]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/match.pd
Merge BUILT_IN_GOACC_HOST_DATA into BUILT_IN_GOACC_DATA_START
[thirdparty/gcc.git] / gcc / match.pd
CommitLineData
3d2cf79f
RB
1/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
818ab71a 5 Copyright (C) 2014-2016 Free Software Foundation, Inc.
3d2cf79f
RB
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
13Software Foundation; either version 3, or (at your option) any later
14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING3. If not see
23<http://www.gnu.org/licenses/>. */
24
25
26/* Generic tree predicates we inherit. */
27(define_predicates
cc7b5acf 28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
53a19317 29 integer_each_onep integer_truep integer_nonzerop
cc7b5acf 30 real_zerop real_onep real_minus_onep
b0eb889b 31 zerop
f3582e54 32 CONSTANT_CLASS_P
887ab609 33 tree_expr_nonnegative_p
67dbe582 34 integer_valued_real_p
53a19317
RB
35 integer_pow2p
36 HONOR_NANS)
e0ee10ed 37
f84e7fd6
RB
38/* Operator lists. */
39(define_operator_list tcc_comparison
40 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
41(define_operator_list inverted_tcc_comparison
42 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
43(define_operator_list inverted_tcc_comparison_with_nans
44 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
534bd33b
MG
45(define_operator_list swapped_tcc_comparison
46 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
07cdc2b8
RB
47(define_operator_list simple_comparison lt le eq ne ge gt)
48(define_operator_list swapped_simple_comparison gt ge eq ne le lt)
49
b1dc4a20 50#include "cfn-operators.pd"
257aecb4 51
543a9bcd
RS
52/* Define operand lists for math rounding functions {,i,l,ll}FN,
53 where the versions prefixed with "i" return an int, those prefixed with
54 "l" return a long and those prefixed with "ll" return a long long.
55
56 Also define operand lists:
57
58 X<FN>F for all float functions, in the order i, l, ll
59 X<FN> for all double functions, in the same order
60 X<FN>L for all long double functions, in the same order. */
61#define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
543a9bcd
RS
62 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
63 BUILT_IN_L##FN##F \
64 BUILT_IN_LL##FN##F) \
65 (define_operator_list X##FN BUILT_IN_I##FN \
66 BUILT_IN_L##FN \
67 BUILT_IN_LL##FN) \
68 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
69 BUILT_IN_L##FN##L \
70 BUILT_IN_LL##FN##L)
71
543a9bcd
RS
72DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
73DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
74DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
75DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
f84e7fd6 76
e0ee10ed 77/* Simplifications of operations with one constant operand and
36a60e48 78 simplifications to constants or single values. */
e0ee10ed
RB
79
80(for op (plus pointer_plus minus bit_ior bit_xor)
81 (simplify
82 (op @0 integer_zerop)
83 (non_lvalue @0)))
84
a499aac5
RB
85/* 0 +p index -> (type)index */
86(simplify
87 (pointer_plus integer_zerop @1)
88 (non_lvalue (convert @1)))
89
a7f24614
RB
90/* See if ARG1 is zero and X + ARG1 reduces to X.
91 Likewise if the operands are reversed. */
92(simplify
93 (plus:c @0 real_zerop@1)
94 (if (fold_real_zero_addition_p (type, @1, 0))
95 (non_lvalue @0)))
96
97/* See if ARG1 is zero and X - ARG1 reduces to X. */
98(simplify
99 (minus @0 real_zerop@1)
100 (if (fold_real_zero_addition_p (type, @1, 1))
101 (non_lvalue @0)))
102
e0ee10ed
RB
103/* Simplify x - x.
104 This is unsafe for certain floats even in non-IEEE formats.
105 In IEEE, it is unsafe because it does wrong for NaNs.
106 Also note that operand_equal_p is always false if an operand
107 is volatile. */
108(simplify
a7f24614 109 (minus @0 @0)
1b457aa4 110 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
a7f24614 111 { build_zero_cst (type); }))
e0ee10ed
RB
112
113(simplify
a7f24614
RB
114 (mult @0 integer_zerop@1)
115 @1)
116
117/* Maybe fold x * 0 to 0. The expressions aren't the same
118 when x is NaN, since x * 0 is also NaN. Nor are they the
119 same in modes with signed zeros, since multiplying a
120 negative value by 0 gives -0, not +0. */
121(simplify
122 (mult @0 real_zerop@1)
8b5ee871 123 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
a7f24614
RB
124 @1))
125
126/* In IEEE floating point, x*1 is not equivalent to x for snans.
127 Likewise for complex arithmetic with signed zeros. */
128(simplify
129 (mult @0 real_onep)
8b5ee871
MG
130 (if (!HONOR_SNANS (type)
131 && (!HONOR_SIGNED_ZEROS (type)
a7f24614
RB
132 || !COMPLEX_FLOAT_TYPE_P (type)))
133 (non_lvalue @0)))
134
135/* Transform x * -1.0 into -x. */
136(simplify
137 (mult @0 real_minus_onep)
8b5ee871
MG
138 (if (!HONOR_SNANS (type)
139 && (!HONOR_SIGNED_ZEROS (type)
a7f24614
RB
140 || !COMPLEX_FLOAT_TYPE_P (type)))
141 (negate @0)))
e0ee10ed
RB
142
143/* Make sure to preserve divisions by zero. This is the reason why
144 we don't simplify x / x to 1 or 0 / x to 0. */
145(for op (mult trunc_div ceil_div floor_div round_div exact_div)
146 (simplify
147 (op @0 integer_onep)
148 (non_lvalue @0)))
149
a7f24614
RB
150/* X / -1 is -X. */
151(for div (trunc_div ceil_div floor_div round_div exact_div)
152 (simplify
09240451
MG
153 (div @0 integer_minus_onep@1)
154 (if (!TYPE_UNSIGNED (type))
a7f24614
RB
155 (negate @0))))
156
157/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
158 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
159(simplify
160 (floor_div @0 @1)
09240451
MG
161 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
162 && TYPE_UNSIGNED (type))
a7f24614
RB
163 (trunc_div @0 @1)))
164
28093105
RB
165/* Combine two successive divisions. Note that combining ceil_div
166 and floor_div is trickier and combining round_div even more so. */
167(for div (trunc_div exact_div)
c306cfaf
RB
168 (simplify
169 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
170 (with {
171 bool overflow_p;
172 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
173 }
174 (if (!overflow_p)
8fdc6c67
RB
175 (div @0 { wide_int_to_tree (type, mul); })
176 (if (TYPE_UNSIGNED (type)
177 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
178 { build_zero_cst (type); })))))
c306cfaf 179
a7f24614 180/* Optimize A / A to 1.0 if we don't care about
09240451 181 NaNs or Infinities. */
a7f24614
RB
182(simplify
183 (rdiv @0 @0)
09240451 184 (if (FLOAT_TYPE_P (type)
1b457aa4 185 && ! HONOR_NANS (type)
8b5ee871 186 && ! HONOR_INFINITIES (type))
09240451
MG
187 { build_one_cst (type); }))
188
189/* Optimize -A / A to -1.0 if we don't care about
190 NaNs or Infinities. */
191(simplify
192 (rdiv:c @0 (negate @0))
193 (if (FLOAT_TYPE_P (type)
1b457aa4 194 && ! HONOR_NANS (type)
8b5ee871 195 && ! HONOR_INFINITIES (type))
09240451 196 { build_minus_one_cst (type); }))
a7f24614
RB
197
198/* In IEEE floating point, x/1 is not equivalent to x for snans. */
199(simplify
200 (rdiv @0 real_onep)
8b5ee871 201 (if (!HONOR_SNANS (type))
a7f24614
RB
202 (non_lvalue @0)))
203
204/* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
205(simplify
206 (rdiv @0 real_minus_onep)
8b5ee871 207 (if (!HONOR_SNANS (type))
a7f24614
RB
208 (negate @0)))
209
5711ac88
N
210(if (flag_reciprocal_math)
211 /* Convert (A/B)/C to A/(B*C) */
212 (simplify
213 (rdiv (rdiv:s @0 @1) @2)
214 (rdiv @0 (mult @1 @2)))
215
216 /* Convert A/(B/C) to (A/B)*C */
217 (simplify
218 (rdiv @0 (rdiv:s @1 @2))
219 (mult (rdiv @0 @1) @2)))
220
221/* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
222(for div (trunc_div ceil_div floor_div round_div exact_div)
223 (simplify
224 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
225 (if (integer_pow2p (@2)
226 && tree_int_cst_sgn (@2) > 0
227 && wi::add (@2, @1) == 0
228 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
229 (rshift (convert @0) { build_int_cst (integer_type_node,
230 wi::exact_log2 (@2)); }))))
231
a7f24614
RB
232/* If ARG1 is a constant, we can convert this to a multiply by the
233 reciprocal. This does not have the same rounding properties,
234 so only do this if -freciprocal-math. We can actually
235 always safely do it if ARG1 is a power of two, but it's hard to
236 tell if it is or not in a portable manner. */
237(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
238 (simplify
239 (rdiv @0 cst@1)
240 (if (optimize)
53bc4b3a
RB
241 (if (flag_reciprocal_math
242 && !real_zerop (@1))
a7f24614 243 (with
249700b5 244 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
a7f24614 245 (if (tem)
8fdc6c67
RB
246 (mult @0 { tem; } )))
247 (if (cst != COMPLEX_CST)
248 (with { tree inverse = exact_inverse (type, @1); }
249 (if (inverse)
250 (mult @0 { inverse; } ))))))))
a7f24614 251
e0ee10ed
RB
252/* Same applies to modulo operations, but fold is inconsistent here
253 and simplifies 0 % x to 0, only preserving literal 0 % 0. */
a7f24614 254(for mod (ceil_mod floor_mod round_mod trunc_mod)
e0ee10ed
RB
255 /* 0 % X is always zero. */
256 (simplify
a7f24614 257 (mod integer_zerop@0 @1)
e0ee10ed
RB
258 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
259 (if (!integer_zerop (@1))
260 @0))
261 /* X % 1 is always zero. */
262 (simplify
a7f24614
RB
263 (mod @0 integer_onep)
264 { build_zero_cst (type); })
265 /* X % -1 is zero. */
266 (simplify
09240451
MG
267 (mod @0 integer_minus_onep@1)
268 (if (!TYPE_UNSIGNED (type))
bc4315fb
MG
269 { build_zero_cst (type); }))
270 /* (X % Y) % Y is just X % Y. */
271 (simplify
272 (mod (mod@2 @0 @1) @1)
98e30e51
RB
273 @2)
274 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
275 (simplify
276 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
277 (if (ANY_INTEGRAL_TYPE_P (type)
278 && TYPE_OVERFLOW_UNDEFINED (type)
279 && wi::multiple_of_p (@1, @2, TYPE_SIGN (type)))
280 { build_zero_cst (type); })))
a7f24614
RB
281
282/* X % -C is the same as X % C. */
283(simplify
284 (trunc_mod @0 INTEGER_CST@1)
285 (if (TYPE_SIGN (type) == SIGNED
286 && !TREE_OVERFLOW (@1)
287 && wi::neg_p (@1)
288 && !TYPE_OVERFLOW_TRAPS (type)
289 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
290 && !sign_bit_p (@1, @1))
291 (trunc_mod @0 (negate @1))))
e0ee10ed 292
8f0c696a
RB
293/* X % -Y is the same as X % Y. */
294(simplify
295 (trunc_mod @0 (convert? (negate @1)))
296 (if (!TYPE_UNSIGNED (type)
297 && !TYPE_OVERFLOW_TRAPS (type)
20b8d734
JJ
298 && tree_nop_conversion_p (type, TREE_TYPE (@1))
299 /* Avoid this transformation if X might be INT_MIN or
300 Y might be -1, because we would then change valid
301 INT_MIN % -(-1) into invalid INT_MIN % -1. */
302 && (expr_not_equal_to (@0, TYPE_MIN_VALUE (type))
303 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
304 (TREE_TYPE (@1))))))
8f0c696a
RB
305 (trunc_mod @0 (convert @1))))
306
f461569a
MP
307/* X - (X / Y) * Y is the same as X % Y. */
308(simplify
fba46f03
MG
309 (minus (convert1? @2) (convert2? (mult:c (trunc_div @0 @1) @1)))
310 /* We cannot use matching captures here, since in the case of
311 constants we really want the type of @0, not @2. */
312 (if (operand_equal_p (@0, @2, 0)
313 && (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type)))
314 (convert (trunc_mod @0 @1))))
f461569a 315
8f0c696a
RB
316/* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
317 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
318 Also optimize A % (C << N) where C is a power of 2,
319 to A & ((C << N) - 1). */
320(match (power_of_two_cand @1)
321 INTEGER_CST@1)
322(match (power_of_two_cand @1)
323 (lshift INTEGER_CST@1 @2))
324(for mod (trunc_mod floor_mod)
325 (simplify
4ab1e111 326 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
8f0c696a
RB
327 (if ((TYPE_UNSIGNED (type)
328 || tree_expr_nonnegative_p (@0))
4ab1e111 329 && tree_nop_conversion_p (type, TREE_TYPE (@3))
8f0c696a 330 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
4ab1e111 331 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
8f0c696a 332
887ab609
N
333/* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
334(simplify
335 (trunc_div (mult @0 integer_pow2p@1) @1)
336 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
337 (bit_and @0 { wide_int_to_tree
338 (type, wi::mask (TYPE_PRECISION (type) - wi::exact_log2 (@1),
339 false, TYPE_PRECISION (type))); })))
340
5f8d832e
N
341/* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
342(simplify
343 (mult (trunc_div @0 integer_pow2p@1) @1)
344 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
345 (bit_and @0 (negate @1))))
346
95765f36
N
347/* Simplify (t * 2) / 2) -> t. */
348(for div (trunc_div ceil_div floor_div round_div exact_div)
349 (simplify
350 (div (mult @0 @1) @1)
