]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/match.pd
re PR c/67410 (c/c-typeck.c references out of bounds array)
[thirdparty/gcc.git] / gcc / match.pd
CommitLineData
3d2cf79f
RB
1/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
818ab71a 5 Copyright (C) 2014-2016 Free Software Foundation, Inc.
3d2cf79f
RB
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
13Software Foundation; either version 3, or (at your option) any later
14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING3. If not see
23<http://www.gnu.org/licenses/>. */
24
25
26/* Generic tree predicates we inherit. */
27(define_predicates
cc7b5acf 28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
53a19317 29 integer_each_onep integer_truep integer_nonzerop
cc7b5acf 30 real_zerop real_onep real_minus_onep
b0eb889b 31 zerop
f3582e54 32 CONSTANT_CLASS_P
887ab609 33 tree_expr_nonnegative_p
67dbe582 34 integer_valued_real_p
53a19317
RB
35 integer_pow2p
36 HONOR_NANS)
e0ee10ed 37
f84e7fd6
RB
38/* Operator lists. */
39(define_operator_list tcc_comparison
40 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
41(define_operator_list inverted_tcc_comparison
42 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
43(define_operator_list inverted_tcc_comparison_with_nans
44 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
534bd33b
MG
45(define_operator_list swapped_tcc_comparison
46 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
07cdc2b8
RB
47(define_operator_list simple_comparison lt le eq ne ge gt)
48(define_operator_list swapped_simple_comparison gt ge eq ne le lt)
49
b1dc4a20 50#include "cfn-operators.pd"
257aecb4 51
543a9bcd
RS
52/* Define operand lists for math rounding functions {,i,l,ll}FN,
53 where the versions prefixed with "i" return an int, those prefixed with
54 "l" return a long and those prefixed with "ll" return a long long.
55
56 Also define operand lists:
57
58 X<FN>F for all float functions, in the order i, l, ll
59 X<FN> for all double functions, in the same order
60 X<FN>L for all long double functions, in the same order. */
61#define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
543a9bcd
RS
62 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
63 BUILT_IN_L##FN##F \
64 BUILT_IN_LL##FN##F) \
65 (define_operator_list X##FN BUILT_IN_I##FN \
66 BUILT_IN_L##FN \
67 BUILT_IN_LL##FN) \
68 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
69 BUILT_IN_L##FN##L \
70 BUILT_IN_LL##FN##L)
71
543a9bcd
RS
72DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
73DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
74DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
75DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
f84e7fd6 76
e0ee10ed 77/* Simplifications of operations with one constant operand and
36a60e48 78 simplifications to constants or single values. */
e0ee10ed
RB
79
80(for op (plus pointer_plus minus bit_ior bit_xor)
81 (simplify
82 (op @0 integer_zerop)
83 (non_lvalue @0)))
84
a499aac5
RB
85/* 0 +p index -> (type)index */
86(simplify
87 (pointer_plus integer_zerop @1)
88 (non_lvalue (convert @1)))
89
a7f24614
RB
90/* See if ARG1 is zero and X + ARG1 reduces to X.
91 Likewise if the operands are reversed. */
92(simplify
93 (plus:c @0 real_zerop@1)
94 (if (fold_real_zero_addition_p (type, @1, 0))
95 (non_lvalue @0)))
96
97/* See if ARG1 is zero and X - ARG1 reduces to X. */
98(simplify
99 (minus @0 real_zerop@1)
100 (if (fold_real_zero_addition_p (type, @1, 1))
101 (non_lvalue @0)))
102
e0ee10ed
RB
103/* Simplify x - x.
104 This is unsafe for certain floats even in non-IEEE formats.
105 In IEEE, it is unsafe because it does wrong for NaNs.
106 Also note that operand_equal_p is always false if an operand
107 is volatile. */
108(simplify
a7f24614 109 (minus @0 @0)
1b457aa4 110 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
a7f24614 111 { build_zero_cst (type); }))
e0ee10ed
RB
112
113(simplify
a7f24614
RB
114 (mult @0 integer_zerop@1)
115 @1)
116
117/* Maybe fold x * 0 to 0. The expressions aren't the same
118 when x is NaN, since x * 0 is also NaN. Nor are they the
119 same in modes with signed zeros, since multiplying a
120 negative value by 0 gives -0, not +0. */
121(simplify
122 (mult @0 real_zerop@1)
8b5ee871 123 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
a7f24614
RB
124 @1))
125
126/* In IEEE floating point, x*1 is not equivalent to x for snans.
127 Likewise for complex arithmetic with signed zeros. */
128(simplify
129 (mult @0 real_onep)
8b5ee871
MG
130 (if (!HONOR_SNANS (type)
131 && (!HONOR_SIGNED_ZEROS (type)
a7f24614
RB
132 || !COMPLEX_FLOAT_TYPE_P (type)))
133 (non_lvalue @0)))
134
135/* Transform x * -1.0 into -x. */
136(simplify
137 (mult @0 real_minus_onep)
8b5ee871
MG
138 (if (!HONOR_SNANS (type)
139 && (!HONOR_SIGNED_ZEROS (type)
a7f24614
RB
140 || !COMPLEX_FLOAT_TYPE_P (type)))
141 (negate @0)))
e0ee10ed
RB
142
143/* Make sure to preserve divisions by zero. This is the reason why
144 we don't simplify x / x to 1 or 0 / x to 0. */
145(for op (mult trunc_div ceil_div floor_div round_div exact_div)
146 (simplify
147 (op @0 integer_onep)
148 (non_lvalue @0)))
149
a7f24614
RB
150/* X / -1 is -X. */
151(for div (trunc_div ceil_div floor_div round_div exact_div)
152 (simplify
09240451
MG
153 (div @0 integer_minus_onep@1)
154 (if (!TYPE_UNSIGNED (type))
a7f24614
RB
155 (negate @0))))
156
157/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
158 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
159(simplify
160 (floor_div @0 @1)
09240451
MG
161 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
162 && TYPE_UNSIGNED (type))
a7f24614
RB
163 (trunc_div @0 @1)))
164
28093105
RB
165/* Combine two successive divisions. Note that combining ceil_div
166 and floor_div is trickier and combining round_div even more so. */
167(for div (trunc_div exact_div)
c306cfaf
RB
168 (simplify
169 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
170 (with {
171 bool overflow_p;
172 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
173 }
174 (if (!overflow_p)
8fdc6c67
RB
175 (div @0 { wide_int_to_tree (type, mul); })
176 (if (TYPE_UNSIGNED (type)
177 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
178 { build_zero_cst (type); })))))
c306cfaf 179
a7f24614 180/* Optimize A / A to 1.0 if we don't care about
09240451 181 NaNs or Infinities. */
a7f24614
RB
182(simplify
183 (rdiv @0 @0)
09240451 184 (if (FLOAT_TYPE_P (type)
1b457aa4 185 && ! HONOR_NANS (type)
8b5ee871 186 && ! HONOR_INFINITIES (type))
09240451
MG
187 { build_one_cst (type); }))
188
189/* Optimize -A / A to -1.0 if we don't care about
190 NaNs or Infinities. */
191(simplify
e04d2a35 192 (rdiv:C @0 (negate @0))
09240451 193 (if (FLOAT_TYPE_P (type)
1b457aa4 194 && ! HONOR_NANS (type)
8b5ee871 195 && ! HONOR_INFINITIES (type))
09240451 196 { build_minus_one_cst (type); }))
a7f24614 197
8c6961ca
PK
198/* PR71078: x / abs(x) -> copysign (1.0, x) */
199(simplify
200 (rdiv:C (convert? @0) (convert? (abs @0)))
201 (if (SCALAR_FLOAT_TYPE_P (type)
202 && ! HONOR_NANS (type)
203 && ! HONOR_INFINITIES (type))
204 (switch
205 (if (types_match (type, float_type_node))
206 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
207 (if (types_match (type, double_type_node))
208 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
209 (if (types_match (type, long_double_type_node))
210 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
211
a7f24614
RB
212/* In IEEE floating point, x/1 is not equivalent to x for snans. */
213(simplify
214 (rdiv @0 real_onep)
8b5ee871 215 (if (!HONOR_SNANS (type))
a7f24614
RB
216 (non_lvalue @0)))
217
218/* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
219(simplify
220 (rdiv @0 real_minus_onep)
8b5ee871 221 (if (!HONOR_SNANS (type))
a7f24614
RB
222 (negate @0)))
223
5711ac88
N
224(if (flag_reciprocal_math)
225 /* Convert (A/B)/C to A/(B*C) */
226 (simplify
227 (rdiv (rdiv:s @0 @1) @2)
228 (rdiv @0 (mult @1 @2)))
229
230 /* Convert A/(B/C) to (A/B)*C */
231 (simplify
232 (rdiv @0 (rdiv:s @1 @2))
233 (mult (rdiv @0 @1) @2)))
234
235/* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
236(for div (trunc_div ceil_div floor_div round_div exact_div)
237 (simplify
238 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
239 (if (integer_pow2p (@2)
240 && tree_int_cst_sgn (@2) > 0
241 && wi::add (@2, @1) == 0
242 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
243 (rshift (convert @0) { build_int_cst (integer_type_node,
244 wi::exact_log2 (@2)); }))))
245
a7f24614
RB
246/* If ARG1 is a constant, we can convert this to a multiply by the
247 reciprocal. This does not have the same rounding properties,
248 so only do this if -freciprocal-math. We can actually
249 always safely do it if ARG1 is a power of two, but it's hard to
250 tell if it is or not in a portable manner. */
251(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
252 (simplify
253 (rdiv @0 cst@1)
254 (if (optimize)
53bc4b3a
RB
255 (if (flag_reciprocal_math
256 && !real_zerop (@1))
a7f24614 257 (with
249700b5 258 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
a7f24614 259 (if (tem)
8fdc6c67
RB
260 (mult @0 { tem; } )))
261 (if (cst != COMPLEX_CST)
262 (with { tree inverse = exact_inverse (type, @1); }
263 (if (inverse)
264 (mult @0 { inverse; } ))))))))
a7f24614 265
e0ee10ed
RB
266/* Same applies to modulo operations, but fold is inconsistent here
267 and simplifies 0 % x to 0, only preserving literal 0 % 0. */
a7f24614 268(for mod (ceil_mod floor_mod round_mod trunc_mod)
e0ee10ed
RB
269 /* 0 % X is always zero. */
270 (simplify
a7f24614 271 (mod integer_zerop@0 @1)
e0ee10ed
RB
272 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
273 (if (!integer_zerop (@1))
274 @0))
275 /* X % 1 is always zero. */
276 (simplify
a7f24614
RB
277 (mod @0 integer_onep)
278 { build_zero_cst (type); })
279 /* X % -1 is zero. */
280 (simplify
09240451
MG
281 (mod @0 integer_minus_onep@1)
282 (if (!TYPE_UNSIGNED (type))
bc4315fb
MG
283 { build_zero_cst (type); }))
284 /* (X % Y) % Y is just X % Y. */
285 (simplify
286 (mod (mod@2 @0 @1) @1)
98e30e51
RB
287 @2)
288 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
289 (simplify
290 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
291 (if (ANY_INTEGRAL_TYPE_P (type)
292 && TYPE_OVERFLOW_UNDEFINED (type)
293 && wi::multiple_of_p (@1, @2, TYPE_SIGN (type)))
294 { build_zero_cst (type); })))
a7f24614
RB
295
296/* X % -C is the same as X % C. */
297(simplify
298 (trunc_mod @0 INTEGER_CST@1)
299 (if (TYPE_SIGN (type) == SIGNED
300 && !TREE_OVERFLOW (@1)
301 && wi::neg_p (@1)
302 && !TYPE_OVERFLOW_TRAPS (type)
303 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
304 && !sign_bit_p (@1, @1))
305 (trunc_mod @0 (negate @1))))
e0ee10ed 306
8f0c696a
RB
307/* X % -Y is the same as X % Y. */
308(simplify
309 (trunc_mod @0 (convert? (negate @1)))
a2a743a1
MP
310 (if (INTEGRAL_TYPE_P (type)
311 && !TYPE_UNSIGNED (type)
8f0c696a 312 && !TYPE_OVERFLOW_TRAPS (type)
20b8d734
JJ
313 && tree_nop_conversion_p (type, TREE_TYPE (@1))
314 /* Avoid this transformation if X might be INT_MIN or
315 Y might be -1, because we would then change valid
316 INT_MIN % -(-1) into invalid INT_MIN % -1. */
317 && (expr_not_equal_to (@0, TYPE_MIN_VALUE (type))
318 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
319 (TREE_TYPE (@1))))))
8f0c696a
RB
320 (trunc_mod @0 (convert @1))))
321
f461569a
MP
322/* X - (X / Y) * Y is the same as X % Y. */
323(simplify
fba46f03
MG
324 (minus (convert1? @2) (convert2? (mult:c (trunc_div @0 @1) @1)))
325 /* We cannot use matching captures here, since in the case of
326 constants we really want the type of @0, not @2. */
327 (if (operand_equal_p (@0, @2, 0)
328 && (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type)))
329 (convert (trunc_mod @0 @1))))
f461569a 330
8f0c696a
RB
331/* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
332 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
333 Also optimize A % (C << N) where C is a power of 2,
334 to A & ((C << N) - 1). */
335(match (power_of_two_cand @1)
336 INTEGER_CST@1)
337(match (power_of_two_cand @1)
338 (lshift INTEGER_CST@1 @2))
339(for mod (trunc_mod floor_mod)
340 (simplify
4ab1e111 341 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
8f0c696a
RB
342 (if ((TYPE_UNSIGNED (type)
343 || tree_expr_nonnegative_p (@0))
4ab1e111 344 && tree_nop_conversion_p (type, TREE_TYPE (@3))
8f0c696a 345 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
4ab1e111 346 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
8f0c696a 347
887ab609
N
348/* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
349(simplify
350 (trunc_div (mult @0 integer_pow2p@1) @1)
351 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
352 (bit_and @0 { wide_int_to_tree
353 (type, wi::mask (TYPE_PRECISION (type) - wi::exact_log2 (@1),
354 false, TYPE_PRECISION (type))); })))
355
5f8d832e
N
356/* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
357(simplify
358 (mult (trunc_div @0 integer_pow2p@1) @1)
359 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
360 (bit_and @0 (negate @1))))
361
95765f36
N
362/* Simplify (t * 2) / 2) -> t. */
363(for div (trunc_div ceil_div floor_div round_div exact_div)
364 (simplify
365 (div (mult @0 @1) @1)
366 (if (ANY_INTEGRAL_TYPE_P (type)
367 && TYPE_OVERFLOW_UNDEFINED (type))
368 @0)))
369
d202f9bd 370(for op (negate abs)
9b054b08
RS
371 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
372 (for coss (COS COSH)
373 (simplify
374 (coss (op @0))
375 (coss @0)))
376 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
377 (for pows (POW)
378 (simplify
379 (pows (op @0) REAL_CST@1)
380 (with { HOST_WIDE_INT n; }
381 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
5d3498b4 382 (pows @0 @1)))))
de3fbea3
RB
383 /* Likewise for powi. */
384 (for pows (POWI)
385 (simplify
386 (pows (op @0) INTEGER_CST@1)
387 (if (wi::bit_and (@1, 1) == 0)
388 (pows @0 @1))))
5d3498b4
RS
389 /* Strip negate and abs from both operands of hypot. */
390 (for hypots (HYPOT)
391 (simplify
392 (hypots (op @0) @1)
393 (hypots @0 @1))
394 (simplify
395 (hypots @0 (op @1))
396 (hypots @0 @1)))
397 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
