]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/lra.c
Eliminate last_basic_block macro.
[thirdparty/gcc.git] / gcc / lra.c
CommitLineData
c6a6cdaa 1/* LRA (local register allocator) driver and LRA utilities.
711789cc 2 Copyright (C) 2010-2013 Free Software Foundation, Inc.
c6a6cdaa 3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21
22/* The Local Register Allocator (LRA) is a replacement of former
23 reload pass. It is focused to simplify code solving the reload
24 pass tasks, to make the code maintenance easier, and to implement new
25 perspective optimizations.
26
27 The major LRA design solutions are:
28 o division small manageable, separated sub-tasks
29 o reflection of all transformations and decisions in RTL as more
30 as possible
31 o insn constraints as a primary source of the info (minimizing
32 number of target-depended macros/hooks)
33
34 In brief LRA works by iterative insn process with the final goal is
35 to satisfy all insn and address constraints:
36 o New reload insns (in brief reloads) and reload pseudos might be
37 generated;
38 o Some pseudos might be spilled to assign hard registers to
39 new reload pseudos;
40 o Changing spilled pseudos to stack memory or their equivalences;
41 o Allocation stack memory changes the address displacement and
42 new iteration is needed.
43
44 Here is block diagram of LRA passes:
45
1f3a048a 46 ------------------------
47 --------------- | Undo inheritance for | ---------------
48 | Memory-memory | | spilled pseudos, | | New (and old) |
49 | move coalesce |<---| splits for pseudos got |<-- | pseudos |
50 --------------- | the same hard regs, | | assignment |
51 Start | | and optional reloads | ---------------
52 | | ------------------------ ^
b28ae2d4 53 V | ---------------- |
54 ----------- V | Update virtual | |
55| Remove |----> ------------>| register | |
56| scratches | ^ | displacements | |
57 ----------- | ---------------- |
58 | | |
59 | V New |
60 ---------------- No ------------ pseudos -------------------
61 | Spilled pseudo | change |Constraints:| or insns | Inheritance/split |
62 | to memory |<-------| RTL |--------->| transformations |
63 | substitution | | transfor- | | in EBB scope |
64 ---------------- | mations | -------------------
65 | ------------
66 V
c6a6cdaa 67 -------------------------
68 | Hard regs substitution, |
69 | devirtalization, and |------> Finish
70 | restoring scratches got |
b28ae2d4 71 | memory |
c6a6cdaa 72 -------------------------
73
74 To speed up the process:
75 o We process only insns affected by changes on previous
76 iterations;
77 o We don't use DFA-infrastructure because it results in much slower
78 compiler speed than a special IR described below does;
79 o We use a special insn representation for quick access to insn
80 info which is always *synchronized* with the current RTL;
81 o Insn IR is minimized by memory. It is divided on three parts:
82 o one specific for each insn in RTL (only operand locations);
83 o one common for all insns in RTL with the same insn code
84 (different operand attributes from machine descriptions);
85 o one oriented for maintenance of live info (list of pseudos).
86 o Pseudo data:
87 o all insns where the pseudo is referenced;
88 o live info (conflicting hard regs, live ranges, # of
89 references etc);
90 o data used for assigning (preferred hard regs, costs etc).
91
92 This file contains LRA driver, LRA utility functions and data, and
93 code for dealing with scratches. */
94
95#include "config.h"
96#include "system.h"
97#include "coretypes.h"
98#include "tm.h"
fc8a0f60 99#include "hard-reg-set.h"
c6a6cdaa 100#include "rtl.h"
101#include "tm_p.h"
102#include "regs.h"
103#include "insn-config.h"
104#include "insn-codes.h"
105#include "recog.h"
106#include "output.h"
107#include "addresses.h"
c6a6cdaa 108#include "flags.h"
109#include "function.h"
110#include "expr.h"
111#include "basic-block.h"
112#include "except.h"
113#include "tree-pass.h"
114#include "timevar.h"
115#include "target.h"
116#include "vec.h"
117#include "ira.h"
118#include "lra-int.h"
119#include "df.h"
120
121/* Hard registers currently not available for allocation. It can
122 changed after some hard registers become not eliminable. */
123HARD_REG_SET lra_no_alloc_regs;
124
125static int get_new_reg_value (void);
126static void expand_reg_info (void);
127static void invalidate_insn_recog_data (int);
128static int get_insn_freq (rtx);
129static void invalidate_insn_data_regno_info (lra_insn_recog_data_t, rtx, int);
130
131/* Expand all regno related info needed for LRA. */
132static void
7619e612 133expand_reg_data (int old)
c6a6cdaa 134{
135 resize_reg_info ();
136 expand_reg_info ();
137 ira_expand_reg_equiv ();
7619e612 138 for (int i = (int) max_reg_num () - 1; i >= old; i--)
139 lra_change_class (i, ALL_REGS, " Set", true);
c6a6cdaa 140}
141
142/* Create and return a new reg of ORIGINAL mode. If ORIGINAL is NULL
143 or of VOIDmode, use MD_MODE for the new reg. Initialize its
144 register class to RCLASS. Print message about assigning class
145 RCLASS containing new register name TITLE unless it is NULL. Use
146 attributes of ORIGINAL if it is a register. The created register
147 will have unique held value. */
148rtx
149lra_create_new_reg_with_unique_value (enum machine_mode md_mode, rtx original,
150 enum reg_class rclass, const char *title)
151{
152 enum machine_mode mode;
153 rtx new_reg;
154
155 if (original == NULL_RTX || (mode = GET_MODE (original)) == VOIDmode)
156 mode = md_mode;
157 lra_assert (mode != VOIDmode);
158 new_reg = gen_reg_rtx (mode);
159 if (original == NULL_RTX || ! REG_P (original))
160 {
161 if (lra_dump_file != NULL)
162 fprintf (lra_dump_file, " Creating newreg=%i", REGNO (new_reg));
163 }
164 else
165 {
166 if (ORIGINAL_REGNO (original) >= FIRST_PSEUDO_REGISTER)
167 ORIGINAL_REGNO (new_reg) = ORIGINAL_REGNO (original);
168 REG_USERVAR_P (new_reg) = REG_USERVAR_P (original);
169 REG_POINTER (new_reg) = REG_POINTER (original);
170 REG_ATTRS (new_reg) = REG_ATTRS (original);
171 if (lra_dump_file != NULL)
172 fprintf (lra_dump_file, " Creating newreg=%i from oldreg=%i",
173 REGNO (new_reg), REGNO (original));
174 }
175 if (lra_dump_file != NULL)
176 {
177 if (title != NULL)
178 fprintf (lra_dump_file, ", assigning class %s to%s%s r%d",
179 reg_class_names[rclass], *title == '\0' ? "" : " ",
180 title, REGNO (new_reg));
181 fprintf (lra_dump_file, "\n");
182 }
7619e612 183 expand_reg_data (max_reg_num ());
c6a6cdaa 184 setup_reg_classes (REGNO (new_reg), rclass, NO_REGS, rclass);
185 return new_reg;
186}
187
188/* Analogous to the previous function but also inherits value of
189 ORIGINAL. */
190rtx
191lra_create_new_reg (enum machine_mode md_mode, rtx original,
192 enum reg_class rclass, const char *title)
193{
194 rtx new_reg;
195
196 new_reg
197 = lra_create_new_reg_with_unique_value (md_mode, original, rclass, title);
198 if (original != NULL_RTX && REG_P (original))
a1064490 199 lra_assign_reg_val (REGNO (original), REGNO (new_reg));
c6a6cdaa 200 return new_reg;
201}
202
203/* Set up for REGNO unique hold value. */
204void
205lra_set_regno_unique_value (int regno)
206{
207 lra_reg_info[regno].val = get_new_reg_value ();
208}
209
3b3a5e5f 210/* Invalidate INSN related info used by LRA. The info should never be
211 used after that. */
c6a6cdaa 212void
213lra_invalidate_insn_data (rtx insn)
214{
215 lra_invalidate_insn_regno_info (insn);
216 invalidate_insn_recog_data (INSN_UID (insn));
217}
218
219/* Mark INSN deleted and invalidate the insn related info used by
220 LRA. */
221void
222lra_set_insn_deleted (rtx insn)
223{
224 lra_invalidate_insn_data (insn);
225 SET_INSN_DELETED (insn);
226}
227
228/* Delete an unneeded INSN and any previous insns who sole purpose is
229 loading data that is dead in INSN. */
230void
231lra_delete_dead_insn (rtx insn)
232{
233 rtx prev = prev_real_insn (insn);
234 rtx prev_dest;
235
236 /* If the previous insn sets a register that dies in our insn,
237 delete it too. */
238 if (prev && GET_CODE (PATTERN (prev)) == SET
239 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
240 && reg_mentioned_p (prev_dest, PATTERN (insn))
241 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
242 && ! side_effects_p (SET_SRC (PATTERN (prev))))
243 lra_delete_dead_insn (prev);
244
245 lra_set_insn_deleted (insn);
246}
247
6c397456 248/* Emit insn x = y + z. Return NULL if we failed to do it.
249 Otherwise, return the insn. We don't use gen_add3_insn as it might
250 clobber CC. */
251static rtx
252emit_add3_insn (rtx x, rtx y, rtx z)
253{
254 rtx insn, last;
255
256 last = get_last_insn ();
257 insn = emit_insn (gen_rtx_SET (VOIDmode, x,
258 gen_rtx_PLUS (GET_MODE (y), y, z)));
259 if (recog_memoized (insn) < 0)
260 {
261 delete_insns_since (last);
262 insn = NULL_RTX;
263 }
264 return insn;
265}
266
267/* Emit insn x = x + y. Return the insn. We use gen_add2_insn as the
268 last resort. */
269static rtx
270emit_add2_insn (rtx x, rtx y)
271{
272 rtx insn;
273
274 insn = emit_add3_insn (x, x, y);
275 if (insn == NULL_RTX)
276 {
277 insn = gen_add2_insn (x, y);
278 if (insn != NULL_RTX)
279 emit_insn (insn);
280 }
281 return insn;
282}
283
c6a6cdaa 284/* Target checks operands through operand predicates to recognize an
285 insn. We should have a special precaution to generate add insns
286 which are frequent results of elimination.