351 (if (ANY_INTEGRAL_TYPE_P (type)
352 && TYPE_OVERFLOW_UNDEFINED (type))
353 @0)))
354
d202f9bd 355(for op (negate abs)
9b054b08
RS
356 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
357 (for coss (COS COSH)
358 (simplify
359 (coss (op @0))
360 (coss @0)))
361 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
362 (for pows (POW)
363 (simplify
364 (pows (op @0) REAL_CST@1)
365 (with { HOST_WIDE_INT n; }
366 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
5d3498b4
RS
367 (pows @0 @1)))))
368 /* Strip negate and abs from both operands of hypot. */
369 (for hypots (HYPOT)
370 (simplify
371 (hypots (op @0) @1)
372 (hypots @0 @1))
373 (simplify
374 (hypots @0 (op @1))
375 (hypots @0 @1)))
376 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
377 (for copysigns (COPYSIGN)
378 (simplify
379 (copysigns (op @0) @1)
380 (copysigns @0 @1))))
381
382/* abs(x)*abs(x) -> x*x. Should be valid for all types. */
383(simplify
384 (mult (abs@1 @0) @1)
385 (mult @0 @0))
386
387/* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
388(for coss (COS COSH)
389 copysigns (COPYSIGN)
390 (simplify
391 (coss (copysigns @0 @1))
392 (coss @0)))
393
394/* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
395(for pows (POW)
396 copysigns (COPYSIGN)
397 (simplify
398 (pows (copysigns @0 @1) REAL_CST@1)
399 (with { HOST_WIDE_INT n; }
400 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
401 (pows @0 @1)))))
402
403(for hypots (HYPOT)
404 copysigns (COPYSIGN)
405 /* hypot(copysign(x, y), z) -> hypot(x, z). */
406 (simplify
407 (hypots (copysigns @0 @1) @2)
408 (hypots @0 @2))
409 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
410 (simplify
411 (hypots @0 (copysigns @1 @2))
412 (hypots @0 @1)))
413
414/* copysign(copysign(x, y), z) -> copysign(x, z). */
415(for copysigns (COPYSIGN)
416 (simplify
417 (copysigns (copysigns @0 @1) @2)
418 (copysigns @0 @2)))
419
420/* copysign(x,y)*copysign(x,y) -> x*x. */
421(for copysigns (COPYSIGN)
422 (simplify
423 (mult (copysigns@2 @0 @1) @2)
424 (mult @0 @0)))
425
426/* ccos(-x) -> ccos(x). Similarly for ccosh. */
427(for ccoss (CCOS CCOSH)
428 (simplify
429 (ccoss (negate @0))
430 (ccoss @0)))
d202f9bd 431
abcc43f5
RS
432/* cabs(-x) and cos(conj(x)) -> cabs(x). */
433(for ops (conj negate)
434 (for cabss (CABS)
435 (simplify
436 (cabss (ops @0))
437 (cabss @0))))
438
0a8f32b8
RB
439/* Fold (a * (1 << b)) into (a << b) */
440(simplify
441 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
442 (if (! FLOAT_TYPE_P (type)
443 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
444 (lshift @0 @2)))
445
446/* Fold (C1/X)*C2 into (C1*C2)/X. */
447(simplify
ff86345f
RB
448 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
449 (if (flag_associative_math
450 && single_use (@3))
0a8f32b8
RB
451 (with
452 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
453 (if (tem)
454 (rdiv { tem; } @1)))))
455
5711ac88
N
456/* Convert C1/(X*C2) into (C1/C2)/X */
457(simplify
458 (rdiv REAL_CST@0 (mult @1 REAL_CST@2))
459 (if (flag_reciprocal_math)
460 (with
461 { tree tem = const_binop (RDIV_EXPR, type, @0, @2); }
462 (if (tem)
463 (rdiv { tem; } @1)))))
464
0a8f32b8
RB
465/* Simplify ~X & X as zero. */
466(simplify
467 (bit_and:c (convert? @0) (convert? (bit_not @0)))
468 { build_zero_cst (type); })
469
10158317
RB
470/* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
471(simplify
a9658b11 472 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
10158317
RB
473 (minus (bit_xor @0 @1) @1))
474(simplify
475 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
476 (if (wi::bit_not (@2) == @1)
477 (minus (bit_xor @0 @1) @1)))
478
479/* Fold (A & B) - (A & ~B) into B - (A ^ B). */
480(simplify
481 (minus (bit_and:s @0 @1) (bit_and:cs @0 (bit_not @1)))
482 (minus @1 (bit_xor @0 @1)))
483
484/* Simplify (X & ~Y) | (~X & Y) -> X ^ Y. */
485(simplify
a9658b11 486 (bit_ior (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
10158317
RB
487 (bit_xor @0 @1))
488(simplify
489 (bit_ior:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
490 (if (wi::bit_not (@2) == @1)
491 (bit_xor @0 @1)))
492
bc4315fb
MG
493/* X % Y is smaller than Y. */
494(for cmp (lt ge)
495 (simplify
496 (cmp (trunc_mod @0 @1) @1)
497 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
498 { constant_boolean_node (cmp == LT_EXPR, type); })))
499(for cmp (gt le)
500 (simplify
501 (cmp @1 (trunc_mod @0 @1))
502 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
503 { constant_boolean_node (cmp == GT_EXPR, type); })))
504
e0ee10ed
RB
505/* x | ~0 -> ~0 */
506(simplify
507 (bit_ior @0 integer_all_onesp@1)
508 @1)
509
510/* x & 0 -> 0 */
511(simplify
512 (bit_and @0 integer_zerop@1)
513 @1)
514
a4398a30 515/* ~x | x -> -1 */
8b5ee871
MG
516/* ~x ^ x -> -1 */
517/* ~x + x -> -1 */
518(for op (bit_ior bit_xor plus)
519 (simplify
520 (op:c (convert? @0) (convert? (bit_not @0)))
521 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
a4398a30 522
e0ee10ed
RB
523/* x ^ x -> 0 */
524(simplify
525 (bit_xor @0 @0)
526 { build_zero_cst (type); })
527
36a60e48
RB
528/* Canonicalize X ^ ~0 to ~X. */
529(simplify
530 (bit_xor @0 integer_all_onesp@1)
531 (bit_not @0))
532
533/* x & ~0 -> x */
534(simplify
535 (bit_and @0 integer_all_onesp)
536 (non_lvalue @0))
537
538/* x & x -> x, x | x -> x */
539(for bitop (bit_and bit_ior)
540 (simplify
541 (bitop @0 @0)
542 (non_lvalue @0)))
543
0f770b01
RV
544/* x + (x & 1) -> (x + 1) & ~1 */
545(simplify
44fc0a51
RB
546 (plus:c @0 (bit_and:s @0 integer_onep@1))
547 (bit_and (plus @0 @1) (bit_not @1)))
0f770b01
RV
548
549/* x & ~(x & y) -> x & ~y */
550/* x | ~(x | y) -> x | ~y */
551(for bitop (bit_and bit_ior)
af563d4b 552 (simplify
44fc0a51
RB
553 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
554 (bitop @0 (bit_not @1))))
af563d4b
MG
555
556/* (x | y) & ~x -> y & ~x */
557/* (x & y) | ~x -> y | ~x */
558(for bitop (bit_and bit_ior)
559 rbitop (bit_ior bit_and)
560 (simplify
561 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
562 (bitop @1 @2)))
0f770b01 563
f13c4673
MP
564/* (x & y) ^ (x | y) -> x ^ y */
565(simplify
2d6f2dce
MP
566 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
567 (bit_xor @0 @1))
f13c4673 568
9ea65ca6
MP
569/* (x ^ y) ^ (x | y) -> x & y */
570(simplify
571 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
572 (bit_and @0 @1))
573
574/* (x & y) + (x ^ y) -> x | y */
575/* (x & y) | (x ^ y) -> x | y */
576/* (x & y) ^ (x ^ y) -> x | y */
577(for op (plus bit_ior bit_xor)
578 (simplify
579 (op:c (bit_and @0 @1) (bit_xor @0 @1))
580 (bit_ior @0 @1)))
581
582/* (x & y) + (x | y) -> x + y */
583(simplify
584 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
585 (plus @0 @1))
586
9737efaf
MP
587/* (x + y) - (x | y) -> x & y */
588(simplify
589 (minus (plus @0 @1) (bit_ior @0 @1))
590 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
591 && !TYPE_SATURATING (type))
592 (bit_and @0 @1)))
593
594/* (x + y) - (x & y) -> x | y */
595(simplify
596 (minus (plus @0 @1) (bit_and @0 @1))
597 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
598 && !TYPE_SATURATING (type))
599 (bit_ior @0 @1)))
600
9ea65ca6
MP
601/* (x | y) - (x ^ y) -> x & y */
602(simplify
603 (minus (bit_ior @0 @1) (bit_xor @0 @1))
604 (bit_and @0 @1))
605
606/* (x | y) - (x & y) -> x ^ y */
607(simplify
608 (minus (bit_ior @0 @1) (bit_and @0 @1))
609 (bit_xor @0 @1))
610
66cc6273
MP
611/* (x | y) & ~(x & y) -> x ^ y */
612(simplify
613 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
614 (bit_xor @0 @1))
615
616/* (x | y) & (~x ^ y) -> x & y */
617(simplify
618 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
619 (bit_and @0 @1))
620
5b00d921
RB
621/* ~x & ~y -> ~(x | y)
622 ~x | ~y -> ~(x & y) */
623(for op (bit_and bit_ior)
624 rop (bit_ior bit_and)
625 (simplify
626 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
627 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
628 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
629 (bit_not (rop (convert @0) (convert @1))))))
630
14ea9f92 631/* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
5b00d921
RB
632 with a constant, and the two constants have no bits in common,
633 we should treat this as a BIT_IOR_EXPR since this may produce more
634 simplifications. */
14ea9f92
RB
635(for op (bit_xor plus)
636 (simplify
637 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
638 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
639 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
640 && tree_nop_conversion_p (type, TREE_TYPE (@2))
641 && wi::bit_and (@1, @3) == 0)
642 (bit_ior (convert @4) (convert @5)))))
5b00d921
RB
643
644/* (X | Y) ^ X -> Y & ~ X*/
645(simplify
646 (bit_xor:c (convert? (bit_ior:c @0 @1)) (convert? @0))
647 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
648 (convert (bit_and @1 (bit_not @0)))))
649
650/* Convert ~X ^ ~Y to X ^ Y. */
651(simplify
652 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
653 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
654 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
655 (bit_xor (convert @0) (convert @1))))
656
657/* Convert ~X ^ C to X ^ ~C. */
658(simplify
659 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
c8ba6498
EB
660 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
661 (bit_xor (convert @0) (bit_not @1))))
5b00d921 662
97e77391
RB
663/* Fold (X & Y) ^ Y as ~X & Y. */
664(simplify
665 (bit_xor:c (bit_and:c @0 @1) @1)
666 (bit_and (bit_not @0) @1))
667
14ea9f92
RB
668/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
669 operands are another bit-wise operation with a common input. If so,
670 distribute the bit operations to save an operation and possibly two if
671 constants are involved. For example, convert
672 (A | B) & (A | C) into A | (B & C)
673 Further simplification will occur if B and C are constants. */
674(for op (bit_and bit_ior)
675 rop (bit_ior bit_and)
676 (simplify
677 (op (convert? (rop:c @0 @1)) (convert? (rop @0 @2)))
678 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
679 (rop (convert @0) (op (convert @1) (convert @2))))))
680
5b00d921 681
b14a9c57
RB
682(simplify
683 (abs (abs@1 @0))
684 @1)
f3582e54
RB
685(simplify
686 (abs (negate @0))
687 (abs @0))
688(simplify
689 (abs tree_expr_nonnegative_p@0)
690 @0)
691
55cf3946
RB
692/* A few cases of fold-const.c negate_expr_p predicate. */
693(match negate_expr_p
694 INTEGER_CST
b14a9c57
RB
695 (if ((INTEGRAL_TYPE_P (type)
696 && TYPE_OVERFLOW_WRAPS (type))
697 || (!TYPE_OVERFLOW_SANITIZED (type)
55cf3946
RB
698 && may_negate_without_overflow_p (t)))))
699(match negate_expr_p
700 FIXED_CST)
701(match negate_expr_p
702 (negate @0)
703 (if (!TYPE_OVERFLOW_SANITIZED (type))))
704(match negate_expr_p
705 REAL_CST
706 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
707/* VECTOR_CST handling of non-wrapping types would recurse in unsupported
708 ways. */
709(match negate_expr_p
710 VECTOR_CST
711 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
0a8f32b8
RB
712
713/* (-A) * (-B) -> A * B */
714(simplify
715 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
716 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
717 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
718 (mult (convert @0) (convert (negate @1)))))
55cf3946
RB
719
720/* -(A + B) -> (-B) - A. */
b14a9c57 721(simplify
55cf3946
RB
722 (negate (plus:c @0 negate_expr_p@1))
723 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
724 && !HONOR_SIGNED_ZEROS (element_mode (type)))
725 (minus (negate @1) @0)))
726
727/* A - B -> A + (-B) if B is easily negatable. */
b14a9c57 728(simplify
55cf3946 729 (minus @0 negate_expr_p@1)
e4e96a4f
KT
730 (if (!FIXED_POINT_TYPE_P (type))
731 (plus @0 (negate @1))))
d4573ffe 732
5609420f
RB
733/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
734 when profitable.
735 For bitwise binary operations apply operand conversions to the
736 binary operation result instead of to the operands. This allows
737 to combine successive conversions and bitwise binary operations.
738 We combine the above two cases by using a conditional convert. */
739(for bitop (bit_and bit_ior bit_xor)
740 (simplify
741 (bitop (convert @0) (convert? @1))
742 (if (((TREE_CODE (@1) == INTEGER_CST
743 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
ad6f996c 744 && int_fits_type_p (@1, TREE_TYPE (@0)))
aea417d7 745 || types_match (@0, @1))
ad6f996c
RB
746 /* ??? This transform conflicts with fold-const.c doing
747 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
748 constants (if x has signed type, the sign bit cannot be set
749 in c). This folds extension into the BIT_AND_EXPR.
