]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/lra-eliminations.c
poly_int: PUSH_ROUNDING
[thirdparty/gcc.git] / gcc / lra-eliminations.c
CommitLineData
55a2c322 1/* Code for RTL register eliminations.
cbe34bb5 2 Copyright (C) 2010-2017 Free Software Foundation, Inc.
55a2c322
VM
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21/* Eliminable registers (like a soft argument or frame pointer) are
22 widely used in RTL. These eliminable registers should be replaced
23 by real hard registers (like the stack pointer or hard frame
24 pointer) plus some offset. The offsets usually change whenever the
25 stack is expanded. We know the final offsets only at the very end
26 of LRA.
27
28 Within LRA, we usually keep the RTL in such a state that the
29 eliminable registers can be replaced by just the corresponding hard
30 register (without any offset). To achieve this we should add the
31 initial elimination offset at the beginning of LRA and update the
32 offsets whenever the stack is expanded. We need to do this before
33 every constraint pass because the choice of offset often affects
34 whether a particular address or memory constraint is satisfied.
35
36 We keep RTL code at most time in such state that the virtual
37 registers can be changed by just the corresponding hard registers
38 (with zero offsets) and we have the right RTL code. To achieve this
39 we should add initial offset at the beginning of LRA work and update
40 offsets after each stack expanding. But actually we update virtual
41 registers to the same virtual registers + corresponding offsets
42 before every constraint pass because it affects constraint
43 satisfaction (e.g. an address displacement became too big for some
44 target).
45
46 The final change of eliminable registers to the corresponding hard
47 registers are done at the very end of LRA when there were no change
48 in offsets anymore:
49
50 fp + 42 => sp + 42
51
52*/
53
54#include "config.h"
55#include "system.h"
56#include "coretypes.h"
c7131fb2 57#include "backend.h"
957060b5 58#include "target.h"
55a2c322 59#include "rtl.h"
957060b5 60#include "tree.h"
c7131fb2 61#include "df.h"
4d0cdd0c 62#include "memmodel.h"
55a2c322 63#include "tm_p.h"
957060b5 64#include "optabs.h"
55a2c322 65#include "regs.h"
957060b5 66#include "ira.h"
55a2c322
VM
67#include "recog.h"
68#include "output.h"
55a2c322
VM
69#include "rtl-error.h"
70#include "lra-int.h"
71
72/* This structure is used to record information about hard register
73 eliminations. */
11478306 74struct lra_elim_table
55a2c322
VM
75{
76 /* Hard register number to be eliminated. */
f4eafc30 77 int from;
55a2c322 78 /* Hard register number used as replacement. */
f4eafc30 79 int to;
55a2c322
VM
80 /* Difference between values of the two hard registers above on
81 previous iteration. */
73ca989c 82 poly_int64 previous_offset;
55a2c322 83 /* Difference between the values on the current iteration. */
73ca989c 84 poly_int64 offset;
55a2c322 85 /* Nonzero if this elimination can be done. */
f4eafc30 86 bool can_eliminate;
55a2c322
VM
87 /* CAN_ELIMINATE since the last check. */
88 bool prev_can_eliminate;
89 /* REG rtx for the register to be eliminated. We cannot simply
90 compare the number since we might then spuriously replace a hard
91 register corresponding to a pseudo assigned to the reg to be
92 eliminated. */
f4eafc30 93 rtx from_rtx;
55a2c322 94 /* REG rtx for the replacement. */
f4eafc30 95 rtx to_rtx;
55a2c322
VM
96};
97
98/* The elimination table. Each array entry describes one possible way
99 of eliminating a register in favor of another. If there is more
100 than one way of eliminating a particular register, the most
101 preferred should be specified first. */
11478306 102static struct lra_elim_table *reg_eliminate = 0;
55a2c322
VM
103
104/* This is an intermediate structure to initialize the table. It has
105 exactly the members provided by ELIMINABLE_REGS. */
106static const struct elim_table_1
107{
108 const int from;
109 const int to;
110} reg_eliminate_1[] =
111
55a2c322 112 ELIMINABLE_REGS;
55a2c322
VM
113
114#define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
115
116/* Print info about elimination table to file F. */
117static void
118print_elim_table (FILE *f)
119{
11478306 120 struct lra_elim_table *ep;
55a2c322
VM
121
122 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
73ca989c
RS
123 {
124 fprintf (f, "%s eliminate %d to %d (offset=",
125 ep->can_eliminate ? "Can" : "Can't", ep->from, ep->to);
126 print_dec (ep->offset, f);
127 fprintf (f, ", prev_offset=");
128 print_dec (ep->previous_offset, f);
129 fprintf (f, ")\n");
130 }
55a2c322
VM
131}
132
133/* Print info about elimination table to stderr. */
134void
135lra_debug_elim_table (void)
136{
137 print_elim_table (stderr);
138}
139
140/* Setup possibility of elimination in elimination table element EP to
141 VALUE. Setup FRAME_POINTER_NEEDED if elimination from frame
142 pointer to stack pointer is not possible anymore. */
143static void
11478306 144setup_can_eliminate (struct lra_elim_table *ep, bool value)
55a2c322
VM
145{
146 ep->can_eliminate = ep->prev_can_eliminate = value;
147 if (! value
148 && ep->from == FRAME_POINTER_REGNUM && ep->to == STACK_POINTER_REGNUM)
149 frame_pointer_needed = 1;
d303ff97
L
150 if (!frame_pointer_needed)
151 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = 0;
55a2c322
VM
152}
153
154/* Map: eliminable "from" register -> its current elimination,
155 or NULL if none. The elimination table may contain more than
156 one elimination for the same hard register, but this map specifies
157 the one that we are currently using. */
11478306 158static struct lra_elim_table *elimination_map[FIRST_PSEUDO_REGISTER];
55a2c322
VM
159
160/* When an eliminable hard register becomes not eliminable, we use the
161 following special structure to restore original offsets for the
162 register. */
11478306 163static struct lra_elim_table self_elim_table;
55a2c322
VM
164
165/* Offsets should be used to restore original offsets for eliminable
166 hard register which just became not eliminable. Zero,
167 otherwise. */
73ca989c 168static poly_int64_pod self_elim_offsets[FIRST_PSEUDO_REGISTER];
55a2c322
VM
169
170/* Map: hard regno -> RTL presentation. RTL presentations of all
171 potentially eliminable hard registers are stored in the map. */
172static rtx eliminable_reg_rtx[FIRST_PSEUDO_REGISTER];
173
174/* Set up ELIMINATION_MAP of the currently used eliminations. */
175static void
176setup_elimination_map (void)
177{
178 int i;
11478306 179 struct lra_elim_table *ep;
55a2c322
VM
180
181 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
182 elimination_map[i] = NULL;
183 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
184 if (ep->can_eliminate && elimination_map[ep->from] == NULL)
185 elimination_map[ep->from] = ep;
186}
187
188\f
189
190/* Compute the sum of X and Y, making canonicalizations assumed in an
191 address, namely: sum constant integers, surround the sum of two
192 constants with a CONST, put the constant as the second operand, and
193 group the constant on the outermost sum.
