_mode> (GET_MODE (op_operand), &inner_mode))
1314 return NULL;
e0892570 1315
af4ba423
KZ
1316 /* We can tear this operation apart only if the regs were already
1317 torn apart. */
e0892570 1318 if (!resolve_reg_p (SET_DEST (set)) && !resolve_reg_p (op_operand))
e967cc2f 1319 return NULL;
e0892570
AK
1320
1321 /* src_reg_num is the number of the word mode register which we
1322 are operating on. For a left shift and a zero_extend on little
1323 endian machines this is register 0. */
d7fde18c
JJ
1324 src_reg_num = (GET_CODE (op) == LSHIFTRT || GET_CODE (op) == ASHIFTRT)
1325 ? 1 : 0;
e0892570 1326
e4dc9904 1327 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
e0892570
AK
1328 src_reg_num = 1 - src_reg_num;
1329
1330 if (GET_CODE (op) == ZERO_EXTEND)
acbe5496 1331 dest_reg_num = WORDS_BIG_ENDIAN ? 1 : 0;
e0892570
AK
1332 else
1333 dest_reg_num = 1 - src_reg_num;
1334
1335 offset1 = UNITS_PER_WORD * dest_reg_num;
1336 offset2 = UNITS_PER_WORD * (1 - dest_reg_num);
1337 src_offset = UNITS_PER_WORD * src_reg_num;
1338
e0892570
AK
1339 start_sequence ();
1340
1341 dest_reg = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
1342 GET_MODE (SET_DEST (set)),
1343 offset1);
d7fde18c
JJ
1344 dest_upper = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
1345 GET_MODE (SET_DEST (set)),
1346 offset2);
e0892570
AK
1347 src_reg = simplify_gen_subreg_concatn (word_mode, op_operand,
1348 GET_MODE (op_operand),
1349 src_offset);
d7fde18c
JJ
1350 if (GET_CODE (op) == ASHIFTRT
1351 && INTVAL (XEXP (op, 1)) != 2 * BITS_PER_WORD - 1)
1352 upper_src = expand_shift (RSHIFT_EXPR, word_mode, copy_rtx (src_reg),
1353 BITS_PER_WORD - 1, NULL_RTX, 0);
1354
e0892570
AK
1355 if (GET_CODE (op) != ZERO_EXTEND)
1356 {
1357 int shift_count = INTVAL (XEXP (op, 1));
1358 if (shift_count > BITS_PER_WORD)
1359 src_reg = expand_shift (GET_CODE (op) == ASHIFT ?
1360 LSHIFT_EXPR : RSHIFT_EXPR,
1361 word_mode, src_reg,
eb6c3df1 1362 shift_count - BITS_PER_WORD,
d7fde18c 1363 dest_reg, GET_CODE (op) != ASHIFTRT);
e0892570
AK
1364 }
1365
1366 if (dest_reg != src_reg)
1367 emit_move_insn (dest_reg, src_reg);
d7fde18c
JJ
1368 if (GET_CODE (op) != ASHIFTRT)
1369 emit_move_insn (dest_upper, CONST0_RTX (word_mode));
1370 else if (INTVAL (XEXP (op, 1)) == 2 * BITS_PER_WORD - 1)
1371 emit_move_insn (dest_upper, copy_rtx (src_reg));
1372 else
1373 emit_move_insn (dest_upper, upper_src);
e0892570
AK
1374 insns = get_insns ();
1375
1376 end_sequence ();
1377
1378 emit_insn_before (insns, insn);
1379
1380 if (dump_file)
1381 {
e967cc2f 1382 rtx_insn *in;
e0892570
AK
1383 fprintf (dump_file, "; Replacing insn: %d with insns: ", INSN_UID (insn));
1384 for (in = insns; in != insn; in = NEXT_INSN (in))
1385 fprintf (dump_file, "%d ", INSN_UID (in));
1386 fprintf (dump_file, "\n");
1387 }
1388
1389 delete_insn (insn);
1390 return insns;
1391}
1392
af4ba423
KZ
1393/* Print to dump_file a description of what we're doing with shift code CODE.