750 Restrict it to GIMPLE to avoid endless recursions. */
751 && (bitop != BIT_AND_EXPR || GIMPLE)
5609420f
RB
752 && (/* That's a good idea if the conversion widens the operand, thus
753 after hoisting the conversion the operation will be narrower. */
754 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
755 /* It's also a good idea if the conversion is to a non-integer
756 mode. */
757 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
758 /* Or if the precision of TO is not the same as the precision
759 of its mode. */
760 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
761 (convert (bitop @0 (convert @1))))))
762
b14a9c57
RB
763(for bitop (bit_and bit_ior)
764 rbitop (bit_ior bit_and)
765 /* (x | y) & x -> x */
766 /* (x & y) | x -> x */
767 (simplify
768 (bitop:c (rbitop:c @0 @1) @0)
769 @0)
770 /* (~x | y) & x -> x & y */
771 /* (~x & y) | x -> x | y */
772 (simplify
773 (bitop:c (rbitop:c (bit_not @0) @1) @0)
774 (bitop @0 @1)))
775
5609420f
RB
776/* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
777(for bitop (bit_and bit_ior bit_xor)
778 (simplify
779 (bitop (bit_and:c @0 @1) (bit_and @2 @1))
780 (bit_and (bitop @0 @2) @1)))
781
782/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
783(simplify
784 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
785 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
786
787/* Combine successive equal operations with constants. */
788(for bitop (bit_and bit_ior bit_xor)
789 (simplify
790 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
791 (bitop @0 (bitop @1 @2))))
792
793/* Try simple folding for X op !X, and X op X with the help
794 of the truth_valued_p and logical_inverted_value predicates. */
795(match truth_valued_p
796 @0
797 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
f84e7fd6 798(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
5609420f
RB
799 (match truth_valued_p
800 (op @0 @1)))
801(match truth_valued_p
802 (truth_not @0))
803
0a8f32b8
RB
804(match (logical_inverted_value @0)
805 (truth_not @0))
5609420f
RB
806(match (logical_inverted_value @0)
807 (bit_not truth_valued_p@0))
808(match (logical_inverted_value @0)
09240451 809 (eq @0 integer_zerop))
5609420f 810(match (logical_inverted_value @0)
09240451 811 (ne truth_valued_p@0 integer_truep))
5609420f 812(match (logical_inverted_value @0)
09240451 813 (bit_xor truth_valued_p@0 integer_truep))
5609420f
RB
814
815/* X & !X -> 0. */
816(simplify
817 (bit_and:c @0 (logical_inverted_value @0))
818 { build_zero_cst (type); })
819/* X | !X and X ^ !X -> 1, , if X is truth-valued. */
820(for op (bit_ior bit_xor)
821 (simplify
822 (op:c truth_valued_p@0 (logical_inverted_value @0))
f84e7fd6 823 { constant_boolean_node (true, type); }))
59c20dc7
RB
824/* X ==/!= !X is false/true. */
825(for op (eq ne)
826 (simplify
827 (op:c truth_valued_p@0 (logical_inverted_value @0))
828 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
5609420f 829
5609420f
RB
830/* If arg1 and arg2 are booleans (or any single bit type)
831 then try to simplify:
832
833 (~X & Y) -> X < Y
834 (X & ~Y) -> Y < X
835 (~X | Y) -> X <= Y
836 (X | ~Y) -> Y <= X
837
838 But only do this if our result feeds into a comparison as
839 this transformation is not always a win, particularly on
840 targets with and-not instructions.
841 -> simplify_bitwise_binary_boolean */
842(simplify
843 (ne (bit_and:c (bit_not @0) @1) integer_zerop)
844 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
845 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
846 (lt @0 @1)))
847(simplify
848 (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
849 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
850 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
851 (le @0 @1)))
852
5609420f
RB
853/* ~~x -> x */
854(simplify
855 (bit_not (bit_not @0))
856 @0)
857
b14a9c57
RB
858/* Convert ~ (-A) to A - 1. */
859(simplify
860 (bit_not (convert? (negate @0)))
861 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
8b5ee871 862 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
b14a9c57
RB
863
864/* Convert ~ (A - 1) or ~ (A + -1) to -A. */
865(simplify
8b5ee871 866 (bit_not (convert? (minus @0 integer_each_onep)))
b14a9c57
RB
867 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
868 (convert (negate @0))))
869(simplify
870 (bit_not (convert? (plus @0 integer_all_onesp)))
871 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
872 (convert (negate @0))))
873
874/* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
875(simplify
876 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
877 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
878 (convert (bit_xor @0 (bit_not @1)))))
879(simplify
880 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
881 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
882 (convert (bit_xor @0 @1))))
883
f52baa7b
MP
884/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
885(simplify
44fc0a51
RB
886 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
887 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
f52baa7b 888
f7b7b0aa
MP
889/* Fold A - (A & B) into ~B & A. */
890(simplify
891 (minus (convert? @0) (convert?:s (bit_and:cs @0 @1)))
892 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
893 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
894 (convert (bit_and (bit_not @1) @0))))
5609420f 895
84ff66b8
AV
896
897
898/* ((X inner_op C0) outer_op C1)
899 With X being a tree where value_range has reasoned certain bits to always be
900 zero throughout its computed value range,
901 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
902 where zero_mask has 1's for all bits that are sure to be 0 in
903 and 0's otherwise.
904 if (inner_op == '^') C0 &= ~C1;
905 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
906 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
907*/
908(for inner_op (bit_ior bit_xor)
909 outer_op (bit_xor bit_ior)
910(simplify
911 (outer_op
912 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
913 (with
914 {
915 bool fail = false;
916 wide_int zero_mask_not;
917 wide_int C0;
918 wide_int cst_emit;
919
920 if (TREE_CODE (@2) == SSA_NAME)
921 zero_mask_not = get_nonzero_bits (@2);
922 else
923 fail = true;
924
925 if (inner_op == BIT_XOR_EXPR)
926 {
927 C0 = wi::bit_and_not (@0, @1);
928 cst_emit = wi::bit_or (C0, @1);
929 }
930 else
931 {
932 C0 = @0;
933 cst_emit = wi::bit_xor (@0, @1);
934 }
935 }
936 (if (!fail && wi::bit_and (C0, zero_mask_not) == 0)
937 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
938 (if (!fail && wi::bit_and (@1, zero_mask_not) == 0)
939 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
940
a499aac5
RB
941/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
942(simplify
44fc0a51
RB
943 (pointer_plus (pointer_plus:s @0 @1) @3)
944 (pointer_plus @0 (plus @1 @3)))
a499aac5
RB
945
946/* Pattern match
947 tem1 = (long) ptr1;
948 tem2 = (long) ptr2;
949 tem3 = tem2 - tem1;
950 tem4 = (unsigned long) tem3;
951 tem5 = ptr1 + tem4;
952 and produce
953 tem5 = ptr2; */
954(simplify
955 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
956 /* Conditionally look through a sign-changing conversion. */
957 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
958 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
959 || (GENERIC && type == TREE_TYPE (@1))))
960 @1))
961
962/* Pattern match
963 tem = (sizetype) ptr;
964 tem = tem & algn;
965 tem = -tem;
966 ... = ptr p+ tem;
967 and produce the simpler and easier to analyze with respect to alignment
968 ... = ptr & ~algn; */
969(simplify
970 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
971 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
972 (bit_and @0 { algn; })))
973
99e943a2
RB
974/* Try folding difference of addresses. */
975(simplify
976 (minus (convert ADDR_EXPR@0) (convert @1))
977 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
978 (with { HOST_WIDE_INT diff; }
979 (if (ptr_difference_const (@0, @1, &diff))
980 { build_int_cst_type (type, diff); }))))
981(simplify
982 (minus (convert @0) (convert ADDR_EXPR@1))
983 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
984 (with { HOST_WIDE_INT diff; }
985 (if (ptr_difference_const (@0, @1, &diff))
986 { build_int_cst_type (type, diff); }))))
987
bab73f11
RB
988/* If arg0 is derived from the address of an object or function, we may
989 be able to fold this expression using the object or function's
990 alignment. */
991(simplify
992 (bit_and (convert? @0) INTEGER_CST@1)
993 (if (POINTER_TYPE_P (TREE_TYPE (@0))
994 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
995 (with
996 {
997 unsigned int align;
998 unsigned HOST_WIDE_INT bitpos;
999 get_pointer_alignment_1 (@0, &align, &bitpos);
1000 }
1001 (if (wi::ltu_p (@1, align / BITS_PER_UNIT))
1002 { wide_int_to_tree (type, wi::bit_and (@1, bitpos / BITS_PER_UNIT)); }))))
99e943a2 1003
a499aac5 1004
cc7b5acf
RB
1005/* We can't reassociate at all for saturating types. */
1006(if (!TYPE_SATURATING (type))
1007
1008 /* Contract negates. */
1009 /* A + (-B) -> A - B */
1010 (simplify
1011 (plus:c (convert1? @0) (convert2? (negate @1)))
1012 /* Apply STRIP_NOPS on @0 and the negate. */
1013 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1014 && tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1015 && !TYPE_OVERFLOW_SANITIZED (type))
cc7b5acf
RB
1016 (minus (convert @0) (convert @1))))
1017 /* A - (-B) -> A + B */
1018 (simplify
1019 (minus (convert1? @0) (convert2? (negate @1)))
1020 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
2f68e8bc 1021 && tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1022 && !TYPE_OVERFLOW_SANITIZED (type))
cc7b5acf
RB
1023 (plus (convert @0) (convert @1))))
1024 /* -(-A) -> A */
1025 (simplify
1026 (negate (convert? (negate @1)))
1027 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1028 && !TYPE_OVERFLOW_SANITIZED (type))
a0f12cf8 1029 (convert @1)))
cc7b5acf 1030
7318e44f
RB
1031 /* We can't reassociate floating-point unless -fassociative-math
1032 or fixed-point plus or minus because of saturation to +-Inf. */
1033 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1034 && !FIXED_POINT_TYPE_P (type))
cc7b5acf
RB
1035
1036 /* Match patterns that allow contracting a plus-minus pair
1037 irrespective of overflow issues. */
1038 /* (A +- B) - A -> +- B */
1039 /* (A +- B) -+ B -> A */
1040 /* A - (A +- B) -> -+ B */
1041 /* A +- (B -+ A) -> +- B */
1042 (simplify
1043 (minus (plus:c @0 @1) @0)
1044 @1)
1045 (simplify
1046 (minus (minus @0 @1) @0)
1047 (negate @1))
1048 (simplify
1049 (plus:c (minus @0 @1) @1)
1050 @0)
1051 (simplify
1052 (minus @0 (plus:c @0 @1))
1053 (negate @1))
1054 (simplify
1055 (minus @0 (minus @0 @1))
1056 @1)
1057
1058 /* (A +- CST) +- CST -> A + CST */
1059 (for outer_op (plus minus)
1060 (for inner_op (plus minus)
1061 (simplify
1062 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1063 /* If the constant operation overflows we cannot do the transform
1064 as we would introduce undefined overflow, for example
1065 with (a - 1) + INT_MIN. */
1066 (with { tree cst = fold_binary (outer_op == inner_op
1067 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
1068 (if (cst && !TREE_OVERFLOW (cst))
1069 (inner_op @0 { cst; } ))))))
1070
1071 /* (CST - A) +- CST -> CST - A */
1072 (for outer_op (plus minus)
1073 (simplify
1074 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1075 (with { tree cst = fold_binary (outer_op, type, @1, @2); }
1076 (if (cst && !TREE_OVERFLOW (cst))
1077 (minus { cst; } @0)))))
1078
1079 /* ~A + A -> -1 */
1080 (simplify
1081 (plus:c (bit_not @0) @0)
1082 (if (!TYPE_OVERFLOW_TRAPS (type))
1083 { build_all_ones_cst (type); }))
1084
1085 /* ~A + 1 -> -A */
1086 (simplify
e19740ae
RB
1087 (plus (convert? (bit_not @0)) integer_each_onep)
1088 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1089 (negate (convert @0))))
1090
1091 /* -A - 1 -> ~A */
1092 (simplify
1093 (minus (convert? (negate @0)) integer_each_onep)
1094 (if (!TYPE_OVERFLOW_TRAPS (type)
1095 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1096 (bit_not (convert @0))))
1097
1098 /* -1 - A -> ~A */
1099 (simplify
1100 (minus integer_all_onesp @0)
bc4315fb 1101 (bit_not @0))
cc7b5acf
RB
1102
1103 /* (T)(P + A) - (T)P -> (T) A */
1104 (for add (plus pointer_plus)
1105 (simplify
1106 (minus (convert (add @0 @1))
1107 (convert @0))
09240451 1108 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
cc7b5acf
RB
1109 /* For integer types, if A has a smaller type
1110 than T the result depends on the possible
1111 overflow in P + A.
1112 E.g. T=size_t, A=(unsigned)429497295, P>0.
1113 However, if an overflow in P + A would cause
1114 undefined behavior, we can assume that there
1115 is no overflow. */
1116 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1117 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1118 /* For pointer types, if the conversion of A to the
1119 final type requires a sign- or zero-extension,
1120 then we have to punt - it is not defined which
1121 one is correct. */
1122 || (POINTER_TYPE_P (TREE_TYPE (@0))
1123 && TREE_CODE (@1) == INTEGER_CST
1124 && tree_int_cst_sign_bit (@1) == 0))
a8fc2579
RB
1125 (convert @1))))
1126
1127 /* (T)P - (T)(P + A) -> -(T) A */
1128 (for add (plus pointer_plus)
1129 (simplify
1130 (minus (convert @0)
1131 (convert (add @0 @1)))
1132 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1133 /* For integer types, if A has a smaller type
1134 than T the result depends on the possible
1135 overflow in P + A.
1136 E.g. T=size_t, A=(unsigned)429497295, P>0.
1137 However, if an overflow in P + A would cause
1138 undefined behavior, we can assume that there
1139 is no overflow. */
1140 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1141 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1142 /* For pointer types, if the conversion of A to the
1143 final type requires a sign- or zero-extension,
1144 then we have to punt - it is not defined which
1145 one is correct. */
1146 || (POINTER_TYPE_P (TREE_TYPE (@0))
1147 && TREE_CODE (@1) == INTEGER_CST
1148 && tree_int_cst_sign_bit (@1) == 0))
1149 (negate (convert @1)))))
1150
1151 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
1152 (for add (plus pointer_plus)
1153 (simplify
1154 (minus (convert (add @0 @1))
1155 (convert (add @0 @2)))
1156 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1157 /* For integer types, if A has a smaller type
1158 than T the result depends on the possible
1159 overflow in P + A.