194
195 This routine assumes both inputs are already in canonical form. */
196static rtx
197form_sum (rtx x, rtx y)
198{
ef4bddc2 199 machine_mode mode = GET_MODE (x);
73ca989c 200 poly_int64 offset;
55a2c322
VM
201
202 if (mode == VOIDmode)
203 mode = GET_MODE (y);
204
205 if (mode == VOIDmode)
206 mode = Pmode;
207
73ca989c
RS
208 if (poly_int_rtx_p (x, &offset))
209 return plus_constant (mode, y, offset);
210 else if (poly_int_rtx_p (y, &offset))
211 return plus_constant (mode, x, offset);
55a2c322 212 else if (CONSTANT_P (x))
4e1952ab 213 std::swap (x, y);
55a2c322
VM
214
215 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
216 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
217
218 /* Note that if the operands of Y are specified in the opposite
219 order in the recursive calls below, infinite recursion will
220 occur. */
221 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
222 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
223
224 /* If both constant, encapsulate sum. Otherwise, just form sum. A
225 constant will have been placed second. */
226 if (CONSTANT_P (x) && CONSTANT_P (y))
227 {
228 if (GET_CODE (x) == CONST)
229 x = XEXP (x, 0);
230 if (GET_CODE (y) == CONST)
231 y = XEXP (y, 0);
232
233 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
234 }
235
236 return gen_rtx_PLUS (mode, x, y);
237}
238
239/* Return the current substitution hard register of the elimination of
240 HARD_REGNO. If HARD_REGNO is not eliminable, return itself. */
241int
242lra_get_elimination_hard_regno (int hard_regno)
243{
11478306 244 struct lra_elim_table *ep;
55a2c322
VM
245
246 if (hard_regno < 0 || hard_regno >= FIRST_PSEUDO_REGISTER)
247 return hard_regno;
248 if ((ep = elimination_map[hard_regno]) == NULL)
249 return hard_regno;
250 return ep->to;
251}
252
253/* Return elimination which will be used for hard reg REG, NULL
254 otherwise. */
11478306 255static struct lra_elim_table *
55a2c322
VM
256get_elimination (rtx reg)
257{
258 int hard_regno;
11478306 259 struct lra_elim_table *ep;
55a2c322
VM
260
261 lra_assert (REG_P (reg));
262 if ((hard_regno = REGNO (reg)) < 0 || hard_regno >= FIRST_PSEUDO_REGISTER)
263 return NULL;
264 if ((ep = elimination_map[hard_regno]) != NULL)
265 return ep->from_rtx != reg ? NULL : ep;
73ca989c
RS
266 poly_int64 offset = self_elim_offsets[hard_regno];
267 if (known_eq (offset, 0))
55a2c322
VM
268 return NULL;
269 /* This is an iteration to restore offsets just after HARD_REGNO
270 stopped to be eliminable. */
271 self_elim_table.from = self_elim_table.to = hard_regno;
272 self_elim_table.from_rtx
273 = self_elim_table.to_rtx
274 = eliminable_reg_rtx[hard_regno];
275 lra_assert (self_elim_table.from_rtx != NULL);
276 self_elim_table.offset = offset;
277 return &self_elim_table;
278}
279
18c8f1a8
VM
280/* Transform (subreg (plus reg const)) to (plus (subreg reg) const)
281 when it is possible. Return X or the transformation result if the
282 transformation is done. */
283static rtx
284move_plus_up (rtx x)
285{
286 rtx subreg_reg;
b8506a8a 287 machine_mode x_mode, subreg_reg_mode;
18c8f1a8
VM
288
289 if (GET_CODE (x) != SUBREG || !subreg_lowpart_p (x))
290 return x;
291 subreg_reg = SUBREG_REG (x);
292 x_mode = GET_MODE (x);
293 subreg_reg_mode = GET_MODE (subreg_reg);
03a95621
RS
294 if (!paradoxical_subreg_p (x)
295 && GET_CODE (subreg_reg) == PLUS
cd65ae90
JJ
296 && CONSTANT_P (XEXP (subreg_reg, 1))
297 && GET_MODE_CLASS (x_mode) == MODE_INT
298 && GET_MODE_CLASS (subreg_reg_mode) == MODE_INT)
26ff85b0
JJ
299 {
300 rtx cst = simplify_subreg (x_mode, XEXP (subreg_reg, 1), subreg_reg_mode,
301 subreg_lowpart_offset (x_mode,
302 subreg_reg_mode));
303 if (cst && CONSTANT_P (cst))
861c7bcd
JJ
304 return gen_rtx_PLUS (x_mode, lowpart_subreg (x_mode,
305 XEXP (subreg_reg, 0),
26ff85b0
JJ
306 subreg_reg_mode), cst);
307 }
18c8f1a8
VM
308 return x;
309}
310
55a2c322 311/* Scan X and replace any eliminable registers (such as fp) with a
8d49e7ef 312 replacement (such as sp) if SUBST_P, plus an offset. The offset is
55a2c322
VM
313 a change in the offset between the eliminable register and its
314 substitution if UPDATE_P, or the full offset if FULL_P, or
8d49e7ef 315 otherwise zero. If FULL_P, we also use the SP offsets for
d9cf932c 316 elimination to SP. If UPDATE_P, use UPDATE_SP_OFFSET for updating
a6af1bf9
VM
317 offsets of register elimnable to SP. If UPDATE_SP_OFFSET is
318 non-zero, don't use difference of the offset and the previous
319 offset.
55a2c322
VM
320
321 MEM_MODE is the mode of an enclosing MEM. We need this to know how
322 much to adjust a register for, e.g., PRE_DEC. Also, if we are
323 inside a MEM, we are allowed to replace a sum of a hard register
324 and the constant zero with the hard register, which we cannot do
325 outside a MEM. In addition, we need to record the fact that a
326 hard register is referenced outside a MEM.
327
8d49e7ef
VM
328 If we make full substitution to SP for non-null INSN, add the insn
329 sp offset. */
55a2c322 330rtx
ef4bddc2 331lra_eliminate_regs_1 (rtx_insn *insn, rtx x, machine_mode mem_mode,
d9cf932c 332 bool subst_p, bool update_p,
73ca989c 333 poly_int64 update_sp_offset, bool full_p)
55a2c322
VM
334{
335 enum rtx_code code = GET_CODE (x);
11478306 336 struct lra_elim_table *ep;
55a2c322
VM
337 rtx new_rtx;
338 int i, j;
339 const char *fmt;
340 int copied = 0;
341
a6af1bf9 342 lra_assert (!update_p || !full_p);
73ca989c
RS
343 lra_assert (known_eq (update_sp_offset, 0)
344 || (!subst_p && update_p && !full_p));
55a2c322
VM
345 if (! current_function_decl)
346 return x;
347
348 switch (code)
349 {
350 CASE_CONST_ANY:
351 case CONST:
352 case SYMBOL_REF:
353 case CODE_LABEL:
354 case PC:
355 case CC0:
356 case ASM_INPUT:
357 case ADDR_VEC:
358 case ADDR_DIFF_VEC:
359 case RETURN:
360 return x;
361
362 case REG:
363 /* First handle the case where we encounter a bare hard register
364 that is eliminable. Replace it with a PLUS. */
365 if ((ep = get_elimination (x)) != NULL)
366 {
367 rtx to = subst_p ? ep->to_rtx : ep->from_rtx;
f4eafc30 368
73ca989c 369 if (maybe_ne (update_sp_offset, 0))
a6af1bf9
VM
370 {
371 if (ep->to_rtx == stack_pointer_rtx)
372 return plus_constant (Pmode, to, update_sp_offset);
373 return to;
374 }
375 else if (update_p)
376 return plus_constant (Pmode, to, ep->offset - ep->previous_offset);
55a2c322 377 else if (full_p)
8d49e7ef
VM
378 return plus_constant (Pmode, to,
379 ep->offset
380 - (insn != NULL_RTX
381 && ep->to_rtx == stack_pointer_rtx
382 ? lra_get_insn_recog_data (insn)->sp_offset
383 : 0));
55a2c322
VM
384 else
385 return to;
386 }
387 return x;
388
389 case PLUS:
390 /* If this is the sum of an eliminable register and a constant, rework
391 the sum. */
392 if (REG_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
393 {
394 if ((ep = get_elimination (XEXP (x, 0))) != NULL)
395 {
73ca989c 396 poly_int64 offset, curr_offset;
55a2c322 397 rtx to = subst_p ? ep->to_rtx : ep->from_rtx;
f4eafc30 398
55a2c322
VM
399 if (! update_p && ! full_p)
400 return gen_rtx_PLUS (Pmode, to, XEXP (x, 1));
a6af1bf9 401
73ca989c 402 if (maybe_ne (update_sp_offset, 0))
a6af1bf9
VM
403 offset = ep->to_rtx == stack_pointer_rtx ? update_sp_offset : 0;
404 else
405 offset = (update_p
406 ? ep->offset - ep->previous_offset : ep->offset);
8d49e7ef
VM
407 if (full_p && insn != NULL_RTX && ep->to_rtx == stack_pointer_rtx)
408 offset -= lra_get_insn_recog_data (insn)->sp_offset;
73ca989c
RS
409 if (poly_int_rtx_p (XEXP (x, 1), &curr_offset)
410 && known_eq (curr_offset, -offset))
55a2c322
VM
411 return to;
412 else
413 return gen_rtx_PLUS (Pmode, to,
414 plus_constant (Pmode,
415 XEXP (x, 1), offset));
416 }
417
418 /* If the hard register is not eliminable, we are done since
419 the other operand is a constant. */
420 return x;
421 }
422
423 /* If this is part of an address, we want to bring any constant
424 to the outermost PLUS. We will do this by doing hard
425 register replacement in our operands and seeing if a constant
426 shows up in one of them.