287
288 Emit insns for x = y + z. X can be used to store intermediate
289 values and should be not in Y and Z when we use X to store an
290 intermediate value. Y + Z should form [base] [+ index[ * scale]] [
291 + disp] where base and index are registers, disp and scale are
292 constants. Y should contain base if it is present, Z should
293 contain disp if any. index[*scale] can be part of Y or Z. */
294void
295lra_emit_add (rtx x, rtx y, rtx z)
296{
297 int old;
298 rtx insn, last;
299 rtx a1, a2, base, index, disp, scale, index_scale;
300 bool ok_p;
301
6c397456 302 insn = emit_add3_insn (x, y, z);
c6a6cdaa 303 old = max_reg_num ();
304 if (insn != NULL_RTX)
6c397456 305 ;
c6a6cdaa 306 else
307 {
308 disp = a2 = NULL_RTX;
309 if (GET_CODE (y) == PLUS)
310 {
311 a1 = XEXP (y, 0);
312 a2 = XEXP (y, 1);
313 disp = z;
314 }
315 else
316 {
317 a1 = y;
318 if (CONSTANT_P (z))
319 disp = z;
320 else
321 a2 = z;
322 }
323 index_scale = scale = NULL_RTX;
324 if (GET_CODE (a1) == MULT)
325 {
326 index_scale = a1;
327 index = XEXP (a1, 0);
328 scale = XEXP (a1, 1);
329 base = a2;
330 }
331 else if (a2 != NULL_RTX && GET_CODE (a2) == MULT)
332 {
333 index_scale = a2;
334 index = XEXP (a2, 0);
335 scale = XEXP (a2, 1);
336 base = a1;
337 }
338 else
339 {
340 base = a1;
341 index = a2;
342 }
343 if (! REG_P (base)
344 || (index != NULL_RTX && ! REG_P (index))
345 || (disp != NULL_RTX && ! CONSTANT_P (disp))
346 || (scale != NULL_RTX && ! CONSTANT_P (scale)))
347 {
6c397456 348 /* Probably we have no 3 op add. Last chance is to use 2-op
349 add insn. To succeed, don't move Z to X as an address
350 segment always comes in Y. Otherwise, we might fail when
351 adding the address segment to register. */
c6a6cdaa 352 lra_assert (x != y && x != z);
0178c26e 353 emit_move_insn (x, y);
6c397456 354 insn = emit_add2_insn (x, z);
355 lra_assert (insn != NULL_RTX);
c6a6cdaa 356 }
357 else
358 {
359 if (index_scale == NULL_RTX)
360 index_scale = index;
361 if (disp == NULL_RTX)
362 {
363 /* Generate x = index_scale; x = x + base. */
364 lra_assert (index_scale != NULL_RTX && base != NULL_RTX);
365 emit_move_insn (x, index_scale);
6c397456 366 insn = emit_add2_insn (x, base);
367 lra_assert (insn != NULL_RTX);
c6a6cdaa 368 }
369 else if (scale == NULL_RTX)
370 {
371 /* Try x = base + disp. */
372 lra_assert (base != NULL_RTX);
373 last = get_last_insn ();
374 insn = emit_move_insn (x, gen_rtx_PLUS (GET_MODE (base),
375 base, disp));
376 if (recog_memoized (insn) < 0)
377 {
378 delete_insns_since (last);
379 /* Generate x = disp; x = x + base. */
380 emit_move_insn (x, disp);
6c397456 381 insn = emit_add2_insn (x, base);
382 lra_assert (insn != NULL_RTX);
c6a6cdaa 383 }
384 /* Generate x = x + index. */
385 if (index != NULL_RTX)
386 {
6c397456 387 insn = emit_add2_insn (x, index);
388 lra_assert (insn != NULL_RTX);
c6a6cdaa 389 }
390 }
391 else
392 {
393 /* Try x = index_scale; x = x + disp; x = x + base. */
394 last = get_last_insn ();
395 insn = emit_move_insn (x, index_scale);
396 ok_p = false;
397 if (recog_memoized (insn) >= 0)
398 {
6c397456 399 insn = emit_add2_insn (x, disp);
c6a6cdaa 400 if (insn != NULL_RTX)
401 {
6c397456 402 insn = emit_add2_insn (x, disp);
c6a6cdaa 403 if (insn != NULL_RTX)
6c397456 404 ok_p = true;
c6a6cdaa 405 }
406 }
407 if (! ok_p)
408 {
409 delete_insns_since (last);
410 /* Generate x = disp; x = x + base; x = x + index_scale. */
411 emit_move_insn (x, disp);
6c397456 412 insn = emit_add2_insn (x, base);
413 lra_assert (insn != NULL_RTX);
414 insn = emit_add2_insn (x, index_scale);
415 lra_assert (insn != NULL_RTX);
c6a6cdaa 416 }
417 }
418 }
419 }
420 /* Functions emit_... can create pseudos -- so expand the pseudo
421 data. */
422 if (old != max_reg_num ())
7619e612 423 expand_reg_data (old);
c6a6cdaa 424}
425
426/* The number of emitted reload insns so far. */
427int lra_curr_reload_num;
428
429/* Emit x := y, processing special case when y = u + v or y = u + v *
430 scale + w through emit_add (Y can be an address which is base +
431 index reg * scale + displacement in general case). X may be used
432 as intermediate result therefore it should be not in Y. */
433void
434lra_emit_move (rtx x, rtx y)
435{
436 int old;
437
438 if (GET_CODE (y) != PLUS)
439 {
440 if (rtx_equal_p (x, y))
441 return;
442 old = max_reg_num ();
443 emit_move_insn (x, y);
444 if (REG_P (x))
445 lra_reg_info[ORIGINAL_REGNO (x)].last_reload = ++lra_curr_reload_num;
446 /* Function emit_move can create pseudos -- so expand the pseudo
447 data. */
448 if (old != max_reg_num ())
7619e612 449 expand_reg_data (old);
c6a6cdaa 450 return;
451 }
452 lra_emit_add (x, XEXP (y, 0), XEXP (y, 1));
453}
454
455/* Update insn operands which are duplication of operands whose
456 numbers are in array of NOPS (with end marker -1). The insn is
457 represented by its LRA internal representation ID. */
458void
459lra_update_dups (lra_insn_recog_data_t id, signed char *nops)
460{
461 int i, j, nop;
462 struct lra_static_insn_data *static_id = id->insn_static_data;
463
464 for (i = 0; i < static_id->n_dups; i++)
465 for (j = 0; (nop = nops[j]) >= 0; j++)
466 if (static_id->dup_num[i] == nop)
467 *id->dup_loc[i] = *id->operand_loc[nop];
468}
469
470\f
471
472/* This page contains code dealing with info about registers in the
473 insns. */
474
475/* Pools for insn reg info. */
476static alloc_pool insn_reg_pool;
477
478/* Initiate pool for insn reg info. */
479static void
480init_insn_regs (void)
481{
482 insn_reg_pool
483 = create_alloc_pool ("insn regs", sizeof (struct lra_insn_reg), 100);
484}
485
40cec44a 486/* Create LRA insn related info about a reference to REGNO in INSN with
487 TYPE (in/out/inout), biggest reference mode MODE, flag that it is
c6a6cdaa 488 reference through subreg (SUBREG_P), flag that is early clobbered
489 in the insn (EARLY_CLOBBER), and reference to the next insn reg
490 info (NEXT). */
491static struct lra_insn_reg *
40cec44a 492new_insn_reg (rtx insn, int regno, enum op_type type, enum machine_mode mode,
c6a6cdaa 493 bool subreg_p, bool early_clobber, struct lra_insn_reg *next)
494{
495 struct lra_insn_reg *ir;
496
497 ir = (struct lra_insn_reg *) pool_alloc (insn_reg_pool);
498 ir->type = type;
499 ir->biggest_mode = mode;
40cec44a 500 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (lra_reg_info[regno].biggest_mode)
501 && NONDEBUG_INSN_P (insn))
fc8a0f60 502 lra_reg_info[regno].biggest_mode = mode;
c6a6cdaa 503 ir->subreg_p = subreg_p;
504 ir->early_clobber = early_clobber;
505 ir->regno = regno;
506 ir->next = next;
507 return ir;
508}
509
510/* Free insn reg info IR. */
511static void
512free_insn_reg (struct lra_insn_reg *ir)
513{
514 pool_free (insn_reg_pool, ir);
515}
516
517/* Free insn reg info list IR. */
518static void
519free_insn_regs (struct lra_insn_reg *ir)
520{
521 struct lra_insn_reg *next_ir;
522
523 for (; ir != NULL; ir = next_ir)
524 {
525 next_ir = ir->next;
526 free_insn_reg (ir);
527 }
528}
529
530/* Finish pool for insn reg info. */
531static void
532finish_insn_regs (void)
533{
534 free_alloc_pool (insn_reg_pool);
535}
536
537\f
538
539/* This page contains code dealing LRA insn info (or in other words
540 LRA internal insn representation). */
541
542struct target_lra_int default_target_lra_int;
543#if SWITCHABLE_TARGET
544struct target_lra_int *this_target_lra_int = &default_target_lra_int;
545#endif
546
547/* Map INSN_CODE -> the static insn data. This info is valid during
548 all translation unit. */
549struct lra_static_insn_data *insn_code_data[LAST_INSN_CODE];
550
551/* Debug insns are represented as a special insn with one input
552 operand which is RTL expression in var_location. */
553
554/* The following data are used as static insn operand data for all
555 debug insns. If structure lra_operand_data is changed, the
556 initializer should be changed too. */
557static struct lra_operand_data debug_operand_data =
558 {
559 NULL, /* alternative */
560 VOIDmode, /* We are not interesting in the operand mode. */
561 OP_IN,
562 0, 0, 0, 0
563 };
564
565/* The following data are used as static insn data for all debug
566 insns. If structure lra_static_insn_data is changed, the
567 initializer should be changed too. */
568static struct lra_static_insn_data debug_insn_static_data =
569 {
570 &debug_operand_data,
571 0, /* Duplication operands #. */
572 -1, /* Commutative operand #. */
573 1, /* Operands #. There is only one operand which is debug RTL
574 expression. */
575 0, /* Duplications #. */
576 0, /* Alternatives #. We are not interesting in alternatives
577 because we does not proceed debug_insns for reloads. */
578 NULL, /* Hard registers referenced in machine description. */
579 NULL /* Descriptions of operands in alternatives. */
580 };
581
582/* Called once per compiler work to initialize some LRA data related
583 to insns. */
584static void
585init_insn_code_data_once (void)
586{
587 memset (insn_code_data, 0, sizeof (insn_code_data));
588 memset (op_alt_data, 0, sizeof (op_alt_data));
589}
590
591/* Called once per compiler work to finalize some LRA data related to
592 insns. */
593static void
594finish_insn_code_data_once (void)
595{
596 int i;
597
598 for (i = 0; i < LAST_INSN_CODE; i++)
599 {
600 if (insn_code_data[i] != NULL)
601 free (insn_code_data[i]);
602 if (op_alt_data[i] != NULL)
603 free (op_alt_data[i]);
604 }
605}
606
607/* Initialize LRA info about operands in insn alternatives. */
608static void
609init_op_alt_data (void)
610{
611 int i;
612
613 for (i = 0; i < LAST_INSN_CODE; i++)
614 if (op_alt_data[i] != NULL)
615 {
616 free (op_alt_data[i]);
617 op_alt_data[i] = NULL;
618 }
