]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/match.pd
tree-vect-stmts.c (vectorizable_conversion): Do not set STMT_VINFO_VEC_STMT for SLP.
[thirdparty/gcc.git] / gcc / match.pd
CommitLineData
3d2cf79f
RB
1/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5624e564 5 Copyright (C) 2014-2015 Free Software Foundation, Inc.
3d2cf79f
RB
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
13Software Foundation; either version 3, or (at your option) any later
14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING3. If not see
23<http://www.gnu.org/licenses/>. */
24
25
26/* Generic tree predicates we inherit. */
27(define_predicates
cc7b5acf 28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
09240451 29 integer_each_onep integer_truep
cc7b5acf 30 real_zerop real_onep real_minus_onep
f3582e54
RB
31 CONSTANT_CLASS_P
32 tree_expr_nonnegative_p)
e0ee10ed 33
f84e7fd6
RB
34/* Operator lists. */
35(define_operator_list tcc_comparison
36 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
37(define_operator_list inverted_tcc_comparison
38 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
39(define_operator_list inverted_tcc_comparison_with_nans
40 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
534bd33b
MG
41(define_operator_list swapped_tcc_comparison
42 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
f84e7fd6 43
e0ee10ed
RB
44
45/* Simplifications of operations with one constant operand and
36a60e48 46 simplifications to constants or single values. */
e0ee10ed
RB
47
48(for op (plus pointer_plus minus bit_ior bit_xor)
49 (simplify
50 (op @0 integer_zerop)
51 (non_lvalue @0)))
52
a499aac5
RB
53/* 0 +p index -> (type)index */
54(simplify
55 (pointer_plus integer_zerop @1)
56 (non_lvalue (convert @1)))
57
a7f24614
RB
58/* See if ARG1 is zero and X + ARG1 reduces to X.
59 Likewise if the operands are reversed. */
60(simplify
61 (plus:c @0 real_zerop@1)
62 (if (fold_real_zero_addition_p (type, @1, 0))
63 (non_lvalue @0)))
64
65/* See if ARG1 is zero and X - ARG1 reduces to X. */
66(simplify
67 (minus @0 real_zerop@1)
68 (if (fold_real_zero_addition_p (type, @1, 1))
69 (non_lvalue @0)))
70
e0ee10ed
RB
71/* Simplify x - x.
72 This is unsafe for certain floats even in non-IEEE formats.
73 In IEEE, it is unsafe because it does wrong for NaNs.
74 Also note that operand_equal_p is always false if an operand
75 is volatile. */
76(simplify
a7f24614 77 (minus @0 @0)
1b457aa4 78 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
a7f24614 79 { build_zero_cst (type); }))
e0ee10ed
RB
80
81(simplify
a7f24614
RB
82 (mult @0 integer_zerop@1)
83 @1)
84
85/* Maybe fold x * 0 to 0. The expressions aren't the same
86 when x is NaN, since x * 0 is also NaN. Nor are they the
87 same in modes with signed zeros, since multiplying a
88 negative value by 0 gives -0, not +0. */
89(simplify
90 (mult @0 real_zerop@1)
1b457aa4 91 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (element_mode (type)))
a7f24614
RB
92 @1))
93
94/* In IEEE floating point, x*1 is not equivalent to x for snans.
95 Likewise for complex arithmetic with signed zeros. */
96(simplify
97 (mult @0 real_onep)
09240451
MG
98 (if (!HONOR_SNANS (element_mode (type))
99 && (!HONOR_SIGNED_ZEROS (element_mode (type))
a7f24614
RB
100 || !COMPLEX_FLOAT_TYPE_P (type)))
101 (non_lvalue @0)))
102
103/* Transform x * -1.0 into -x. */
104(simplify
105 (mult @0 real_minus_onep)
09240451
MG
106 (if (!HONOR_SNANS (element_mode (type))
107 && (!HONOR_SIGNED_ZEROS (element_mode (type))
a7f24614
RB
108 || !COMPLEX_FLOAT_TYPE_P (type)))
109 (negate @0)))
e0ee10ed
RB
110
111/* Make sure to preserve divisions by zero. This is the reason why
112 we don't simplify x / x to 1 or 0 / x to 0. */
113(for op (mult trunc_div ceil_div floor_div round_div exact_div)
114 (simplify
115 (op @0 integer_onep)
116 (non_lvalue @0)))
117
a7f24614
RB
118/* X / -1 is -X. */
119(for div (trunc_div ceil_div floor_div round_div exact_div)
120 (simplify
09240451
MG
121 (div @0 integer_minus_onep@1)
122 (if (!TYPE_UNSIGNED (type))
a7f24614
RB
123 (negate @0))))
124
125/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
126 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
127(simplify
128 (floor_div @0 @1)
09240451
MG
129 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
130 && TYPE_UNSIGNED (type))
a7f24614
RB
131 (trunc_div @0 @1)))
132
28093105
RB
133/* Combine two successive divisions. Note that combining ceil_div
134 and floor_div is trickier and combining round_div even more so. */
135(for div (trunc_div exact_div)
c306cfaf
RB
136 (simplify
137 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
138 (with {
139 bool overflow_p;
140 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
141 }
142 (if (!overflow_p)
143 (div @0 { wide_int_to_tree (type, mul); }))
ac19a303
RB
144 (if (overflow_p
145 && (TYPE_UNSIGNED (type)
146 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED)))
c306cfaf
RB
147 { build_zero_cst (type); }))))
148
a7f24614 149/* Optimize A / A to 1.0 if we don't care about
09240451 150 NaNs or Infinities. */
a7f24614
RB
151(simplify
152 (rdiv @0 @0)
09240451 153 (if (FLOAT_TYPE_P (type)
1b457aa4 154 && ! HONOR_NANS (type)
09240451
MG
155 && ! HONOR_INFINITIES (element_mode (type)))
156 { build_one_cst (type); }))
157
158/* Optimize -A / A to -1.0 if we don't care about
