]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/lra-spills.c
re PR tree-optimization/91114 (ICE in vect_analyze_loop, at tree-vect-loop.c:2415)
[thirdparty/gcc.git] / gcc / lra-spills.c
CommitLineData
55a2c322 1/* Change pseudos by memory.
a5544970 2 Copyright (C) 2010-2019 Free Software Foundation, Inc.
55a2c322
VM
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21
22/* This file contains code for a pass to change spilled pseudos into
23 memory.
24
25 The pass creates necessary stack slots and assigns spilled pseudos
26 to the stack slots in following way:
27
28 for all spilled pseudos P most frequently used first do
29 for all stack slots S do
30 if P doesn't conflict with pseudos assigned to S then
31 assign S to P and goto to the next pseudo process
32 end
33 end
34 create new stack slot S and assign P to S
35 end
f4eafc30 36
55a2c322
VM
37 The actual algorithm is bit more complicated because of different
38 pseudo sizes.
39
40 After that the code changes spilled pseudos (except ones created
41 from scratches) by corresponding stack slot memory in RTL.
42
43 If at least one stack slot was created, we need to run more passes
44 because we have new addresses which should be checked and because
45 the old address displacements might change and address constraints
46 (or insn memory constraints) might not be satisfied any more.
47
48 For some targets, the pass can spill some pseudos into hard
49 registers of different class (usually into vector registers)
50 instead of spilling them into memory if it is possible and
51 profitable. Spilling GENERAL_REGS pseudo into SSE registers for
52 Intel Corei7 is an example of such optimization. And this is
53 actually recommended by Intel optimization guide.
54
55 The file also contains code for final change of pseudos on hard
56 regs correspondingly assigned to them. */
57
58#include "config.h"
59#include "system.h"
60#include "coretypes.h"
c7131fb2 61#include "backend.h"
957060b5 62#include "target.h"
55a2c322 63#include "rtl.h"
c7131fb2 64#include "df.h"
55a2c322 65#include "insn-config.h"
957060b5 66#include "regs.h"
4d0cdd0c 67#include "memmodel.h"
957060b5 68#include "ira.h"
55a2c322
VM
69#include "recog.h"
70#include "output.h"
60393bbc 71#include "cfgrtl.h"
c7131fb2 72#include "lra.h"
55a2c322 73#include "lra-int.h"
55a2c322
VM
74
75
76/* Max regno at the start of the pass. */
77static int regs_num;
78
79/* Map spilled regno -> hard regno used instead of memory for
80 spilling. */
81static rtx *spill_hard_reg;
82
83/* The structure describes stack slot of a spilled pseudo. */
84struct pseudo_slot
85{
86 /* Number (0, 1, ...) of the stack slot to which given pseudo
87 belongs. */
88 int slot_num;
89 /* First or next slot with the same slot number. */
90 struct pseudo_slot *next, *first;
91 /* Memory representing the spilled pseudo. */
92 rtx mem;
93};
94
95/* The stack slots for each spilled pseudo. Indexed by regnos. */
96static struct pseudo_slot *pseudo_slots;
97
98/* The structure describes a register or a stack slot which can be
99 used for several spilled pseudos. */
100struct slot
101{
102 /* First pseudo with given stack slot. */
103 int regno;
104 /* Hard reg into which the slot pseudos are spilled. The value is
105 negative for pseudos spilled into memory. */
106 int hard_regno;
83d0488b
RS
107 /* Maximum alignment required by all users of the slot. */
108 unsigned int align;
109 /* Maximum size required by all users of the slot. */
cf098191 110 poly_int64 size;
55a2c322
VM
111 /* Memory representing the all stack slot. It can be different from
112 memory representing a pseudo belonging to give stack slot because
113 pseudo can be placed in a part of the corresponding stack slot.