427
428 Note that there is no risk of modifying the structure of the
429 insn, since we only get called for its operands, thus we are
430 either modifying the address inside a MEM, or something like
431 an address operand of a load-address insn. */
432
433 {
8d49e7ef 434 rtx new0 = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
d9cf932c
VM
435 subst_p, update_p,
436 update_sp_offset, full_p);
8d49e7ef 437 rtx new1 = lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
d9cf932c
VM
438 subst_p, update_p,
439 update_sp_offset, full_p);
55a2c322 440
18c8f1a8
VM
441 new0 = move_plus_up (new0);
442 new1 = move_plus_up (new1);
55a2c322
VM
443 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
444 return form_sum (new0, new1);
445 }
446 return x;
447
448 case MULT:
449 /* If this is the product of an eliminable hard register and a
450 constant, apply the distribute law and move the constant out
451 so that we have (plus (mult ..) ..). This is needed in order
452 to keep load-address insns valid. This case is pathological.
453 We ignore the possibility of overflow here. */
454 if (REG_P (XEXP (x, 0)) && CONST_INT_P (XEXP (x, 1))
455 && (ep = get_elimination (XEXP (x, 0))) != NULL)
456 {
457 rtx to = subst_p ? ep->to_rtx : ep->from_rtx;
f4eafc30 458
73ca989c 459 if (maybe_ne (update_sp_offset, 0))
a6af1bf9
VM
460 {
461 if (ep->to_rtx == stack_pointer_rtx)
462 return plus_constant (Pmode,
463 gen_rtx_MULT (Pmode, to, XEXP (x, 1)),
464 update_sp_offset * INTVAL (XEXP (x, 1)));
465 return gen_rtx_MULT (Pmode, to, XEXP (x, 1));
466 }
467 else if (update_p)
d9cf932c
VM
468 return plus_constant (Pmode,
469 gen_rtx_MULT (Pmode, to, XEXP (x, 1)),
a6af1bf9 470 (ep->offset - ep->previous_offset)
d9cf932c 471 * INTVAL (XEXP (x, 1)));
55a2c322 472 else if (full_p)
8d49e7ef 473 {
73ca989c 474 poly_int64 offset = ep->offset;
8d49e7ef
VM
475
476 if (insn != NULL_RTX && ep->to_rtx == stack_pointer_rtx)
477 offset -= lra_get_insn_recog_data (insn)->sp_offset;
478 return
479 plus_constant (Pmode,
480 gen_rtx_MULT (Pmode, to, XEXP (x, 1)),
481 offset * INTVAL (XEXP (x, 1)));
482 }
55a2c322
VM
483 else
484 return gen_rtx_MULT (Pmode, to, XEXP (x, 1));
485 }
f4eafc30 486
191816a3 487 /* fall through */
55a2c322
VM
488
489 case CALL:
490 case COMPARE:
491 /* See comments before PLUS about handling MINUS. */
492 case MINUS:
493 case DIV: case UDIV:
494 case MOD: case UMOD:
495 case AND: case IOR: case XOR:
496 case ROTATERT: case ROTATE:
497 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
498 case NE: case EQ:
499 case GE: case GT: case GEU: case GTU:
500 case LE: case LT: case LEU: case LTU:
501 {
8d49e7ef 502 rtx new0 = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
d9cf932c
VM
503 subst_p, update_p,
504 update_sp_offset, full_p);
55a2c322 505 rtx new1 = XEXP (x, 1)
8d49e7ef 506 ? lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
d9cf932c
VM
507 subst_p, update_p,
508 update_sp_offset, full_p) : 0;
55a2c322
VM
509
510 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
511 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
512 }
513 return x;
514
515 case EXPR_LIST:
516 /* If we have something in XEXP (x, 0), the usual case,
517 eliminate it. */
518 if (XEXP (x, 0))
519 {
8d49e7ef 520 new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
d9cf932c
VM
521 subst_p, update_p,
522 update_sp_offset, full_p);
55a2c322
VM
523 if (new_rtx != XEXP (x, 0))
524 {
525 /* If this is a REG_DEAD note, it is not valid anymore.
526 Using the eliminated version could result in creating a
527 REG_DEAD note for the stack or frame pointer. */
528 if (REG_NOTE_KIND (x) == REG_DEAD)
529 return (XEXP (x, 1)
8d49e7ef 530 ? lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
d9cf932c
VM
531 subst_p, update_p,
532 update_sp_offset, full_p)
55a2c322
VM
533 : NULL_RTX);
534
535 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
536 }
537 }
538
191816a3 539 /* fall through */
55a2c322
VM
540
541 case INSN_LIST:
f91aec98 542 case INT_LIST:
55a2c322
VM
543 /* Now do eliminations in the rest of the chain. If this was
544 an EXPR_LIST, this might result in allocating more memory than is
545 strictly needed, but it simplifies the code. */
546 if (XEXP (x, 1))
547 {
8d49e7ef 548 new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
d9cf932c
VM
549 subst_p, update_p,
550 update_sp_offset, full_p);
55a2c322
VM
551 if (new_rtx != XEXP (x, 1))
552 return
553 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x),
554 XEXP (x, 0), new_rtx);
555 }
556 return x;
557
558 case PRE_INC:
559 case POST_INC:
560 case PRE_DEC:
561 case POST_DEC:
562 /* We do not support elimination of a register that is modified.