398 (for copysigns (COPYSIGN)
399 (simplify
400 (copysigns (op @0) @1)
401 (copysigns @0 @1))))
402
403/* abs(x)*abs(x) -> x*x. Should be valid for all types. */
404(simplify
405 (mult (abs@1 @0) @1)
406 (mult @0 @0))
407
408/* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
409(for coss (COS COSH)
410 copysigns (COPYSIGN)
411 (simplify
412 (coss (copysigns @0 @1))
413 (coss @0)))
414
415/* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
416(for pows (POW)
417 copysigns (COPYSIGN)
418 (simplify
de3fbea3 419 (pows (copysigns @0 @2) REAL_CST@1)
5d3498b4
RS
420 (with { HOST_WIDE_INT n; }
421 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
422 (pows @0 @1)))))
de3fbea3
RB
423/* Likewise for powi. */
424(for pows (POWI)
425 copysigns (COPYSIGN)
426 (simplify
427 (pows (copysigns @0 @2) INTEGER_CST@1)
428 (if (wi::bit_and (@1, 1) == 0)
429 (pows @0 @1))))
5d3498b4
RS
430
431(for hypots (HYPOT)
432 copysigns (COPYSIGN)
433 /* hypot(copysign(x, y), z) -> hypot(x, z). */
434 (simplify
435 (hypots (copysigns @0 @1) @2)
436 (hypots @0 @2))
437 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
438 (simplify
439 (hypots @0 (copysigns @1 @2))
440 (hypots @0 @1)))
441
442/* copysign(copysign(x, y), z) -> copysign(x, z). */
443(for copysigns (COPYSIGN)
444 (simplify
445 (copysigns (copysigns @0 @1) @2)
446 (copysigns @0 @2)))
447
448/* copysign(x,y)*copysign(x,y) -> x*x. */
449(for copysigns (COPYSIGN)
450 (simplify
451 (mult (copysigns@2 @0 @1) @2)
452 (mult @0 @0)))
453
454/* ccos(-x) -> ccos(x). Similarly for ccosh. */
455(for ccoss (CCOS CCOSH)
456 (simplify
457 (ccoss (negate @0))
458 (ccoss @0)))
d202f9bd 459
abcc43f5
RS
460/* cabs(-x) and cos(conj(x)) -> cabs(x). */
461(for ops (conj negate)
462 (for cabss (CABS)
463 (simplify
464 (cabss (ops @0))
465 (cabss @0))))
466
0a8f32b8
RB
467/* Fold (a * (1 << b)) into (a << b) */
468(simplify
469 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
470 (if (! FLOAT_TYPE_P (type)
ece46666
MG
471 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
472 || TYPE_UNSIGNED (TREE_TYPE (@1))))
0a8f32b8
RB
473 (lshift @0 @2)))
474
475/* Fold (C1/X)*C2 into (C1*C2)/X. */
476(simplify
ff86345f
RB
477 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
478 (if (flag_associative_math
479 && single_use (@3))
0a8f32b8
RB
480 (with
481 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
482 (if (tem)
483 (rdiv { tem; } @1)))))
484
5711ac88
N
485/* Convert C1/(X*C2) into (C1/C2)/X */
486(simplify
487 (rdiv REAL_CST@0 (mult @1 REAL_CST@2))
488 (if (flag_reciprocal_math)
489 (with
490 { tree tem = const_binop (RDIV_EXPR, type, @0, @2); }
491 (if (tem)
492 (rdiv { tem; } @1)))))
493
0a8f32b8
RB
494/* Simplify ~X & X as zero. */
495(simplify
496 (bit_and:c (convert? @0) (convert? (bit_not @0)))
497 { build_zero_cst (type); })
498
10158317
RB
499/* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
500(simplify
a9658b11 501 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
10158317
RB
502 (minus (bit_xor @0 @1) @1))
503(simplify
504 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
505 (if (wi::bit_not (@2) == @1)
506 (minus (bit_xor @0 @1) @1)))
507
508/* Fold (A & B) - (A & ~B) into B - (A ^ B). */
509(simplify
a8e9f9a3 510 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
10158317
RB
511 (minus @1 (bit_xor @0 @1)))
512
513/* Simplify (X & ~Y) | (~X & Y) -> X ^ Y. */
514(simplify
a9658b11 515 (bit_ior (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
10158317
RB
516 (bit_xor @0 @1))
517(simplify
518 (bit_ior:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
519 (if (wi::bit_not (@2) == @1)
520 (bit_xor @0 @1)))
d982c5b7
MG
521/* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
522#if GIMPLE
523(simplify
524 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
525 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
526 && (get_nonzero_bits (@0) & wi::bit_not (@1)) == 0)
527 (bit_xor @0 @1)))
528#endif
10158317 529
bc4315fb
MG
530/* X % Y is smaller than Y. */
531(for cmp (lt ge)
532 (simplify
533 (cmp (trunc_mod @0 @1) @1)
534 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
535 { constant_boolean_node (cmp == LT_EXPR, type); })))
536(for cmp (gt le)
537 (simplify
538 (cmp @1 (trunc_mod @0 @1))
539 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
540 { constant_boolean_node (cmp == GT_EXPR, type); })))
541
e0ee10ed
RB
542/* x | ~0 -> ~0 */
543(simplify
544 (bit_ior @0 integer_all_onesp@1)
545 @1)
546
547/* x & 0 -> 0 */
548(simplify
549 (bit_and @0 integer_zerop@1)
550 @1)
551
a4398a30 552/* ~x | x -> -1 */
8b5ee871
MG
553/* ~x ^ x -> -1 */
554/* ~x + x -> -1 */
555(for op (bit_ior bit_xor plus)
556 (simplify
557 (op:c (convert? @0) (convert? (bit_not @0)))
558 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
a4398a30 559
e0ee10ed
RB
560/* x ^ x -> 0 */
561(simplify
562 (bit_xor @0 @0)
563 { build_zero_cst (type); })
564
36a60e48
RB
565/* Canonicalize X ^ ~0 to ~X. */
566(simplify
567 (bit_xor @0 integer_all_onesp@1)
568 (bit_not @0))
569
570/* x & ~0 -> x */
571(simplify
572 (bit_and @0 integer_all_onesp)
573 (non_lvalue @0))
574
575/* x & x -> x, x | x -> x */
576(for bitop (bit_and bit_ior)
577 (simplify
578 (bitop @0 @0)
579 (non_lvalue @0)))
580
c7986356
MG
581/* x & C -> x if we know that x & ~C == 0. */
582#if GIMPLE
583(simplify
584 (bit_and SSA_NAME@0 INTEGER_CST@1)
585 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
586 && (get_nonzero_bits (@0) & wi::bit_not (@1)) == 0)
587 @0))
588#endif
589
0f770b01
RV
590/* x + (x & 1) -> (x + 1) & ~1 */
591(simplify
44fc0a51
RB
592 (plus:c @0 (bit_and:s @0 integer_onep@1))
593 (bit_and (plus @0 @1) (bit_not @1)))
0f770b01
RV
594
595/* x & ~(x & y) -> x & ~y */
596/* x | ~(x | y) -> x | ~y */
597(for bitop (bit_and bit_ior)
af563d4b 598 (simplify
44fc0a51
RB
599 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
600 (bitop @0 (bit_not @1))))
af563d4b
MG
601
602/* (x | y) & ~x -> y & ~x */
603/* (x & y) | ~x -> y | ~x */
604(for bitop (bit_and bit_ior)
605 rbitop (bit_ior bit_and)
606 (simplify
607 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
608 (bitop @1 @2)))
0f770b01 609
f13c4673
MP
610/* (x & y) ^ (x | y) -> x ^ y */
611(simplify
2d6f2dce
MP
612 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
613 (bit_xor @0 @1))
f13c4673 614
9ea65ca6
MP
615/* (x ^ y) ^ (x | y) -> x & y */
616(simplify
617 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
618 (bit_and @0 @1))
619
620/* (x & y) + (x ^ y) -> x | y */
621/* (x & y) | (x ^ y) -> x | y */
622/* (x & y) ^ (x ^ y) -> x | y */
623(for op (plus bit_ior bit_xor)
624 (simplify
625 (op:c (bit_and @0 @1) (bit_xor @0 @1))
626 (bit_ior @0 @1)))
627
628/* (x & y) + (x | y) -> x + y */
629(simplify
630 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
631 (plus @0 @1))
632
9737efaf
MP
633/* (x + y) - (x | y) -> x & y */
634(simplify
635 (minus (plus @0 @1) (bit_ior @0 @1))
636 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
637 && !TYPE_SATURATING (type))
638 (bit_and @0 @1)))
639
640/* (x + y) - (x & y) -> x | y */
641(simplify
642 (minus (plus @0 @1) (bit_and @0 @1))
643 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
644 && !TYPE_SATURATING (type))
645 (bit_ior @0 @1)))
646
9ea65ca6
MP
647/* (x | y) - (x ^ y) -> x & y */
648(simplify
649 (minus (bit_ior @0 @1) (bit_xor @0 @1))
650 (bit_and @0 @1))
651
652/* (x | y) - (x & y) -> x ^ y */
653(simplify
654 (minus (bit_ior @0 @1) (bit_and @0 @1))
655 (bit_xor @0 @1))
656
66cc6273
MP
657/* (x | y) & ~(x & y) -> x ^ y */
658(simplify
659 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
660 (bit_xor @0 @1))
661
662/* (x | y) & (~x ^ y) -> x & y */
663(simplify
664 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
665 (bit_and @0 @1))
666
5b00d921
RB
667/* ~x & ~y -> ~(x | y)
668 ~x | ~y -> ~(x & y) */
669(for op (bit_and bit_ior)
670 rop (bit_ior bit_and)
671 (simplify
672 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
ece46666
MG
673 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
674 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
5b00d921
RB
675 (bit_not (rop (convert @0) (convert @1))))))
676
14ea9f92 677/* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
5b00d921
RB
678 with a constant, and the two constants have no bits in common,
679 we should treat this as a BIT_IOR_EXPR since this may produce more
680 simplifications. */
14ea9f92
RB
681(for op (bit_xor plus)
682 (simplify
683 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
684 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
685 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
686 && tree_nop_conversion_p (type, TREE_TYPE (@2))
687 && wi::bit_and (@1, @3) == 0)
688 (bit_ior (convert @4) (convert @5)))))
5b00d921
RB
689
690/* (X | Y) ^ X -> Y & ~ X*/
691(simplify
692 (bit_xor:c (convert? (bit_ior:c @0 @1)) (convert? @0))
693 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
694 (convert (bit_and @1 (bit_not @0)))))
695
696/* Convert ~X ^ ~Y to X ^ Y. */
697(simplify
698 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
ece46666
MG
699 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
700 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
5b00d921
RB
701 (bit_xor (convert @0) (convert @1))))
702
703/* Convert ~X ^ C to X ^ ~C. */
704(simplify
705 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
c8ba6498
EB
706 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
707 (bit_xor (convert @0) (bit_not @1))))
5b00d921 708
e39dab2c
MG
709/* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
710(for opo (bit_and bit_xor)
711 opi (bit_xor bit_and)
712 (simplify
713 (opo:c (opi:c @0 @1) @1)
714 (bit_and (bit_not @0) @1)))
97e77391 715
14ea9f92
RB
716/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
717 operands are another bit-wise operation with a common input. If so,
718 distribute the bit operations to save an operation and possibly two if
719 constants are involved. For example, convert
720 (A | B) & (A | C) into A | (B & C)
721 Further simplification will occur if B and C are constants. */
e07ab2fe
MG
722(for op (bit_and bit_ior bit_xor)
723 rop (bit_ior bit_and bit_and)
14ea9f92 724 (simplify
e07ab2fe
MG
725 (op (convert? (rop:c @0 @1)) (convert? (rop:c @0 @2)))
726 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
727 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
14ea9f92
RB
728 (rop (convert @0) (op (convert @1) (convert @2))))))
729
e39dab2c
MG
730/* Some simple reassociation for bit operations, also handled in reassoc. */
731/* (X & Y) & Y -> X & Y
732 (X | Y) | Y -> X | Y */
733(for op (bit_and bit_ior)
734 (simplify
735 (op:c (convert?@2 (op:c @0 @1)) (convert? @1))
736 @2))
737/* (X ^ Y) ^ Y -> X */
738(simplify
739 (bit_xor:c (convert? (bit_xor:c @0 @1)) (convert? @1))
ece46666 740 (convert @0))
e39dab2c
MG
741/* (X & Y) & (X & Z) -> (X & Y) & Z
742 (X | Y) | (X | Z) -> (X | Y) | Z */
743(for op (bit_and bit_ior)
744 (simplify
745 (op:c (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
746 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
747 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
748 (if (single_use (@5) && single_use (@6))
749 (op @3 (convert @2))
750 (if (single_use (@3) && single_use (@4))
751 (op (convert @1) @5))))))
752/* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
753(simplify
754 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
755 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
756 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
d78789f5 757 (bit_xor (convert @1) (convert @2))))
5b00d921 758
b14a9c57
RB
759(simplify
760 (abs (abs@1 @0))
761 @1)
f3582e54
RB
762(simplify
763 (abs (negate @0))
764 (abs @0))
765(simplify
766 (abs tree_expr_nonnegative_p@0)
767 @0)
768
55cf3946
RB
769/* A few cases of fold-const.c negate_expr_p predicate. */
770(match negate_expr_p
771 INTEGER_CST
b14a9c57
RB
772 (if ((INTEGRAL_TYPE_P (type)
773 && TYPE_OVERFLOW_WRAPS (type))
774 || (!TYPE_OVERFLOW_SANITIZED (type)
55cf3946
RB
775 && may_negate_without_overflow_p (t)))))
776(match negate_expr_p
777 FIXED_CST)
778(match negate_expr_p
779 (negate @0)
780 (if (!TYPE_OVERFLOW_SANITIZED (type))))
781(match negate_expr_p
782 REAL_CST
783 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
784/* VECTOR_CST handling of non-wrapping types would recurse in unsupported
785 ways. */
786(match negate_expr_p
787 VECTOR_CST
788 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
0a8f32b8
RB
789
790/* (-A) * (-B) -> A * B */
791(simplify
792 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
793 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
794 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
795 (mult (convert @0) (convert (negate @1)))))
55cf3946
RB
796
797/* -(A + B) -> (-B) - A. */
b14a9c57 798(simplify
55cf3946
RB
799 (negate (plus:c @0 negate_expr_p@1))
800 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
801 && !HONOR_SIGNED_ZEROS (element_mode (type)))
802 (minus (negate @1) @0)))
803
804/* A - B -> A + (-B) if B is easily negatable. */
b14a9c57 805(simplify
55cf3946 806 (minus @0 negate_expr_p@1)
e4e96a4f
KT
807 (if (!FIXED_POINT_TYPE_P (type))
808 (plus @0 (negate @1))))
d4573ffe 809
5609420f
RB
810/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
811 when profitable.
812 For bitwise binary operations apply operand conversions to the
813 binary operation result instead of to the operands. This allows
814 to combine successive conversions and bitwise binary operations.
815 We combine the above two cases by using a conditional convert. */
816(for bitop (bit_and bit_ior bit_xor)
817 (simplify
818 (bitop (convert @0) (convert? @1))
819 (if (((TREE_CODE (@1) == INTEGER_CST
820 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
ad6f996c 821 && int_fits_type_p (@1, TREE_TYPE (@0)))
aea417d7 822 || types_match (@0, @1))
ad6f996c
RB
823 /* ??? This transform conflicts with fold-const.c doing
824 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
825 constants (if x has signed type, the sign bit cannot be set
826 in c). This folds extension into the BIT_AND_EXPR.