1394 SPLITTING[X] is true if we are splitting shifts by X + BITS_PER_WORD. */
1395
1396static void
1397dump_shift_choices (enum rtx_code code, bool *splitting)
1398{
1399 int i;
1400 const char *sep;
1401
1402 fprintf (dump_file,
1403 " Splitting mode %s for %s lowering with shift amounts = ",
1404 GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (code));
1405 sep = "";
1406 for (i = 0; i < BITS_PER_WORD; i++)
1407 if (splitting[i])
1408 {
1409 fprintf (dump_file, "%s%d", sep, i + BITS_PER_WORD);
1410 sep = ",";
1411 }
1412 fprintf (dump_file, "\n");
1413}
1414
1415/* Print to dump_file a description of what we're doing when optimizing
1416 for speed or size; SPEED_P says which. DESCRIPTION is a description
1417 of the SPEED_P choice. */
1418
1419static void
1420dump_choices (bool speed_p, const char *description)
1421{
8536340f 1422 unsigned int size, factor, i;
af4ba423
KZ
1423
1424 fprintf (dump_file, "Choices when optimizing for %s:\n", description);
1425
1426 for (i = 0; i < MAX_MACHINE_MODE; i++)
8536340f
RS
1427 if (interesting_mode_p ((machine_mode) i, &size, &factor)
1428 && factor > 1)
af4ba423
KZ
1429 fprintf (dump_file, " %s mode %s for copy lowering.\n",
1430 choices[speed_p].move_modes_to_split[i]
1431 ? "Splitting"
1432 : "Skipping",
ef4bddc2 1433 GET_MODE_NAME ((machine_mode) i));
af4ba423
KZ
1434
1435 fprintf (dump_file, " %s mode %s for zero_extend lowering.\n",
1436 choices[speed_p].splitting_zext ? "Splitting" : "Skipping",
1437 GET_MODE_NAME (twice_word_mode));
1438
1439 dump_shift_choices (ASHIFT, choices[speed_p].splitting_ashift);
d7fde18c
JJ
1440 dump_shift_choices (LSHIFTRT, choices[speed_p].splitting_lshiftrt);
1441 dump_shift_choices (ASHIFTRT, choices[speed_p].splitting_ashiftrt);
af4ba423
KZ
1442 fprintf (dump_file, "\n");
1443}
1444
e53a16e7 1445/* Look for registers which are always accessed via word-sized SUBREGs
c2c47e8f
UW
1446 or -if DECOMPOSE_COPIES is true- via copies. Decompose these
1447 registers into several word-sized pseudo-registers. */
e53a16e7
ILT
1448
1449static void
c2c47e8f 1450decompose_multiword_subregs (bool decompose_copies)
e53a16e7
ILT
1451{
1452 unsigned int max;
1453 basic_block bb;
af4ba423 1454 bool speed_p;
e53a16e7 1455
af4ba423
KZ
1456 if (dump_file)
1457 {
1458 dump_choices (false, "size");
1459 dump_choices (true, "speed");
1460 }
1461
1462 /* Check if this target even has any modes to consider lowering. */
1463 if (!choices[false].something_to_do && !choices[true].something_to_do)
1464 {
1465 if (dump_file)
1466 fprintf (dump_file, "Nothing to do!\n");
1467 return;
1468 }
6fb5fa3c 1469
e53a16e7
ILT
1470 max = max_reg_num ();
1471
1472 /* First see if there are any multi-word pseudo-registers. If there
1473 aren't, there is nothing we can do. This should speed up this
1474 pass in the normal case, since it should be faster than scanning
1475 all the insns. */
1476 {
1477 unsigned int i;
af4ba423 1478 bool useful_modes_seen = false;
e53a16e7
ILT
1479
1480 for (i = FIRST_PSEUDO_REGISTER; i < max; ++i)
af4ba423
KZ
1481 if (regno_reg_rtx[i] != NULL)
1482 {
ef4bddc2 1483 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
af4ba423
KZ
1484 if (choices[false].move_modes_to_split[(int) mode]
1485 || choices[true].move_modes_to_split[(int) mode])
1486 {
1487 useful_modes_seen = true;
1488 break;
1489 }
1490 }
1491
1492 if (!useful_modes_seen)
e53a16e7 1493 {
af4ba423
KZ
1494 if (dump_file)
1495 fprintf (dump_file, "Nothing to lower in this function.\n");
1496 return;
e53a16e7 1497 }
e53a16e7
ILT
1498 }
1499
8d074192 1500 if (df)
af4ba423
KZ
1501 {
1502 df_set_flags (DF_DEFER_INSN_RESCAN);
1503 run_word_dce ();
1504 }
8d074192 1505
af4ba423
KZ
1506 /* FIXME: It may be possible to change this code to look for each
1507 multi-word pseudo-register and to find each insn which sets or