563 elimination_effects has already make sure that this does not
564 happen. */
565 return x;
566
567 case PRE_MODIFY:
568 case POST_MODIFY:
569 /* We do not support elimination of a hard register that is
570 modified. LRA has already make sure that this does not
571 happen. The only remaining case we need to consider here is
572 that the increment value may be an eliminable register. */
573 if (GET_CODE (XEXP (x, 1)) == PLUS
574 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
575 {
8d49e7ef 576 rtx new_rtx = lra_eliminate_regs_1 (insn, XEXP (XEXP (x, 1), 1),
d9cf932c
VM
577 mem_mode, subst_p, update_p,
578 update_sp_offset, full_p);
55a2c322
VM
579
580 if (new_rtx != XEXP (XEXP (x, 1), 1))
581 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
582 gen_rtx_PLUS (GET_MODE (x),
583 XEXP (x, 0), new_rtx));
584 }
585 return x;
586
587 case STRICT_LOW_PART:
588 case NEG: case NOT:
589 case SIGN_EXTEND: case ZERO_EXTEND:
590 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
591 case FLOAT: case FIX:
592 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
593 case ABS:
594 case SQRT:
595 case FFS:
596 case CLZ:
597 case CTZ:
598 case POPCOUNT:
599 case PARITY:
600 case BSWAP:
8d49e7ef 601 new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
d9cf932c
VM
602 subst_p, update_p,
603 update_sp_offset, full_p);
55a2c322
VM
604 if (new_rtx != XEXP (x, 0))
605 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
606 return x;
607
608 case SUBREG:
8d49e7ef 609 new_rtx = lra_eliminate_regs_1 (insn, SUBREG_REG (x), mem_mode,
d9cf932c
VM
610 subst_p, update_p,
611 update_sp_offset, full_p);
55a2c322
VM
612
613 if (new_rtx != SUBREG_REG (x))
614 {
03a95621 615 if (MEM_P (new_rtx) && !paradoxical_subreg_p (x))
55a2c322
VM
616 {
617 SUBREG_REG (x) = new_rtx;
618 alter_subreg (&x, false);
619 return x;
620 }
b17ec42d
VM
621 else if (! subst_p)
622 {
623 /* LRA can transform subregs itself. So don't call
624 simplify_gen_subreg until LRA transformations are
625 finished. Function simplify_gen_subreg can do
626 non-trivial transformations (like truncation) which
627 might make LRA work to fail. */
628 SUBREG_REG (x) = new_rtx;
629 return x;
630 }
55a2c322 631 else
baa061be
RS
632 return simplify_gen_subreg (GET_MODE (x), new_rtx,
633 GET_MODE (new_rtx), SUBREG_BYTE (x));
55a2c322
VM
634 }
635
636 return x;
637
638 case MEM:
639 /* Our only special processing is to pass the mode of the MEM to our
640 recursive call and copy the flags. While we are here, handle this
641 case more efficiently. */
642 return
643 replace_equiv_address_nv
644 (x,
8d49e7ef 645 lra_eliminate_regs_1 (insn, XEXP (x, 0), GET_MODE (x),
d9cf932c 646 subst_p, update_p, update_sp_offset, full_p));
55a2c322
VM
647
648 case USE:
649 /* Handle insn_list USE that a call to a pure function may generate. */
8d49e7ef 650 new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 0), VOIDmode,
d9cf932c 651 subst_p, update_p, update_sp_offset, full_p);
55a2c322
VM
652 if (new_rtx != XEXP (x, 0))
653 return gen_rtx_USE (GET_MODE (x), new_rtx);
654 return x;
655
656 case CLOBBER:
657 case SET:
658 gcc_unreachable ();
659
660 default:
661 break;
662 }
663
664 /* Process each of our operands recursively. If any have changed, make a
665 copy of the rtx. */
666 fmt = GET_RTX_FORMAT (code);
667 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
668 {
669 if (*fmt == 'e')
670 {
8d49e7ef 671 new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, i), mem_mode,
d9cf932c
VM
672 subst_p, update_p,
673 update_sp_offset, full_p);
55a2c322
VM
674 if (new_rtx != XEXP (x, i) && ! copied)
675 {
676 x = shallow_copy_rtx (x);
677 copied = 1;
678 }
679 XEXP (x, i) = new_rtx;
680 }
681 else if (*fmt == 'E')
682 {
683 int copied_vec = 0;
684 for (j = 0; j < XVECLEN (x, i); j++)
685 {
8d49e7ef 686 new_rtx = lra_eliminate_regs_1 (insn, XVECEXP (x, i, j), mem_mode,
d9cf932c
VM
687 subst_p, update_p,
688 update_sp_offset, full_p);
55a2c322
VM
689 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
690 {
691 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
692 XVEC (x, i)->elem);
693 if (! copied)
694 {
695 x = shallow_copy_rtx (x);
696 copied = 1;
697 }
698 XVEC (x, i) = new_v;
699 copied_vec = 1;
700 }
701 XVECEXP (x, i, j) = new_rtx;
702 }
703 }
704 }
705
706 return x;
707}
708
709/* This function is used externally in subsequent passes of GCC. It
710 always does a full elimination of X. */
711rtx
ef4bddc2 712lra_eliminate_regs (rtx x, machine_mode mem_mode,
55a2c322
VM
713 rtx insn ATTRIBUTE_UNUSED)
714{
d9cf932c 715 return lra_eliminate_regs_1 (NULL, x, mem_mode, true, false, 0, true);
55a2c322
VM
716}
717
8d49e7ef
VM
718/* Stack pointer offset before the current insn relative to one at the
719 func start. RTL insns can change SP explicitly. We keep the
720 changes from one insn to another through this variable. */
73ca989c 721static poly_int64 curr_sp_change;
8d49e7ef 722
55a2c322
VM
723/* Scan rtx X for references to elimination source or target registers
724 in contexts that would prevent the elimination from happening.
725 Update the table of eliminables to reflect the changed state.
726 MEM_MODE is the mode of an enclosing MEM rtx, or VOIDmode if not
727 within a MEM. */
728static void
ef4bddc2 729mark_not_eliminable (rtx x, machine_mode mem_mode)
55a2c322
VM
730{
731 enum rtx_code code = GET_CODE (x);
11478306 732 struct lra_elim_table *ep;
55a2c322
VM
733 int i, j;
734 const char *fmt;
73ca989c 735 poly_int64 offset = 0;
55a2c322
VM
736
737 switch (code)
738 {
739 case PRE_INC:
740 case POST_INC:
741 case PRE_DEC:
742 case POST_DEC:
743 case POST_MODIFY:
744 case PRE_MODIFY:
8d49e7ef
VM
745 if (XEXP (x, 0) == stack_pointer_rtx
746 && ((code != PRE_MODIFY && code != POST_MODIFY)
747 || (GET_CODE (XEXP (x, 1)) == PLUS
748 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
73ca989c 749 && poly_int_rtx_p (XEXP (XEXP (x, 1), 1), &offset))))
8d49e7ef 750 {
7b4df2bf 751 poly_int64 size = GET_MODE_SIZE (mem_mode);
8d49e7ef
VM
752
753#ifdef PUSH_ROUNDING
754 /* If more bytes than MEM_MODE are pushed, account for
755 them. */
756 size = PUSH_ROUNDING (size);
757#endif
758 if (code == PRE_DEC || code == POST_DEC)
759 curr_sp_change -= size;
760 else if (code == PRE_INC || code == POST_INC)
761 curr_sp_change += size;
762 else if (code == PRE_MODIFY || code == POST_MODIFY)
73ca989c 763 curr_sp_change += offset;
8d49e7ef
VM
764 }
765 else if (REG_P (XEXP (x, 0))
766 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
767 {
768 /* If we modify the source of an elimination rule, disable
769 it. Do the same if it is the destination and not the
770 hard frame register. */
771 for (ep = reg_eliminate;
772 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
55a2c322 773 ep++)
8d49e7ef
VM
774 if (ep->from_rtx == XEXP (x, 0)
775 || (ep->to_rtx == XEXP (x, 0)
776 && ep->to_rtx != hard_frame_pointer_rtx))
777 setup_can_eliminate (ep, false);
778 }
55a2c322
VM
779 return;
780
781 case USE:
782 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
783 /* If using a hard register that is the source of an eliminate
784 we still think can be performed, note it cannot be
785 performed since we don't know how this hard register is
786 used. */
787 for (ep = reg_eliminate;
788 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
789 ep++)
790 if (ep->from_rtx == XEXP (x, 0)
791 && ep->to_rtx != hard_frame_pointer_rtx)
792 setup_can_eliminate (ep, false);
793 return;
794
795 case CLOBBER:
796 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
797 /* If clobbering a hard register that is the replacement
798 register for an elimination we still think can be
799 performed, note that it cannot be performed. Otherwise, we
800 need not be concerned about it. */
801 for (ep = reg_eliminate;
802 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
803 ep++)
804 if (ep->to_rtx == XEXP (x, 0)
805 && ep->to_rtx != hard_frame_pointer_rtx)
806 setup_can_eliminate (ep, false);
807 return;
808
809 case SET:
8d49e7ef
VM
810 if (SET_DEST (x) == stack_pointer_rtx
811 && GET_CODE (SET_SRC (x)) == PLUS
812 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
73ca989c 813 && poly_int_rtx_p (XEXP (SET_SRC (x), 1), &offset))
8d49e7ef 814 {
73ca989c 815 curr_sp_change += offset;
8d49e7ef
VM
816 return;
817 }
818 if (! REG_P (SET_DEST (x))
819 || REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER)
820 mark_not_eliminable (SET_DEST (x), mem_mode);
821 else
55a2c322
VM
822 {
823 /* See if this is setting the replacement hard register for
824 an elimination.