827 Restrict it to GIMPLE to avoid endless recursions. */
828 && (bitop != BIT_AND_EXPR || GIMPLE)
5609420f
RB
829 && (/* That's a good idea if the conversion widens the operand, thus
830 after hoisting the conversion the operation will be narrower. */
831 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
832 /* It's also a good idea if the conversion is to a non-integer
833 mode. */
834 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
835 /* Or if the precision of TO is not the same as the precision
836 of its mode. */
837 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
838 (convert (bitop @0 (convert @1))))))
839
b14a9c57
RB
840(for bitop (bit_and bit_ior)
841 rbitop (bit_ior bit_and)
842 /* (x | y) & x -> x */
843 /* (x & y) | x -> x */
844 (simplify
845 (bitop:c (rbitop:c @0 @1) @0)
846 @0)
847 /* (~x | y) & x -> x & y */
848 /* (~x & y) | x -> x | y */
849 (simplify
850 (bitop:c (rbitop:c (bit_not @0) @1) @0)
851 (bitop @0 @1)))
852
5609420f
RB
853/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
854(simplify
855 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
856 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
857
858/* Combine successive equal operations with constants. */
859(for bitop (bit_and bit_ior bit_xor)
860 (simplify
861 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
862 (bitop @0 (bitop @1 @2))))
863
864/* Try simple folding for X op !X, and X op X with the help
865 of the truth_valued_p and logical_inverted_value predicates. */
866(match truth_valued_p
867 @0
868 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
f84e7fd6 869(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
5609420f
RB
870 (match truth_valued_p
871 (op @0 @1)))
872(match truth_valued_p
873 (truth_not @0))
874
0a8f32b8
RB
875(match (logical_inverted_value @0)
876 (truth_not @0))
5609420f
RB
877(match (logical_inverted_value @0)
878 (bit_not truth_valued_p@0))
879(match (logical_inverted_value @0)
09240451 880 (eq @0 integer_zerop))
5609420f 881(match (logical_inverted_value @0)
09240451 882 (ne truth_valued_p@0 integer_truep))
5609420f 883(match (logical_inverted_value @0)
09240451 884 (bit_xor truth_valued_p@0 integer_truep))
5609420f
RB
885
886/* X & !X -> 0. */
887(simplify
888 (bit_and:c @0 (logical_inverted_value @0))
889 { build_zero_cst (type); })
890/* X | !X and X ^ !X -> 1, , if X is truth-valued. */
891(for op (bit_ior bit_xor)
892 (simplify
893 (op:c truth_valued_p@0 (logical_inverted_value @0))
f84e7fd6 894 { constant_boolean_node (true, type); }))
59c20dc7
RB
895/* X ==/!= !X is false/true. */
896(for op (eq ne)
897 (simplify
898 (op:c truth_valued_p@0 (logical_inverted_value @0))
899 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
5609420f 900
5609420f
RB
901/* If arg1 and arg2 are booleans (or any single bit type)
902 then try to simplify:
903
904 (~X & Y) -> X < Y
905 (X & ~Y) -> Y < X
906 (~X | Y) -> X <= Y
907 (X | ~Y) -> Y <= X
908
909 But only do this if our result feeds into a comparison as
910 this transformation is not always a win, particularly on
911 targets with and-not instructions.
912 -> simplify_bitwise_binary_boolean */
913(simplify
914 (ne (bit_and:c (bit_not @0) @1) integer_zerop)
915 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
916 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
0f3f9437
RB
917 (if (TYPE_UNSIGNED (TREE_TYPE (@1)))
918 (lt @0 @1)
919 (gt @0 @1))))
5609420f
RB
920(simplify
921 (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
922 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
923 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
0f3f9437
RB
924 (if (TYPE_UNSIGNED (TREE_TYPE (@1)))
925 (le @0 @1)
926 (ge @0 @1))))
5609420f 927
5609420f
RB
928/* ~~x -> x */
929(simplify
930 (bit_not (bit_not @0))
931 @0)
932
b14a9c57
RB
933/* Convert ~ (-A) to A - 1. */
934(simplify
935 (bit_not (convert? (negate @0)))
ece46666
MG
936 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
937 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
8b5ee871 938 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
b14a9c57
RB
939
940/* Convert ~ (A - 1) or ~ (A + -1) to -A. */
941(simplify
8b5ee871 942 (bit_not (convert? (minus @0 integer_each_onep)))
ece46666
MG
943 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
944 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
b14a9c57
RB
945 (convert (negate @0))))
946(simplify
947 (bit_not (convert? (plus @0 integer_all_onesp)))
ece46666
MG
948 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
949 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
b14a9c57
RB
950 (convert (negate @0))))
951
952/* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
953(simplify
954 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
955 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
956 (convert (bit_xor @0 (bit_not @1)))))
957(simplify
958 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
959 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
960 (convert (bit_xor @0 @1))))
961
f52baa7b
MP
962/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
963(simplify
44fc0a51
RB
964 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
965 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
f52baa7b 966
f7b7b0aa
MP
967/* Fold A - (A & B) into ~B & A. */
968(simplify
969 (minus (convert? @0) (convert?:s (bit_and:cs @0 @1)))
970 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
971 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
972 (convert (bit_and (bit_not @1) @0))))
5609420f 973
84ff66b8
AV
974
975
976/* ((X inner_op C0) outer_op C1)
977 With X being a tree where value_range has reasoned certain bits to always be
978 zero throughout its computed value range,
979 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
980 where zero_mask has 1's for all bits that are sure to be 0 in
981 and 0's otherwise.
982 if (inner_op == '^') C0 &= ~C1;
983 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
984 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
985*/
986(for inner_op (bit_ior bit_xor)
987 outer_op (bit_xor bit_ior)
988(simplify
989 (outer_op
990 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
991 (with
992 {
993 bool fail = false;
994 wide_int zero_mask_not;
995 wide_int C0;
996 wide_int cst_emit;
997
998 if (TREE_CODE (@2) == SSA_NAME)
999 zero_mask_not = get_nonzero_bits (@2);
1000 else
1001 fail = true;
1002
1003 if (inner_op == BIT_XOR_EXPR)
1004 {
1005 C0 = wi::bit_and_not (@0, @1);
1006 cst_emit = wi::bit_or (C0, @1);
1007 }
1008 else
1009 {
1010 C0 = @0;
1011 cst_emit = wi::bit_xor (@0, @1);
1012 }
1013 }
1014 (if (!fail && wi::bit_and (C0, zero_mask_not) == 0)
1015 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1016 (if (!fail && wi::bit_and (@1, zero_mask_not) == 0)
1017 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1018
a499aac5
RB
1019/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1020(simplify
44fc0a51
RB
1021 (pointer_plus (pointer_plus:s @0 @1) @3)
1022 (pointer_plus @0 (plus @1 @3)))
a499aac5
RB
1023
1024/* Pattern match
1025 tem1 = (long) ptr1;
1026 tem2 = (long) ptr2;
1027 tem3 = tem2 - tem1;
1028 tem4 = (unsigned long) tem3;
1029 tem5 = ptr1 + tem4;
1030 and produce
1031 tem5 = ptr2; */
1032(simplify
1033 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1034 /* Conditionally look through a sign-changing conversion. */
1035 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1036 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1037 || (GENERIC && type == TREE_TYPE (@1))))
1038 @1))
1039
1040/* Pattern match
1041 tem = (sizetype) ptr;
1042 tem = tem & algn;
1043 tem = -tem;
1044 ... = ptr p+ tem;
1045 and produce the simpler and easier to analyze with respect to alignment
1046 ... = ptr & ~algn; */
1047(simplify
1048 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1049 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
1050 (bit_and @0 { algn; })))
1051
99e943a2
RB
1052/* Try folding difference of addresses. */
1053(simplify
1054 (minus (convert ADDR_EXPR@0) (convert @1))
1055 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1056 (with { HOST_WIDE_INT diff; }
1057 (if (ptr_difference_const (@0, @1, &diff))
1058 { build_int_cst_type (type, diff); }))))
1059(simplify
1060 (minus (convert @0) (convert ADDR_EXPR@1))
1061 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1062 (with { HOST_WIDE_INT diff; }
1063 (if (ptr_difference_const (@0, @1, &diff))
1064 { build_int_cst_type (type, diff); }))))
1065
bab73f11
RB
1066/* If arg0 is derived from the address of an object or function, we may
1067 be able to fold this expression using the object or function's
1068 alignment. */
1069(simplify
1070 (bit_and (convert? @0) INTEGER_CST@1)
1071 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1072 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1073 (with
1074 {
1075 unsigned int align;
1076 unsigned HOST_WIDE_INT bitpos;
1077 get_pointer_alignment_1 (@0, &align, &bitpos);
1078 }
1079 (if (wi::ltu_p (@1, align / BITS_PER_UNIT))
1080 { wide_int_to_tree (type, wi::bit_and (@1, bitpos / BITS_PER_UNIT)); }))))
99e943a2 1081
a499aac5 1082
cc7b5acf
RB
1083/* We can't reassociate at all for saturating types. */
1084(if (!TYPE_SATURATING (type))
1085
1086 /* Contract negates. */
1087 /* A + (-B) -> A - B */
1088 (simplify
1089 (plus:c (convert1? @0) (convert2? (negate @1)))
1090 /* Apply STRIP_NOPS on @0 and the negate. */
1091 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1092 && tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1093 && !TYPE_OVERFLOW_SANITIZED (type))
cc7b5acf
RB
1094 (minus (convert @0) (convert @1))))
1095 /* A - (-B) -> A + B */
1096 (simplify
1097 (minus (convert1? @0) (convert2? (negate @1)))
1098 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
2f68e8bc 1099 && tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1100 && !TYPE_OVERFLOW_SANITIZED (type))
cc7b5acf
RB
1101 (plus (convert @0) (convert @1))))
1102 /* -(-A) -> A */
1103 (simplify
1104 (negate (convert? (negate @1)))
1105 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1106 && !TYPE_OVERFLOW_SANITIZED (type))
a0f12cf8 1107 (convert @1)))
cc7b5acf 1108
7318e44f
RB
1109 /* We can't reassociate floating-point unless -fassociative-math
1110 or fixed-point plus or minus because of saturation to +-Inf. */
1111 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1112 && !FIXED_POINT_TYPE_P (type))
cc7b5acf
RB
1113
1114 /* Match patterns that allow contracting a plus-minus pair
1115 irrespective of overflow issues. */
1116 /* (A +- B) - A -> +- B */
1117 /* (A +- B) -+ B -> A */
1118 /* A - (A +- B) -> -+ B */
1119 /* A +- (B -+ A) -> +- B */
1120 (simplify
1121 (minus (plus:c @0 @1) @0)
1122 @1)
1123 (simplify
1124 (minus (minus @0 @1) @0)
1125 (negate @1))
1126 (simplify
1127 (plus:c (minus @0 @1) @1)
1128 @0)
1129 (simplify
1130 (minus @0 (plus:c @0 @1))
1131 (negate @1))
1132 (simplify
1133 (minus @0 (minus @0 @1))
1134 @1)
1135
1136 /* (A +- CST) +- CST -> A + CST */
1137 (for outer_op (plus minus)
1138 (for inner_op (plus minus)
1139 (simplify
1140 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1141 /* If the constant operation overflows we cannot do the transform
1142 as we would introduce undefined overflow, for example
1143 with (a - 1) + INT_MIN. */
23f27839 1144 (with { tree cst = const_binop (outer_op == inner_op
cc7b5acf
RB
1145 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
1146 (if (cst && !TREE_OVERFLOW (cst))
1147 (inner_op @0 { cst; } ))))))
1148
1149 /* (CST - A) +- CST -> CST - A */
1150 (for outer_op (plus minus)
1151 (simplify
1152 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
23f27839 1153 (with { tree cst = const_binop (outer_op, type, @1, @2); }
cc7b5acf
RB
1154 (if (cst && !TREE_OVERFLOW (cst))
1155 (minus { cst; } @0)))))
1156
1157 /* ~A + A -> -1 */
1158 (simplify
1159 (plus:c (bit_not @0) @0)
1160 (if (!TYPE_OVERFLOW_TRAPS (type))
1161 { build_all_ones_cst (type); }))
1162
1163 /* ~A + 1 -> -A */
1164 (simplify
e19740ae
RB
1165 (plus (convert? (bit_not @0)) integer_each_onep)
1166 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1167 (negate (convert @0))))
1168
1169 /* -A - 1 -> ~A */
1170 (simplify
1171 (minus (convert? (negate @0)) integer_each_onep)
1172 (if (!TYPE_OVERFLOW_TRAPS (type)
1173 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1174 (bit_not (convert @0))))
1175
1176 /* -1 - A -> ~A */
1177 (simplify
1178 (minus integer_all_onesp @0)
bc4315fb 1179 (bit_not @0))
cc7b5acf
RB
1180
1181 /* (T)(P + A) - (T)P -> (T) A */
1182 (for add (plus pointer_plus)
1183 (simplify
1184 (minus (convert (add @0 @1))
1185 (convert @0))
09240451 1186 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
cc7b5acf
RB
1187 /* For integer types, if A has a smaller type
1188 than T the result depends on the possible
1189 overflow in P + A.
1190 E.g. T=size_t, A=(unsigned)429497295, P>0.
1191 However, if an overflow in P + A would cause
1192 undefined behavior, we can assume that there
1193 is no overflow. */
1194 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1195 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1196 /* For pointer types, if the conversion of A to the
1197 final type requires a sign- or zero-extension,
1198 then we have to punt - it is not defined which
1199 one is correct. */
1200 || (POINTER_TYPE_P (TREE_TYPE (@0))
1201 && TREE_CODE (@1) == INTEGER_CST
1202 && tree_int_cst_sign_bit (@1) == 0))
a8fc2579
RB
1203 (convert @1))))
1204
1205 /* (T)P - (T)(P + A) -> -(T) A */
1206 (for add (plus pointer_plus)
1207 (simplify
1208 (minus (convert @0)
1209 (convert (add @0 @1)))
1210 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1211 /* For integer types, if A has a smaller type
1212 than T the result depends on the possible
1213 overflow in P + A.
1214 E.g. T=size_t, A=(unsigned)429497295, P>0.
1215 However, if an overflow in P + A would cause
1216 undefined behavior, we can assume that there
1217 is no overflow. */
1218 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1219 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1220 /* For pointer types, if the conversion of A to the
1221 final type requires a sign- or zero-extension,
1222 then we have to punt - it is not defined which
1223 one is correct. */
1224 || (POINTER_TYPE_P (TREE_TYPE (@0))
1225 && TREE_CODE (@1) == INTEGER_CST
1226 && tree_int_cst_sign_bit (@1) == 0))
1227 (negate (convert @1)))))
1228
1229 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
1230 (for add (plus pointer_plus)
1231 (simplify
1232 (minus (convert (add @0 @1))
1233 (convert (add @0 @2)))
1234 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1235 /* For integer types, if A has a smaller type
1236 than T the result depends on the possible
1237 overflow in P + A.
1238 E.g. T=size_t, A=(unsigned)429497295, P>0.
1239 However, if an overflow in P + A would cause
1240 undefined behavior, we can assume that there
1241 is no overflow. */
1242 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1243 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1244 /* For pointer types, if the conversion of A to the
1245 final type requires a sign- or zero-extension,
1246 then we have to punt - it is not defined which
1247 one is correct. */
1248 || (POINTER_TYPE_P (TREE_TYPE (@0))
1249 && TREE_CODE (@1) == INTEGER_CST
1250 && tree_int_cst_sign_bit (@1) == 0
1251 && TREE_CODE (@2) == INTEGER_CST
1252 && tree_int_cst_sign_bit (@2) == 0))
1253 (minus (convert @1) (convert @2)))))))
cc7b5acf
RB
1254
1255
0122e8e5 1256/* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
a7f24614 1257
0122e8e5 1258(for minmax (min max FMIN FMAX)
a7f24614
RB
1259 (simplify
1260 (minmax @0 @0)
1261 @0))
4a334cba
RS
1262/* min(max(x,y),y) -> y. */
1263(simplify
1264 (min:c (max:c @0 @1) @1)
1265 @1)
1266/* max(min(x,y),y) -> y. */
1267(simplify
1268 (max:c (min:c @0 @1) @1)
1269 @1)
a7f24614
RB
1270(simplify
1271 (min @0 @1)
2c2870a1
MG
1272 (switch
1273 (if (INTEGRAL_TYPE_P (type)
1274 && TYPE_MIN_VALUE (type)
1275 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
1276 @1)
1277 (if (INTEGRAL_TYPE_P (type)
1278 && TYPE_MAX_VALUE (type)
1279 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
1280 @0)))
a7f24614
RB
1281(simplify
1282 (max @0 @1)
2c2870a1
MG
1283 (switch
1284 (if (INTEGRAL_TYPE_P (type)
1285 && TYPE_MAX_VALUE (type)
1286 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
1287 @1)
1288 (if (INTEGRAL_TYPE_P (type)
1289 && TYPE_MIN_VALUE (type)
1290 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
1291 @0)))
0122e8e5
RS
1292(for minmax (FMIN FMAX)
1293 /* If either argument is NaN, return the other one. Avoid the
1294 transformation if we get (and honor) a signalling NaN. */
1295 (simplify
1296 (minmax:c @0 REAL_CST@1)
1297 (if (real_isnan (TREE_REAL_CST_PTR (@1))
1298 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
1299 @0)))
1300/* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
1301 functions to return the numeric arg if the other one is NaN.