114 The value is NULL for pseudos spilled into a hard reg. */
115 rtx mem;
116 /* Combined live ranges of all pseudos belonging to given slot. It
117 is used to figure out that a new spilled pseudo can use given
118 stack slot. */
119 lra_live_range_t live_ranges;
120};
121
122/* Array containing info about the stack slots. The array element is
123 indexed by the stack slot number in the range [0..slots_num). */
124static struct slot *slots;
125/* The number of the stack slots currently existing. */
126static int slots_num;
127
128/* Set up memory of the spilled pseudo I. The function can allocate
129 the corresponding stack slot if it is not done yet. */
130static void
131assign_mem_slot (int i)
132{
133 rtx x = NULL_RTX;
ef4bddc2 134 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
cf098191 135 poly_int64 inherent_size = PSEUDO_REGNO_BYTES (i);
83d0488b 136 machine_mode wider_mode
bd5a2c67 137 = wider_subreg_mode (mode, lra_reg_info[i].biggest_mode);
cf098191 138 poly_int64 total_size = GET_MODE_SIZE (wider_mode);
91914e56 139 poly_int64 adjust = 0;
55a2c322
VM
140
141 lra_assert (regno_reg_rtx[i] != NULL_RTX && REG_P (regno_reg_rtx[i])
142 && lra_reg_info[i].nrefs != 0 && reg_renumber[i] < 0);
f4eafc30 143
83d0488b
RS
144 unsigned int slot_num = pseudo_slots[i].slot_num;
145 x = slots[slot_num].mem;
146 if (!x)
55a2c322 147 {
83d0488b
RS
148 x = assign_stack_local (BLKmode, slots[slot_num].size,
149 slots[slot_num].align);
150 slots[slot_num].mem = x;
55a2c322 151 }
f4eafc30 152
55a2c322
VM
153 /* On a big endian machine, the "address" of the slot is the address
154 of the low part that fits its inherent mode. */
e10326ff 155 adjust += subreg_size_lowpart_offset (inherent_size, total_size);
55a2c322 156 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
f4eafc30 157
55a2c322
VM
158 /* Set all of the memory attributes as appropriate for a spill. */
159 set_mem_attrs_for_spill (x);
160 pseudo_slots[i].mem = x;
161}
162
163/* Sort pseudos according their usage frequencies. */
164static int
165regno_freq_compare (const void *v1p, const void *v2p)
166{
167 const int regno1 = *(const int *) v1p;
168 const int regno2 = *(const int *) v2p;
169 int diff;
170
171 if ((diff = lra_reg_info[regno2].freq - lra_reg_info[regno1].freq) != 0)
172 return diff;
173 return regno1 - regno2;
174}
175
55a2c322 176/* Sort pseudos according to their slots, putting the slots in the order
799d6b90
RS
177 that they should be allocated.
178
179 First prefer to group slots with variable sizes together and slots
180 with constant sizes together, since that usually makes them easier
181 to address from a common anchor point. E.g. loads of polynomial-sized
182 registers tend to take polynomial offsets while loads of constant-sized
183 registers tend to take constant (non-polynomial) offsets.
184
185 Next, slots with lower numbers have the highest priority and should
186 get the smallest displacement from the stack or frame pointer
187 (whichever is being used).
55a2c322
VM
188
189 The first allocated slot is always closest to the frame pointer,
190 so prefer lower slot numbers when frame_pointer_needed. If the stack
191 and frame grow in the same direction, then the first allocated slot is
192 always closest to the initial stack pointer and furthest away from the
193 final stack pointer, so allocate higher numbers first when using the
194 stack pointer in that case. The reverse is true if the stack and
195 frame grow in opposite directions. */
196static int
197pseudo_reg_slot_compare (const void *v1p, const void *v2p)
198{
199 const int regno1 = *(const int *) v1p;
200 const int regno2 = *(const int *) v2p;
201 int diff, slot_num1, slot_num2;
55a2c322
VM
202
203 slot_num1 = pseudo_slots[regno1].slot_num;
204 slot_num2 = pseudo_slots[regno2].slot_num;
799d6b90
RS
205 diff = (int (slots[slot_num1].size.is_constant ())
206 - int (slots[slot_num2].size.is_constant ()));
207 if (diff != 0)
208 return diff;
55a2c322
VM
209 if ((diff = slot_num1 - slot_num2) != 0)
210 return (frame_pointer_needed
e0bf0dc2 211 || (!FRAME_GROWS_DOWNWARD) == STACK_GROWS_DOWNWARD ? diff : -diff);
cf098191
RS
212 poly_int64 total_size1 = GET_MODE_SIZE (lra_reg_info[regno1].biggest_mode);
213 poly_int64 total_size2 = GET_MODE_SIZE (lra_reg_info[regno2].biggest_mode);
214 if ((diff = compare_sizes_for_sort (total_size2, total_size1)) != 0)
