]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/match.pd
Put the CL into the right dir.
[thirdparty/gcc.git] / gcc / match.pd
CommitLineData
2165588a 1/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
fbd26352 5 Copyright (C) 2014-2019 Free Software Foundation, Inc.
2165588a 6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
13Software Foundation; either version 3, or (at your option) any later
14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING3. If not see
23<http://www.gnu.org/licenses/>. */
24
25
26/* Generic tree predicates we inherit. */
27(define_predicates
662274ee 28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
18b38664 29 integer_each_onep integer_truep integer_nonzerop
662274ee 30 real_zerop real_onep real_minus_onep
06e4870e 31 zerop
34dc851a 32 initializer_each_zero_or_onep
2ad7e37a 33 CONSTANT_CLASS_P
71486465 34 tree_expr_nonnegative_p
70229d3b 35 tree_expr_nonzero_p
6f5f406a 36 integer_valued_real_p
18b38664 37 integer_pow2p
7931f9ca 38 uniform_integer_cst_p
b006d66f 39 HONOR_NANS
40 uniform_vector_p)
55534d34 41
9ec260f0 42/* Operator lists. */
43(define_operator_list tcc_comparison
44 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
45(define_operator_list inverted_tcc_comparison
46 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
47(define_operator_list inverted_tcc_comparison_with_nans
48 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
0c3c84e3 49(define_operator_list swapped_tcc_comparison
50 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
c915fa32 51(define_operator_list simple_comparison lt le eq ne ge gt)
52(define_operator_list swapped_simple_comparison gt ge eq ne le lt)
53
ff690865 54#include "cfn-operators.pd"
89ff0c87 55
1117ed35 56/* Define operand lists for math rounding functions {,i,l,ll}FN,
57 where the versions prefixed with "i" return an int, those prefixed with
58 "l" return a long and those prefixed with "ll" return a long long.
59
60 Also define operand lists:
61
62 X<FN>F for all float functions, in the order i, l, ll
63 X<FN> for all double functions, in the same order
64 X<FN>L for all long double functions, in the same order. */
65#define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
1117ed35 66 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
67 BUILT_IN_L##FN##F \
68 BUILT_IN_LL##FN##F) \
69 (define_operator_list X##FN BUILT_IN_I##FN \
70 BUILT_IN_L##FN \
71 BUILT_IN_LL##FN) \
72 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
73 BUILT_IN_L##FN##L \
74 BUILT_IN_LL##FN##L)
75
1117ed35 76DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
77DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
78DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
79DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
dbc7e6ae 80
81/* Binary operations and their associated IFN_COND_* function. */
82(define_operator_list UNCOND_BINARY
83 plus minus
cdb4d5d0 84 mult trunc_div trunc_mod rdiv
dbc7e6ae 85 min max
8d60bb3e 86 bit_and bit_ior bit_xor
87 lshift rshift)
dbc7e6ae 88(define_operator_list COND_BINARY
89 IFN_COND_ADD IFN_COND_SUB
cdb4d5d0 90 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
dbc7e6ae 91 IFN_COND_MIN IFN_COND_MAX
8d60bb3e 92 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR
93 IFN_COND_SHL IFN_COND_SHR)
6682fc02 94
95/* Same for ternary operations. */
96(define_operator_list UNCOND_TERNARY
97 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
98(define_operator_list COND_TERNARY
99 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
9603b585 100
049318f9 101/* As opposed to convert?, this still creates a single pattern, so
102 it is not a suitable replacement for convert? in all cases. */
103(match (nop_convert @0)
104 (convert @0)
105 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
106(match (nop_convert @0)
107 (view_convert @0)
108 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
f08ee65f 109 && known_eq (TYPE_VECTOR_SUBPARTS (type),
110 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
049318f9 111 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
112/* This one has to be last, or it shadows the others. */
113(match (nop_convert @0)
9603b585 114 @0)
9ec260f0 115
1c67942e 116/* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
117 ABSU_EXPR returns unsigned absolute value of the operand and the operand
118 of the ABSU_EXPR will have the corresponding signed type. */
119(simplify (abs (convert @0))
120 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
121 && !TYPE_UNSIGNED (TREE_TYPE (@0))
122 && element_precision (type) > element_precision (TREE_TYPE (@0)))
123 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
124 (convert (absu:utype @0)))))
125
126
55534d34 127/* Simplifications of operations with one constant operand and
58810b92 128 simplifications to constants or single values. */
55534d34 129
130(for op (plus pointer_plus minus bit_ior bit_xor)
131 (simplify
132 (op @0 integer_zerop)
133 (non_lvalue @0)))
134
770ae4bb 135/* 0 +p index -> (type)index */
136(simplify
137 (pointer_plus integer_zerop @1)
138 (non_lvalue (convert @1)))
139
e52afc20 140/* ptr - 0 -> (type)ptr */
141(simplify
142 (pointer_diff @0 integer_zerop)
143 (convert @0))
144
6a78ea5d 145/* See if ARG1 is zero and X + ARG1 reduces to X.
146 Likewise if the operands are reversed. */
147(simplify
148 (plus:c @0 real_zerop@1)
149 (if (fold_real_zero_addition_p (type, @1, 0))
150 (non_lvalue @0)))
151
152/* See if ARG1 is zero and X - ARG1 reduces to X. */
153(simplify
154 (minus @0 real_zerop@1)
155 (if (fold_real_zero_addition_p (type, @1, 1))
156 (non_lvalue @0)))
c57b5e25 157
158/* Even if the fold_real_zero_addition_p can't simplify X + 0.0
159 into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
160 or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
161 if not -frounding-math. For sNaNs the first operation would raise
162 exceptions but turn the result into qNan, so the second operation
163 would not raise it. */
164(for inner_op (plus minus)
165 (for outer_op (plus minus)
166 (simplify
167 (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
168 (if (real_zerop (@1)
169 && real_zerop (@2)
170 && !HONOR_SIGN_DEPENDENT_ROUNDING (type))
171 (with { bool inner_plus = ((inner_op == PLUS_EXPR)
172 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
173 bool outer_plus
174 = ((outer_op == PLUS_EXPR)
175 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
176 (if (outer_plus && !inner_plus)
177 (outer_op @0 @2)
178 @3))))))
6a78ea5d 179
55534d34 180/* Simplify x - x.
181 This is unsafe for certain floats even in non-IEEE formats.
182 In IEEE, it is unsafe because it does wrong for NaNs.
183 Also note that operand_equal_p is always false if an operand
184 is volatile. */
185(simplify
6a78ea5d 186 (minus @0 @0)
93633022 187 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
6a78ea5d 188 { build_zero_cst (type); }))
57e83b58 189(simplify
190 (pointer_diff @@0 @0)
191 { build_zero_cst (type); })
55534d34 192
193(simplify
6a78ea5d 194 (mult @0 integer_zerop@1)
195 @1)
196
197/* Maybe fold x * 0 to 0. The expressions aren't the same
198 when x is NaN, since x * 0 is also NaN. Nor are they the
199 same in modes with signed zeros, since multiplying a
200 negative value by 0 gives -0, not +0. */
201(simplify
202 (mult @0 real_zerop@1)
c8047e01 203 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
6a78ea5d 204 @1))
205
206/* In IEEE floating point, x*1 is not equivalent to x for snans.
207 Likewise for complex arithmetic with signed zeros. */
208(simplify
209 (mult @0 real_onep)
c8047e01 210 (if (!HONOR_SNANS (type)
211 && (!HONOR_SIGNED_ZEROS (type)
6a78ea5d 212 || !COMPLEX_FLOAT_TYPE_P (type)))
213 (non_lvalue @0)))
214
215/* Transform x * -1.0 into -x. */
216(simplify
217 (mult @0 real_minus_onep)
c8047e01 218 (if (!HONOR_SNANS (type)
219 && (!HONOR_SIGNED_ZEROS (type)
6a78ea5d 220 || !COMPLEX_FLOAT_TYPE_P (type)))
221 (negate @0)))
55534d34 222
09504b03 223/* Transform { 0 or 1 } * { 0 or 1 } into { 0 or 1 } & { 0 or 1 } */
224(simplify
225 (mult SSA_NAME@1 SSA_NAME@2)
226 (if (INTEGRAL_TYPE_P (type)
227 && get_nonzero_bits (@1) == 1
228 && get_nonzero_bits (@2) == 1)
229 (bit_and @1 @2)))
230
34dc851a 231/* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
232 unless the target has native support for the former but not the latter. */
233(simplify
234 (mult @0 VECTOR_CST@1)
235 (if (initializer_each_zero_or_onep (@1)
236 && !HONOR_SNANS (type)
237 && !HONOR_SIGNED_ZEROS (type))
238 (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
239 (if (itype
240 && (!VECTOR_MODE_P (TYPE_MODE (type))
241 || (VECTOR_MODE_P (TYPE_MODE (itype))
242 && optab_handler (and_optab,
243 TYPE_MODE (itype)) != CODE_FOR_nothing)))
244 (view_convert (bit_and:itype (view_convert @0)
245 (ne @1 { build_zero_cst (type); })))))))
246
6e0b4434 247(for cmp (gt ge lt le)
248 outp (convert convert negate negate)
249 outn (negate negate convert convert)
250 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
251 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
252 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
253 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
254 (simplify
255 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
256 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
257 && types_match (type, TREE_TYPE (@0)))
258 (switch
259 (if (types_match (type, float_type_node))
260 (BUILT_IN_COPYSIGNF @1 (outp @0)))
261 (if (types_match (type, double_type_node))
262 (BUILT_IN_COPYSIGN @1 (outp @0)))
263 (if (types_match (type, long_double_type_node))
264 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
265 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
266 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
267 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
268 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
269 (simplify
270 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
271 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
272 && types_match (type, TREE_TYPE (@0)))
273 (switch
274 (if (types_match (type, float_type_node))
275 (BUILT_IN_COPYSIGNF @1 (outn @0)))
276 (if (types_match (type, double_type_node))
277 (BUILT_IN_COPYSIGN @1 (outn @0)))
278 (if (types_match (type, long_double_type_node))
279 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
280
281/* Transform X * copysign (1.0, X) into abs(X). */
282(simplify
054e9558 283 (mult:c @0 (COPYSIGN_ALL real_onep @0))
6e0b4434 284 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
285 (abs @0)))
286
287/* Transform X * copysign (1.0, -X) into -abs(X). */
288(simplify
054e9558 289 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
6e0b4434 290 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
291 (negate (abs @0))))
292
293/* Transform copysign (CST, X) into copysign (ABS(CST), X). */
294(simplify
054e9558 295 (COPYSIGN_ALL REAL_CST@0 @1)
6e0b4434 296 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
054e9558 297 (COPYSIGN_ALL (negate @0) @1)))
6e0b4434 298
6062d7aa 299/* X * 1, X / 1 -> X. */
55534d34 300(for op (mult trunc_div ceil_div floor_div round_div exact_div)
301 (simplify
302 (op @0 integer_onep)
303 (non_lvalue @0)))
304
f769c6cf 305/* (A / (1 << B)) -> (A >> B).
306 Only for unsigned A. For signed A, this would not preserve rounding
307 toward zero.
308 For example: (-1 / ( 1 << B)) != -1 >> B. */
309(simplify
310 (trunc_div @0 (lshift integer_onep@1 @2))
311 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
312 && (!VECTOR_TYPE_P (type)
313 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
314 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
315 (rshift @0 @2)))
316
6062d7aa 317/* Preserve explicit divisions by 0: the C++ front-end wants to detect
318 undefined behavior in constexpr evaluation, and assuming that the division
319 traps enables better optimizations than these anyway. */
6a78ea5d 320(for div (trunc_div ceil_div floor_div round_div exact_div)
6062d7aa 321 /* 0 / X is always zero. */
322 (simplify
323 (div integer_zerop@0 @1)
324 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
325 (if (!integer_zerop (@1))
326 @0))
98da8d3b 327 /* X / -1 is -X. */
6a78ea5d 328 (simplify
ccb14741 329 (div @0 integer_minus_onep@1)
330 (if (!TYPE_UNSIGNED (type))
98da8d3b 331 (negate @0)))
6062d7aa 332 /* X / X is one. */
333 (simplify
334 (div @0 @0)
63d693d7 335 /* But not for 0 / 0 so that we can get the proper warnings and errors.
336 And not for _Fract types where we can't build 1. */
337 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
6062d7aa 338 { build_one_cst (type); }))
9603b585 339 /* X / abs (X) is X < 0 ? -1 : 1. */
98da8d3b 340 (simplify
22b30400 341 (div:C @0 (abs @0))
342 (if (INTEGRAL_TYPE_P (type)
98da8d3b 343 && TYPE_OVERFLOW_UNDEFINED (type))
344 (cond (lt @0 { build_zero_cst (type); })
345 { build_minus_one_cst (type); } { build_one_cst (type); })))
346 /* X / -X is -1. */
347 (simplify
22b30400 348 (div:C @0 (negate @0))
98da8d3b 349 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
350 && TYPE_OVERFLOW_UNDEFINED (type))
351 { build_minus_one_cst (type); })))
6a78ea5d 352
353/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
354 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
355(simplify
356 (floor_div @0 @1)
ccb14741 357 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
358 && TYPE_UNSIGNED (type))
6a78ea5d 359 (trunc_div @0 @1)))
360
62d4473c 361/* Combine two successive divisions. Note that combining ceil_div
362 and floor_div is trickier and combining round_div even more so. */
363(for div (trunc_div exact_div)
2309dbdc 364 (simplify
9c2ad52a 365 (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
2309dbdc 366 (with {
30b5769f 367 wi::overflow_type overflow;
e3d0f65c 368 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
30b5769f 369 TYPE_SIGN (type), &overflow);
2309dbdc 370 }
9c2ad52a 371 (if (div == EXACT_DIV_EXPR
372 || optimize_successive_divisions_p (@2, @3))
373 (if (!overflow)
374 (div @0 { wide_int_to_tree (type, mul); })
375 (if (TYPE_UNSIGNED (type)
376 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
377 { build_zero_cst (type); }))))))
2309dbdc 378
e4f48180 379/* Combine successive multiplications. Similar to above, but handling
380 overflow is different. */
381(simplify
382 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
383 (with {
30b5769f 384 wi::overflow_type overflow;
e3d0f65c 385 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
30b5769f 386 TYPE_SIGN (type), &overflow);
e4f48180 387 }
388 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
389 otherwise undefined overflow implies that @0 must be zero. */
30b5769f 390 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
e4f48180 391 (mult @0 { wide_int_to_tree (type, mul); }))))
392
6a78ea5d 393/* Optimize A / A to 1.0 if we don't care about
ccb14741 394 NaNs or Infinities. */
6a78ea5d 395(simplify
396 (rdiv @0 @0)
ccb14741 397 (if (FLOAT_TYPE_P (type)
93633022 398 && ! HONOR_NANS (type)
c8047e01 399 && ! HONOR_INFINITIES (type))
ccb14741 400 { build_one_cst (type); }))
401
402/* Optimize -A / A to -1.0 if we don't care about
403 NaNs or Infinities. */
404(simplify
2f99fc04 405 (rdiv:C @0 (negate @0))
ccb14741 406 (if (FLOAT_TYPE_P (type)
93633022 407 && ! HONOR_NANS (type)
c8047e01 408 && ! HONOR_INFINITIES (type))
ccb14741 409 { build_minus_one_cst (type); }))
6a78ea5d 410
12dabcee 411/* PR71078: x / abs(x) -> copysign (1.0, x) */
412(simplify
413 (rdiv:C (convert? @0) (convert? (abs @0)))
414 (if (SCALAR_FLOAT_TYPE_P (type)
415 && ! HONOR_NANS (type)
416 && ! HONOR_INFINITIES (type))
417 (switch
418 (if (types_match (type, float_type_node))
419 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
420 (if (types_match (type, double_type_node))
421 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
422 (if (types_match (type, long_double_type_node))
423 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
424
6a78ea5d 425/* In IEEE floating point, x/1 is not equivalent to x for snans. */
426(simplify
427 (rdiv @0 real_onep)
c8047e01 428 (if (!HONOR_SNANS (type))
6a78ea5d 429 (non_lvalue @0)))
430
431/* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
432(simplify
433 (rdiv @0 real_minus_onep)
c8047e01 434 (if (!HONOR_SNANS (type))
6a78ea5d 435 (negate @0)))
436
ee5e3723 437(if (flag_reciprocal_math)
07d4034c 438 /* Convert (A/B)/C to A/(B*C). */
ee5e3723 439 (simplify
440 (rdiv (rdiv:s @0 @1) @2)
07d4034c 441 (rdiv @0 (mult @1 @2)))
442
443 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
444 (simplify
445 (rdiv @0 (mult:s @1 REAL_CST@2))
446 (with
447 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
448 (if (tem)
449 (rdiv (mult @0 { tem; } ) @1))))
ee5e3723 450
451 /* Convert A/(B/C) to (A/B)*C */
452 (simplify
453 (rdiv @0 (rdiv:s @1 @2))
454 (mult (rdiv @0 @1) @2)))
455
081337d3 456/* Simplify x / (- y) to -x / y. */
457(simplify
458 (rdiv @0 (negate @1))
459 (rdiv (negate @0) @1))
460
7abecd46 461(if (flag_unsafe_math_optimizations)
462 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
463 Since C / x may underflow to zero, do this only for unsafe math. */
464 (for op (lt le gt ge)
465 neg_op (gt ge lt le)
466 (simplify
467 (op (rdiv REAL_CST@0 @1) real_zerop@2)
468 (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
469 (switch
470 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
471 (op @1 @2))
472 /* For C < 0, use the inverted operator. */
473 (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
474 (neg_op @1 @2)))))))
475
ee5e3723 476/* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
477(for div (trunc_div ceil_div floor_div round_div exact_div)
478 (simplify
479 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
480 (if (integer_pow2p (@2)
481 && tree_int_cst_sgn (@2) > 0
cb7bca5f 482 && tree_nop_conversion_p (type, TREE_TYPE (@0))
e3d0f65c 483 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
484 (rshift (convert @0)
485 { build_int_cst (integer_type_node,
486 wi::exact_log2 (wi::to_wide (@2))); }))))
ee5e3723 487
6a78ea5d 488/* If ARG1 is a constant, we can convert this to a multiply by the
489 reciprocal. This does not have the same rounding properties,
490 so only do this if -freciprocal-math. We can actually
491 always safely do it if ARG1 is a power of two, but it's hard to
492 tell if it is or not in a portable manner. */
493(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
494 (simplify
495 (rdiv @0 cst@1)
496 (if (optimize)
cd6db277 497 (if (flag_reciprocal_math
498 && !real_zerop (@1))
6a78ea5d 499 (with
abe4e033 500 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
6a78ea5d 501 (if (tem)
d74b7335 502 (mult @0 { tem; } )))
503 (if (cst != COMPLEX_CST)
504 (with { tree inverse = exact_inverse (type, @1); }
505 (if (inverse)
506 (mult @0 { inverse; } ))))))))
6a78ea5d 507
6a78ea5d 508(for mod (ceil_mod floor_mod round_mod trunc_mod)
55534d34 509 /* 0 % X is always zero. */
510 (simplify
6a78ea5d 511 (mod integer_zerop@0 @1)
55534d34 512 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
513 (if (!integer_zerop (@1))
514 @0))
515 /* X % 1 is always zero. */
516 (simplify
6a78ea5d 517 (mod @0 integer_onep)
518 { build_zero_cst (type); })
519 /* X % -1 is zero. */
520 (simplify
ccb14741 521 (mod @0 integer_minus_onep@1)
522 (if (!TYPE_UNSIGNED (type))
d792dcdf 523 { build_zero_cst (type); }))
6062d7aa 524 /* X % X is zero. */
525 (simplify
526 (mod @0 @0)
527 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
528 (if (!integer_zerop (@0))
529 { build_zero_cst (type); }))
d792dcdf 530 /* (X % Y) % Y is just X % Y. */
531 (simplify
532 (mod (mod@2 @0 @1) @1)
54c06b77 533 @2)
534 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
535 (simplify
536 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
537 (if (ANY_INTEGRAL_TYPE_P (type)
538 && TYPE_OVERFLOW_UNDEFINED (type)
e3d0f65c 539 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
540 TYPE_SIGN (type)))
e3f07d30 541 { build_zero_cst (type); }))
542 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
543 modulo and comparison, since it is simpler and equivalent. */
544 (for cmp (eq ne)
545 (simplify
546 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
547 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
548 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
549 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
6a78ea5d 550
551/* X % -C is the same as X % C. */
552(simplify
553 (trunc_mod @0 INTEGER_CST@1)
554 (if (TYPE_SIGN (type) == SIGNED
555 && !TREE_OVERFLOW (@1)
e3d0f65c 556 && wi::neg_p (wi::to_wide (@1))
6a78ea5d 557 && !TYPE_OVERFLOW_TRAPS (type)
558 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
559 && !sign_bit_p (@1, @1))
560 (trunc_mod @0 (negate @1))))
55534d34 561
c09f2960 562/* X % -Y is the same as X % Y. */
563(simplify
564 (trunc_mod @0 (convert? (negate @1)))
1bc579ed 565 (if (INTEGRAL_TYPE_P (type)
566 && !TYPE_UNSIGNED (type)
c09f2960 567 && !TYPE_OVERFLOW_TRAPS (type)
7dff0499 568 && tree_nop_conversion_p (type, TREE_TYPE (@1))
569 /* Avoid this transformation if X might be INT_MIN or
570 Y might be -1, because we would then change valid
571 INT_MIN % -(-1) into invalid INT_MIN % -1. */
e3d0f65c 572 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
7dff0499 573 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
574 (TREE_TYPE (@1))))))
c09f2960 575 (trunc_mod @0 (convert @1))))
576
ef5e7d0d 577/* X - (X / Y) * Y is the same as X % Y. */
578(simplify
c76c65ae 579 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
580 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
f801d40f 581 (convert (trunc_mod @0 @1))))
ef5e7d0d 582
c09f2960 583/* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
584 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
585 Also optimize A % (C << N) where C is a power of 2,
586 to A & ((C << N) - 1). */
587(match (power_of_two_cand @1)
588 INTEGER_CST@1)
589(match (power_of_two_cand @1)
590 (lshift INTEGER_CST@1 @2))
591(for mod (trunc_mod floor_mod)
592 (simplify
928ea46c 593 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
c09f2960 594 (if ((TYPE_UNSIGNED (type)
595 || tree_expr_nonnegative_p (@0))
928ea46c 596 && tree_nop_conversion_p (type, TREE_TYPE (@3))
c09f2960 597 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
928ea46c 598 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
c09f2960 599
71486465 600/* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
601(simplify
602 (trunc_div (mult @0 integer_pow2p@1) @1)
603 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
604 (bit_and @0 { wide_int_to_tree
e3d0f65c 605 (type, wi::mask (TYPE_PRECISION (type)
606 - wi::exact_log2 (wi::to_wide (@1)),
71486465 607 false, TYPE_PRECISION (type))); })))
608
20c41e0d 609/* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
610(simplify
611 (mult (trunc_div @0 integer_pow2p@1) @1)
612 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
613 (bit_and @0 (negate @1))))
614
3849736e 615/* Simplify (t * 2) / 2) -> t. */
616(for div (trunc_div ceil_div floor_div round_div exact_div)
617 (simplify
ac947eae 618 (div (mult:c @0 @1) @1)
3849736e 619 (if (ANY_INTEGRAL_TYPE_P (type)
620 && TYPE_OVERFLOW_UNDEFINED (type))
621 @0)))
622
5702129f 623(for op (negate abs)
a614e82c 624 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
625 (for coss (COS COSH)
626 (simplify
627 (coss (op @0))
628 (coss @0)))
629 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
630 (for pows (POW)
631 (simplify
632 (pows (op @0) REAL_CST@1)
633 (with { HOST_WIDE_INT n; }
634 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
a15183eb 635 (pows @0 @1)))))
cbcde149 636 /* Likewise for powi. */
637 (for pows (POWI)
638 (simplify
639 (pows (op @0) INTEGER_CST@1)
e3d0f65c 640 (if ((wi::to_wide (@1) & 1) == 0)
cbcde149 641 (pows @0 @1))))
a15183eb 642 /* Strip negate and abs from both operands of hypot. */
643 (for hypots (HYPOT)
644 (simplify
645 (hypots (op @0) @1)
646 (hypots @0 @1))
647 (simplify
648 (hypots @0 (op @1))
649 (hypots @0 @1)))
650 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
054e9558 651 (for copysigns (COPYSIGN_ALL)
a15183eb 652 (simplify
653 (copysigns (op @0) @1)
654 (copysigns @0 @1))))
655
656/* abs(x)*abs(x) -> x*x. Should be valid for all types. */
657(simplify
658 (mult (abs@1 @0) @1)
659 (mult @0 @0))
660
b3d1b253 661/* Convert absu(x)*absu(x) -> x*x. */
662(simplify
663 (mult (absu@1 @0) @1)
664 (mult (convert@2 @0) @2))
665
a15183eb 666/* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
667(for coss (COS COSH)
668 copysigns (COPYSIGN)
669 (simplify
670 (coss (copysigns @0 @1))
671 (coss @0)))
672
673/* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
674(for pows (POW)
675 copysigns (COPYSIGN)
676 (simplify
cbcde149 677 (pows (copysigns @0 @2) REAL_CST@1)
a15183eb 678 (with { HOST_WIDE_INT n; }
679 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
680 (pows @0 @1)))))
cbcde149 681/* Likewise for powi. */
682(for pows (POWI)
683 copysigns (COPYSIGN)
684 (simplify
685 (pows (copysigns @0 @2) INTEGER_CST@1)
e3d0f65c 686 (if ((wi::to_wide (@1) & 1) == 0)
cbcde149 687 (pows @0 @1))))
a15183eb 688
689(for hypots (HYPOT)
690 copysigns (COPYSIGN)
691 /* hypot(copysign(x, y), z) -> hypot(x, z). */
692 (simplify
693 (hypots (copysigns @0 @1) @2)
694 (hypots @0 @2))
695 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
696 (simplify
697 (hypots @0 (copysigns @1 @2))
698 (hypots @0 @1)))
699
eb93b162 700/* copysign(x, CST) -> [-]abs (x). */
054e9558 701(for copysigns (COPYSIGN_ALL)
eb93b162 702 (simplify
703 (copysigns @0 REAL_CST@1)
704 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
705 (negate (abs @0))
706 (abs @0))))
707
a15183eb 708/* copysign(copysign(x, y), z) -> copysign(x, z). */
054e9558 709(for copysigns (COPYSIGN_ALL)
a15183eb 710 (simplify
711 (copysigns (copysigns @0 @1) @2)
712 (copysigns @0 @2)))
713
714/* copysign(x,y)*copysign(x,y) -> x*x. */
054e9558 715(for copysigns (COPYSIGN_ALL)
a15183eb 716 (simplify
717 (mult (copysigns@2 @0 @1) @2)
718 (mult @0 @0)))
719
720/* ccos(-x) -> ccos(x). Similarly for ccosh. */
721(for ccoss (CCOS CCOSH)
722 (simplify
723 (ccoss (negate @0))
724 (ccoss @0)))
5702129f 725
d064d976 726/* cabs(-x) and cos(conj(x)) -> cabs(x). */
727(for ops (conj negate)
728 (for cabss (CABS)
729 (simplify
730 (cabss (ops @0))
731 (cabss @0))))
732
35c8219c 733/* Fold (a * (1 << b)) into (a << b) */
734(simplify
735 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
736 (if (! FLOAT_TYPE_P (type)
51a43c06 737 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
35c8219c 738 (lshift @0 @2)))
739
a6eef1ed 740/* Fold (1 << (C - x)) where C = precision(type) - 1
741 into ((1 << C) >> x). */
742(simplify
743 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
744 (if (INTEGRAL_TYPE_P (type)
12f26ffd 745 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
a6eef1ed 746 && single_use (@1))
747 (if (TYPE_UNSIGNED (type))
748 (rshift (lshift @0 @2) @3)
749 (with
750 { tree utype = unsigned_type_for (type); }
751 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
752
35c8219c 753/* Fold (C1/X)*C2 into (C1*C2)/X. */
754(simplify
b4007655 755 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
756 (if (flag_associative_math
757 && single_use (@3))
35c8219c 758 (with
759 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
760 (if (tem)
761 (rdiv { tem; } @1)))))
762
763/* Simplify ~X & X as zero. */
764(simplify
765 (bit_and:c (convert? @0) (convert? (bit_not @0)))
766 { build_zero_cst (type); })
767
6a0d39d6 768/* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
769(simplify
770 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
771 (if (TYPE_UNSIGNED (type))
772 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
773
4a9eb7eb 774(for bitop (bit_and bit_ior)
775 cmp (eq ne)
8ced4965 776 /* PR35691: Transform
777 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
778 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
4a9eb7eb 779 (simplify
780 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
781 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
8ced4965 782 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
783 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
784 (cmp (bit_ior @0 (convert @1)) @2)))
785 /* Transform:
786 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
787 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
788 (simplify
789 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
790 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
791 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
792 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
793 (cmp (bit_and @0 (convert @1)) @2))))
4a9eb7eb 794
7bbdeb32 795/* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
796(simplify
99618e62 797 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
7bbdeb32 798 (minus (bit_xor @0 @1) @1))
799(simplify
800 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
e3d0f65c 801 (if (~wi::to_wide (@2) == wi::to_wide (@1))
7bbdeb32 802 (minus (bit_xor @0 @1) @1)))
803
804/* Fold (A & B) - (A & ~B) into B - (A ^ B). */
805(simplify
a1a80007 806 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
7bbdeb32 807 (minus @1 (bit_xor @0 @1)))
808
20ce76cb 809/* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
810(for op (bit_ior bit_xor plus)
811 (simplify
812 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
813 (bit_xor @0 @1))
814 (simplify
815 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
e3d0f65c 816 (if (~wi::to_wide (@2) == wi::to_wide (@1))
20ce76cb 817 (bit_xor @0 @1))))
ab056ef4 818
819/* PR53979: Transform ((a ^ b) | a) -> (a | b) */
820(simplify
821 (bit_ior:c (bit_xor:c @0 @1) @0)
822 (bit_ior @0 @1))
823
270a468f 824/* (a & ~b) | (a ^ b) --> a ^ b */
825(simplify
826 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
827 @2)
828
829/* (a & ~b) ^ ~a --> ~(a & b) */
830(simplify
831 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
832 (bit_not (bit_and @0 @1)))
833
834/* (a | b) & ~(a ^ b) --> a & b */
835(simplify
836 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
837 (bit_and @0 @1))
838
839/* a | ~(a ^ b) --> a | ~b */
840(simplify
841 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
842 (bit_ior @0 (bit_not @1)))
843
844/* (a | b) | (a &^ b) --> a | b */
845(for op (bit_and bit_xor)
846 (simplify
847 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
848 @2))
849
850/* (a & b) | ~(a ^ b) --> ~(a ^ b) */
851(simplify
852 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
853 @2)
854
855/* ~(~a & b) --> a | ~b */
856(simplify
857 (bit_not (bit_and:cs (bit_not @0) @1))
858 (bit_ior @0 (bit_not @1)))
859
4c202e6d 860/* ~(~a | b) --> a & ~b */
861(simplify
862 (bit_not (bit_ior:cs (bit_not @0) @1))
863 (bit_and @0 (bit_not @1)))
864
a8719545 865/* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
866#if GIMPLE
867(simplify
868 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
869 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
e3d0f65c 870 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
a8719545 871 (bit_xor @0 @1)))
872#endif
7bbdeb32 873
dba2ece2 874/* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
875 ((A & N) + B) & M -> (A + B) & M
876 Similarly if (N & M) == 0,
877 ((A | N) + B) & M -> (A + B) & M
878 and for - instead of + (or unary - instead of +)
879 and/or ^ instead of |.