159 NaNs or Infinities. */
160(simplify
161 (rdiv:c @0 (negate @0))
162 (if (FLOAT_TYPE_P (type)
1b457aa4 163 && ! HONOR_NANS (type)
09240451
MG
164 && ! HONOR_INFINITIES (element_mode (type)))
165 { build_minus_one_cst (type); }))
a7f24614
RB
166
167/* In IEEE floating point, x/1 is not equivalent to x for snans. */
168(simplify
169 (rdiv @0 real_onep)
09240451 170 (if (!HONOR_SNANS (element_mode (type)))
a7f24614
RB
171 (non_lvalue @0)))
172
173/* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
174(simplify
175 (rdiv @0 real_minus_onep)
09240451 176 (if (!HONOR_SNANS (element_mode (type)))
a7f24614
RB
177 (negate @0)))
178
179/* If ARG1 is a constant, we can convert this to a multiply by the
180 reciprocal. This does not have the same rounding properties,
181 so only do this if -freciprocal-math. We can actually
182 always safely do it if ARG1 is a power of two, but it's hard to
183 tell if it is or not in a portable manner. */
184(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
185 (simplify
186 (rdiv @0 cst@1)
187 (if (optimize)
53bc4b3a
RB
188 (if (flag_reciprocal_math
189 && !real_zerop (@1))
a7f24614 190 (with
249700b5 191 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
a7f24614
RB
192 (if (tem)
193 (mult @0 { tem; } ))))
194 (if (cst != COMPLEX_CST)
195 (with { tree inverse = exact_inverse (type, @1); }
196 (if (inverse)
197 (mult @0 { inverse; } )))))))
198
e0ee10ed
RB
199/* Same applies to modulo operations, but fold is inconsistent here
200 and simplifies 0 % x to 0, only preserving literal 0 % 0. */
a7f24614 201(for mod (ceil_mod floor_mod round_mod trunc_mod)
e0ee10ed
RB
202 /* 0 % X is always zero. */
203 (simplify
a7f24614 204 (mod integer_zerop@0 @1)
e0ee10ed
RB
205 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
206 (if (!integer_zerop (@1))
207 @0))
208 /* X % 1 is always zero. */
209 (simplify
a7f24614
RB
210 (mod @0 integer_onep)
211 { build_zero_cst (type); })
212 /* X % -1 is zero. */
213 (simplify
09240451
MG
214 (mod @0 integer_minus_onep@1)
215 (if (!TYPE_UNSIGNED (type))
bc4315fb
MG
216 { build_zero_cst (type); }))
217 /* (X % Y) % Y is just X % Y. */
218 (simplify
219 (mod (mod@2 @0 @1) @1)
220 @2))
a7f24614
RB
221
222/* X % -C is the same as X % C. */
223(simplify
224 (trunc_mod @0 INTEGER_CST@1)
225 (if (TYPE_SIGN (type) == SIGNED
226 && !TREE_OVERFLOW (@1)
227 && wi::neg_p (@1)
228 && !TYPE_OVERFLOW_TRAPS (type)
229 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
230 && !sign_bit_p (@1, @1))
231 (trunc_mod @0 (negate @1))))
e0ee10ed 232
8f0c696a
RB
233/* X % -Y is the same as X % Y. */
234(simplify
235 (trunc_mod @0 (convert? (negate @1)))
236 (if (!TYPE_UNSIGNED (type)
237 && !TYPE_OVERFLOW_TRAPS (type)
238 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
239 (trunc_mod @0 (convert @1))))
240
241/* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
242 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
243 Also optimize A % (C << N) where C is a power of 2,
244 to A & ((C << N) - 1). */
245(match (power_of_two_cand @1)
246 INTEGER_CST@1)
247(match (power_of_two_cand @1)
248 (lshift INTEGER_CST@1 @2))
249(for mod (trunc_mod floor_mod)
250 (simplify
4ab1e111 251 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
8f0c696a
RB
252 (if ((TYPE_UNSIGNED (type)
253 || tree_expr_nonnegative_p (@0))
4ab1e111 254 && tree_nop_conversion_p (type, TREE_TYPE (@3))
8f0c696a 255 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
4ab1e111 256 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
8f0c696a 257
bc4315fb
MG
258/* X % Y is smaller than Y. */
259(for cmp (lt ge)
260 (simplify
261 (cmp (trunc_mod @0 @1) @1)
262 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
263 { constant_boolean_node (cmp == LT_EXPR, type); })))
264(for cmp (gt le)
265 (simplify
266 (cmp @1 (trunc_mod @0 @1))
267 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
268 { constant_boolean_node (cmp == GT_EXPR, type); })))
269
e0ee10ed
RB
270/* x | ~0 -> ~0 */
271(simplify
272 (bit_ior @0 integer_all_onesp@1)
273 @1)
274
275/* x & 0 -> 0 */
276(simplify
277 (bit_and @0 integer_zerop@1)
278 @1)
279
280/* x ^ x -> 0 */
281(simplify
282 (bit_xor @0 @0)
283 { build_zero_cst (type); })
284
36a60e48
RB
285/* Canonicalize X ^ ~0 to ~X. */
286(simplify
287 (bit_xor @0 integer_all_onesp@1)
288 (bit_not @0))
289
290/* x & ~0 -> x */
291(simplify
292 (bit_and @0 integer_all_onesp)
293 (non_lvalue @0))
294
295/* x & x -> x, x | x -> x */
296(for bitop (bit_and bit_ior)
297 (simplify
298 (bitop @0 @0)
299 (non_lvalue @0)))
300
0f770b01
RV
301/* x + (x & 1) -> (x + 1) & ~1 */
302(simplify
303 (plus:c @0 (bit_and@2 @0 integer_onep@1))
6e28e516 304 (if (single_use (@2))
0f770b01
RV
305 (bit_and (plus @0 @1) (bit_not @1))))
306
307/* x & ~(x & y) -> x & ~y */
308/* x | ~(x | y) -> x | ~y */
309(for bitop (bit_and bit_ior)
af563d4b
MG
310 (simplify
311 (bitop:c @0 (bit_not (bitop:c@2 @0 @1)))
6e28e516 312 (if (single_use (@2))
af563d4b
MG
313 (bitop @0 (bit_not @1)))))
314
315/* (x | y) & ~x -> y & ~x */
316/* (x & y) | ~x -> y | ~x */
317(for bitop (bit_and bit_ior)
318 rbitop (bit_ior bit_and)
319 (simplify
320 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
321 (bitop @1 @2)))
0f770b01 322
f13c4673
MP
323/* (x & y) ^ (x | y) -> x ^ y */
324(simplify