1160 E.g. T=size_t, A=(unsigned)429497295, P>0.
1161 However, if an overflow in P + A would cause
1162 undefined behavior, we can assume that there
1163 is no overflow. */
1164 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1165 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1166 /* For pointer types, if the conversion of A to the
1167 final type requires a sign- or zero-extension,
1168 then we have to punt - it is not defined which
1169 one is correct. */
1170 || (POINTER_TYPE_P (TREE_TYPE (@0))
1171 && TREE_CODE (@1) == INTEGER_CST
1172 && tree_int_cst_sign_bit (@1) == 0
1173 && TREE_CODE (@2) == INTEGER_CST
1174 && tree_int_cst_sign_bit (@2) == 0))
1175 (minus (convert @1) (convert @2)))))))
cc7b5acf
RB
1176
1177
0122e8e5 1178/* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
a7f24614 1179
0122e8e5 1180(for minmax (min max FMIN FMAX)
a7f24614
RB
1181 (simplify
1182 (minmax @0 @0)
1183 @0))
4a334cba
RS
1184/* min(max(x,y),y) -> y. */
1185(simplify
1186 (min:c (max:c @0 @1) @1)
1187 @1)
1188/* max(min(x,y),y) -> y. */
1189(simplify
1190 (max:c (min:c @0 @1) @1)
1191 @1)
a7f24614
RB
1192(simplify
1193 (min @0 @1)
1194 (if (INTEGRAL_TYPE_P (type)
1195 && TYPE_MIN_VALUE (type)
1196 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
1197 @1))
1198(simplify
1199 (max @0 @1)
1200 (if (INTEGRAL_TYPE_P (type)
1201 && TYPE_MAX_VALUE (type)
1202 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
1203 @1))
0122e8e5
RS
1204(for minmax (FMIN FMAX)
1205 /* If either argument is NaN, return the other one. Avoid the
1206 transformation if we get (and honor) a signalling NaN. */
1207 (simplify
1208 (minmax:c @0 REAL_CST@1)
1209 (if (real_isnan (TREE_REAL_CST_PTR (@1))
1210 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
1211 @0)))
1212/* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
1213 functions to return the numeric arg if the other one is NaN.
1214 MIN and MAX don't honor that, so only transform if -ffinite-math-only
1215 is set. C99 doesn't require -0.0 to be handled, so we don't have to
1216 worry about it either. */
1217(if (flag_finite_math_only)
1218 (simplify
1219 (FMIN @0 @1)
1220 (min @0 @1))
1221 (simplify
1222 (FMAX @0 @1)
1223 (max @0 @1)))
a7f24614
RB
1224
1225/* Simplifications of shift and rotates. */
1226
1227(for rotate (lrotate rrotate)
1228 (simplify
1229 (rotate integer_all_onesp@0 @1)
1230 @0))
1231
1232/* Optimize -1 >> x for arithmetic right shifts. */
1233(simplify
1234 (rshift integer_all_onesp@0 @1)
1235 (if (!TYPE_UNSIGNED (type)
1236 && tree_expr_nonnegative_p (@1))
1237 @0))
1238
12085390
N
1239/* Optimize (x >> c) << c into x & (-1<<c). */
1240(simplify
1241 (lshift (rshift @0 INTEGER_CST@1) @1)
1242 (if (wi::ltu_p (@1, element_precision (type)))
1243 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
1244
1245/* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
1246 types. */
1247(simplify
1248 (rshift (lshift @0 INTEGER_CST@1) @1)
1249 (if (TYPE_UNSIGNED (type)
1250 && (wi::ltu_p (@1, element_precision (type))))
1251 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
1252
a7f24614
RB
1253(for shiftrotate (lrotate rrotate lshift rshift)
1254 (simplify
1255 (shiftrotate @0 integer_zerop)
1256 (non_lvalue @0))
1257 (simplify
1258 (shiftrotate integer_zerop@0 @1)
1259 @0)
1260 /* Prefer vector1 << scalar to vector1 << vector2
1261 if vector2 is uniform. */
1262 (for vec (VECTOR_CST CONSTRUCTOR)
1263 (simplify
1264 (shiftrotate @0 vec@1)
1265 (with { tree tem = uniform_vector_p (@1); }
1266 (if (tem)
1267 (shiftrotate @0 { tem; }))))))
1268
1269/* Rewrite an LROTATE_EXPR by a constant into an
1270 RROTATE_EXPR by a new constant. */
1271(simplify
1272 (lrotate @0 INTEGER_CST@1)
1273 (rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
1274 build_int_cst (TREE_TYPE (@1),
1275 element_precision (type)), @1); }))
1276
14ea9f92
RB
1277/* Turn (a OP c1) OP c2 into a OP (c1+c2). */
1278(for op (lrotate rrotate rshift lshift)
1279 (simplify
1280 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
1281 (with { unsigned int prec = element_precision (type); }
1282 (if (wi::ge_p (@1, 0, TYPE_SIGN (TREE_TYPE (@1)))
1283 && wi::lt_p (@1, prec, TYPE_SIGN (TREE_TYPE (@1)))
1284 && wi::ge_p (@2, 0, TYPE_SIGN (TREE_TYPE (@2)))
1285 && wi::lt_p (@2, prec, TYPE_SIGN (TREE_TYPE (@2))))
1286 (with { unsigned int low = wi::add (@1, @2).to_uhwi (); }
1287 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
1288 being well defined. */
1289 (if (low >= prec)
1290 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
8fdc6c67 1291 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
50301115 1292 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
8fdc6c67
RB
1293 { build_zero_cst (type); }
1294 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
1295 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
14ea9f92
RB
1296
1297
01ada710
MP
1298/* ((1 << A) & 1) != 0 -> A == 0
1299 ((1 << A) & 1) == 0 -> A != 0 */
1300(for cmp (ne eq)
1301 icmp (eq ne)
1302 (simplify
1303 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
1304 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
cc7b5acf 1305
f2e609c3
MP
1306/* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
1307 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
1308 if CST2 != 0. */
1309(for cmp (ne eq)
1310 (simplify
1311 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
1312 (with { int cand = wi::ctz (@2) - wi::ctz (@0); }
1313 (if (cand < 0
1314 || (!integer_zerop (@2)
1315 && wi::ne_p (wi::lshift (@0, cand), @2)))
8fdc6c67
RB
1316 { constant_boolean_node (cmp == NE_EXPR, type); }
1317 (if (!integer_zerop (@2)
1318 && wi::eq_p (wi::lshift (@0, cand), @2))
1319 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
f2e609c3 1320
1ffbaa3f
RB
1321/* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
1322 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
1323 if the new mask might be further optimized. */
1324(for shift (lshift rshift)
1325 (simplify
44fc0a51
RB
1326 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
1327 INTEGER_CST@2)
1ffbaa3f
RB
1328 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
1329 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
1330 && tree_fits_uhwi_p (@1)
1331 && tree_to_uhwi (@1) > 0
1332 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
1333 (with
1334 {
1335 unsigned int shiftc = tree_to_uhwi (@1);
1336 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
1337 unsigned HOST_WIDE_INT newmask, zerobits = 0;
1338 tree shift_type = TREE_TYPE (@3);
1339 unsigned int prec;
1340
1341 if (shift == LSHIFT_EXPR)
1342 zerobits = ((((unsigned HOST_WIDE_INT) 1) << shiftc) - 1);
1343 else if (shift == RSHIFT_EXPR
1344 && (TYPE_PRECISION (shift_type)
1345 == GET_MODE_PRECISION (TYPE_MODE (shift_type))))
1346 {
1347 prec = TYPE_PRECISION (TREE_TYPE (@3));
1348 tree arg00 = @0;
1349 /* See if more bits can be proven as zero because of
1350 zero extension. */
1351 if (@3 != @0
1352 && TYPE_UNSIGNED (TREE_TYPE (@0)))
1353 {
1354 tree inner_type = TREE_TYPE (@0);
1355 if ((TYPE_PRECISION (inner_type)
1356 == GET_MODE_PRECISION (TYPE_MODE (inner_type)))
1357 && TYPE_PRECISION (inner_type) < prec)
1358 {
1359 prec = TYPE_PRECISION (inner_type);
1360 /* See if we can shorten the right shift. */
1361 if (shiftc < prec)
1362 shift_type = inner_type;
1363 /* Otherwise X >> C1 is all zeros, so we'll optimize
1364 it into (X, 0) later on by making sure zerobits
1365 is all ones. */
1366 }
1367 }
1368 zerobits = ~(unsigned HOST_WIDE_INT) 0;
1369 if (shiftc < prec)
1370 {
1371 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
1372 zerobits <<= prec - shiftc;
1373 }
1374 /* For arithmetic shift if sign bit could be set, zerobits
1375 can contain actually sign bits, so no transformation is
1376 possible, unless MASK masks them all away. In that
1377 case the shift needs to be converted into logical shift. */
1378 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
1379 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
1380 {
1381 if ((mask & zerobits) == 0)
1382 shift_type = unsigned_type_for (TREE_TYPE (@3));
1383 else
1384 zerobits = 0;
1385 }
1386 }
1387 }
1388 /* ((X << 16) & 0xff00) is (X, 0). */
1389 (if ((mask & zerobits) == mask)
8fdc6c67
RB
1390 { build_int_cst (type, 0); }
1391 (with { newmask = mask | zerobits; }
1392 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
1393 (with
1394 {
1395 /* Only do the transformation if NEWMASK is some integer
1396 mode's mask. */
1397 for (prec = BITS_PER_UNIT;
1398 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
1399 if (newmask == (((unsigned HOST_WIDE_INT) 1) << prec) - 1)
1400 break;
1401 }
1402 (if (prec < HOST_BITS_PER_WIDE_INT
1403 || newmask == ~(unsigned HOST_WIDE_INT) 0)
1404 (with
1405 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
1406 (if (!tree_int_cst_equal (newmaskt, @2))
1407 (if (shift_type != TREE_TYPE (@3))
1408 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
1409 (bit_and @4 { newmaskt; })))))))))))))
1ffbaa3f 1410
84ff66b8
AV
1411/* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
1412 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
98e30e51 1413(for shift (lshift rshift)
84ff66b8
AV
1414 (for bit_op (bit_and bit_xor bit_ior)
1415 (simplify
1416 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
1417 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1418 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
1419 (bit_op (shift (convert @0) @1) { mask; }))))))
98e30e51
RB
1420
1421
d4573ffe
RB
1422/* Simplifications of conversions. */
1423
1424/* Basic strip-useless-type-conversions / strip_nops. */
f3582e54 1425(for cvt (convert view_convert float fix_trunc)
d4573ffe
RB
1426 (simplify
1427 (cvt @0)
1428 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
1429 || (GENERIC && type == TREE_TYPE (@0)))
1430 @0)))
1431
1432/* Contract view-conversions. */
1433(simplify
1434 (view_convert (view_convert @0))
1435 (view_convert @0))
1436
1437/* For integral conversions with the same precision or pointer
1438 conversions use a NOP_EXPR instead. */
1439(simplify
1440 (view_convert @0)
1441 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
1442 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1443 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
1444 (convert @0)))
1445
1446/* Strip inner integral conversions that do not change precision or size. */
1447(simplify
1448 (view_convert (convert@0 @1))
1449 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1450 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
1451 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1452 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
1453 (view_convert @1)))
1454
1455/* Re-association barriers around constants and other re-association
1456 barriers can be removed. */
1457(simplify
1458 (paren CONSTANT_CLASS_P@0)
1459 @0)
1460(simplify
1461 (paren (paren@1 @0))
1462 @1)
1e51d0a2
RB
1463
1464/* Handle cases of two conversions in a row. */
1465(for ocvt (convert float fix_trunc)
1466 (for icvt (convert float)
1467 (simplify
1468 (ocvt (icvt@1 @0))
1469 (with
1470 {
1471 tree inside_type = TREE_TYPE (@0);
1472 tree inter_type = TREE_TYPE (@1);
1473 int inside_int = INTEGRAL_TYPE_P (inside_type);
1474 int inside_ptr = POINTER_TYPE_P (inside_type);
1475 int inside_float = FLOAT_TYPE_P (inside_type);
09240451 1476 int inside_vec = VECTOR_TYPE_P (inside_type);
1e51d0a2
RB
1477 unsigned int inside_prec = TYPE_PRECISION (inside_type);
1478 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
1479 int inter_int = INTEGRAL_TYPE_P (inter_type);
1480 int inter_ptr = POINTER_TYPE_P (inter_type);
1481 int inter_float = FLOAT_TYPE_P (inter_type);
09240451 1482 int inter_vec = VECTOR_TYPE_P (inter_type);
1e51d0a2
RB
1483 unsigned int inter_prec = TYPE_PRECISION (inter_type);
1484 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
1485 int final_int = INTEGRAL_TYPE_P (type);
1486 int final_ptr = POINTER_TYPE_P (type);
1487 int final_float = FLOAT_TYPE_P (type);
09240451 1488 int final_vec = VECTOR_TYPE_P (type);
1e51d0a2
RB
1489 unsigned int final_prec = TYPE_PRECISION (type);
1490 int final_unsignedp = TYPE_UNSIGNED (type);
1491 }
64d3a1f0
RB
1492 (switch
1493 /* In addition to the cases of two conversions in a row
1494 handled below, if we are converting something to its own
1495 type via an object of identical or wider precision, neither
1496 conversion is needed. */
1497 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
1498 || (GENERIC
1499 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
1500 && (((inter_int || inter_ptr) && final_int)
1501 || (inter_float && final_float))
1502 && inter_prec >= final_prec)
1503 (ocvt @0))
1504
1505 /* Likewise, if the intermediate and initial types are either both
1506 float or both integer, we don't need the middle conversion if the
1507 former is wider than the latter and doesn't change the signedness
1508 (for integers). Avoid this if the final type is a pointer since
1509 then we sometimes need the middle conversion. Likewise if the
1510 final type has a precision not equal to the size of its mode. */
1511 (if (((inter_int && inside_int) || (inter_float && inside_float))
1512 && (final_int || final_float)
1513 && inter_prec >= inside_prec
1514 && (inter_float || inter_unsignedp == inside_unsignedp)
1515 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
1516 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1517 (ocvt @0))
1518
1519 /* If we have a sign-extension of a zero-extended value, we can
1520 replace that by a single zero-extension. Likewise if the
1521 final conversion does not change precision we can drop the
1522 intermediate conversion. */
1523 (if (inside_int && inter_int && final_int
1524 && ((inside_prec < inter_prec && inter_prec < final_prec
1525 && inside_unsignedp && !inter_unsignedp)
1526 || final_prec == inter_prec))
1527 (ocvt @0))
1528
1529 /* Two conversions in a row are not needed unless:
1e51d0a2
RB
1530 - some conversion is floating-point (overstrict for now), or
1531 - some conversion is a vector (overstrict for now), or
1532 - the intermediate type is narrower than both initial and
1533 final, or
1534 - the intermediate type and innermost type differ in signedness,
1535 and the outermost type is wider than the intermediate, or
1536 - the initial type is a pointer type and the precisions of the
1537 intermediate and final types differ, or
1538 - the final type is a pointer type and the precisions of the
1539 initial and intermediate types differ. */
64d3a1f0
RB
1540 (if (! inside_float && ! inter_float && ! final_float
1541 && ! inside_vec && ! inter_vec && ! final_vec
1542 && (inter_prec >= inside_prec || inter_prec >= final_prec)
1543 && ! (inside_int && inter_int
1544 && inter_unsignedp != inside_unsignedp
1545 && inter_prec < final_prec)
1546 && ((inter_unsignedp && inter_prec > inside_prec)
1547 == (final_unsignedp && final_prec > inter_prec))
1548 && ! (inside_ptr && inter_prec != final_prec)
1549 && ! (final_ptr && inside_prec != inter_prec)
1550 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
1551 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1552 (ocvt @0))
1553
1554 /* A truncation to an unsigned type (a zero-extension) should be
1555 canonicalized as bitwise and of a mask. */
1556 (if (final_int && inter_int && inside_int
1557 && final_prec == inside_prec
1558 && final_prec > inter_prec
1559 && inter_unsignedp)
1560 (convert (bit_and @0 { wide_int_to_tree
1561 (inside_type,
1562 wi::mask (inter_prec, false,
1563 TYPE_PRECISION (inside_type))); })))