55a2c322
VM
215 return diff;
216 return regno1 - regno2;
217}
218
219/* Assign spill hard registers to N pseudos in PSEUDO_REGNOS which is
220 sorted in order of highest frequency first. Put the pseudos which
221 did not get a spill hard register at the beginning of array
222 PSEUDO_REGNOS. Return the number of such pseudos. */
223static int
224assign_spill_hard_regs (int *pseudo_regnos, int n)
225{
226 int i, k, p, regno, res, spill_class_size, hard_regno, nr;
227 enum reg_class rclass, spill_class;
ef4bddc2 228 machine_mode mode;
55a2c322 229 lra_live_range_t r;
cfa434f6
DM
230 rtx_insn *insn;
231 rtx set;
55a2c322
VM
232 basic_block bb;
233 HARD_REG_SET conflict_hard_regs;
55a2c322 234 bitmap setjump_crosses = regstat_get_setjmp_crosses ();
67914693 235 /* Hard registers which cannot be used for any purpose at given
55a2c322 236 program point because they are unallocatable or already allocated
f4eafc30 237 for other pseudos. */
55a2c322
VM
238 HARD_REG_SET *reserved_hard_regs;
239
240 if (! lra_reg_spill_p)
241 return n;
242 /* Set up reserved hard regs for every program point. */
243 reserved_hard_regs = XNEWVEC (HARD_REG_SET, lra_live_max_point);
244 for (p = 0; p < lra_live_max_point; p++)
245 COPY_HARD_REG_SET (reserved_hard_regs[p], lra_no_alloc_regs);
246 for (i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
247 if (lra_reg_info[i].nrefs != 0
248 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
249 for (r = lra_reg_info[i].live_ranges; r != NULL; r = r->next)
250 for (p = r->start; p <= r->finish; p++)
251 add_to_hard_reg_set (&reserved_hard_regs[p],
252 lra_reg_info[i].biggest_mode, hard_regno);
d648b5ff 253 auto_bitmap ok_insn_bitmap (&reg_obstack);
11cd3bed 254 FOR_EACH_BB_FN (bb, cfun)
55a2c322
VM
255 FOR_BB_INSNS (bb, insn)
256 if (DEBUG_INSN_P (insn)
257 || ((set = single_set (insn)) != NULL_RTX
258 && REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))))
d648b5ff 259 bitmap_set_bit (ok_insn_bitmap, INSN_UID (insn));
55a2c322
VM
260 for (res = i = 0; i < n; i++)
261 {
262 regno = pseudo_regnos[i];
263 rclass = lra_get_allocno_class (regno);
264 if (bitmap_bit_p (setjump_crosses, regno)
265 || (spill_class
266 = ((enum reg_class)
267 targetm.spill_class ((reg_class_t) rclass,
268 PSEUDO_REGNO_MODE (regno)))) == NO_REGS
269 || bitmap_intersect_compl_p (&lra_reg_info[regno].insn_bitmap,
d648b5ff 270 ok_insn_bitmap))
55a2c322
VM
271 {
272 pseudo_regnos[res++] = regno;
273 continue;
274 }
275 lra_assert (spill_class != NO_REGS);
276 COPY_HARD_REG_SET (conflict_hard_regs,
277 lra_reg_info[regno].conflict_hard_regs);
278 for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
279 for (p = r->start; p <= r->finish; p++)
280 IOR_HARD_REG_SET (conflict_hard_regs, reserved_hard_regs[p]);
281 spill_class_size = ira_class_hard_regs_num[spill_class];
282 mode = lra_reg_info[regno].biggest_mode;
283 for (k = 0; k < spill_class_size; k++)
284 {
285 hard_regno = ira_class_hard_regs[spill_class][k];
286 if (! overlaps_hard_reg_set_p (conflict_hard_regs, mode, hard_regno))
287 break;
288 }
289 if (k >= spill_class_size)
290 {
291 /* There is no available regs -- assign memory later. */
292 pseudo_regnos[res++] = regno;
293 continue;
294 }
295 if (lra_dump_file != NULL)
296 fprintf (lra_dump_file, " Spill r%d into hr%d\n", regno, hard_regno);
54178a01
TV
297 add_to_hard_reg_set (&hard_regs_spilled_into,
298 lra_reg_info[regno].biggest_mode, hard_regno);
55a2c322
VM
299 /* Update reserved_hard_regs. */
300 for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
301 for (p = r->start; p <= r->finish; p++)
302 add_to_hard_reg_set (&reserved_hard_regs[p],
303 lra_reg_info[regno].biggest_mode, hard_regno);
304 spill_hard_reg[regno]
305 = gen_raw_REG (PSEUDO_REGNO_MODE (regno), hard_regno);
306 for (nr = 0;
ad474626
RS
307 nr < hard_regno_nregs (hard_regno,
308 lra_reg_info[regno].biggest_mode);
55a2c322 309 nr++)
7a59fa3a
RS
310 /* Just loop. */
311 df_set_regs_ever_live (hard_regno + nr, true);
55a2c322 312 }
55a2c322
VM
313 free (reserved_hard_regs);
314 return res;
315}
316
317/* Add pseudo REGNO to slot SLOT_NUM. */
318static void
319add_pseudo_to_slot (int regno, int slot_num)
320{
321 struct pseudo_slot *first;
322
83d0488b
RS
323 /* Each pseudo has an inherent size which comes from its own mode,
324 and a total size which provides room for paradoxical subregs.