2d6f2dce
MP
325 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
326 (bit_xor @0 @1))
f13c4673 327
9ea65ca6
MP
328/* (x ^ y) ^ (x | y) -> x & y */
329(simplify
330 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
331 (bit_and @0 @1))
332
333/* (x & y) + (x ^ y) -> x | y */
334/* (x & y) | (x ^ y) -> x | y */
335/* (x & y) ^ (x ^ y) -> x | y */
336(for op (plus bit_ior bit_xor)
337 (simplify
338 (op:c (bit_and @0 @1) (bit_xor @0 @1))
339 (bit_ior @0 @1)))
340
341/* (x & y) + (x | y) -> x + y */
342(simplify
343 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
344 (plus @0 @1))
345
9737efaf
MP
346/* (x + y) - (x | y) -> x & y */
347(simplify
348 (minus (plus @0 @1) (bit_ior @0 @1))
349 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
350 && !TYPE_SATURATING (type))
351 (bit_and @0 @1)))
352
353/* (x + y) - (x & y) -> x | y */
354(simplify
355 (minus (plus @0 @1) (bit_and @0 @1))
356 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
357 && !TYPE_SATURATING (type))
358 (bit_ior @0 @1)))
359
9ea65ca6
MP
360/* (x | y) - (x ^ y) -> x & y */
361(simplify
362 (minus (bit_ior @0 @1) (bit_xor @0 @1))
363 (bit_and @0 @1))
364
365/* (x | y) - (x & y) -> x ^ y */
366(simplify
367 (minus (bit_ior @0 @1) (bit_and @0 @1))
368 (bit_xor @0 @1))
369
f3582e54
RB
370(simplify
371 (abs (negate @0))
372 (abs @0))
373(simplify
374 (abs tree_expr_nonnegative_p@0)
375 @0)
376
d4573ffe 377
5609420f
RB
378/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
379 when profitable.
380 For bitwise binary operations apply operand conversions to the
381 binary operation result instead of to the operands. This allows
382 to combine successive conversions and bitwise binary operations.
383 We combine the above two cases by using a conditional convert. */
384(for bitop (bit_and bit_ior bit_xor)
385 (simplify
386 (bitop (convert @0) (convert? @1))
387 (if (((TREE_CODE (@1) == INTEGER_CST
388 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
ad6f996c 389 && int_fits_type_p (@1, TREE_TYPE (@0)))
aea417d7 390 || types_match (@0, @1))
ad6f996c
RB
391 /* ??? This transform conflicts with fold-const.c doing
392 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
393 constants (if x has signed type, the sign bit cannot be set
394 in c). This folds extension into the BIT_AND_EXPR.
395 Restrict it to GIMPLE to avoid endless recursions. */
396 && (bitop != BIT_AND_EXPR || GIMPLE)
5609420f
RB
397 && (/* That's a good idea if the conversion widens the operand, thus
398 after hoisting the conversion the operation will be narrower. */
399 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
400 /* It's also a good idea if the conversion is to a non-integer
401 mode. */
402 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
403 /* Or if the precision of TO is not the same as the precision
404 of its mode. */
405 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
406 (convert (bitop @0 (convert @1))))))
407
408/* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
409(for bitop (bit_and bit_ior bit_xor)
410 (simplify
411 (bitop (bit_and:c @0 @1) (bit_and @2 @1))
412 (bit_and (bitop @0 @2) @1)))
413
414/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
415(simplify
416 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
417 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
418
419/* Combine successive equal operations with constants. */
420(for bitop (bit_and bit_ior bit_xor)
421 (simplify
422 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
423 (bitop @0 (bitop @1 @2))))
424
425/* Try simple folding for X op !X, and X op X with the help
426 of the truth_valued_p and logical_inverted_value predicates. */
427(match truth_valued_p
428 @0
429 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
f84e7fd6 430(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
5609420f
RB
431 (match truth_valued_p
432 (op @0 @1)))
433(match truth_valued_p
434 (truth_not @0))
435
436(match (logical_inverted_value @0)
437 (bit_not truth_valued_p@0))
438(match (logical_inverted_value @0)
09240451 439 (eq @0 integer_zerop))
5609420f 440(match (logical_inverted_value @0)
09240451 441 (ne truth_valued_p@0 integer_truep))
5609420f 442(match (logical_inverted_value @0)
09240451 443 (bit_xor truth_valued_p@0 integer_truep))
5609420f
RB
444
445/* X & !X -> 0. */
446(simplify
447 (bit_and:c @0 (logical_inverted_value @0))
448 { build_zero_cst (type); })
449/* X | !X and X ^ !X -> 1, , if X is truth-valued. */
450(for op (bit_ior bit_xor)
451 (simplify
452 (op:c truth_valued_p@0 (logical_inverted_value @0))
f84e7fd6 453 { constant_boolean_node (true, type); }))
5609420f
RB
454
455(for bitop (bit_and bit_ior)
456 rbitop (bit_ior bit_and)
457 /* (x | y) & x -> x */
458 /* (x & y) | x -> x */
459 (simplify
460 (bitop:c (rbitop:c @0 @1) @0)
461 @0)
462 /* (~x | y) & x -> x & y */
463 /* (~x & y) | x -> x | y */
464 (simplify
465 (bitop:c (rbitop:c (bit_not @0) @1) @0)
466 (bitop @0 @1)))
467
468/* If arg1 and arg2 are booleans (or any single bit type)
469 then try to simplify:
470
471 (~X & Y) -> X < Y
472 (X & ~Y) -> Y < X
473 (~X | Y) -> X <= Y
474 (X | ~Y) -> Y <= X
475
476 But only do this if our result feeds into a comparison as
477 this transformation is not always a win, particularly on
478 targets with and-not instructions.