619}
620
621/* Return static insn data, allocate and setup if necessary. Although
622 dup_num is static data (it depends only on icode), to set it up we
623 need to extract insn first. So recog_data should be valid for
624 normal insn (ICODE >= 0) before the call. */
625static struct lra_static_insn_data *
626get_static_insn_data (int icode, int nop, int ndup, int nalt)
627{
628 struct lra_static_insn_data *data;
629 size_t n_bytes;
630
631 lra_assert (icode < LAST_INSN_CODE);
632 if (icode >= 0 && (data = insn_code_data[icode]) != NULL)
633 return data;
634 lra_assert (nop >= 0 && ndup >= 0 && nalt >= 0);
635 n_bytes = sizeof (struct lra_static_insn_data)
636 + sizeof (struct lra_operand_data) * nop
637 + sizeof (int) * ndup;
638 data = XNEWVAR (struct lra_static_insn_data, n_bytes);
639 data->n_operands = nop;
640 data->n_dups = ndup;
641 data->n_alternatives = nalt;
642 data->operand = ((struct lra_operand_data *)
643 ((char *) data + sizeof (struct lra_static_insn_data)));
644 data->dup_num = ((int *) ((char *) data->operand
645 + sizeof (struct lra_operand_data) * nop));
646 if (icode >= 0)
647 {
648 int i;
649
650 insn_code_data[icode] = data;
651 for (i = 0; i < nop; i++)
652 {
653 data->operand[i].constraint
654 = insn_data[icode].operand[i].constraint;
655 data->operand[i].mode = insn_data[icode].operand[i].mode;
656 data->operand[i].strict_low = insn_data[icode].operand[i].strict_low;
657 data->operand[i].is_operator
658 = insn_data[icode].operand[i].is_operator;
659 data->operand[i].type
660 = (data->operand[i].constraint[0] == '=' ? OP_OUT
661 : data->operand[i].constraint[0] == '+' ? OP_INOUT
662 : OP_IN);
663 data->operand[i].is_address = false;
664 }
665 for (i = 0; i < ndup; i++)
666 data->dup_num[i] = recog_data.dup_num[i];
667 }
668 return data;
669}
670
671/* The current length of the following array. */
672int lra_insn_recog_data_len;
673
674/* Map INSN_UID -> the insn recog data (NULL if unknown). */
675lra_insn_recog_data_t *lra_insn_recog_data;
676
677/* Initialize LRA data about insns. */
678static void
679init_insn_recog_data (void)
680{
681 lra_insn_recog_data_len = 0;
682 lra_insn_recog_data = NULL;
683 init_insn_regs ();
684}
685
686/* Expand, if necessary, LRA data about insns. */
687static void
688check_and_expand_insn_recog_data (int index)
689{
690 int i, old;
691
692 if (lra_insn_recog_data_len > index)
693 return;
694 old = lra_insn_recog_data_len;
695 lra_insn_recog_data_len = index * 3 / 2 + 1;
696 lra_insn_recog_data = XRESIZEVEC (lra_insn_recog_data_t,
697 lra_insn_recog_data,
698 lra_insn_recog_data_len);
699 for (i = old; i < lra_insn_recog_data_len; i++)
700 lra_insn_recog_data[i] = NULL;
701}
702
703/* Finish LRA DATA about insn. */
704static void
705free_insn_recog_data (lra_insn_recog_data_t data)
706{
707 if (data->operand_loc != NULL)
708 free (data->operand_loc);
709 if (data->dup_loc != NULL)
710 free (data->dup_loc);
711 if (data->arg_hard_regs != NULL)
712 free (data->arg_hard_regs);
f2d92d7a 713 if (HAVE_ATTR_enabled && data->alternative_enabled_p != NULL)
c6a6cdaa 714 free (data->alternative_enabled_p);
c6a6cdaa 715 if (data->icode < 0 && NONDEBUG_INSN_P (data->insn))
716 {
717 if (data->insn_static_data->operand_alternative != NULL)
718 free (data->insn_static_data->operand_alternative);
719 free_insn_regs (data->insn_static_data->hard_regs);
720 free (data->insn_static_data);
721 }
722 free_insn_regs (data->regs);
723 data->regs = NULL;
724 free (data);
725}
726
727/* Finish LRA data about all insns. */
728static void
729finish_insn_recog_data (void)
730{
731 int i;
732 lra_insn_recog_data_t data;
733
734 for (i = 0; i < lra_insn_recog_data_len; i++)
735 if ((data = lra_insn_recog_data[i]) != NULL)
736 free_insn_recog_data (data);
737 finish_insn_regs ();
738 free (lra_insn_recog_data);
739}
740
741/* Setup info about operands in alternatives of LRA DATA of insn. */
742static void
743setup_operand_alternative (lra_insn_recog_data_t data)
744{
745 int i, nop, nalt;
746 int icode = data->icode;
747 struct lra_static_insn_data *static_data = data->insn_static_data;
748
749 if (icode >= 0
750 && (static_data->operand_alternative = op_alt_data[icode]) != NULL)
751 return;
752 static_data->commutative = -1;
753 nop = static_data->n_operands;
754 if (nop == 0)
755 {
756 static_data->operand_alternative = NULL;
757 return;
758 }
759 nalt = static_data->n_alternatives;
760 static_data->operand_alternative = XNEWVEC (struct operand_alternative,
761 nalt * nop);
762 memset (static_data->operand_alternative, 0,
763 nalt * nop * sizeof (struct operand_alternative));
764 if (icode >= 0)
765 op_alt_data[icode] = static_data->operand_alternative;
766 for (i = 0; i < nop; i++)
767 {
768 int j;
769 struct operand_alternative *op_alt_start, *op_alt;
770 const char *p = static_data->operand[i].constraint;
771
772 static_data->operand[i].early_clobber = 0;
773 op_alt_start = &static_data->operand_alternative[i];
774
775 for (j = 0; j < nalt; j++)
776 {
777 op_alt = op_alt_start + j * nop;
778 op_alt->cl = NO_REGS;
779 op_alt->constraint = p;
780 op_alt->matches = -1;
781 op_alt->matched = -1;
782
783 if (*p == '\0' || *p == ',')
784 {
785 op_alt->anything_ok = 1;
786 continue;
787 }
788
789 for (;;)
790 {
791 char c = *p;
792 if (c == '#')
793 do
794 c = *++p;
795 while (c != ',' && c != '\0');
796 if (c == ',' || c == '\0')
797 {
798 p++;
799 break;
800 }
801
802 switch (c)
803 {
804 case '=': case '+': case '*':
805 case 'E': case 'F': case 'G': case 'H':
806 case 's': case 'i': case 'n':
807 case 'I': case 'J': case 'K': case 'L':
808 case 'M': case 'N': case 'O': case 'P':
809 /* These don't say anything we care about. */
810 break;
811
812 case '%':
813 /* We currently only support one commutative pair of
814 operands. */
815 if (static_data->commutative < 0)
816 static_data->commutative = i;
817 else
818 lra_assert (data->icode < 0); /* Asm */
819
820 /* The last operand should not be marked
821 commutative. */
822 lra_assert (i != nop - 1);
823 break;
824
825 case '?':
4b3aba76 826 op_alt->reject += LRA_LOSER_COST_FACTOR;
c6a6cdaa 827 break;
828 case '!':
4b3aba76 829 op_alt->reject += LRA_MAX_REJECT;
c6a6cdaa 830 break;
831 case '&':
832 op_alt->earlyclobber = 1;
833 static_data->operand[i].early_clobber = 1;
834 break;
835
836 case '0': case '1': case '2': case '3': case '4':
837 case '5': case '6': case '7': case '8': case '9':
838 {
839 char *end;
840 op_alt->matches = strtoul (p, &end, 10);
841 static_data->operand_alternative
842 [j * nop + op_alt->matches].matched = i;
843 p = end;
844 }
845 continue;
846
847 case TARGET_MEM_CONSTRAINT:
848 op_alt->memory_ok = 1;
849 break;
850 case '<':
851 op_alt->decmem_ok = 1;
852 break;
853 case '>':
854 op_alt->incmem_ok = 1;
855 break;
856 case 'V':
857 op_alt->nonoffmem_ok = 1;
858 break;
859 case 'o':
860 op_alt->offmem_ok = 1;
861 break;
862 case 'X':
863 op_alt->anything_ok = 1;
864 break;
865
866 case 'p':
867 static_data->operand[i].is_address = true;
868 op_alt->is_address = 1;
869 op_alt->cl = (reg_class_subunion[(int) op_alt->cl]
870 [(int) base_reg_class (VOIDmode,
871 ADDR_SPACE_GENERIC,
872 ADDRESS, SCRATCH)]);
873 break;
874
875 case 'g':
876 case 'r':
877 op_alt->cl =
878 reg_class_subunion[(int) op_alt->cl][(int) GENERAL_REGS];
879 break;
880
881 default:
882 if (EXTRA_MEMORY_CONSTRAINT (c, p))
883 {
884 op_alt->memory_ok = 1;
885 break;
886 }
887 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
888 {
889 static_data->operand[i].is_address = true;
890 op_alt->is_address = 1;
891 op_alt->cl
892 = (reg_class_subunion
893 [(int) op_alt->cl]
894 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
895 ADDRESS, SCRATCH)]);
896 break;
897 }
898
899 op_alt->cl
900 = (reg_class_subunion
901 [(int) op_alt->cl]
902 [(int)
903 REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
904 break;
905 }
906 p += CONSTRAINT_LEN (c, p);
907 }
908 }
909 }
910}
911
912/* Recursively process X and collect info about registers, which are
913 not the insn operands, in X with TYPE (in/out/inout) and flag that
914 it is early clobbered in the insn (EARLY_CLOBBER) and add the info
915 to LIST. X is a part of insn given by DATA. Return the result
916 list. */
917static struct lra_insn_reg *
918collect_non_operand_hard_regs (rtx *x, lra_insn_recog_data_t data,
919 struct lra_insn_reg *list,
920 enum op_type type, bool early_clobber)
921{
922 int i, j, regno, last;
923 bool subreg_p;
924 enum machine_mode mode;
925 struct lra_insn_reg *curr;
926 rtx op = *x;
927 enum rtx_code code = GET_CODE (op);
928 const char *fmt = GET_RTX_FORMAT (code);
929
930 for (i = 0; i < data->insn_static_data->n_operands; i++)
931 if (x == data->operand_loc[i])
932 /* It is an operand loc. Stop here. */
933 return list;
934 for (i = 0; i < data->insn_static_data->n_dups; i++)
935 if (x == data->dup_loc[i])
936 /* It is a dup loc. Stop here. */
937 return list;
938 mode = GET_MODE (op);
939 subreg_p = false;
940 if (code == SUBREG)
941 {
942 op = SUBREG_REG (op);
943 code = GET_CODE (op);
944 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (op)))
945 {
946 mode = GET_MODE (op);
947 if (GET_MODE_SIZE (mode) > REGMODE_NATURAL_SIZE (mode))
948 subreg_p = true;
949 }
950 }
951 if (REG_P (op))
952 {
953 if ((regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER)
954 return list;
955 for (last = regno + hard_regno_nregs[regno][mode];
956 regno < last;
957 regno++)
fc8a0f60 958 if (! TEST_HARD_REG_BIT (lra_no_alloc_regs, regno)
959 || TEST_HARD_REG_BIT (eliminable_regset, regno))
c6a6cdaa 960 {
961 for (curr = list; curr != NULL; curr = curr->next)