1302 MIN and MAX don't honor that, so only transform if -ffinite-math-only
1303 is set. C99 doesn't require -0.0 to be handled, so we don't have to
1304 worry about it either. */
1305(if (flag_finite_math_only)
1306 (simplify
1307 (FMIN @0 @1)
1308 (min @0 @1))
1309 (simplify
1310 (FMAX @0 @1)
1311 (max @0 @1)))
ce0e66ff
MG
1312/* min (-A, -B) -> -max (A, B) */
1313(for minmax (min max FMIN FMAX)
1314 maxmin (max min FMAX FMIN)
1315 (simplify
1316 (minmax (negate:s@2 @0) (negate:s@3 @1))
1317 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1318 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1319 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1320 (negate (maxmin @0 @1)))))
1321/* MIN (~X, ~Y) -> ~MAX (X, Y)
1322 MAX (~X, ~Y) -> ~MIN (X, Y) */
1323(for minmax (min max)
1324 maxmin (max min)
1325 (simplify
1326 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
1327 (bit_not (maxmin @0 @1))))
a7f24614 1328
b4817bd6
MG
1329/* MIN (X, Y) == X -> X <= Y */
1330(for minmax (min min max max)
1331 cmp (eq ne eq ne )
1332 out (le gt ge lt )
1333 (simplify
1334 (cmp:c (minmax:c @0 @1) @0)
1335 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
1336 (out @0 @1))))
1337/* MIN (X, 5) == 0 -> X == 0
1338 MIN (X, 5) == 7 -> false */
1339(for cmp (eq ne)
1340 (simplify
1341 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
1342 (if (wi::lt_p (@1, @2, TYPE_SIGN (TREE_TYPE (@0))))
1343 { constant_boolean_node (cmp == NE_EXPR, type); }
1344 (if (wi::gt_p (@1, @2, TYPE_SIGN (TREE_TYPE (@0))))
1345 (cmp @0 @2)))))
1346(for cmp (eq ne)
1347 (simplify
1348 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
1349 (if (wi::gt_p (@1, @2, TYPE_SIGN (TREE_TYPE (@0))))
1350 { constant_boolean_node (cmp == NE_EXPR, type); }
1351 (if (wi::lt_p (@1, @2, TYPE_SIGN (TREE_TYPE (@0))))
1352 (cmp @0 @2)))))
1353/* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
1354(for minmax (min min max max min min max max )
1355 cmp (lt le gt ge gt ge lt le )
1356 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
1357 (simplify
1358 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
1359 (comb (cmp @0 @2) (cmp @1 @2))))
1360
a7f24614
RB
1361/* Simplifications of shift and rotates. */
1362
1363(for rotate (lrotate rrotate)
1364 (simplify
1365 (rotate integer_all_onesp@0 @1)
1366 @0))
1367
1368/* Optimize -1 >> x for arithmetic right shifts. */
1369(simplify
1370 (rshift integer_all_onesp@0 @1)
1371 (if (!TYPE_UNSIGNED (type)
1372 && tree_expr_nonnegative_p (@1))
1373 @0))
1374
12085390
N
1375/* Optimize (x >> c) << c into x & (-1<<c). */
1376(simplify
1377 (lshift (rshift @0 INTEGER_CST@1) @1)
1378 (if (wi::ltu_p (@1, element_precision (type)))
1379 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
1380
1381/* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
1382 types. */
1383(simplify
1384 (rshift (lshift @0 INTEGER_CST@1) @1)
1385 (if (TYPE_UNSIGNED (type)
1386 && (wi::ltu_p (@1, element_precision (type))))
1387 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
1388
a7f24614
RB
1389(for shiftrotate (lrotate rrotate lshift rshift)
1390 (simplify
1391 (shiftrotate @0 integer_zerop)
1392 (non_lvalue @0))
1393 (simplify
1394 (shiftrotate integer_zerop@0 @1)
1395 @0)
1396 /* Prefer vector1 << scalar to vector1 << vector2
1397 if vector2 is uniform. */
1398 (for vec (VECTOR_CST CONSTRUCTOR)
1399 (simplify
1400 (shiftrotate @0 vec@1)
1401 (with { tree tem = uniform_vector_p (@1); }
1402 (if (tem)
1403 (shiftrotate @0 { tem; }))))))
1404
1405/* Rewrite an LROTATE_EXPR by a constant into an
1406 RROTATE_EXPR by a new constant. */
1407(simplify
1408 (lrotate @0 INTEGER_CST@1)
23f27839 1409 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
a7f24614
RB
1410 build_int_cst (TREE_TYPE (@1),
1411 element_precision (type)), @1); }))
1412
14ea9f92
RB
1413/* Turn (a OP c1) OP c2 into a OP (c1+c2). */
1414(for op (lrotate rrotate rshift lshift)
1415 (simplify
1416 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
1417 (with { unsigned int prec = element_precision (type); }
1418 (if (wi::ge_p (@1, 0, TYPE_SIGN (TREE_TYPE (@1)))
1419 && wi::lt_p (@1, prec, TYPE_SIGN (TREE_TYPE (@1)))
1420 && wi::ge_p (@2, 0, TYPE_SIGN (TREE_TYPE (@2)))
1421 && wi::lt_p (@2, prec, TYPE_SIGN (TREE_TYPE (@2))))
1422 (with { unsigned int low = wi::add (@1, @2).to_uhwi (); }
1423 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
1424 being well defined. */
1425 (if (low >= prec)
1426 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
8fdc6c67 1427 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
50301115 1428 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
8fdc6c67
RB
1429 { build_zero_cst (type); }
1430 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
1431 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
14ea9f92
RB
1432
1433
01ada710
MP
1434/* ((1 << A) & 1) != 0 -> A == 0
1435 ((1 << A) & 1) == 0 -> A != 0 */
1436(for cmp (ne eq)
1437 icmp (eq ne)
1438 (simplify
1439 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
1440 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
cc7b5acf 1441
f2e609c3
MP
1442/* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
1443 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
1444 if CST2 != 0. */
1445(for cmp (ne eq)
1446 (simplify
1447 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
1448 (with { int cand = wi::ctz (@2) - wi::ctz (@0); }
1449 (if (cand < 0
1450 || (!integer_zerop (@2)
1451 && wi::ne_p (wi::lshift (@0, cand), @2)))
8fdc6c67
RB
1452 { constant_boolean_node (cmp == NE_EXPR, type); }
1453 (if (!integer_zerop (@2)
1454 && wi::eq_p (wi::lshift (@0, cand), @2))
1455 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
f2e609c3 1456
1ffbaa3f
RB
1457/* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
1458 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
1459 if the new mask might be further optimized. */
1460(for shift (lshift rshift)
1461 (simplify
44fc0a51
RB
1462 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
1463 INTEGER_CST@2)
1ffbaa3f
RB
1464 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
1465 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
1466 && tree_fits_uhwi_p (@1)
1467 && tree_to_uhwi (@1) > 0
1468 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
1469 (with
1470 {
1471 unsigned int shiftc = tree_to_uhwi (@1);
1472 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
1473 unsigned HOST_WIDE_INT newmask, zerobits = 0;
1474 tree shift_type = TREE_TYPE (@3);
1475 unsigned int prec;
1476
1477 if (shift == LSHIFT_EXPR)
fecfbfa4 1478 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
1ffbaa3f
RB
1479 else if (shift == RSHIFT_EXPR
1480 && (TYPE_PRECISION (shift_type)
1481 == GET_MODE_PRECISION (TYPE_MODE (shift_type))))
1482 {
1483 prec = TYPE_PRECISION (TREE_TYPE (@3));
1484 tree arg00 = @0;
1485 /* See if more bits can be proven as zero because of
1486 zero extension. */
1487 if (@3 != @0
1488 && TYPE_UNSIGNED (TREE_TYPE (@0)))
1489 {
1490 tree inner_type = TREE_TYPE (@0);
1491 if ((TYPE_PRECISION (inner_type)
1492 == GET_MODE_PRECISION (TYPE_MODE (inner_type)))
1493 && TYPE_PRECISION (inner_type) < prec)
1494 {
1495 prec = TYPE_PRECISION (inner_type);
1496 /* See if we can shorten the right shift. */
1497 if (shiftc < prec)
1498 shift_type = inner_type;
1499 /* Otherwise X >> C1 is all zeros, so we'll optimize
1500 it into (X, 0) later on by making sure zerobits
1501 is all ones. */
1502 }
1503 }
dd4786fe 1504 zerobits = HOST_WIDE_INT_M1U;
1ffbaa3f
RB
1505 if (shiftc < prec)
1506 {
1507 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
1508 zerobits <<= prec - shiftc;
1509 }
1510 /* For arithmetic shift if sign bit could be set, zerobits
1511 can contain actually sign bits, so no transformation is
1512 possible, unless MASK masks them all away. In that
1513 case the shift needs to be converted into logical shift. */
1514 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
1515 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
1516 {
1517 if ((mask & zerobits) == 0)
1518 shift_type = unsigned_type_for (TREE_TYPE (@3));
1519 else
1520 zerobits = 0;
1521 }
1522 }
1523 }
1524 /* ((X << 16) & 0xff00) is (X, 0). */
1525 (if ((mask & zerobits) == mask)
8fdc6c67
RB
1526 { build_int_cst (type, 0); }
1527 (with { newmask = mask | zerobits; }
1528 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
1529 (with
1530 {
1531 /* Only do the transformation if NEWMASK is some integer
1532 mode's mask. */
1533 for (prec = BITS_PER_UNIT;
1534 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
fecfbfa4 1535 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
8fdc6c67
RB
1536 break;
1537 }
1538 (if (prec < HOST_BITS_PER_WIDE_INT
dd4786fe 1539 || newmask == HOST_WIDE_INT_M1U)
8fdc6c67
RB
1540 (with
1541 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
1542 (if (!tree_int_cst_equal (newmaskt, @2))
1543 (if (shift_type != TREE_TYPE (@3))
1544 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
1545 (bit_and @4 { newmaskt; })))))))))))))
1ffbaa3f 1546
84ff66b8
AV
1547/* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
1548 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
98e30e51 1549(for shift (lshift rshift)
84ff66b8
AV
1550 (for bit_op (bit_and bit_xor bit_ior)
1551 (simplify
1552 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
1553 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1554 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
1555 (bit_op (shift (convert @0) @1) { mask; }))))))
98e30e51 1556
ad1d92ab
MM
1557/* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
1558(simplify
1559 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
1560 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
ece46666
MG
1561 && (element_precision (TREE_TYPE (@0))
1562 <= element_precision (TREE_TYPE (@1))
1563 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
ad1d92ab
MM
1564 (with
1565 { tree shift_type = TREE_TYPE (@0); }
1566 (convert (rshift (convert:shift_type @1) @2)))))
1567
1568/* ~(~X >>r Y) -> X >>r Y
1569 ~(~X <<r Y) -> X <<r Y */
1570(for rotate (lrotate rrotate)
1571 (simplify
1572 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
ece46666
MG
1573 (if ((element_precision (TREE_TYPE (@0))
1574 <= element_precision (TREE_TYPE (@1))
1575 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
1576 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
1577 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
ad1d92ab
MM
1578 (with
1579 { tree rotate_type = TREE_TYPE (@0); }
1580 (convert (rotate (convert:rotate_type @1) @2))))))
98e30e51 1581
d4573ffe
RB
1582/* Simplifications of conversions. */
1583
1584/* Basic strip-useless-type-conversions / strip_nops. */
f3582e54 1585(for cvt (convert view_convert float fix_trunc)
d4573ffe
RB
1586 (simplify
1587 (cvt @0)
1588 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
1589 || (GENERIC && type == TREE_TYPE (@0)))
1590 @0)))
1591
1592/* Contract view-conversions. */
1593(simplify
1594 (view_convert (view_convert @0))
1595 (view_convert @0))
1596
1597/* For integral conversions with the same precision or pointer
1598 conversions use a NOP_EXPR instead. */
1599(simplify
1600 (view_convert @0)
1601 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
1602 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1603 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
1604 (convert @0)))
1605
1606/* Strip inner integral conversions that do not change precision or size. */
1607(simplify
1608 (view_convert (convert@0 @1))
1609 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1610 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
1611 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1612 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
1613 (view_convert @1)))
1614
1615/* Re-association barriers around constants and other re-association
1616 barriers can be removed. */
1617(simplify
1618 (paren CONSTANT_CLASS_P@0)
1619 @0)
1620(simplify
1621 (paren (paren@1 @0))
1622 @1)
1e51d0a2
RB
1623
1624/* Handle cases of two conversions in a row. */
1625(for ocvt (convert float fix_trunc)
1626 (for icvt (convert float)
1627 (simplify
1628 (ocvt (icvt@1 @0))
1629 (with
1630 {
1631 tree inside_type = TREE_TYPE (@0);
1632 tree inter_type = TREE_TYPE (@1);
1633 int inside_int = INTEGRAL_TYPE_P (inside_type);
1634 int inside_ptr = POINTER_TYPE_P (inside_type);
1635 int inside_float = FLOAT_TYPE_P (inside_type);
09240451 1636 int inside_vec = VECTOR_TYPE_P (inside_type);
1e51d0a2
RB
1637 unsigned int inside_prec = TYPE_PRECISION (inside_type);
1638 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
1639 int inter_int = INTEGRAL_TYPE_P (inter_type);
1640 int inter_ptr = POINTER_TYPE_P (inter_type);
1641 int inter_float = FLOAT_TYPE_P (inter_type);
09240451 1642 int inter_vec = VECTOR_TYPE_P (inter_type);
1e51d0a2
RB
1643 unsigned int inter_prec = TYPE_PRECISION (inter_type);
1644 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
1645 int final_int = INTEGRAL_TYPE_P (type);
1646 int final_ptr = POINTER_TYPE_P (type);
1647 int final_float = FLOAT_TYPE_P (type);
09240451 1648 int final_vec = VECTOR_TYPE_P (type);
1e51d0a2
RB
1649 unsigned int final_prec = TYPE_PRECISION (type);
1650 int final_unsignedp = TYPE_UNSIGNED (type);
1651 }
64d3a1f0
RB
1652 (switch
1653 /* In addition to the cases of two conversions in a row
1654 handled below, if we are converting something to its own
1655 type via an object of identical or wider precision, neither
1656 conversion is needed. */
1657 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
1658 || (GENERIC
1659 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
1660 && (((inter_int || inter_ptr) && final_int)
1661 || (inter_float && final_float))
1662 && inter_prec >= final_prec)
1663 (ocvt @0))
1664
1665 /* Likewise, if the intermediate and initial types are either both
1666 float or both integer, we don't need the middle conversion if the
1667 former is wider than the latter and doesn't change the signedness
1668 (for integers). Avoid this if the final type is a pointer since
36088299 1669 then we sometimes need the middle conversion. */
64d3a1f0
RB
1670 (if (((inter_int && inside_int) || (inter_float && inside_float))
1671 && (final_int || final_float)
1672 && inter_prec >= inside_prec
36088299 1673 && (inter_float || inter_unsignedp == inside_unsignedp))
64d3a1f0
RB
1674 (ocvt @0))
1675
1676 /* If we have a sign-extension of a zero-extended value, we can
1677 replace that by a single zero-extension. Likewise if the
1678 final conversion does not change precision we can drop the
1679 intermediate conversion. */
1680 (if (inside_int && inter_int && final_int
1681 && ((inside_prec < inter_prec && inter_prec < final_prec
1682 && inside_unsignedp && !inter_unsignedp)
1683 || final_prec == inter_prec))
1684 (ocvt @0))
1685
1686 /* Two conversions in a row are not needed unless:
1e51d0a2
RB
1687 - some conversion is floating-point (overstrict for now), or
1688 - some conversion is a vector (overstrict for now), or
1689 - the intermediate type is narrower than both initial and
1690 final, or
1691 - the intermediate type and innermost type differ in signedness,
1692 and the outermost type is wider than the intermediate, or
1693 - the initial type is a pointer type and the precisions of the
1694 intermediate and final types differ, or
1695 - the final type is a pointer type and the precisions of the
1696 initial and intermediate types differ. */
64d3a1f0
RB
1697 (if (! inside_float && ! inter_float && ! final_float
1698 && ! inside_vec && ! inter_vec && ! final_vec
1699 && (inter_prec >= inside_prec || inter_prec >= final_prec)
1700 && ! (inside_int && inter_int
1701 && inter_unsignedp != inside_unsignedp
1702 && inter_prec < final_prec)
1703 && ((inter_unsignedp && inter_prec > inside_prec)
1704 == (final_unsignedp && final_prec > inter_prec))
1705 && ! (inside_ptr && inter_prec != final_prec)
36088299 1706 && ! (final_ptr && inside_prec != inter_prec))
64d3a1f0
RB
1707 (ocvt @0))
1708
1709 /* A truncation to an unsigned type (a zero-extension) should be
1710 canonicalized as bitwise and of a mask. */
1d510e04
JJ
1711 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
1712 && final_int && inter_int && inside_int
64d3a1f0
RB
1713 && final_prec == inside_prec
1714 && final_prec > inter_prec
1715 && inter_unsignedp)
1716 (convert (bit_and @0 { wide_int_to_tree
1717 (inside_type,
1718 wi::mask (inter_prec, false,
1719 TYPE_PRECISION (inside_type))); })))
1720
1721 /* If we are converting an integer to a floating-point that can
1722 represent it exactly and back to an integer, we can skip the
1723 floating-point conversion. */
1724 (if (GIMPLE /* PR66211 */
1725 && inside_int && inter_float && final_int &&