880 If B is constant and (B & M) == 0, fold into A & M. */
881(for op (plus minus)
882 (for bitop (bit_and bit_ior bit_xor)
883 (simplify
884 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
885 (with
886 { tree pmop[2];
887 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
888 @3, @4, @1, ERROR_MARK, NULL_TREE,
889 NULL_TREE, pmop); }
890 (if (utype)
891 (convert (bit_and (op (convert:utype { pmop[0]; })
892 (convert:utype { pmop[1]; }))
893 (convert:utype @2))))))
894 (simplify
895 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
896 (with
897 { tree pmop[2];
898 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
899 NULL_TREE, NULL_TREE, @1, bitop, @3,
900 @4, pmop); }
901 (if (utype)
902 (convert (bit_and (op (convert:utype { pmop[0]; })
903 (convert:utype { pmop[1]; }))
904 (convert:utype @2)))))))
905 (simplify
906 (bit_and (op:s @0 @1) INTEGER_CST@2)
907 (with
908 { tree pmop[2];
909 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
910 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
911 NULL_TREE, NULL_TREE, pmop); }
912 (if (utype)
913 (convert (bit_and (op (convert:utype { pmop[0]; })
914 (convert:utype { pmop[1]; }))
915 (convert:utype @2)))))))
916(for bitop (bit_and bit_ior bit_xor)
917 (simplify
918 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
919 (with
920 { tree pmop[2];
921 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
922 bitop, @2, @3, NULL_TREE, ERROR_MARK,
923 NULL_TREE, NULL_TREE, pmop); }
924 (if (utype)
925 (convert (bit_and (negate (convert:utype { pmop[0]; }))
926 (convert:utype @1)))))))
927
d792dcdf 928/* X % Y is smaller than Y. */
929(for cmp (lt ge)
930 (simplify
931 (cmp (trunc_mod @0 @1) @1)
932 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
933 { constant_boolean_node (cmp == LT_EXPR, type); })))
934(for cmp (gt le)
935 (simplify
936 (cmp @1 (trunc_mod @0 @1))
937 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
938 { constant_boolean_node (cmp == GT_EXPR, type); })))
939
55534d34 940/* x | ~0 -> ~0 */
941(simplify
e728d5ba 942 (bit_ior @0 integer_all_onesp@1)
943 @1)
944
945/* x | 0 -> x */
946(simplify
947 (bit_ior @0 integer_zerop)
948 @0)
55534d34 949
950/* x & 0 -> 0 */
951(simplify
e728d5ba 952 (bit_and @0 integer_zerop@1)
953 @1)
55534d34 954
f6f5b85f 955/* ~x | x -> -1 */
c8047e01 956/* ~x ^ x -> -1 */
957/* ~x + x -> -1 */
958(for op (bit_ior bit_xor plus)
959 (simplify
960 (op:c (convert? @0) (convert? (bit_not @0)))
961 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
f6f5b85f 962
55534d34 963/* x ^ x -> 0 */
964(simplify
965 (bit_xor @0 @0)
966 { build_zero_cst (type); })
967
58810b92 968/* Canonicalize X ^ ~0 to ~X. */
969(simplify
970 (bit_xor @0 integer_all_onesp@1)
971 (bit_not @0))
972
973/* x & ~0 -> x */
974(simplify
975 (bit_and @0 integer_all_onesp)
976 (non_lvalue @0))
977
978/* x & x -> x, x | x -> x */
979(for bitop (bit_and bit_ior)
980 (simplify
981 (bitop @0 @0)
982 (non_lvalue @0)))
983
b6dd53bf 984/* x & C -> x if we know that x & ~C == 0. */
985#if GIMPLE
986(simplify
987 (bit_and SSA_NAME@0 INTEGER_CST@1)
988 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
e3d0f65c 989 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
b6dd53bf 990 @0))
991#endif
992
c0cf1b24 993/* x + (x & 1) -> (x + 1) & ~1 */
994(simplify
2bc3151f 995 (plus:c @0 (bit_and:s @0 integer_onep@1))
996 (bit_and (plus @0 @1) (bit_not @1)))
c0cf1b24 997
998/* x & ~(x & y) -> x & ~y */
999/* x | ~(x | y) -> x | ~y */
1000(for bitop (bit_and bit_ior)
5af95dbe 1001 (simplify
2bc3151f 1002 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
1003 (bitop @0 (bit_not @1))))
5af95dbe 1004
9603b585 1005/* (~x & y) | ~(x | y) -> ~x */
1006(simplify
1007 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
1008 @2)
1009
1010/* (x | y) ^ (x | ~y) -> ~x */
1011(simplify
1012 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
1013 (bit_not @0))
1014
1015/* (x & y) | ~(x | y) -> ~(x ^ y) */
1016(simplify
1017 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1018 (bit_not (bit_xor @0 @1)))
1019
1020/* (~x | y) ^ (x ^ y) -> x | ~y */
1021(simplify
1022 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
1023 (bit_ior @0 (bit_not @1)))
1024
1025/* (x ^ y) | ~(x | y) -> ~(x & y) */
1026(simplify
1027 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1028 (bit_not (bit_and @0 @1)))
1029
5af95dbe 1030/* (x | y) & ~x -> y & ~x */
1031/* (x & y) | ~x -> y | ~x */
1032(for bitop (bit_and bit_ior)
1033 rbitop (bit_ior bit_and)
1034 (simplify
1035 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1036 (bitop @1 @2)))
c0cf1b24 1037
88fc652a 1038/* (x & y) ^ (x | y) -> x ^ y */
1039(simplify
2652cce5 1040 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1041 (bit_xor @0 @1))
88fc652a 1042
800f9fe9 1043/* (x ^ y) ^ (x | y) -> x & y */
1044(simplify
1045 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1046 (bit_and @0 @1))
1047
1048/* (x & y) + (x ^ y) -> x | y */
1049/* (x & y) | (x ^ y) -> x | y */
1050/* (x & y) ^ (x ^ y) -> x | y */
1051(for op (plus bit_ior bit_xor)
1052 (simplify
1053 (op:c (bit_and @0 @1) (bit_xor @0 @1))
1054 (bit_ior @0 @1)))
1055
1056/* (x & y) + (x | y) -> x + y */
1057(simplify
1058 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1059 (plus @0 @1))
1060
88323eef 1061/* (x + y) - (x | y) -> x & y */
1062(simplify
1063 (minus (plus @0 @1) (bit_ior @0 @1))
1064 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1065 && !TYPE_SATURATING (type))
1066 (bit_and @0 @1)))
1067
1068/* (x + y) - (x & y) -> x | y */
1069(simplify
1070 (minus (plus @0 @1) (bit_and @0 @1))
1071 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1072 && !TYPE_SATURATING (type))
1073 (bit_ior @0 @1)))
1074
800f9fe9 1075/* (x | y) - (x ^ y) -> x & y */
1076(simplify
1077 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1078 (bit_and @0 @1))
1079
1080/* (x | y) - (x & y) -> x ^ y */
1081(simplify
1082 (minus (bit_ior @0 @1) (bit_and @0 @1))
1083 (bit_xor @0 @1))
1084
001eae4f 1085/* (x | y) & ~(x & y) -> x ^ y */
1086(simplify
1087 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1088 (bit_xor @0 @1))
1089
1090/* (x | y) & (~x ^ y) -> x & y */
1091(simplify
1092 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1093 (bit_and @0 @1))
1094
4c202e6d 1095/* (~x | y) & (x | ~y) -> ~(x ^ y) */
1096(simplify
1097 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1098 (bit_not (bit_xor @0 @1)))
1099
1100/* (~x | y) ^ (x | ~y) -> x ^ y */
1101(simplify
1102 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1103 (bit_xor @0 @1))
1104
168a6cd2 1105/* ~x & ~y -> ~(x | y)
1106 ~x | ~y -> ~(x & y) */
1107(for op (bit_and bit_ior)
1108 rop (bit_ior bit_and)
1109 (simplify
1110 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
c0205bab 1111 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1112 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
168a6cd2 1113 (bit_not (rop (convert @0) (convert @1))))))
1114
a76fc0fd 1115/* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
168a6cd2 1116 with a constant, and the two constants have no bits in common,
1117 we should treat this as a BIT_IOR_EXPR since this may produce more
1118 simplifications. */
a76fc0fd 1119(for op (bit_xor plus)
1120 (simplify
1121 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1122 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1123 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1124 && tree_nop_conversion_p (type, TREE_TYPE (@2))
e3d0f65c 1125 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
a76fc0fd 1126 (bit_ior (convert @4) (convert @5)))))
168a6cd2 1127
1128/* (X | Y) ^ X -> Y & ~ X*/
1129(simplify
c76c65ae 1130 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
168a6cd2 1131 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1132 (convert (bit_and @1 (bit_not @0)))))
1133
1134/* Convert ~X ^ ~Y to X ^ Y. */
1135(simplify
1136 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
c0205bab 1137 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1138 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
168a6cd2 1139 (bit_xor (convert @0) (convert @1))))
1140
1141/* Convert ~X ^ C to X ^ ~C. */
1142(simplify
1143 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
535b528e 1144 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1145 (bit_xor (convert @0) (bit_not @1))))
168a6cd2 1146
f9153689 1147/* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1148(for opo (bit_and bit_xor)
1149 opi (bit_xor bit_and)
1150 (simplify
d5e19fa1 1151 (opo:c (opi:cs @0 @1) @1)
f9153689 1152 (bit_and (bit_not @0) @1)))
486bdb6a 1153
a76fc0fd 1154/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1155 operands are another bit-wise operation with a common input. If so,
1156 distribute the bit operations to save an operation and possibly two if
1157 constants are involved. For example, convert
1158 (A | B) & (A | C) into A | (B & C)
1159 Further simplification will occur if B and C are constants. */
846521ce 1160(for op (bit_and bit_ior bit_xor)
1161 rop (bit_ior bit_and bit_and)
a76fc0fd 1162 (simplify
c76c65ae 1163 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
846521ce 1164 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1165 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
a76fc0fd 1166 (rop (convert @0) (op (convert @1) (convert @2))))))
1167
f9153689 1168/* Some simple reassociation for bit operations, also handled in reassoc. */
1169/* (X & Y) & Y -> X & Y
1170 (X | Y) | Y -> X | Y */
1171(for op (bit_and bit_ior)
1172 (simplify
c76c65ae 1173 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
f9153689 1174 @2))
1175/* (X ^ Y) ^ Y -> X */
1176(simplify
c76c65ae 1177 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
c0205bab 1178 (convert @0))
f9153689 1179/* (X & Y) & (X & Z) -> (X & Y) & Z
1180 (X | Y) | (X | Z) -> (X | Y) | Z */
1181(for op (bit_and bit_ior)
1182 (simplify
460001de 1183 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
f9153689 1184 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1185 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1186 (if (single_use (@5) && single_use (@6))
1187 (op @3 (convert @2))
1188 (if (single_use (@3) && single_use (@4))
1189 (op (convert @1) @5))))))
1190/* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1191(simplify
1192 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1193 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1194 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
92e3ffbf 1195 (bit_xor (convert @1) (convert @2))))
168a6cd2 1196
b3d1b253 1197/* Convert abs (abs (X)) into abs (X).
1198 also absu (absu (X)) into absu (X). */
98b69bcc 1199(simplify
1200 (abs (abs@1 @0))
1201 @1)
b3d1b253 1202
1203(simplify
1204 (absu (convert@2 (absu@1 @0)))
1205 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1206 @1))
1207
1208/* Convert abs[u] (-X) -> abs[u] (X). */
2ad7e37a 1209(simplify
1210 (abs (negate @0))
1211 (abs @0))
b3d1b253 1212
1213(simplify
1214 (absu (negate @0))
1215 (absu @0))
1216
1217/* Convert abs[u] (X) where X is nonnegative -> (X). */
2ad7e37a 1218(simplify
1219 (abs tree_expr_nonnegative_p@0)
1220 @0)
1221
b3d1b253 1222(simplify
1223 (absu tree_expr_nonnegative_p@0)
1224 (convert @0))
1225
004b4ca3 1226/* A few cases of fold-const.c negate_expr_p predicate. */
1227(match negate_expr_p
1228 INTEGER_CST
98b69bcc 1229 (if ((INTEGRAL_TYPE_P (type)
da78c088 1230 && TYPE_UNSIGNED (type))
98b69bcc 1231 || (!TYPE_OVERFLOW_SANITIZED (type)
004b4ca3 1232 && may_negate_without_overflow_p (t)))))
1233(match negate_expr_p
1234 FIXED_CST)
1235(match negate_expr_p
1236 (negate @0)
1237 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1238(match negate_expr_p
1239 REAL_CST
1240 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1241/* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1242 ways. */
1243(match negate_expr_p
1244 VECTOR_CST
1245 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
c3aa270e 1246(match negate_expr_p
1247 (minus @0 @1)
1248 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1249 || (FLOAT_TYPE_P (type)
1250 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1251 && !HONOR_SIGNED_ZEROS (type)))))
35c8219c 1252
1253/* (-A) * (-B) -> A * B */
1254(simplify
1255 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1256 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1257 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1258 (mult (convert @0) (convert (negate @1)))))
9603b585 1259
004b4ca3 1260/* -(A + B) -> (-B) - A. */
98b69bcc 1261(simplify
004b4ca3 1262 (negate (plus:c @0 negate_expr_p@1))
1263 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1264 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1265 (minus (negate @1) @0)))
1266
c3aa270e 1267/* -(A - B) -> B - A. */
1268(simplify
1269 (negate (minus @0 @1))
1270 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1271 || (FLOAT_TYPE_P (type)
1272 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1273 && !HONOR_SIGNED_ZEROS (type)))
1274 (minus @1 @0)))
57e83b58 1275(simplify
1276 (negate (pointer_diff @0 @1))
1277 (if (TYPE_OVERFLOW_UNDEFINED (type))
1278 (pointer_diff @1 @0)))
c3aa270e 1279
004b4ca3 1280/* A - B -> A + (-B) if B is easily negatable. */
98b69bcc 1281(simplify
004b4ca3 1282 (minus @0 negate_expr_p@1)
b1eac901 1283 (if (!FIXED_POINT_TYPE_P (type))
1284 (plus @0 (negate @1))))
6d58fd21 1285
d0eb9b3d 1286/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1287 when profitable.
1288 For bitwise binary operations apply operand conversions to the
1289 binary operation result instead of to the operands. This allows
1290 to combine successive conversions and bitwise binary operations.
1291 We combine the above two cases by using a conditional convert. */
1292(for bitop (bit_and bit_ior bit_xor)
1293 (simplify
1294 (bitop (convert @0) (convert? @1))
1295 (if (((TREE_CODE (@1) == INTEGER_CST
1296 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
a6e46537 1297 && int_fits_type_p (@1, TREE_TYPE (@0)))
b1306f12 1298 || types_match (@0, @1))
a6e46537 1299 /* ??? This transform conflicts with fold-const.c doing
1300 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1301 constants (if x has signed type, the sign bit cannot be set
1302 in c). This folds extension into the BIT_AND_EXPR.
1303 Restrict it to GIMPLE to avoid endless recursions. */
1304 && (bitop != BIT_AND_EXPR || GIMPLE)
d0eb9b3d 1305 && (/* That's a good idea if the conversion widens the operand, thus
1306 after hoisting the conversion the operation will be narrower. */
1307 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1308 /* It's also a good idea if the conversion is to a non-integer
1309 mode. */
1310 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1311 /* Or if the precision of TO is not the same as the precision
1312 of its mode. */
654ba22c 1313 || !type_has_mode_precision_p (type)))
d0eb9b3d 1314 (convert (bitop @0 (convert @1))))))
1315
98b69bcc 1316(for bitop (bit_and bit_ior)
1317 rbitop (bit_ior bit_and)
1318 /* (x | y) & x -> x */
1319 /* (x & y) | x -> x */
1320 (simplify
1321 (bitop:c (rbitop:c @0 @1) @0)
1322 @0)
1323 /* (~x | y) & x -> x & y */
1324 /* (~x & y) | x -> x | y */
1325 (simplify
1326 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1327 (bitop @0 @1)))
1328
d0eb9b3d 1329/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1330(simplify
1331 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1332 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1333
1334/* Combine successive equal operations with constants. */
1335(for bitop (bit_and bit_ior bit_xor)
1336 (simplify
1337 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
6a833a2e 1338 (if (!CONSTANT_CLASS_P (@0))
1339 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1340 folded to a constant. */
1341 (bitop @0 (bitop @1 @2))
1342 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1343 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1344 the values involved are such that the operation can't be decided at
1345 compile time. Try folding one of @0 or @1 with @2 to see whether
1346 that combination can be decided at compile time.