962 if (curr->regno == regno && curr->subreg_p == subreg_p
963 && curr->biggest_mode == mode)
964 {
965 if (curr->type != type)
966 curr->type = OP_INOUT;
967 if (curr->early_clobber != early_clobber)
968 curr->early_clobber = true;
969 break;
970 }
971 if (curr == NULL)
972 {
973 /* This is a new hard regno or the info can not be
974 integrated into the found structure. */
975#ifdef STACK_REGS
976 early_clobber
977 = (early_clobber
978 /* This clobber is to inform popping floating
979 point stack only. */
980 && ! (FIRST_STACK_REG <= regno
981 && regno <= LAST_STACK_REG));
982#endif
40cec44a 983 list = new_insn_reg (data->insn, regno, type, mode, subreg_p,
c6a6cdaa 984 early_clobber, list);
985 }
986 }
987 return list;
988 }
989 switch (code)
990 {
991 case SET:
992 list = collect_non_operand_hard_regs (&SET_DEST (op), data,
993 list, OP_OUT, false);
994 list = collect_non_operand_hard_regs (&SET_SRC (op), data,
995 list, OP_IN, false);
996 break;
997 case CLOBBER:
998 /* We treat clobber of non-operand hard registers as early
1a8f8886 999 clobber (the behavior is expected from asm). */
c6a6cdaa 1000 list = collect_non_operand_hard_regs (&XEXP (op, 0), data,
1001 list, OP_OUT, true);
1002 break;
1003 case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
1004 list = collect_non_operand_hard_regs (&XEXP (op, 0), data,
1005 list, OP_INOUT, false);
1006 break;
1007 case PRE_MODIFY: case POST_MODIFY:
1008 list = collect_non_operand_hard_regs (&XEXP (op, 0), data,
1009 list, OP_INOUT, false);
1010 list = collect_non_operand_hard_regs (&XEXP (op, 1), data,
1011 list, OP_IN, false);
1012 break;
1013 default:
1014 fmt = GET_RTX_FORMAT (code);
1015 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1016 {
1017 if (fmt[i] == 'e')
1018 list = collect_non_operand_hard_regs (&XEXP (op, i), data,
1019 list, OP_IN, false);
1020 else if (fmt[i] == 'E')
1021 for (j = XVECLEN (op, i) - 1; j >= 0; j--)
1022 list = collect_non_operand_hard_regs (&XVECEXP (op, i, j), data,
1023 list, OP_IN, false);
1024 }
1025 }
1026 return list;
1027}
1028
1029/* Set up and return info about INSN. Set up the info if it is not set up
1030 yet. */
1031lra_insn_recog_data_t
1032lra_set_insn_recog_data (rtx insn)
1033{
1034 lra_insn_recog_data_t data;
1035 int i, n, icode;
1036 rtx **locs;
1037 unsigned int uid = INSN_UID (insn);
1038 struct lra_static_insn_data *insn_static_data;
1039
1040 check_and_expand_insn_recog_data (uid);
1041 if (DEBUG_INSN_P (insn))
1042 icode = -1;
1043 else
1044 {
1045 icode = INSN_CODE (insn);
1046 if (icode < 0)
1047 /* It might be a new simple insn which is not recognized yet. */
1048 INSN_CODE (insn) = icode = recog_memoized (insn);
1049 }
1050 data = XNEW (struct lra_insn_recog_data);
1051 lra_insn_recog_data[uid] = data;
1052 data->insn = insn;
1053 data->used_insn_alternative = -1;
1054 data->icode = icode;
1055 data->regs = NULL;
1056 if (DEBUG_INSN_P (insn))
1057 {
1058 data->insn_static_data = &debug_insn_static_data;
1059 data->dup_loc = NULL;
1060 data->arg_hard_regs = NULL;
c6a6cdaa 1061 data->alternative_enabled_p = NULL;
c6a6cdaa 1062 data->operand_loc = XNEWVEC (rtx *, 1);
1063 data->operand_loc[0] = &INSN_VAR_LOCATION_LOC (insn);
1064 return data;
1065 }
1066 if (icode < 0)
1067 {
1068 int nop;
1069 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1070 const char *constraints[MAX_RECOG_OPERANDS];
1071
1072 nop = asm_noperands (PATTERN (insn));
1073 data->operand_loc = data->dup_loc = NULL;
1074 if (nop < 0)
1075 /* Its is a special insn like USE or CLOBBER. */
1076 data->insn_static_data = insn_static_data
1077 = get_static_insn_data (-1, 0, 0, 1);
1078 else
1079 {
1080 /* expand_asm_operands makes sure there aren't too many
1081 operands. */
1082 lra_assert (nop <= MAX_RECOG_OPERANDS);
1083 if (nop != 0)
1084 data->operand_loc = XNEWVEC (rtx *, nop);
1085 /* Now get the operand values and constraints out of the
1086 insn. */
1087 decode_asm_operands (PATTERN (insn), NULL,
1088 data->operand_loc,
1089 constraints, operand_mode, NULL);
1090 n = 1;
1091 if (nop > 0)
1092 {
1093 const char *p = recog_data.constraints[0];
1a8f8886 1094
c6a6cdaa 1095 for (p = constraints[0]; *p; p++)
1096 n += *p == ',';
1097 }
1098 data->insn_static_data = insn_static_data
1099 = get_static_insn_data (-1, nop, 0, n);
1100 for (i = 0; i < nop; i++)
1101 {
1102 insn_static_data->operand[i].mode = operand_mode[i];
1103 insn_static_data->operand[i].constraint = constraints[i];
1104 insn_static_data->operand[i].strict_low = false;
1105 insn_static_data->operand[i].is_operator = false;
1106 insn_static_data->operand[i].is_address = false;
1107 }
1108 }
1109 for (i = 0; i < insn_static_data->n_operands; i++)
1110 insn_static_data->operand[i].type
1111 = (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
1112 : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
1113 : OP_IN);
c6a6cdaa 1114 data->alternative_enabled_p = NULL;
c6a6cdaa 1115 }
1116 else
1117 {
1118 insn_extract (insn);
1119 data->insn_static_data = insn_static_data
1120 = get_static_insn_data (icode, insn_data[icode].n_operands,
1121 insn_data[icode].n_dups,
1122 insn_data[icode].n_alternatives);
1123 n = insn_static_data->n_operands;
1124 if (n == 0)
1125 locs = NULL;
1126 else
1127 {
1128 locs = XNEWVEC (rtx *, n);
1129 memcpy (locs, recog_data.operand_loc, n * sizeof (rtx *));
1130 }
1131 data->operand_loc = locs;
1132 n = insn_static_data->n_dups;
1133 if (n == 0)
1134 locs = NULL;
1135 else
1136 {
1137 locs = XNEWVEC (rtx *, n);
1138 memcpy (locs, recog_data.dup_loc, n * sizeof (rtx *));
1139 }
1140 data->dup_loc = locs;
f2d92d7a 1141 if (HAVE_ATTR_enabled)
1142 {
1143 bool *bp;
1144
1145 n = insn_static_data->n_alternatives;
1146 lra_assert (n >= 0);
1147 data->alternative_enabled_p = bp = XNEWVEC (bool, n);
1148 /* Cache the insn because we don't want to call extract_insn
1149 from get_attr_enabled as extract_insn modifies
1150 which_alternative. The attribute enabled should not depend
1151 on insn operands, operand modes, operand types, and operand
1152 constraints. It should depend on the architecture. If it
1153 is not true, we should rewrite this file code to use
1154 extract_insn instead of less expensive insn_extract. */
1155 recog_data.insn = insn;
1156 for (i = 0; i < n; i++)
1157 {
1158 which_alternative = i;
1159 bp[i] = get_attr_enabled (insn);
1160 }
1161 }
c6a6cdaa 1162 }
1163 if (GET_CODE (PATTERN (insn)) == CLOBBER || GET_CODE (PATTERN (insn)) == USE)
1164 insn_static_data->hard_regs = NULL;
1165 else
1166 insn_static_data->hard_regs
1167 = collect_non_operand_hard_regs (&PATTERN (insn), data,
1168 NULL, OP_IN, false);
1169 setup_operand_alternative (data);
1170 data->arg_hard_regs = NULL;
1171 if (CALL_P (insn))
1172 {
1173 rtx link;
1174 int n_hard_regs, regno, arg_hard_regs[FIRST_PSEUDO_REGISTER];
1175
1176 n_hard_regs = 0;
1177 /* Finding implicit hard register usage. We believe it will be
1178 not changed whatever transformations are used. Call insns
1179 are such example. */
1180 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1181 link != NULL_RTX;
1182 link = XEXP (link, 1))
1183 if (GET_CODE (XEXP (link, 0)) == USE
1184 && REG_P (XEXP (XEXP (link, 0), 0)))
1185 {
1186 regno = REGNO (XEXP (XEXP (link, 0), 0));
1187 lra_assert (regno < FIRST_PSEUDO_REGISTER);
1188 /* It is an argument register. */
1189 for (i = (hard_regno_nregs
1190 [regno][GET_MODE (XEXP (XEXP (link, 0), 0))]) - 1;
1191 i >= 0;
1192 i--)
1193 arg_hard_regs[n_hard_regs++] = regno + i;
1194 }
1195 if (n_hard_regs != 0)
1196 {
1197 arg_hard_regs[n_hard_regs++] = -1;
1198 data->arg_hard_regs = XNEWVEC (int, n_hard_regs);
1199 memcpy (data->arg_hard_regs, arg_hard_regs,
1200 sizeof (int) * n_hard_regs);
1201 }
1202 }
1203 /* Some output operand can be recognized only from the context not
1204 from the constraints which are empty in this case. Call insn may
1205 contain a hard register in set destination with empty constraint
1206 and extract_insn treats them as an input. */
1207 for (i = 0; i < insn_static_data->n_operands; i++)
1208 {
1209 int j;
1210 rtx pat, set;
1211 struct lra_operand_data *operand = &insn_static_data->operand[i];
1212
1213 /* ??? Should we treat 'X' the same way. It looks to me that
1214 'X' means anything and empty constraint means we do not
1215 care. */
1216 if (operand->type != OP_IN || *operand->constraint != '\0'
1217 || operand->is_operator)
1218 continue;
1219 pat = PATTERN (insn);
1220 if (GET_CODE (pat) == SET)
1221 {
1222 if (data->operand_loc[i] != &SET_DEST (pat))
1223 continue;
1224 }
1225 else if (GET_CODE (pat) == PARALLEL)
1226 {
1227 for (j = XVECLEN (pat, 0) - 1; j >= 0; j--)
1228 {
1229 set = XVECEXP (PATTERN (insn), 0, j);
1230 if (GET_CODE (set) == SET
1231 && &SET_DEST (set) == data->operand_loc[i])
1232 break;
1233 }
1234 if (j < 0)
1235 continue;
1236 }
1237 else
1238 continue;
1239 operand->type = OP_OUT;
1240 }
1241 return data;
1242}
1243
1244/* Return info about insn give by UID. The info should be already set
1245 up. */
1246static lra_insn_recog_data_t
1247get_insn_recog_data_by_uid (int uid)
1248{
1249 lra_insn_recog_data_t data;
1250
1251 data = lra_insn_recog_data[uid];
1252 lra_assert (data != NULL);
1253 return data;
1254}
1255
1256/* Invalidate all info about insn given by its UID. */
1257static void
1258invalidate_insn_recog_data (int uid)
1259{
1260 lra_insn_recog_data_t data;
1261
1262 data = lra_insn_recog_data[uid];
1263 lra_assert (data != NULL);
1264 free_insn_recog_data (data);
1265 lra_insn_recog_data[uid] = NULL;
1266}
1267
1268/* Update all the insn info about INSN. It is usually called when
1269 something in the insn was changed. Return the updated info. */