479 -> simplify_bitwise_binary_boolean */
480(simplify
481 (ne (bit_and:c (bit_not @0) @1) integer_zerop)
482 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
483 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
484 (lt @0 @1)))
485(simplify
486 (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
487 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
488 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
489 (le @0 @1)))
490
5609420f
RB
491/* ~~x -> x */
492(simplify
493 (bit_not (bit_not @0))
494 @0)
495
f52baa7b
MP
496/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
497(simplify
498 (bit_ior:c (bit_and:c@3 @0 (bit_not @2)) (bit_and:c@4 @1 @2))
6e28e516 499 (if (single_use (@3) && single_use (@4))
f52baa7b
MP
500 (bit_xor (bit_and (bit_xor @0 @1) @2) @0)))
501
5609420f 502
a499aac5
RB
503/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
504(simplify
e6121733 505 (pointer_plus (pointer_plus@2 @0 @1) @3)
6e28e516 506 (if (single_use (@2))
e6121733 507 (pointer_plus @0 (plus @1 @3))))
a499aac5
RB
508
509/* Pattern match
510 tem1 = (long) ptr1;
511 tem2 = (long) ptr2;
512 tem3 = tem2 - tem1;
513 tem4 = (unsigned long) tem3;
514 tem5 = ptr1 + tem4;
515 and produce
516 tem5 = ptr2; */
517(simplify
518 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
519 /* Conditionally look through a sign-changing conversion. */
520 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
521 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
522 || (GENERIC && type == TREE_TYPE (@1))))
523 @1))
524
525/* Pattern match
526 tem = (sizetype) ptr;
527 tem = tem & algn;
528 tem = -tem;
529 ... = ptr p+ tem;
530 and produce the simpler and easier to analyze with respect to alignment
531 ... = ptr & ~algn; */
532(simplify
533 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
534 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
535 (bit_and @0 { algn; })))
536
537
cc7b5acf
RB
538/* We can't reassociate at all for saturating types. */
539(if (!TYPE_SATURATING (type))
540
541 /* Contract negates. */
542 /* A + (-B) -> A - B */
543 (simplify
544 (plus:c (convert1? @0) (convert2? (negate @1)))
545 /* Apply STRIP_NOPS on @0 and the negate. */
546 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
547 && tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 548 && !TYPE_OVERFLOW_SANITIZED (type))
cc7b5acf
RB
549 (minus (convert @0) (convert @1))))
550 /* A - (-B) -> A + B */
551 (simplify
552 (minus (convert1? @0) (convert2? (negate @1)))
553 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
2f68e8bc 554 && tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 555 && !TYPE_OVERFLOW_SANITIZED (type))
cc7b5acf
RB
556 (plus (convert @0) (convert @1))))
557 /* -(-A) -> A */
558 (simplify
559 (negate (convert? (negate @1)))
560 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 561 && !TYPE_OVERFLOW_SANITIZED (type))
a0f12cf8 562 (convert @1)))
cc7b5acf
RB
563
564 /* We can't reassociate floating-point or fixed-point plus or minus
565 because of saturation to +-Inf. */
566 (if (!FLOAT_TYPE_P (type) && !FIXED_POINT_TYPE_P (type))
567
568 /* Match patterns that allow contracting a plus-minus pair
569 irrespective of overflow issues. */
570 /* (A +- B) - A -> +- B */
571 /* (A +- B) -+ B -> A */
572 /* A - (A +- B) -> -+ B */
573 /* A +- (B -+ A) -> +- B */
574 (simplify
575 (minus (plus:c @0 @1) @0)
576 @1)
577 (simplify
578 (minus (minus @0 @1) @0)
579 (negate @1))
580 (simplify
581 (plus:c (minus @0 @1) @1)
582 @0)
583 (simplify
584 (minus @0 (plus:c @0 @1))
585 (negate @1))
586 (simplify
587 (minus @0 (minus @0 @1))
588 @1)
589
590 /* (A +- CST) +- CST -> A + CST */
591 (for outer_op (plus minus)
592 (for inner_op (plus minus)
593 (simplify
594 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
595 /* If the constant operation overflows we cannot do the transform
596 as we would introduce undefined overflow, for example
597 with (a - 1) + INT_MIN. */
598 (with { tree cst = fold_binary (outer_op == inner_op
599 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
600 (if (cst && !TREE_OVERFLOW (cst))
601 (inner_op @0 { cst; } ))))))
602
603 /* (CST - A) +- CST -> CST - A */
604 (for outer_op (plus minus)
605 (simplify
606 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
607 (with { tree cst = fold_binary (outer_op, type, @1, @2); }
608 (if (cst && !TREE_OVERFLOW (cst))
609 (minus { cst; } @0)))))
610
611 /* ~A + A -> -1 */
612 (simplify
613 (plus:c (bit_not @0) @0)
614 (if (!TYPE_OVERFLOW_TRAPS (type))
615 { build_all_ones_cst (type); }))
616
617 /* ~A + 1 -> -A */
618 (simplify
e19740ae
RB
619 (plus (convert? (bit_not @0)) integer_each_onep)
620 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
621 (negate (convert @0))))
622
623 /* -A - 1 -> ~A */
624 (simplify
625 (minus (convert? (negate @0)) integer_each_onep)
626 (if (!TYPE_OVERFLOW_TRAPS (type)
627 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
628 (bit_not (convert @0))))
629
630 /* -1 - A -> ~A */
631 (simplify
632 (minus integer_all_onesp @0)
bc4315fb 633 (bit_not @0))
cc7b5acf
RB
634
635 /* (T)(P + A) - (T)P -> (T) A */
636 (for add (plus pointer_plus)
637 (simplify
638 (minus (convert (add @0 @1))
639 (convert @0))
09240451 640 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
cc7b5acf
RB
641 /* For integer types, if A has a smaller type
642 than T the result depends on the possible
643 overflow in P + A.