1726 (unsigned) significand_size (TYPE_MODE (inter_type))
1727 >= inside_prec - !inside_unsignedp)
1728 (convert @0)))))))
ea2042ba
RB
1729
1730/* If we have a narrowing conversion to an integral type that is fed by a
1731 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
1732 masks off bits outside the final type (and nothing else). */
1733(simplify
1734 (convert (bit_and @0 INTEGER_CST@1))
1735 (if (INTEGRAL_TYPE_P (type)
1736 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1737 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
1738 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
1739 TYPE_PRECISION (type)), 0))
1740 (convert @0)))
a25454ea
RB
1741
1742
1743/* (X /[ex] A) * A -> X. */
1744(simplify
1745 (mult (convert? (exact_div @0 @1)) @1)
1746 /* Look through a sign-changing conversion. */
257b01ba 1747 (convert @0))
eaeba53a 1748
a7f24614
RB
1749/* Canonicalization of binary operations. */
1750
1751/* Convert X + -C into X - C. */
1752(simplify
1753 (plus @0 REAL_CST@1)
1754 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
23f27839 1755 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
a7f24614
RB
1756 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
1757 (minus @0 { tem; })))))
1758
6b6aa8d3 1759/* Convert x+x into x*2. */
a7f24614
RB
1760(simplify
1761 (plus @0 @0)
1762 (if (SCALAR_FLOAT_TYPE_P (type))
6b6aa8d3
MG
1763 (mult @0 { build_real (type, dconst2); })
1764 (if (INTEGRAL_TYPE_P (type))
1765 (mult @0 { build_int_cst (type, 2); }))))
a7f24614
RB
1766
1767(simplify
1768 (minus integer_zerop @1)
1769 (negate @1))
1770
1771/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
1772 ARG0 is zero and X + ARG0 reduces to X, since that would mean
1773 (-ARG1 + ARG0) reduces to -ARG1. */
1774(simplify
1775 (minus real_zerop@0 @1)
1776 (if (fold_real_zero_addition_p (type, @0, 0))
1777 (negate @1)))
1778
1779/* Transform x * -1 into -x. */
1780(simplify
1781 (mult @0 integer_minus_onep)
1782 (negate @0))
eaeba53a 1783
96285749
RS
1784/* True if we can easily extract the real and imaginary parts of a complex
1785 number. */
1786(match compositional_complex
1787 (convert? (complex @0 @1)))
1788
eaeba53a
RB
1789/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
1790(simplify
1791 (complex (realpart @0) (imagpart @0))
1792 @0)
1793(simplify
1794 (realpart (complex @0 @1))
1795 @0)
1796(simplify
1797 (imagpart (complex @0 @1))
1798 @1)
83633539 1799
77c028c5
MG
1800/* Sometimes we only care about half of a complex expression. */
1801(simplify
1802 (realpart (convert?:s (conj:s @0)))
1803 (convert (realpart @0)))
1804(simplify
1805 (imagpart (convert?:s (conj:s @0)))
1806 (convert (negate (imagpart @0))))
1807(for part (realpart imagpart)
1808 (for op (plus minus)
1809 (simplify
1810 (part (convert?:s@2 (op:s @0 @1)))
1811 (convert (op (part @0) (part @1))))))
1812(simplify
1813 (realpart (convert?:s (CEXPI:s @0)))
1814 (convert (COS @0)))
1815(simplify
1816 (imagpart (convert?:s (CEXPI:s @0)))
1817 (convert (SIN @0)))
1818
1819/* conj(conj(x)) -> x */
1820(simplify
1821 (conj (convert? (conj @0)))
1822 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
1823 (convert @0)))
1824
1825/* conj({x,y}) -> {x,-y} */
1826(simplify
1827 (conj (convert?:s (complex:s @0 @1)))
1828 (with { tree itype = TREE_TYPE (type); }
1829 (complex (convert:itype @0) (negate (convert:itype @1)))))
83633539
RB
1830
1831/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
1832(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
1833 (simplify
1834 (bswap (bswap @0))
1835 @0)
1836 (simplify
1837 (bswap (bit_not (bswap @0)))
1838 (bit_not @0))
1839 (for bitop (bit_xor bit_ior bit_and)
1840 (simplify
1841 (bswap (bitop:c (bswap @0) @1))
1842 (bitop @0 (bswap @1)))))
96994de0
RB
1843
1844
1845/* Combine COND_EXPRs and VEC_COND_EXPRs. */
1846
1847/* Simplify constant conditions.
1848 Only optimize constant conditions when the selected branch
1849 has the same type as the COND_EXPR. This avoids optimizing
1850 away "c ? x : throw", where the throw has a void type.
1851 Note that we cannot throw away the fold-const.c variant nor
1852 this one as we depend on doing this transform before possibly
1853 A ? B : B -> B triggers and the fold-const.c one can optimize
1854 0 ? A : B to B even if A has side-effects. Something
1855 genmatch cannot handle. */
1856(simplify
1857 (cond INTEGER_CST@0 @1 @2)
8fdc6c67
RB
1858 (if (integer_zerop (@0))
1859 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
1860 @2)
1861 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
1862 @1)))
96994de0
RB
1863(simplify
1864 (vec_cond VECTOR_CST@0 @1 @2)
1865 (if (integer_all_onesp (@0))
8fdc6c67
RB
1866 @1
1867 (if (integer_zerop (@0))
1868 @2)))
96994de0
RB
1869
1870(for cnd (cond vec_cond)
1871 /* A ? B : (A ? X : C) -> A ? B : C. */
1872 (simplify
1873 (cnd @0 (cnd @0 @1 @2) @3)
1874 (cnd @0 @1 @3))
1875 (simplify
1876 (cnd @0 @1 (cnd @0 @2 @3))
1877 (cnd @0 @1 @3))
24a179f8
RB
1878 /* A ? B : (!A ? C : X) -> A ? B : C. */
1879 /* ??? This matches embedded conditions open-coded because genmatch
1880 would generate matching code for conditions in separate stmts only.
1881 The following is still important to merge then and else arm cases
1882 from if-conversion. */
1883 (simplify
1884 (cnd @0 @1 (cnd @2 @3 @4))
1885 (if (COMPARISON_CLASS_P (@0)
1886 && COMPARISON_CLASS_P (@2)
1887 && invert_tree_comparison
1888 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@2)
1889 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@2, 0), 0)
1890 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@2, 1), 0))
1891 (cnd @0 @1 @3)))
1892 (simplify
1893 (cnd @0 (cnd @1 @2 @3) @4)
1894 (if (COMPARISON_CLASS_P (@0)
1895 && COMPARISON_CLASS_P (@1)
1896 && invert_tree_comparison
1897 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@1)
1898 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@1, 0), 0)
1899 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@1, 1), 0))
1900 (cnd @0 @3 @4)))
96994de0
RB
1901
1902 /* A ? B : B -> B. */
1903 (simplify
1904 (cnd @0 @1 @1)
09240451 1905 @1)
96994de0 1906
09240451
MG
1907 /* !A ? B : C -> A ? C : B. */
1908 (simplify
1909 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
1910 (cnd @0 @2 @1)))
f84e7fd6 1911
a3ca1bc5
RB
1912/* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
1913 return all -1 or all 0 results. */
f43d102e
RS
1914/* ??? We could instead convert all instances of the vec_cond to negate,
1915 but that isn't necessarily a win on its own. */
1916(simplify
a3ca1bc5 1917 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
f43d102e 1918 (if (VECTOR_TYPE_P (type)
4d8989d5 1919 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1))
f43d102e 1920 && (TYPE_MODE (TREE_TYPE (type))
4d8989d5 1921 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
a3ca1bc5 1922 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
f43d102e 1923
a3ca1bc5 1924/* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
f43d102e 1925(simplify
a3ca1bc5 1926 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
f43d102e 1927 (if (VECTOR_TYPE_P (type)
4d8989d5 1928 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1))
f43d102e 1929 && (TYPE_MODE (TREE_TYPE (type))
4d8989d5 1930 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
a3ca1bc5 1931 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
f84e7fd6 1932
2ee05f1e 1933
f84e7fd6
RB
1934/* Simplifications of comparisons. */
1935
24f1db9c
RB
1936/* See if we can reduce the magnitude of a constant involved in a
1937 comparison by changing the comparison code. This is a canonicalization
1938 formerly done by maybe_canonicalize_comparison_1. */
1939(for cmp (le gt)
1940 acmp (lt ge)
1941 (simplify
1942 (cmp @0 INTEGER_CST@1)
1943 (if (tree_int_cst_sgn (@1) == -1)
1944 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))))
1945(for cmp (ge lt)
1946 acmp (gt le)
1947 (simplify
1948 (cmp @0 INTEGER_CST@1)
1949 (if (tree_int_cst_sgn (@1) == 1)
1950 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))))
1951
1952
f84e7fd6
RB
1953/* We can simplify a logical negation of a comparison to the
1954 inverted comparison. As we cannot compute an expression
1955 operator using invert_tree_comparison we have to simulate
1956 that with expression code iteration. */
1957(for cmp (tcc_comparison)
1958 icmp (inverted_tcc_comparison)
1959 ncmp (inverted_tcc_comparison_with_nans)
1960 /* Ideally we'd like to combine the following two patterns
1961 and handle some more cases by using
1962 (logical_inverted_value (cmp @0 @1))
1963 here but for that genmatch would need to "inline" that.
1964 For now implement what forward_propagate_comparison did. */
1965 (simplify
1966 (bit_not (cmp @0 @1))
1967 (if (VECTOR_TYPE_P (type)
1968 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
1969 /* Comparison inversion may be impossible for trapping math,
1970 invert_tree_comparison will tell us. But we can't use
1971 a computed operator in the replacement tree thus we have
1972 to play the trick below. */
1973 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 1974 (cmp, HONOR_NANS (@0)); }
f84e7fd6 1975 (if (ic == icmp)
8fdc6c67
RB
1976 (icmp @0 @1)
1977 (if (ic == ncmp)
1978 (ncmp @0 @1))))))
f84e7fd6 1979 (simplify
09240451
MG
1980 (bit_xor (cmp @0 @1) integer_truep)
1981 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 1982 (cmp, HONOR_NANS (@0)); }
09240451 1983 (if (ic == icmp)
8fdc6c67
RB
1984 (icmp @0 @1)
1985 (if (ic == ncmp)
1986 (ncmp @0 @1))))))
e18c1d66 1987
2ee05f1e
RB
1988/* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
1989 ??? The transformation is valid for the other operators if overflow
1990 is undefined for the type, but performing it here badly interacts
1991 with the transformation in fold_cond_expr_with_comparison which
1992 attempts to synthetize ABS_EXPR. */
1993(for cmp (eq ne)
1994 (simplify
d9ba1961
RB
1995 (cmp (minus@2 @0 @1) integer_zerop)
1996 (if (single_use (@2))
1997 (cmp @0 @1))))
2ee05f1e
RB
1998
1999/* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
2000 signed arithmetic case. That form is created by the compiler
2001 often enough for folding it to be of value. One example is in
2002 computing loop trip counts after Operator Strength Reduction. */
07cdc2b8
RB
2003(for cmp (simple_comparison)
2004 scmp (swapped_simple_comparison)
2ee05f1e 2005 (simplify
bc6e9db4 2006 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
2ee05f1e
RB
2007 /* Handle unfolded multiplication by zero. */
2008 (if (integer_zerop (@1))
8fdc6c67
RB
2009 (cmp @1 @2)
2010 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
bc6e9db4
RB
2011 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2012 && single_use (@3))
8fdc6c67
RB
2013 /* If @1 is negative we swap the sense of the comparison. */
2014 (if (tree_int_cst_sgn (@1) < 0)
2015 (scmp @0 @2)
2016 (cmp @0 @2))))))
2ee05f1e
RB
2017
2018/* Simplify comparison of something with itself. For IEEE
2019 floating-point, we can only do some of these simplifications. */
287f8f17 2020(for cmp (eq ge le)
2ee05f1e
RB
2021 (simplify
2022 (cmp @0 @0)
287f8f17 2023 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
b9407883 2024 || ! HONOR_NANS (@0))
287f8f17
RB
2025 { constant_boolean_node (true, type); }
2026 (if (cmp != EQ_EXPR)
2027 (eq @0 @0)))))
2ee05f1e
RB
2028(for cmp (ne gt lt)
2029 (simplify
2030 (cmp @0 @0)
2031 (if (cmp != NE_EXPR
2032 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
b9407883 2033 || ! HONOR_NANS (@0))
2ee05f1e 2034 { constant_boolean_node (false, type); })))
b5d3d787
RB
2035(for cmp (unle unge uneq)
2036 (simplify
2037 (cmp @0 @0)
2038 { constant_boolean_node (true, type); }))
dd53d197
MG
2039(for cmp (unlt ungt)
2040 (simplify
2041 (cmp @0 @0)
2042 (unordered @0 @0)))
b5d3d787
RB
2043(simplify
2044 (ltgt @0 @0)
2045 (if (!flag_trapping_math)
2046 { constant_boolean_node (false, type); }))
2ee05f1e
RB
2047
2048/* Fold ~X op ~Y as Y op X. */
07cdc2b8 2049(for cmp (simple_comparison)
2ee05f1e 2050 (simplify
7fe996ba
RB
2051 (cmp (bit_not@2 @0) (bit_not@3 @1))
2052 (if (single_use (@2) && single_use (@3))
2053 (cmp @1 @0))))
2ee05f1e
RB
2054
2055/* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
07cdc2b8
RB
2056(for cmp (simple_comparison)
2057 scmp (swapped_simple_comparison)
2ee05f1e 2058 (simplify
7fe996ba
RB
2059 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
2060 (if (single_use (@2)
2061 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
2ee05f1e
RB
2062 (scmp @0 (bit_not @1)))))
2063
07cdc2b8
RB
2064(for cmp (simple_comparison)
2065 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
2066 (simplify
2067 (cmp (convert@2 @0) (convert? @1))
2068 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2069 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
2070 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
2071 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
2072 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
2073 (with
2074 {
2075 tree type1 = TREE_TYPE (@1);
2076 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
2077 {
2078 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
2079 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
2080 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
2081 type1 = float_type_node;
2082 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
2083 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
2084 type1 = double_type_node;
2085 }
2086 tree newtype
2087 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
2088 ? TREE_TYPE (@0) : type1);
2089 }
2090 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
2091 (cmp (convert:newtype @0) (convert:newtype @1))))))
2092
2093 (simplify
2094 (cmp @0 REAL_CST@1)
2095 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
64d3a1f0
RB
2096 (switch
2097 /* a CMP (-0) -> a CMP 0 */
2098 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
2099 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
2100 /* x != NaN is always true, other ops are always false. */
2101 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
2102 && ! HONOR_SNANS (@1))
2103 { constant_boolean_node (cmp == NE_EXPR, type); })
2104 /* Fold comparisons against infinity. */
2105 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
2106 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
2107 (with
2108 {
2109 REAL_VALUE_TYPE max;
2110 enum tree_code code = cmp;
2111 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
2112 if (neg)
2113 code = swap_tree_comparison (code);
2114 }
2115 (switch
2116 /* x > +Inf is always false, if with ignore sNANs. */
2117 (if (code == GT_EXPR
2118 && ! HONOR_SNANS (@0))
2119 { constant_boolean_node (false, type); })
2120 (if (code == LE_EXPR)
2121 /* x <= +Inf is always true, if we don't case about NaNs. */
2122 (if (! HONOR_NANS (@0))
2123 { constant_boolean_node (true, type); }
b0eb889b 2124 /* x <= +Inf is the same as x == x, i.e. !isnan(x). */
64d3a1f0
RB
2125 (eq @0 @0)))
2126 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
2127 (if (code == EQ_EXPR || code == GE_EXPR)
2128 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
2129 (if (neg)
2130 (lt @0 { build_real (TREE_TYPE (@0), max); })
2131 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
2132 /* x < +Inf is always equal to x <= DBL_MAX. */
2133 (if (code == LT_EXPR)
2134 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
2135 (if (neg)
2136 (ge @0 { build_real (TREE_TYPE (@0), max); })
2137 (le @0 { build_real (TREE_TYPE (@0), max); }))))
2138 /* x != +Inf is always equal to !(x > DBL_MAX). */
2139 (if (code == NE_EXPR)
2140 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
2141 (if (! HONOR_NANS (@0))
2142 (if (neg)
2143 (ge @0 { build_real (TREE_TYPE (@0), max); })
2144 (le @0 { build_real (TREE_TYPE (@0), max); }))
2145 (if (neg)
2146 (bit_xor (lt @0 { build_real (TREE_TYPE (@0), max); })
2147 { build_one_cst (type); })
2148 (bit_xor (gt @0 { build_real (TREE_TYPE (@0), max); })
2149 { build_one_cst (type); }))))))))))
07cdc2b8
RB
2150
2151 /* If this is a comparison of a real constant with a PLUS_EXPR
2152 or a MINUS_EXPR of a real constant, we can convert it into a
2153 comparison with a revised real constant as long as no overflow
2154 occurs when unsafe_math_optimizations are enabled. */
2155 (if (flag_unsafe_math_optimizations)
2156 (for op (plus minus)
2157 (simplify
2158 (cmp (op @0 REAL_CST@1) REAL_CST@2)
2159 (with
2160 {
2161 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
2162 TREE_TYPE (@1), @2, @1);
2163 }
f980c9a2 2164 (if (tem && !TREE_OVERFLOW (tem))
07cdc2b8
RB
2165 (cmp @0 { tem; }))))))
2166
2167 /* Likewise, we can simplify a comparison of a real constant with
2168 a MINUS_EXPR whose first operand is also a real constant, i.e.