8d49e7ef 825
55a2c322
VM
826 If DEST is the hard frame pointer, we do nothing because
827 we assume that all assignments to the frame pointer are
828 for non-local gotos and are being done at a time when
829 they are valid and do not disturb anything else. Some
830 machines want to eliminate a fake argument pointer (or
831 even a fake frame pointer) with either the real frame
832 pointer or the stack pointer. Assignments to the hard
833 frame pointer must not prevent this elimination. */
55a2c322
VM
834 for (ep = reg_eliminate;
835 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
836 ep++)
837 if (ep->to_rtx == SET_DEST (x)
8d49e7ef 838 && SET_DEST (x) != hard_frame_pointer_rtx)
55a2c322
VM
839 setup_can_eliminate (ep, false);
840 }
8d49e7ef
VM
841
842 mark_not_eliminable (SET_SRC (x), mem_mode);
843 return;
55a2c322 844
8d49e7ef
VM
845 case MEM:
846 /* Our only special processing is to pass the mode of the MEM to
847 our recursive call. */
848 mark_not_eliminable (XEXP (x, 0), GET_MODE (x));
55a2c322
VM
849 return;
850
851 default:
852 break;
853 }
854
855 fmt = GET_RTX_FORMAT (code);
856 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
857 {
858 if (*fmt == 'e')
8d49e7ef 859 mark_not_eliminable (XEXP (x, i), mem_mode);
55a2c322
VM
860 else if (*fmt == 'E')
861 for (j = 0; j < XVECLEN (x, i); j++)
8d49e7ef 862 mark_not_eliminable (XVECEXP (x, i, j), mem_mode);
55a2c322
VM
863 }
864}
865
866\f
867
ecafcf05
VM
868#ifdef HARD_FRAME_POINTER_REGNUM
869
73ca989c
RS
870/* Search INSN's reg notes to see whether the destination is equal to
871 WHAT + C for some constant C. Return true if so, storing C in
872 *OFFSET_OUT and removing the reg note. */
873static bool
874remove_reg_equal_offset_note (rtx_insn *insn, rtx what, poly_int64 *offset_out)
ecafcf05
VM
875{
876 rtx link, *link_loc;
877
878 for (link_loc = &REG_NOTES (insn);
879 (link = *link_loc) != NULL_RTX;
880 link_loc = &XEXP (link, 1))
881 if (REG_NOTE_KIND (link) == REG_EQUAL
882 && GET_CODE (XEXP (link, 0)) == PLUS
883 && XEXP (XEXP (link, 0), 0) == what
73ca989c 884 && poly_int_rtx_p (XEXP (XEXP (link, 0), 1), offset_out))
ecafcf05
VM
885 {
886 *link_loc = XEXP (link, 1);
73ca989c 887 return true;
ecafcf05 888 }
73ca989c 889 return false;
ecafcf05
VM
890}
891
892#endif
893
55a2c322
VM
894/* Scan INSN and eliminate all eliminable hard registers in it.
895
896 If REPLACE_P is true, do the replacement destructively. Also
897 delete the insn as dead it if it is setting an eliminable register.
898
899 If REPLACE_P is false, just update the offsets while keeping the
8d49e7ef 900 base register the same. If FIRST_P, use the sp offset for
a6af1bf9
VM
901 elimination to sp. Otherwise, use UPDATE_SP_OFFSET for this. If
902 UPDATE_SP_OFFSET is non-zero, don't use difference of the offset
903 and the previous offset. Attach the note about used elimination
904 for insns setting frame pointer to update elimination easy (without
905 parsing already generated elimination insns to find offset
906 previously used) in future. */
55a2c322 907
d9cf932c
VM
908void
909eliminate_regs_in_insn (rtx_insn *insn, bool replace_p, bool first_p,
73ca989c 910 poly_int64 update_sp_offset)
55a2c322
VM
911{
912 int icode = recog_memoized (insn);
913 rtx old_set = single_set (insn);
914 bool validate_p;
915 int i;
916 rtx substed_operand[MAX_RECOG_OPERANDS];
917 rtx orig_operand[MAX_RECOG_OPERANDS];
11478306 918 struct lra_elim_table *ep;
55a2c322
VM
919 rtx plus_src, plus_cst_src;
920 lra_insn_recog_data_t id;
921 struct lra_static_insn_data *static_id;
922
923 if (icode < 0 && asm_noperands (PATTERN (insn)) < 0 && ! DEBUG_INSN_P (insn))
924 {
39718607 925 lra_assert (GET_CODE (PATTERN (insn)) == USE
55a2c322 926 || GET_CODE (PATTERN (insn)) == CLOBBER
55a2c322
VM
927 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
928 return;
929 }
930
931 /* Check for setting an eliminable register. */
932 if (old_set != 0 && REG_P (SET_DEST (old_set))
933 && (ep = get_elimination (SET_DEST (old_set))) != NULL)
934 {
80f466c4
VM
935 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
936 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
937 {
938 bool delete_p = replace_p;
939
55a2c322 940#ifdef HARD_FRAME_POINTER_REGNUM
80f466c4
VM
941 if (ep->from == FRAME_POINTER_REGNUM
942 && ep->to == HARD_FRAME_POINTER_REGNUM)
943 /* If this is setting the frame pointer register to the
944 hardware frame pointer register and this is an
945 elimination that will be done (tested above), this
946 insn is really adjusting the frame pointer downward
947 to compensate for the adjustment done before a
948 nonlocal goto. */
949 {
950 rtx src = SET_SRC (old_set);
73ca989c
RS
951 poly_int64 offset = 0;
952
a6af1bf9
VM
953 /* We should never process such insn with non-zero
954 UPDATE_SP_OFFSET. */
73ca989c 955 lra_assert (known_eq (update_sp_offset, 0));
a6af1bf9 956
73ca989c
RS
957 if (remove_reg_equal_offset_note (insn, ep->to_rtx, &offset)
958 || strip_offset (src, &offset) == ep->to_rtx)
80f466c4 959 {
80f466c4
VM
960 if (replace_p)
961 {
962 SET_DEST (old_set) = ep->to_rtx;
963 lra_update_insn_recog_data (insn);
964 return;
965 }
80f466c4
VM
966 offset -= (ep->offset - ep->previous_offset);
967 src = plus_constant (Pmode, ep->to_rtx, offset);
968
969 /* First see if this insn remains valid when we
970 make the change. If not, keep the INSN_CODE
971 the same and let the constraint pass fit it
972 up. */
973 validate_change (insn, &SET_SRC (old_set), src, 1);
974 validate_change (insn, &SET_DEST (old_set),
975 ep->from_rtx, 1);
976 if (! apply_change_group ())