325 We need to make sure the size and alignment of the slot are
326 sufficient for both. */
bd5a2c67
RS
327 machine_mode mode = wider_subreg_mode (PSEUDO_REGNO_MODE (regno),
328 lra_reg_info[regno].biggest_mode);
83d0488b
RS
329 unsigned int align = spill_slot_alignment (mode);
330 slots[slot_num].align = MAX (slots[slot_num].align, align);
cf098191
RS
331 slots[slot_num].size = upper_bound (slots[slot_num].size,
332 GET_MODE_SIZE (mode));
83d0488b 333
55a2c322
VM
334 if (slots[slot_num].regno < 0)
335 {
336 /* It is the first pseudo in the slot. */
337 slots[slot_num].regno = regno;
338 pseudo_slots[regno].first = &pseudo_slots[regno];
339 pseudo_slots[regno].next = NULL;
340 }
341 else
342 {
343 first = pseudo_slots[regno].first = &pseudo_slots[slots[slot_num].regno];
344 pseudo_slots[regno].next = first->next;
345 first->next = &pseudo_slots[regno];
346 }
347 pseudo_slots[regno].mem = NULL_RTX;
348 pseudo_slots[regno].slot_num = slot_num;
349 slots[slot_num].live_ranges
350 = lra_merge_live_ranges (slots[slot_num].live_ranges,
351 lra_copy_live_range_list
352 (lra_reg_info[regno].live_ranges));
353}
354
355/* Assign stack slot numbers to pseudos in array PSEUDO_REGNOS of
356 length N. Sort pseudos in PSEUDO_REGNOS for subsequent assigning
357 memory stack slots. */
358static void
359assign_stack_slot_num_and_sort_pseudos (int *pseudo_regnos, int n)
360{
361 int i, j, regno;
362
363 slots_num = 0;
364 /* Assign stack slot numbers to spilled pseudos, use smaller numbers
365 for most frequently used pseudos. */
366 for (i = 0; i < n; i++)
367 {
368 regno = pseudo_regnos[i];
369 if (! flag_ira_share_spill_slots)
370 j = slots_num;
371 else
372 {
799d6b90
RS
373 machine_mode mode
374 = wider_subreg_mode (PSEUDO_REGNO_MODE (regno),
375 lra_reg_info[regno].biggest_mode);
55a2c322
VM
376 for (j = 0; j < slots_num; j++)
377 if (slots[j].hard_regno < 0
799d6b90
RS
378 /* Although it's possible to share slots between modes
379 with constant and non-constant widths, we usually
380 get better spill code by keeping the constant and
381 non-constant areas separate. */
382 && (GET_MODE_SIZE (mode).is_constant ()
383 == slots[j].size.is_constant ())
55a2c322
VM
384 && ! (lra_intersected_live_ranges_p
385 (slots[j].live_ranges,
386 lra_reg_info[regno].live_ranges)))
387 break;
388 }
389 if (j >= slots_num)
390 {
391 /* New slot. */
392 slots[j].live_ranges = NULL;
83d0488b
RS
393 slots[j].size = 0;
394 slots[j].align = BITS_PER_UNIT;
55a2c322
VM
395 slots[j].regno = slots[j].hard_regno = -1;
396 slots[j].mem = NULL_RTX;
397 slots_num++;
398 }
399 add_pseudo_to_slot (regno, j);
400 }
401 /* Sort regnos according to their slot numbers. */
402 qsort (pseudo_regnos, n, sizeof (int), pseudo_reg_slot_compare);
403}
404
405/* Recursively process LOC in INSN and change spilled pseudos to the
406 corresponding memory or spilled hard reg. Ignore spilled pseudos
49abe076
VM
407 created from the scratches. Return true if the pseudo nrefs equal
408 to 0 (don't change the pseudo in this case). Otherwise return false. */
409static bool
cfa434f6 410remove_pseudos (rtx *loc, rtx_insn *insn)
55a2c322
VM
411{
412 int i;
413 rtx hard_reg;
414 const char *fmt;
415 enum rtx_code code;
49abe076
VM
416 bool res = false;
417
55a2c322 418 if (*loc == NULL_RTX)
49abe076 419 return res;
55a2c322
VM
420 code = GET_CODE (*loc);
421 if (code == REG && (i = REGNO (*loc)) >= FIRST_PSEUDO_REGISTER
422 && lra_get_regno_hard_regno (i) < 0