1564
1565 /* If we are converting an integer to a floating-point that can
1566 represent it exactly and back to an integer, we can skip the
1567 floating-point conversion. */
1568 (if (GIMPLE /* PR66211 */
1569 && inside_int && inter_float && final_int &&
1570 (unsigned) significand_size (TYPE_MODE (inter_type))
1571 >= inside_prec - !inside_unsignedp)
1572 (convert @0)))))))
ea2042ba
RB
1573
1574/* If we have a narrowing conversion to an integral type that is fed by a
1575 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
1576 masks off bits outside the final type (and nothing else). */
1577(simplify
1578 (convert (bit_and @0 INTEGER_CST@1))
1579 (if (INTEGRAL_TYPE_P (type)
1580 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1581 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
1582 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
1583 TYPE_PRECISION (type)), 0))
1584 (convert @0)))
a25454ea
RB
1585
1586
1587/* (X /[ex] A) * A -> X. */
1588(simplify
1589 (mult (convert? (exact_div @0 @1)) @1)
1590 /* Look through a sign-changing conversion. */
257b01ba 1591 (convert @0))
eaeba53a 1592
a7f24614
RB
1593/* Canonicalization of binary operations. */
1594
1595/* Convert X + -C into X - C. */
1596(simplify
1597 (plus @0 REAL_CST@1)
1598 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1599 (with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
1600 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
1601 (minus @0 { tem; })))))
1602
1603/* Convert x+x into x*2.0. */
1604(simplify
1605 (plus @0 @0)
1606 (if (SCALAR_FLOAT_TYPE_P (type))
1607 (mult @0 { build_real (type, dconst2); })))
1608
1609(simplify
1610 (minus integer_zerop @1)
1611 (negate @1))
1612
1613/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
1614 ARG0 is zero and X + ARG0 reduces to X, since that would mean
1615 (-ARG1 + ARG0) reduces to -ARG1. */
1616(simplify
1617 (minus real_zerop@0 @1)
1618 (if (fold_real_zero_addition_p (type, @0, 0))
1619 (negate @1)))
1620
1621/* Transform x * -1 into -x. */
1622(simplify
1623 (mult @0 integer_minus_onep)
1624 (negate @0))
eaeba53a 1625
96285749
RS
1626/* True if we can easily extract the real and imaginary parts of a complex
1627 number. */
1628(match compositional_complex
1629 (convert? (complex @0 @1)))
1630
eaeba53a
RB
1631/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
1632(simplify
1633 (complex (realpart @0) (imagpart @0))
1634 @0)
1635(simplify
1636 (realpart (complex @0 @1))
1637 @0)
1638(simplify
1639 (imagpart (complex @0 @1))
1640 @1)
83633539 1641
77c028c5
MG
1642/* Sometimes we only care about half of a complex expression. */
1643(simplify
1644 (realpart (convert?:s (conj:s @0)))
1645 (convert (realpart @0)))
1646(simplify
1647 (imagpart (convert?:s (conj:s @0)))
1648 (convert (negate (imagpart @0))))
1649(for part (realpart imagpart)
1650 (for op (plus minus)
1651 (simplify
1652 (part (convert?:s@2 (op:s @0 @1)))
1653 (convert (op (part @0) (part @1))))))
1654(simplify
1655 (realpart (convert?:s (CEXPI:s @0)))
1656 (convert (COS @0)))
1657(simplify
1658 (imagpart (convert?:s (CEXPI:s @0)))
1659 (convert (SIN @0)))
1660
1661/* conj(conj(x)) -> x */
1662(simplify
1663 (conj (convert? (conj @0)))
1664 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
1665 (convert @0)))
1666
1667/* conj({x,y}) -> {x,-y} */
1668(simplify
1669 (conj (convert?:s (complex:s @0 @1)))
1670 (with { tree itype = TREE_TYPE (type); }
1671 (complex (convert:itype @0) (negate (convert:itype @1)))))
83633539
RB
1672
1673/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
1674(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
1675 (simplify
1676 (bswap (bswap @0))
1677 @0)
1678 (simplify
1679 (bswap (bit_not (bswap @0)))
1680 (bit_not @0))
1681 (for bitop (bit_xor bit_ior bit_and)
1682 (simplify
1683 (bswap (bitop:c (bswap @0) @1))
1684 (bitop @0 (bswap @1)))))
96994de0
RB
1685
1686
1687/* Combine COND_EXPRs and VEC_COND_EXPRs. */
1688
1689/* Simplify constant conditions.
1690 Only optimize constant conditions when the selected branch
1691 has the same type as the COND_EXPR. This avoids optimizing
1692 away "c ? x : throw", where the throw has a void type.
1693 Note that we cannot throw away the fold-const.c variant nor
1694 this one as we depend on doing this transform before possibly
1695 A ? B : B -> B triggers and the fold-const.c one can optimize
1696 0 ? A : B to B even if A has side-effects. Something
1697 genmatch cannot handle. */
1698(simplify
1699 (cond INTEGER_CST@0 @1 @2)
8fdc6c67
RB
1700 (if (integer_zerop (@0))
1701 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
1702 @2)
1703 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
1704 @1)))
96994de0
RB
1705(simplify
1706 (vec_cond VECTOR_CST@0 @1 @2)
1707 (if (integer_all_onesp (@0))
8fdc6c67
RB
1708 @1
1709 (if (integer_zerop (@0))
1710 @2)))
96994de0
RB
1711
1712(for cnd (cond vec_cond)
1713 /* A ? B : (A ? X : C) -> A ? B : C. */
1714 (simplify
1715 (cnd @0 (cnd @0 @1 @2) @3)
1716 (cnd @0 @1 @3))
1717 (simplify
1718 (cnd @0 @1 (cnd @0 @2 @3))
1719 (cnd @0 @1 @3))
1720
1721 /* A ? B : B -> B. */
1722 (simplify
1723 (cnd @0 @1 @1)
09240451 1724 @1)
96994de0 1725
09240451
MG
1726 /* !A ? B : C -> A ? C : B. */
1727 (simplify
1728 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
1729 (cnd @0 @2 @1)))
f84e7fd6 1730
f43d102e
RS
1731/* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C), since vector comparisons
1732 return all-1 or all-0 results. */
1733/* ??? We could instead convert all instances of the vec_cond to negate,
1734 but that isn't necessarily a win on its own. */
1735(simplify
1736 (plus:c @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1737 (if (VECTOR_TYPE_P (type)
1738 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1739 && (TYPE_MODE (TREE_TYPE (type))
1740 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1741 (minus @3 (view_convert @0))))
1742
1743/* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C). */
1744(simplify
1745 (minus @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1746 (if (VECTOR_TYPE_P (type)
1747 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1748 && (TYPE_MODE (TREE_TYPE (type))
1749 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1750 (plus @3 (view_convert @0))))
f84e7fd6 1751
2ee05f1e 1752
f84e7fd6
RB
1753/* Simplifications of comparisons. */
1754
24f1db9c
RB
1755/* See if we can reduce the magnitude of a constant involved in a
1756 comparison by changing the comparison code. This is a canonicalization
1757 formerly done by maybe_canonicalize_comparison_1. */
1758(for cmp (le gt)
1759 acmp (lt ge)
1760 (simplify
1761 (cmp @0 INTEGER_CST@1)
1762 (if (tree_int_cst_sgn (@1) == -1)
1763 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))))
1764(for cmp (ge lt)
1765 acmp (gt le)
1766 (simplify
1767 (cmp @0 INTEGER_CST@1)
1768 (if (tree_int_cst_sgn (@1) == 1)
1769 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))))
1770
1771
f84e7fd6
RB
1772/* We can simplify a logical negation of a comparison to the
1773 inverted comparison. As we cannot compute an expression
1774 operator using invert_tree_comparison we have to simulate
1775 that with expression code iteration. */
1776(for cmp (tcc_comparison)
1777 icmp (inverted_tcc_comparison)
1778 ncmp (inverted_tcc_comparison_with_nans)
1779 /* Ideally we'd like to combine the following two patterns
1780 and handle some more cases by using
1781 (logical_inverted_value (cmp @0 @1))
1782 here but for that genmatch would need to "inline" that.
1783 For now implement what forward_propagate_comparison did. */
1784 (simplify
1785 (bit_not (cmp @0 @1))
1786 (if (VECTOR_TYPE_P (type)
1787 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
1788 /* Comparison inversion may be impossible for trapping math,
1789 invert_tree_comparison will tell us. But we can't use
1790 a computed operator in the replacement tree thus we have
1791 to play the trick below. */
1792 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 1793 (cmp, HONOR_NANS (@0)); }
f84e7fd6 1794 (if (ic == icmp)
8fdc6c67
RB
1795 (icmp @0 @1)
1796 (if (ic == ncmp)
1797 (ncmp @0 @1))))))
f84e7fd6 1798 (simplify
09240451
MG
1799 (bit_xor (cmp @0 @1) integer_truep)
1800 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 1801 (cmp, HONOR_NANS (@0)); }
09240451 1802 (if (ic == icmp)
8fdc6c67
RB
1803 (icmp @0 @1)
1804 (if (ic == ncmp)
1805 (ncmp @0 @1))))))
e18c1d66 1806
2ee05f1e
RB
1807/* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
1808 ??? The transformation is valid for the other operators if overflow
1809 is undefined for the type, but performing it here badly interacts
1810 with the transformation in fold_cond_expr_with_comparison which
1811 attempts to synthetize ABS_EXPR. */
1812(for cmp (eq ne)
1813 (simplify
d9ba1961
RB
1814 (cmp (minus@2 @0 @1) integer_zerop)
1815 (if (single_use (@2))
1816 (cmp @0 @1))))
2ee05f1e
RB
1817
1818/* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
1819 signed arithmetic case. That form is created by the compiler
1820 often enough for folding it to be of value. One example is in
1821 computing loop trip counts after Operator Strength Reduction. */
07cdc2b8
RB
1822(for cmp (simple_comparison)
1823 scmp (swapped_simple_comparison)
2ee05f1e 1824 (simplify
bc6e9db4 1825 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
2ee05f1e
RB
1826 /* Handle unfolded multiplication by zero. */
1827 (if (integer_zerop (@1))
8fdc6c67
RB
1828 (cmp @1 @2)
1829 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
bc6e9db4
RB
1830 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1831 && single_use (@3))
8fdc6c67
RB
1832 /* If @1 is negative we swap the sense of the comparison. */
1833 (if (tree_int_cst_sgn (@1) < 0)
1834 (scmp @0 @2)
1835 (cmp @0 @2))))))
2ee05f1e
RB
1836
1837/* Simplify comparison of something with itself. For IEEE
1838 floating-point, we can only do some of these simplifications. */
287f8f17 1839(for cmp (eq ge le)
2ee05f1e
RB
1840 (simplify
1841 (cmp @0 @0)
287f8f17
RB
1842 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
1843 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (@0))))
1844 { constant_boolean_node (true, type); }
1845 (if (cmp != EQ_EXPR)
1846 (eq @0 @0)))))
2ee05f1e
RB
1847(for cmp (ne gt lt)
1848 (simplify
1849 (cmp @0 @0)
1850 (if (cmp != NE_EXPR
1851 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
1852 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (@0))))
1853 { constant_boolean_node (false, type); })))
b5d3d787
RB
1854(for cmp (unle unge uneq)
1855 (simplify
1856 (cmp @0 @0)
1857 { constant_boolean_node (true, type); }))
1858(simplify
1859 (ltgt @0 @0)
1860 (if (!flag_trapping_math)
1861 { constant_boolean_node (false, type); }))
2ee05f1e
RB
1862
1863/* Fold ~X op ~Y as Y op X. */
07cdc2b8 1864(for cmp (simple_comparison)
2ee05f1e 1865 (simplify
7fe996ba
RB
1866 (cmp (bit_not@2 @0) (bit_not@3 @1))
1867 (if (single_use (@2) && single_use (@3))
1868 (cmp @1 @0))))
2ee05f1e
RB
1869
1870/* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
07cdc2b8
RB
1871(for cmp (simple_comparison)
1872 scmp (swapped_simple_comparison)
2ee05f1e 1873 (simplify
7fe996ba
RB
1874 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
1875 (if (single_use (@2)
1876 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
2ee05f1e
RB
1877 (scmp @0 (bit_not @1)))))
1878
07cdc2b8
RB
1879(for cmp (simple_comparison)
1880 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
1881 (simplify
1882 (cmp (convert@2 @0) (convert? @1))
1883 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1884 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
1885 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
1886 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
1887 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
1888 (with
1889 {
1890 tree type1 = TREE_TYPE (@1);
1891 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
1892 {
1893 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
1894 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
1895 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
1896 type1 = float_type_node;
1897 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
1898 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
1899 type1 = double_type_node;
1900 }
1901 tree newtype
1902 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
1903 ? TREE_TYPE (@0) : type1);
1904 }
1905 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
1906 (cmp (convert:newtype @0) (convert:newtype @1))))))
1907
1908 (simplify
1909 (cmp @0 REAL_CST@1)
1910 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
64d3a1f0
RB
1911 (switch
1912 /* a CMP (-0) -> a CMP 0 */
1913 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
1914 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
1915 /* x != NaN is always true, other ops are always false. */
1916 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
1917 && ! HONOR_SNANS (@1))
1918 { constant_boolean_node (cmp == NE_EXPR, type); })
1919 /* Fold comparisons against infinity. */
1920 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
1921 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
1922 (with
1923 {
1924 REAL_VALUE_TYPE max;
1925 enum tree_code code = cmp;
1926 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
1927 if (neg)
1928 code = swap_tree_comparison (code);
1929 }
1930 (switch
1931 /* x > +Inf is always false, if with ignore sNANs. */
1932 (if (code == GT_EXPR
1933 && ! HONOR_SNANS (@0))
1934 { constant_boolean_node (false, type); })
1935 (if (code == LE_EXPR)
1936 /* x <= +Inf is always true, if we don't case about NaNs. */
1937 (if (! HONOR_NANS (@0))
1938 { constant_boolean_node (true, type); }
b0eb889b 1939 /* x <= +Inf is the same as x == x, i.e. !isnan(x). */
64d3a1f0
RB
1940 (eq @0 @0)))
1941 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
1942 (if (code == EQ_EXPR || code == GE_EXPR)
1943 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1944 (if (neg)
1945 (lt @0 { build_real (TREE_TYPE (@0), max); })
1946 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
1947 /* x < +Inf is always equal to x <= DBL_MAX. */
1948 (if (code == LT_EXPR)
1949 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1950 (if (neg)
1951 (ge @0 { build_real (TREE_TYPE (@0), max); })
1952 (le @0 { build_real (TREE_TYPE (@0), max); }))))
1953 /* x != +Inf is always equal to !(x > DBL_MAX). */
1954 (if (code == NE_EXPR)
1955 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1956 (if (! HONOR_NANS (@0))
1957 (if (neg)
1958 (ge @0 { build_real (TREE_TYPE (@0), max); })
1959 (le @0 { build_real (TREE_TYPE (@0), max); }))
1960 (if (neg)
1961 (bit_xor (lt @0 { build_real (TREE_TYPE (@0), max); })
1962 { build_one_cst (type); })
1963 (bit_xor (gt @0 { build_real (TREE_TYPE (@0), max); })
1964 { build_one_cst (type); }))))))))))
07cdc2b8
RB
1965
1966 /* If this is a comparison of a real constant with a PLUS_EXPR
1967 or a MINUS_EXPR of a real constant, we can convert it into a
1968 comparison with a revised real constant as long as no overflow
1969 occurs when unsafe_math_optimizations are enabled. */
1970 (if (flag_unsafe_math_optimizations)
1971 (for op (plus minus)
1972 (simplify
1973 (cmp (op @0 REAL_CST@1) REAL_CST@2)
1974 (with
1975 {
1976 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
1977 TREE_TYPE (@1), @2, @1);
1978 }
f980c9a2 1979 (if (tem && !TREE_OVERFLOW (tem))
07cdc2b8
RB
1980 (cmp @0 { tem; }))))))
1981
1982 /* Likewise, we can simplify a comparison of a real constant with
1983 a MINUS_EXPR whose first operand is also a real constant, i.e.