1270lra_insn_recog_data_t
1271lra_update_insn_recog_data (rtx insn)
1272{
1273 lra_insn_recog_data_t data;
1274 int n;
1275 unsigned int uid = INSN_UID (insn);
1276 struct lra_static_insn_data *insn_static_data;
3b3a5e5f 1277 HOST_WIDE_INT sp_offset = 0;
1a8f8886 1278
c6a6cdaa 1279 check_and_expand_insn_recog_data (uid);
1280 if ((data = lra_insn_recog_data[uid]) != NULL
1281 && data->icode != INSN_CODE (insn))
1282 {
3b3a5e5f 1283 sp_offset = data->sp_offset;
c6a6cdaa 1284 invalidate_insn_data_regno_info (data, insn, get_insn_freq (insn));
1285 invalidate_insn_recog_data (uid);
1286 data = NULL;
1287 }
1288 if (data == NULL)
3b3a5e5f 1289 {
1290 data = lra_get_insn_recog_data (insn);
1291 /* Initiate or restore SP offset. */
1292 data->sp_offset = sp_offset;
1293 return data;
1294 }
c6a6cdaa 1295 insn_static_data = data->insn_static_data;
1296 data->used_insn_alternative = -1;
1297 if (DEBUG_INSN_P (insn))
1298 return data;
1299 if (data->icode < 0)
1300 {
1301 int nop;
1302 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1303 const char *constraints[MAX_RECOG_OPERANDS];
1304
1305 nop = asm_noperands (PATTERN (insn));
1306 if (nop >= 0)
1307 {
1308 lra_assert (nop == data->insn_static_data->n_operands);
1309 /* Now get the operand values and constraints out of the
1310 insn. */
1311 decode_asm_operands (PATTERN (insn), NULL,
1312 data->operand_loc,
1313 constraints, operand_mode, NULL);
1314#ifdef ENABLE_CHECKING
1315 {
1316 int i;
1317
1318 for (i = 0; i < nop; i++)
1319 lra_assert
1320 (insn_static_data->operand[i].mode == operand_mode[i]
1321 && insn_static_data->operand[i].constraint == constraints[i]
1322 && ! insn_static_data->operand[i].is_operator);
1323 }
1324#endif
1325 }
1326#ifdef ENABLE_CHECKING
1327 {
1328 int i;
1329
1330 for (i = 0; i < insn_static_data->n_operands; i++)
1331 lra_assert
1332 (insn_static_data->operand[i].type
1333 == (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
1334 : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
1335 : OP_IN));
1336 }
1337#endif
1338 }
1339 else
1340 {
1341 insn_extract (insn);
1342 n = insn_static_data->n_operands;
1343 if (n != 0)
1344 memcpy (data->operand_loc, recog_data.operand_loc, n * sizeof (rtx *));
1345 n = insn_static_data->n_dups;
1346 if (n != 0)
1347 memcpy (data->dup_loc, recog_data.dup_loc, n * sizeof (rtx *));
f2d92d7a 1348#if HAVE_ATTR_enabled
c6a6cdaa 1349#ifdef ENABLE_CHECKING
1350 {
1351 int i;
1352 bool *bp;
1a8f8886 1353
c6a6cdaa 1354 n = insn_static_data->n_alternatives;
1355 bp = data->alternative_enabled_p;
1356 lra_assert (n >= 0 && bp != NULL);
1357 /* Cache the insn to prevent extract_insn call from
1358 get_attr_enabled. */
1359 recog_data.insn = insn;
1360 for (i = 0; i < n; i++)
1361 {
1362 which_alternative = i;
1363 lra_assert (bp[i] == get_attr_enabled (insn));
1364 }
1365 }
1366#endif
1367#endif
1368 }
1369 return data;
1370}
1371
1372/* Set up that INSN is using alternative ALT now. */
1373void
1374lra_set_used_insn_alternative (rtx insn, int alt)
1375{
1376 lra_insn_recog_data_t data;
1377
1378 data = lra_get_insn_recog_data (insn);
1379 data->used_insn_alternative = alt;
1380}
1381
1382/* Set up that insn with UID is using alternative ALT now. The insn
1383 info should be already set up. */
1384void
1385lra_set_used_insn_alternative_by_uid (int uid, int alt)
1386{
1387 lra_insn_recog_data_t data;
1388
1389 check_and_expand_insn_recog_data (uid);
1390 data = lra_insn_recog_data[uid];
1391 lra_assert (data != NULL);
1392 data->used_insn_alternative = alt;
1393}
1394
1395\f
1396
1397/* This page contains code dealing with common register info and
1398 pseudo copies. */
1399
1400/* The size of the following array. */
1401static int reg_info_size;
1402/* Common info about each register. */
1403struct lra_reg *lra_reg_info;
1404
1405/* Last register value. */
1406static int last_reg_value;
1407
1408/* Return new register value. */
1409static int
1410get_new_reg_value (void)
1411{
1412 return ++last_reg_value;
1413}
1414
1415/* Pools for copies. */
1416static alloc_pool copy_pool;
1417
c6a6cdaa 1418/* Vec referring to pseudo copies. */
f1f41a6c 1419static vec<lra_copy_t> copy_vec;
c6a6cdaa 1420
1421/* Initialize I-th element of lra_reg_info. */
1422static inline void
1423initialize_lra_reg_info_element (int i)
1424{
1425 bitmap_initialize (&lra_reg_info[i].insn_bitmap, &reg_obstack);
1426#ifdef STACK_REGS
1427 lra_reg_info[i].no_stack_p = false;
1428#endif
1429 CLEAR_HARD_REG_SET (lra_reg_info[i].conflict_hard_regs);
1430 lra_reg_info[i].preferred_hard_regno1 = -1;
1431 lra_reg_info[i].preferred_hard_regno2 = -1;
1432 lra_reg_info[i].preferred_hard_regno_profit1 = 0;
1433 lra_reg_info[i].preferred_hard_regno_profit2 = 0;
fc8a0f60 1434 lra_reg_info[i].biggest_mode = VOIDmode;
c6a6cdaa 1435 lra_reg_info[i].live_ranges = NULL;
1436 lra_reg_info[i].nrefs = lra_reg_info[i].freq = 0;
1437 lra_reg_info[i].last_reload = 0;
1438 lra_reg_info[i].restore_regno = -1;
1439 lra_reg_info[i].val = get_new_reg_value ();
a1064490 1440 lra_reg_info[i].offset = 0;
c6a6cdaa 1441 lra_reg_info[i].copies = NULL;
1442}
1443
1444/* Initialize common reg info and copies. */
1445static void
1446init_reg_info (void)
1447{
1448 int i;
1449
1450 last_reg_value = 0;
1451 reg_info_size = max_reg_num () * 3 / 2 + 1;
1452 lra_reg_info = XNEWVEC (struct lra_reg, reg_info_size);
1453 for (i = 0; i < reg_info_size; i++)
1454 initialize_lra_reg_info_element (i);
1455 copy_pool
1456 = create_alloc_pool ("lra copies", sizeof (struct lra_copy), 100);
f1f41a6c 1457 copy_vec.create (100);
c6a6cdaa 1458}
1459
1460
1461/* Finish common reg info and copies. */
1462static void
1463finish_reg_info (void)
1464{
1465 int i;
1466
1467 for (i = 0; i < reg_info_size; i++)
1468 bitmap_clear (&lra_reg_info[i].insn_bitmap);
1469 free (lra_reg_info);
1470 reg_info_size = 0;
1471 free_alloc_pool (copy_pool);
f1f41a6c 1472 copy_vec.release ();
c6a6cdaa 1473}
1474
1475/* Expand common reg info if it is necessary. */
1476static void
1477expand_reg_info (void)
1478{
1479 int i, old = reg_info_size;
1480
1481 if (reg_info_size > max_reg_num ())
1482 return;
1483 reg_info_size = max_reg_num () * 3 / 2 + 1;
1484 lra_reg_info = XRESIZEVEC (struct lra_reg, lra_reg_info, reg_info_size);
1485 for (i = old; i < reg_info_size; i++)
1486 initialize_lra_reg_info_element (i);
1487}
1488
1489/* Free all copies. */
1490void
1491lra_free_copies (void)
1492{
1493 lra_copy_t cp;
1494
f1f41a6c 1495 while (copy_vec.length () != 0)
c6a6cdaa 1496 {
f1f41a6c 1497 cp = copy_vec.pop ();
c6a6cdaa 1498 lra_reg_info[cp->regno1].copies = lra_reg_info[cp->regno2].copies = NULL;
1499 pool_free (copy_pool, cp);
1500 }
1501}
1502
1503/* Create copy of two pseudos REGNO1 and REGNO2. The copy execution
1504 frequency is FREQ. */
1505void
1506lra_create_copy (int regno1, int regno2, int freq)
1507{
1508 bool regno1_dest_p;
1509 lra_copy_t cp;
1510
1511 lra_assert (regno1 != regno2);
1512 regno1_dest_p = true;
1513 if (regno1 > regno2)
1514 {
1515 int temp = regno2;
1516
1517 regno1_dest_p = false;
1518 regno2 = regno1;
1519 regno1 = temp;
1520 }
1521 cp = (lra_copy_t) pool_alloc (copy_pool);
f1f41a6c 1522 copy_vec.safe_push (cp);
c6a6cdaa 1523 cp->regno1_dest_p = regno1_dest_p;
1524 cp->freq = freq;
1525 cp->regno1 = regno1;
1526 cp->regno2 = regno2;
1527 cp->regno1_next = lra_reg_info[regno1].copies;
1528 lra_reg_info[regno1].copies = cp;
1529 cp->regno2_next = lra_reg_info[regno2].copies;
1530 lra_reg_info[regno2].copies = cp;
1531 if (lra_dump_file != NULL)
1532 fprintf (lra_dump_file, " Creating copy r%d%sr%d@%d\n",
1533 regno1, regno1_dest_p ? "<-" : "->", regno2, freq);
1534}
1535
1536/* Return N-th (0, 1, ...) copy. If there is no copy, return
1537 NULL. */
1538lra_copy_t
1539lra_get_copy (int n)
1540{
f1f41a6c 1541 if (n >= (int) copy_vec.length ())
c6a6cdaa 1542 return NULL;
f1f41a6c 1543 return copy_vec[n];
c6a6cdaa 1544}
1545
1546\f
1547
1548/* This page contains code dealing with info about registers in
1549 insns. */
1550
1551/* Process X of insn UID recursively and add info (operand type is
1552 given by TYPE, flag of that it is early clobber is EARLY_CLOBBER)
1553 about registers in X to the insn DATA. */
1554static void
1555add_regs_to_insn_regno_info (lra_insn_recog_data_t data, rtx x, int uid,
1556 enum op_type type, bool early_clobber)
1557{
1558 int i, j, regno;
1559 bool subreg_p;
1560 enum machine_mode mode;
1561 const char *fmt;
1562 enum rtx_code code;
1563 struct lra_insn_reg *curr;
1564
1565 code = GET_CODE (x);
1566 mode = GET_MODE (x);
1567 subreg_p = false;
1568 if (GET_CODE (x) == SUBREG)
1569 {
1570 x = SUBREG_REG (x);
1571 code = GET_CODE (x);
1572 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
1573 {
1574 mode = GET_MODE (x);
1575 if (GET_MODE_SIZE (mode) > REGMODE_NATURAL_SIZE (mode))
1576 subreg_p = true;
1577 }
1578 }
1579 if (REG_P (x))
1580 {
1581 regno = REGNO (x);
fc8a0f60 1582 if (regno < FIRST_PSEUDO_REGISTER
1583 && TEST_HARD_REG_BIT (lra_no_alloc_regs, regno)
1584 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
1585 return;
c6a6cdaa 1586 expand_reg_info ();
1587 if (bitmap_set_bit (&lra_reg_info[regno].insn_bitmap, uid))
1588 {
40cec44a 1589 data->regs = new_insn_reg (data->insn, regno, type, mode, subreg_p,
c6a6cdaa 1590 early_clobber, data->regs);
1591 return;
1592 }
1593 else
1594 {
1595 for (curr = data->regs; curr != NULL; curr = curr->next)
1596 if (curr->regno == regno)
1597 {
1598 if (curr->subreg_p != subreg_p || curr->biggest_mode != mode)
1599 /* The info can not be integrated into the found
1600 structure. */