644 E.g. T=size_t, A=(unsigned)429497295, P>0.
645 However, if an overflow in P + A would cause
646 undefined behavior, we can assume that there
647 is no overflow. */
648 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
649 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
650 /* For pointer types, if the conversion of A to the
651 final type requires a sign- or zero-extension,
652 then we have to punt - it is not defined which
653 one is correct. */
654 || (POINTER_TYPE_P (TREE_TYPE (@0))
655 && TREE_CODE (@1) == INTEGER_CST
656 && tree_int_cst_sign_bit (@1) == 0))
657 (convert @1))))))
658
659
a7f24614
RB
660/* Simplifications of MIN_EXPR and MAX_EXPR. */
661
662(for minmax (min max)
663 (simplify
664 (minmax @0 @0)
665 @0))
666(simplify
667 (min @0 @1)
668 (if (INTEGRAL_TYPE_P (type)
669 && TYPE_MIN_VALUE (type)
670 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
671 @1))
672(simplify
673 (max @0 @1)
674 (if (INTEGRAL_TYPE_P (type)
675 && TYPE_MAX_VALUE (type)
676 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
677 @1))
678
679
680/* Simplifications of shift and rotates. */
681
682(for rotate (lrotate rrotate)
683 (simplify
684 (rotate integer_all_onesp@0 @1)
685 @0))
686
687/* Optimize -1 >> x for arithmetic right shifts. */
688(simplify
689 (rshift integer_all_onesp@0 @1)
690 (if (!TYPE_UNSIGNED (type)
691 && tree_expr_nonnegative_p (@1))
692 @0))
693
694(for shiftrotate (lrotate rrotate lshift rshift)
695 (simplify
696 (shiftrotate @0 integer_zerop)
697 (non_lvalue @0))
698 (simplify
699 (shiftrotate integer_zerop@0 @1)
700 @0)
701 /* Prefer vector1 << scalar to vector1 << vector2
702 if vector2 is uniform. */
703 (for vec (VECTOR_CST CONSTRUCTOR)
704 (simplify
705 (shiftrotate @0 vec@1)
706 (with { tree tem = uniform_vector_p (@1); }
707 (if (tem)
708 (shiftrotate @0 { tem; }))))))
709
710/* Rewrite an LROTATE_EXPR by a constant into an
711 RROTATE_EXPR by a new constant. */
712(simplify
713 (lrotate @0 INTEGER_CST@1)
714 (rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
715 build_int_cst (TREE_TYPE (@1),
716 element_precision (type)), @1); }))
717
01ada710
MP
718/* ((1 << A) & 1) != 0 -> A == 0
719 ((1 << A) & 1) == 0 -> A != 0 */
720(for cmp (ne eq)
721 icmp (eq ne)
722 (simplify
723 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
724 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
cc7b5acf 725
f2e609c3
MP
726/* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
727 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
728 if CST2 != 0. */
729(for cmp (ne eq)
730 (simplify
731 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
732 (with { int cand = wi::ctz (@2) - wi::ctz (@0); }
733 (if (cand < 0
734 || (!integer_zerop (@2)
735 && wi::ne_p (wi::lshift (@0, cand), @2)))
736 { constant_boolean_node (cmp == NE_EXPR, type); })
737 (if (!integer_zerop (@2)
738 && wi::eq_p (wi::lshift (@0, cand), @2))
739 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); })))))
740
d4573ffe
RB
741/* Simplifications of conversions. */
742
743/* Basic strip-useless-type-conversions / strip_nops. */
f3582e54 744(for cvt (convert view_convert float fix_trunc)
d4573ffe
RB
745 (simplify
746 (cvt @0)
747 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
748 || (GENERIC && type == TREE_TYPE (@0)))
749 @0)))
750
751/* Contract view-conversions. */
752(simplify
753 (view_convert (view_convert @0))
754 (view_convert @0))
755
756/* For integral conversions with the same precision or pointer
757 conversions use a NOP_EXPR instead. */
758(simplify
759 (view_convert @0)
760 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
761 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
762 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
763 (convert @0)))
764
765/* Strip inner integral conversions that do not change precision or size. */
766(simplify
767 (view_convert (convert@0 @1))
768 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
769 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
770 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
771 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
772 (view_convert @1)))
773
774/* Re-association barriers around constants and other re-association
775 barriers can be removed. */
776(simplify
777 (paren CONSTANT_CLASS_P@0)
778 @0)
779(simplify
780 (paren (paren@1 @0))
781 @1)
1e51d0a2
RB
782
783/* Handle cases of two conversions in a row. */
784(for ocvt (convert float fix_trunc)
785 (for icvt (convert float)
786 (simplify
787 (ocvt (icvt@1 @0))
788 (with
789 {
790 tree inside_type = TREE_TYPE (@0);
791 tree inter_type = TREE_TYPE (@1);
792 int inside_int = INTEGRAL_TYPE_P (inside_type);
793 int inside_ptr = POINTER_TYPE_P (inside_type);
794 int inside_float = FLOAT_TYPE_P (inside_type);
09240451 795 int inside_vec = VECTOR_TYPE_P (inside_type);
1e51d0a2
RB
796 unsigned int inside_prec = TYPE_PRECISION (inside_type);
797 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
798 int inter_int = INTEGRAL_TYPE_P (inter_type);
799 int inter_ptr = POINTER_TYPE_P (inter_type);
800 int inter_float = FLOAT_TYPE_P (inter_type);
09240451 801 int inter_vec = VECTOR_TYPE_P (inter_type);
1e51d0a2
RB
802 unsigned int inter_prec = TYPE_PRECISION (inter_type);
803 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
804 int final_int = INTEGRAL_TYPE_P (type);
805 int final_ptr = POINTER_TYPE_P (type);
806 int final_float = FLOAT_TYPE_P (type);
09240451 807 int final_vec = VECTOR_TYPE_P (type);
1e51d0a2
RB
808 unsigned int final_prec = TYPE_PRECISION (type);
809 int final_unsignedp = TYPE_UNSIGNED (type);
810 }
811 /* In addition to the cases of two conversions in a row
812 handled below, if we are converting something to its own
813 type via an object of identical or wider precision, neither
814 conversion is needed. */
815 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