1984 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
1985 floating-point types only if -fassociative-math is set. */
1986 (if (flag_associative_math)
1987 (simplify
0409237b 1988 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
07cdc2b8 1989 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
f980c9a2 1990 (if (tem && !TREE_OVERFLOW (tem))
07cdc2b8
RB
1991 (cmp { tem; } @1)))))
1992
1993 /* Fold comparisons against built-in math functions. */
1994 (if (flag_unsafe_math_optimizations
1995 && ! flag_errno_math)
1996 (for sq (SQRT)
1997 (simplify
1998 (cmp (sq @0) REAL_CST@1)
64d3a1f0
RB
1999 (switch
2000 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2001 (switch
2002 /* sqrt(x) < y is always false, if y is negative. */
2003 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
8fdc6c67 2004 { constant_boolean_node (false, type); })
64d3a1f0
RB
2005 /* sqrt(x) > y is always true, if y is negative and we
2006 don't care about NaNs, i.e. negative values of x. */
2007 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
2008 { constant_boolean_node (true, type); })
2009 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
2010 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
c53233c6
RS
2011 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
2012 (switch
2013 /* sqrt(x) < 0 is always false. */
2014 (if (cmp == LT_EXPR)
2015 { constant_boolean_node (false, type); })
2016 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
2017 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
2018 { constant_boolean_node (true, type); })
2019 /* sqrt(x) <= 0 -> x == 0. */
2020 (if (cmp == LE_EXPR)
2021 (eq @0 @1))
2022 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
2023 == or !=. In the last case:
2024
2025 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
2026
2027 if x is negative or NaN. Due to -funsafe-math-optimizations,
2028 the results for other x follow from natural arithmetic. */
2029 (cmp @0 @1)))
64d3a1f0
RB
2030 (if (cmp == GT_EXPR || cmp == GE_EXPR)
2031 (with
2032 {
2033 REAL_VALUE_TYPE c2;
5c88ea94
RS
2034 real_arithmetic (&c2, MULT_EXPR,
2035 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
64d3a1f0
RB
2036 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
2037 }
2038 (if (REAL_VALUE_ISINF (c2))
2039 /* sqrt(x) > y is x == +Inf, when y is very large. */
2040 (if (HONOR_INFINITIES (@0))
2041 (eq @0 { build_real (TREE_TYPE (@0), c2); })
2042 { constant_boolean_node (false, type); })
2043 /* sqrt(x) > c is the same as x > c*c. */
2044 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
2045 (if (cmp == LT_EXPR || cmp == LE_EXPR)
2046 (with
2047 {
2048 REAL_VALUE_TYPE c2;
5c88ea94
RS
2049 real_arithmetic (&c2, MULT_EXPR,
2050 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
64d3a1f0
RB
2051 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
2052 }
2053 (if (REAL_VALUE_ISINF (c2))
2054 (switch
2055 /* sqrt(x) < y is always true, when y is a very large
2056 value and we don't care about NaNs or Infinities. */
2057 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
2058 { constant_boolean_node (true, type); })
2059 /* sqrt(x) < y is x != +Inf when y is very large and we
2060 don't care about NaNs. */
2061 (if (! HONOR_NANS (@0))
2062 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
2063 /* sqrt(x) < y is x >= 0 when y is very large and we
2064 don't care about Infinities. */
2065 (if (! HONOR_INFINITIES (@0))
2066 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
2067 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
2068 (if (GENERIC)
2069 (truth_andif
2070 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
2071 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
2072 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
2073 (if (! HONOR_NANS (@0))
2074 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
2075 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
2076 (if (GENERIC)
2077 (truth_andif
2078 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
2079 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))))))))))
2ee05f1e 2080
cfdc4f33
MG
2081/* Unordered tests if either argument is a NaN. */
2082(simplify
2083 (bit_ior (unordered @0 @0) (unordered @1 @1))
aea417d7 2084 (if (types_match (@0, @1))
cfdc4f33 2085 (unordered @0 @1)))
257b01ba
MG
2086(simplify
2087 (bit_and (ordered @0 @0) (ordered @1 @1))
2088 (if (types_match (@0, @1))
2089 (ordered @0 @1)))
cfdc4f33
MG
2090(simplify
2091 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
2092 @2)
257b01ba
MG
2093(simplify
2094 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
2095 @2)
e18c1d66 2096
534bd33b
MG
2097/* -A CMP -B -> B CMP A. */
2098(for cmp (tcc_comparison)
2099 scmp (swapped_tcc_comparison)
2100 (simplify
2101 (cmp (negate @0) (negate @1))
2102 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2103 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2104 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2105 (scmp @0 @1)))
2106 (simplify
2107 (cmp (negate @0) CONSTANT_CLASS_P@1)
2108 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2109 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2110 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2111 (with { tree tem = fold_unary (NEGATE_EXPR, TREE_TYPE (@0), @1); }
2112 (if (tem && !TREE_OVERFLOW (tem))
2113 (scmp @0 { tem; }))))))
2114
b0eb889b
MG
2115/* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
2116(for op (eq ne)
2117 (simplify
2118 (op (abs @0) zerop@1)
2119 (op @0 @1)))
2120
79d4f7c6
RB
2121/* From fold_sign_changed_comparison and fold_widened_comparison. */
2122(for cmp (simple_comparison)
2123 (simplify
2124 (cmp (convert@0 @00) (convert?@1 @10))
452ec2a5 2125 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
79d4f7c6
RB
2126 /* Disable this optimization if we're casting a function pointer
2127 type on targets that require function pointer canonicalization. */
2128 && !(targetm.have_canonicalize_funcptr_for_compare ()
2129 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
2fde61e3
RB
2130 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
2131 && single_use (@0))
79d4f7c6
RB
2132 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
2133 && (TREE_CODE (@10) == INTEGER_CST
2134 || (@1 != @10 && types_match (TREE_TYPE (@10), TREE_TYPE (@00))))
2135 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
2136 || cmp == NE_EXPR
2137 || cmp == EQ_EXPR)
2138 && (POINTER_TYPE_P (TREE_TYPE (@00)) == POINTER_TYPE_P (TREE_TYPE (@0))))
2139 /* ??? The special-casing of INTEGER_CST conversion was in the original
2140 code and here to avoid a spurious overflow flag on the resulting
2141 constant which fold_convert produces. */
2142 (if (TREE_CODE (@1) == INTEGER_CST)
2143 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
2144 TREE_OVERFLOW (@1)); })
2145 (cmp @00 (convert @1)))
2146
2147 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
2148 /* If possible, express the comparison in the shorter mode. */
2149 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
2150 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00)))
2151 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
2152 || ((TYPE_PRECISION (TREE_TYPE (@00))
2153 >= TYPE_PRECISION (TREE_TYPE (@10)))
2154 && (TYPE_UNSIGNED (TREE_TYPE (@00))
2155 == TYPE_UNSIGNED (TREE_TYPE (@10))))
2156 || (TREE_CODE (@10) == INTEGER_CST
f6c15759 2157 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
79d4f7c6
RB
2158 && int_fits_type_p (@10, TREE_TYPE (@00)))))
2159 (cmp @00 (convert @10))
2160 (if (TREE_CODE (@10) == INTEGER_CST
f6c15759 2161 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
79d4f7c6
RB
2162 && !int_fits_type_p (@10, TREE_TYPE (@00)))
2163 (with
2164 {
2165 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
2166 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
2167 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
2168 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
2169 }
2170 (if (above || below)
2171 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
2172 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
2173 (if (cmp == LT_EXPR || cmp == LE_EXPR)
2174 { constant_boolean_node (above ? true : false, type); }
2175 (if (cmp == GT_EXPR || cmp == GE_EXPR)
2176 { constant_boolean_node (above ? false : true, type); }))))))))))))
66e1cacf 2177
96a111a3
RB
2178(for cmp (eq ne)
2179 /* A local variable can never be pointed to by
2180 the default SSA name of an incoming parameter.
2181 SSA names are canonicalized to 2nd place. */
2182 (simplify
2183 (cmp addr@0 SSA_NAME@1)
2184 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
2185 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
2186 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
2187 (if (TREE_CODE (base) == VAR_DECL
2188 && auto_var_in_fn_p (base, current_function_decl))
2189 (if (cmp == NE_EXPR)
2190 { constant_boolean_node (true, type); }
2191 { constant_boolean_node (false, type); }))))))
2192
66e1cacf
RB
2193/* Equality compare simplifications from fold_binary */
2194(for cmp (eq ne)
2195
2196 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
2197 Similarly for NE_EXPR. */
2198 (simplify
2199 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
2200 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
2201 && wi::bit_and_not (@1, @2) != 0)
2202 { constant_boolean_node (cmp == NE_EXPR, type); }))
2203
2204 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
2205 (simplify
2206 (cmp (bit_xor @0 @1) integer_zerop)
2207 (cmp @0 @1))
2208
2209 /* (X ^ Y) == Y becomes X == 0.
2210 Likewise (X ^ Y) == X becomes Y == 0. */
2211 (simplify
99e943a2 2212 (cmp:c (bit_xor:c @0 @1) @0)
66e1cacf
RB
2213 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
2214
2215 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
2216 (simplify
2217 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
2218 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
d057c866 2219 (cmp @0 (bit_xor @1 (convert @2)))))
d057c866
RB
2220
2221 (simplify
2222 (cmp (convert? addr@0) integer_zerop)
2223 (if (tree_single_nonzero_warnv_p (@0, NULL))
2224 { constant_boolean_node (cmp == NE_EXPR, type); })))
2225
b0eb889b
MG
2226/* If we have (A & C) == C where C is a power of 2, convert this into
2227 (A & C) != 0. Similarly for NE_EXPR. */
2228(for cmp (eq ne)
2229 icmp (ne eq)
2230 (simplify
2231 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
2232 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
2233
2234/* If we have (A & C) != 0 where C is the sign bit of A, convert
2235 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
2236(for cmp (eq ne)
2237 ncmp (ge lt)
2238 (simplify
2239 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
2240 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2241 && (TYPE_PRECISION (TREE_TYPE (@0))
2242 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
2243 && element_precision (@2) >= element_precision (@0)
2244 && wi::only_sign_bit_p (@1, element_precision (@0)))
2245 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
2246 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
2247
68aba1f6
RB
2248/* When the addresses are not directly of decls compare base and offset.