1347
1348 Keep the existing form if both folds fail, to avoid endless
1349 oscillation. */
1350 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1351 (if (cst1)
1352 (bitop @1 { cst1; })
1353 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1354 (if (cst2)
1355 (bitop @0 { cst2; }))))))))
d0eb9b3d 1356
1357/* Try simple folding for X op !X, and X op X with the help
1358 of the truth_valued_p and logical_inverted_value predicates. */
1359(match truth_valued_p
1360 @0
1361 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
9ec260f0 1362(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
d0eb9b3d 1363 (match truth_valued_p
1364 (op @0 @1)))
1365(match truth_valued_p
1366 (truth_not @0))
1367
35c8219c 1368(match (logical_inverted_value @0)
1369 (truth_not @0))
d0eb9b3d 1370(match (logical_inverted_value @0)
1371 (bit_not truth_valued_p@0))
1372(match (logical_inverted_value @0)
ccb14741 1373 (eq @0 integer_zerop))
d0eb9b3d 1374(match (logical_inverted_value @0)
ccb14741 1375 (ne truth_valued_p@0 integer_truep))
d0eb9b3d 1376(match (logical_inverted_value @0)
ccb14741 1377 (bit_xor truth_valued_p@0 integer_truep))
d0eb9b3d 1378
1379/* X & !X -> 0. */
1380(simplify
1381 (bit_and:c @0 (logical_inverted_value @0))
1382 { build_zero_cst (type); })
1383/* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1384(for op (bit_ior bit_xor)
1385 (simplify
1386 (op:c truth_valued_p@0 (logical_inverted_value @0))
9ec260f0 1387 { constant_boolean_node (true, type); }))
373bcaaf 1388/* X ==/!= !X is false/true. */
1389(for op (eq ne)
1390 (simplify
1391 (op:c truth_valued_p@0 (logical_inverted_value @0))
1392 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
d0eb9b3d 1393
d0eb9b3d 1394/* ~~x -> x */
1395(simplify
1396 (bit_not (bit_not @0))
1397 @0)
1398
98b69bcc 1399/* Convert ~ (-A) to A - 1. */
1400(simplify
1401 (bit_not (convert? (negate @0)))
c0205bab 1402 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1403 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
c8047e01 1404 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
98b69bcc 1405
c3aa270e 1406/* Convert - (~A) to A + 1. */
1407(simplify
1408 (negate (nop_convert (bit_not @0)))
1409 (plus (view_convert @0) { build_each_one_cst (type); }))
1410
98b69bcc 1411/* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1412(simplify
c8047e01 1413 (bit_not (convert? (minus @0 integer_each_onep)))
c0205bab 1414 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1415 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
98b69bcc 1416 (convert (negate @0))))
1417(simplify
1418 (bit_not (convert? (plus @0 integer_all_onesp)))
c0205bab 1419 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1420 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
98b69bcc 1421 (convert (negate @0))))
1422
1423/* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1424(simplify
1425 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1426 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1427 (convert (bit_xor @0 (bit_not @1)))))
1428(simplify
1429 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1430 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1431 (convert (bit_xor @0 @1))))
1432
270a468f 1433/* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1434(simplify
1435 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1436 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1437 (bit_not (bit_xor (view_convert @0) @1))))
1438
277f7164 1439/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1440(simplify
2bc3151f 1441 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1442 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
277f7164 1443
bd9846d0 1444/* Fold A - (A & B) into ~B & A. */
1445(simplify
c76c65ae 1446 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
bd9846d0 1447 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1448 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1449 (convert (bit_and (bit_not @1) @0))))
d0eb9b3d 1450
0aa23bd4 1451/* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1452(for cmp (gt lt ge le)
1453(simplify
1454 (mult (convert (cmp @0 @1)) @2)
1455 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1456
70229d3b 1457/* For integral types with undefined overflow and C != 0 fold
1458 x * C EQ/NE y * C into x EQ/NE y. */
1459(for cmp (eq ne)
1460 (simplify
1461 (cmp (mult:c @0 @1) (mult:c @2 @1))
1462 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1463 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1464 && tree_expr_nonzero_p (@1))
1465 (cmp @0 @2))))
1466
20ce76cb 1467/* For integral types with wrapping overflow and C odd fold
1468 x * C EQ/NE y * C into x EQ/NE y. */
1469(for cmp (eq ne)
1470 (simplify
1471 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1472 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1473 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1474 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1475 (cmp @0 @2))))
1476
70229d3b 1477/* For integral types with undefined overflow and C != 0 fold
1478 x * C RELOP y * C into:
4de74241 1479
70229d3b 1480 x RELOP y for nonnegative C
1481 y RELOP x for negative C */
1482(for cmp (lt gt le ge)
1483 (simplify
1484 (cmp (mult:c @0 @1) (mult:c @2 @1))
1485 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1486 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1487 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1488 (cmp @0 @2)
1489 (if (TREE_CODE (@1) == INTEGER_CST
e3d0f65c 1490 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
70229d3b 1491 (cmp @2 @0))))))
4de74241 1492
205b32be 1493/* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1494(for cmp (le gt)
1495 icmp (gt le)
1496 (simplify
1497 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1498 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1499 && TYPE_UNSIGNED (TREE_TYPE (@0))
1500 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
e3d0f65c 1501 && (wi::to_wide (@2)
1502 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
205b32be 1503 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1504 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1505
c487041b 1506/* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1507(for cmp (simple_comparison)
1508 (simplify
c434f6f1 1509 (cmp (convert?@3 (exact_div @0 INTEGER_CST@2)) (convert? (exact_div @1 @2)))
1510 (if (element_precision (@3) >= element_precision (@0)
1511 && types_match (@0, @1))
952ba7dd 1512 (if (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
c434f6f1 1513 (if (!TYPE_UNSIGNED (TREE_TYPE (@3)))
1514 (cmp @1 @0)
1515 (if (tree_expr_nonzero_p (@0) && tree_expr_nonzero_p (@1))
1516 (with
1517 {
1518 tree utype = unsigned_type_for (TREE_TYPE (@0));
1519 }
1520 (cmp (convert:utype @1) (convert:utype @0)))))
1521 (if (wi::gt_p (wi::to_wide (@2), 1, TYPE_SIGN (TREE_TYPE (@2))))
1522 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@3)))
1523 (cmp @0 @1)
1524 (with
1525 {
1526 tree utype = unsigned_type_for (TREE_TYPE (@0));
1527 }
1528 (cmp (convert:utype @0) (convert:utype @1)))))))))
c487041b 1529
14c7029b 1530/* X / C1 op C2 into a simple range test. */
1531(for cmp (simple_comparison)
1532 (simplify
1533 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1534 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1535 && integer_nonzerop (@1)
1536 && !TREE_OVERFLOW (@1)
1537 && !TREE_OVERFLOW (@2))
1538 (with { tree lo, hi; bool neg_overflow;
1539 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1540 &neg_overflow); }
1541 (switch
1542 (if (code == LT_EXPR || code == GE_EXPR)
1543 (if (TREE_OVERFLOW (lo))
1544 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1545 (if (code == LT_EXPR)
1546 (lt @0 { lo; })
1547 (ge @0 { lo; }))))
1548 (if (code == LE_EXPR || code == GT_EXPR)
1549 (if (TREE_OVERFLOW (hi))
1550 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1551 (if (code == LE_EXPR)
1552 (le @0 { hi; })
1553 (gt @0 { hi; }))))
1554 (if (!lo && !hi)
1555 { build_int_cst (type, code == NE_EXPR); })
1556 (if (code == EQ_EXPR && !hi)
1557 (ge @0 { lo; }))
1558 (if (code == EQ_EXPR && !lo)
1559 (le @0 { hi; }))
1560 (if (code == NE_EXPR && !hi)
1561 (lt @0 { lo; }))
1562 (if (code == NE_EXPR && !lo)
1563 (gt @0 { hi; }))
1564 (if (GENERIC)
1565 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1566 lo, hi); })
1567 (with
1568 {
1569 tree etype = range_check_type (TREE_TYPE (@0));
1570 if (etype)
1571 {
1572 if (! TYPE_UNSIGNED (etype))
1573 etype = unsigned_type_for (etype);
1574 hi = fold_convert (etype, hi);
1575 lo = fold_convert (etype, lo);
1576 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1577 }
1578 }
1579 (if (etype && hi && !TREE_OVERFLOW (hi))
1580 (if (code == EQ_EXPR)
1581 (le (minus (convert:etype @0) { lo; }) { hi; })
1582 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1583
9222792c 1584/* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1585(for op (lt le ge gt)
1586 (simplify
1587 (op (plus:c @0 @2) (plus:c @1 @2))
1588 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1589 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1590 (op @0 @1))))
1591/* For equality and subtraction, this is also true with wrapping overflow. */
1592(for op (eq ne minus)
1593 (simplify
1594 (op (plus:c @0 @2) (plus:c @1 @2))
1595 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1596 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1597 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1598 (op @0 @1))))
1599
1600/* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1601(for op (lt le ge gt)
1602 (simplify
1603 (op (minus @0 @2) (minus @1 @2))
1604 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1605 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1606 (op @0 @1))))
1607/* For equality and subtraction, this is also true with wrapping overflow. */
1608(for op (eq ne minus)
1609 (simplify
1610 (op (minus @0 @2) (minus @1 @2))
1611 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1612 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1613 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1614 (op @0 @1))))
57e83b58 1615/* And for pointers... */
1616(for op (simple_comparison)
1617 (simplify
1618 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1619 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1620 (op @0 @1))))
1621(simplify
1622 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1623 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1624 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1625 (pointer_diff @0 @1)))
9222792c 1626
1627/* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1628(for op (lt le ge gt)
1629 (simplify
1630 (op (minus @2 @0) (minus @2 @1))
1631 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1632 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1633 (op @1 @0))))
1634/* For equality and subtraction, this is also true with wrapping overflow. */
1635(for op (eq ne minus)
1636 (simplify
1637 (op (minus @2 @0) (minus @2 @1))
1638 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1639 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1640 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1641 (op @1 @0))))
57e83b58 1642/* And for pointers... */
1643(for op (simple_comparison)
1644 (simplify
1645 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1646 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1647 (op @1 @0))))
1648(simplify
1649 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1650 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1651 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1652 (pointer_diff @1 @0)))
9222792c 1653
3e39e829 1654/* X + Y < Y is the same as X < 0 when there is no overflow. */
1655(for op (lt le gt ge)
1656 (simplify
1657 (op:c (plus:c@2 @0 @1) @1)
1658 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1659 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3ff1e878 1660 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
3e39e829 1661 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1662 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1663/* For equality, this is also true with wrapping overflow. */
1664(for op (eq ne)
1665 (simplify
1666 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1667 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1668 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1669 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1670 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1671 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1672 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1673 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1674 (simplify
1675 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1676 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1677 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1678 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1679 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1680
1681/* X - Y < X is the same as Y > 0 when there is no overflow.
1682 For equality, this is also true with wrapping overflow. */
1683(for op (simple_comparison)
1684 (simplify
1685 (op:c @0 (minus@2 @0 @1))
1686 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1687 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1688 || ((op == EQ_EXPR || op == NE_EXPR)
1689 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1690 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1691 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1692
ed14c914 1693/* Transform:
13585794 1694 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1695 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
ed14c914 1696(for cmp (eq ne)
1697 ocmp (lt ge)
1698 (simplify
1699 (cmp (trunc_div @0 @1) integer_zerop)
1700 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
13585794 1701 /* Complex ==/!= is allowed, but not </>=. */
1702 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
ed14c914 1703 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1704 (ocmp @0 @1))))
1705
7eb46067 1706/* X == C - X can never be true if C is odd. */
1707(for cmp (eq ne)
1708 (simplify
1709 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1710 (if (TREE_INT_CST_LOW (@1) & 1)
1711 { constant_boolean_node (cmp == NE_EXPR, type); })))
1712
ef820217 1713/* Arguments on which one can call get_nonzero_bits to get the bits
1714 possibly set. */
1715(match with_possible_nonzero_bits
1716 INTEGER_CST@0)
1717(match with_possible_nonzero_bits
1718 SSA_NAME@0
1719 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1720/* Slightly extended version, do not make it recursive to keep it cheap. */
1721(match (with_possible_nonzero_bits2 @0)
1722 with_possible_nonzero_bits@0)
1723(match (with_possible_nonzero_bits2 @0)
1724 (bit_and:c with_possible_nonzero_bits@0 @2))
1725
1726/* Same for bits that are known to be set, but we do not have
1727 an equivalent to get_nonzero_bits yet. */
1728(match (with_certain_nonzero_bits2 @0)
1729 INTEGER_CST@0)
1730(match (with_certain_nonzero_bits2 @0)
1731 (bit_ior @1 INTEGER_CST@0))
1732
1733/* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1734(for cmp (eq ne)
1735 (simplify
1736 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
e3d0f65c 1737 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
ef820217 1738 { constant_boolean_node (cmp == NE_EXPR, type); })))
1739
4de74241 1740/* ((X inner_op C0) outer_op C1)
1741 With X being a tree where value_range has reasoned certain bits to always be
1742 zero throughout its computed value range,
1743 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1744 where zero_mask has 1's for all bits that are sure to be 0 in
1745 and 0's otherwise.
1746 if (inner_op == '^') C0 &= ~C1;
1747 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1748 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1749*/
1750(for inner_op (bit_ior bit_xor)
1751 outer_op (bit_xor bit_ior)
1752(simplify
1753 (outer_op
1754 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1755 (with
1756 {
1757 bool fail = false;
1758 wide_int zero_mask_not;
1759 wide_int C0;
1760 wide_int cst_emit;
1761
1762 if (TREE_CODE (@2) == SSA_NAME)
1763 zero_mask_not = get_nonzero_bits (@2);
1764 else
1765 fail = true;
1766
1767 if (inner_op == BIT_XOR_EXPR)
1768 {
e3d0f65c 1769 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1770 cst_emit = C0 | wi::to_wide (@1);
4de74241 1771 }
1772 else
1773 {
e3d0f65c 1774 C0 = wi::to_wide (@0);
1775 cst_emit = C0 ^ wi::to_wide (@1);
4de74241 1776 }
1777 }
e3d0f65c 1778 (if (!fail && (C0 & zero_mask_not) == 0)
4de74241 1779 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
e3d0f65c 1780 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
4de74241 1781 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1782
770ae4bb 1783/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1784(simplify
2bc3151f 1785 (pointer_plus (pointer_plus:s @0 @1) @3)
1786 (pointer_plus @0 (plus @1 @3)))
770ae4bb 1787
1788/* Pattern match
1789 tem1 = (long) ptr1;
1790 tem2 = (long) ptr2;
1791 tem3 = tem2 - tem1;
1792 tem4 = (unsigned long) tem3;
1793 tem5 = ptr1 + tem4;
1794 and produce
1795 tem5 = ptr2; */
1796(simplify
1797 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1798 /* Conditionally look through a sign-changing conversion. */
1799 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1800 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1801 || (GENERIC && type == TREE_TYPE (@1))))
1802 @1))
57e83b58 1803(simplify
1804 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1805 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1806 (convert @1)))
770ae4bb 1807
1808/* Pattern match
1809 tem = (sizetype) ptr;
1810 tem = tem & algn;
1811 tem = -tem;
1812 ... = ptr p+ tem;
1813 and produce the simpler and easier to analyze with respect to alignment
1814 ... = ptr & ~algn; */
1815(simplify
1816 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
e3d0f65c 1817 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
770ae4bb 1818 (bit_and @0 { algn; })))
1819
6b440285 1820/* Try folding difference of addresses. */
1821(simplify
1822 (minus (convert ADDR_EXPR@0) (convert @1))
1823 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
81bc0f0f 1824 (with { poly_int64 diff; }
6b440285 1825 (if (ptr_difference_const (@0, @1, &diff))
1826 { build_int_cst_type (type, diff); }))))
1827(simplify
1828 (minus (convert @0) (convert ADDR_EXPR@1))
1829 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
81bc0f0f 1830 (with { poly_int64 diff; }
6b440285 1831 (if (ptr_difference_const (@0, @1, &diff))
1832 { build_int_cst_type (type, diff); }))))
57e83b58 1833(simplify
622c830b 1834 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
57e83b58 1835 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1836 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
81bc0f0f 1837 (with { poly_int64 diff; }
57e83b58 1838 (if (ptr_difference_const (@0, @1, &diff))
1839 { build_int_cst_type (type, diff); }))))
1840(simplify
622c830b 1841 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
57e83b58 1842 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1843 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
81bc0f0f 1844 (with { poly_int64 diff; }
57e83b58 1845 (if (ptr_difference_const (@0, @1, &diff))
1846 { build_int_cst_type (type, diff); }))))
6b440285 1847
a2f9b7c9 1848/* If arg0 is derived from the address of an object or function, we may
1849 be able to fold this expression using the object or function's
1850 alignment. */
1851(simplify
1852 (bit_and (convert? @0) INTEGER_CST@1)
1853 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1854 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1855 (with
1856 {
1857 unsigned int align;
1858 unsigned HOST_WIDE_INT bitpos;
1859 get_pointer_alignment_1 (@0, &align, &bitpos);
1860 }
e3d0f65c 1861 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1862 { wide_int_to_tree (type, (wi::to_wide (@1)
1863 & (bitpos / BITS_PER_UNIT))); }))))
6b440285 1864
770ae4bb 1865
662274ee 1866/* We can't reassociate at all for saturating types. */
1867(if (!TYPE_SATURATING (type))
1868
1869 /* Contract negates. */
1870 /* A + (-B) -> A - B */
1871 (simplify
2bbfc137 1872 (plus:c @0 (convert? (negate @1)))
1873 /* Apply STRIP_NOPS on the negate. */
1874 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
a8875ee0 1875 && !TYPE_OVERFLOW_SANITIZED (type))
2bbfc137 1876 (with
1877 {
1878 tree t1 = type;
1879 if (INTEGRAL_TYPE_P (type)
1880 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1881 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1882 }
1883 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
662274ee 1884 /* A - (-B) -> A + B */
1885 (simplify
2bbfc137 1886 (minus @0 (convert? (negate @1)))
1887 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
a8875ee0 1888 && !TYPE_OVERFLOW_SANITIZED (type))
2bbfc137 1889 (with
1890 {
1891 tree t1 = type;
1892 if (INTEGRAL_TYPE_P (type)
1893 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1894 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1895 }
1896 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
48eb107e 1897 /* -(T)(-A) -> (T)A
1898 Sign-extension is ok except for INT_MIN, which thankfully cannot
1899 happen without overflow. */
1900 (simplify
1901 (negate (convert (negate @1)))
1902 (if (INTEGRAL_TYPE_P (type)
1903 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1904 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1905 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1906 && !TYPE_OVERFLOW_SANITIZED (type)
1907 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
c229fef3 1908 (convert @1)))
48eb107e 1909 (simplify
1910 (negate (convert negate_expr_p@1))
1911 (if (SCALAR_FLOAT_TYPE_P (type)
1912 && ((DECIMAL_FLOAT_TYPE_P (type)
1913 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1914 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1915 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1916 (convert (negate @1))))
1917 (simplify
1918 (negate (nop_convert (negate @1)))
1919 (if (!TYPE_OVERFLOW_SANITIZED (type)
1920 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1921 (view_convert @1)))
662274ee 1922
f215226b 1923 /* We can't reassociate floating-point unless -fassociative-math
1924 or fixed-point plus or minus because of saturation to +-Inf. */
1925 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1926 && !FIXED_POINT_TYPE_P (type))
662274ee 1927
1928 /* Match patterns that allow contracting a plus-minus pair
1929 irrespective of overflow issues. */
1930 /* (A +- B) - A -> +- B */
1931 /* (A +- B) -+ B -> A */
1932 /* A - (A +- B) -> -+ B */
1933 /* A +- (B -+ A) -> +- B */
1934 (simplify
1935 (minus (plus:c @0 @1) @0)
1936 @1)
1937 (simplify
1938 (minus (minus @0 @1) @0)
1939 (negate @1))
1940 (simplify
1941 (plus:c (minus @0 @1) @1)
1942 @0)
1943 (simplify
1944 (minus @0 (plus:c @0 @1))
1945 (negate @1))
1946 (simplify
1947 (minus @0 (minus @0 @1))
1948 @1)
bf1cce2e 1949 /* (A +- B) + (C - A) -> C +- B */
1950 /* (A + B) - (A - C) -> B + C */
1951 /* More cases are handled with comparisons. */
1952 (simplify
1953 (plus:c (plus:c @0 @1) (minus @2 @0))
1954 (plus @2 @1))
1955 (simplify
1956 (plus:c (minus @0 @1) (minus @2 @0))
1957 (minus @2 @1))
57e83b58 1958 (simplify
1959 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1960 (if (TYPE_OVERFLOW_UNDEFINED (type)
1961 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1962 (pointer_diff @2 @1)))
bf1cce2e 1963 (simplify
1964 (minus (plus:c @0 @1) (minus @0 @2))
1965 (plus @1 @2))
662274ee 1966
049318f9 1967 /* (A +- CST1) +- CST2 -> A + CST3
1968 Use view_convert because it is safe for vectors and equivalent for
1969 scalars. */
662274ee 1970 (for outer_op (plus minus)
1971 (for inner_op (plus minus)
049318f9 1972 neg_inner_op (minus plus)
662274ee 1973 (simplify
049318f9 1974 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1975 CONSTANT_CLASS_P@2)
1976 /* If one of the types wraps, use that one. */
1977 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
50e96fc3 1978 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1979 forever if something doesn't simplify into a constant. */
1980 (if (!CONSTANT_CLASS_P (@0))
1981 (if (outer_op == PLUS_EXPR)
1982 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1983 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
049318f9 1984 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1985 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1986 (if (outer_op == PLUS_EXPR)
1987 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1988 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1989 /* If the constant operation overflows we cannot do the transform
1990 directly as we would introduce undefined overflow, for example
1991 with (a - 1) + INT_MIN. */
1992 (if (types_match (type, @0))
1993 (with { tree cst = const_binop (outer_op == inner_op
1994 ? PLUS_EXPR : MINUS_EXPR,
1995 type, @1, @2); }
1996 (if (cst && !TREE_OVERFLOW (cst))
1997 (inner_op @0 { cst; } )
1998 /* X+INT_MAX+1 is X-INT_MIN. */
1999 (if (INTEGRAL_TYPE_P (type) && cst
e3d0f65c 2000 && wi::to_wide (cst) == wi::min_value (type))
2001 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
049318f9 2002 /* Last resort, use some unsigned type. */
2003 (with { tree utype = unsigned_type_for (type); }
ec676679 2004 (if (utype)
2005 (view_convert (inner_op
2006 (view_convert:utype @0)
2007 (view_convert:utype
2008 { drop_tree_overflow (cst); }))))))))))))))
662274ee 2009
e5c2af08 2010 /* (CST1 - A) +- CST2 -> CST3 - A */
662274ee 2011 (for outer_op (plus minus)
2012 (simplify
2013 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
0808dfce 2014 (with { tree cst = const_binop (outer_op, type, @1, @2); }
662274ee 2015 (if (cst && !TREE_OVERFLOW (cst))
2016 (minus { cst; } @0)))))
2017
e5c2af08 2018 /* CST1 - (CST2 - A) -> CST3 + A */
2019 (simplify
2020 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
2021 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
2022 (if (cst && !TREE_OVERFLOW (cst))
2023 (plus { cst; } @0))))
2024
662274ee 2025 /* ~A + A -> -1 */
2026 (simplify
2027 (plus:c (bit_not @0) @0)
2028 (if (!TYPE_OVERFLOW_TRAPS (type))
2029 { build_all_ones_cst (type); }))
2030
2031 /* ~A + 1 -> -A */
2032 (simplify
c0a7a7df 2033 (plus (convert? (bit_not @0)) integer_each_onep)
2034 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2035 (negate (convert @0))))
2036
2037 /* -A - 1 -> ~A */
2038 (simplify
2039 (minus (convert? (negate @0)) integer_each_onep)
2040 (if (!TYPE_OVERFLOW_TRAPS (type)
2041 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2042 (bit_not (convert @0))))
2043
2044 /* -1 - A -> ~A */
2045 (simplify
2046 (minus integer_all_onesp @0)
d792dcdf 2047 (bit_not @0))
662274ee 2048
2049 /* (T)(P + A) - (T)P -> (T) A */
bdcc09da 2050 (simplify
f3e5187b 2051 (minus (convert (plus:c @@0 @1))
2052 (convert? @0))
bdcc09da 2053 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2054 /* For integer types, if A has a smaller type
2055 than T the result depends on the possible
2056 overflow in P + A.
2057 E.g. T=size_t, A=(unsigned)429497295, P>0.
2058 However, if an overflow in P + A would cause
2059 undefined behavior, we can assume that there
2060 is no overflow. */
f3e5187b 2061 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2062 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
bdcc09da 2063 (convert @1)))
2064 (simplify
2065 (minus (convert (pointer_plus @@0 @1))
2066 (convert @0))
2067 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2068 /* For pointer types, if the conversion of A to the
2069 final type requires a sign- or zero-extension,
2070 then we have to punt - it is not defined which
2071 one is correct. */
2072 || (POINTER_TYPE_P (TREE_TYPE (@0))
2073 && TREE_CODE (@1) == INTEGER_CST
2074 && tree_int_cst_sign_bit (@1) == 0))
2075 (convert @1)))
57e83b58 2076 (simplify
2077 (pointer_diff (pointer_plus @@0 @1) @0)
2078 /* The second argument of pointer_plus must be interpreted as signed, and
2079 thus sign-extended if necessary. */
2080 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
992a51f2 2081 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2082 second arg is unsigned even when we need to consider it as signed,
2083 we don't want to diagnose overflow here. */
2084 (convert (view_convert:stype @1))))
844cece0 2085
2086 /* (T)P - (T)(P + A) -> -(T) A */
bdcc09da 2087 (simplify
f3e5187b 2088 (minus (convert? @0)
2089 (convert (plus:c @@0 @1)))
bdcc09da 2090 (if (INTEGRAL_TYPE_P (type)
2091 && TYPE_OVERFLOW_UNDEFINED (type)
2092 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2093 (with { tree utype = unsigned_type_for (type); }
2094 (convert (negate (convert:utype @1))))
844cece0 2095 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2096 /* For integer types, if A has a smaller type
2097 than T the result depends on the possible
2098 overflow in P + A.
2099 E.g. T=size_t, A=(unsigned)429497295, P>0.
2100 However, if an overflow in P + A would cause
2101 undefined behavior, we can assume that there
2102 is no overflow. */
f3e5187b 2103 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2104 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
bdcc09da 2105 (negate (convert @1)))))
2106 (simplify
2107 (minus (convert @0)
2108 (convert (pointer_plus @@0 @1)))
2109 (if (INTEGRAL_TYPE_P (type)
2110 && TYPE_OVERFLOW_UNDEFINED (type)
2111 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2112 (with { tree utype = unsigned_type_for (type); }
2113 (convert (negate (convert:utype @1))))
2114 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
844cece0 2115 /* For pointer types, if the conversion of A to the
2116 final type requires a sign- or zero-extension,
2117 then we have to punt - it is not defined which
2118 one is correct. */
2119 || (POINTER_TYPE_P (TREE_TYPE (@0))
2120 && TREE_CODE (@1) == INTEGER_CST
2121 && tree_int_cst_sign_bit (@1) == 0))
2122 (negate (convert @1)))))
57e83b58 2123 (simplify
2124 (pointer_diff @0 (pointer_plus @@0 @1))
2125 /* The second argument of pointer_plus must be interpreted as signed, and
2126 thus sign-extended if necessary. */
2127 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
992a51f2 2128 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2129 second arg is unsigned even when we need to consider it as signed,
2130 we don't want to diagnose overflow here. */
2131 (negate (convert (view_convert:stype @1)))))
844cece0 2132
2133 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
bdcc09da 2134 (simplify
f3e5187b 2135 (minus (convert (plus:c @@0 @1))
bdcc09da 2136 (convert (plus:c @0 @2)))
2137 (if (INTEGRAL_TYPE_P (type)
2138 && TYPE_OVERFLOW_UNDEFINED (type)
f3e5187b 2139 && element_precision (type) <= element_precision (TREE_TYPE (@1))
2140 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
bdcc09da 2141 (with { tree utype = unsigned_type_for (type); }
2142 (convert (minus (convert:utype @1) (convert:utype @2))))
f3e5187b 2143 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2144 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2145 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2146 /* For integer types, if A has a smaller type
2147 than T the result depends on the possible
2148 overflow in P + A.