423 /* We do not want to assign memory for former scratches because
424 it might result in an address reload for some targets. In
425 any case we transform such pseudos not getting hard registers
426 into scratches back. */
427 && ! lra_former_scratch_p (i))
428 {
49abe076
VM
429 if (lra_reg_info[i].nrefs == 0
430 && pseudo_slots[i].mem == NULL && spill_hard_reg[i] == NULL)
431 return true;
8d49e7ef
VM
432 if ((hard_reg = spill_hard_reg[i]) != NULL_RTX)
433 *loc = copy_rtx (hard_reg);
434 else
435 {
436 rtx x = lra_eliminate_regs_1 (insn, pseudo_slots[i].mem,
437 GET_MODE (pseudo_slots[i].mem),
a6af1bf9 438 false, false, 0, true);
8d49e7ef
VM
439 *loc = x != pseudo_slots[i].mem ? x : copy_rtx (x);
440 }
49abe076 441 return res;
55a2c322
VM
442 }
443
444 fmt = GET_RTX_FORMAT (code);
445 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
446 {
447 if (fmt[i] == 'e')
49abe076 448 res = remove_pseudos (&XEXP (*loc, i), insn) || res;
55a2c322
VM
449 else if (fmt[i] == 'E')
450 {
451 int j;
452
453 for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
49abe076 454 res = remove_pseudos (&XVECEXP (*loc, i, j), insn) || res;
55a2c322
VM
455 }
456 }
49abe076 457 return res;
55a2c322
VM
458}
459
460/* Convert spilled pseudos into their stack slots or spill hard regs,
461 put insns to process on the constraint stack (that is all insns in
462 which pseudos were changed to memory or spill hard regs). */
463static void
464spill_pseudos (void)
465{
466 basic_block bb;
49abe076 467 rtx_insn *insn, *curr;
55a2c322 468 int i;
55a2c322 469
d648b5ff
TS
470 auto_bitmap spilled_pseudos (&reg_obstack);
471 auto_bitmap changed_insns (&reg_obstack);
55a2c322
VM
472 for (i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
473 {
474 if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
475 && ! lra_former_scratch_p (i))
476 {
d648b5ff
TS
477 bitmap_set_bit (spilled_pseudos, i);
478 bitmap_ior_into (changed_insns, &lra_reg_info[i].insn_bitmap);
55a2c322
VM
479 }
480 }
11cd3bed 481 FOR_EACH_BB_FN (bb, cfun)
55a2c322 482 {
49abe076
VM
483 FOR_BB_INSNS_SAFE (bb, insn, curr)
484 {
485 bool removed_pseudo_p = false;
486
d648b5ff 487 if (bitmap_bit_p (changed_insns, INSN_UID (insn)))
49abe076
VM
488 {
489 rtx *link_loc, link;
490
491 removed_pseudo_p = remove_pseudos (&PATTERN (insn), insn);
492 if (CALL_P (insn)
493 && remove_pseudos (&CALL_INSN_FUNCTION_USAGE (insn), insn))
494 removed_pseudo_p = true;
495 for (link_loc = &REG_NOTES (insn);
496 (link = *link_loc) != NULL_RTX;
497 link_loc = &XEXP (link, 1))
498 {
499 switch (REG_NOTE_KIND (link))
500 {
501 case REG_FRAME_RELATED_EXPR:
502 case REG_CFA_DEF_CFA:
503 case REG_CFA_ADJUST_CFA:
504 case REG_CFA_OFFSET:
505 case REG_CFA_REGISTER:
506 case REG_CFA_EXPRESSION:
507 case REG_CFA_RESTORE:
508 case REG_CFA_SET_VDRAP:
509 if (remove_pseudos (&XEXP (link, 0), insn))
510 removed_pseudo_p = true;
511 break;
512 default:
513 break;
514 }
515 }
516 if (lra_dump_file != NULL)
517 fprintf (lra_dump_file,
518 "Changing spilled pseudos to memory in insn #%u\n",
519 INSN_UID (insn));
520 lra_push_insn (insn);
521 if (lra_reg_spill_p || targetm.different_addr_displacement_p ())
7874b7c5 522 lra_set_used_insn_alternative (insn, LRA_UNKNOWN_ALT);
49abe076
VM
523 }
524 else if (CALL_P (insn)
525 /* Presence of any pseudo in CALL_INSN_FUNCTION_USAGE
526 does not affect value of insn_bitmap of the
527 corresponding lra_reg_info. That is because we
528 don't need to reload pseudos in
529 CALL_INSN_FUNCTION_USAGEs. So if we process only