2249 This implements some remaining parts of fold_comparison address
2250 comparisons but still no complete part of it. Still it is good
2251 enough to make fold_stmt not regress when not dispatching to fold_binary. */
2252(for cmp (simple_comparison)
2253 (simplify
f501d5cd 2254 (cmp (convert1?@2 addr@0) (convert2? addr@1))
68aba1f6
RB
2255 (with
2256 {
2257 HOST_WIDE_INT off0, off1;
2258 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
2259 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
2260 if (base0 && TREE_CODE (base0) == MEM_REF)
2261 {
2262 off0 += mem_ref_offset (base0).to_short_addr ();
2263 base0 = TREE_OPERAND (base0, 0);
2264 }
2265 if (base1 && TREE_CODE (base1) == MEM_REF)
2266 {
2267 off1 += mem_ref_offset (base1).to_short_addr ();
2268 base1 = TREE_OPERAND (base1, 0);
2269 }
2270 }
da571fda
RB
2271 (if (base0 && base1)
2272 (with
2273 {
aad88aed 2274 int equal = 2;
da571fda
RB
2275 if (decl_in_symtab_p (base0)
2276 && decl_in_symtab_p (base1))
2277 equal = symtab_node::get_create (base0)
2278 ->equal_address_to (symtab_node::get_create (base1));
c3bea076
RB
2279 else if ((DECL_P (base0)
2280 || TREE_CODE (base0) == SSA_NAME
2281 || TREE_CODE (base0) == STRING_CST)
2282 && (DECL_P (base1)
2283 || TREE_CODE (base1) == SSA_NAME
2284 || TREE_CODE (base1) == STRING_CST))
aad88aed 2285 equal = (base0 == base1);
da571fda
RB
2286 }
2287 (if (equal == 1
2288 && (cmp == EQ_EXPR || cmp == NE_EXPR
2289 /* If the offsets are equal we can ignore overflow. */
2290 || off0 == off1
2291 || POINTER_TYPE_OVERFLOW_UNDEFINED
c3bea076 2292 /* Or if we compare using pointers to decls or strings. */
da571fda 2293 || (POINTER_TYPE_P (TREE_TYPE (@2))
c3bea076 2294 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
da571fda
RB
2295 (switch
2296 (if (cmp == EQ_EXPR)
2297 { constant_boolean_node (off0 == off1, type); })
2298 (if (cmp == NE_EXPR)
2299 { constant_boolean_node (off0 != off1, type); })
2300 (if (cmp == LT_EXPR)
2301 { constant_boolean_node (off0 < off1, type); })
2302 (if (cmp == LE_EXPR)
2303 { constant_boolean_node (off0 <= off1, type); })
2304 (if (cmp == GE_EXPR)
2305 { constant_boolean_node (off0 >= off1, type); })
2306 (if (cmp == GT_EXPR)
2307 { constant_boolean_node (off0 > off1, type); }))
2308 (if (equal == 0
2309 && DECL_P (base0) && DECL_P (base1)
2310 /* If we compare this as integers require equal offset. */
2311 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
2312 || off0 == off1))
2313 (switch
2314 (if (cmp == EQ_EXPR)
2315 { constant_boolean_node (false, type); })
2316 (if (cmp == NE_EXPR)
2317 { constant_boolean_node (true, type); })))))))))
66e1cacf 2318
21aacde4
RB
2319/* Non-equality compare simplifications from fold_binary */
2320(for cmp (lt gt le ge)
2321 /* Comparisons with the highest or lowest possible integer of
2322 the specified precision will have known values. */
2323 (simplify
2324 (cmp (convert?@2 @0) INTEGER_CST@1)
2325 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2326 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
2327 (with
2328 {
2329 tree arg1_type = TREE_TYPE (@1);
2330 unsigned int prec = TYPE_PRECISION (arg1_type);
2331 wide_int max = wi::max_value (arg1_type);
2332 wide_int signed_max = wi::max_value (prec, SIGNED);
2333 wide_int min = wi::min_value (arg1_type);
2334 }
2335 (switch
2336 (if (wi::eq_p (@1, max))
2337 (switch
2338 (if (cmp == GT_EXPR)
2339 { constant_boolean_node (false, type); })
2340 (if (cmp == GE_EXPR)
2341 (eq @2 @1))
2342 (if (cmp == LE_EXPR)
2343 { constant_boolean_node (true, type); })
2344 (if (cmp == LT_EXPR)
2345 (ne @2 @1))))
21aacde4
RB
2346 (if (wi::eq_p (@1, min))
2347 (switch
2348 (if (cmp == LT_EXPR)
2349 { constant_boolean_node (false, type); })
2350 (if (cmp == LE_EXPR)
2351 (eq @2 @1))
2352 (if (cmp == GE_EXPR)
2353 { constant_boolean_node (true, type); })
2354 (if (cmp == GT_EXPR)
2355 (ne @2 @1))))
9bc22d19
RB
2356 (if (wi::eq_p (@1, max - 1))
2357 (switch
2358 (if (cmp == GT_EXPR)
2359 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))
2360 (if (cmp == LE_EXPR)
2361 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))))
21aacde4
RB
2362 (if (wi::eq_p (@1, min + 1))
2363 (switch
2364 (if (cmp == GE_EXPR)
2365 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))
2366 (if (cmp == LT_EXPR)
2367 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))))
2368 (if (wi::eq_p (@1, signed_max)
2369 && TYPE_UNSIGNED (arg1_type)
2370 /* We will flip the signedness of the comparison operator
2371 associated with the mode of @1, so the sign bit is
2372 specified by this mode. Check that @1 is the signed
2373 max associated with this sign bit. */
2374 && prec == GET_MODE_PRECISION (TYPE_MODE (arg1_type))
2375 /* signed_type does not work on pointer types. */
2376 && INTEGRAL_TYPE_P (arg1_type))
2377 /* The following case also applies to X < signed_max+1
2378 and X >= signed_max+1 because previous transformations. */
2379 (if (cmp == LE_EXPR || cmp == GT_EXPR)
2380 (with { tree st = signed_type_for (arg1_type); }
2381 (if (cmp == LE_EXPR)
2382 (ge (convert:st @0) { build_zero_cst (st); })
2383 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
2384
b5d3d787
RB
2385(for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
2386 /* If the second operand is NaN, the result is constant. */
2387 (simplify
2388 (cmp @0 REAL_CST@1)
2389 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
2390 && (cmp != LTGT_EXPR || ! flag_trapping_math))
50301115 2391 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
b5d3d787 2392 ? false : true, type); })))
21aacde4 2393
55cf3946
RB
2394/* bool_var != 0 becomes bool_var. */
2395(simplify
b5d3d787 2396 (ne @0 integer_zerop)
55cf3946
RB
2397 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
2398 && types_match (type, TREE_TYPE (@0)))
2399 (non_lvalue @0)))
2400/* bool_var == 1 becomes bool_var. */
2401(simplify
b5d3d787 2402 (eq @0 integer_onep)
55cf3946
RB
2403 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
2404 && types_match (type, TREE_TYPE (@0)))
2405 (non_lvalue @0)))
b5d3d787
RB
2406/* Do not handle
2407 bool_var == 0 becomes !bool_var or
2408 bool_var != 1 becomes !bool_var
2409 here because that only is good in assignment context as long
2410 as we require a tcc_comparison in GIMPLE_CONDs where we'd
2411 replace if (x == 0) with tem = ~x; if (tem != 0) which is
2412 clearly less optimal and which we'll transform again in forwprop. */
55cf3946
RB
2413
2414
53f3cd25
RS
2415/* Simplification of math builtins. These rules must all be optimizations
2416 as well as IL simplifications. If there is a possibility that the new
2417 form could be a pessimization, the rule should go in the canonicalization
2418 section that follows this one.
e18c1d66 2419
53f3cd25
RS
2420 Rules can generally go in this section if they satisfy one of
2421 the following:
2422
2423 - the rule describes an identity
2424
2425 - the rule replaces calls with something as simple as addition or
2426 multiplication
2427
2428 - the rule contains unary calls only and simplifies the surrounding
2429 arithmetic. (The idea here is to exclude non-unary calls in which
2430 one operand is constant and in which the call is known to be cheap
2431 when the operand has that value.) */
52c6378a 2432
53f3cd25 2433(if (flag_unsafe_math_optimizations)
52c6378a
N
2434 /* Simplify sqrt(x) * sqrt(x) -> x. */
2435 (simplify
2436 (mult (SQRT@1 @0) @1)
2437 (if (!HONOR_SNANS (type))
2438 @0))
2439
35401640
N
2440 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
2441 (for root (SQRT CBRT)
2442 (simplify
2443 (mult (root:s @0) (root:s @1))
2444 (root (mult @0 @1))))
2445
35401640
N
2446 /* Simplify expN(x) * expN(y) -> expN(x+y). */
2447 (for exps (EXP EXP2 EXP10 POW10)
2448 (simplify
2449 (mult (exps:s @0) (exps:s @1))
2450 (exps (plus @0 @1))))
2451
52c6378a 2452 /* Simplify a/root(b/c) into a*root(c/b). */
35401640
N
2453 (for root (SQRT CBRT)
2454 (simplify
2455 (rdiv @0 (root:s (rdiv:s @1 @2)))
2456 (mult @0 (root (rdiv @2 @1)))))
2457
2458 /* Simplify x/expN(y) into x*expN(-y). */
2459 (for exps (EXP EXP2 EXP10 POW10)
2460 (simplify
2461 (rdiv @0 (exps:s @1))
2462 (mult @0 (exps (negate @1)))))
52c6378a 2463
eee7b6c4
RB
2464 (for logs (LOG LOG2 LOG10 LOG10)
2465 exps (EXP EXP2 EXP10 POW10)
8acda9b2 2466 /* logN(expN(x)) -> x. */
e18c1d66
RB
2467 (simplify
2468 (logs (exps @0))
8acda9b2
RS
2469 @0)
2470 /* expN(logN(x)) -> x. */
2471 (simplify
2472 (exps (logs @0))
2473 @0))
53f3cd25 2474
e18c1d66
RB
2475 /* Optimize logN(func()) for various exponential functions. We
2476 want to determine the value "x" and the power "exponent" in
2477 order to transform logN(x**exponent) into exponent*logN(x). */
eee7b6c4
RB
2478 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
2479 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
e18c1d66
RB
2480 (simplify
2481 (logs (exps @0))
c9e926ce
RS
2482 (if (SCALAR_FLOAT_TYPE_P (type))
2483 (with {
2484 tree x;
2485 switch (exps)
2486 {
2487 CASE_CFN_EXP:
2488 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
2489 x = build_real_truncate (type, dconst_e ());
2490 break;
2491 CASE_CFN_EXP2:
2492 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
2493 x = build_real (type, dconst2);
2494 break;
2495 CASE_CFN_EXP10:
2496 CASE_CFN_POW10:
2497 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
2498 {
2499 REAL_VALUE_TYPE dconst10;
2500 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
2501 x = build_real (type, dconst10);
2502 }
2503 break;
2504 default:
2505 gcc_unreachable ();
2506 }
2507 }
2508 (mult (logs { x; }) @0)))))
53f3cd25 2509
e18c1d66
RB
2510 (for logs (LOG LOG
2511 LOG2 LOG2
2512 LOG10 LOG10)
2513 exps (SQRT CBRT)
2514 (simplify
2515 (logs (exps @0))
c9e926ce
RS
2516 (if (SCALAR_FLOAT_TYPE_P (type))
2517 (with {
2518 tree x;
2519 switch (exps)
2520 {
2521 CASE_CFN_SQRT:
2522 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
2523 x = build_real (type, dconsthalf);
2524 break;
2525 CASE_CFN_CBRT:
2526 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
2527 x = build_real_truncate (type, dconst_third ());
2528 break;
2529 default:
2530 gcc_unreachable ();
2531 }
2532 }
2533 (mult { x; } (logs @0))))))
53f3cd25
RS
2534
2535 /* logN(pow(x,exponent)) -> exponent*logN(x). */
e18c1d66
RB
2536 (for logs (LOG LOG2 LOG10)
2537 pows (POW)
2538 (simplify
2539 (logs (pows @0 @1))
53f3cd25
RS
2540 (mult @1 (logs @0))))
2541
2542 (for sqrts (SQRT)
2543 cbrts (CBRT)
b4838d77 2544 pows (POW)
53f3cd25
RS
2545 exps (EXP EXP2 EXP10 POW10)
2546 /* sqrt(expN(x)) -> expN(x*0.5). */
2547 (simplify
2548 (sqrts (exps @0))
2549 (exps (mult @0 { build_real (type, dconsthalf); })))
2550 /* cbrt(expN(x)) -> expN(x/3). */
2551 (simplify
2552 (cbrts (exps @0))
b4838d77
RS
2553 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
2554 /* pow(expN(x), y) -> expN(x*y). */
2555 (simplify
2556 (pows (exps @0) @1)
2557 (exps (mult @0 @1))))
cfed37a0
RS
2558
2559 /* tan(atan(x)) -> x. */
2560 (for tans (TAN)
2561 atans (ATAN)
2562 (simplify
2563 (tans (atans @0))
2564 @0)))
53f3cd25 2565
abcc43f5
RS
2566/* cabs(x+0i) or cabs(0+xi) -> abs(x). */
2567(simplify
2568 (CABS (complex:c @0 real_zerop@1))
2569 (abs @0))
2570
67dbe582
RS
2571/* trunc(trunc(x)) -> trunc(x), etc. */
2572(for fns (TRUNC FLOOR CEIL ROUND NEARBYINT RINT)
2573 (simplify
2574 (fns (fns @0))
2575 (fns @0)))
2576/* f(x) -> x if x is integer valued and f does nothing for such values. */
afeb246c 2577(for fns (TRUNC FLOOR CEIL ROUND NEARBYINT RINT)
67dbe582
RS
2578 (simplify
2579 (fns integer_valued_real_p@0)
2580 @0))
67dbe582 2581
4d7836c4
RS
2582/* hypot(x,0) and hypot(0,x) -> abs(x). */
2583(simplify
c9e926ce 2584 (HYPOT:c @0 real_zerop@1)
4d7836c4
RS
2585 (abs @0))
2586
b4838d77
RS
2587/* pow(1,x) -> 1. */
2588(simplify
2589 (POW real_onep@0 @1)
2590 @0)
2591
461e4145
RS
2592(simplify
2593 /* copysign(x,x) -> x. */
2594 (COPYSIGN @0 @0)
2595 @0)
2596
2597(simplify
2598 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
2599 (COPYSIGN @0 tree_expr_nonnegative_p@1)
2600 (abs @0))
2601
86c0733f
RS
2602(for scale (LDEXP SCALBN SCALBLN)
2603 /* ldexp(0, x) -> 0. */
2604 (simplify
2605 (scale real_zerop@0 @1)
2606 @0)
2607 /* ldexp(x, 0) -> x. */
2608 (simplify
2609 (scale @0 integer_zerop@1)
2610 @0)
2611 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
2612 (simplify
2613 (scale REAL_CST@0 @1)
2614 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
2615 @0)))
2616
53f3cd25
RS
2617/* Canonicalization of sequences of math builtins. These rules represent
2618 IL simplifications but are not necessarily optimizations.
2619
2620 The sincos pass is responsible for picking "optimal" implementations
2621 of math builtins, which may be more complicated and can sometimes go
2622 the other way, e.g. converting pow into a sequence of sqrts.