816 || (GENERIC
817 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
818 && (((inter_int || inter_ptr) && final_int)
819 || (inter_float && final_float))
820 && inter_prec >= final_prec)
821 (ocvt @0))
822
823 /* Likewise, if the intermediate and initial types are either both
824 float or both integer, we don't need the middle conversion if the
825 former is wider than the latter and doesn't change the signedness
826 (for integers). Avoid this if the final type is a pointer since
827 then we sometimes need the middle conversion. Likewise if the
828 final type has a precision not equal to the size of its mode. */
d51a6714
JJ
829 (if (((inter_int && inside_int) || (inter_float && inside_float))
830 && (final_int || final_float)
1e51d0a2 831 && inter_prec >= inside_prec
d51a6714
JJ
832 && (inter_float || inter_unsignedp == inside_unsignedp)
833 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
834 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1e51d0a2
RB
835 (ocvt @0))
836
837 /* If we have a sign-extension of a zero-extended value, we can
838 replace that by a single zero-extension. Likewise if the
839 final conversion does not change precision we can drop the
840 intermediate conversion. */
841 (if (inside_int && inter_int && final_int
842 && ((inside_prec < inter_prec && inter_prec < final_prec
843 && inside_unsignedp && !inter_unsignedp)
844 || final_prec == inter_prec))
845 (ocvt @0))
846
847 /* Two conversions in a row are not needed unless:
848 - some conversion is floating-point (overstrict for now), or
849 - some conversion is a vector (overstrict for now), or
850 - the intermediate type is narrower than both initial and
851 final, or
852 - the intermediate type and innermost type differ in signedness,
853 and the outermost type is wider than the intermediate, or
854 - the initial type is a pointer type and the precisions of the
855 intermediate and final types differ, or
856 - the final type is a pointer type and the precisions of the
857 initial and intermediate types differ. */
858 (if (! inside_float && ! inter_float && ! final_float
859 && ! inside_vec && ! inter_vec && ! final_vec
860 && (inter_prec >= inside_prec || inter_prec >= final_prec)
861 && ! (inside_int && inter_int
862 && inter_unsignedp != inside_unsignedp
863 && inter_prec < final_prec)
864 && ((inter_unsignedp && inter_prec > inside_prec)
865 == (final_unsignedp && final_prec > inter_prec))
866 && ! (inside_ptr && inter_prec != final_prec)
867 && ! (final_ptr && inside_prec != inter_prec)
868 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
869 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1f00c1b9
RB
870 (ocvt @0))
871
872 /* A truncation to an unsigned type (a zero-extension) should be
873 canonicalized as bitwise and of a mask. */
874 (if (final_int && inter_int && inside_int
875 && final_prec == inside_prec
876 && final_prec > inter_prec
877 && inter_unsignedp)
878 (convert (bit_and @0 { wide_int_to_tree
879 (inside_type,
880 wi::mask (inter_prec, false,
881 TYPE_PRECISION (inside_type))); })))
882
883 /* If we are converting an integer to a floating-point that can
884 represent it exactly and back to an integer, we can skip the
885 floating-point conversion. */
5ba3ae6d
RB
886 (if (GIMPLE /* PR66211 */
887 && inside_int && inter_float && final_int &&
1f00c1b9
RB
888 (unsigned) significand_size (TYPE_MODE (inter_type))
889 >= inside_prec - !inside_unsignedp)
890 (convert @0))))))
ea2042ba
RB
891
892/* If we have a narrowing conversion to an integral type that is fed by a
893 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
894 masks off bits outside the final type (and nothing else). */
895(simplify
896 (convert (bit_and @0 INTEGER_CST@1))
897 (if (INTEGRAL_TYPE_P (type)
898 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
899 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
900 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
901 TYPE_PRECISION (type)), 0))
902 (convert @0)))
a25454ea
RB
903
904
905/* (X /[ex] A) * A -> X. */
906(simplify
907 (mult (convert? (exact_div @0 @1)) @1)
908 /* Look through a sign-changing conversion. */
257b01ba 909 (convert @0))
eaeba53a 910
a7f24614
RB
911/* Canonicalization of binary operations. */
912
913/* Convert X + -C into X - C. */
914(simplify
915 (plus @0 REAL_CST@1)
916 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
917 (with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
918 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
919 (minus @0 { tem; })))))
920
921/* Convert x+x into x*2.0. */
922(simplify
923 (plus @0 @0)
924 (if (SCALAR_FLOAT_TYPE_P (type))
925 (mult @0 { build_real (type, dconst2); })))
926
927(simplify
928 (minus integer_zerop @1)
929 (negate @1))
930
931/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
932 ARG0 is zero and X + ARG0 reduces to X, since that would mean
933 (-ARG1 + ARG0) reduces to -ARG1. */
934(simplify
935 (minus real_zerop@0 @1)
936 (if (fold_real_zero_addition_p (type, @0, 0))
937 (negate @1)))
938
939/* Transform x * -1 into -x. */
940(simplify
941 (mult @0 integer_minus_onep)
942 (negate @0))
eaeba53a
RB
943
944/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
945(simplify
946 (complex (realpart @0) (imagpart @0))
947 @0)
948(simplify
949 (realpart (complex @0 @1))
950 @0)
951(simplify
952 (imagpart (complex @0 @1))
953 @1)
83633539
RB
954
955
956/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
957(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
958 (simplify
959 (bswap (bswap @0))
960 @0)
961 (simplify
962 (bswap (bit_not (bswap @0)))
963 (bit_not @0))
964 (for bitop (bit_xor bit_ior bit_and)
965 (simplify
966 (bswap (bitop:c (bswap @0) @1))
967 (bitop @0 (bswap @1)))))
96994de0
RB
968
969
970/* Combine COND_EXPRs and VEC_COND_EXPRs. */
971
972/* Simplify constant conditions.