2149 E.g. T=size_t, A=(unsigned)429497295, P>0.
2150 However, if an overflow in P + A would cause
2151 undefined behavior, we can assume that there
2152 is no overflow. */
2153 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2154 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2155 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2156 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
bdcc09da 2157 (minus (convert @1) (convert @2)))))
2158 (simplify
2159 (minus (convert (pointer_plus @@0 @1))
2160 (convert (pointer_plus @0 @2)))
2161 (if (INTEGRAL_TYPE_P (type)
2162 && TYPE_OVERFLOW_UNDEFINED (type)
2163 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2164 (with { tree utype = unsigned_type_for (type); }
2165 (convert (minus (convert:utype @1) (convert:utype @2))))
2166 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
844cece0 2167 /* For pointer types, if the conversion of A to the
2168 final type requires a sign- or zero-extension,
2169 then we have to punt - it is not defined which
2170 one is correct. */
2171 || (POINTER_TYPE_P (TREE_TYPE (@0))
2172 && TREE_CODE (@1) == INTEGER_CST
2173 && tree_int_cst_sign_bit (@1) == 0
2174 && TREE_CODE (@2) == INTEGER_CST
2175 && tree_int_cst_sign_bit (@2) == 0))
bdcc09da 2176 (minus (convert @1) (convert @2)))))
57e83b58 2177 (simplify
2178 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2179 /* The second argument of pointer_plus must be interpreted as signed, and
2180 thus sign-extended if necessary. */
2181 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
992a51f2 2182 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2183 second arg is unsigned even when we need to consider it as signed,
2184 we don't want to diagnose overflow here. */
2185 (minus (convert (view_convert:stype @1))
2186 (convert (view_convert:stype @2)))))))
662274ee 2187
6227228e 2188/* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2189 Modeled after fold_plusminus_mult_expr. */
2190(if (!TYPE_SATURATING (type)
2191 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2192 (for plusminus (plus minus)
2193 (simplify
60bd955f 2194 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2195 (if ((!ANY_INTEGRAL_TYPE_P (type)
6227228e 2196 || TYPE_OVERFLOW_WRAPS (type)
2197 || (INTEGRAL_TYPE_P (type)
2198 && tree_expr_nonzero_p (@0)
2199 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
60bd955f 2200 /* If @1 +- @2 is constant require a hard single-use on either
2201 original operand (but not on both). */
2202 && (single_use (@3) || single_use (@4)))
2203 (mult (plusminus @1 @2) @0)))
2204 /* We cannot generate constant 1 for fract. */
2205 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2206 (simplify
2207 (plusminus @0 (mult:c@3 @0 @2))
2208 (if ((!ANY_INTEGRAL_TYPE_P (type)
2209 || TYPE_OVERFLOW_WRAPS (type)
2210 || (INTEGRAL_TYPE_P (type)
2211 && tree_expr_nonzero_p (@0)
2212 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2213 && single_use (@3))
6227228e 2214 (mult (plusminus { build_one_cst (type); } @2) @0)))
2215 (simplify
60bd955f 2216 (plusminus (mult:c@3 @0 @2) @0)
2217 (if ((!ANY_INTEGRAL_TYPE_P (type)
2218 || TYPE_OVERFLOW_WRAPS (type)
2219 || (INTEGRAL_TYPE_P (type)
2220 && tree_expr_nonzero_p (@0)
2221 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2222 && single_use (@3))
6227228e 2223 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
662274ee 2224
129004d7 2225/* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
6a78ea5d 2226
054e9558 2227(for minmax (min max FMIN_ALL FMAX_ALL)
6a78ea5d 2228 (simplify
2229 (minmax @0 @0)
2230 @0))
b2edae6c 2231/* min(max(x,y),y) -> y. */
2232(simplify
2233 (min:c (max:c @0 @1) @1)
2234 @1)
2235/* max(min(x,y),y) -> y. */
2236(simplify
2237 (max:c (min:c @0 @1) @1)
2238 @1)
b0ab3ca0 2239/* max(a,-a) -> abs(a). */
2240(simplify
2241 (max:c @0 (negate @0))
2242 (if (TREE_CODE (type) != COMPLEX_TYPE
2243 && (! ANY_INTEGRAL_TYPE_P (type)
2244 || TYPE_OVERFLOW_UNDEFINED (type)))
2245 (abs @0)))
d82d27a3 2246/* min(a,-a) -> -abs(a). */
2247(simplify
2248 (min:c @0 (negate @0))
2249 (if (TREE_CODE (type) != COMPLEX_TYPE
2250 && (! ANY_INTEGRAL_TYPE_P (type)
2251 || TYPE_OVERFLOW_UNDEFINED (type)))
2252 (negate (abs @0))))
6a78ea5d 2253(simplify
2254 (min @0 @1)
523f3a9d 2255 (switch
2256 (if (INTEGRAL_TYPE_P (type)
2257 && TYPE_MIN_VALUE (type)
2258 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2259 @1)
2260 (if (INTEGRAL_TYPE_P (type)
2261 && TYPE_MAX_VALUE (type)
2262 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2263 @0)))
6a78ea5d 2264(simplify
2265 (max @0 @1)
523f3a9d 2266 (switch
2267 (if (INTEGRAL_TYPE_P (type)
2268 && TYPE_MAX_VALUE (type)
2269 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2270 @1)
2271 (if (INTEGRAL_TYPE_P (type)
2272 && TYPE_MIN_VALUE (type)
2273 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2274 @0)))
15eeb126 2275
5f645ad1 2276/* max (a, a + CST) -> a + CST where CST is positive. */
2277/* max (a, a + CST) -> a where CST is negative. */
2278(simplify
2279 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2280 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2281 (if (tree_int_cst_sgn (@1) > 0)
2282 @2
2283 @0)))
2284
2285/* min (a, a + CST) -> a where CST is positive. */
2286/* min (a, a + CST) -> a + CST where CST is negative. */
2287(simplify
2288 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2289 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2290 (if (tree_int_cst_sgn (@1) > 0)
2291 @0
2292 @2)))
2293
15eeb126 2294/* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2295 and the outer convert demotes the expression back to x's type. */
2296(for minmax (min max)
2297 (simplify
2298 (convert (minmax@0 (convert @1) INTEGER_CST@2))
a671e245 2299 (if (INTEGRAL_TYPE_P (type)
2300 && types_match (@1, type) && int_fits_type_p (@2, type)
15eeb126 2301 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2302 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2303 (minmax @1 (convert @2)))))
2304
054e9558 2305(for minmax (FMIN_ALL FMAX_ALL)
129004d7 2306 /* If either argument is NaN, return the other one. Avoid the
2307 transformation if we get (and honor) a signalling NaN. */
2308 (simplify
2309 (minmax:c @0 REAL_CST@1)
2310 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2311 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2312 @0)))
2313/* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2314 functions to return the numeric arg if the other one is NaN.
2315 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2316 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2317 worry about it either. */
2318(if (flag_finite_math_only)
2319 (simplify
054e9558 2320 (FMIN_ALL @0 @1)
129004d7 2321 (min @0 @1))
7d3df64a 2322 (simplify
054e9558 2323 (FMAX_ALL @0 @1)
129004d7 2324 (max @0 @1)))
f3ec0970 2325/* min (-A, -B) -> -max (A, B) */
054e9558 2326(for minmax (min max FMIN_ALL FMAX_ALL)
2327 maxmin (max min FMAX_ALL FMIN_ALL)
f3ec0970 2328 (simplify
2329 (minmax (negate:s@2 @0) (negate:s@3 @1))
2330 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2331 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2332 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2333 (negate (maxmin @0 @1)))))
2334/* MIN (~X, ~Y) -> ~MAX (X, Y)
2335 MAX (~X, ~Y) -> ~MIN (X, Y) */
2336(for minmax (min max)
2337 maxmin (max min)
2338 (simplify
2339 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2340 (bit_not (maxmin @0 @1))))
6a78ea5d 2341
81787808 2342/* MIN (X, Y) == X -> X <= Y */
2343(for minmax (min min max max)
2344 cmp (eq ne eq ne )
2345 out (le gt ge lt )
2346 (simplify
2347 (cmp:c (minmax:c @0 @1) @0)
2348 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2349 (out @0 @1))))
2350/* MIN (X, 5) == 0 -> X == 0
2351 MIN (X, 5) == 7 -> false */
2352(for cmp (eq ne)
2353 (simplify
2354 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
e3d0f65c 2355 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2356 TYPE_SIGN (TREE_TYPE (@0))))
81787808 2357 { constant_boolean_node (cmp == NE_EXPR, type); }
e3d0f65c 2358 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2359 TYPE_SIGN (TREE_TYPE (@0))))
81787808 2360 (cmp @0 @2)))))
2361(for cmp (eq ne)
2362 (simplify
2363 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
e3d0f65c 2364 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2365 TYPE_SIGN (TREE_TYPE (@0))))
81787808 2366 { constant_boolean_node (cmp == NE_EXPR, type); }
e3d0f65c 2367 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2368 TYPE_SIGN (TREE_TYPE (@0))))
81787808 2369 (cmp @0 @2)))))
2370/* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2371(for minmax (min min max max min min max max )
2372 cmp (lt le gt ge gt ge lt le )
2373 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2374 (simplify
2375 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2376 (comb (cmp @0 @2) (cmp @1 @2))))
2377
6a78ea5d 2378/* Simplifications of shift and rotates. */
2379
2380(for rotate (lrotate rrotate)
2381 (simplify
2382 (rotate integer_all_onesp@0 @1)
2383 @0))
2384
2385/* Optimize -1 >> x for arithmetic right shifts. */
2386(simplify
2387 (rshift integer_all_onesp@0 @1)
2388 (if (!TYPE_UNSIGNED (type)
2389 && tree_expr_nonnegative_p (@1))
2390 @0))
2391
f0e28f23 2392/* Optimize (x >> c) << c into x & (-1<<c). */
2393(simplify
2394 (lshift (rshift @0 INTEGER_CST@1) @1)
e3d0f65c 2395 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
f0e28f23 2396 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2397
2398/* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2399 types. */
2400(simplify
2401 (rshift (lshift @0 INTEGER_CST@1) @1)
2402 (if (TYPE_UNSIGNED (type)
e3d0f65c 2403 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
f0e28f23 2404 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2405
6a78ea5d 2406(for shiftrotate (lrotate rrotate lshift rshift)
2407 (simplify
2408 (shiftrotate @0 integer_zerop)
2409 (non_lvalue @0))
2410 (simplify
2411 (shiftrotate integer_zerop@0 @1)
2412 @0)
2413 /* Prefer vector1 << scalar to vector1 << vector2
2414 if vector2 is uniform. */
2415 (for vec (VECTOR_CST CONSTRUCTOR)
2416 (simplify
2417 (shiftrotate @0 vec@1)
2418 (with { tree tem = uniform_vector_p (@1); }
2419 (if (tem)
2420 (shiftrotate @0 { tem; }))))))
2421
aff1170a 2422/* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2423 Y is 0. Similarly for X >> Y. */
2424#if GIMPLE
2425(for shift (lshift rshift)
2426 (simplify
2427 (shift @0 SSA_NAME@1)
2428 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2429 (with {
2430 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2431 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2432 }
2433 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2434 @0)))))
2435#endif
2436
6a78ea5d 2437/* Rewrite an LROTATE_EXPR by a constant into an
2438 RROTATE_EXPR by a new constant. */
2439(simplify
2440 (lrotate @0 INTEGER_CST@1)
0808dfce 2441 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
6a78ea5d 2442 build_int_cst (TREE_TYPE (@1),
2443 element_precision (type)), @1); }))
2444
a76fc0fd 2445/* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2446(for op (lrotate rrotate rshift lshift)
2447 (simplify
2448 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2449 (with { unsigned int prec = element_precision (type); }
e3d0f65c 2450 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2451 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2452 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2453 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
cb7bca5f 2454 (with { unsigned int low = (tree_to_uhwi (@1)
2455 + tree_to_uhwi (@2)); }
a76fc0fd 2456 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2457 being well defined. */
2458 (if (low >= prec)
2459 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
d74b7335 2460 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
05999bfc 2461 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
d74b7335 2462 { build_zero_cst (type); }
2463 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2464 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
a76fc0fd 2465
2466
2e4fb82e 2467/* ((1 << A) & 1) != 0 -> A == 0
2468 ((1 << A) & 1) == 0 -> A != 0 */
2469(for cmp (ne eq)
2470 icmp (eq ne)
2471 (simplify
2472 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2473 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
662274ee 2474
9d5c80c1 2475/* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2476 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2477 if CST2 != 0. */
2478(for cmp (ne eq)
2479 (simplify
2480 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
e3d0f65c 2481 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
9d5c80c1 2482 (if (cand < 0
2483 || (!integer_zerop (@2)
e3d0f65c 2484 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
d74b7335 2485 { constant_boolean_node (cmp == NE_EXPR, type); }
2486 (if (!integer_zerop (@2)
e3d0f65c 2487 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
d74b7335 2488 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
9d5c80c1 2489
4c8f3f72 2490/* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2491 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2492 if the new mask might be further optimized. */
2493(for shift (lshift rshift)
2494 (simplify
2bc3151f 2495 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2496 INTEGER_CST@2)
4c8f3f72 2497 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2498 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2499 && tree_fits_uhwi_p (@1)
2500 && tree_to_uhwi (@1) > 0
2501 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2502 (with
2503 {
2504 unsigned int shiftc = tree_to_uhwi (@1);
2505 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2506 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2507 tree shift_type = TREE_TYPE (@3);
2508 unsigned int prec;
2509
2510 if (shift == LSHIFT_EXPR)
edc19fd0 2511 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
4c8f3f72 2512 else if (shift == RSHIFT_EXPR
654ba22c 2513 && type_has_mode_precision_p (shift_type))
4c8f3f72 2514 {
2515 prec = TYPE_PRECISION (TREE_TYPE (@3));
2516 tree arg00 = @0;
2517 /* See if more bits can be proven as zero because of
2518 zero extension. */
2519 if (@3 != @0
2520 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2521 {
2522 tree inner_type = TREE_TYPE (@0);
654ba22c 2523 if (type_has_mode_precision_p (inner_type)
4c8f3f72 2524 && TYPE_PRECISION (inner_type) < prec)
2525 {
2526 prec = TYPE_PRECISION (inner_type);
2527 /* See if we can shorten the right shift. */
2528 if (shiftc < prec)
2529 shift_type = inner_type;
2530 /* Otherwise X >> C1 is all zeros, so we'll optimize
2531 it into (X, 0) later on by making sure zerobits
2532 is all ones. */
2533 }
2534 }
7097b942 2535 zerobits = HOST_WIDE_INT_M1U;
4c8f3f72 2536 if (shiftc < prec)
2537 {
2538 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2539 zerobits <<= prec - shiftc;
2540 }
2541 /* For arithmetic shift if sign bit could be set, zerobits
2542 can contain actually sign bits, so no transformation is
2543 possible, unless MASK masks them all away. In that
2544 case the shift needs to be converted into logical shift. */
2545 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2546 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2547 {
2548 if ((mask & zerobits) == 0)
2549 shift_type = unsigned_type_for (TREE_TYPE (@3));
2550 else
2551 zerobits = 0;
2552 }
2553 }
2554 }
2555 /* ((X << 16) & 0xff00) is (X, 0). */
2556 (if ((mask & zerobits) == mask)
d74b7335 2557 { build_int_cst (type, 0); }
2558 (with { newmask = mask | zerobits; }
2559 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2560 (with
2561 {
2562 /* Only do the transformation if NEWMASK is some integer
2563 mode's mask. */
2564 for (prec = BITS_PER_UNIT;
2565 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
edc19fd0 2566 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
d74b7335 2567 break;
2568 }
2569 (if (prec < HOST_BITS_PER_WIDE_INT
7097b942 2570 || newmask == HOST_WIDE_INT_M1U)
d74b7335 2571 (with
2572 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2573 (if (!tree_int_cst_equal (newmaskt, @2))
2574 (if (shift_type != TREE_TYPE (@3))
2575 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2576 (bit_and @4 { newmaskt; })))))))))))))
4c8f3f72 2577
4de74241 2578/* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2579 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
54c06b77 2580(for shift (lshift rshift)
4de74241 2581 (for bit_op (bit_and bit_xor bit_ior)
2582 (simplify
2583 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2584 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2585 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2586 (bit_op (shift (convert @0) @1) { mask; }))))))
54c06b77 2587
2f6a4d21 2588/* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2589(simplify
2590 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2591 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
c0205bab 2592 && (element_precision (TREE_TYPE (@0))
2593 <= element_precision (TREE_TYPE (@1))
2594 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2f6a4d21 2595 (with
2596 { tree shift_type = TREE_TYPE (@0); }
2597 (convert (rshift (convert:shift_type @1) @2)))))
2598
2599/* ~(~X >>r Y) -> X >>r Y
2600 ~(~X <<r Y) -> X <<r Y */
2601(for rotate (lrotate rrotate)
2602 (simplify
2603 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
c0205bab 2604 (if ((element_precision (TREE_TYPE (@0))
2605 <= element_precision (TREE_TYPE (@1))
2606 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2607 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2608 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2f6a4d21 2609 (with
2610 { tree rotate_type = TREE_TYPE (@0); }
2611 (convert (rotate (convert:rotate_type @1) @2))))))
54c06b77 2612
6d58fd21 2613/* Simplifications of conversions. */
2614
2615/* Basic strip-useless-type-conversions / strip_nops. */
2ad7e37a 2616(for cvt (convert view_convert float fix_trunc)
6d58fd21 2617 (simplify
2618 (cvt @0)
2619 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2620 || (GENERIC && type == TREE_TYPE (@0)))
2621 @0)))
2622
2623/* Contract view-conversions. */
2624(simplify
2625 (view_convert (view_convert @0))
2626 (view_convert @0))
2627
2628/* For integral conversions with the same precision or pointer
2629 conversions use a NOP_EXPR instead. */
2630(simplify
2631 (view_convert @0)
2632 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2633 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2634 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2635 (convert @0)))
2636
ac857b3d 2637/* Strip inner integral conversions that do not change precision or size, or
2638 zero-extend while keeping the same size (for bool-to-char). */
6d58fd21 2639(simplify
2640 (view_convert (convert@0 @1))
2641 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2642 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
ac857b3d 2643 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2644 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2645 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2646 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
6d58fd21 2647 (view_convert @1)))
2648
559783f6 2649/* Simplify a view-converted empty constructor. */
2650(simplify
2651 (view_convert CONSTRUCTOR@0)
2652 (if (TREE_CODE (@0) != SSA_NAME
2653 && CONSTRUCTOR_NELTS (@0) == 0)
2654 { build_zero_cst (type); }))
2655
6d58fd21 2656/* Re-association barriers around constants and other re-association
2657 barriers can be removed. */
2658(simplify
2659 (paren CONSTANT_CLASS_P@0)
2660 @0)
2661(simplify
2662 (paren (paren@1 @0))
2663 @1)
c434260f 2664
2665/* Handle cases of two conversions in a row. */
2666(for ocvt (convert float fix_trunc)
2667 (for icvt (convert float)
2668 (simplify
2669 (ocvt (icvt@1 @0))
2670 (with
2671 {
2672 tree inside_type = TREE_TYPE (@0);
2673 tree inter_type = TREE_TYPE (@1);
2674 int inside_int = INTEGRAL_TYPE_P (inside_type);
2675 int inside_ptr = POINTER_TYPE_P (inside_type);
2676 int inside_float = FLOAT_TYPE_P (inside_type);
ccb14741 2677 int inside_vec = VECTOR_TYPE_P (inside_type);
c434260f 2678 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2679 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2680 int inter_int = INTEGRAL_TYPE_P (inter_type);
2681 int inter_ptr = POINTER_TYPE_P (inter_type);
2682 int inter_float = FLOAT_TYPE_P (inter_type);
ccb14741 2683 int inter_vec = VECTOR_TYPE_P (inter_type);
c434260f 2684 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2685 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2686 int final_int = INTEGRAL_TYPE_P (type);
2687 int final_ptr = POINTER_TYPE_P (type);
2688 int final_float = FLOAT_TYPE_P (type);
ccb14741 2689 int final_vec = VECTOR_TYPE_P (type);
c434260f 2690 unsigned int final_prec = TYPE_PRECISION (type);
2691 int final_unsignedp = TYPE_UNSIGNED (type);
2692 }
f998447f 2693 (switch
2694 /* In addition to the cases of two conversions in a row
2695 handled below, if we are converting something to its own
2696 type via an object of identical or wider precision, neither
2697 conversion is needed. */
2698 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2699 || (GENERIC
2700 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2701 && (((inter_int || inter_ptr) && final_int)
2702 || (inter_float && final_float))
2703 && inter_prec >= final_prec)
2704 (ocvt @0))
2705
2706 /* Likewise, if the intermediate and initial types are either both
2707 float or both integer, we don't need the middle conversion if the
2708 former is wider than the latter and doesn't change the signedness
2709 (for integers). Avoid this if the final type is a pointer since
f2bfcc60 2710 then we sometimes need the middle conversion. */
f998447f 2711 (if (((inter_int && inside_int) || (inter_float && inside_float))
2712 && (final_int || final_float)
2713 && inter_prec >= inside_prec
f2bfcc60 2714 && (inter_float || inter_unsignedp == inside_unsignedp))
f998447f 2715 (ocvt @0))
2716
2717 /* If we have a sign-extension of a zero-extended value, we can
2718 replace that by a single zero-extension. Likewise if the
2719 final conversion does not change precision we can drop the
2720 intermediate conversion. */
2721 (if (inside_int && inter_int && final_int
2722 && ((inside_prec < inter_prec && inter_prec < final_prec
2723 && inside_unsignedp && !inter_unsignedp)
2724 || final_prec == inter_prec))
2725 (ocvt @0))
2726
2727 /* Two conversions in a row are not needed unless:
c434260f 2728 - some conversion is floating-point (overstrict for now), or
2729 - some conversion is a vector (overstrict for now), or
2730 - the intermediate type is narrower than both initial and
2731 final, or
2732 - the intermediate type and innermost type differ in signedness,
2733 and the outermost type is wider than the intermediate, or
2734 - the initial type is a pointer type and the precisions of the
2735 intermediate and final types differ, or
2736 - the final type is a pointer type and the precisions of the
2737 initial and intermediate types differ. */
f998447f 2738 (if (! inside_float && ! inter_float && ! final_float
2739 && ! inside_vec && ! inter_vec && ! final_vec
2740 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2741 && ! (inside_int && inter_int
2742 && inter_unsignedp != inside_unsignedp
2743 && inter_prec < final_prec)
2744 && ((inter_unsignedp && inter_prec > inside_prec)
2745 == (final_unsignedp && final_prec > inter_prec))
2746 && ! (inside_ptr && inter_prec != final_prec)
f2bfcc60 2747 && ! (final_ptr && inside_prec != inter_prec))
f998447f 2748 (ocvt @0))
2749
2750 /* A truncation to an unsigned type (a zero-extension) should be
2751 canonicalized as bitwise and of a mask. */
645a9d8e 2752 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2753 && final_int && inter_int && inside_int
f998447f 2754 && final_prec == inside_prec
2755 && final_prec > inter_prec
2756 && inter_unsignedp)
2757 (convert (bit_and @0 { wide_int_to_tree
2758 (inside_type,
2759 wi::mask (inter_prec, false,
2760 TYPE_PRECISION (inside_type))); })))
2761
2762 /* If we are converting an integer to a floating-point that can
2763 represent it exactly and back to an integer, we can skip the
2764 floating-point conversion. */
2765 (if (GIMPLE /* PR66211 */
2766 && inside_int && inter_float && final_int &&
2767 (unsigned) significand_size (TYPE_MODE (inter_type))
2768 >= inside_prec - !inside_unsignedp)
2769 (convert @0)))))))
e4076540 2770
2771/* If we have a narrowing conversion to an integral type that is fed by a
2772 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2773 masks off bits outside the final type (and nothing else). */
2774(simplify
2775 (convert (bit_and @0 INTEGER_CST@1))
2776 (if (INTEGRAL_TYPE_P (type)
2777 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2778 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2779 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2780 TYPE_PRECISION (type)), 0))
2781 (convert @0)))
6f5ffe81 2782
2783
2784/* (X /[ex] A) * A -> X. */
2785(simplify
c76c65ae 2786 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2787 (convert @0))
20ba0684 2788
295b8968 2789/* Simplify (A / B) * B + (A % B) -> A. */
2790(for div (trunc_div ceil_div floor_div round_div)
2791 mod (trunc_mod ceil_mod floor_mod round_mod)
2792 (simplify
2793 (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
2794 @0))
2795
54333f7f 2796/* ((X /[ex] A) +- B) * A --> X +- A * B. */
2797(for op (plus minus)
2798 (simplify
2799 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
2800 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
2801 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
2802 (with
2803 {
2804 wi::overflow_type overflow;
2805 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
2806 TYPE_SIGN (type), &overflow);
2807 }
2808 (if (types_match (type, TREE_TYPE (@2))
2809 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
2810 (op @0 { wide_int_to_tree (type, mul); })
2811 (with { tree utype = unsigned_type_for (type); }
2812 (convert (op (convert:utype @0)
2813 (mult (convert:utype @1) (convert:utype @2))))))))))
2814
6a78ea5d 2815/* Canonicalization of binary operations. */
2816
2817/* Convert X + -C into X - C. */
2818(simplify
2819 (plus @0 REAL_CST@1)
2820 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
0808dfce 2821 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
6a78ea5d 2822 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2823 (minus @0 { tem; })))))
2824
bff407f2 2825/* Convert x+x into x*2. */
6a78ea5d 2826(simplify
2827 (plus @0 @0)
2828 (if (SCALAR_FLOAT_TYPE_P (type))
bff407f2 2829 (mult @0 { build_real (type, dconst2); })
2830 (if (INTEGRAL_TYPE_P (type))
2831 (mult @0 { build_int_cst (type, 2); }))))
6a78ea5d 2832
ff3aa16e 2833/* 0 - X -> -X. */
6a78ea5d 2834(simplify
2835 (minus integer_zerop @1)
2836 (negate @1))
ff3aa16e 2837(simplify
2838 (pointer_diff integer_zerop @1)
2839 (negate (convert @1)))
6a78ea5d 2840
2841/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2842 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2843 (-ARG1 + ARG0) reduces to -ARG1. */
2844(simplify
2845 (minus real_zerop@0 @1)
2846 (if (fold_real_zero_addition_p (type, @0, 0))
2847 (negate @1)))
2848
2849/* Transform x * -1 into -x. */
2850(simplify
2851 (mult @0 integer_minus_onep)
2852 (negate @0))
20ba0684 2853
6b7eaf05 2854/* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2855 signed overflow for CST != 0 && CST != -1. */
2856(simplify
f359ebf1 2857 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
6b7eaf05 2858 (if (TREE_CODE (@2) != INTEGER_CST
f359ebf1 2859 && single_use (@3)
6b7eaf05 2860 && !integer_zerop (@1) && !integer_minus_onep (@1))
2861 (mult (mult @0 @2) @1)))
2862
5e324b84 2863/* True if we can easily extract the real and imaginary parts of a complex
2864 number. */
2865(match compositional_complex
2866 (convert? (complex @0 @1)))
2867
20ba0684 2868/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2869(simplify
2870 (complex (realpart @0) (imagpart @0))
2871 @0)
2872(simplify
2873 (realpart (complex @0 @1))
2874 @0)
2875(simplify
2876 (imagpart (complex @0 @1))
2877 @1)
e18f6095 2878
d92f7c8d 2879/* Sometimes we only care about half of a complex expression. */
2880(simplify
2881 (realpart (convert?:s (conj:s @0)))
2882 (convert (realpart @0)))
2883(simplify
2884 (imagpart (convert?:s (conj:s @0)))
2885 (convert (negate (imagpart @0))))
2886(for part (realpart imagpart)
2887 (for op (plus minus)
2888 (simplify
2889 (part (convert?:s@2 (op:s @0 @1)))
2890 (convert (op (part @0) (part @1))))))
2891(simplify
2892 (realpart (convert?:s (CEXPI:s @0)))
2893 (convert (COS @0)))
2894(simplify
2895 (imagpart (convert?:s (CEXPI:s @0)))
2896 (convert (SIN @0)))
2897
2898/* conj(conj(x)) -> x */
2899(simplify
2900 (conj (convert? (conj @0)))
2901 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2902 (convert @0)))
2903
2904/* conj({x,y}) -> {x,-y} */
2905(simplify
2906 (conj (convert?:s (complex:s @0 @1)))
2907 (with { tree itype = TREE_TYPE (type); }
2908 (complex (convert:itype @0) (negate (convert:itype @1)))))
e18f6095 2909
2910/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2911(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2912 (simplify
2913 (bswap (bswap @0))
2914 @0)
2915 (simplify
2916 (bswap (bit_not (bswap @0)))
2917 (bit_not @0))
2918 (for bitop (bit_xor bit_ior bit_and)
2919 (simplify
2920 (bswap (bitop:c (bswap @0) @1))
2921 (bitop @0 (bswap @1)))))
84debb86 2922
2923
2924/* Combine COND_EXPRs and VEC_COND_EXPRs. */
2925
2926/* Simplify constant conditions.