1508 uses that register. That should be faster than scanning all the
1509 insns. */
e53a16e7
ILT
1510
1511 decomposable_context = BITMAP_ALLOC (NULL);
1512 non_decomposable_context = BITMAP_ALLOC (NULL);
402464a0 1513 subreg_context = BITMAP_ALLOC (NULL);
e53a16e7 1514
9771b263
DN
1515 reg_copy_graph.create (max);
1516 reg_copy_graph.safe_grow_cleared (max);
1517 memset (reg_copy_graph.address (), 0, sizeof (bitmap) * max);
e53a16e7 1518
af4ba423 1519 speed_p = optimize_function_for_speed_p (cfun);
11cd3bed 1520 FOR_EACH_BB_FN (bb, cfun)
e53a16e7 1521 {
e967cc2f 1522 rtx_insn *insn;
e53a16e7
ILT
1523
1524 FOR_BB_INSNS (bb, insn)
1525 {
1526 rtx set;
1527 enum classify_move_insn cmi;
1528 int i, n;
1529
1530 if (!INSN_P (insn)
1531 || GET_CODE (PATTERN (insn)) == CLOBBER
1532 || GET_CODE (PATTERN (insn)) == USE)
1533 continue;
1534
d5785e76
JJ
1535 recog_memoized (insn);
1536
af4ba423 1537 if (find_decomposable_shift_zext (insn, speed_p))
e0892570
AK
1538 continue;
1539
e53a16e7
ILT
1540 extract_insn (insn);
1541
af4ba423 1542 set = simple_move (insn, speed_p);
e53a16e7
ILT
1543
1544 if (!set)
1545 cmi = NOT_SIMPLE_MOVE;
1546 else
1547 {
c2c47e8f
UW
1548 /* We mark pseudo-to-pseudo copies as decomposable during the
1549 second pass only. The first pass is so early that there is
1550 good chance such moves will be optimized away completely by
1551 subsequent optimizations anyway.
1552
1553 However, we call find_pseudo_copy even during the first pass
1554 so as to properly set up the reg_copy_graph. */
4a8cae83 1555 if (find_pseudo_copy (set))
c2c47e8f 1556 cmi = decompose_copies? DECOMPOSABLE_SIMPLE_MOVE : SIMPLE_MOVE;
e53a16e7
ILT
1557 else
1558 cmi = SIMPLE_MOVE;
1559 }
1560
1561 n = recog_data.n_operands;
1562 for (i = 0; i < n; ++i)
1563 {
a36a1928 1564 find_decomposable_subregs (&recog_data.operand[i], &cmi);
e53a16e7
ILT
1565
1566 /* We handle ASM_OPERANDS as a special case to support
1567 things like x86 rdtsc which returns a DImode value.
1568 We can decompose the output, which will certainly be
1569 operand 0, but not the inputs. */
1570
1571 if (cmi == SIMPLE_MOVE
1572 && GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1573 {
1574 gcc_assert (i == 0);
1575 cmi = NOT_SIMPLE_MOVE;
1576 }
1577 }
1578 }
1579 }
1580
1581 bitmap_and_compl_into (decomposable_context, non_decomposable_context);
1582 if (!bitmap_empty_p (decomposable_context))
1583 {
7984c787
SB
1584 unsigned int i;
1585 sbitmap_iterator sbi;
e53a16e7
ILT
1586 bitmap_iterator iter;
1587 unsigned int regno;
1588
1589 propagate_pseudo_copies ();
1590
7ba9e72d 1591 auto_sbitmap sub_blocks (last_basic_block_for_fn (cfun));
f61e445a 1592 bitmap_clear (sub_blocks);
e53a16e7
ILT
1593
1594 EXECUTE_IF_SET_IN_BITMAP (decomposable_context, 0, regno, iter)
1595 decompose_register (regno);
1596
11cd3bed 1597 FOR_EACH_BB_FN (bb, cfun)
e53a16e7 1598 {
e967cc2f 1599 rtx_insn *insn;
e53a16e7 1600
ba4807a0 1601 FOR_BB_INSNS (bb, insn)
e53a16e7 1602 {
11895e28 1603 rtx pat;
e53a16e7
ILT
1604
1605 if (!INSN_P (insn))
1606 continue;
1607
e53a16e7
ILT
1608 pat = PATTERN (insn);
1609 if (GET_CODE (pat) == CLOBBER)
d4fd3465 1610 resolve_clobber (pat, insn);
e53a16e7 1611 else if (GET_CODE (pat) == USE)
d4fd3465 1612 resolve_use (pat, insn);
b5b8b0ac
AO
1613 else if (DEBUG_INSN_P (insn))
1614 resolve_debug (insn);
e53a16e7
ILT
1615 else
1616 {
1617 rtx set;
1618 int i;
1619
1620 recog_memoized (insn);
1621 extract_insn (insn);
1622
af4ba423 1623 set = simple_move (insn, speed_p);
e53a16e7
ILT
1624 if (set)
1625 {
e967cc2f 1626 rtx_insn *orig_insn = insn;
73663bb7 1627 bool cfi = control_flow_insn_p (insn);
e53a16e7 1628
7984c787
SB
1629 /* We can end up splitting loads to multi-word pseudos
1630 into separate loads to machine word size pseudos.