530 insns in the insn_bitmap of given pseudo here, we
531 can miss the pseudo in some
532 CALL_INSN_FUNCTION_USAGEs. */
533 && remove_pseudos (&CALL_INSN_FUNCTION_USAGE (insn), insn))
534 removed_pseudo_p = true;
535 if (removed_pseudo_p)
536 {
537 lra_assert (DEBUG_INSN_P (insn));
5901e56a
JJ
538 lra_invalidate_insn_data (insn);
539 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
49abe076
VM
540 if (lra_dump_file != NULL)
541 fprintf (lra_dump_file,
5901e56a
JJ
542 "Debug insn #%u is reset because it referenced "
543 "removed pseudo\n", INSN_UID (insn));
49abe076 544 }
d648b5ff
TS
545 bitmap_and_compl_into (df_get_live_in (bb), spilled_pseudos);
546 bitmap_and_compl_into (df_get_live_out (bb), spilled_pseudos);
49abe076 547 }
55a2c322 548 }
55a2c322
VM
549}
550
551/* Return true if we need to change some pseudos into memory. */
552bool
553lra_need_for_spills_p (void)
554{
555 int i; max_regno = max_reg_num ();
556
557 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
558 if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
559 && ! lra_former_scratch_p (i))
560 return true;
561 return false;
562}
563
564/* Change spilled pseudos into memory or spill hard regs. Put changed
565 insns on the constraint stack (these insns will be considered on
566 the next constraint pass). The changed insns are all insns in
567 which pseudos were changed. */
568void
569lra_spill (void)
570{
571 int i, n, curr_regno;
572 int *pseudo_regnos;
573
574 regs_num = max_reg_num ();
575 spill_hard_reg = XNEWVEC (rtx, regs_num);
576 pseudo_regnos = XNEWVEC (int, regs_num);
577 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
578 if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
579 /* We do not want to assign memory for former scratches. */
580 && ! lra_former_scratch_p (i))
49abe076 581 pseudo_regnos[n++] = i;
55a2c322
VM
582 lra_assert (n > 0);
583 pseudo_slots = XNEWVEC (struct pseudo_slot, regs_num);
49abe076
VM
584 for (i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
585 {
586 spill_hard_reg[i] = NULL_RTX;
587 pseudo_slots[i].mem = NULL_RTX;
588 }
55a2c322
VM
589 slots = XNEWVEC (struct slot, regs_num);
590 /* Sort regnos according their usage frequencies. */
591 qsort (pseudo_regnos, n, sizeof (int), regno_freq_compare);
592 n = assign_spill_hard_regs (pseudo_regnos, n);
593 assign_stack_slot_num_and_sort_pseudos (pseudo_regnos, n);
594 for (i = 0; i < n; i++)
595 if (pseudo_slots[pseudo_regnos[i]].mem == NULL_RTX)
596 assign_mem_slot (pseudo_regnos[i]);
2c62cbaa
VM
597 if (n > 0 && crtl->stack_alignment_needed)
598 /* If we have a stack frame, we must align it now. The stack size
599 may be a part of the offset computation for register
600 elimination. */
601 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
55a2c322
VM
602 if (lra_dump_file != NULL)
603 {
604 for (i = 0; i < slots_num; i++)
605 {
cf098191
RS
606 fprintf (lra_dump_file, " Slot %d regnos (width = ", i);
607 print_dec (GET_MODE_SIZE (GET_MODE (slots[i].mem)),
608 lra_dump_file, SIGNED);
609 fprintf (lra_dump_file, "):");
55a2c322
VM
610 for (curr_regno = slots[i].regno;;
611 curr_regno = pseudo_slots[curr_regno].next - pseudo_slots)
612 {
613 fprintf (lra_dump_file, " %d", curr_regno);
614 if (pseudo_slots[curr_regno].next == NULL)
615 break;
616 }
617 fprintf (lra_dump_file, "\n");
618 }
619 }
620 spill_pseudos ();
621 free (slots);
622 free (pseudo_slots);
623 free (pseudo_regnos);
d0163673 624 free (spill_hard_reg);