2927 Only optimize constant conditions when the selected branch
2928 has the same type as the COND_EXPR. This avoids optimizing
2929 away "c ? x : throw", where the throw has a void type.
2930 Note that we cannot throw away the fold-const.c variant nor
2931 this one as we depend on doing this transform before possibly
2932 A ? B : B -> B triggers and the fold-const.c one can optimize
2933 0 ? A : B to B even if A has side-effects. Something
2934 genmatch cannot handle. */
2935(simplify
2936 (cond INTEGER_CST@0 @1 @2)
d74b7335 2937 (if (integer_zerop (@0))
2938 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2939 @2)
2940 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2941 @1)))
84debb86 2942(simplify
2943 (vec_cond VECTOR_CST@0 @1 @2)
2944 (if (integer_all_onesp (@0))
d74b7335 2945 @1
2946 (if (integer_zerop (@0))
2947 @2)))
84debb86 2948
87cfc44d 2949/* Sink unary operations to constant branches, but only if we do fold it to
2950 constants. */
2951(for op (negate bit_not abs absu)
2952 (simplify
2953 (op (vec_cond @0 VECTOR_CST@1 VECTOR_CST@2))
2954 (with
2955 {
2956 tree cst1, cst2;
2957 cst1 = const_unop (op, type, @1);
2958 if (cst1)
2959 cst2 = const_unop (op, type, @2);
2960 }
2961 (if (cst1 && cst2)
2962 (vec_cond @0 { cst1; } { cst2; })))))
2963
83c0fb43 2964/* Simplification moved from fold_cond_expr_with_comparison. It may also
2965 be extended. */
4e33b632 2966/* This pattern implements two kinds simplification:
2967
2968 Case 1)
2969 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
83c0fb43 2970 1) Conversions are type widening from smaller type.
2971 2) Const c1 equals to c2 after canonicalizing comparison.
2972 3) Comparison has tree code LT, LE, GT or GE.
2973 This specific pattern is needed when (cmp (convert x) c) may not
2974 be simplified by comparison patterns because of multiple uses of
2975 x. It also makes sense here because simplifying across multiple
4e33b632 2976 referred var is always benefitial for complicated cases.
2977
2978 Case 2)
2979 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2980(for cmp (lt le gt ge eq)
83c0fb43 2981 (simplify
a5a96d9f 2982 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
83c0fb43 2983 (with
2984 {
2985 tree from_type = TREE_TYPE (@1);
2986 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
a5a96d9f 2987 enum tree_code code = ERROR_MARK;
83c0fb43 2988
a5a96d9f 2989 if (INTEGRAL_TYPE_P (from_type)
2990 && int_fits_type_p (@2, from_type)
83c0fb43 2991 && (types_match (c1_type, from_type)
2992 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2993 && (TYPE_UNSIGNED (from_type)
2994 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2995 && (types_match (c2_type, from_type)
2996 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2997 && (TYPE_UNSIGNED (from_type)
2998 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2999 {
a5a96d9f 3000 if (cmp != EQ_EXPR)
83c0fb43 3001 {
4e33b632 3002 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
3003 {
3004 /* X <= Y - 1 equals to X < Y. */
a5a96d9f 3005 if (cmp == LE_EXPR)
4e33b632 3006 code = LT_EXPR;
3007 /* X > Y - 1 equals to X >= Y. */
a5a96d9f 3008 if (cmp == GT_EXPR)
4e33b632 3009 code = GE_EXPR;
3010 }
3011 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
3012 {
3013 /* X < Y + 1 equals to X <= Y. */
a5a96d9f 3014 if (cmp == LT_EXPR)
4e33b632 3015 code = LE_EXPR;
3016 /* X >= Y + 1 equals to X > Y. */
a5a96d9f 3017 if (cmp == GE_EXPR)
4e33b632 3018 code = GT_EXPR;
3019 }
a5a96d9f 3020 if (code != ERROR_MARK
3021 || wi::to_widest (@2) == wi::to_widest (@3))
4e33b632 3022 {
a5a96d9f 3023 if (cmp == LT_EXPR || cmp == LE_EXPR)
4e33b632 3024 code = MIN_EXPR;
a5a96d9f 3025 if (cmp == GT_EXPR || cmp == GE_EXPR)
4e33b632 3026 code = MAX_EXPR;
3027 }
83c0fb43 3028 }
4e33b632 3029 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
a5a96d9f 3030 else if (int_fits_type_p (@3, from_type))
3031 code = EQ_EXPR;
83c0fb43 3032 }
3033 }
3034 (if (code == MAX_EXPR)
70241e81 3035 (convert (max @1 (convert @2)))
83c0fb43 3036 (if (code == MIN_EXPR)
70241e81 3037 (convert (min @1 (convert @2)))
4e33b632 3038 (if (code == EQ_EXPR)
a5a96d9f 3039 (convert (cond (eq @1 (convert @3))
70241e81 3040 (convert:from_type @3) (convert:from_type @2)))))))))
83c0fb43 3041
e7a6ef61 3042/* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
3043
3044 1) OP is PLUS or MINUS.
3045 2) CMP is LT, LE, GT or GE.
3046 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
3047
3048 This pattern also handles special cases like:
3049
3050 A) Operand x is a unsigned to signed type conversion and c1 is
3051 integer zero. In this case,
3052 (signed type)x < 0 <=> x > MAX_VAL(signed type)
3053 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
3054 B) Const c1 may not equal to (C3 op' C2). In this case we also
3055 check equality for (c1+1) and (c1-1) by adjusting comparison
3056 code.
3057
3058 TODO: Though signed type is handled by this pattern, it cannot be
3059 simplified at the moment because C standard requires additional
3060 type promotion. In order to match&simplify it here, the IR needs
3061 to be cleaned up by other optimizers, i.e, VRP. */
3062(for op (plus minus)
3063 (for cmp (lt le gt ge)
3064 (simplify
3065 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
3066 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
3067 (if (types_match (from_type, to_type)
3068 /* Check if it is special case A). */
3069 || (TYPE_UNSIGNED (from_type)
3070 && !TYPE_UNSIGNED (to_type)
3071 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
3072 && integer_zerop (@1)
3073 && (cmp == LT_EXPR || cmp == GE_EXPR)))
3074 (with
3075 {
30b5769f 3076 wi::overflow_type overflow = wi::OVF_NONE;
e7a6ef61 3077 enum tree_code code, cmp_code = cmp;
e3d0f65c 3078 wide_int real_c1;
3079 wide_int c1 = wi::to_wide (@1);
3080 wide_int c2 = wi::to_wide (@2);
3081 wide_int c3 = wi::to_wide (@3);
e7a6ef61 3082 signop sgn = TYPE_SIGN (from_type);
3083
3084 /* Handle special case A), given x of unsigned type:
3085 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
3086 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
3087 if (!types_match (from_type, to_type))
3088 {
3089 if (cmp_code == LT_EXPR)
3090 cmp_code = GT_EXPR;
3091 if (cmp_code == GE_EXPR)
3092 cmp_code = LE_EXPR;
3093 c1 = wi::max_value (to_type);
3094 }
3095 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
3096 compute (c3 op' c2) and check if it equals to c1 with op' being
3097 the inverted operator of op. Make sure overflow doesn't happen
3098 if it is undefined. */
3099 if (op == PLUS_EXPR)
3100 real_c1 = wi::sub (c3, c2, sgn, &overflow);
3101 else
3102 real_c1 = wi::add (c3, c2, sgn, &overflow);
3103
3104 code = cmp_code;
3105 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
3106 {
3107 /* Check if c1 equals to real_c1. Boundary condition is handled
3108 by adjusting comparison operation if necessary. */
3109 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
3110 && !overflow)
3111 {
3112 /* X <= Y - 1 equals to X < Y. */
3113 if (cmp_code == LE_EXPR)
3114 code = LT_EXPR;
3115 /* X > Y - 1 equals to X >= Y. */
3116 if (cmp_code == GT_EXPR)
3117 code = GE_EXPR;
3118 }
3119 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
3120 && !overflow)
3121 {
3122 /* X < Y + 1 equals to X <= Y. */
3123 if (cmp_code == LT_EXPR)
3124 code = LE_EXPR;
3125 /* X >= Y + 1 equals to X > Y. */
3126 if (cmp_code == GE_EXPR)
3127 code = GT_EXPR;
3128 }
3129 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
3130 {
3131 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
3132 code = MIN_EXPR;
3133 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
3134 code = MAX_EXPR;
3135 }
3136 }
3137 }
3138 (if (code == MAX_EXPR)
3139 (op (max @X { wide_int_to_tree (from_type, real_c1); })
3140 { wide_int_to_tree (from_type, c2); })
3141 (if (code == MIN_EXPR)
3142 (op (min @X { wide_int_to_tree (from_type, real_c1); })
3143 { wide_int_to_tree (from_type, c2); })))))))))
3144
84debb86 3145(for cnd (cond vec_cond)
3146 /* A ? B : (A ? X : C) -> A ? B : C. */
3147 (simplify
3148 (cnd @0 (cnd @0 @1 @2) @3)
3149 (cnd @0 @1 @3))
3150 (simplify
3151 (cnd @0 @1 (cnd @0 @2 @3))
3152 (cnd @0 @1 @3))
79f1ed25 3153 /* A ? B : (!A ? C : X) -> A ? B : C. */
3154 /* ??? This matches embedded conditions open-coded because genmatch
3155 would generate matching code for conditions in separate stmts only.
3156 The following is still important to merge then and else arm cases
3157 from if-conversion. */
3158 (simplify
3159 (cnd @0 @1 (cnd @2 @3 @4))
03821886 3160 (if (inverse_conditions_p (@0, @2))
79f1ed25 3161 (cnd @0 @1 @3)))
3162 (simplify
3163 (cnd @0 (cnd @1 @2 @3) @4)
03821886 3164 (if (inverse_conditions_p (@0, @1))
79f1ed25 3165 (cnd @0 @3 @4)))
84debb86 3166
3167 /* A ? B : B -> B. */
3168 (simplify
3169 (cnd @0 @1 @1)
ccb14741 3170 @1)
84debb86 3171
ccb14741 3172 /* !A ? B : C -> A ? C : B. */
3173 (simplify
3174 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
3175 (cnd @0 @2 @1)))
9ec260f0 3176
19db1ec8 3177/* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
3178 return all -1 or all 0 results. */
b13fec6a 3179/* ??? We could instead convert all instances of the vec_cond to negate,
3180 but that isn't necessarily a win on its own. */
3181(simplify
19db1ec8 3182 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
b13fec6a 3183 (if (VECTOR_TYPE_P (type)
f08ee65f 3184 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3185 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
b13fec6a 3186 && (TYPE_MODE (TREE_TYPE (type))
1a86097c 3187 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
19db1ec8 3188 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
b13fec6a 3189
19db1ec8 3190/* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
b13fec6a 3191(simplify
19db1ec8 3192 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
b13fec6a 3193 (if (VECTOR_TYPE_P (type)
f08ee65f 3194 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3195 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
b13fec6a 3196 && (TYPE_MODE (TREE_TYPE (type))
1a86097c 3197 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
19db1ec8 3198 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
9ec260f0 3199
fd425e62 3200
9ec260f0 3201/* Simplifications of comparisons. */
3202
67d07229 3203/* See if we can reduce the magnitude of a constant involved in a
3204 comparison by changing the comparison code. This is a canonicalization
3205 formerly done by maybe_canonicalize_comparison_1. */
3206(for cmp (le gt)
3207 acmp (lt ge)
3208 (simplify
7931f9ca 3209 (cmp @0 uniform_integer_cst_p@1)
3210 (with { tree cst = uniform_integer_cst_p (@1); }
3211 (if (tree_int_cst_sgn (cst) == -1)
3212 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3213 wide_int_to_tree (TREE_TYPE (cst),
3214 wi::to_wide (cst)
3215 + 1)); })))))
67d07229 3216(for cmp (ge lt)
3217 acmp (gt le)
3218 (simplify
7931f9ca 3219 (cmp @0 uniform_integer_cst_p@1)
3220 (with { tree cst = uniform_integer_cst_p (@1); }
3221 (if (tree_int_cst_sgn (cst) == 1)
3222 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3223 wide_int_to_tree (TREE_TYPE (cst),
3224 wi::to_wide (cst) - 1)); })))))
67d07229 3225
9ec260f0 3226/* We can simplify a logical negation of a comparison to the
3227 inverted comparison. As we cannot compute an expression
3228 operator using invert_tree_comparison we have to simulate
3229 that with expression code iteration. */
3230(for cmp (tcc_comparison)
3231 icmp (inverted_tcc_comparison)
3232 ncmp (inverted_tcc_comparison_with_nans)
3233 /* Ideally we'd like to combine the following two patterns
3234 and handle some more cases by using
3235 (logical_inverted_value (cmp @0 @1))
3236 here but for that genmatch would need to "inline" that.
3237 For now implement what forward_propagate_comparison did. */
3238 (simplify
3239 (bit_not (cmp @0 @1))
3240 (if (VECTOR_TYPE_P (type)
3241 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3242 /* Comparison inversion may be impossible for trapping math,
3243 invert_tree_comparison will tell us. But we can't use
3244 a computed operator in the replacement tree thus we have
3245 to play the trick below. */
3246 (with { enum tree_code ic = invert_tree_comparison
93633022 3247 (cmp, HONOR_NANS (@0)); }
9ec260f0 3248 (if (ic == icmp)
d74b7335 3249 (icmp @0 @1)
3250 (if (ic == ncmp)
3251 (ncmp @0 @1))))))
9ec260f0 3252 (simplify
ccb14741 3253 (bit_xor (cmp @0 @1) integer_truep)
3254 (with { enum tree_code ic = invert_tree_comparison
93633022 3255 (cmp, HONOR_NANS (@0)); }
ccb14741 3256 (if (ic == icmp)
d74b7335 3257 (icmp @0 @1)
3258 (if (ic == ncmp)
3259 (ncmp @0 @1))))))
f8dad9b4 3260
fd425e62 3261/* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3262 ??? The transformation is valid for the other operators if overflow
3263 is undefined for the type, but performing it here badly interacts
3264 with the transformation in fold_cond_expr_with_comparison which
3265 attempts to synthetize ABS_EXPR. */
3266(for cmp (eq ne)
57e83b58 3267 (for sub (minus pointer_diff)
3268 (simplify
3269 (cmp (sub@2 @0 @1) integer_zerop)
3270 (if (single_use (@2))
3271 (cmp @0 @1)))))
fd425e62 3272
3273/* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3274 signed arithmetic case. That form is created by the compiler
3275 often enough for folding it to be of value. One example is in
3276 computing loop trip counts after Operator Strength Reduction. */
c915fa32 3277(for cmp (simple_comparison)
3278 scmp (swapped_simple_comparison)
fd425e62 3279 (simplify
cf293d8e 3280 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
fd425e62 3281 /* Handle unfolded multiplication by zero. */
3282 (if (integer_zerop (@1))
d74b7335 3283 (cmp @1 @2)
3284 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
cf293d8e 3285 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3286 && single_use (@3))
d74b7335 3287 /* If @1 is negative we swap the sense of the comparison. */
3288 (if (tree_int_cst_sgn (@1) < 0)
3289 (scmp @0 @2)
3290 (cmp @0 @2))))))
9603b585 3291
fd425e62 3292/* Simplify comparison of something with itself. For IEEE
3293 floating-point, we can only do some of these simplifications. */
be6e4283 3294(for cmp (eq ge le)
fd425e62 3295 (simplify
3296 (cmp @0 @0)
be6e4283 3297 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
2daa2cda 3298 || ! HONOR_NANS (@0))
be6e4283 3299 { constant_boolean_node (true, type); }
3300 (if (cmp != EQ_EXPR)
3301 (eq @0 @0)))))
fd425e62 3302(for cmp (ne gt lt)
3303 (simplify
3304 (cmp @0 @0)
3305 (if (cmp != NE_EXPR
3306 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
2daa2cda 3307 || ! HONOR_NANS (@0))
fd425e62 3308 { constant_boolean_node (false, type); })))
56b4132e 3309(for cmp (unle unge uneq)
3310 (simplify
3311 (cmp @0 @0)
3312 { constant_boolean_node (true, type); }))
47ef9633 3313(for cmp (unlt ungt)
3314 (simplify
3315 (cmp @0 @0)
3316 (unordered @0 @0)))
56b4132e 3317(simplify
3318 (ltgt @0 @0)
3319 (if (!flag_trapping_math)
3320 { constant_boolean_node (false, type); }))
fd425e62 3321
3322/* Fold ~X op ~Y as Y op X. */
c915fa32 3323(for cmp (simple_comparison)
fd425e62 3324 (simplify
46c54c0f 3325 (cmp (bit_not@2 @0) (bit_not@3 @1))
3326 (if (single_use (@2) && single_use (@3))
3327 (cmp @1 @0))))
fd425e62 3328
3329/* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
c915fa32 3330(for cmp (simple_comparison)
3331 scmp (swapped_simple_comparison)
fd425e62 3332 (simplify
46c54c0f 3333 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3334 (if (single_use (@2)
3335 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
fd425e62 3336 (scmp @0 (bit_not @1)))))
3337
c915fa32 3338(for cmp (simple_comparison)
3339 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3340 (simplify
3341 (cmp (convert@2 @0) (convert? @1))
3342 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3343 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3344 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3345 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3346 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3347 (with
3348 {
3349 tree type1 = TREE_TYPE (@1);
3350 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3351 {
3352 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3353 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3354 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3355 type1 = float_type_node;
3356 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3357 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3358 type1 = double_type_node;
3359 }
3360 tree newtype
3361 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
9603b585 3362 ? TREE_TYPE (@0) : type1);
c915fa32 3363 }
3364 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3365 (cmp (convert:newtype @0) (convert:newtype @1))))))
9603b585 3366
c915fa32 3367 (simplify
3368 (cmp @0 REAL_CST@1)
3369 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
f998447f 3370 (switch
3371 /* a CMP (-0) -> a CMP 0 */
3372 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3373 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3374 /* x != NaN is always true, other ops are always false. */
3375 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3376 && ! HONOR_SNANS (@1))
3377 { constant_boolean_node (cmp == NE_EXPR, type); })
3378 /* Fold comparisons against infinity. */
3379 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3380 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3381 (with
3382 {
3383 REAL_VALUE_TYPE max;
3384 enum tree_code code = cmp;
3385 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3386 if (neg)
3387 code = swap_tree_comparison (code);
3388 }
3389 (switch
38f4caae 3390 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
f998447f 3391 (if (code == GT_EXPR
38f4caae 3392 && !(HONOR_NANS (@0) && flag_trapping_math))
f998447f 3393 { constant_boolean_node (false, type); })
3394 (if (code == LE_EXPR)
38f4caae 3395 /* x <= +Inf is always true, if we don't care about NaNs. */
f998447f 3396 (if (! HONOR_NANS (@0))
3397 { constant_boolean_node (true, type); }
38f4caae 3398 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3399 an "invalid" exception. */
3400 (if (!flag_trapping_math)
3401 (eq @0 @0))))
3402 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3403 for == this introduces an exception for x a NaN. */
3404 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3405 || code == GE_EXPR)
f998447f 3406 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3407 (if (neg)
3408 (lt @0 { build_real (TREE_TYPE (@0), max); })
3409 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3410 /* x < +Inf is always equal to x <= DBL_MAX. */
3411 (if (code == LT_EXPR)
3412 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3413 (if (neg)
3414 (ge @0 { build_real (TREE_TYPE (@0), max); })
3415 (le @0 { build_real (TREE_TYPE (@0), max); }))))
38f4caae 3416 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3417 an exception for x a NaN so use an unordered comparison. */
f998447f 3418 (if (code == NE_EXPR)
3419 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3420 (if (! HONOR_NANS (@0))
3421 (if (neg)
3422 (ge @0 { build_real (TREE_TYPE (@0), max); })
3423 (le @0 { build_real (TREE_TYPE (@0), max); }))
3424 (if (neg)
38f4caae 3425 (unge @0 { build_real (TREE_TYPE (@0), max); })
3426 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
c915fa32 3427
3428 /* If this is a comparison of a real constant with a PLUS_EXPR
3429 or a MINUS_EXPR of a real constant, we can convert it into a
3430 comparison with a revised real constant as long as no overflow
3431 occurs when unsafe_math_optimizations are enabled. */
3432 (if (flag_unsafe_math_optimizations)
3433 (for op (plus minus)
3434 (simplify
3435 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3436 (with
3437 {
3438 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3439 TREE_TYPE (@1), @2, @1);
3440 }
a7b8025b 3441 (if (tem && !TREE_OVERFLOW (tem))
c915fa32 3442 (cmp @0 { tem; }))))))
3443
3444 /* Likewise, we can simplify a comparison of a real constant with
3445 a MINUS_EXPR whose first operand is also a real constant, i.e.
3446 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3447 floating-point types only if -fassociative-math is set. */
3448 (if (flag_associative_math)
3449 (simplify
e7966fe9 3450 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
c915fa32 3451 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
a7b8025b 3452 (if (tem && !TREE_OVERFLOW (tem))
c915fa32 3453 (cmp { tem; } @1)))))
3454
3455 /* Fold comparisons against built-in math functions. */
3456 (if (flag_unsafe_math_optimizations
3457 && ! flag_errno_math)
3458 (for sq (SQRT)
3459 (simplify
3460 (cmp (sq @0) REAL_CST@1)
f998447f 3461 (switch
3462 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3463 (switch
3464 /* sqrt(x) < y is always false, if y is negative. */
3465 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
d74b7335 3466 { constant_boolean_node (false, type); })
f998447f 3467 /* sqrt(x) > y is always true, if y is negative and we
3468 don't care about NaNs, i.e. negative values of x. */
3469 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3470 { constant_boolean_node (true, type); })
3471 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3472 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
b5cb0512 3473 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3474 (switch
3475 /* sqrt(x) < 0 is always false. */
3476 (if (cmp == LT_EXPR)
3477 { constant_boolean_node (false, type); })
3478 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3479 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3480 { constant_boolean_node (true, type); })
3481 /* sqrt(x) <= 0 -> x == 0. */
3482 (if (cmp == LE_EXPR)
3483 (eq @0 @1))
3484 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3485 == or !=. In the last case:
3486
3487 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3488
3489 if x is negative or NaN. Due to -funsafe-math-optimizations,
3490 the results for other x follow from natural arithmetic. */
3491 (cmp @0 @1)))
f998447f 3492 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3493 (with
3494 {
3495 REAL_VALUE_TYPE c2;
f2ad9e38 3496 real_arithmetic (&c2, MULT_EXPR,
3497 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
f998447f 3498 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3499 }
3500 (if (REAL_VALUE_ISINF (c2))
3501 /* sqrt(x) > y is x == +Inf, when y is very large. */
3502 (if (HONOR_INFINITIES (@0))
3503 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3504 { constant_boolean_node (false, type); })
3505 /* sqrt(x) > c is the same as x > c*c. */
3506 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3507 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3508 (with
3509 {
3510 REAL_VALUE_TYPE c2;
f2ad9e38 3511 real_arithmetic (&c2, MULT_EXPR,
3512 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
f998447f 3513 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3514 }
3515 (if (REAL_VALUE_ISINF (c2))
3516 (switch
3517 /* sqrt(x) < y is always true, when y is a very large
3518 value and we don't care about NaNs or Infinities. */
3519 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3520 { constant_boolean_node (true, type); })
3521 /* sqrt(x) < y is x != +Inf when y is very large and we
3522 don't care about NaNs. */
3523 (if (! HONOR_NANS (@0))
3524 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3525 /* sqrt(x) < y is x >= 0 when y is very large and we
3526 don't care about Infinities. */
3527 (if (! HONOR_INFINITIES (@0))
3528 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3529 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3530 (if (GENERIC)
3531 (truth_andif
3532 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3533 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3534 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3535 (if (! HONOR_NANS (@0))
3536 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3537 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3538 (if (GENERIC)
3539 (truth_andif
3540 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
44142143 3541 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3542 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3543 (simplify
3544 (cmp (sq @0) (sq @1))
3545 (if (! HONOR_NANS (@0))
3546 (cmp @0 @1))))))
fd425e62 3547
91a82d53 3548/* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
8a2dee61 3549(for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
3550 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
91a82d53 3551 (simplify
3552 (cmp (float@0 @1) (float @2))
3553 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
3554 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3555 (with
3556 {
3557 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
3558 tree type1 = TREE_TYPE (@1);
3559 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
3560 tree type2 = TREE_TYPE (@2);
3561 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
3562 }
3563 (if (fmt.can_represent_integral_type_p (type1)
3564 && fmt.can_represent_integral_type_p (type2))
8a2dee61 3565 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
3566 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
3567 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
3568 && type1_signed_p >= type2_signed_p)
3569 (icmp @1 (convert @2))
3570 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
3571 && type1_signed_p <= type2_signed_p)
3572 (icmp (convert:type2 @1) @2)
3573 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
3574 && type1_signed_p == type2_signed_p)
3575 (icmp @1 @2))))))))))
91a82d53 3576
29587d84 3577/* Optimize various special cases of (FTYPE) N CMP CST. */
3578(for cmp (lt le eq ne ge gt)
3579 icmp (le le eq ne ge ge)
3580 (simplify
3581 (cmp (float @0) REAL_CST@1)
3582 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3583 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3584 (with
3585 {
3586 tree itype = TREE_TYPE (@0);
29587d84 3587 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3588 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3589 /* Be careful to preserve any potential exceptions due to
3590 NaNs. qNaNs are ok in == or != context.
3591 TODO: relax under -fno-trapping-math or
3592 -fno-signaling-nans. */
3593 bool exception_p
3594 = real_isnan (cst) && (cst->signalling
a924ac80 3595 || (cmp != EQ_EXPR && cmp != NE_EXPR));
29587d84 3596 }
3597 /* TODO: allow non-fitting itype and SNaNs when
3598 -fno-trapping-math. */
91a82d53 3599 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
29587d84 3600 (with
3601 {
91a82d53 3602 signop isign = TYPE_SIGN (itype);
29587d84 3603 REAL_VALUE_TYPE imin, imax;
3604 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3605 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3606
3607 REAL_VALUE_TYPE icst;
3608 if (cmp == GT_EXPR || cmp == GE_EXPR)
3609 real_ceil (&icst, fmt, cst);
3610 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3611 real_floor (&icst, fmt, cst);
3612 else
3613 real_trunc (&icst, fmt, cst);
3614
8360e5df 3615 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
29587d84 3616
3617 bool overflow_p = false;
3618 wide_int icst_val
3619 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3620 }
3621 (switch
3622 /* Optimize cases when CST is outside of ITYPE's range. */
3623 (if (real_compare (LT_EXPR, cst, &imin))
3624 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3625 type); })
3626 (if (real_compare (GT_EXPR, cst, &imax))
3627 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3628 type); })
3629 /* Remove cast if CST is an integer representable by ITYPE. */
3630 (if (cst_int_p)
3631 (cmp @0 { gcc_assert (!overflow_p);
3632 wide_int_to_tree (itype, icst_val); })
3633 )
3634 /* When CST is fractional, optimize
3635 (FTYPE) N == CST -> 0
3636 (FTYPE) N != CST -> 1. */
3637 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
9603b585 3638 { constant_boolean_node (cmp == NE_EXPR, type); })
29587d84 3639 /* Otherwise replace with sensible integer constant. */
3640 (with
3641 {
3642 gcc_checking_assert (!overflow_p);
3643 }
3644 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3645
d040acf9 3646/* Fold A /[ex] B CMP C to A CMP B * C. */
3647(for cmp (eq ne)
3648 (simplify
3649 (cmp (exact_div @0 @1) INTEGER_CST@2)
3650 (if (!integer_zerop (@1))
e3d0f65c 3651 (if (wi::to_wide (@2) == 0)
d040acf9 3652 (cmp @0 @2)
3653 (if (TREE_CODE (@1) == INTEGER_CST)
3654 (with
3655 {
30b5769f 3656 wi::overflow_type ovf;
e3d0f65c 3657 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3658 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
d040acf9 3659 }
3660 (if (ovf)
3661 { constant_boolean_node (cmp == NE_EXPR, type); }
3662 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3663(for cmp (lt le gt ge)
3664 (simplify
3665 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
e3d0f65c 3666 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
d040acf9 3667 (with
3668 {
30b5769f 3669 wi::overflow_type ovf;
e3d0f65c 3670 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3671 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
d040acf9 3672 }
3673 (if (ovf)
e3d0f65c 3674 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3675 TYPE_SIGN (TREE_TYPE (@2)))
d040acf9 3676 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3677 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3678
952ba7dd 3679/* Fold (size_t)(A /[ex] B) CMP C to (size_t)A CMP (size_t)B * C or A CMP' 0.