2169 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
2170 floating-point types only if -fassociative-math is set. */
2171 (if (flag_associative_math)
2172 (simplify
0409237b 2173 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
07cdc2b8 2174 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
f980c9a2 2175 (if (tem && !TREE_OVERFLOW (tem))
07cdc2b8
RB
2176 (cmp { tem; } @1)))))
2177
2178 /* Fold comparisons against built-in math functions. */
2179 (if (flag_unsafe_math_optimizations
2180 && ! flag_errno_math)
2181 (for sq (SQRT)
2182 (simplify
2183 (cmp (sq @0) REAL_CST@1)
64d3a1f0
RB
2184 (switch
2185 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2186 (switch
2187 /* sqrt(x) < y is always false, if y is negative. */
2188 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
8fdc6c67 2189 { constant_boolean_node (false, type); })
64d3a1f0
RB
2190 /* sqrt(x) > y is always true, if y is negative and we
2191 don't care about NaNs, i.e. negative values of x. */
2192 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
2193 { constant_boolean_node (true, type); })
2194 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
2195 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
c53233c6
RS
2196 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
2197 (switch
2198 /* sqrt(x) < 0 is always false. */
2199 (if (cmp == LT_EXPR)
2200 { constant_boolean_node (false, type); })
2201 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
2202 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
2203 { constant_boolean_node (true, type); })
2204 /* sqrt(x) <= 0 -> x == 0. */
2205 (if (cmp == LE_EXPR)
2206 (eq @0 @1))
2207 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
2208 == or !=. In the last case:
2209
2210 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
2211
2212 if x is negative or NaN. Due to -funsafe-math-optimizations,
2213 the results for other x follow from natural arithmetic. */
2214 (cmp @0 @1)))
64d3a1f0
RB
2215 (if (cmp == GT_EXPR || cmp == GE_EXPR)
2216 (with
2217 {
2218 REAL_VALUE_TYPE c2;
5c88ea94
RS
2219 real_arithmetic (&c2, MULT_EXPR,
2220 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
64d3a1f0
RB
2221 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
2222 }
2223 (if (REAL_VALUE_ISINF (c2))
2224 /* sqrt(x) > y is x == +Inf, when y is very large. */
2225 (if (HONOR_INFINITIES (@0))
2226 (eq @0 { build_real (TREE_TYPE (@0), c2); })
2227 { constant_boolean_node (false, type); })
2228 /* sqrt(x) > c is the same as x > c*c. */
2229 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
2230 (if (cmp == LT_EXPR || cmp == LE_EXPR)
2231 (with
2232 {
2233 REAL_VALUE_TYPE c2;
5c88ea94
RS
2234 real_arithmetic (&c2, MULT_EXPR,
2235 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
64d3a1f0
RB
2236 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
2237 }
2238 (if (REAL_VALUE_ISINF (c2))
2239 (switch
2240 /* sqrt(x) < y is always true, when y is a very large
2241 value and we don't care about NaNs or Infinities. */
2242 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
2243 { constant_boolean_node (true, type); })
2244 /* sqrt(x) < y is x != +Inf when y is very large and we
2245 don't care about NaNs. */
2246 (if (! HONOR_NANS (@0))
2247 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
2248 /* sqrt(x) < y is x >= 0 when y is very large and we
2249 don't care about Infinities. */
2250 (if (! HONOR_INFINITIES (@0))
2251 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
2252 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
2253 (if (GENERIC)
2254 (truth_andif
2255 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
2256 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
2257 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
2258 (if (! HONOR_NANS (@0))
2259 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
2260 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
2261 (if (GENERIC)
2262 (truth_andif
2263 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
2264 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))))))))))
2ee05f1e 2265
cfdc4f33
MG
2266/* Unordered tests if either argument is a NaN. */
2267(simplify
2268 (bit_ior (unordered @0 @0) (unordered @1 @1))
aea417d7 2269 (if (types_match (@0, @1))
cfdc4f33 2270 (unordered @0 @1)))
257b01ba
MG
2271(simplify
2272 (bit_and (ordered @0 @0) (ordered @1 @1))
2273 (if (types_match (@0, @1))
2274 (ordered @0 @1)))
cfdc4f33
MG
2275(simplify
2276 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
2277 @2)
257b01ba
MG
2278(simplify
2279 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
2280 @2)
e18c1d66 2281
90c6f26c
RB
2282/* Simple range test simplifications. */
2283/* A < B || A >= B -> true. */
5d30c58d
RB
2284(for test1 (lt le le le ne ge)
2285 test2 (ge gt ge ne eq ne)
90c6f26c
RB
2286 (simplify
2287 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
2288 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2289 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
2290 { constant_boolean_node (true, type); })))
2291/* A < B && A >= B -> false. */
2292(for test1 (lt lt lt le ne eq)
2293 test2 (ge gt eq gt eq gt)
2294 (simplify
2295 (bit_and:c (test1 @0 @1) (test2 @0 @1))
2296 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2297 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
2298 { constant_boolean_node (false, type); })))
2299
534bd33b
MG
2300/* -A CMP -B -> B CMP A. */
2301(for cmp (tcc_comparison)
2302 scmp (swapped_tcc_comparison)
2303 (simplify
2304 (cmp (negate @0) (negate @1))
2305 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2306 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2307 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2308 (scmp @0 @1)))
2309 (simplify
2310 (cmp (negate @0) CONSTANT_CLASS_P@1)
2311 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2312 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2313 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
23f27839 2314 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
534bd33b
MG
2315 (if (tem && !TREE_OVERFLOW (tem))
2316 (scmp @0 { tem; }))))))
2317
b0eb889b
MG
2318/* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
2319(for op (eq ne)
2320 (simplify
2321 (op (abs @0) zerop@1)
2322 (op @0 @1)))
2323
79d4f7c6
RB
2324/* From fold_sign_changed_comparison and fold_widened_comparison. */
2325(for cmp (simple_comparison)
2326 (simplify
2327 (cmp (convert@0 @00) (convert?@1 @10))
452ec2a5 2328 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
79d4f7c6
RB
2329 /* Disable this optimization if we're casting a function pointer
2330 type on targets that require function pointer canonicalization. */
2331 && !(targetm.have_canonicalize_funcptr_for_compare ()
2332 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
2fde61e3
RB
2333 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
2334 && single_use (@0))
79d4f7c6
RB
2335 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
2336 && (TREE_CODE (@10) == INTEGER_CST
2337 || (@1 != @10 && types_match (TREE_TYPE (@10), TREE_TYPE (@00))))
2338 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
2339 || cmp == NE_EXPR
2340 || cmp == EQ_EXPR)
2341 && (POINTER_TYPE_P (TREE_TYPE (@00)) == POINTER_TYPE_P (TREE_TYPE (@0))))
2342 /* ??? The special-casing of INTEGER_CST conversion was in the original
2343 code and here to avoid a spurious overflow flag on the resulting
2344 constant which fold_convert produces. */
2345 (if (TREE_CODE (@1) == INTEGER_CST)
2346 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
2347 TREE_OVERFLOW (@1)); })
2348 (cmp @00 (convert @1)))
2349
2350 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
2351 /* If possible, express the comparison in the shorter mode. */
2352 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
2353 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00)))
2354 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
2355 || ((TYPE_PRECISION (TREE_TYPE (@00))
2356 >= TYPE_PRECISION (TREE_TYPE (@10)))
2357 && (TYPE_UNSIGNED (TREE_TYPE (@00))
2358 == TYPE_UNSIGNED (TREE_TYPE (@10))))
2359 || (TREE_CODE (@10) == INTEGER_CST
f6c15759 2360 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
79d4f7c6
RB
2361 && int_fits_type_p (@10, TREE_TYPE (@00)))))
2362 (cmp @00 (convert @10))
2363 (if (TREE_CODE (@10) == INTEGER_CST
f6c15759 2364 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
79d4f7c6
RB
2365 && !int_fits_type_p (@10, TREE_TYPE (@00)))
2366 (with
2367 {
2368 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
2369 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
2370 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
2371 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
2372 }
2373 (if (above || below)
2374 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
2375 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
2376 (if (cmp == LT_EXPR || cmp == LE_EXPR)
2377 { constant_boolean_node (above ? true : false, type); }
2378 (if (cmp == GT_EXPR || cmp == GE_EXPR)
2379 { constant_boolean_node (above ? false : true, type); }))))))))))))
66e1cacf 2380
96a111a3
RB
2381(for cmp (eq ne)
2382 /* A local variable can never be pointed to by
2383 the default SSA name of an incoming parameter.
2384 SSA names are canonicalized to 2nd place. */
2385 (simplify
2386 (cmp addr@0 SSA_NAME@1)
2387 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
2388 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
2389 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
2390 (if (TREE_CODE (base) == VAR_DECL
2391 && auto_var_in_fn_p (base, current_function_decl))
2392 (if (cmp == NE_EXPR)
2393 { constant_boolean_node (true, type); }
2394 { constant_boolean_node (false, type); }))))))
2395
66e1cacf
RB
2396/* Equality compare simplifications from fold_binary */
2397(for cmp (eq ne)
2398
2399 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
2400 Similarly for NE_EXPR. */
2401 (simplify
2402 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
2403 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
2404 && wi::bit_and_not (@1, @2) != 0)
2405 { constant_boolean_node (cmp == NE_EXPR, type); }))
2406
2407 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
2408 (simplify
2409 (cmp (bit_xor @0 @1) integer_zerop)
2410 (cmp @0 @1))
2411
2412 /* (X ^ Y) == Y becomes X == 0.
2413 Likewise (X ^ Y) == X becomes Y == 0. */
2414 (simplify
99e943a2 2415 (cmp:c (bit_xor:c @0 @1) @0)
66e1cacf
RB
2416 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
2417
2418 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
2419 (simplify
2420 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
2421 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
d057c866 2422 (cmp @0 (bit_xor @1 (convert @2)))))
d057c866
RB
2423
2424 (simplify
2425 (cmp (convert? addr@0) integer_zerop)
2426 (if (tree_single_nonzero_warnv_p (@0, NULL))
2427 { constant_boolean_node (cmp == NE_EXPR, type); })))
2428
b0eb889b
MG
2429/* If we have (A & C) == C where C is a power of 2, convert this into
2430 (A & C) != 0. Similarly for NE_EXPR. */
2431(for cmp (eq ne)
2432 icmp (ne eq)
2433 (simplify
2434 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
2435 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
2436
2437/* If we have (A & C) != 0 where C is the sign bit of A, convert
2438 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
2439(for cmp (eq ne)
2440 ncmp (ge lt)
2441 (simplify
2442 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
2443 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2444 && (TYPE_PRECISION (TREE_TYPE (@0))
2445 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
2446 && element_precision (@2) >= element_precision (@0)
2447 && wi::only_sign_bit_p (@1, element_precision (@0)))
2448 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
2449 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
2450
68aba1f6
RB
2451/* When the addresses are not directly of decls compare base and offset.
2452 This implements some remaining parts of fold_comparison address
2453 comparisons but still no complete part of it. Still it is good
2454 enough to make fold_stmt not regress when not dispatching to fold_binary. */
2455(for cmp (simple_comparison)
2456 (simplify
f501d5cd 2457 (cmp (convert1?@2 addr@0) (convert2? addr@1))
68aba1f6
RB
2458 (with
2459 {
2460 HOST_WIDE_INT off0, off1;
2461 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
2462 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
2463 if (base0 && TREE_CODE (base0) == MEM_REF)
2464 {
2465 off0 += mem_ref_offset (base0).to_short_addr ();
2466 base0 = TREE_OPERAND (base0, 0);
2467 }
2468 if (base1 && TREE_CODE (base1) == MEM_REF)
2469 {
2470 off1 += mem_ref_offset (base1).to_short_addr ();
2471 base1 = TREE_OPERAND (base1, 0);
2472 }
2473 }
da571fda
RB
2474 (if (base0 && base1)
2475 (with
2476 {
aad88aed 2477 int equal = 2;
da571fda
RB
2478 if (decl_in_symtab_p (base0)
2479 && decl_in_symtab_p (base1))
2480 equal = symtab_node::get_create (base0)
2481 ->equal_address_to (symtab_node::get_create (base1));
c3bea076
RB
2482 else if ((DECL_P (base0)
2483 || TREE_CODE (base0) == SSA_NAME
2484 || TREE_CODE (base0) == STRING_CST)
2485 && (DECL_P (base1)
2486 || TREE_CODE (base1) == SSA_NAME
2487 || TREE_CODE (base1) == STRING_CST))
aad88aed 2488 equal = (base0 == base1);
da571fda
RB
2489 }
2490 (if (equal == 1
2491 && (cmp == EQ_EXPR || cmp == NE_EXPR
2492 /* If the offsets are equal we can ignore overflow. */
2493 || off0 == off1
2494 || POINTER_TYPE_OVERFLOW_UNDEFINED
c3bea076 2495 /* Or if we compare using pointers to decls or strings. */
da571fda 2496 || (POINTER_TYPE_P (TREE_TYPE (@2))
c3bea076 2497 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
da571fda
RB
2498 (switch
2499 (if (cmp == EQ_EXPR)
2500 { constant_boolean_node (off0 == off1, type); })
2501 (if (cmp == NE_EXPR)
2502 { constant_boolean_node (off0 != off1, type); })
2503 (if (cmp == LT_EXPR)
2504 { constant_boolean_node (off0 < off1, type); })
2505 (if (cmp == LE_EXPR)
2506 { constant_boolean_node (off0 <= off1, type); })
2507 (if (cmp == GE_EXPR)
2508 { constant_boolean_node (off0 >= off1, type); })
2509 (if (cmp == GT_EXPR)
2510 { constant_boolean_node (off0 > off1, type); }))
2511 (if (equal == 0
2512 && DECL_P (base0) && DECL_P (base1)
2513 /* If we compare this as integers require equal offset. */
2514 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
2515 || off0 == off1))
2516 (switch
2517 (if (cmp == EQ_EXPR)
2518 { constant_boolean_node (false, type); })
2519 (if (cmp == NE_EXPR)
2520 { constant_boolean_node (true, type); })))))))))
66e1cacf 2521
98998245
RB
2522/* Simplify pointer equality compares using PTA. */
2523(for neeq (ne eq)
2524 (simplify
2525 (neeq @0 @1)
2526 (if (POINTER_TYPE_P (TREE_TYPE (@0))
2527 && ptrs_compare_unequal (@0, @1))
2528 { neeq == EQ_EXPR ? boolean_false_node : boolean_true_node; })))