55a2c322
VM
625}
626
6e5769ce
VM
627/* Apply alter_subreg for subregs of regs in *LOC. Use FINAL_P for
628 alter_subreg calls. Return true if any subreg of reg is
629 processed. */
630static bool
631alter_subregs (rtx *loc, bool final_p)
632{
633 int i;
634 rtx x = *loc;
635 bool res;
636 const char *fmt;
637 enum rtx_code code;
638
639 if (x == NULL_RTX)
640 return false;
641 code = GET_CODE (x);
642 if (code == SUBREG && REG_P (SUBREG_REG (x)))
643 {
644 lra_assert (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER);
645 alter_subreg (loc, final_p);
646 return true;
647 }
648 fmt = GET_RTX_FORMAT (code);
649 res = false;
650 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
651 {
652 if (fmt[i] == 'e')
653 {
654 if (alter_subregs (&XEXP (x, i), final_p))
655 res = true;
656 }
657 else if (fmt[i] == 'E')
658 {
659 int j;
f4eafc30 660
6e5769ce
VM
661 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
662 if (alter_subregs (&XVECEXP (x, i, j), final_p))
663 res = true;
664 }
665 }
666 return res;
667}
668
efaf512c
VM
669/* Return true if REGNO is used for return in the current
670 function. */
671static bool
672return_regno_p (unsigned int regno)
673{
674 rtx outgoing = crtl->return_rtx;
675
676 if (! outgoing)
677 return false;
678
679 if (REG_P (outgoing))
680 return REGNO (outgoing) == regno;
681 else if (GET_CODE (outgoing) == PARALLEL)
682 {
683 int i;
684
685 for (i = 0; i < XVECLEN (outgoing, 0); i++)
686 {
687 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
688
689 if (REG_P (x) && REGNO (x) == regno)
690 return true;
691 }
692 }
693 return false;
694}
695
73c77563
VM
696/* Return true if REGNO is in one of subsequent USE after INSN in the
697 same BB. */
00803109
VM
698static bool
699regno_in_use_p (rtx_insn *insn, unsigned int regno)
700{
73c77563
VM
701 static lra_insn_recog_data_t id;
702 static struct lra_static_insn_data *static_id;
703 struct lra_insn_reg *reg;
704 int i, arg_regno;
705 basic_block bb = BLOCK_FOR_INSN (insn);
706
5435398d 707 while ((insn = next_nondebug_insn (insn)) != NULL_RTX)
00803109 708 {
5435398d
JJ
709 if (BARRIER_P (insn) || bb != BLOCK_FOR_INSN (insn))
710 return false;
73c77563
VM
711 if (! INSN_P (insn))
712 continue;
713 if (GET_CODE (PATTERN (insn)) == USE
714 && REG_P (XEXP (PATTERN (insn), 0))
00803109 715 && regno == REGNO (XEXP (PATTERN (insn), 0)))
73c77563
VM
716 return true;
717 /* Check that the regno is not modified. */
718 id = lra_get_insn_recog_data (insn);
719 for (reg = id->regs; reg != NULL; reg = reg->next)
720 if (reg->type != OP_IN && reg->regno == (int) regno)
721 return false;
722 static_id = id->insn_static_data;
723 for (reg = static_id->hard_regs; reg != NULL; reg = reg->next)
724 if (reg->type != OP_IN && reg->regno == (int) regno)
725 return false;
726 if (id->arg_hard_regs != NULL)
727 for (i = 0; (arg_regno = id->arg_hard_regs[i]) >= 0; i++)
728 if ((int) regno == (arg_regno >= FIRST_PSEUDO_REGISTER
729 ? arg_regno : arg_regno - FIRST_PSEUDO_REGISTER))
730 return false;
00803109
VM
731 }
732 return false;
733}
734
55a2c322 735/* Final change of pseudos got hard registers into the corresponding
c5cd5a7e 736 hard registers and removing temporary clobbers. */
55a2c322 737void
c5cd5a7e 738lra_final_code_change (void)
55a2c322
VM
739{
740 int i, hard_regno;
741 basic_block bb;
00803109 742 rtx_insn *insn, *curr;
1008df90 743 rtx set;
55a2c322
VM
744 int max_regno = max_reg_num ();
745
746 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