973 Only optimize constant conditions when the selected branch
974 has the same type as the COND_EXPR. This avoids optimizing
975 away "c ? x : throw", where the throw has a void type.
976 Note that we cannot throw away the fold-const.c variant nor
977 this one as we depend on doing this transform before possibly
978 A ? B : B -> B triggers and the fold-const.c one can optimize
979 0 ? A : B to B even if A has side-effects. Something
980 genmatch cannot handle. */
981(simplify
982 (cond INTEGER_CST@0 @1 @2)
983 (if (integer_zerop (@0)
984 && (!VOID_TYPE_P (TREE_TYPE (@2))
985 || VOID_TYPE_P (type)))
986 @2)
987 (if (!integer_zerop (@0)
988 && (!VOID_TYPE_P (TREE_TYPE (@1))
989 || VOID_TYPE_P (type)))
990 @1))
991(simplify
992 (vec_cond VECTOR_CST@0 @1 @2)
993 (if (integer_all_onesp (@0))
994 @1)
995 (if (integer_zerop (@0))
996 @2))
997
998(for cnd (cond vec_cond)
999 /* A ? B : (A ? X : C) -> A ? B : C. */
1000 (simplify
1001 (cnd @0 (cnd @0 @1 @2) @3)
1002 (cnd @0 @1 @3))
1003 (simplify
1004 (cnd @0 @1 (cnd @0 @2 @3))
1005 (cnd @0 @1 @3))
1006
1007 /* A ? B : B -> B. */
1008 (simplify
1009 (cnd @0 @1 @1)
09240451 1010 @1)
96994de0 1011
09240451
MG
1012 /* !A ? B : C -> A ? C : B. */
1013 (simplify
1014 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
1015 (cnd @0 @2 @1)))
f84e7fd6
RB
1016
1017
1018/* Simplifications of comparisons. */
1019
1020/* We can simplify a logical negation of a comparison to the
1021 inverted comparison. As we cannot compute an expression
1022 operator using invert_tree_comparison we have to simulate
1023 that with expression code iteration. */
1024(for cmp (tcc_comparison)
1025 icmp (inverted_tcc_comparison)
1026 ncmp (inverted_tcc_comparison_with_nans)
1027 /* Ideally we'd like to combine the following two patterns
1028 and handle some more cases by using
1029 (logical_inverted_value (cmp @0 @1))
1030 here but for that genmatch would need to "inline" that.
1031 For now implement what forward_propagate_comparison did. */
1032 (simplify
1033 (bit_not (cmp @0 @1))
1034 (if (VECTOR_TYPE_P (type)
1035 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
1036 /* Comparison inversion may be impossible for trapping math,
1037 invert_tree_comparison will tell us. But we can't use
1038 a computed operator in the replacement tree thus we have
1039 to play the trick below. */
1040 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 1041 (cmp, HONOR_NANS (@0)); }
f84e7fd6
RB
1042 (if (ic == icmp)
1043 (icmp @0 @1))
1044 (if (ic == ncmp)
1045 (ncmp @0 @1)))))
1046 (simplify
09240451
MG
1047 (bit_xor (cmp @0 @1) integer_truep)
1048 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 1049 (cmp, HONOR_NANS (@0)); }
09240451
MG
1050 (if (ic == icmp)
1051 (icmp @0 @1))
1052 (if (ic == ncmp)
1053 (ncmp @0 @1)))))
e18c1d66 1054
cfdc4f33
MG
1055/* Unordered tests if either argument is a NaN. */
1056(simplify
1057 (bit_ior (unordered @0 @0) (unordered @1 @1))
aea417d7 1058 (if (types_match (@0, @1))
cfdc4f33 1059 (unordered @0 @1)))
257b01ba
MG
1060(simplify
1061 (bit_and (ordered @0 @0) (ordered @1 @1))
1062 (if (types_match (@0, @1))
1063 (ordered @0 @1)))
cfdc4f33
MG
1064(simplify
1065 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
1066 @2)
257b01ba
MG
1067(simplify
1068 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
1069 @2)
e18c1d66 1070
534bd33b
MG
1071/* -A CMP -B -> B CMP A. */
1072(for cmp (tcc_comparison)
1073 scmp (swapped_tcc_comparison)
1074 (simplify
1075 (cmp (negate @0) (negate @1))
1076 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1077 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1078 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1079 (scmp @0 @1)))
1080 (simplify
1081 (cmp (negate @0) CONSTANT_CLASS_P@1)
1082 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1083 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1084 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1085 (with { tree tem = fold_unary (NEGATE_EXPR, TREE_TYPE (@0), @1); }
1086 (if (tem && !TREE_OVERFLOW (tem))
1087 (scmp @0 { tem; }))))))
1088
e18c1d66
RB
1089/* Simplification of math builtins. */
1090
1091(define_operator_list LOG BUILT_IN_LOGF BUILT_IN_LOG BUILT_IN_LOGL)
1092(define_operator_list EXP BUILT_IN_EXPF BUILT_IN_EXP BUILT_IN_EXPL)
1093(define_operator_list LOG2 BUILT_IN_LOG2F BUILT_IN_LOG2 BUILT_IN_LOG2L)
1094(define_operator_list EXP2 BUILT_IN_EXP2F BUILT_IN_EXP2 BUILT_IN_EXP2L)
1095(define_operator_list LOG10 BUILT_IN_LOG10F BUILT_IN_LOG10 BUILT_IN_LOG10L)
1096(define_operator_list EXP10 BUILT_IN_EXP10F BUILT_IN_EXP10 BUILT_IN_EXP10L)
1097(define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
1098(define_operator_list POW10 BUILT_IN_POW10F BUILT_IN_POW10 BUILT_IN_POW10L)
1099(define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
1100(define_operator_list CBRT BUILT_IN_CBRTF BUILT_IN_CBRT BUILT_IN_CBRTL)
1101
1102
1103/* fold_builtin_logarithm */
1104(if (flag_unsafe_math_optimizations)
1105 /* Special case, optimize logN(expN(x)) = x. */
1106 (for logs (LOG LOG2 LOG10)
1107 exps (EXP EXP2 EXP10)
1108 (simplify
1109 (logs (exps @0))
1110 @0))
1111 /* Optimize logN(func()) for various exponential functions. We
1112 want to determine the value "x" and the power "exponent" in
1113 order to transform logN(x**exponent) into exponent*logN(x). */
1114 (for logs (LOG LOG LOG LOG