3680
3681 For small C (less than max/B), this is (size_t)A CMP (size_t)B * C.
3682 For large C (more than min/B+2^size), this is also true, with the
3683 multiplication computed modulo 2^size.
3684 For intermediate C, this just tests the sign of A. */
3685(for cmp (lt le gt ge)
3686 cmp2 (ge ge lt lt)
3687 (simplify
3688 (cmp (convert (exact_div @0 INTEGER_CST@1)) INTEGER_CST@2)
3689 (if (tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2))
3690 && TYPE_UNSIGNED (TREE_TYPE (@2)) && !TYPE_UNSIGNED (TREE_TYPE (@0))
3691 && wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3692 (with
3693 {
3694 tree utype = TREE_TYPE (@2);
3695 wide_int denom = wi::to_wide (@1);
3696 wide_int right = wi::to_wide (@2);
3697 wide_int smax = wi::sdiv_trunc (wi::max_value (TREE_TYPE (@0)), denom);
3698 wide_int smin = wi::sdiv_trunc (wi::min_value (TREE_TYPE (@0)), denom);
3699 bool small = wi::leu_p (right, smax);
3700 bool large = wi::geu_p (right, smin);
3701 }
3702 (if (small || large)
3703 (cmp (convert:utype @0) (mult @2 (convert @1)))
3704 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))))))
3705
57d742ac 3706/* Unordered tests if either argument is a NaN. */
3707(simplify
3708 (bit_ior (unordered @0 @0) (unordered @1 @1))
b1306f12 3709 (if (types_match (@0, @1))
57d742ac 3710 (unordered @0 @1)))
c59372d1 3711(simplify
3712 (bit_and (ordered @0 @0) (ordered @1 @1))
3713 (if (types_match (@0, @1))
3714 (ordered @0 @1)))
57d742ac 3715(simplify
3716 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3717 @2)
c59372d1 3718(simplify
3719 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3720 @2)
f8dad9b4 3721
f9ec342f 3722/* Simple range test simplifications. */
3723/* A < B || A >= B -> true. */
7717d90b 3724(for test1 (lt le le le ne ge)
3725 test2 (ge gt ge ne eq ne)
f9ec342f 3726 (simplify
3727 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3728 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3729 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3730 { constant_boolean_node (true, type); })))
3731/* A < B && A >= B -> false. */
3732(for test1 (lt lt lt le ne eq)
3733 test2 (ge gt eq gt eq gt)
3734 (simplify
3735 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3736 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3737 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3738 { constant_boolean_node (false, type); })))
3739
77b822cc 3740/* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3741 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3742
3743 Note that comparisons
3744 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3745 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3746 will be canonicalized to above so there's no need to
3747 consider them here.
3748 */
3749
3750(for cmp (le gt)
3751 eqcmp (eq ne)
3752 (simplify
3753 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3754 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3755 (with
3756 {
3757 tree ty = TREE_TYPE (@0);
3758 unsigned prec = TYPE_PRECISION (ty);
3759 wide_int mask = wi::to_wide (@2, prec);
3760 wide_int rhs = wi::to_wide (@3, prec);
3761 signop sgn = TYPE_SIGN (ty);
3762 }
3763 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3764 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3765 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3766 { build_zero_cst (ty); }))))))
3767
0c3c84e3 3768/* -A CMP -B -> B CMP A. */
3769(for cmp (tcc_comparison)
3770 scmp (swapped_tcc_comparison)
3771 (simplify
3772 (cmp (negate @0) (negate @1))
3773 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3774 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3775 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3776 (scmp @0 @1)))
3777 (simplify
3778 (cmp (negate @0) CONSTANT_CLASS_P@1)
3779 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3780 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3781 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
0808dfce 3782 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
0c3c84e3 3783 (if (tem && !TREE_OVERFLOW (tem))
3784 (scmp @0 { tem; }))))))
3785
06e4870e 3786/* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3787(for op (eq ne)
3788 (simplify
3789 (op (abs @0) zerop@1)
3790 (op @0 @1)))
3791
3e39e829 3792/* From fold_sign_changed_comparison and fold_widened_comparison.
3793 FIXME: the lack of symmetry is disturbing. */
7725cd5b 3794(for cmp (simple_comparison)
3795 (simplify
3796 (cmp (convert@0 @00) (convert?@1 @10))
7550d855 3797 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
7725cd5b 3798 /* Disable this optimization if we're casting a function pointer
3799 type on targets that require function pointer canonicalization. */
3800 && !(targetm.have_canonicalize_funcptr_for_compare ()
b60c096b 3801 && ((POINTER_TYPE_P (TREE_TYPE (@00))
3802 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
3803 || (POINTER_TYPE_P (TREE_TYPE (@10))
3804 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
4e503e6f 3805 && single_use (@0))
7725cd5b 3806 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3807 && (TREE_CODE (@10) == INTEGER_CST
3e39e829 3808 || @1 != @10)
7725cd5b 3809 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3810 || cmp == NE_EXPR
3811 || cmp == EQ_EXPR)
3e39e829 3812 && !POINTER_TYPE_P (TREE_TYPE (@00)))
7725cd5b 3813 /* ??? The special-casing of INTEGER_CST conversion was in the original
3814 code and here to avoid a spurious overflow flag on the resulting
3815 constant which fold_convert produces. */
3816 (if (TREE_CODE (@1) == INTEGER_CST)
3817 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3818 TREE_OVERFLOW (@1)); })
3819 (cmp @00 (convert @1)))
3820
3821 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3822 /* If possible, express the comparison in the shorter mode. */
3823 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
7079d57a 3824 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3825 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3826 && TYPE_UNSIGNED (TREE_TYPE (@00))))
7725cd5b 3827 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3828 || ((TYPE_PRECISION (TREE_TYPE (@00))
3829 >= TYPE_PRECISION (TREE_TYPE (@10)))
3830 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3831 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3832 || (TREE_CODE (@10) == INTEGER_CST
5f223778 3833 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
7725cd5b 3834 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3835 (cmp @00 (convert @10))
3836 (if (TREE_CODE (@10) == INTEGER_CST
5f223778 3837 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
7725cd5b 3838 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3839 (with
3840 {
3841 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3842 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3843 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3844 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3845 }
3846 (if (above || below)
3847 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3848 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3849 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3850 { constant_boolean_node (above ? true : false, type); }
3851 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3852 { constant_boolean_node (above ? false : true, type); }))))))))))))
69693ea7 3853
8218bff7 3854(for cmp (eq ne)
3855 /* A local variable can never be pointed to by
3856 the default SSA name of an incoming parameter.
3857 SSA names are canonicalized to 2nd place. */
3858 (simplify
3859 (cmp addr@0 SSA_NAME@1)
3860 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3861 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3862 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3863 (if (TREE_CODE (base) == VAR_DECL
3864 && auto_var_in_fn_p (base, current_function_decl))
3865 (if (cmp == NE_EXPR)
3866 { constant_boolean_node (true, type); }
3867 { constant_boolean_node (false, type); }))))))
3868
69693ea7 3869/* Equality compare simplifications from fold_binary */
3870(for cmp (eq ne)
3871
3872 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3873 Similarly for NE_EXPR. */
3874 (simplify
3875 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3876 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
e3d0f65c 3877 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
69693ea7 3878 { constant_boolean_node (cmp == NE_EXPR, type); }))
3879
3880 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3881 (simplify
3882 (cmp (bit_xor @0 @1) integer_zerop)
3883 (cmp @0 @1))
3884
3885 /* (X ^ Y) == Y becomes X == 0.
3886 Likewise (X ^ Y) == X becomes Y == 0. */
3887 (simplify
6b440285 3888 (cmp:c (bit_xor:c @0 @1) @0)
69693ea7 3889 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3890
3891 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3892 (simplify
3893 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3894 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
f1054432 3895 (cmp @0 (bit_xor @1 (convert @2)))))
f1054432 3896
3897 (simplify
3898 (cmp (convert? addr@0) integer_zerop)
3899 (if (tree_single_nonzero_warnv_p (@0, NULL))
3900 { constant_boolean_node (cmp == NE_EXPR, type); })))
3901
06e4870e 3902/* If we have (A & C) == C where C is a power of 2, convert this into
3903 (A & C) != 0. Similarly for NE_EXPR. */
3904(for cmp (eq ne)
3905 icmp (ne eq)
3906 (simplify
3907 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3908 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
9603b585 3909
458de25d 3910/* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3911 convert this into a shift followed by ANDing with D. */
3912(simplify
3913 (cond
3914 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
9859f662 3915 INTEGER_CST@2 integer_zerop)
3916 (if (integer_pow2p (@2))
3917 (with {
3918 int shift = (wi::exact_log2 (wi::to_wide (@2))
3919 - wi::exact_log2 (wi::to_wide (@1)));
3920 }
3921 (if (shift > 0)
3922 (bit_and
3923 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3924 (bit_and
3925 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
3926 @2)))))
458de25d 3927
06e4870e 3928/* If we have (A & C) != 0 where C is the sign bit of A, convert
3929 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3930(for cmp (eq ne)
3931 ncmp (ge lt)
3932 (simplify
3933 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3934 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
654ba22c 3935 && type_has_mode_precision_p (TREE_TYPE (@0))
06e4870e 3936 && element_precision (@2) >= element_precision (@0)
e3d0f65c 3937 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
06e4870e 3938 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3939 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3940
458de25d 3941/* If we have A < 0 ? C : 0 where C is a power of 2, convert
fbfc7874 3942 this into a right shift or sign extension followed by ANDing with C. */
458de25d 3943(simplify
3944 (cond
3945 (lt @0 integer_zerop)
9859f662 3946 INTEGER_CST@1 integer_zerop)
3947 (if (integer_pow2p (@1)
3948 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
fbfc7874 3949 (with {
e3d0f65c 3950 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
fbfc7874 3951 }
3952 (if (shift >= 0)
3953 (bit_and
3954 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3955 @1)
3956 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3957 sign extension followed by AND with C will achieve the effect. */
3958 (bit_and (convert @0) @1)))))
458de25d 3959
aa0bf078 3960/* When the addresses are not directly of decls compare base and offset.
3961 This implements some remaining parts of fold_comparison address
3962 comparisons but still no complete part of it. Still it is good
3963 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3964(for cmp (simple_comparison)
3965 (simplify
c4699ff5 3966 (cmp (convert1?@2 addr@0) (convert2? addr@1))
aa0bf078 3967 (with
3968 {
773078cb 3969 poly_int64 off0, off1;
aa0bf078 3970 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3971 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3972 if (base0 && TREE_CODE (base0) == MEM_REF)
3973 {
90ca1268 3974 off0 += mem_ref_offset (base0).force_shwi ();
aa0bf078 3975 base0 = TREE_OPERAND (base0, 0);
3976 }
3977 if (base1 && TREE_CODE (base1) == MEM_REF)
3978 {
90ca1268 3979 off1 += mem_ref_offset (base1).force_shwi ();
aa0bf078 3980 base1 = TREE_OPERAND (base1, 0);
3981 }
3982 }
5e0b3d2f 3983 (if (base0 && base1)
3984 (with
3985 {
84ad0bc1 3986 int equal = 2;
9c8aeb66 3987 /* Punt in GENERIC on variables with value expressions;
3988 the value expressions might point to fields/elements
3989 of other vars etc. */
3990 if (GENERIC
3991 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3992 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3993 ;
3994 else if (decl_in_symtab_p (base0)
3995 && decl_in_symtab_p (base1))
5e0b3d2f 3996 equal = symtab_node::get_create (base0)
3997 ->equal_address_to (symtab_node::get_create (base1));
04a37b12 3998 else if ((DECL_P (base0)
3999 || TREE_CODE (base0) == SSA_NAME
4000 || TREE_CODE (base0) == STRING_CST)
4001 && (DECL_P (base1)
4002 || TREE_CODE (base1) == SSA_NAME
4003 || TREE_CODE (base1) == STRING_CST))
84ad0bc1 4004 equal = (base0 == base1);
15934f6e 4005 if (equal == 0)
4006 {
8bdbe403 4007 HOST_WIDE_INT ioff0 = -1, ioff1 = -1;
4008 off0.is_constant (&ioff0);
4009 off1.is_constant (&ioff1);
4010 if ((DECL_P (base0) && TREE_CODE (base1) == STRING_CST)
4011 || (TREE_CODE (base0) == STRING_CST && DECL_P (base1))
4012 || (TREE_CODE (base0) == STRING_CST
4013 && TREE_CODE (base1) == STRING_CST
4014 && ioff0 >= 0 && ioff1 >= 0
4015 && ioff0 < TREE_STRING_LENGTH (base0)
4016 && ioff1 < TREE_STRING_LENGTH (base1)
4017 /* This is a too conservative test that the STRING_CSTs
4018 will not end up being string-merged. */
4019 && strncmp (TREE_STRING_POINTER (base0) + ioff0,
4020 TREE_STRING_POINTER (base1) + ioff1,
4021 MIN (TREE_STRING_LENGTH (base0) - ioff0,
4022 TREE_STRING_LENGTH (base1) - ioff1)) != 0))
4023 ;
4024 else if (!DECL_P (base0) || !DECL_P (base1))
15934f6e 4025 equal = 2;
4026 else if (cmp != EQ_EXPR && cmp != NE_EXPR)
4027 equal = 2;
4028 /* If this is a pointer comparison, ignore for now even
4029 valid equalities where one pointer is the offset zero
4030 of one object and the other to one past end of another one. */
4031 else if (!INTEGRAL_TYPE_P (TREE_TYPE (@2)))
4032 ;
4033 /* Assume that automatic variables can't be adjacent to global
4034 variables. */
4035 else if (is_global_var (base0) != is_global_var (base1))
4036 ;
4037 else
4038 {
4039 tree sz0 = DECL_SIZE_UNIT (base0);
4040 tree sz1 = DECL_SIZE_UNIT (base1);
4041 /* If sizes are unknown, e.g. VLA or not representable,
4042 punt. */
4043 if (!tree_fits_poly_int64_p (sz0)
4044 || !tree_fits_poly_int64_p (sz1))
4045 equal = 2;
4046 else
4047 {
4048 poly_int64 size0 = tree_to_poly_int64 (sz0);
4049 poly_int64 size1 = tree_to_poly_int64 (sz1);
4050 /* If one offset is pointing (or could be) to the beginning
4051 of one object and the other is pointing to one past the
4052 last byte of the other object, punt. */
4053 if (maybe_eq (off0, 0) && maybe_eq (off1, size1))
4054 equal = 2;
4055 else if (maybe_eq (off1, 0) && maybe_eq (off0, size0))
4056 equal = 2;
4057 /* If both offsets are the same, there are some cases
4058 we know that are ok. Either if we know they aren't
4059 zero, or if we know both sizes are no zero. */
4060 if (equal == 2
4061 && known_eq (off0, off1)
4062 && (known_ne (off0, 0)
4063 || (known_ne (size0, 0) && known_ne (size1, 0))))
4064 equal = 0;
4065 }
4066 }
4067 }
5e0b3d2f 4068 }
977361a1 4069 (if (equal == 1
4070 && (cmp == EQ_EXPR || cmp == NE_EXPR
4071 /* If the offsets are equal we can ignore overflow. */
4072 || known_eq (off0, off1)
4073 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4074 /* Or if we compare using pointers to decls or strings. */
4075 || (POINTER_TYPE_P (TREE_TYPE (@2))
4076 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
5e0b3d2f 4077 (switch
773078cb 4078 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4079 { constant_boolean_node (known_eq (off0, off1), type); })
4080 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4081 { constant_boolean_node (known_ne (off0, off1), type); })
4082 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
4083 { constant_boolean_node (known_lt (off0, off1), type); })
4084 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
4085 { constant_boolean_node (known_le (off0, off1), type); })
4086 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
4087 { constant_boolean_node (known_ge (off0, off1), type); })
4088 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
4089 { constant_boolean_node (known_gt (off0, off1), type); }))
15934f6e 4090 (if (equal == 0)
4091 (switch
4092 (if (cmp == EQ_EXPR)
4093 { constant_boolean_node (false, type); })
4094 (if (cmp == NE_EXPR)
4095 { constant_boolean_node (true, type); })))))))))
69693ea7 4096
73447cc5 4097/* Simplify pointer equality compares using PTA. */
4098(for neeq (ne eq)
4099 (simplify
4100 (neeq @0 @1)
4101 (if (POINTER_TYPE_P (TREE_TYPE (@0))
4102 && ptrs_compare_unequal (@0, @1))
326e3d4e 4103 { constant_boolean_node (neeq != EQ_EXPR, type); })))
73447cc5 4104
b2930f09 4105/* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
c91ee73b 4106 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
4107 Disable the transform if either operand is pointer to function.
4108 This broke pr22051-2.c for arm where function pointer
4109 canonicalizaion is not wanted. */
a2f87f25 4110
b2930f09 4111(for cmp (ne eq)
4112 (simplify
4113 (cmp (convert @0) INTEGER_CST@1)
ba3186de 4114 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
4115 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
4116 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4117 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4118 && POINTER_TYPE_P (TREE_TYPE (@1))
4119 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
4120 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
b2930f09 4121 (cmp @0 (convert @1)))))
4122
0a45b027 4123/* Non-equality compare simplifications from fold_binary */
4124(for cmp (lt gt le ge)
4125 /* Comparisons with the highest or lowest possible integer of
4126 the specified precision will have known values. */
4127 (simplify
7931f9ca 4128 (cmp (convert?@2 @0) uniform_integer_cst_p@1)
4129 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
4130 || POINTER_TYPE_P (TREE_TYPE (@1))
4131 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
0a45b027 4132 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
4133 (with
4134 {
7931f9ca 4135 tree cst = uniform_integer_cst_p (@1);
4136 tree arg1_type = TREE_TYPE (cst);
0a45b027 4137 unsigned int prec = TYPE_PRECISION (arg1_type);
4138 wide_int max = wi::max_value (arg1_type);
4139 wide_int signed_max = wi::max_value (prec, SIGNED);
4140 wide_int min = wi::min_value (arg1_type);
4141 }
4142 (switch
7931f9ca 4143 (if (wi::to_wide (cst) == max)
0a45b027 4144 (switch
4145 (if (cmp == GT_EXPR)
4146 { constant_boolean_node (false, type); })
4147 (if (cmp == GE_EXPR)
4148 (eq @2 @1))
4149 (if (cmp == LE_EXPR)
4150 { constant_boolean_node (true, type); })
4151 (if (cmp == LT_EXPR)
4152 (ne @2 @1))))
7931f9ca 4153 (if (wi::to_wide (cst) == min)
0a45b027 4154 (switch
4155 (if (cmp == LT_EXPR)
4156 { constant_boolean_node (false, type); })
4157 (if (cmp == LE_EXPR)
4158 (eq @2 @1))
4159 (if (cmp == GE_EXPR)
4160 { constant_boolean_node (true, type); })
4161 (if (cmp == GT_EXPR)
4162 (ne @2 @1))))
7931f9ca 4163 (if (wi::to_wide (cst) == max - 1)
39e21ca8 4164 (switch
4165 (if (cmp == GT_EXPR)
7931f9ca 4166 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4167 wide_int_to_tree (TREE_TYPE (cst),
4168 wi::to_wide (cst)
4169 + 1)); }))
39e21ca8 4170 (if (cmp == LE_EXPR)
7931f9ca 4171 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4172 wide_int_to_tree (TREE_TYPE (cst),
4173 wi::to_wide (cst)
4174 + 1)); }))))
4175 (if (wi::to_wide (cst) == min + 1)
0a45b027 4176 (switch
4177 (if (cmp == GE_EXPR)
7931f9ca 4178 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4179 wide_int_to_tree (TREE_TYPE (cst),
4180 wi::to_wide (cst)
4181 - 1)); }))
0a45b027 4182 (if (cmp == LT_EXPR)
7931f9ca 4183 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4184 wide_int_to_tree (TREE_TYPE (cst),
4185 wi::to_wide (cst)
4186 - 1)); }))))
4187 (if (wi::to_wide (cst) == signed_max
0a45b027 4188 && TYPE_UNSIGNED (arg1_type)
4189 /* We will flip the signedness of the comparison operator
4190 associated with the mode of @1, so the sign bit is
4191 specified by this mode. Check that @1 is the signed
4192 max associated with this sign bit. */
03b7a719 4193 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
0a45b027 4194 /* signed_type does not work on pointer types. */
4195 && INTEGRAL_TYPE_P (arg1_type))
4196 /* The following case also applies to X < signed_max+1
4197 and X >= signed_max+1 because previous transformations. */
4198 (if (cmp == LE_EXPR || cmp == GT_EXPR)
7931f9ca 4199 (with { tree st = signed_type_for (TREE_TYPE (@1)); }
4200 (switch
4201 (if (cst == @1 && cmp == LE_EXPR)
4202 (ge (convert:st @0) { build_zero_cst (st); }))
4203 (if (cst == @1 && cmp == GT_EXPR)
4204 (lt (convert:st @0) { build_zero_cst (st); }))
4205 (if (cmp == LE_EXPR)
4206 (ge (view_convert:st @0) { build_zero_cst (st); }))
4207 (if (cmp == GT_EXPR)
4208 (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
9603b585 4209
56b4132e 4210(for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
4211 /* If the second operand is NaN, the result is constant. */
4212 (simplify
4213 (cmp @0 REAL_CST@1)
4214 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4215 && (cmp != LTGT_EXPR || ! flag_trapping_math))
05999bfc 4216 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
56b4132e 4217 ? false : true, type); })))
0a45b027 4218
004b4ca3 4219/* bool_var != 0 becomes bool_var. */
4220(simplify
56b4132e 4221 (ne @0 integer_zerop)
004b4ca3 4222 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4223 && types_match (type, TREE_TYPE (@0)))
4224 (non_lvalue @0)))
4225/* bool_var == 1 becomes bool_var. */
4226(simplify
56b4132e 4227 (eq @0 integer_onep)
004b4ca3 4228 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4229 && types_match (type, TREE_TYPE (@0)))
4230 (non_lvalue @0)))
56b4132e 4231/* Do not handle
4232 bool_var == 0 becomes !bool_var or
4233 bool_var != 1 becomes !bool_var
4234 here because that only is good in assignment context as long
4235 as we require a tcc_comparison in GIMPLE_CONDs where we'd
4236 replace if (x == 0) with tem = ~x; if (tem != 0) which is
4237 clearly less optimal and which we'll transform again in forwprop. */
004b4ca3 4238
8c51f92f 4239/* When one argument is a constant, overflow detection can be simplified.