977 {
978 SET_SRC (old_set) = src;
979 SET_DEST (old_set) = ep->from_rtx;
980 }
981 lra_update_insn_recog_data (insn);
982 /* Add offset note for future updates. */
0fbac2d1 983 add_reg_note (insn, REG_EQUAL, copy_rtx (src));
80f466c4
VM
984 return;
985 }
986 }
55a2c322 987#endif
80f466c4
VM
988
989 /* This insn isn't serving a useful purpose. We delete it
990 when REPLACE is set. */
991 if (delete_p)
992 lra_delete_dead_insn (insn);
993 return;
994 }
55a2c322
VM
995 }
996
997 /* We allow one special case which happens to work on all machines we
998 currently support: a single set with the source or a REG_EQUAL
999 note being a PLUS of an eliminable register and a constant. */
1000 plus_src = plus_cst_src = 0;
73ca989c 1001 poly_int64 offset = 0;
55a2c322
VM
1002 if (old_set && REG_P (SET_DEST (old_set)))
1003 {
1004 if (GET_CODE (SET_SRC (old_set)) == PLUS)
1005 plus_src = SET_SRC (old_set);
1006 /* First see if the source is of the form (plus (...) CST). */
73ca989c 1007 if (plus_src && poly_int_rtx_p (XEXP (plus_src, 1), &offset))
55a2c322
VM
1008 plus_cst_src = plus_src;
1009 /* Check that the first operand of the PLUS is a hard reg or
1010 the lowpart subreg of one. */
1011 if (plus_cst_src)
1012 {
1013 rtx reg = XEXP (plus_cst_src, 0);
1014
1015 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
1016 reg = SUBREG_REG (reg);
1017
1018 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
1019 plus_cst_src = 0;
1020 }
1021 }
1022 if (plus_cst_src)
1023 {
1024 rtx reg = XEXP (plus_cst_src, 0);
55a2c322
VM
1025
1026 if (GET_CODE (reg) == SUBREG)
1027 reg = SUBREG_REG (reg);
1028
1029 if (REG_P (reg) && (ep = get_elimination (reg)) != NULL)
1030 {
1031 rtx to_rtx = replace_p ? ep->to_rtx : ep->from_rtx;
f4eafc30 1032
55a2c322
VM
1033 if (! replace_p)
1034 {
73ca989c 1035 if (known_eq (update_sp_offset, 0))
a6af1bf9 1036 offset += (ep->offset - ep->previous_offset);
d9cf932c
VM
1037 if (ep->to_rtx == stack_pointer_rtx)
1038 {
1039 if (first_p)
1040 offset -= lra_get_insn_recog_data (insn)->sp_offset;
1041 else
1042 offset += update_sp_offset;
1043 }
55a2c322
VM
1044 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
1045 }
f4eafc30 1046
55a2c322
VM
1047 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
1048 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)), to_rtx);
1049 /* If we have a nonzero offset, and the source is already a
1050 simple REG, the following transformation would increase
1051 the cost of the insn by replacing a simple REG with (plus
1052 (reg sp) CST). So try only when we already had a PLUS
1053 before. */
73ca989c 1054 if (known_eq (offset, 0) || plus_src)
55a2c322
VM
1055 {
1056 rtx new_src = plus_constant (GET_MODE (to_rtx), to_rtx, offset);
f4eafc30 1057
55a2c322
VM
1058 old_set = single_set (insn);
1059
1060 /* First see if this insn remains valid when we make the
1061 change. If not, try to replace the whole pattern
1062 with a simple set (this may help if the original insn
1063 was a PARALLEL that was only recognized as single_set
1064 due to REG_UNUSED notes). If this isn't valid
1065 either, keep the INSN_CODE the same and let the
1066 constraint pass fix it up. */
1067 if (! validate_change (insn, &SET_SRC (old_set), new_src, 0))
1068 {
f7df4a84 1069 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
f4eafc30 1070
55a2c322
VM
1071 if (! validate_change (insn, &PATTERN (insn), new_pat, 0))
1072 SET_SRC (old_set) = new_src;
1073 }
1074 lra_update_insn_recog_data (insn);
1075 /* This can't have an effect on elimination offsets, so skip
1076 right to the end. */
1077 return;
1078 }
1079 }
1080 }
1081
1082 /* Eliminate all eliminable registers occurring in operands that
1083 can be handled by the constraint pass. */
1084 id = lra_get_insn_recog_data (insn);
1085 static_id = id->insn_static_data;
1086 validate_p = false;
1087 for (i = 0; i < static_id->n_operands; i++)
1088 {
1089 orig_operand[i] = *id->operand_loc[i];
1090 substed_operand[i] = *id->operand_loc[i];
1091
1092 /* For an asm statement, every operand is eliminable. */
1093 if (icode < 0 || insn_data[icode].operand[i].eliminable)
1094 {
1095 /* Check for setting a hard register that we know about. */
1096 if (static_id->operand[i].type != OP_IN
1097 && REG_P (orig_operand[i]))
1098 {
1099 /* If we are assigning to a hard register that can be
1100 eliminated, it must be as part of a PARALLEL, since
1101 the code above handles single SETs. This reg can not
1102 be longer eliminated -- it is forced by
1103 mark_not_eliminable. */
1104 for (ep = reg_eliminate;
1105 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
1106 ep++)
1107 lra_assert (ep->from_rtx != orig_operand[i]
1108 || ! ep->can_eliminate);
1109 }
1110
1111 /* Companion to the above plus substitution, we can allow
1112 invariants as the source of a plain move. */
1113 substed_operand[i]
8d49e7ef
VM
1114 = lra_eliminate_regs_1 (insn, *id->operand_loc[i], VOIDmode,
1115 replace_p, ! replace_p && ! first_p,
d9cf932c 1116 update_sp_offset, first_p);
55a2c322
VM
1117 if (substed_operand[i] != orig_operand[i])
1118 validate_p = true;
1119 }
1120 }
1121
2c62cbaa
VM
1122 if (! validate_p)
1123 return;
1124
55a2c322
VM
1125 /* Substitute the operands; the new values are in the substed_operand
1126 array. */
1127 for (i = 0; i < static_id->n_operands; i++)
1128 *id->operand_loc[i] = substed_operand[i];
1129 for (i = 0; i < static_id->n_dups; i++)
1130 *id->dup_loc[i] = substed_operand[(int) static_id->dup_num[i]];
1131
2c62cbaa
VM
1132 /* If we had a move insn but now we don't, re-recognize it.