1115 LOG2 LOG2 LOG2 LOG2
1116 LOG10 LOG10 LOG10 LOG10)
1117 exps (EXP EXP2 EXP10 POW10)
1118 (simplify
1119 (logs (exps @0))
1120 (with {
1121 tree x;
1122 switch (exps)
1123 {
1124 CASE_FLT_FN (BUILT_IN_EXP):
1125 /* Prepare to do logN(exp(exponent) -> exponent*logN(e). */
1126 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1127 dconst_e ()));
1128 break;
1129 CASE_FLT_FN (BUILT_IN_EXP2):
1130 /* Prepare to do logN(exp2(exponent) -> exponent*logN(2). */
1131 x = build_real (type, dconst2);
1132 break;
1133 CASE_FLT_FN (BUILT_IN_EXP10):
1134 CASE_FLT_FN (BUILT_IN_POW10):
1135 /* Prepare to do logN(exp10(exponent) -> exponent*logN(10). */
1136 {
1137 REAL_VALUE_TYPE dconst10;
1138 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
1139 x = build_real (type, dconst10);
1140 }
1141 break;
1142 }
1143 }
1144 (mult (logs { x; }) @0))))
1145 (for logs (LOG LOG
1146 LOG2 LOG2
1147 LOG10 LOG10)
1148 exps (SQRT CBRT)
1149 (simplify
1150 (logs (exps @0))
1151 (with {
1152 tree x;
1153 switch (exps)
1154 {
1155 CASE_FLT_FN (BUILT_IN_SQRT):
1156 /* Prepare to do logN(sqrt(x) -> 0.5*logN(x). */
1157 x = build_real (type, dconsthalf);
1158 break;
1159 CASE_FLT_FN (BUILT_IN_CBRT):
1160 /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x). */
1161 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1162 dconst_third ()));
1163 break;
1164 }
1165 }
1166 (mult { x; } (logs @0)))))
1167 /* logN(pow(x,exponent) -> exponent*logN(x). */
1168 (for logs (LOG LOG2 LOG10)
1169 pows (POW)
1170 (simplify
1171 (logs (pows @0 @1))
1172 (mult @1 (logs @0)))))
1173
be144838
JL
1174/* Narrowing of arithmetic and logical operations.
1175
1176 These are conceptually similar to the transformations performed for
1177 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
1178 term we want to move all that code out of the front-ends into here. */
1179
1180/* If we have a narrowing conversion of an arithmetic operation where
1181 both operands are widening conversions from the same type as the outer
1182 narrowing conversion. Then convert the innermost operands to a suitable
1183 unsigned type (to avoid introducing undefined behaviour), perform the
1184 operation and convert the result to the desired type. */
1185(for op (plus minus)
1186 (simplify
48451e8f 1187 (convert (op@4 (convert@2 @0) (convert@3 @1)))
be144838
JL
1188 (if (INTEGRAL_TYPE_P (type)
1189 /* We check for type compatibility between @0 and @1 below,
1190 so there's no need to check that @1/@3 are integral types. */
1191 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1192 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1193 /* The precision of the type of each operand must match the
1194 precision of the mode of each operand, similarly for the
1195 result. */
1196 && (TYPE_PRECISION (TREE_TYPE (@0))
1197 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1198 && (TYPE_PRECISION (TREE_TYPE (@1))
1199 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1200 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1201 /* The inner conversion must be a widening conversion. */
1202 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
aea417d7
MG
1203 && types_match (@0, @1)
1204 && types_match (@0, type)
48451e8f 1205 && single_use (@4))
be144838
JL
1206 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1207 (convert (op @0 @1)))
1208 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1209 (convert (op (convert:utype @0) (convert:utype @1)))))))
48451e8f
JL
1210
1211/* This is another case of narrowing, specifically when there's an outer
1212 BIT_AND_EXPR which masks off bits outside the type of the innermost
1213 operands. Like the previous case we have to convert the operands
1214 to unsigned types to avoid introducing undefined behaviour for the
1215 arithmetic operation. */
1216(for op (minus plus)
1217 (simplify
1218 (bit_and (op@5 (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
1219 (if (INTEGRAL_TYPE_P (type)
1220 /* We check for type compatibility between @0 and @1 below,
1221 so there's no need to check that @1/@3 are integral types. */
1222 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1223 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1224 /* The precision of the type of each operand must match the
1225 precision of the mode of each operand, similarly for the
1226 result. */
1227 && (TYPE_PRECISION (TREE_TYPE (@0))
1228 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1229 && (TYPE_PRECISION (TREE_TYPE (@1))
1230 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1231 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1232 /* The inner conversion must be a widening conversion. */
1233 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
aea417d7 1234 && types_match (@0, @1)
a60c51fe 1235 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
48451e8f 1236 <= TYPE_PRECISION (TREE_TYPE (@0)))
a60c51fe
JJ
1237 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1238 || tree_int_cst_sgn (@4) >= 0)
48451e8f
JL
1239 && single_use (@5))
1240 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1241 (with { tree ntype = TREE_TYPE (@0); }
1242 (convert (bit_and (op @0 @1) (convert:ntype @4)))))
1243 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1244 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
1245 (convert:utype @4)))))))
1246