4240 Currently restricted to single use so as not to interfere too much with
4241 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
4242 A + CST CMP A -> A CMP' CST' */
4243(for cmp (lt le ge gt)
4244 out (gt gt le le)
4245 (simplify
a1a80007 4246 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
8c51f92f 4247 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4248 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
e3d0f65c 4249 && wi::to_wide (@1) != 0
8c51f92f 4250 && single_use (@2))
e3d0f65c 4251 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
4252 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
4253 wi::max_value (prec, UNSIGNED)
4254 - wi::to_wide (@1)); })))))
8c51f92f 4255
dfba0905 4256/* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
4257 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
4258 expects the long form, so we restrict the transformation for now. */
4259(for cmp (gt le)
4260 (simplify
a1a80007 4261 (cmp:c (minus@2 @0 @1) @0)
dfba0905 4262 (if (single_use (@2)
4263 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4264 && TYPE_UNSIGNED (TREE_TYPE (@0))
4265 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4266 (cmp @1 @0))))
dfba0905 4267
4268/* Testing for overflow is unnecessary if we already know the result. */
dfba0905 4269/* A - B > A */
4270(for cmp (gt le)
4271 out (ne eq)
4272 (simplify
a1a80007 4273 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
dfba0905 4274 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4275 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4276 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4277/* A + B < A */
4278(for cmp (lt ge)
4279 out (ne eq)
4280 (simplify
a1a80007 4281 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
dfba0905 4282 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4283 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4284 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4285
8928f8d3 4286/* For unsigned operands, -1 / B < A checks whether A * B would overflow.
765557c0 4287 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
765557c0 4288(for cmp (lt ge)
4289 out (ne eq)
4290 (simplify
8928f8d3 4291 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
765557c0 4292 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
4293 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
4294 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
004b4ca3 4295
a153e7b3 4296/* Simplification of math builtins. These rules must all be optimizations
4297 as well as IL simplifications. If there is a possibility that the new
4298 form could be a pessimization, the rule should go in the canonicalization
4299 section that follows this one.
f8dad9b4 4300
a153e7b3 4301 Rules can generally go in this section if they satisfy one of
4302 the following:
4303
4304 - the rule describes an identity
4305
4306 - the rule replaces calls with something as simple as addition or
4307 multiplication
4308
4309 - the rule contains unary calls only and simplifies the surrounding
4310 arithmetic. (The idea here is to exclude non-unary calls in which
4311 one operand is constant and in which the call is known to be cheap
4312 when the operand has that value.) */
e09fc89c 4313
a153e7b3 4314(if (flag_unsafe_math_optimizations)
e09fc89c 4315 /* Simplify sqrt(x) * sqrt(x) -> x. */
4316 (simplify
054e9558 4317 (mult (SQRT_ALL@1 @0) @1)
e09fc89c 4318 (if (!HONOR_SNANS (type))
4319 @0))
4320
402ad641 4321 (for op (plus minus)
4322 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
4323 (simplify
4324 (op (rdiv @0 @1)
4325 (rdiv @2 @1))
4326 (rdiv (op @0 @2) @1)))
4327
7abecd46 4328 (for cmp (lt le gt ge)
4329 neg_cmp (gt ge lt le)
4330 /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
4331 (simplify
4332 (cmp (mult @0 REAL_CST@1) REAL_CST@2)
4333 (with
4334 { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
4335 (if (tem
4336 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
4337 || (real_zerop (tem) && !real_zerop (@1))))
4338 (switch
4339 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
4340 (cmp @0 { tem; }))
4341 (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
4342 (neg_cmp @0 { tem; })))))))
4343
b036e74b 4344 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
4345 (for root (SQRT CBRT)
4346 (simplify
4347 (mult (root:s @0) (root:s @1))
4348 (root (mult @0 @1))))
4349
b036e74b 4350 /* Simplify expN(x) * expN(y) -> expN(x+y). */
4351 (for exps (EXP EXP2 EXP10 POW10)
4352 (simplify
4353 (mult (exps:s @0) (exps:s @1))
4354 (exps (plus @0 @1))))
4355
e09fc89c 4356 /* Simplify a/root(b/c) into a*root(c/b). */
b036e74b 4357 (for root (SQRT CBRT)
4358 (simplify
4359 (rdiv @0 (root:s (rdiv:s @1 @2)))
4360 (mult @0 (root (rdiv @2 @1)))))
4361
4362 /* Simplify x/expN(y) into x*expN(-y). */
4363 (for exps (EXP EXP2 EXP10 POW10)
4364 (simplify
4365 (rdiv @0 (exps:s @1))
4366 (mult @0 (exps (negate @1)))))
e09fc89c 4367
6b0c8e84 4368 (for logs (LOG LOG2 LOG10 LOG10)
4369 exps (EXP EXP2 EXP10 POW10)
762f6b3b 4370 /* logN(expN(x)) -> x. */
f8dad9b4 4371 (simplify
4372 (logs (exps @0))
762f6b3b 4373 @0)
4374 /* expN(logN(x)) -> x. */
4375 (simplify
4376 (exps (logs @0))
4377 @0))
a153e7b3 4378
f8dad9b4 4379 /* Optimize logN(func()) for various exponential functions. We
4380 want to determine the value "x" and the power "exponent" in
4381 order to transform logN(x**exponent) into exponent*logN(x). */
6b0c8e84 4382 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
4383 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
f8dad9b4 4384 (simplify
4385 (logs (exps @0))
3a18d05c 4386 (if (SCALAR_FLOAT_TYPE_P (type))
4387 (with {
4388 tree x;
4389 switch (exps)
4390 {
4391 CASE_CFN_EXP:
4392 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
4393 x = build_real_truncate (type, dconst_e ());
4394 break;
4395 CASE_CFN_EXP2:
4396 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
4397 x = build_real (type, dconst2);
4398 break;
4399 CASE_CFN_EXP10:
4400 CASE_CFN_POW10:
4401 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
4402 {
4403 REAL_VALUE_TYPE dconst10;
4404 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
4405 x = build_real (type, dconst10);
4406 }
4407 break;
4408 default:
4409 gcc_unreachable ();
4410 }
4411 }
4412 (mult (logs { x; }) @0)))))
a153e7b3 4413
f8dad9b4 4414 (for logs (LOG LOG
4415 LOG2 LOG2
4416 LOG10 LOG10)
4417 exps (SQRT CBRT)
4418 (simplify
4419 (logs (exps @0))
3a18d05c 4420 (if (SCALAR_FLOAT_TYPE_P (type))
4421 (with {
4422 tree x;
4423 switch (exps)
4424 {
4425 CASE_CFN_SQRT:
4426 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4427 x = build_real (type, dconsthalf);
4428 break;
4429 CASE_CFN_CBRT:
4430 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4431 x = build_real_truncate (type, dconst_third ());
4432 break;
4433 default:
4434 gcc_unreachable ();
4435 }
4436 }
4437 (mult { x; } (logs @0))))))
a153e7b3 4438
4439 /* logN(pow(x,exponent)) -> exponent*logN(x). */
f8dad9b4 4440 (for logs (LOG LOG2 LOG10)
4441 pows (POW)
4442 (simplify
4443 (logs (pows @0 @1))
a153e7b3 4444 (mult @1 (logs @0))))
4445
a35ca444 4446 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4447 or if C is a positive power of 2,
4448 pow(C,x) -> exp2(log2(C)*x). */
91674b2a 4449#if GIMPLE
6b0b3b89 4450 (for pows (POW)
4451 exps (EXP)
4452 logs (LOG)
a35ca444 4453 exp2s (EXP2)
4454 log2s (LOG2)
6b0b3b89 4455 (simplify
4456 (pows REAL_CST@0 @1)
a35ca444 4457 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
d38b0287 4458 && real_isfinite (TREE_REAL_CST_PTR (@0))
4459 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4460 the use_exp2 case until after vectorization. It seems actually
4461 beneficial for all constants to postpone this until later,
4462 because exp(log(C)*x), while faster, will have worse precision
4463 and if x folds into a constant too, that is unnecessary
4464 pessimization. */
4465 && canonicalize_math_after_vectorization_p ())
a35ca444 4466 (with {
4467 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4468 bool use_exp2 = false;
4469 if (targetm.libc_has_function (function_c99_misc)
4470 && value->cl == rvc_normal)
4471 {
4472 REAL_VALUE_TYPE frac_rvt = *value;
4473 SET_REAL_EXP (&frac_rvt, 1);
4474 if (real_equal (&frac_rvt, &dconst1))
4475 use_exp2 = true;
4476 }
4477 }
4478 (if (!use_exp2)
91674b2a 4479 (if (optimize_pow_to_exp (@0, @1))
4480 (exps (mult (logs @0) @1)))
d38b0287 4481 (exp2s (mult (log2s @0) @1)))))))
91674b2a 4482#endif
6b0b3b89 4483
8664f262 4484 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4485 (for pows (POW)
4486 exps (EXP EXP2 EXP10 POW10)
4487 logs (LOG LOG2 LOG10 LOG10)
4488 (simplify
4489 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4490 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4491 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4492 (exps (plus (mult (logs @0) @1) @2)))))
4493
a153e7b3 4494 (for sqrts (SQRT)
4495 cbrts (CBRT)
cef15d09 4496 pows (POW)
a153e7b3 4497 exps (EXP EXP2 EXP10 POW10)
4498 /* sqrt(expN(x)) -> expN(x*0.5). */
4499 (simplify
4500 (sqrts (exps @0))
4501 (exps (mult @0 { build_real (type, dconsthalf); })))
4502 /* cbrt(expN(x)) -> expN(x/3). */
4503 (simplify
4504 (cbrts (exps @0))
cef15d09 4505 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4506 /* pow(expN(x), y) -> expN(x*y). */
4507 (simplify
4508 (pows (exps @0) @1)
4509 (exps (mult @0 @1))))
390c3cff 4510
4511 /* tan(atan(x)) -> x. */
4512 (for tans (TAN)
4513 atans (ATAN)
4514 (simplify
4515 (tans (atans @0))
4516 @0)))
a153e7b3 4517
985ceb32 4518 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
4519 (for sins (SIN)
4520 atans (ATAN)
4521 sqrts (SQRT)
4522 copysigns (COPYSIGN)
4523 (simplify
4524 (sins (atans:s @0))
4525 (with
4526 {
4527 REAL_VALUE_TYPE r_cst;
4528 build_sinatan_real (&r_cst, type);
4529 tree t_cst = build_real (type, r_cst);
4530 tree t_one = build_one_cst (type);
4531 }
4532 (if (SCALAR_FLOAT_TYPE_P (type))
b7d73df0 4533 (cond (lt (abs @0) { t_cst; })
985ceb32 4534 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
4535 (copysigns { t_one; } @0))))))
4536
4537/* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
4538 (for coss (COS)
4539 atans (ATAN)
4540 sqrts (SQRT)
4541 copysigns (COPYSIGN)
4542 (simplify
4543 (coss (atans:s @0))
4544 (with
4545 {
4546 REAL_VALUE_TYPE r_cst;
4547 build_sinatan_real (&r_cst, type);
4548 tree t_cst = build_real (type, r_cst);
4549 tree t_one = build_one_cst (type);
4550 tree t_zero = build_zero_cst (type);
4551 }
4552 (if (SCALAR_FLOAT_TYPE_P (type))
b7d73df0 4553 (cond (lt (abs @0) { t_cst; })
985ceb32 4554 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
4555 (copysigns { t_zero; } @0))))))
4556
fcc6ff28 4557 (if (!flag_errno_math)
4558 /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
4559 (for sinhs (SINH)
4560 atanhs (ATANH)
4561 sqrts (SQRT)
4562 (simplify
4563 (sinhs (atanhs:s @0))
4564 (with { tree t_one = build_one_cst (type); }
4565 (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
4566
4567 /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
4568 (for coshs (COSH)
4569 atanhs (ATANH)
4570 sqrts (SQRT)
4571 (simplify
4572 (coshs (atanhs:s @0))
4573 (with { tree t_one = build_one_cst (type); }
4574 (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
4575
d064d976 4576/* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4577(simplify
2f99fc04 4578 (CABS (complex:C @0 real_zerop@1))
d064d976 4579 (abs @0))
4580
6f5f406a 4581/* trunc(trunc(x)) -> trunc(x), etc. */
054e9558 4582(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
6f5f406a 4583 (simplify
4584 (fns (fns @0))
4585 (fns @0)))
4586/* f(x) -> x if x is integer valued and f does nothing for such values. */
054e9558 4587(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
6f5f406a 4588 (simplify
4589 (fns integer_valued_real_p@0)
4590 @0))
6f5f406a 4591
35c5f68c 4592/* hypot(x,0) and hypot(0,x) -> abs(x). */
4593(simplify
3a18d05c 4594 (HYPOT:c @0 real_zerop@1)
35c5f68c 4595 (abs @0))
4596
cef15d09 4597/* pow(1,x) -> 1. */
4598(simplify
4599 (POW real_onep@0 @1)
4600 @0)
4601
66dc9fcd 4602(simplify
4603 /* copysign(x,x) -> x. */
054e9558 4604 (COPYSIGN_ALL @0 @0)
66dc9fcd 4605 @0)
4606
4607(simplify
4608 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
054e9558 4609 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
66dc9fcd 4610 (abs @0))
4611
7d705d57 4612(for scale (LDEXP SCALBN SCALBLN)
4613 /* ldexp(0, x) -> 0. */
4614 (simplify
4615 (scale real_zerop@0 @1)
4616 @0)
4617 /* ldexp(x, 0) -> x. */
4618 (simplify
4619 (scale @0 integer_zerop@1)
4620 @0)
4621 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4622 (simplify
4623 (scale REAL_CST@0 @1)
4624 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4625 @0)))
4626
a153e7b3 4627/* Canonicalization of sequences of math builtins. These rules represent
4628 IL simplifications but are not necessarily optimizations.
4629
4630 The sincos pass is responsible for picking "optimal" implementations
4631 of math builtins, which may be more complicated and can sometimes go
4632 the other way, e.g. converting pow into a sequence of sqrts.
4633 We only want to do these canonicalizations before the pass has run. */
4634
4635(if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4636 /* Simplify tan(x) * cos(x) -> sin(x). */
4637 (simplify
4638 (mult:c (TAN:s @0) (COS:s @0))
4639 (SIN @0))
4640
4641 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4642 (simplify
cbcde149 4643 (mult:c @0 (POW:s @0 REAL_CST@1))
a153e7b3 4644 (if (!TREE_OVERFLOW (@1))
4645 (POW @0 (plus @1 { build_one_cst (type); }))))
4646
4647 /* Simplify sin(x) / cos(x) -> tan(x). */
4648 (simplify
4649 (rdiv (SIN:s @0) (COS:s @0))
4650 (TAN @0))
4651
4652 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4653 (simplify
4654 (rdiv (COS:s @0) (SIN:s @0))
4655 (rdiv { build_one_cst (type); } (TAN @0)))
4656
4657 /* Simplify sin(x) / tan(x) -> cos(x). */
4658 (simplify
4659 (rdiv (SIN:s @0) (TAN:s @0))
4660 (if (! HONOR_NANS (@0)
4661 && ! HONOR_INFINITIES (@0))
3a18d05c 4662 (COS @0)))
a153e7b3 4663
4664 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4665 (simplify
4666 (rdiv (TAN:s @0) (SIN:s @0))
4667 (if (! HONOR_NANS (@0)
4668 && ! HONOR_INFINITIES (@0))
4669 (rdiv { build_one_cst (type); } (COS @0))))
4670
4671 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4672 (simplify
4673 (mult (POW:s @0 @1) (POW:s @0 @2))
4674 (POW @0 (plus @1 @2)))
4675
4676 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4677 (simplify
4678 (mult (POW:s @0 @1) (POW:s @2 @1))
4679 (POW (mult @0 @2) @1))
4680
cbcde149 4681 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4682 (simplify
4683 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4684 (POWI (mult @0 @2) @1))
4685
a153e7b3 4686 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4687 (simplify
4688 (rdiv (POW:s @0 REAL_CST@1) @0)
4689 (if (!TREE_OVERFLOW (@1))
4690 (POW @0 (minus @1 { build_one_cst (type); }))))
4691
4692 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4693 (simplify
4694 (rdiv @0 (POW:s @1 @2))
4695 (mult @0 (POW @1 (negate @2))))
4696
4697 (for sqrts (SQRT)
4698 cbrts (CBRT)
4699 pows (POW)
4700 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4701 (simplify
4702 (sqrts (sqrts @0))
4703 (pows @0 { build_real (type, dconst_quarter ()); }))
4704 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4705 (simplify
4706 (sqrts (cbrts @0))
4707 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4708 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4709 (simplify
4710 (cbrts (sqrts @0))
4711 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4712 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4713 (simplify
4714 (cbrts (cbrts tree_expr_nonnegative_p@0))
4715 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4716 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4717 (simplify
4718 (sqrts (pows @0 @1))
4719 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4720 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4721 (simplify
4722 (cbrts (pows tree_expr_nonnegative_p@0 @1))
cef15d09 4723 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4724 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4725 (simplify
4726 (pows (sqrts @0) @1)
4727 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4728 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4729 (simplify
4730 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4731 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4732 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4733 (simplify
4734 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4735 (pows @0 (mult @1 @2))))
d064d976 4736
4737 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4738 (simplify
4739 (CABS (complex @0 @0))
5e324b84 4740 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4741
35c5f68c 4742 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4743 (simplify
4744 (HYPOT @0 @0)
4745 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4746
5e324b84 4747 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4748 (for cexps (CEXP)
4749 exps (EXP)
4750 cexpis (CEXPI)
4751 (simplify
4752 (cexps compositional_complex@0)
4753 (if (targetm.libc_has_function (function_c99_math_complex))
4754 (complex
4755 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4756 (mult @1 (imagpart @2)))))))
f8dad9b4 4757
6f5f406a 4758(if (canonicalize_math_p ())
4759 /* floor(x) -> trunc(x) if x is nonnegative. */
054e9558 4760 (for floors (FLOOR_ALL)
4761 truncs (TRUNC_ALL)
6f5f406a 4762 (simplify
4763 (floors tree_expr_nonnegative_p@0)
4764 (truncs @0))))
4765
4766(match double_value_p
4767 @0
4768 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4769(for froms (BUILT_IN_TRUNCL
4770 BUILT_IN_FLOORL
4771 BUILT_IN_CEILL
4772 BUILT_IN_ROUNDL
4773 BUILT_IN_NEARBYINTL
4774 BUILT_IN_RINTL)
4775 tos (BUILT_IN_TRUNC
4776 BUILT_IN_FLOOR
4777 BUILT_IN_CEIL
4778 BUILT_IN_ROUND
4779 BUILT_IN_NEARBYINT
4780 BUILT_IN_RINT)
4781 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4782 (if (optimize && canonicalize_math_p ())
4783 (simplify
4784 (froms (convert double_value_p@0))
4785 (convert (tos @0)))))
4786
4787(match float_value_p
4788 @0
4789 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4790(for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4791 BUILT_IN_FLOORL BUILT_IN_FLOOR
4792 BUILT_IN_CEILL BUILT_IN_CEIL
4793 BUILT_IN_ROUNDL BUILT_IN_ROUND
4794 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4795 BUILT_IN_RINTL BUILT_IN_RINT)
4796 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4797 BUILT_IN_FLOORF BUILT_IN_FLOORF
4798 BUILT_IN_CEILF BUILT_IN_CEILF
4799 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4800 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4801 BUILT_IN_RINTF BUILT_IN_RINTF)
4802 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4803 if x is a float. */
92159af9 4804 (if (optimize && canonicalize_math_p ()
4805 && targetm.libc_has_function (function_c99_misc))
6f5f406a 4806 (simplify
4807 (froms (convert float_value_p@0))
4808 (convert (tos @0)))))
4809
1117ed35 4810(for froms (XFLOORL XCEILL XROUNDL XRINTL)
4811 tos (XFLOOR XCEIL XROUND XRINT)
4812 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4813 (if (optimize && canonicalize_math_p ())
4814 (simplify
4815 (froms (convert double_value_p@0))
4816 (tos @0))))
4817
4818(for froms (XFLOORL XCEILL XROUNDL XRINTL
4819 XFLOOR XCEIL XROUND XRINT)
4820 tos (XFLOORF XCEILF XROUNDF XRINTF)
4821 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4822 if x is a float. */
4823 (if (optimize && canonicalize_math_p ())
4824 (simplify
4825 (froms (convert float_value_p@0))
4826 (tos @0))))
4827
4828(if (canonicalize_math_p ())
4829 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4830 (for floors (IFLOOR LFLOOR LLFLOOR)
4831 (simplify
4832 (floors tree_expr_nonnegative_p@0)
4833 (fix_trunc @0))))
4834
4835(if (canonicalize_math_p ())
4836 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4837 (for fns (IFLOOR LFLOOR LLFLOOR
4838 ICEIL LCEIL LLCEIL
4839 IROUND LROUND LLROUND)
4840 (simplify
4841 (fns integer_valued_real_p@0)
4842 (fix_trunc @0)))
4843 (if (!flag_errno_math)
4844 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4845 (for rints (IRINT LRINT LLRINT)
4846 (simplify
4847 (rints integer_valued_real_p@0)
4848 (fix_trunc @0)))))
4849
4850(if (canonicalize_math_p ())
4851 (for ifn (IFLOOR ICEIL IROUND IRINT)
4852 lfn (LFLOOR LCEIL LROUND LRINT)
4853 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4854 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4855 sizeof (int) == sizeof (long). */
4856 (if (TYPE_PRECISION (integer_type_node)
4857 == TYPE_PRECISION (long_integer_type_node))
4858 (simplify
4859 (ifn @0)
4860 (lfn:long_integer_type_node @0)))
4861 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4862 sizeof (long long) == sizeof (long). */
4863 (if (TYPE_PRECISION (long_long_integer_type_node)
4864 == TYPE_PRECISION (long_integer_type_node))
4865 (simplify
4866 (llfn @0)
4867 (lfn:long_integer_type_node @0)))))
4868
92f3c1b2 4869/* cproj(x) -> x if we're ignoring infinities. */
4870(simplify
4871 (CPROJ @0)
4872 (if (!HONOR_INFINITIES (type))
4873 @0))
4874
ec11da34 4875/* If the real part is inf and the imag part is known to be
4876 nonnegative, return (inf + 0i). */
4877(simplify
4878 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4879 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
92f3c1b2 4880 { build_complex_inf (type, false); }))
4881
ec11da34 4882/* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4883(simplify
4884 (CPROJ (complex @0 REAL_CST@1))
4885 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
92f3c1b2 4886 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
ec11da34 4887
cef15d09 4888(for pows (POW)
4889 sqrts (SQRT)
4890 cbrts (CBRT)
4891 (simplify
4892 (pows @0 REAL_CST@1)
4893 (with {
4894 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4895 REAL_VALUE_TYPE tmp;
4896 }
4897 (switch
4898 /* pow(x,0) -> 1. */
4899 (if (real_equal (value, &dconst0))
4900 { build_real (type, dconst1); })
4901 /* pow(x,1) -> x. */
4902 (if (real_equal (value, &dconst1))
4903 @0)
4904 /* pow(x,-1) -> 1/x. */
4905 (if (real_equal (value, &dconstm1))
4906 (rdiv { build_real (type, dconst1); } @0))
4907 /* pow(x,0.5) -> sqrt(x). */
4908 (if (flag_unsafe_math_optimizations
4909 && canonicalize_math_p ()
4910 && real_equal (value, &dconsthalf))
4911 (sqrts @0))
4912 /* pow(x,1/3) -> cbrt(x). */
4913 (if (flag_unsafe_math_optimizations
4914 && canonicalize_math_p ()
4915 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4916 real_equal (value, &tmp)))
4917 (cbrts @0))))))
ec11da34 4918
ff190980 4919/* powi(1,x) -> 1. */
4920(simplify
4921 (POWI real_onep@0 @1)
4922 @0)
4923
4924(simplify
4925 (POWI @0 INTEGER_CST@1)
4926 (switch
4927 /* powi(x,0) -> 1. */
e3d0f65c 4928 (if (wi::to_wide (@1) == 0)
ff190980 4929 { build_real (type, dconst1); })
4930 /* powi(x,1) -> x. */
e3d0f65c 4931 (if (wi::to_wide (@1) == 1)
ff190980 4932 @0)
4933 /* powi(x,-1) -> 1/x. */
e3d0f65c 4934 (if (wi::to_wide (@1) == -1)
ff190980 4935 (rdiv { build_real (type, dconst1); } @0))))
4936
9603b585 4937/* Narrowing of arithmetic and logical operations.