2529
8f63caf6 2530/* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
467719fb
PK
2531 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
2532 Disable the transform if either operand is pointer to function.
2533 This broke pr22051-2.c for arm where function pointer
2534 canonicalizaion is not wanted. */
2535
8f63caf6
RB
2536(for cmp (ne eq)
2537 (simplify
2538 (cmp (convert @0) INTEGER_CST@1)
467719fb
PK
2539 (if ((POINTER_TYPE_P (TREE_TYPE (@0)) && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
2540 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2541 || (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && POINTER_TYPE_P (TREE_TYPE (@1))
2542 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
8f63caf6
RB
2543 (cmp @0 (convert @1)))))
2544
21aacde4
RB
2545/* Non-equality compare simplifications from fold_binary */
2546(for cmp (lt gt le ge)
2547 /* Comparisons with the highest or lowest possible integer of
2548 the specified precision will have known values. */
2549 (simplify
2550 (cmp (convert?@2 @0) INTEGER_CST@1)
2551 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2552 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
2553 (with
2554 {
2555 tree arg1_type = TREE_TYPE (@1);
2556 unsigned int prec = TYPE_PRECISION (arg1_type);
2557 wide_int max = wi::max_value (arg1_type);
2558 wide_int signed_max = wi::max_value (prec, SIGNED);
2559 wide_int min = wi::min_value (arg1_type);
2560 }
2561 (switch
2562 (if (wi::eq_p (@1, max))
2563 (switch
2564 (if (cmp == GT_EXPR)
2565 { constant_boolean_node (false, type); })
2566 (if (cmp == GE_EXPR)
2567 (eq @2 @1))
2568 (if (cmp == LE_EXPR)
2569 { constant_boolean_node (true, type); })
2570 (if (cmp == LT_EXPR)
2571 (ne @2 @1))))
21aacde4
RB
2572 (if (wi::eq_p (@1, min))
2573 (switch
2574 (if (cmp == LT_EXPR)
2575 { constant_boolean_node (false, type); })
2576 (if (cmp == LE_EXPR)
2577 (eq @2 @1))
2578 (if (cmp == GE_EXPR)
2579 { constant_boolean_node (true, type); })
2580 (if (cmp == GT_EXPR)
2581 (ne @2 @1))))
9bc22d19
RB
2582 (if (wi::eq_p (@1, max - 1))
2583 (switch
2584 (if (cmp == GT_EXPR)
2585 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))
2586 (if (cmp == LE_EXPR)
2587 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))))
21aacde4
RB
2588 (if (wi::eq_p (@1, min + 1))
2589 (switch
2590 (if (cmp == GE_EXPR)
2591 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))
2592 (if (cmp == LT_EXPR)
2593 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))))
2594 (if (wi::eq_p (@1, signed_max)
2595 && TYPE_UNSIGNED (arg1_type)
2596 /* We will flip the signedness of the comparison operator
2597 associated with the mode of @1, so the sign bit is
2598 specified by this mode. Check that @1 is the signed
2599 max associated with this sign bit. */
2600 && prec == GET_MODE_PRECISION (TYPE_MODE (arg1_type))
2601 /* signed_type does not work on pointer types. */
2602 && INTEGRAL_TYPE_P (arg1_type))
2603 /* The following case also applies to X < signed_max+1
2604 and X >= signed_max+1 because previous transformations. */
2605 (if (cmp == LE_EXPR || cmp == GT_EXPR)
2606 (with { tree st = signed_type_for (arg1_type); }
2607 (if (cmp == LE_EXPR)
2608 (ge (convert:st @0) { build_zero_cst (st); })
2609 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
2610
b5d3d787
RB
2611(for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
2612 /* If the second operand is NaN, the result is constant. */
2613 (simplify
2614 (cmp @0 REAL_CST@1)
2615 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
2616 && (cmp != LTGT_EXPR || ! flag_trapping_math))
50301115 2617 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
b5d3d787 2618 ? false : true, type); })))
21aacde4 2619
55cf3946
RB
2620/* bool_var != 0 becomes bool_var. */
2621(simplify
b5d3d787 2622 (ne @0 integer_zerop)
55cf3946
RB
2623 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
2624 && types_match (type, TREE_TYPE (@0)))
2625 (non_lvalue @0)))
2626/* bool_var == 1 becomes bool_var. */
2627(simplify
b5d3d787 2628 (eq @0 integer_onep)
55cf3946
RB
2629 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
2630 && types_match (type, TREE_TYPE (@0)))
2631 (non_lvalue @0)))
b5d3d787
RB
2632/* Do not handle
2633 bool_var == 0 becomes !bool_var or
2634 bool_var != 1 becomes !bool_var
2635 here because that only is good in assignment context as long
2636 as we require a tcc_comparison in GIMPLE_CONDs where we'd
2637 replace if (x == 0) with tem = ~x; if (tem != 0) which is
2638 clearly less optimal and which we'll transform again in forwprop. */
55cf3946 2639
ca1206be
MG
2640/* When one argument is a constant, overflow detection can be simplified.
2641 Currently restricted to single use so as not to interfere too much with
2642 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
2643 A + CST CMP A -> A CMP' CST' */
2644(for cmp (lt le ge gt)
2645 out (gt gt le le)
2646 (simplify
a8e9f9a3 2647 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
ca1206be
MG
2648 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
2649 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
2650 && wi::ne_p (@1, 0)
2651 && single_use (@2))
2652 (out @0 { wide_int_to_tree (TREE_TYPE (@0), wi::max_value
2653 (TYPE_PRECISION (TREE_TYPE (@0)), UNSIGNED) - @1); }))))
2654
3563f78f
MG
2655/* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
2656 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
2657 expects the long form, so we restrict the transformation for now. */
2658(for cmp (gt le)
2659 (simplify
a8e9f9a3 2660 (cmp:c (minus@2 @0 @1) @0)
3563f78f
MG
2661 (if (single_use (@2)
2662 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2663 && TYPE_UNSIGNED (TREE_TYPE (@0))
2664 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2665 (cmp @1 @0))))
3563f78f
MG
2666
2667/* Testing for overflow is unnecessary if we already know the result. */
3563f78f
MG
2668/* A - B > A */
2669(for cmp (gt le)
2670 out (ne eq)
2671 (simplify
a8e9f9a3 2672 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3563f78f
MG
2673 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
2674 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
2675 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
2676/* A + B < A */
2677(for cmp (lt ge)
2678 out (ne eq)
2679 (simplify
a8e9f9a3 2680 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3563f78f
MG
2681 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
2682 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
2683 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
2684
603aeb87 2685/* For unsigned operands, -1 / B < A checks whether A * B would overflow.
0557293f 2686 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
0557293f
AM
2687(for cmp (lt ge)
2688 out (ne eq)
2689 (simplify
603aeb87 2690 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
0557293f
AM
2691 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
2692 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
2693 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
55cf3946 2694
53f3cd25
RS
2695/* Simplification of math builtins. These rules must all be optimizations
2696 as well as IL simplifications. If there is a possibility that the new
2697 form could be a pessimization, the rule should go in the canonicalization
2698 section that follows this one.
e18c1d66 2699
53f3cd25
RS
2700 Rules can generally go in this section if they satisfy one of
2701 the following:
2702
2703 - the rule describes an identity
2704
2705 - the rule replaces calls with something as simple as addition or
2706 multiplication
2707
2708 - the rule contains unary calls only and simplifies the surrounding
2709 arithmetic. (The idea here is to exclude non-unary calls in which
2710 one operand is constant and in which the call is known to be cheap
2711 when the operand has that value.) */
52c6378a 2712
53f3cd25 2713(if (flag_unsafe_math_optimizations)
52c6378a
N
2714 /* Simplify sqrt(x) * sqrt(x) -> x. */
2715 (simplify
2716 (mult (SQRT@1 @0) @1)
2717 (if (!HONOR_SNANS (type))
2718 @0))
2719
35401640
N
2720 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
2721 (for root (SQRT CBRT)
2722 (simplify
2723 (mult (root:s @0) (root:s @1))
2724 (root (mult @0 @1))))
2725
35401640
N
2726 /* Simplify expN(x) * expN(y) -> expN(x+y). */
2727 (for exps (EXP EXP2 EXP10 POW10)
2728 (simplify
2729 (mult (exps:s @0) (exps:s @1))
2730 (exps (plus @0 @1))))
2731
52c6378a 2732 /* Simplify a/root(b/c) into a*root(c/b). */
35401640
N
2733 (for root (SQRT CBRT)
2734 (simplify
2735 (rdiv @0 (root:s (rdiv:s @1 @2)))
2736 (mult @0 (root (rdiv @2 @1)))))
2737
2738 /* Simplify x/expN(y) into x*expN(-y). */
2739 (for exps (EXP EXP2 EXP10 POW10)
2740 (simplify
2741 (rdiv @0 (exps:s @1))
2742 (mult @0 (exps (negate @1)))))
52c6378a 2743
eee7b6c4
RB
2744 (for logs (LOG LOG2 LOG10 LOG10)
2745 exps (EXP EXP2 EXP10 POW10)
8acda9b2 2746 /* logN(expN(x)) -> x. */
e18c1d66
RB
2747 (simplify
2748 (logs (exps @0))
8acda9b2
RS
2749 @0)
2750 /* expN(logN(x)) -> x. */
2751 (simplify
2752 (exps (logs @0))
2753 @0))
53f3cd25 2754
e18c1d66
RB
2755 /* Optimize logN(func()) for various exponential functions. We
2756 want to determine the value "x" and the power "exponent" in
2757 order to transform logN(x**exponent) into exponent*logN(x). */
eee7b6c4
RB
2758 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
2759 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
e18c1d66
RB
2760 (simplify
2761 (logs (exps @0))
c9e926ce
RS
2762 (if (SCALAR_FLOAT_TYPE_P (type))
2763 (with {
2764 tree x;
2765 switch (exps)
2766 {
2767 CASE_CFN_EXP:
2768 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
2769 x = build_real_truncate (type, dconst_e ());
2770 break;
2771 CASE_CFN_EXP2:
2772 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
2773 x = build_real (type, dconst2);
2774 break;
2775 CASE_CFN_EXP10:
2776 CASE_CFN_POW10:
2777 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
2778 {
2779 REAL_VALUE_TYPE dconst10;
2780 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
2781 x = build_real (type, dconst10);
2782 }
2783 break;
2784 default:
2785 gcc_unreachable ();
2786 }
2787 }
2788 (mult (logs { x; }) @0)))))
53f3cd25 2789
e18c1d66
RB
2790 (for logs (LOG LOG
2791 LOG2 LOG2
2792 LOG10 LOG10)
2793 exps (SQRT CBRT)
2794 (simplify
2795 (logs (exps @0))
c9e926ce
RS
2796 (if (SCALAR_FLOAT_TYPE_P (type))
2797 (with {
2798 tree x;
2799 switch (exps)
2800 {
2801 CASE_CFN_SQRT:
2802 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
2803 x = build_real (type, dconsthalf);
2804 break;
2805 CASE_CFN_CBRT:
2806 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
2807 x = build_real_truncate (type, dconst_third ());
2808 break;
2809 default:
2810 gcc_unreachable ();
2811 }
2812 }
2813 (mult { x; } (logs @0))))))
53f3cd25
RS
2814
2815 /* logN(pow(x,exponent)) -> exponent*logN(x). */
e18c1d66
RB
2816 (for logs (LOG LOG2 LOG10)
2817 pows (POW)
2818 (simplify
2819 (logs (pows @0 @1))
53f3cd25
RS
2820 (mult @1 (logs @0))))
2821
2822 (for sqrts (SQRT)
2823 cbrts (CBRT)
b4838d77 2824 pows (POW)
53f3cd25
RS
2825 exps (EXP EXP2 EXP10 POW10)
2826 /* sqrt(expN(x)) -> expN(x*0.5). */
2827 (simplify
2828 (sqrts (exps @0))
2829 (exps (mult @0 { build_real (type, dconsthalf); })))
2830 /* cbrt(expN(x)) -> expN(x/3). */
2831 (simplify
2832 (cbrts (exps @0))
b4838d77
RS
2833 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
2834 /* pow(expN(x), y) -> expN(x*y). */
2835 (simplify
2836 (pows (exps @0) @1)
2837 (exps (mult @0 @1))))
cfed37a0
RS
2838
2839 /* tan(atan(x)) -> x. */
2840 (for tans (TAN)
2841 atans (ATAN)
2842 (simplify
2843 (tans (atans @0))
2844 @0)))
53f3cd25 2845
abcc43f5
RS
2846/* cabs(x+0i) or cabs(0+xi) -> abs(x). */
2847(simplify
e04d2a35 2848 (CABS (complex:C @0 real_zerop@1))
abcc43f5
RS
2849 (abs @0))
2850
67dbe582
RS
2851/* trunc(trunc(x)) -> trunc(x), etc. */
2852(for fns (TRUNC FLOOR CEIL ROUND NEARBYINT RINT)
2853 (simplify
2854 (fns (fns @0))
2855 (fns @0)))
2856/* f(x) -> x if x is integer valued and f does nothing for such values. */
afeb246c 2857(for fns (TRUNC FLOOR CEIL ROUND NEARBYINT RINT)
67dbe582
RS
2858 (simplify
2859 (fns integer_valued_real_p@0)
2860 @0))
67dbe582 2861
4d7836c4
RS
2862/* hypot(x,0) and hypot(0,x) -> abs(x). */
2863(simplify
c9e926ce 2864 (HYPOT:c @0 real_zerop@1)
4d7836c4
RS
2865 (abs @0))
2866
b4838d77
RS
2867/* pow(1,x) -> 1. */
2868(simplify
2869 (POW real_onep@0 @1)
2870 @0)
2871
461e4145
RS
2872(simplify
2873 /* copysign(x,x) -> x. */
2874 (COPYSIGN @0 @0)
2875 @0)
2876
2877(simplify
2878 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
2879 (COPYSIGN @0 tree_expr_nonnegative_p@1)
2880 (abs @0))
2881
86c0733f
RS
2882(for scale (LDEXP SCALBN SCALBLN)
2883 /* ldexp(0, x) -> 0. */
2884 (simplify
2885 (scale real_zerop@0 @1)
2886 @0)
2887 /* ldexp(x, 0) -> x. */
2888 (simplify
2889 (scale @0 integer_zerop@1)
2890 @0)
2891 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
2892 (simplify
2893 (scale REAL_CST@0 @1)
2894 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
2895 @0)))
2896
53f3cd25
RS
2897/* Canonicalization of sequences of math builtins. These rules represent
2898 IL simplifications but are not necessarily optimizations.
2899
2900 The sincos pass is responsible for picking "optimal" implementations
2901 of math builtins, which may be more complicated and can sometimes go
2902 the other way, e.g. converting pow into a sequence of sqrts.