40cec44a 1601 data->regs = new_insn_reg (data->insn, regno, type, mode,
1602 subreg_p, early_clobber,
1603 data->regs);
c6a6cdaa 1604 else
1605 {
1606 if (curr->type != type)
1607 curr->type = OP_INOUT;
1608 if (curr->early_clobber != early_clobber)
1609 curr->early_clobber = true;
1610 }
1611 return;
1612 }
1613 gcc_unreachable ();
1614 }
1615 }
1616
1617 switch (code)
1618 {
1619 case SET:
1620 add_regs_to_insn_regno_info (data, SET_DEST (x), uid, OP_OUT, false);
1621 add_regs_to_insn_regno_info (data, SET_SRC (x), uid, OP_IN, false);
1622 break;
1623 case CLOBBER:
1624 /* We treat clobber of non-operand hard registers as early
1a8f8886 1625 clobber (the behavior is expected from asm). */
c6a6cdaa 1626 add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_OUT, true);
1627 break;
1628 case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
1629 add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_INOUT, false);
1630 break;
1631 case PRE_MODIFY: case POST_MODIFY:
1632 add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_INOUT, false);
1633 add_regs_to_insn_regno_info (data, XEXP (x, 1), uid, OP_IN, false);
1634 break;
1635 default:
1636 if ((code != PARALLEL && code != EXPR_LIST) || type != OP_OUT)
1637 /* Some targets place small structures in registers for return
1638 values of functions, and those registers are wrapped in
1639 PARALLEL that we may see as the destination of a SET. Here
1640 is an example:
1641
1642 (call_insn 13 12 14 2 (set (parallel:BLK [
1643 (expr_list:REG_DEP_TRUE (reg:DI 0 ax)
1644 (const_int 0 [0]))
1645 (expr_list:REG_DEP_TRUE (reg:DI 1 dx)
1646 (const_int 8 [0x8]))
1647 ])
1648 (call (mem:QI (symbol_ref:DI (... */
1649 type = OP_IN;
1650 fmt = GET_RTX_FORMAT (code);
1651 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1652 {
1653 if (fmt[i] == 'e')
1654 add_regs_to_insn_regno_info (data, XEXP (x, i), uid, type, false);
1655 else if (fmt[i] == 'E')
1656 {
1657 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1658 add_regs_to_insn_regno_info (data, XVECEXP (x, i, j), uid,
1659 type, false);
1660 }
1661 }
1662 }
1663}
1664
1665/* Return execution frequency of INSN. */
1666static int
1667get_insn_freq (rtx insn)
1668{
91f71fa3 1669 basic_block bb = BLOCK_FOR_INSN (insn);
c6a6cdaa 1670
91f71fa3 1671 gcc_checking_assert (bb != NULL);
1672 return REG_FREQ_FROM_BB (bb);
c6a6cdaa 1673}
1674
1675/* Invalidate all reg info of INSN with DATA and execution frequency
1676 FREQ. Update common info about the invalidated registers. */
1677static void
1678invalidate_insn_data_regno_info (lra_insn_recog_data_t data, rtx insn,
1679 int freq)
1680{
1681 int uid;
1682 bool debug_p;
1683 unsigned int i;
1684 struct lra_insn_reg *ir, *next_ir;
1685
1686 uid = INSN_UID (insn);
1687 debug_p = DEBUG_INSN_P (insn);
1688 for (ir = data->regs; ir != NULL; ir = next_ir)
1689 {
1690 i = ir->regno;
1691 next_ir = ir->next;
1692 free_insn_reg (ir);
1693 bitmap_clear_bit (&lra_reg_info[i].insn_bitmap, uid);
1694 if (i >= FIRST_PSEUDO_REGISTER && ! debug_p)
1695 {
1696 lra_reg_info[i].nrefs--;
1697 lra_reg_info[i].freq -= freq;
1698 lra_assert (lra_reg_info[i].nrefs >= 0 && lra_reg_info[i].freq >= 0);
1699 }
1700 }
1701 data->regs = NULL;
1702}
1703
1704/* Invalidate all reg info of INSN. Update common info about the
1705 invalidated registers. */
1706void
1707lra_invalidate_insn_regno_info (rtx insn)
1708{
1709 invalidate_insn_data_regno_info (lra_get_insn_recog_data (insn), insn,
1710 get_insn_freq (insn));
1711}
1712
1713/* Update common reg info from reg info of insn given by its DATA and
1714 execution frequency FREQ. */
1715static void
1716setup_insn_reg_info (lra_insn_recog_data_t data, int freq)
1717{
1718 unsigned int i;
1719 struct lra_insn_reg *ir;
1720
1721 for (ir = data->regs; ir != NULL; ir = ir->next)
1722 if ((i = ir->regno) >= FIRST_PSEUDO_REGISTER)
1723 {
1724 lra_reg_info[i].nrefs++;
1725 lra_reg_info[i].freq += freq;
1726 }
1727}
1728
1729/* Set up insn reg info of INSN. Update common reg info from reg info
1730 of INSN. */
1731void
1732lra_update_insn_regno_info (rtx insn)
1733{
1734 int i, uid, freq;
1735 lra_insn_recog_data_t data;
1736 struct lra_static_insn_data *static_data;
1737 enum rtx_code code;
1738
1739 if (! INSN_P (insn))
1740 return;
1741 data = lra_get_insn_recog_data (insn);
1742 static_data = data->insn_static_data;
1743 freq = get_insn_freq (insn);
1744 invalidate_insn_data_regno_info (data, insn, freq);
1745 uid = INSN_UID (insn);
1746 for (i = static_data->n_operands - 1; i >= 0; i--)
1747 add_regs_to_insn_regno_info (data, *data->operand_loc[i], uid,
1748 static_data->operand[i].type,
1749 static_data->operand[i].early_clobber);
1750 if ((code = GET_CODE (PATTERN (insn))) == CLOBBER || code == USE)
1751 add_regs_to_insn_regno_info (data, XEXP (PATTERN (insn), 0), uid,
1752 code == USE ? OP_IN : OP_OUT, false);
1753 if (NONDEBUG_INSN_P (insn))
1754 setup_insn_reg_info (data, freq);
1755}
1756
1757/* Return reg info of insn given by it UID. */
1758struct lra_insn_reg *
1759lra_get_insn_regs (int uid)
1760{
1761 lra_insn_recog_data_t data;
1762
1763 data = get_insn_recog_data_by_uid (uid);
1764 return data->regs;
1765}
1766
1767\f
1768
1769/* This page contains code dealing with stack of the insns which
1770 should be processed by the next constraint pass. */
1771
1772/* Bitmap used to put an insn on the stack only in one exemplar. */
1773static sbitmap lra_constraint_insn_stack_bitmap;
1774
1775/* The stack itself. */
f1f41a6c 1776vec<rtx> lra_constraint_insn_stack;
c6a6cdaa 1777
1778/* Put INSN on the stack. If ALWAYS_UPDATE is true, always update the reg
1779 info for INSN, otherwise only update it if INSN is not already on the
1780 stack. */
1781static inline void
1782lra_push_insn_1 (rtx insn, bool always_update)
1783{
1784 unsigned int uid = INSN_UID (insn);
1785 if (always_update)
1786 lra_update_insn_regno_info (insn);
1787 if (uid >= SBITMAP_SIZE (lra_constraint_insn_stack_bitmap))
1788 lra_constraint_insn_stack_bitmap =
1789 sbitmap_resize (lra_constraint_insn_stack_bitmap, 3 * uid / 2, 0);
08b7917c 1790 if (bitmap_bit_p (lra_constraint_insn_stack_bitmap, uid))
c6a6cdaa 1791 return;
08b7917c 1792 bitmap_set_bit (lra_constraint_insn_stack_bitmap, uid);
c6a6cdaa 1793 if (! always_update)
1794 lra_update_insn_regno_info (insn);
f1f41a6c 1795 lra_constraint_insn_stack.safe_push (insn);
c6a6cdaa 1796}
1797
1798/* Put INSN on the stack. */
1799void
1800lra_push_insn (rtx insn)
1801{
1802 lra_push_insn_1 (insn, false);
1803}
1804
1805/* Put INSN on the stack and update its reg info. */
1806void
1807lra_push_insn_and_update_insn_regno_info (rtx insn)
1808{
1809 lra_push_insn_1 (insn, true);
1810}
1811
1812/* Put insn with UID on the stack. */
1813void
1814lra_push_insn_by_uid (unsigned int uid)
1815{
1816 lra_push_insn (lra_insn_recog_data[uid]->insn);
1817}
1818
1819/* Take the last-inserted insns off the stack and return it. */
1820rtx
1821lra_pop_insn (void)
1822{
f1f41a6c 1823 rtx insn = lra_constraint_insn_stack.pop ();
08b7917c 1824 bitmap_clear_bit (lra_constraint_insn_stack_bitmap, INSN_UID (insn));
c6a6cdaa 1825 return insn;
1826}
1827
1828/* Return the current size of the insn stack. */
1829unsigned int
1830lra_insn_stack_length (void)
1831{
f1f41a6c 1832 return lra_constraint_insn_stack.length ();
c6a6cdaa 1833}
1834
1835/* Push insns FROM to TO (excluding it) going in reverse order. */
1836static void
1837push_insns (rtx from, rtx to)
1838{
1839 rtx insn;
1840
1841 if (from == NULL_RTX)
1842 return;
1843 for (insn = from; insn != to; insn = PREV_INSN (insn))
1844 if (INSN_P (insn))
1845 lra_push_insn (insn);
1846}
1847
3b3a5e5f 1848/* Set up sp offset for insn in range [FROM, LAST]. The offset is
1849 taken from the next BB insn after LAST or zero if there in such
1850 insn. */
1851static void
1852setup_sp_offset (rtx from, rtx last)
1853{
1854 rtx before = next_nonnote_insn_bb (last);
1855 HOST_WIDE_INT offset = (before == NULL_RTX || ! INSN_P (before)
1856 ? 0 : lra_get_insn_recog_data (before)->sp_offset);
1857
1858 for (rtx insn = from; insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
1859 lra_get_insn_recog_data (insn)->sp_offset = offset;
1860}
1861
c6a6cdaa 1862/* Emit insns BEFORE before INSN and insns AFTER after INSN. Put the
1863 insns onto the stack. Print about emitting the insns with
1864 TITLE. */
1865void
1866lra_process_new_insns (rtx insn, rtx before, rtx after, const char *title)
1867{
1868 rtx last;
1869
3b3a5e5f 1870 if (before == NULL_RTX && after == NULL_RTX)
1871 return;
1872 if (lra_dump_file != NULL)
c6a6cdaa 1873 {
6dde9719 1874 dump_insn_slim (lra_dump_file, insn);
c6a6cdaa 1875 if (before != NULL_RTX)
1876 {
1877 fprintf (lra_dump_file," %s before:\n", title);
6dde9719 1878 dump_rtl_slim (lra_dump_file, before, NULL_RTX, -1, 0);
c6a6cdaa 1879 }
1880 if (after != NULL_RTX)
1881 {
1882 fprintf (lra_dump_file, " %s after:\n", title);
6dde9719 1883 dump_rtl_slim (lra_dump_file, after, NULL_RTX, -1, 0);
c6a6cdaa 1884 }
1885 fprintf (lra_dump_file, "\n");
1886 }
1887 if (before != NULL_RTX)
1888 {
1889 emit_insn_before (before, insn);
1890 push_insns (PREV_INSN (insn), PREV_INSN (before));
3b3a5e5f 1891 setup_sp_offset (before, PREV_INSN (insn));
c6a6cdaa 1892 }
1893 if (after != NULL_RTX)
1894 {
1895 for (last = after; NEXT_INSN (last) != NULL_RTX; last = NEXT_INSN (last))
1896 ;
1897 emit_insn_after (after, insn);
1898 push_insns (last, insn);
3b3a5e5f 1899 setup_sp_offset (after, last);
c6a6cdaa 1900 }
1901}
1902
1903\f
1904
1905/* This page contains code dealing with scratches (changing them onto
1906 pseudos and restoring them from the pseudos).