1631 When this happens, we first had one load that can
1632 throw, and after resolve_simple_move we'll have a
1633 bunch of loads (at least two). All those loads may
1634 trap if we can have non-call exceptions, so they
1635 all will end the current basic block. We split the
1636 block after the outer loop over all insns, but we
1637 make sure here that we will be able to split the
1638 basic block and still produce the correct control
1639 flow graph for it. */
1640 gcc_assert (!cfi
8f4f502f 1641 || (cfun->can_throw_non_call_exceptions
7984c787
SB
1642 && can_throw_internal (insn)));
1643
e53a16e7
ILT
1644 insn = resolve_simple_move (set, insn);
1645 if (insn != orig_insn)
1646 {
e53a16e7
ILT
1647 recog_memoized (insn);
1648 extract_insn (insn);
73663bb7
ILT
1649
1650 if (cfi)
d7c028c0 1651 bitmap_set_bit (sub_blocks, bb->index);
e53a16e7
ILT
1652 }
1653 }
e0892570
AK
1654 else
1655 {
e967cc2f 1656 rtx_insn *decomposed_shift;
e0892570
AK
1657
1658 decomposed_shift = resolve_shift_zext (insn);
1659 if (decomposed_shift != NULL_RTX)
1660 {
e0892570
AK
1661 insn = decomposed_shift;
1662 recog_memoized (insn);
1663 extract_insn (insn);
1664 }
1665 }
e53a16e7
ILT
1666
1667 for (i = recog_data.n_operands - 1; i >= 0; --i)
cf55cb6a 1668 resolve_subreg_use (recog_data.operand_loc[i], insn);
e53a16e7
ILT
1669
1670 resolve_reg_notes (insn);
1671
1672 if (num_validated_changes () > 0)
1673 {
1674 for (i = recog_data.n_dups - 1; i >= 0; --i)
1675 {
1676 rtx *pl = recog_data.dup_loc[i];
1677 int dup_num = recog_data.dup_num[i];
1678 rtx *px = recog_data.operand_loc[dup_num];
1679
1a309dfb 1680 validate_unshare_change (insn, pl, *px, 1);
e53a16e7
ILT
1681 }
1682
1683 i = apply_change_group ();
1684 gcc_assert (i);
e53a16e7
ILT
1685 }
1686 }
e53a16e7
ILT
1687 }
1688 }
1689
7984c787
SB
1690 /* If we had insns to split that caused control flow insns in the middle
1691 of a basic block, split those blocks now. Note that we only handle
1692 the case where splitting a load has caused multiple possibly trapping
1693 loads to appear. */
d4ac4ce2 1694 EXECUTE_IF_SET_IN_BITMAP (sub_blocks, 0, i, sbi)
7984c787 1695 {
e967cc2f 1696 rtx_insn *insn, *end;
7984c787
SB
1697 edge fallthru;
1698
06e28de2 1699 bb = BASIC_BLOCK_FOR_FN (cfun, i);
7984c787
SB
1700 insn = BB_HEAD (bb);
1701 end = BB_END (bb);
1702
1703 while (insn != end)
1704 {
1705 if (control_flow_insn_p (insn))
1706 {
1707 /* Split the block after insn. There will be a fallthru
1708 edge, which is OK so we keep it. We have to create the
1709 exception edges ourselves. */
1710 fallthru = split_block (bb, insn);
1711 rtl_make_eh_edge (NULL, bb, BB_END (bb));
1712 bb = fallthru->dest;
1713 insn = BB_HEAD (bb);
1714 }
1715 else
1716 insn = NEXT_INSN (insn);
1717 }
1718 }
e53a16e7