1133 This will cause spurious re-recognition if the old move had a
1134 PARALLEL since the new one still will, but we can't call
1135 single_set without having put new body into the insn and the
1136 re-recognition won't hurt in this rare case. */
1137 id = lra_update_insn_recog_data (insn);
1138 static_id = id->insn_static_data;
55a2c322
VM
1139}
1140
1141/* Spill pseudos which are assigned to hard registers in SET. Add
1142 affected insns for processing in the subsequent constraint
1143 pass. */
1144static void
1145spill_pseudos (HARD_REG_SET set)
1146{
1147 int i;
1148 bitmap_head to_process;
cfa434f6 1149 rtx_insn *insn;
55a2c322
VM
1150
1151 if (hard_reg_set_empty_p (set))
1152 return;
1153 if (lra_dump_file != NULL)
1154 {
1155 fprintf (lra_dump_file, " Spilling non-eliminable hard regs:");
1156 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1157 if (TEST_HARD_REG_BIT (set, i))
1158 fprintf (lra_dump_file, " %d", i);
1159 fprintf (lra_dump_file, "\n");
1160 }
1161 bitmap_initialize (&to_process, &reg_obstack);
1162 for (i = FIRST_PSEUDO_REGISTER; i < max_reg_num (); i++)
1163 if (lra_reg_info[i].nrefs != 0 && reg_renumber[i] >= 0
1164 && overlaps_hard_reg_set_p (set,
1165 PSEUDO_REGNO_MODE (i), reg_renumber[i]))
1166 {
1167 if (lra_dump_file != NULL)
1168 fprintf (lra_dump_file, " Spilling r%d(%d)\n",
1169 i, reg_renumber[i]);
1170 reg_renumber[i] = -1;
1171 bitmap_ior_into (&to_process, &lra_reg_info[i].insn_bitmap);
1172 }
1173 IOR_HARD_REG_SET (lra_no_alloc_regs, set);
1174 for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
1175 if (bitmap_bit_p (&to_process, INSN_UID (insn)))
1176 {
1177 lra_push_insn (insn);
1178 lra_set_used_insn_alternative (insn, -1);
1179 }
1180 bitmap_clear (&to_process);
1181}
1182
1183/* Update all offsets and possibility for elimination on eliminable
8d49e7ef 1184 registers. Spill pseudos assigned to registers which are
55a2c322
VM
1185 uneliminable, update LRA_NO_ALLOC_REGS and ELIMINABLE_REG_SET. Add
1186 insns to INSNS_WITH_CHANGED_OFFSETS containing eliminable hard
5a107a0f
VM
1187 registers whose offsets should be changed. Return true if any
1188 elimination offset changed. */
1189static bool
55a2c322
VM
1190update_reg_eliminate (bitmap insns_with_changed_offsets)
1191{
5a107a0f 1192 bool prev, result;
11478306 1193 struct lra_elim_table *ep, *ep1;
55a2c322
VM
1194 HARD_REG_SET temp_hard_reg_set;
1195
29eb9a44
BE
1196 targetm.compute_frame_layout ();
1197
55a2c322
VM
1198 /* Clear self elimination offsets. */
1199 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1200 self_elim_offsets[ep->from] = 0;
55a2c322
VM
1201 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1202 {
1203 /* If it is a currently used elimination: update the previous
1204 offset. */
1205 if (elimination_map[ep->from] == ep)
1206 ep->previous_offset = ep->offset;
1207
1208 prev = ep->prev_can_eliminate;
1209 setup_can_eliminate (ep, targetm.can_eliminate (ep->from, ep->to));
1210 if (ep->can_eliminate && ! prev)
1211 {
1212 /* It is possible that not eliminable register becomes
1213 eliminable because we took other reasons into account to
1214 set up eliminable regs in the initial set up. Just
1215 ignore new eliminable registers. */
1216 setup_can_eliminate (ep, false);
1217 continue;
1218 }
1219 if (ep->can_eliminate != prev && elimination_map[ep->from] == ep)
1220 {
1221 /* We cannot use this elimination anymore -- find another
1222 one. */
1223 if (lra_dump_file != NULL)
1224 fprintf (lra_dump_file,
1225 " Elimination %d to %d is not possible anymore\n",
1226 ep->from, ep->to);
8d49e7ef
VM
1227 /* If after processing RTL we decides that SP can be used as
1228 a result of elimination, it can not be changed. */
ddcfa953
JW
1229 gcc_assert ((ep->to_rtx != stack_pointer_rtx)
1230 || (ep->from < FIRST_PSEUDO_REGISTER
1231 && fixed_regs [ep->from]));
55a2c322
VM
1232 /* Mark that is not eliminable anymore. */
1233 elimination_map[ep->from] = NULL;
1234 for (ep1 = ep + 1; ep1 < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep1++)
1235 if (ep1->can_eliminate && ep1->from == ep->from)
1236 break;
1237 if (ep1 < &reg_eliminate[NUM_ELIMINABLE_REGS])
1238 {
1239 if (lra_dump_file != NULL)
1240 fprintf (lra_dump_file, " Using elimination %d to %d now\n",
1241 ep1->from, ep1->to);
73ca989c 1242 lra_assert (known_eq (ep1->previous_offset, 0));
55a2c322
VM
1243 ep1->previous_offset = ep->offset;
1244 }
1245 else
1246 {
1247 /* There is no elimination anymore just use the hard
1248 register `from' itself. Setup self elimination
1249 offset to restore the original offset values. */
1250 if (lra_dump_file != NULL)
1251 fprintf (lra_dump_file, " %d is not eliminable at all\n",
1252 ep->from);
1253 self_elim_offsets[ep->from] = -ep->offset;
73ca989c 1254 if (maybe_ne (ep->offset, 0))
55a2c322
VM
1255 bitmap_ior_into (insns_with_changed_offsets,
1256 &lra_reg_info[ep->from].insn_bitmap);
1257 }
1258 }
1259
55a2c322 1260 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->offset);
55a2c322 1261 }
55a2c322 1262 setup_elimination_map ();
5a107a0f 1263 result = false;
8d49e7ef 1264 CLEAR_HARD_REG_SET (temp_hard_reg_set);
55a2c322 1265 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
8d49e7ef
VM
1266 if (elimination_map[ep->from] == NULL)
1267 SET_HARD_REG_BIT (temp_hard_reg_set, ep->from);
1268 else if (elimination_map[ep->from] == ep)
d70a81dd 1269 {
8d49e7ef
VM
1270 /* Prevent the hard register into which we eliminate from
1271 the usage for pseudos. */
1272 if (ep->from != ep->to)
1273 SET_HARD_REG_BIT (temp_hard_reg_set, ep->to);
73ca989c 1274 if (maybe_ne (ep->previous_offset, ep->offset))
8d49e7ef
VM
1275 {
1276 bitmap_ior_into (insns_with_changed_offsets,
1277 &lra_reg_info[ep->from].insn_bitmap);
1278
1279 /* Update offset when the eliminate offset have been
1280 changed. */
1281 lra_update_reg_val_offset (lra_reg_info[ep->from].val,
1282 ep->offset - ep->previous_offset);
1283 result = true;
1284 }
d70a81dd 1285 }
8d49e7ef
VM
1286 IOR_HARD_REG_SET (lra_no_alloc_regs, temp_hard_reg_set);
1287 AND_COMPL_HARD_REG_SET (eliminable_regset, temp_hard_reg_set);
1288 spill_pseudos (temp_hard_reg_set);
5a107a0f 1289 return result;
55a2c322
VM
1290}
1291
1292/* Initialize the table of hard registers to eliminate.