eaa6752e 4938
4939 These are conceptually similar to the transformations performed for
4940 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4941 term we want to move all that code out of the front-ends into here. */
4942
f3abf7fd 4943/* Convert (outertype)((innertype0)a+(innertype1)b)
4944 into ((newtype)a+(newtype)b) where newtype
4945 is the widest mode from all of these. */
4946(for op (plus minus mult rdiv)
4947 (simplify
4948 (convert (op:s@0 (convert1?@3 @1) (convert2?@4 @2)))
4949 /* If we have a narrowing conversion of an arithmetic operation where
4950 both operands are widening conversions from the same type as the outer
4951 narrowing conversion. Then convert the innermost operands to a
4952 suitable unsigned type (to avoid introducing undefined behavior),
4953 perform the operation and convert the result to the desired type. */
4954 (if (INTEGRAL_TYPE_P (type)
4955 && op != MULT_EXPR
4956 && op != RDIV_EXPR
4957 /* We check for type compatibility between @0 and @1 below,
4958 so there's no need to check that @2/@4 are integral types. */
4959 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
4960 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
4961 /* The precision of the type of each operand must match the
4962 precision of the mode of each operand, similarly for the
4963 result. */
4964 && type_has_mode_precision_p (TREE_TYPE (@1))
4965 && type_has_mode_precision_p (TREE_TYPE (@2))
4966 && type_has_mode_precision_p (type)
4967 /* The inner conversion must be a widening conversion. */
4968 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@1))
4969 && types_match (@1, type)
4970 && (types_match (@1, @2)
4971 /* Or the second operand is const integer or converted const
4972 integer from valueize. */
4973 || TREE_CODE (@2) == INTEGER_CST))
4974 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
4975 (op @1 (convert @2))
4976 (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
4977 (convert (op (convert:utype @1)
4978 (convert:utype @2)))))
4979 (if (FLOAT_TYPE_P (type)
4980 && DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
4981 == DECIMAL_FLOAT_TYPE_P (type))
4982 (with { tree arg0 = strip_float_extensions (@1);
4983 tree arg1 = strip_float_extensions (@2);
4984 tree itype = TREE_TYPE (@0);
4985 tree ty1 = TREE_TYPE (arg0);
4986 tree ty2 = TREE_TYPE (arg1);
4987 enum tree_code code = TREE_CODE (itype); }
4988 (if (FLOAT_TYPE_P (ty1)
4989 && FLOAT_TYPE_P (ty2))
4990 (with { tree newtype = type;
4991 if (TYPE_MODE (ty1) == SDmode
4992 || TYPE_MODE (ty2) == SDmode
4993 || TYPE_MODE (type) == SDmode)
4994 newtype = dfloat32_type_node;
4995 if (TYPE_MODE (ty1) == DDmode
4996 || TYPE_MODE (ty2) == DDmode
4997 || TYPE_MODE (type) == DDmode)
4998 newtype = dfloat64_type_node;
4999 if (TYPE_MODE (ty1) == TDmode
5000 || TYPE_MODE (ty2) == TDmode
5001 || TYPE_MODE (type) == TDmode)
5002 newtype = dfloat128_type_node; }
5003 (if ((newtype == dfloat32_type_node
5004 || newtype == dfloat64_type_node
5005 || newtype == dfloat128_type_node)
5006 && newtype == type
5007 && types_match (newtype, type))
5008 (op (convert:newtype @1) (convert:newtype @2))
5009 (with { if (TYPE_PRECISION (ty1) > TYPE_PRECISION (newtype))
5010 newtype = ty1;
5011 if (TYPE_PRECISION (ty2) > TYPE_PRECISION (newtype))
5012 newtype = ty2; }
5013 /* Sometimes this transformation is safe (cannot
5014 change results through affecting double rounding
5015 cases) and sometimes it is not. If NEWTYPE is
5016 wider than TYPE, e.g. (float)((long double)double
5017 + (long double)double) converted to
5018 (float)(double + double), the transformation is
5019 unsafe regardless of the details of the types
5020 involved; double rounding can arise if the result
5021 of NEWTYPE arithmetic is a NEWTYPE value half way
5022 between two representable TYPE values but the
5023 exact value is sufficiently different (in the
5024 right direction) for this difference to be
5025 visible in ITYPE arithmetic. If NEWTYPE is the
5026 same as TYPE, however, the transformation may be
5027 safe depending on the types involved: it is safe
5028 if the ITYPE has strictly more than twice as many
5029 mantissa bits as TYPE, can represent infinities
5030 and NaNs if the TYPE can, and has sufficient
5031 exponent range for the product or ratio of two
5032 values representable in the TYPE to be within the
5033 range of normal values of ITYPE. */
5034 (if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
5035 && (flag_unsafe_math_optimizations
5036 || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
5037 && real_can_shorten_arithmetic (TYPE_MODE (itype),
5038 TYPE_MODE (type))
5039 && !excess_precision_type (newtype)))
5040 && !types_match (itype, newtype))
5041 (convert:type (op (convert:newtype @1)
5042 (convert:newtype @2)))
5043 )))) )
5044 ))
5045)))
8cd9143e 5046
5047/* This is another case of narrowing, specifically when there's an outer
5048 BIT_AND_EXPR which masks off bits outside the type of the innermost
5049 operands. Like the previous case we have to convert the operands
67cf9b55 5050 to unsigned types to avoid introducing undefined behavior for the
8cd9143e 5051 arithmetic operation. */
5052(for op (minus plus)
d74b7335 5053 (simplify
5054 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
5055 (if (INTEGRAL_TYPE_P (type)
5056 /* We check for type compatibility between @0 and @1 below,
5057 so there's no need to check that @1/@3 are integral types. */
5058 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5059 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5060 /* The precision of the type of each operand must match the
5061 precision of the mode of each operand, similarly for the
5062 result. */
654ba22c 5063 && type_has_mode_precision_p (TREE_TYPE (@0))
5064 && type_has_mode_precision_p (TREE_TYPE (@1))
5065 && type_has_mode_precision_p (type)
d74b7335 5066 /* The inner conversion must be a widening conversion. */
5067 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
5068 && types_match (@0, @1)
5069 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
5070 <= TYPE_PRECISION (TREE_TYPE (@0)))
e3d0f65c 5071 && (wi::to_wide (@4)
5072 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
5073 true, TYPE_PRECISION (type))) == 0)
d74b7335 5074 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
5075 (with { tree ntype = TREE_TYPE (@0); }
5076 (convert (bit_and (op @0 @1) (convert:ntype @4))))
5077 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
5078 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
5079 (convert:utype @4))))))))
6a8b7746 5080
9603b585 5081/* Transform (@0 < @1 and @0 < @2) to use min,
6a8b7746 5082 (@0 > @1 and @0 > @2) to use max */
2e933017 5083(for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
5084 op (lt le gt ge lt le gt ge )
5085 ext (min min max max max max min min )
6a8b7746 5086 (simplify
2e933017 5087 (logic (op:cs @0 @1) (op:cs @0 @2))
0c1f7d17 5088 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5089 && TREE_CODE (@0) != INTEGER_CST)
6a8b7746 5090 (op @0 (ext @1 @2)))))
5091
01156bcb 5092(simplify
5093 /* signbit(x) -> 0 if x is nonnegative. */
5094 (SIGNBIT tree_expr_nonnegative_p@0)
5095 { integer_zero_node; })
5096
5097(simplify
5098 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
5099 (SIGNBIT @0)
5100 (if (!HONOR_SIGNED_ZEROS (@0))
5101 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
eb1a077c 5102
5103/* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
5104(for cmp (eq ne)
5105 (for op (plus minus)
5106 rop (minus plus)
5107 (simplify
5108 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
5109 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
5110 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
5111 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
5112 && !TYPE_SATURATING (TREE_TYPE (@0)))
5113 (with { tree res = int_const_binop (rop, @2, @1); }
af8ad81e 5114 (if (TREE_OVERFLOW (res)
5115 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
eb1a077c 5116 { constant_boolean_node (cmp == NE_EXPR, type); }
5117 (if (single_use (@3))
07b69d3f 5118 (cmp @0 { TREE_OVERFLOW (res)
5119 ? drop_tree_overflow (res) : res; }))))))))
eb1a077c 5120(for cmp (lt le gt ge)
5121 (for op (plus minus)
5122 rop (minus plus)
5123 (simplify
5124 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
5125 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
5126 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
5127 (with { tree res = int_const_binop (rop, @2, @1); }
5128 (if (TREE_OVERFLOW (res))
5129 {
5130 fold_overflow_warning (("assuming signed overflow does not occur "
5131 "when simplifying conditional to constant"),
5132 WARN_STRICT_OVERFLOW_CONDITIONAL);
5133 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
5134 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
e3d0f65c 5135 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
5136 TYPE_SIGN (TREE_TYPE (@1)))
eb1a077c 5137 != (op == MINUS_EXPR);
5138 constant_boolean_node (less == ovf_high, type);
5139 }
5140 (if (single_use (@3))
5141 (with
5142 {
5143 fold_overflow_warning (("assuming signed overflow does not occur "
5144 "when changing X +- C1 cmp C2 to "
5145 "X cmp C2 -+ C1"),
5146 WARN_STRICT_OVERFLOW_COMPARISON);
5147 }
5148 (cmp @0 { res; })))))))))
26280bcd 5149
5150/* Canonicalizations of BIT_FIELD_REFs. */
5151
1826cc19 5152(simplify
5153 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
5154 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
5155
5156(simplify
5157 (BIT_FIELD_REF (view_convert @0) @1 @2)
5158 (BIT_FIELD_REF @0 @1 @2))
5159
5160(simplify
5161 (BIT_FIELD_REF @0 @1 integer_zerop)
5162 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
5163 (view_convert @0)))
5164
26280bcd 5165(simplify
5166 (BIT_FIELD_REF @0 @1 @2)
5167 (switch
5168 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
5169 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5170 (switch
5171 (if (integer_zerop (@2))
5172 (view_convert (realpart @0)))
5173 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5174 (view_convert (imagpart @0)))))
5175 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5176 && INTEGRAL_TYPE_P (type)
a83b7b63 5177 /* On GIMPLE this should only apply to register arguments. */
5178 && (! GIMPLE || is_gimple_reg (@0))
26280bcd 5179 /* A bit-field-ref that referenced the full argument can be stripped. */
5180 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
5181 && integer_zerop (@2))
5182 /* Low-parts can be reduced to integral conversions.
5183 ??? The following doesn't work for PDP endian. */
5184 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
5185 /* Don't even think about BITS_BIG_ENDIAN. */
5186 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
5187 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
5188 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
5189 ? (TYPE_PRECISION (TREE_TYPE (@0))
5190 - TYPE_PRECISION (type))
5191 : 0)) == 0)))
5192 (convert @0))))
5193
5194/* Simplify vector extracts. */
5195
5196(simplify
5197 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
5198 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
5199 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
5200 || (VECTOR_TYPE_P (type)
5201 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
5202 (with
5203 {
5204 tree ctor = (TREE_CODE (@0) == SSA_NAME
5205 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
5206 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
5207 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
5208 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
5209 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
5210 }
5211 (if (n != 0
5212 && (idx % width) == 0
5213 && (n % width) == 0
f08ee65f 5214 && known_le ((idx + n) / width,
5215 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
26280bcd 5216 (with
5217 {
5218 idx = idx / width;
5219 n = n / width;
5220 /* Constructor elements can be subvectors. */
c64de46c 5221 poly_uint64 k = 1;
26280bcd 5222 if (CONSTRUCTOR_NELTS (ctor) != 0)
5223 {
5224 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
5225 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
5226 k = TYPE_VECTOR_SUBPARTS (cons_elem);
5227 }
c64de46c 5228 unsigned HOST_WIDE_INT elt, count, const_k;
26280bcd 5229 }
5230 (switch
5231 /* We keep an exact subset of the constructor elements. */
c64de46c 5232 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
26280bcd 5233 (if (CONSTRUCTOR_NELTS (ctor) == 0)
5234 { build_constructor (type, NULL); }
c64de46c 5235 (if (count == 1)
5236 (if (elt < CONSTRUCTOR_NELTS (ctor))
93b93567 5237 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
c64de46c 5238 { build_zero_cst (type); })
26280bcd 5239 {
c64de46c 5240 vec<constructor_elt, va_gc> *vals;
5241 vec_alloc (vals, count);
5242 for (unsigned i = 0;
5243 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
5244 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
5245 CONSTRUCTOR_ELT (ctor, elt + i)->value);
5246 build_constructor (type, vals);
5247 })))
26280bcd 5248 /* The bitfield references a single constructor element. */
c64de46c 5249 (if (k.is_constant (&const_k)
5250 && idx + n <= (idx / const_k + 1) * const_k)
26280bcd 5251 (switch
c64de46c 5252 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
26280bcd 5253 { build_zero_cst (type); })
c64de46c 5254 (if (n == const_k)
93b93567 5255 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
c64de46c 5256 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
5257 @1 { bitsize_int ((idx % const_k) * width); })))))))))
a07b1b15 5258
5259/* Simplify a bit extraction from a bit insertion for the cases with
5260 the inserted element fully covering the extraction or the insertion
5261 not touching the extraction. */
5262(simplify
5263 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
5264 (with
5265 {
5266 unsigned HOST_WIDE_INT isize;
5267 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
5268 isize = TYPE_PRECISION (TREE_TYPE (@1));
5269 else
5270 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
5271 }
5272 (switch
e3d0f65c 5273 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
5274 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
5275 wi::to_wide (@ipos) + isize))
a07b1b15 5276 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
e3d0f65c 5277 wi::to_wide (@rpos)
5278 - wi::to_wide (@ipos)); }))
5279 (if (wi::geu_p (wi::to_wide (@ipos),
5280 wi::to_wide (@rpos) + wi::to_wide (@rsize))
5281 || wi::geu_p (wi::to_wide (@rpos),
5282 wi::to_wide (@ipos) + isize))
a07b1b15 5283 (BIT_FIELD_REF @0 @rsize @rpos)))))
143c3c9a 5284
bdcde03a 5285(if (canonicalize_math_after_vectorization_p ())
5286 (for fmas (FMA)
5287 (simplify
5288 (fmas:c (negate @0) @1 @2)
5289 (IFN_FNMA @0 @1 @2))
5290 (simplify
5291 (fmas @0 @1 (negate @2))
5292 (IFN_FMS @0 @1 @2))
5293 (simplify
5294 (fmas:c (negate @0) @1 (negate @2))
5295 (IFN_FNMS @0 @1 @2))
5296 (simplify
5297 (negate (fmas@3 @0 @1 @2))
5298 (if (single_use (@3))
5299 (IFN_FNMS @0 @1 @2))))
5300
143c3c9a 5301 (simplify
bdcde03a 5302 (IFN_FMS:c (negate @0) @1 @2)
5303 (IFN_FNMS @0 @1 @2))
5304 (simplify
5305 (IFN_FMS @0 @1 (negate @2))
5306 (IFN_FMA @0 @1 @2))
5307 (simplify
5308 (IFN_FMS:c (negate @0) @1 (negate @2))
143c3c9a 5309 (IFN_FNMA @0 @1 @2))
5310 (simplify
bdcde03a 5311 (negate (IFN_FMS@3 @0 @1 @2))
5312 (if (single_use (@3))
5313 (IFN_FNMA @0 @1 @2)))
5314
5315 (simplify
5316 (IFN_FNMA:c (negate @0) @1 @2)
5317 (IFN_FMA @0 @1 @2))
143c3c9a 5318 (simplify
bdcde03a 5319 (IFN_FNMA @0 @1 (negate @2))
143c3c9a 5320 (IFN_FNMS @0 @1 @2))
5321 (simplify
bdcde03a 5322 (IFN_FNMA:c (negate @0) @1 (negate @2))
5323 (IFN_FMS @0 @1 @2))
5324 (simplify
5325 (negate (IFN_FNMA@3 @0 @1 @2))
143c3c9a 5326 (if (single_use (@3))
bdcde03a 5327 (IFN_FMS @0 @1 @2)))
143c3c9a 5328
bdcde03a 5329 (simplify
5330 (IFN_FNMS:c (negate @0) @1 @2)
5331 (IFN_FMS @0 @1 @2))
5332 (simplify
5333 (IFN_FNMS @0 @1 (negate @2))
5334 (IFN_FNMA @0 @1 @2))
5335 (simplify
5336 (IFN_FNMS:c (negate @0) @1 (negate @2))
5337 (IFN_FMA @0 @1 @2))
5338 (simplify
5339 (negate (IFN_FNMS@3 @0 @1 @2))
143c3c9a 5340 (if (single_use (@3))
bdcde03a 5341 (IFN_FMA @0 @1 @2))))
d1f6ca14 5342
5343/* POPCOUNT simplifications. */
5344(for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
5345 BUILT_IN_POPCOUNTIMAX)
5346 /* popcount(X&1) is nop_expr(X&1). */
5347 (simplify
5348 (popcount @0)
5349 (if (tree_nonzero_bits (@0) == 1)
5350 (convert @0)))
5351 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
5352 (simplify
5353 (plus (popcount:s @0) (popcount:s @1))
5354 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
5355 (popcount (bit_ior @0 @1))))
5356 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
5357 (for cmp (le eq ne gt)
5358 rep (eq eq ne ne)
5359 (simplify
5360 (cmp (popcount @0) integer_zerop)
5361 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
dbc7e6ae 5362
5363/* Simplify:
5364
5365 a = a1 op a2
5366 r = c ? a : b;
5367
5368 to:
5369
5370 r = c ? a1 op a2 : b;
5371
5372 if the target can do it in one go. This makes the operation conditional
5373 on c, so could drop potentially-trapping arithmetic, but that's a valid
cf97f636 5374 simplification if the result of the operation isn't needed.
5375
5376 Avoid speculatively generating a stand-alone vector comparison
5377 on targets that might not support them. Any target implementing
5378 conditional internal functions must support the same comparisons
5379 inside and outside a VEC_COND_EXPR. */
5380
a41f256a 5381#if GIMPLE
dbc7e6ae 5382(for uncond_op (UNCOND_BINARY)
5383 cond_op (COND_BINARY)
5384 (simplify
5385 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
cf97f636 5386 (with { tree op_type = TREE_TYPE (@4); }
5387 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
a41f256a 5388 && element_precision (type) == element_precision (op_type))
dbc7e6ae 5389 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
5390 (simplify
5391 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
cf97f636 5392 (with { tree op_type = TREE_TYPE (@4); }
5393 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
a41f256a 5394 && element_precision (type) == element_precision (op_type))
dbc7e6ae 5395 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
d8483dd1 5396
6682fc02 5397/* Same for ternary operations. */
5398(for uncond_op (UNCOND_TERNARY)
5399 cond_op (COND_TERNARY)
5400 (simplify
5401 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
cf97f636 5402 (with { tree op_type = TREE_TYPE (@5); }
5403 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
a41f256a 5404 && element_precision (type) == element_precision (op_type))
6682fc02 5405 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
5406 (simplify
5407 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
cf97f636 5408 (with { tree op_type = TREE_TYPE (@5); }
5409 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
a41f256a 5410 && element_precision (type) == element_precision (op_type))
6682fc02 5411 (view_convert (cond_op (bit_not @0) @2 @3 @4
5412 (view_convert:op_type @1)))))))
a41f256a 5413#endif
6682fc02 5414
d8483dd1 5415/* Detect cases in which a VEC_COND_EXPR effectively replaces the
5416 "else" value of an IFN_COND_*. */
5417(for cond_op (COND_BINARY)
5418 (simplify
5419 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
5420 (with { tree op_type = TREE_TYPE (@3); }
5421 (if (element_precision (type) == element_precision (op_type))
03821886 5422 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
5423 (simplify
5424 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
5425 (with { tree op_type = TREE_TYPE (@5); }
5426 (if (inverse_conditions_p (@0, @2)
5427 && element_precision (type) == element_precision (op_type))
5428 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
6682fc02 5429
5430/* Same for ternary operations. */
5431(for cond_op (COND_TERNARY)
5432 (simplify
5433 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
5434 (with { tree op_type = TREE_TYPE (@4); }
5435 (if (element_precision (type) == element_precision (op_type))
03821886 5436 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
5437 (simplify
5438 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
5439 (with { tree op_type = TREE_TYPE (@6); }
5440 (if (inverse_conditions_p (@0, @2)
5441 && element_precision (type) == element_precision (op_type))
5442 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
fe4311f2 5443
5444/* For pointers @0 and @2 and nonnegative constant offset @1, look for
5445 expressions like:
5446
5447 A: (@0 + @1 < @2) | (@2 + @1 < @0)
5448 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
5449
5450 If pointers are known not to wrap, B checks whether @1 bytes starting
5451 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
5452 bytes. A is more efficiently tested as:
5453
5454 A: (sizetype) (@0 + @1 - @2) > @1 * 2
5455
5456 The equivalent expression for B is given by replacing @1 with @1 - 1:
5457
5458 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
5459
5460 @0 and @2 can be swapped in both expressions without changing the result.
5461
5462 The folds rely on sizetype's being unsigned (which is always true)
5463 and on its being the same width as the pointer (which we have to check).
5464
5465 The fold replaces two pointer_plus expressions, two comparisons and
5466 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
5467 the best case it's a saving of two operations. The A fold retains one
5468 of the original pointer_pluses, so is a win even if both pointer_pluses
5469 are used elsewhere. The B fold is a wash if both pointer_pluses are
5470 used elsewhere, since all we end up doing is replacing a comparison with
5471 a pointer_plus. We do still apply the fold under those circumstances
5472 though, in case applying it to other conditions eventually makes one of the
5473 pointer_pluses dead. */
5474(for ior (truth_orif truth_or bit_ior)
5475 (for cmp (le lt)
5476 (simplify
5477 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
5478 (cmp:cs (pointer_plus@4 @2 @1) @0))
5479 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
5480 && TYPE_OVERFLOW_WRAPS (sizetype)
5481 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
5482 /* Calculate the rhs constant. */
5483 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
5484 offset_int rhs = off * 2; }
5485 /* Always fails for negative values. */
5486 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
5487 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
5488 pick a canonical order. This increases the chances of using the
5489 same pointer_plus in multiple checks. */
5490 (with { bool swap_p = tree_swap_operands_p (@0, @2);
5491 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
5492 (if (cmp == LT_EXPR)
5493 (gt (convert:sizetype
5494 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
5495 { swap_p ? @0 : @2; }))
5496 { rhs_tree; })
5497 (gt (convert:sizetype
5498 (pointer_diff:ssizetype
5499 (pointer_plus { swap_p ? @2 : @0; }
5500 { wide_int_to_tree (sizetype, off); })
5501 { swap_p ? @0 : @2; }))
5502 { rhs_tree; })))))))))
df2148cf 5503
5504/* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
5505 element of @1. */
5506(for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
5507 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
5508 (with { int i = single_nonzero_element (@1); }
5509 (if (i >= 0)
5510 (with { tree elt = vector_cst_elt (@1, i);
5511 tree elt_type = TREE_TYPE (elt);
5512 unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
5513 tree size = bitsize_int (elt_bits);
5514 tree pos = bitsize_int (elt_bits * i); }
5515 (view_convert
5516 (bit_and:elt_type
5517 (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
5518 { elt; })))))))
143aadc0 5519
5520(simplify
5521 (vec_perm @0 @1 VECTOR_CST@2)
5522 (with
5523 {
5524 tree op0 = @0, op1 = @1, op2 = @2;
5525
5526 /* Build a vector of integers from the tree mask. */
5527 vec_perm_builder builder;
5528 if (!tree_to_vec_perm_builder (&builder, op2))
5529 return NULL_TREE;
5530
5531 /* Create a vec_perm_indices for the integer vector. */
5532 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
5533 bool single_arg = (op0 == op1);
5534 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
5535 }
5536 (if (sel.series_p (0, 1, 0, 1))
5537 { op0; }
5538 (if (sel.series_p (0, 1, nelts, 1))
5539 { op1; }
5540 (with
5541 {
5542 if (!single_arg)
5543 {
5544 if (sel.all_from_input_p (0))
5545 op1 = op0;
5546 else if (sel.all_from_input_p (1))
5547 {
5548 op0 = op1;
5549 sel.rotate_inputs (1);
5550 }
a25cdd8a 5551 else if (known_ge (poly_uint64 (sel[0]), nelts))
5552 {
5553 std::swap (op0, op1);
5554 sel.rotate_inputs (1);
5555 }
143aadc0 5556 }
5557 gassign *def;
5558 tree cop0 = op0, cop1 = op1;
5559 if (TREE_CODE (op0) == SSA_NAME
5560 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
5561 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
5562 cop0 = gimple_assign_rhs1 (def);
5563 if (TREE_CODE (op1) == SSA_NAME
5564 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
5565 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
5566 cop1 = gimple_assign_rhs1 (def);
5567
5568 tree t;
5569 }
5570 (if ((TREE_CODE (cop0) == VECTOR_CST
5571 || TREE_CODE (cop0) == CONSTRUCTOR)
5572 && (TREE_CODE (cop1) == VECTOR_CST
5573 || TREE_CODE (cop1) == CONSTRUCTOR)
5574 && (t = fold_vec_perm (type, cop0, cop1, sel)))
5575 { t; }
5576 (with
5577 {
5578 bool changed = (op0 == op1 && !single_arg);
a25cdd8a 5579 tree ins = NULL_TREE;
5580 unsigned at = 0;
5581
5582 /* See if the permutation is performing a single element
5583 insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
5584 in that case. But only if the vector mode is supported,
5585 otherwise this is invalid GIMPLE. */
5586 if (TYPE_MODE (type) != BLKmode
5587 && (TREE_CODE (cop0) == VECTOR_CST
5588 || TREE_CODE (cop0) == CONSTRUCTOR
5589 || TREE_CODE (cop1) == VECTOR_CST
5590 || TREE_CODE (cop1) == CONSTRUCTOR))
5591 {
5592 if (sel.series_p (1, 1, nelts + 1, 1))
5593 {
5594 /* After canonicalizing the first elt to come from the
5595 first vector we only can insert the first elt from
5596 the first vector. */
5597 at = 0;
8c508cf4 5598 if ((ins = fold_read_from_vector (cop0, sel[0])))
c9cea6b6 5599 op0 = op1;
a25cdd8a 5600 }
5601 else
5602 {
5603 unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
5604 for (at = 0; at < encoded_nelts; ++at)
5605 if (maybe_ne (sel[at], at))
5606 break;
5607 if (at < encoded_nelts && sel.series_p (at + 1, 1, at + 1, 1))
5608 {
5609 if (known_lt (at, nelts))
5610 ins = fold_read_from_vector (cop0, sel[at]);
5611 else
5612 ins = fold_read_from_vector (cop1, sel[at] - nelts);
5613 }
5614 }
5615 }
143aadc0 5616
5617 /* Generate a canonical form of the selector. */
a25cdd8a 5618 if (!ins && sel.encoding () != builder)
143aadc0 5619 {
5620 /* Some targets are deficient and fail to expand a single
5621 argument permutation while still allowing an equivalent
5622 2-argument version. */
5623 tree oldop2 = op2;
5624 if (sel.ninputs () == 2
5625 || can_vec_perm_const_p (TYPE_MODE (type), sel, false))
5626 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
5627 else
5628 {
5629 vec_perm_indices sel2 (builder, 2, nelts);
5630 if (can_vec_perm_const_p (TYPE_MODE (type), sel2, false))
5631 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
5632 else
5633 /* Not directly supported with either encoding,
5634 so use the preferred form. */
5635 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
5636 }
a25cdd8a 5637 if (!operand_equal_p (op2, oldop2, 0))
5638 changed = true;
143aadc0 5639 }
5640 }
a25cdd8a 5641 (if (ins)
5642 (bit_insert { op0; } { ins; }
5643 { bitsize_int (at * tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)))); })
5644 (if (changed)
5645 (vec_perm { op0; } { op1; } { op2; }))))))))))
b006d66f 5646
5647/* VEC_PERM_EXPR (v, v, mask) -> v where v contains same element. */
5648
5649(match vec_same_elem_p
5650 @0
5651 (if (uniform_vector_p (@0))))
5652
5653(match vec_same_elem_p
5654 (vec_duplicate @0))
5655
5656(simplify
5657 (vec_perm vec_same_elem_p@0 @0 @1)
5658 @0)