1907
1908 We change scratches into pseudos at the beginning of LRA to
1909 simplify dealing with them (conflicts, hard register assignments).
1910
1911 If the pseudo denoting scratch was spilled it means that we do need
1912 a hard register for it. Such pseudos are transformed back to
1913 scratches at the end of LRA. */
1914
1915/* Description of location of a former scratch operand. */
453f1a8c 1916struct sloc
c6a6cdaa 1917{
1918 rtx insn; /* Insn where the scratch was. */
1919 int nop; /* Number of the operand which was a scratch. */
1920};
1921
453f1a8c 1922typedef struct sloc *sloc_t;
c6a6cdaa 1923
c6a6cdaa 1924/* Locations of the former scratches. */
f1f41a6c 1925static vec<sloc_t> scratches;
c6a6cdaa 1926
1927/* Bitmap of scratch regnos. */
1928static bitmap_head scratch_bitmap;
1929
1930/* Bitmap of scratch operands. */
1931static bitmap_head scratch_operand_bitmap;
1932
1933/* Return true if pseudo REGNO is made of SCRATCH. */
1934bool
1935lra_former_scratch_p (int regno)
1936{
1937 return bitmap_bit_p (&scratch_bitmap, regno);
1938}
1939
1940/* Return true if the operand NOP of INSN is a former scratch. */
1941bool
1942lra_former_scratch_operand_p (rtx insn, int nop)
1943{
1944 return bitmap_bit_p (&scratch_operand_bitmap,
1945 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop) != 0;
1946}
1947
1948/* Change scratches onto pseudos and save their location. */
1949static void
1950remove_scratches (void)
1951{
1952 int i;
1953 bool insn_changed_p;
1954 basic_block bb;
1955 rtx insn, reg;
453f1a8c 1956 sloc_t loc;
c6a6cdaa 1957 lra_insn_recog_data_t id;
1958 struct lra_static_insn_data *static_id;
1959
f1f41a6c 1960 scratches.create (get_max_uid ());
c6a6cdaa 1961 bitmap_initialize (&scratch_bitmap, &reg_obstack);
1962 bitmap_initialize (&scratch_operand_bitmap, &reg_obstack);
1963 FOR_EACH_BB (bb)
1964 FOR_BB_INSNS (bb, insn)
1965 if (INSN_P (insn))
1966 {
1967 id = lra_get_insn_recog_data (insn);
1968 static_id = id->insn_static_data;
1969 insn_changed_p = false;
1970 for (i = 0; i < static_id->n_operands; i++)
1971 if (GET_CODE (*id->operand_loc[i]) == SCRATCH
1972 && GET_MODE (*id->operand_loc[i]) != VOIDmode)
1973 {
1974 insn_changed_p = true;
1975 *id->operand_loc[i] = reg
1976 = lra_create_new_reg (static_id->operand[i].mode,
1977 *id->operand_loc[i], ALL_REGS, NULL);
1978 add_reg_note (insn, REG_UNUSED, reg);
1979 lra_update_dup (id, i);
453f1a8c 1980 loc = XNEW (struct sloc);
c6a6cdaa 1981 loc->insn = insn;
1982 loc->nop = i;
f1f41a6c 1983 scratches.safe_push (loc);
c6a6cdaa 1984 bitmap_set_bit (&scratch_bitmap, REGNO (*id->operand_loc[i]));
1985 bitmap_set_bit (&scratch_operand_bitmap,
1986 INSN_UID (insn) * MAX_RECOG_OPERANDS + i);
1987 if (lra_dump_file != NULL)
1988 fprintf (lra_dump_file,
1989 "Removing SCRATCH in insn #%u (nop %d)\n",
1990 INSN_UID (insn), i);
1991 }
1992 if (insn_changed_p)
1993 /* Because we might use DF right after caller-saves sub-pass
1994 we need to keep DF info up to date. */
1995 df_insn_rescan (insn);
1996 }
1997}
1998
1999/* Changes pseudos created by function remove_scratches onto scratches. */
2000static void
2001restore_scratches (void)
2002{
f1f41a6c 2003 int regno;
2004 unsigned i;
453f1a8c 2005 sloc_t loc;
c6a6cdaa 2006 rtx last = NULL_RTX;
2007 lra_insn_recog_data_t id = NULL;
2008
f1f41a6c 2009 for (i = 0; scratches.iterate (i, &loc); i++)
c6a6cdaa 2010 {
2011 if (last != loc->insn)
2012 {
2013 last = loc->insn;
2014 id = lra_get_insn_recog_data (last);
2015 }
2016 if (REG_P (*id->operand_loc[loc->nop])
2017 && ((regno = REGNO (*id->operand_loc[loc->nop]))
2018 >= FIRST_PSEUDO_REGISTER)
2019 && lra_get_regno_hard_regno (regno) < 0)
2020 {
2021 /* It should be only case when scratch register with chosen
2022 constraint 'X' did not get memory or hard register. */
2023 lra_assert (lra_former_scratch_p (regno));
2024 *id->operand_loc[loc->nop]
2025 = gen_rtx_SCRATCH (GET_MODE (*id->operand_loc[loc->nop]));
2026 lra_update_dup (id, loc->nop);
2027 if (lra_dump_file != NULL)
2028 fprintf (lra_dump_file, "Restoring SCRATCH in insn #%u(nop %d)\n",
2029 INSN_UID (loc->insn), loc->nop);
2030 }
2031 }
f1f41a6c 2032 for (i = 0; scratches.iterate (i, &loc); i++)
c6a6cdaa 2033 free (loc);
f1f41a6c 2034 scratches.release ();
c6a6cdaa 2035 bitmap_clear (&scratch_bitmap);
2036 bitmap_clear (&scratch_operand_bitmap);
2037}
2038
2039\f
2040
2041#ifdef ENABLE_CHECKING
2042
2043/* Function checks RTL for correctness. If FINAL_P is true, it is
2044 done at the end of LRA and the check is more rigorous. */
2045static void
2046check_rtl (bool final_p)
2047{
c6a6cdaa 2048 basic_block bb;
2049 rtx insn;
c6a6cdaa 2050
2051 lra_assert (! final_p || reload_completed);
2052 FOR_EACH_BB (bb)
2053 FOR_BB_INSNS (bb, insn)
2054 if (NONDEBUG_INSN_P (insn)
2055 && GET_CODE (PATTERN (insn)) != USE
2056 && GET_CODE (PATTERN (insn)) != CLOBBER
c6a6cdaa 2057 && GET_CODE (PATTERN (insn)) != ASM_INPUT)
2058 {
2059 if (final_p)
2060 {
2061 extract_insn (insn);
2062 lra_assert (constrain_operands (1));
2063 continue;
2064 }
cba8c2e6 2065 /* LRA code is based on assumption that all addresses can be
2066 correctly decomposed. LRA can generate reloads for
2067 decomposable addresses. The decomposition code checks the
2068 correctness of the addresses. So we don't need to check
76f778fd 2069 the addresses here. Don't call insn_invalid_p here, it can
2070 change the code at this stage. */
2071 if (recog_memoized (insn) < 0 && asm_noperands (PATTERN (insn)) < 0)
c6a6cdaa 2072 fatal_insn_not_found (insn);
c6a6cdaa 2073 }
2074}
2075#endif /* #ifdef ENABLE_CHECKING */
2076
2077/* Determine if the current function has an exception receiver block
2078 that reaches the exit block via non-exceptional edges */
2079static bool
2080has_nonexceptional_receiver (void)
2081{
2082 edge e;
2083 edge_iterator ei;
2084 basic_block *tos, *worklist, bb;
2085
2086 /* If we're not optimizing, then just err on the safe side. */
2087 if (!optimize)
2088 return true;
1a8f8886 2089
c6a6cdaa 2090 /* First determine which blocks can reach exit via normal paths. */
a28770e1 2091 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
c6a6cdaa 2092
2093 FOR_EACH_BB (bb)
2094 bb->flags &= ~BB_REACHABLE;
2095
2096 /* Place the exit block on our worklist. */
34154e27 2097 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
2098 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
1a8f8886 2099
c6a6cdaa 2100 /* Iterate: find everything reachable from what we've already seen. */
2101 while (tos != worklist)
2102 {
2103 bb = *--tos;
2104
2105 FOR_EACH_EDGE (e, ei, bb->preds)
2106 if (e->flags & EDGE_ABNORMAL)
2107 {
2108 free (worklist);
2109 return true;
2110 }
2111 else
2112 {
2113 basic_block src = e->src;
2114
2115 if (!(src->flags & BB_REACHABLE))
2116 {
2117 src->flags |= BB_REACHABLE;
2118 *tos++ = src;
2119 }
2120 }
2121 }
2122 free (worklist);
2123 /* No exceptional block reached exit unexceptionally. */
2124 return false;
2125}
2126
2127#ifdef AUTO_INC_DEC
2128
2129/* Process recursively X of INSN and add REG_INC notes if necessary. */
2130static void
2131add_auto_inc_notes (rtx insn, rtx x)
2132{
2133 enum rtx_code code = GET_CODE (x);
2134 const char *fmt;
2135 int i, j;
2136
2137 if (code == MEM && auto_inc_p (XEXP (x, 0)))
2138 {
2139 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
2140 return;
2141 }
2142
2143 /* Scan all X sub-expressions. */
2144 fmt = GET_RTX_FORMAT (code);
2145 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2146 {
2147 if (fmt[i] == 'e')
2148 add_auto_inc_notes (insn, XEXP (x, i));
2149 else if (fmt[i] == 'E')
2150 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2151 add_auto_inc_notes (insn, XVECEXP (x, i, j));
2152 }
2153}
2154
2155#endif
2156
2157/* Remove all REG_DEAD and REG_UNUSED notes and regenerate REG_INC.