1293 Pre-condition: global flag frame_pointer_needed has been set before
1294 calling this function. */
1295static void
1296init_elim_table (void)
1297{
11478306 1298 struct lra_elim_table *ep;
522d4efc 1299 bool value_p;
55a2c322 1300 const struct elim_table_1 *ep1;
55a2c322
VM
1301
1302 if (!reg_eliminate)
11478306 1303 reg_eliminate = XCNEWVEC (struct lra_elim_table, NUM_ELIMINABLE_REGS);
55a2c322
VM
1304
1305 memset (self_elim_offsets, 0, sizeof (self_elim_offsets));
1306 /* Initiate member values which will be never changed. */
1307 self_elim_table.can_eliminate = self_elim_table.prev_can_eliminate = true;
1308 self_elim_table.previous_offset = 0;
53680238 1309
55a2c322
VM
1310 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
1311 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
1312 {
1313 ep->offset = ep->previous_offset = 0;
1314 ep->from = ep1->from;
1315 ep->to = ep1->to;
1316 value_p = (targetm.can_eliminate (ep->from, ep->to)
1317 && ! (ep->to == STACK_POINTER_REGNUM
f4eafc30 1318 && frame_pointer_needed
55a2c322
VM
1319 && (! SUPPORTS_STACK_ALIGNMENT
1320 || ! stack_realign_fp)));
1321 setup_can_eliminate (ep, value_p);
1322 }
55a2c322 1323
8d49e7ef
VM
1324 /* Build the FROM and TO REG rtx's. Note that code in gen_rtx_REG
1325 will cause, e.g., gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to
1326 equal stack_pointer_rtx. We depend on this. Threfore we switch
1327 off that we are in LRA temporarily. */
1328 lra_in_progress = 0;
55a2c322
VM
1329 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1330 {
1331 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
1332 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
1333 eliminable_reg_rtx[ep->from] = ep->from_rtx;
1334 }
8d49e7ef 1335 lra_in_progress = 1;
55a2c322
VM
1336}
1337
8d49e7ef
VM
1338/* Function for initialization of elimination once per function. It
1339 sets up sp offset for each insn. */
1340static void
1341init_elimination (void)
55a2c322 1342{
8d49e7ef 1343 bool stop_to_sp_elimination_p;
55a2c322 1344 basic_block bb;
cfa434f6 1345 rtx_insn *insn;
11478306 1346 struct lra_elim_table *ep;
55a2c322
VM
1347
1348 init_elim_table ();
11cd3bed 1349 FOR_EACH_BB_FN (bb, cfun)
8d49e7ef
VM
1350 {
1351 curr_sp_change = 0;
1352 stop_to_sp_elimination_p = false;
1353 FOR_BB_INSNS (bb, insn)
1354 if (INSN_P (insn))
1355 {
1356 lra_get_insn_recog_data (insn)->sp_offset = curr_sp_change;
1357 if (NONDEBUG_INSN_P (insn))
1358 {
1359 mark_not_eliminable (PATTERN (insn), VOIDmode);
73ca989c 1360 if (maybe_ne (curr_sp_change, 0)
8d49e7ef
VM
1361 && find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX))
1362 stop_to_sp_elimination_p = true;
1363 }
1364 }
1365 if (! frame_pointer_needed
73ca989c 1366 && (maybe_ne (curr_sp_change, 0) || stop_to_sp_elimination_p)
8d49e7ef
VM
1367 && bb->succs && bb->succs->length () != 0)
1368 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1369 if (ep->to == STACK_POINTER_REGNUM)
1370 setup_can_eliminate (ep, false);
1371 }
55a2c322
VM
1372 setup_elimination_map ();
1373}
1374
1375/* Eliminate hard reg given by its location LOC. */
1376void
1377lra_eliminate_reg_if_possible (rtx *loc)
1378{
1379 int regno;
11478306 1380 struct lra_elim_table *ep;
55a2c322
VM
1381
1382 lra_assert (REG_P (*loc));
1383 if ((regno = REGNO (*loc)) >= FIRST_PSEUDO_REGISTER
1384 || ! TEST_HARD_REG_BIT (lra_no_alloc_regs, regno))
1385 return;
1386 if ((ep = get_elimination (*loc)) != NULL)
1387 *loc = ep->to_rtx;
1388}
1389
8d49e7ef
VM
1390/* Do (final if FINAL_P or first if FIRST_P) elimination in INSN. Add
1391 the insn for subsequent processing in the constraint pass, update
1392 the insn info. */
55a2c322 1393static void
cfa434f6 1394process_insn_for_elimination (rtx_insn *insn, bool final_p, bool first_p)
55a2c322 1395{
d9cf932c 1396 eliminate_regs_in_insn (insn, final_p, first_p, 0);
55a2c322
VM
1397 if (! final_p)
1398 {
1399 /* Check that insn changed its code. This is a case when a move
1400 insn becomes an add insn and we do not want to process the
1401 insn as a move anymore. */
1402 int icode = recog (PATTERN (insn), insn, 0);
1403
1404 if (icode >= 0 && icode != INSN_CODE (insn))
1405 {
1406 INSN_CODE (insn) = icode;
1407 lra_update_insn_recog_data (insn);
1408 }
1409 lra_update_insn_regno_info (insn);
1410 lra_push_insn (insn);
1411 lra_set_used_insn_alternative (insn, -1);
1412 }
1413}
1414
1415/* Entry function to do final elimination if FINAL_P or to update
8d49e7ef
VM
1416 elimination register offsets (FIRST_P if we are doing it the first
1417 time). */
55a2c322 1418void
8d49e7ef 1419lra_eliminate (bool final_p, bool first_p)
55a2c322 1420{
55a2c322 1421 unsigned int uid;
55a2c322
VM
1422 bitmap_head insns_with_changed_offsets;
1423 bitmap_iterator bi;
11478306 1424 struct lra_elim_table *ep;
8d49e7ef
VM
1425
1426 gcc_assert (! final_p || ! first_p);
55a2c322
VM
1427
1428 timevar_push (TV_LRA_ELIMINATE);
1429
8d49e7ef
VM
1430 if (first_p)
1431 init_elimination ();
1432
55a2c322
VM
1433 bitmap_initialize (&insns_with_changed_offsets, &reg_obstack);
1434 if (final_p)
1435 {
b2b29377
MM
1436 if (flag_checking)
1437 {
1438 update_reg_eliminate (&insns_with_changed_offsets);
1439 gcc_assert (bitmap_empty_p (&insns_with_changed_offsets));
1440 }
55a2c322
VM
1441 /* We change eliminable hard registers in insns so we should do
1442 this for all insns containing any eliminable hard
1443 register. */
1444 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1445 if (elimination_map[ep->from] != NULL)
1446 bitmap_ior_into (&insns_with_changed_offsets,
1447 &lra_reg_info[ep->from].insn_bitmap);
1448 }
5a107a0f
VM
1449 else if (! update_reg_eliminate (&insns_with_changed_offsets))
1450 goto lra_eliminate_done;
55a2c322
VM
1451 if (lra_dump_file != NULL)
1452 {
1453 fprintf (lra_dump_file, "New elimination table:\n");
1454 print_elim_table (lra_dump_file);
1455 }
55a2c322 1456 EXECUTE_IF_SET_IN_BITMAP (&insns_with_changed_offsets, 0, uid, bi)
80f466c4
VM
1457 /* A dead insn can be deleted in process_insn_for_elimination. */
1458 if (lra_insn_recog_data[uid] != NULL)
8d49e7ef
VM
1459 process_insn_for_elimination (lra_insn_recog_data[uid]->insn,
1460 final_p, first_p);
55a2c322
VM
1461 bitmap_clear (&insns_with_changed_offsets);
1462
1463lra_eliminate_done:
1464 timevar_pop (TV_LRA_ELIMINATE);
1465}