747 if (lra_reg_info[i].nrefs != 0
748 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
749 SET_REGNO (regno_reg_rtx[i], hard_regno);
11cd3bed 750 FOR_EACH_BB_FN (bb, cfun)
c5cd5a7e 751 FOR_BB_INSNS_SAFE (bb, insn, curr)
55a2c322
VM
752 if (INSN_P (insn))
753 {
c5cd5a7e
VM
754 rtx pat = PATTERN (insn);
755
756 if (GET_CODE (pat) == CLOBBER && LRA_TEMP_CLOBBER_P (pat))
757 {
758 /* Remove clobbers temporarily created in LRA. We don't
759 need them anymore and don't want to waste compiler
760 time processing them in a few subsequent passes. */
761 lra_invalidate_insn_data (insn);
1f397f45 762 delete_insn (insn);
c5cd5a7e
VM
763 continue;
764 }
765
efaf512c
VM
766 /* IRA can generate move insns involving pseudos. It is
767 better remove them earlier to speed up compiler a bit.
768 It is also better to do it here as they might not pass
769 final RTL check in LRA, (e.g. insn moving a control
770 register into itself). So remove an useless move insn
771 unless next insn is USE marking the return reg (we should
772 save this as some subsequent optimizations assume that
773 such original insns are saved). */
774 if (NONJUMP_INSN_P (insn) && GET_CODE (pat) == SET
775 && REG_P (SET_SRC (pat)) && REG_P (SET_DEST (pat))
776 && REGNO (SET_SRC (pat)) == REGNO (SET_DEST (pat))
8a8330b7 777 && (! return_regno_p (REGNO (SET_SRC (pat)))
00803109 778 || ! regno_in_use_p (insn, REGNO (SET_SRC (pat)))))
efaf512c
VM
779 {
780 lra_invalidate_insn_data (insn);
781 delete_insn (insn);
782 continue;
783 }
784
6e5769ce 785 lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
684ffdc9
VM
786 struct lra_insn_reg *reg;
787
788 for (reg = id->regs; reg != NULL; reg = reg->next)
789 if (reg->regno >= FIRST_PSEUDO_REGISTER
790 && lra_reg_info [reg->regno].nrefs == 0)
791 break;
792
793 if (reg != NULL)
794 {
795 /* Pseudos still can be in debug insns in some very rare
796 and complicated cases, e.g. the pseudo was removed by
797 inheritance and the debug insn is not EBBs where the
798 inheritance happened. It is difficult and time
799 consuming to find what hard register corresponds the
800 pseudo -- so just remove the debug insn. Another
801 solution could be assigning hard reg/memory but it
802 would be a misleading info. It is better not to have
803 info than have it wrong. */
804 lra_assert (DEBUG_INSN_P (insn));
805 lra_invalidate_insn_data (insn);
806 delete_insn (insn);
807 continue;
808 }
809
2c62cbaa 810 struct lra_static_insn_data *static_id = id->insn_static_data;
55a2c322 811 bool insn_change_p = false;
6bbacdb5
L
812
813 for (i = id->insn_static_data->n_operands - 1; i >= 0; i--)
814 if ((DEBUG_INSN_P (insn) || ! static_id->operand[i].is_operator)
815 && alter_subregs (id->operand_loc[i], ! DEBUG_INSN_P (insn)))
816 {
817 lra_update_dup (id, i);
818 insn_change_p = true;
819 }
55a2c322
VM
820 if (insn_change_p)
821 lra_update_operator_dups (id);
1008df90
JJ
822
823 if ((set = single_set (insn)) != NULL
824 && REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
825 && REGNO (SET_SRC (set)) == REGNO (SET_DEST (set)))
826 {
827 /* Remove an useless move insn. IRA can generate move
828 insns involving pseudos. It is better remove them
829 earlier to speed up compiler a bit. It is also
830 better to do it here as they might not pass final RTL
831 check in LRA, (e.g. insn moving a control register
832 into itself). */
833 lra_invalidate_insn_data (insn);
834 delete_insn (insn);
835 }
55a2c322
VM
836 }
837}