ILT
1719 }
1720
1721 {
1722 unsigned int i;
1723 bitmap b;
1724
9771b263 1725 FOR_EACH_VEC_ELT (reg_copy_graph, i, b)
e53a16e7
ILT
1726 if (b)
1727 BITMAP_FREE (b);
1728 }
1729
9771b263 1730 reg_copy_graph.release ();
e53a16e7
ILT
1731
1732 BITMAP_FREE (decomposable_context);
1733 BITMAP_FREE (non_decomposable_context);
402464a0 1734 BITMAP_FREE (subreg_context);
e53a16e7
ILT
1735}
1736\f
e53a16e7
ILT
1737/* Implement first lower subreg pass. */
1738
27a4cd48
DM
1739namespace {
1740
1741const pass_data pass_data_lower_subreg =
e53a16e7 1742{
27a4cd48
DM
1743 RTL_PASS, /* type */
1744 "subreg1", /* name */
1745 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
1746 TV_LOWER_SUBREG, /* tv_id */
1747 0, /* properties_required */
1748 0, /* properties_provided */
1749 0, /* properties_destroyed */
1750 0, /* todo_flags_start */
3bea341f 1751 0, /* todo_flags_finish */
e53a16e7
ILT
1752};
1753
27a4cd48
DM
1754class pass_lower_subreg : public rtl_opt_pass
1755{
1756public:
c3284718
RS
1757 pass_lower_subreg (gcc::context *ctxt)
1758 : rtl_opt_pass (pass_data_lower_subreg, ctxt)
27a4cd48
DM
1759 {}
1760
1761 /* opt_pass methods: */
1a3d085c 1762 virtual bool gate (function *) { return flag_split_wide_types != 0; }
be55bfe6
TS
1763 virtual unsigned int execute (function *)
1764 {
1765 decompose_multiword_subregs (false);
1766 return 0;
1767 }
27a4cd48
DM
1768
1769}; // class pass_lower_subreg
1770
1771} // anon namespace
1772
1773rtl_opt_pass *
1774make_pass_lower_subreg (gcc::context *ctxt)
1775{
1776 return new pass_lower_subreg (ctxt);
1777}
1778
be55bfe6
TS
1779/* Implement second lower subreg pass. */
1780
27a4cd48
DM
1781namespace {
1782
1783const pass_data pass_data_lower_subreg2 =
e53a16e7 1784{
27a4cd48
DM
1785 RTL_PASS, /* type */
1786 "subreg2", /* name */
1787 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
1788 TV_LOWER_SUBREG, /* tv_id */
1789 0, /* properties_required */
1790 0, /* properties_provided */
1791 0, /* properties_destroyed */
1792 0, /* todo_flags_start */
3bea341f 1793 TODO_df_finish, /* todo_flags_finish */
e53a16e7 1794};
27a4cd48
DM
1795
1796class pass_lower_subreg2 : public rtl_opt_pass
1797{
1798public:
c3284718
RS
1799 pass_lower_subreg2 (gcc::context *ctxt)
1800 : rtl_opt_pass (pass_data_lower_subreg2, ctxt)
27a4cd48
DM
1801 {}
1802
1803 /* opt_pass methods: */
1a3d085c 1804 virtual bool gate (function *) { return flag_split_wide_types != 0; }
be55bfe6
TS
1805 virtual unsigned int execute (function *)
1806 {
1807 decompose_multiword_subregs (true);
1808 return 0;
1809 }
27a4cd48
DM
1810
1811}; // class pass_lower_subreg2
1812
1813} // anon namespace
1814
1815rtl_opt_pass *
1816make_pass_lower_subreg2 (gcc::context *ctxt)
1817{
1818 return new pass_lower_subreg2 (ctxt);
1819}