2623 We only want to do these canonicalizations before the pass has run. */
2624
2625(if (flag_unsafe_math_optimizations && canonicalize_math_p ())
2626 /* Simplify tan(x) * cos(x) -> sin(x). */
2627 (simplify
2628 (mult:c (TAN:s @0) (COS:s @0))
2629 (SIN @0))
2630
2631 /* Simplify x * pow(x,c) -> pow(x,c+1). */
2632 (simplify
2633 (mult @0 (POW:s @0 REAL_CST@1))
2634 (if (!TREE_OVERFLOW (@1))
2635 (POW @0 (plus @1 { build_one_cst (type); }))))
2636
2637 /* Simplify sin(x) / cos(x) -> tan(x). */
2638 (simplify
2639 (rdiv (SIN:s @0) (COS:s @0))
2640 (TAN @0))
2641
2642 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
2643 (simplify
2644 (rdiv (COS:s @0) (SIN:s @0))
2645 (rdiv { build_one_cst (type); } (TAN @0)))
2646
2647 /* Simplify sin(x) / tan(x) -> cos(x). */
2648 (simplify
2649 (rdiv (SIN:s @0) (TAN:s @0))
2650 (if (! HONOR_NANS (@0)
2651 && ! HONOR_INFINITIES (@0))
c9e926ce 2652 (COS @0)))
53f3cd25
RS
2653
2654 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
2655 (simplify
2656 (rdiv (TAN:s @0) (SIN:s @0))
2657 (if (! HONOR_NANS (@0)
2658 && ! HONOR_INFINITIES (@0))
2659 (rdiv { build_one_cst (type); } (COS @0))))
2660
2661 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
2662 (simplify
2663 (mult (POW:s @0 @1) (POW:s @0 @2))
2664 (POW @0 (plus @1 @2)))
2665
2666 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
2667 (simplify
2668 (mult (POW:s @0 @1) (POW:s @2 @1))
2669 (POW (mult @0 @2) @1))
2670
2671 /* Simplify pow(x,c) / x -> pow(x,c-1). */
2672 (simplify
2673 (rdiv (POW:s @0 REAL_CST@1) @0)
2674 (if (!TREE_OVERFLOW (@1))
2675 (POW @0 (minus @1 { build_one_cst (type); }))))
2676
2677 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
2678 (simplify
2679 (rdiv @0 (POW:s @1 @2))
2680 (mult @0 (POW @1 (negate @2))))
2681
2682 (for sqrts (SQRT)
2683 cbrts (CBRT)
2684 pows (POW)
2685 /* sqrt(sqrt(x)) -> pow(x,1/4). */
2686 (simplify
2687 (sqrts (sqrts @0))
2688 (pows @0 { build_real (type, dconst_quarter ()); }))
2689 /* sqrt(cbrt(x)) -> pow(x,1/6). */
2690 (simplify
2691 (sqrts (cbrts @0))
2692 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
2693 /* cbrt(sqrt(x)) -> pow(x,1/6). */
2694 (simplify
2695 (cbrts (sqrts @0))
2696 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
2697 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
2698 (simplify
2699 (cbrts (cbrts tree_expr_nonnegative_p@0))
2700 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
2701 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
2702 (simplify
2703 (sqrts (pows @0 @1))
2704 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
2705 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
2706 (simplify
2707 (cbrts (pows tree_expr_nonnegative_p@0 @1))
b4838d77
RS
2708 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
2709 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
2710 (simplify
2711 (pows (sqrts @0) @1)
2712 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
2713 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
2714 (simplify
2715 (pows (cbrts tree_expr_nonnegative_p@0) @1)
2716 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
2717 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
2718 (simplify
2719 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
2720 (pows @0 (mult @1 @2))))
abcc43f5
RS
2721
2722 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
2723 (simplify
2724 (CABS (complex @0 @0))
96285749
RS
2725 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
2726
4d7836c4
RS
2727 /* hypot(x,x) -> fabs(x)*sqrt(2). */
2728 (simplify
2729 (HYPOT @0 @0)
2730 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
2731
96285749
RS
2732 /* cexp(x+yi) -> exp(x)*cexpi(y). */
2733 (for cexps (CEXP)
2734 exps (EXP)
2735 cexpis (CEXPI)
2736 (simplify
2737 (cexps compositional_complex@0)
2738 (if (targetm.libc_has_function (function_c99_math_complex))
2739 (complex
2740 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
2741 (mult @1 (imagpart @2)))))))
e18c1d66 2742
67dbe582
RS
2743(if (canonicalize_math_p ())
2744 /* floor(x) -> trunc(x) if x is nonnegative. */
2745 (for floors (FLOOR)
2746 truncs (TRUNC)
2747 (simplify
2748 (floors tree_expr_nonnegative_p@0)
2749 (truncs @0))))
2750
2751(match double_value_p
2752 @0
2753 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
2754(for froms (BUILT_IN_TRUNCL
2755 BUILT_IN_FLOORL
2756 BUILT_IN_CEILL
2757 BUILT_IN_ROUNDL
2758 BUILT_IN_NEARBYINTL
2759 BUILT_IN_RINTL)
2760 tos (BUILT_IN_TRUNC
2761 BUILT_IN_FLOOR
2762 BUILT_IN_CEIL
2763 BUILT_IN_ROUND
2764 BUILT_IN_NEARBYINT
2765 BUILT_IN_RINT)
2766 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
2767 (if (optimize && canonicalize_math_p ())
2768 (simplify
2769 (froms (convert double_value_p@0))
2770 (convert (tos @0)))))
2771
2772(match float_value_p
2773 @0
2774 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
2775(for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
2776 BUILT_IN_FLOORL BUILT_IN_FLOOR
2777 BUILT_IN_CEILL BUILT_IN_CEIL
2778 BUILT_IN_ROUNDL BUILT_IN_ROUND
2779 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
2780 BUILT_IN_RINTL BUILT_IN_RINT)
2781 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
2782 BUILT_IN_FLOORF BUILT_IN_FLOORF
2783 BUILT_IN_CEILF BUILT_IN_CEILF
2784 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
2785 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
2786 BUILT_IN_RINTF BUILT_IN_RINTF)
2787 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
2788 if x is a float. */
5dac7dbd
JDA
2789 (if (optimize && canonicalize_math_p ()
2790 && targetm.libc_has_function (function_c99_misc))
67dbe582
RS
2791 (simplify
2792 (froms (convert float_value_p@0))
2793 (convert (tos @0)))))
2794
543a9bcd
RS
2795(for froms (XFLOORL XCEILL XROUNDL XRINTL)
2796 tos (XFLOOR XCEIL XROUND XRINT)
2797 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
2798 (if (optimize && canonicalize_math_p ())
2799 (simplify
2800 (froms (convert double_value_p@0))
2801 (tos @0))))
2802
2803(for froms (XFLOORL XCEILL XROUNDL XRINTL
2804 XFLOOR XCEIL XROUND XRINT)
2805 tos (XFLOORF XCEILF XROUNDF XRINTF)
2806 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
2807 if x is a float. */
2808 (if (optimize && canonicalize_math_p ())
2809 (simplify
2810 (froms (convert float_value_p@0))
2811 (tos @0))))
2812
2813(if (canonicalize_math_p ())
2814 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
2815 (for floors (IFLOOR LFLOOR LLFLOOR)
2816 (simplify
2817 (floors tree_expr_nonnegative_p@0)
2818 (fix_trunc @0))))
2819
2820(if (canonicalize_math_p ())
2821 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
2822 (for fns (IFLOOR LFLOOR LLFLOOR
2823 ICEIL LCEIL LLCEIL
2824 IROUND LROUND LLROUND)
2825 (simplify
2826 (fns integer_valued_real_p@0)
2827 (fix_trunc @0)))
2828 (if (!flag_errno_math)
2829 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
2830 (for rints (IRINT LRINT LLRINT)
2831 (simplify
2832 (rints integer_valued_real_p@0)
2833 (fix_trunc @0)))))
2834
2835(if (canonicalize_math_p ())
2836 (for ifn (IFLOOR ICEIL IROUND IRINT)
2837 lfn (LFLOOR LCEIL LROUND LRINT)
2838 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
2839 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
2840 sizeof (int) == sizeof (long). */
2841 (if (TYPE_PRECISION (integer_type_node)
2842 == TYPE_PRECISION (long_integer_type_node))
2843 (simplify
2844 (ifn @0)
2845 (lfn:long_integer_type_node @0)))
2846 /* Canonicalize llround (x) to lround (x) on LP64 targets where
2847 sizeof (long long) == sizeof (long). */
2848 (if (TYPE_PRECISION (long_long_integer_type_node)
2849 == TYPE_PRECISION (long_integer_type_node))
2850 (simplify
2851 (llfn @0)
2852 (lfn:long_integer_type_node @0)))))
2853
92c52eab
RS
2854/* cproj(x) -> x if we're ignoring infinities. */
2855(simplify
2856 (CPROJ @0)
2857 (if (!HONOR_INFINITIES (type))
2858 @0))
2859
4534c203
RB
2860/* If the real part is inf and the imag part is known to be
2861 nonnegative, return (inf + 0i). */
2862(simplify
2863 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
2864 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
92c52eab
RS
2865 { build_complex_inf (type, false); }))
2866
4534c203
RB
2867/* If the imag part is inf, return (inf+I*copysign(0,imag)). */
2868(simplify
2869 (CPROJ (complex @0 REAL_CST@1))
2870 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
92c52eab 2871 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4534c203 2872
b4838d77
RS
2873(for pows (POW)
2874 sqrts (SQRT)
2875 cbrts (CBRT)
2876 (simplify
2877 (pows @0 REAL_CST@1)
2878 (with {
2879 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
2880 REAL_VALUE_TYPE tmp;
2881 }
2882 (switch
2883 /* pow(x,0) -> 1. */
2884 (if (real_equal (value, &dconst0))
2885 { build_real (type, dconst1); })
2886 /* pow(x,1) -> x. */
2887 (if (real_equal (value, &dconst1))
2888 @0)
2889 /* pow(x,-1) -> 1/x. */
2890 (if (real_equal (value, &dconstm1))
2891 (rdiv { build_real (type, dconst1); } @0))
2892 /* pow(x,0.5) -> sqrt(x). */
2893 (if (flag_unsafe_math_optimizations
2894 && canonicalize_math_p ()
2895 && real_equal (value, &dconsthalf))
2896 (sqrts @0))
2897 /* pow(x,1/3) -> cbrt(x). */
2898 (if (flag_unsafe_math_optimizations
2899 && canonicalize_math_p ()
2900 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
2901 real_equal (value, &tmp)))
2902 (cbrts @0))))))
4534c203 2903
5ddc84ca
RS
2904/* powi(1,x) -> 1. */
2905(simplify
2906 (POWI real_onep@0 @1)
2907 @0)
2908
2909(simplify
2910 (POWI @0 INTEGER_CST@1)
2911 (switch
2912 /* powi(x,0) -> 1. */
2913 (if (wi::eq_p (@1, 0))
2914 { build_real (type, dconst1); })
2915 /* powi(x,1) -> x. */
2916 (if (wi::eq_p (@1, 1))
2917 @0)
2918 /* powi(x,-1) -> 1/x. */
2919 (if (wi::eq_p (@1, -1))
2920 (rdiv { build_real (type, dconst1); } @0))))
2921
be144838
JL
2922/* Narrowing of arithmetic and logical operations.
2923
2924 These are conceptually similar to the transformations performed for
2925 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
2926 term we want to move all that code out of the front-ends into here. */
2927
2928/* If we have a narrowing conversion of an arithmetic operation where
2929 both operands are widening conversions from the same type as the outer
2930 narrowing conversion. Then convert the innermost operands to a suitable
2931 unsigned type (to avoid introducing undefined behaviour), perform the
2932 operation and convert the result to the desired type. */
2933(for op (plus minus)
2934 (simplify
44fc0a51 2935 (convert (op:s (convert@2 @0) (convert@3 @1)))
be144838
JL
2936 (if (INTEGRAL_TYPE_P (type)
2937 /* We check for type compatibility between @0 and @1 below,
2938 so there's no need to check that @1/@3 are integral types. */
2939 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2940 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2941 /* The precision of the type of each operand must match the
2942 precision of the mode of each operand, similarly for the
2943 result. */
2944 && (TYPE_PRECISION (TREE_TYPE (@0))
2945 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
2946 && (TYPE_PRECISION (TREE_TYPE (@1))
2947 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
2948 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
2949 /* The inner conversion must be a widening conversion. */
2950 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
aea417d7 2951 && types_match (@0, @1)
44fc0a51 2952 && types_match (@0, type))
be144838 2953 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
8fdc6c67
RB
2954 (convert (op @0 @1))
2955 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
2956 (convert (op (convert:utype @0) (convert:utype @1))))))))
48451e8f
JL
2957
2958/* This is another case of narrowing, specifically when there's an outer
2959 BIT_AND_EXPR which masks off bits outside the type of the innermost
2960 operands. Like the previous case we have to convert the operands
2961 to unsigned types to avoid introducing undefined behaviour for the
2962 arithmetic operation. */
2963(for op (minus plus)
8fdc6c67
RB
2964 (simplify
2965 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
2966 (if (INTEGRAL_TYPE_P (type)
2967 /* We check for type compatibility between @0 and @1 below,
2968 so there's no need to check that @1/@3 are integral types. */
2969 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2970 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2971 /* The precision of the type of each operand must match the
2972 precision of the mode of each operand, similarly for the
2973 result. */
2974 && (TYPE_PRECISION (TREE_TYPE (@0))
2975 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
2976 && (TYPE_PRECISION (TREE_TYPE (@1))
2977 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
2978 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
2979 /* The inner conversion must be a widening conversion. */
2980 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
2981 && types_match (@0, @1)
2982 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
2983 <= TYPE_PRECISION (TREE_TYPE (@0)))
0a8c1e23
JL
2984 && (wi::bit_and (@4, wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
2985 true, TYPE_PRECISION (type))) == 0))
8fdc6c67
RB
2986 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2987 (with { tree ntype = TREE_TYPE (@0); }
2988 (convert (bit_and (op @0 @1) (convert:ntype @4))))
2989 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
2990 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
2991 (convert:utype @4))))))))
4f7a5692
MC
2992
2993/* Transform (@0 < @1 and @0 < @2) to use min,
2994 (@0 > @1 and @0 > @2) to use max */
2995(for op (lt le gt ge)
2996 ext (min min max max)
2997 (simplify
2998 (bit_and (op:s @0 @1) (op:s @0 @2))
2999 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3000 (op @0 (ext @1 @2)))))
3001
7317ef4a
RS
3002(simplify
3003 /* signbit(x) -> 0 if x is nonnegative. */
3004 (SIGNBIT tree_expr_nonnegative_p@0)
3005 { integer_zero_node; })
3006
3007(simplify
3008 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
3009 (SIGNBIT @0)
3010 (if (!HONOR_SIGNED_ZEROS (@0))
3011 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))