2158 We change pseudos by hard registers without notification of DF and
2159 that can make the notes obsolete. DF-infrastructure does not deal
2160 with REG_INC notes -- so we should regenerate them here. */
2161static void
2162update_inc_notes (void)
2163{
2164 rtx *pnote;
2165 basic_block bb;
2166 rtx insn;
2167
2168 FOR_EACH_BB (bb)
2169 FOR_BB_INSNS (bb, insn)
2170 if (NONDEBUG_INSN_P (insn))
2171 {
2172 pnote = &REG_NOTES (insn);
2173 while (*pnote != 0)
2174 {
e2ca76ac 2175 if (REG_NOTE_KIND (*pnote) == REG_DEAD
2176 || REG_NOTE_KIND (*pnote) == REG_UNUSED
2177 || REG_NOTE_KIND (*pnote) == REG_INC)
c6a6cdaa 2178 *pnote = XEXP (*pnote, 1);
2179 else
2180 pnote = &XEXP (*pnote, 1);
2181 }
2182#ifdef AUTO_INC_DEC
2183 add_auto_inc_notes (insn, PATTERN (insn));
2184#endif
2185 }
2186}
2187
2188/* Set to 1 while in lra. */
2189int lra_in_progress;
2190
edfb1d8f 2191/* Start of pseudo regnos before the LRA. */
2192int lra_new_regno_start;
2193
1a8f8886 2194/* Start of reload pseudo regnos before the new spill pass. */
c6a6cdaa 2195int lra_constraint_new_regno_start;
2196
1a8f8886 2197/* Inheritance pseudo regnos before the new spill pass. */
c6a6cdaa 2198bitmap_head lra_inheritance_pseudos;
2199
1a8f8886 2200/* Split regnos before the new spill pass. */
c6a6cdaa 2201bitmap_head lra_split_regs;
2202
1f3a048a 2203/* Reload pseudo regnos before the new assignmnet pass which still can
2204 be spilled after the assinment pass as memory is also accepted in
2205 insns for the reload pseudos. */
c6a6cdaa 2206bitmap_head lra_optional_reload_pseudos;
2207
1f3a048a 2208/* Pseudo regnos used for subreg reloads before the new assignment
2209 pass. Such pseudos still can be spilled after the assinment
2210 pass. */
2211bitmap_head lra_subreg_reload_pseudos;
2212
c6a6cdaa 2213/* First UID of insns generated before a new spill pass. */
2214int lra_constraint_new_insn_uid_start;
2215
2216/* File used for output of LRA debug information. */
2217FILE *lra_dump_file;
2218
2219/* True if we should try spill into registers of different classes
2220 instead of memory. */
2221bool lra_reg_spill_p;
2222
2223/* Set up value LRA_REG_SPILL_P. */
2224static void
2225setup_reg_spill_flag (void)
2226{
2227 int cl, mode;
2228
2229 if (targetm.spill_class != NULL)
2230 for (cl = 0; cl < (int) LIM_REG_CLASSES; cl++)
2231 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
2232 if (targetm.spill_class ((enum reg_class) cl,
2233 (enum machine_mode) mode) != NO_REGS)
2234 {
2235 lra_reg_spill_p = true;
2236 return;
2237 }
2238 lra_reg_spill_p = false;
2239}
2240
2241/* True if the current function is too big to use regular algorithms
2242 in LRA. In other words, we should use simpler and faster algorithms
2243 in LRA. It also means we should not worry about generation code
2244 for caller saves. The value is set up in IRA. */
2245bool lra_simple_p;
2246
2247/* Major LRA entry function. F is a file should be used to dump LRA
2248 debug info. */
2249void
2250lra (FILE *f)
2251{
2252 int i;
2253 bool live_p, scratch_p, inserted_p;
2254
2255 lra_dump_file = f;
2256
2257 timevar_push (TV_LRA);
2258
ea99c7a1 2259 /* Make sure that the last insn is a note. Some subsequent passes
2260 need it. */
2261 emit_note (NOTE_INSN_DELETED);
2262
fc8a0f60 2263 COPY_HARD_REG_SET (lra_no_alloc_regs, ira_no_alloc_regs);
2264
b85cafd3 2265 init_reg_info ();
2266 expand_reg_info ();
2267
c6a6cdaa 2268 init_insn_recog_data ();
2269
2270#ifdef ENABLE_CHECKING
76f778fd 2271 /* Some quick check on RTL generated by previous passes. */
c6a6cdaa 2272 check_rtl (false);
2273#endif
2274
76f778fd 2275 lra_in_progress = 1;
2276
c6a6cdaa 2277 lra_live_range_iter = lra_coalesce_iter = 0;
2278 lra_constraint_iter = lra_constraint_iter_after_spill = 0;
2279 lra_inheritance_iter = lra_undo_inheritance_iter = 0;
2280
2281 setup_reg_spill_flag ();
2282
c6a6cdaa 2283 /* Function remove_scratches can creates new pseudos for clobbers --
2284 so set up lra_constraint_new_regno_start before its call to
2285 permit changing reg classes for pseudos created by this
2286 simplification. */
edfb1d8f 2287 lra_constraint_new_regno_start = lra_new_regno_start = max_reg_num ();
c6a6cdaa 2288 remove_scratches ();
2289 scratch_p = lra_constraint_new_regno_start != max_reg_num ();
2290
2291 /* A function that has a non-local label that can reach the exit
2292 block via non-exceptional paths must save all call-saved
2293 registers. */
2294 if (cfun->has_nonlocal_label && has_nonexceptional_receiver ())
2295 crtl->saves_all_registers = 1;
2296
2297 if (crtl->saves_all_registers)
2298 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2299 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
2300 df_set_regs_ever_live (i, true);
2301
2302 /* We don't DF from now and avoid its using because it is to
2303 expensive when a lot of RTL changes are made. */
2304 df_set_flags (DF_NO_INSN_RESCAN);
f1f41a6c 2305 lra_constraint_insn_stack.create (get_max_uid ());
c6a6cdaa 2306 lra_constraint_insn_stack_bitmap = sbitmap_alloc (get_max_uid ());
53c5d9d4 2307 bitmap_clear (lra_constraint_insn_stack_bitmap);
c6a6cdaa 2308 lra_live_ranges_init ();
2309 lra_constraints_init ();
2310 lra_curr_reload_num = 0;
2311 push_insns (get_last_insn (), NULL_RTX);
2312 /* It is needed for the 1st coalescing. */
2313 lra_constraint_new_insn_uid_start = get_max_uid ();
2314 bitmap_initialize (&lra_inheritance_pseudos, &reg_obstack);
2315 bitmap_initialize (&lra_split_regs, &reg_obstack);
2316 bitmap_initialize (&lra_optional_reload_pseudos, &reg_obstack);
1f3a048a 2317 bitmap_initialize (&lra_subreg_reload_pseudos, &reg_obstack);
c6a6cdaa 2318 live_p = false;
ea99c7a1 2319 if (get_frame_size () != 0 && crtl->stack_alignment_needed)
2320 /* If we have a stack frame, we must align it now. The stack size
2321 may be a part of the offset computation for register
2322 elimination. */
2323 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
c6a6cdaa 2324 for (;;)
2325 {
2326 for (;;)
2327 {
c6a6cdaa 2328 /* We should try to assign hard registers to scratches even
2329 if there were no RTL transformations in
2330 lra_constraints. */
2331 if (! lra_constraints (lra_constraint_iter == 0)
2332 && (lra_constraint_iter > 1
2333 || (! scratch_p && ! caller_save_needed)))
2334 break;
2335 /* Constraint transformations may result in that eliminable
2336 hard regs become uneliminable and pseudos which use them
2337 should be spilled. It is better to do it before pseudo
2338 assignments.
2339
2340 For example, rs6000 can make
2341 RS6000_PIC_OFFSET_TABLE_REGNUM uneliminable if we started
2342 to use a constant pool. */
3b3a5e5f 2343 lra_eliminate (false, false);
c6a6cdaa 2344 /* Do inheritance only for regular algorithms. */
2345 if (! lra_simple_p)
2346 lra_inheritance ();
d3d0b390 2347 if (live_p)
2348 lra_clear_live_ranges ();
c6a6cdaa 2349 /* We need live ranges for lra_assign -- so build them. */
2350 lra_create_live_ranges (true);
2351 live_p = true;
2352 /* If we don't spill non-reload and non-inheritance pseudos,
2353 there is no sense to run memory-memory move coalescing.
2354 If inheritance pseudos were spilled, the memory-memory
2355 moves involving them will be removed by pass undoing
2356 inheritance. */
2357 if (lra_simple_p)
2358 lra_assign ();
2359 else
2360 {
638e746e 2361 bool spill_p = !lra_assign ();
2362
c6a6cdaa 2363 if (lra_undo_inheritance ())
2364 live_p = false;
638e746e 2365 if (spill_p)
2366 {
2367 if (! live_p)
2368 {
2369 lra_create_live_ranges (true);
2370 live_p = true;
2371 }
2372 if (lra_coalesce ())
2373 live_p = false;
2374 }
d3d0b390 2375 if (! live_p)
2376 lra_clear_live_ranges ();
c6a6cdaa 2377 }
2378 }
95563487 2379 /* Don't clear optional reloads bitmap until all constraints are
2380 satisfied as we need to differ them from regular reloads. */
2381 bitmap_clear (&lra_optional_reload_pseudos);
1f3a048a 2382 bitmap_clear (&lra_subreg_reload_pseudos);
c6a6cdaa 2383 bitmap_clear (&lra_inheritance_pseudos);
2384 bitmap_clear (&lra_split_regs);
2385 if (! lra_need_for_spills_p ())
2386 break;
2387 if (! live_p)
2388 {
2389 /* We need full live info for spilling pseudos into
2390 registers instead of memory. */
2391 lra_create_live_ranges (lra_reg_spill_p);
2392 live_p = true;
2393 }
2394 lra_spill ();
2395 /* Assignment of stack slots changes elimination offsets for
2396 some eliminations. So update the offsets here. */
3b3a5e5f 2397 lra_eliminate (false, false);
c6a6cdaa 2398 lra_constraint_new_regno_start = max_reg_num ();
2399 lra_constraint_new_insn_uid_start = get_max_uid ();
2400 lra_constraint_iter_after_spill = 0;
2401 }
2402 restore_scratches ();
3b3a5e5f 2403 lra_eliminate (true, false);
ae72d5b2 2404 lra_final_code_change ();
c6a6cdaa 2405 lra_in_progress = 0;
d3d0b390 2406 if (live_p)
2407 lra_clear_live_ranges ();
c6a6cdaa 2408 lra_live_ranges_finish ();
2409 lra_constraints_finish ();
2410 finish_reg_info ();
2411 sbitmap_free (lra_constraint_insn_stack_bitmap);
f1f41a6c 2412 lra_constraint_insn_stack.release ();
c6a6cdaa 2413 finish_insn_recog_data ();
2414 regstat_free_n_sets_and_refs ();
2415 regstat_free_ri ();
2416 reload_completed = 1;
2417 update_inc_notes ();
2418
2419 inserted_p = fixup_abnormal_edges ();
2420
2421 /* We've possibly turned single trapping insn into multiple ones. */
2422 if (cfun->can_throw_non_call_exceptions)
2423 {
2424 sbitmap blocks;
fe672ac0 2425 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
53c5d9d4 2426 bitmap_ones (blocks);
c6a6cdaa 2427 find_many_sub_basic_blocks (blocks);
2428 sbitmap_free (blocks);
2429 }
2430
2431 if (inserted_p)
2432 commit_edge_insertions ();
2433
2434 /* Replacing pseudos with their memory equivalents might have
2435 created shared rtx. Subsequent passes would get confused
2436 by this, so unshare everything here. */
2437 unshare_all_rtl_again (get_insns ());
2438
2439#ifdef ENABLE_CHECKING
2440 check_rtl (true);
2441#endif
2442
2443 timevar_pop (TV_LRA);
2444}
2445
2446/* Called once per compiler to initialize LRA data once. */
2447void
2448lra_init_once (void)
2449{
2450 init_insn_code_data_once ();
2451}
2452
2453/* Initialize LRA whenever register-related information is changed. */
2454void
2455lra_init (void)
2456{
2457 init_op_alt_data ();
2458}
2459
2460/* Called once per compiler to finish LRA data which are initialize
2461 once. */
2462void
2463lra_finish_once (void)
2464{
2465 finish_insn_code_data_once ();
2466}