2903 We only want to do these canonicalizations before the pass has run. */
2904
2905(if (flag_unsafe_math_optimizations && canonicalize_math_p ())
2906 /* Simplify tan(x) * cos(x) -> sin(x). */
2907 (simplify
2908 (mult:c (TAN:s @0) (COS:s @0))
2909 (SIN @0))
2910
2911 /* Simplify x * pow(x,c) -> pow(x,c+1). */
2912 (simplify
de3fbea3 2913 (mult:c @0 (POW:s @0 REAL_CST@1))
53f3cd25
RS
2914 (if (!TREE_OVERFLOW (@1))
2915 (POW @0 (plus @1 { build_one_cst (type); }))))
2916
2917 /* Simplify sin(x) / cos(x) -> tan(x). */
2918 (simplify
2919 (rdiv (SIN:s @0) (COS:s @0))
2920 (TAN @0))
2921
2922 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
2923 (simplify
2924 (rdiv (COS:s @0) (SIN:s @0))
2925 (rdiv { build_one_cst (type); } (TAN @0)))
2926
2927 /* Simplify sin(x) / tan(x) -> cos(x). */
2928 (simplify
2929 (rdiv (SIN:s @0) (TAN:s @0))
2930 (if (! HONOR_NANS (@0)
2931 && ! HONOR_INFINITIES (@0))
c9e926ce 2932 (COS @0)))
53f3cd25
RS
2933
2934 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
2935 (simplify
2936 (rdiv (TAN:s @0) (SIN:s @0))
2937 (if (! HONOR_NANS (@0)
2938 && ! HONOR_INFINITIES (@0))
2939 (rdiv { build_one_cst (type); } (COS @0))))
2940
2941 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
2942 (simplify
2943 (mult (POW:s @0 @1) (POW:s @0 @2))
2944 (POW @0 (plus @1 @2)))
2945
2946 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
2947 (simplify
2948 (mult (POW:s @0 @1) (POW:s @2 @1))
2949 (POW (mult @0 @2) @1))
2950
de3fbea3
RB
2951 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
2952 (simplify
2953 (mult (POWI:s @0 @1) (POWI:s @2 @1))
2954 (POWI (mult @0 @2) @1))
2955
53f3cd25
RS
2956 /* Simplify pow(x,c) / x -> pow(x,c-1). */
2957 (simplify
2958 (rdiv (POW:s @0 REAL_CST@1) @0)
2959 (if (!TREE_OVERFLOW (@1))
2960 (POW @0 (minus @1 { build_one_cst (type); }))))
2961
2962 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
2963 (simplify
2964 (rdiv @0 (POW:s @1 @2))
2965 (mult @0 (POW @1 (negate @2))))
2966
2967 (for sqrts (SQRT)
2968 cbrts (CBRT)
2969 pows (POW)
2970 /* sqrt(sqrt(x)) -> pow(x,1/4). */
2971 (simplify
2972 (sqrts (sqrts @0))
2973 (pows @0 { build_real (type, dconst_quarter ()); }))
2974 /* sqrt(cbrt(x)) -> pow(x,1/6). */
2975 (simplify
2976 (sqrts (cbrts @0))
2977 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
2978 /* cbrt(sqrt(x)) -> pow(x,1/6). */
2979 (simplify
2980 (cbrts (sqrts @0))
2981 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
2982 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
2983 (simplify
2984 (cbrts (cbrts tree_expr_nonnegative_p@0))
2985 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
2986 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
2987 (simplify
2988 (sqrts (pows @0 @1))
2989 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
2990 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
2991 (simplify
2992 (cbrts (pows tree_expr_nonnegative_p@0 @1))
b4838d77
RS
2993 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
2994 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
2995 (simplify
2996 (pows (sqrts @0) @1)
2997 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
2998 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
2999 (simplify
3000 (pows (cbrts tree_expr_nonnegative_p@0) @1)
3001 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
3002 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
3003 (simplify
3004 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
3005 (pows @0 (mult @1 @2))))
abcc43f5
RS
3006
3007 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
3008 (simplify
3009 (CABS (complex @0 @0))
96285749
RS
3010 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
3011
4d7836c4
RS
3012 /* hypot(x,x) -> fabs(x)*sqrt(2). */
3013 (simplify
3014 (HYPOT @0 @0)
3015 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
3016
96285749
RS
3017 /* cexp(x+yi) -> exp(x)*cexpi(y). */
3018 (for cexps (CEXP)
3019 exps (EXP)
3020 cexpis (CEXPI)
3021 (simplify
3022 (cexps compositional_complex@0)
3023 (if (targetm.libc_has_function (function_c99_math_complex))
3024 (complex
3025 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
3026 (mult @1 (imagpart @2)))))))
e18c1d66 3027
67dbe582
RS
3028(if (canonicalize_math_p ())
3029 /* floor(x) -> trunc(x) if x is nonnegative. */
3030 (for floors (FLOOR)
3031 truncs (TRUNC)
3032 (simplify
3033 (floors tree_expr_nonnegative_p@0)
3034 (truncs @0))))
3035
3036(match double_value_p
3037 @0
3038 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
3039(for froms (BUILT_IN_TRUNCL
3040 BUILT_IN_FLOORL
3041 BUILT_IN_CEILL
3042 BUILT_IN_ROUNDL
3043 BUILT_IN_NEARBYINTL
3044 BUILT_IN_RINTL)
3045 tos (BUILT_IN_TRUNC
3046 BUILT_IN_FLOOR
3047 BUILT_IN_CEIL
3048 BUILT_IN_ROUND
3049 BUILT_IN_NEARBYINT
3050 BUILT_IN_RINT)
3051 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
3052 (if (optimize && canonicalize_math_p ())
3053 (simplify
3054 (froms (convert double_value_p@0))
3055 (convert (tos @0)))))
3056
3057(match float_value_p
3058 @0
3059 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
3060(for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
3061 BUILT_IN_FLOORL BUILT_IN_FLOOR
3062 BUILT_IN_CEILL BUILT_IN_CEIL
3063 BUILT_IN_ROUNDL BUILT_IN_ROUND
3064 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
3065 BUILT_IN_RINTL BUILT_IN_RINT)
3066 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
3067 BUILT_IN_FLOORF BUILT_IN_FLOORF
3068 BUILT_IN_CEILF BUILT_IN_CEILF
3069 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
3070 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
3071 BUILT_IN_RINTF BUILT_IN_RINTF)
3072 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
3073 if x is a float. */
5dac7dbd
JDA
3074 (if (optimize && canonicalize_math_p ()
3075 && targetm.libc_has_function (function_c99_misc))
67dbe582
RS
3076 (simplify
3077 (froms (convert float_value_p@0))
3078 (convert (tos @0)))))
3079
543a9bcd
RS
3080(for froms (XFLOORL XCEILL XROUNDL XRINTL)
3081 tos (XFLOOR XCEIL XROUND XRINT)
3082 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
3083 (if (optimize && canonicalize_math_p ())
3084 (simplify
3085 (froms (convert double_value_p@0))
3086 (tos @0))))
3087
3088(for froms (XFLOORL XCEILL XROUNDL XRINTL
3089 XFLOOR XCEIL XROUND XRINT)
3090 tos (XFLOORF XCEILF XROUNDF XRINTF)
3091 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
3092 if x is a float. */
3093 (if (optimize && canonicalize_math_p ())
3094 (simplify
3095 (froms (convert float_value_p@0))
3096 (tos @0))))
3097
3098(if (canonicalize_math_p ())
3099 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
3100 (for floors (IFLOOR LFLOOR LLFLOOR)
3101 (simplify
3102 (floors tree_expr_nonnegative_p@0)
3103 (fix_trunc @0))))
3104
3105(if (canonicalize_math_p ())
3106 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
3107 (for fns (IFLOOR LFLOOR LLFLOOR
3108 ICEIL LCEIL LLCEIL
3109 IROUND LROUND LLROUND)
3110 (simplify
3111 (fns integer_valued_real_p@0)
3112 (fix_trunc @0)))
3113 (if (!flag_errno_math)
3114 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
3115 (for rints (IRINT LRINT LLRINT)
3116 (simplify
3117 (rints integer_valued_real_p@0)
3118 (fix_trunc @0)))))
3119
3120(if (canonicalize_math_p ())
3121 (for ifn (IFLOOR ICEIL IROUND IRINT)
3122 lfn (LFLOOR LCEIL LROUND LRINT)
3123 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
3124 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
3125 sizeof (int) == sizeof (long). */
3126 (if (TYPE_PRECISION (integer_type_node)
3127 == TYPE_PRECISION (long_integer_type_node))
3128 (simplify
3129 (ifn @0)
3130 (lfn:long_integer_type_node @0)))
3131 /* Canonicalize llround (x) to lround (x) on LP64 targets where
3132 sizeof (long long) == sizeof (long). */
3133 (if (TYPE_PRECISION (long_long_integer_type_node)
3134 == TYPE_PRECISION (long_integer_type_node))
3135 (simplify
3136 (llfn @0)
3137 (lfn:long_integer_type_node @0)))))
3138
92c52eab
RS
3139/* cproj(x) -> x if we're ignoring infinities. */
3140(simplify
3141 (CPROJ @0)
3142 (if (!HONOR_INFINITIES (type))
3143 @0))
3144
4534c203
RB
3145/* If the real part is inf and the imag part is known to be
3146 nonnegative, return (inf + 0i). */
3147(simplify
3148 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
3149 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
92c52eab
RS
3150 { build_complex_inf (type, false); }))
3151
4534c203
RB
3152/* If the imag part is inf, return (inf+I*copysign(0,imag)). */
3153(simplify
3154 (CPROJ (complex @0 REAL_CST@1))
3155 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
92c52eab 3156 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4534c203 3157
b4838d77
RS
3158(for pows (POW)
3159 sqrts (SQRT)
3160 cbrts (CBRT)
3161 (simplify
3162 (pows @0 REAL_CST@1)
3163 (with {
3164 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
3165 REAL_VALUE_TYPE tmp;
3166 }
3167 (switch
3168 /* pow(x,0) -> 1. */
3169 (if (real_equal (value, &dconst0))
3170 { build_real (type, dconst1); })
3171 /* pow(x,1) -> x. */
3172 (if (real_equal (value, &dconst1))
3173 @0)
3174 /* pow(x,-1) -> 1/x. */
3175 (if (real_equal (value, &dconstm1))
3176 (rdiv { build_real (type, dconst1); } @0))
3177 /* pow(x,0.5) -> sqrt(x). */
3178 (if (flag_unsafe_math_optimizations
3179 && canonicalize_math_p ()
3180 && real_equal (value, &dconsthalf))
3181 (sqrts @0))
3182 /* pow(x,1/3) -> cbrt(x). */
3183 (if (flag_unsafe_math_optimizations
3184 && canonicalize_math_p ()
3185 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
3186 real_equal (value, &tmp)))
3187 (cbrts @0))))))
4534c203 3188
5ddc84ca
RS
3189/* powi(1,x) -> 1. */
3190(simplify
3191 (POWI real_onep@0 @1)
3192 @0)
3193
3194(simplify
3195 (POWI @0 INTEGER_CST@1)
3196 (switch
3197 /* powi(x,0) -> 1. */
3198 (if (wi::eq_p (@1, 0))
3199 { build_real (type, dconst1); })
3200 /* powi(x,1) -> x. */
3201 (if (wi::eq_p (@1, 1))
3202 @0)
3203 /* powi(x,-1) -> 1/x. */
3204 (if (wi::eq_p (@1, -1))
3205 (rdiv { build_real (type, dconst1); } @0))))
3206
be144838
JL
3207/* Narrowing of arithmetic and logical operations.
3208
3209 These are conceptually similar to the transformations performed for
3210 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
3211 term we want to move all that code out of the front-ends into here. */
3212
3213/* If we have a narrowing conversion of an arithmetic operation where
3214 both operands are widening conversions from the same type as the outer
3215 narrowing conversion. Then convert the innermost operands to a suitable
9c582551 3216 unsigned type (to avoid introducing undefined behavior), perform the
be144838
JL
3217 operation and convert the result to the desired type. */
3218(for op (plus minus)
3219 (simplify
44fc0a51 3220 (convert (op:s (convert@2 @0) (convert@3 @1)))
be144838
JL
3221 (if (INTEGRAL_TYPE_P (type)
3222 /* We check for type compatibility between @0 and @1 below,
3223 so there's no need to check that @1/@3 are integral types. */
3224 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3225 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3226 /* The precision of the type of each operand must match the
3227 precision of the mode of each operand, similarly for the
3228 result. */
3229 && (TYPE_PRECISION (TREE_TYPE (@0))
3230 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
3231 && (TYPE_PRECISION (TREE_TYPE (@1))
3232 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
3233 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
3234 /* The inner conversion must be a widening conversion. */
3235 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
aea417d7 3236 && types_match (@0, @1)
44fc0a51 3237 && types_match (@0, type))
be144838 3238 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
8fdc6c67
RB
3239 (convert (op @0 @1))
3240 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
3241 (convert (op (convert:utype @0) (convert:utype @1))))))))
48451e8f
JL
3242
3243/* This is another case of narrowing, specifically when there's an outer
3244 BIT_AND_EXPR which masks off bits outside the type of the innermost
3245 operands. Like the previous case we have to convert the operands
9c582551 3246 to unsigned types to avoid introducing undefined behavior for the
48451e8f
JL
3247 arithmetic operation. */
3248(for op (minus plus)
8fdc6c67
RB
3249 (simplify
3250 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
3251 (if (INTEGRAL_TYPE_P (type)
3252 /* We check for type compatibility between @0 and @1 below,
3253 so there's no need to check that @1/@3 are integral types. */
3254 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3255 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3256 /* The precision of the type of each operand must match the
3257 precision of the mode of each operand, similarly for the
3258 result. */
3259 && (TYPE_PRECISION (TREE_TYPE (@0))
3260 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
3261 && (TYPE_PRECISION (TREE_TYPE (@1))
3262 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
3263 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
3264 /* The inner conversion must be a widening conversion. */
3265 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
3266 && types_match (@0, @1)
3267 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
3268 <= TYPE_PRECISION (TREE_TYPE (@0)))
0a8c1e23
JL
3269 && (wi::bit_and (@4, wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
3270 true, TYPE_PRECISION (type))) == 0))
8fdc6c67
RB
3271 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3272 (with { tree ntype = TREE_TYPE (@0); }
3273 (convert (bit_and (op @0 @1) (convert:ntype @4))))
3274 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
3275 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
3276 (convert:utype @4))))))))
4f7a5692
MC
3277
3278/* Transform (@0 < @1 and @0 < @2) to use min,
3279 (@0 > @1 and @0 > @2) to use max */
3280(for op (lt le gt ge)
3281 ext (min min max max)
3282 (simplify
4618c453
RB
3283 (bit_and (op:cs @0 @1) (op:cs @0 @2))
3284 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3285 && TREE_CODE (@0) != INTEGER_CST)
4f7a5692
MC
3286 (op @0 (ext @1 @2)))))
3287
7317ef4a
RS
3288(simplify
3289 /* signbit(x) -> 0 if x is nonnegative. */
3290 (SIGNBIT tree_expr_nonnegative_p@0)
3291 { integer_zero_node; })
3292
3293(simplify
3294 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
3295 (SIGNBIT @0)
3296 (if (!HONOR_SIGNED_ZEROS (@0))
3297 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
a8b85ce9
MG
3298
3299/* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
3300(for cmp (eq ne)
3301 (for op (plus minus)
3302 rop (minus plus)
3303 (simplify
3304 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
3305 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
3306 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
3307 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
3308 && !TYPE_SATURATING (TREE_TYPE (@0)))
3309 (with { tree res = int_const_binop (rop, @2, @1); }
3310 (if (TREE_OVERFLOW (res))
3311 { constant_boolean_node (cmp == NE_EXPR, type); }
3312 (if (single_use (@3))
3313 (cmp @0 { res; }))))))))
3314(for cmp (lt le gt ge)
3315 (for op (plus minus)
3316 rop (minus plus)
3317 (simplify
3318 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
3319 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
3320 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3321 (with { tree res = int_const_binop (rop, @2, @1); }
3322 (if (TREE_OVERFLOW (res))
3323 {
3324 fold_overflow_warning (("assuming signed overflow does not occur "
3325 "when simplifying conditional to constant"),
3326 WARN_STRICT_OVERFLOW_CONDITIONAL);
3327 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
3328 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
3329 bool ovf_high = wi::lt_p (@1, 0, TYPE_SIGN (TREE_TYPE (@1)))
3330 != (op == MINUS_EXPR);
3331 constant_boolean_node (less == ovf_high, type);
3332 }
3333 (if (single_use (@3))
3334 (with
3335 {
3336 fold_overflow_warning (("assuming signed overflow does not occur "
3337 "when changing X +- C1 cmp C2 to "
3338 "X cmp C2 -+ C1"),
3339 WARN_STRICT_OVERFLOW_COMPARISON);
3340 }
3341 (cmp @0 { res; })))))))))
d3e40b76
RB
3342
3343/* Canonicalizations of BIT_FIELD_REFs. */
3344
3345(simplify
3346 (BIT_FIELD_REF @0 @1 @2)
3347 (switch
3348 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
3349 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
3350 (switch
3351 (if (integer_zerop (@2))
3352 (view_convert (realpart @0)))
3353 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
3354 (view_convert (imagpart @0)))))
3355 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3356 && INTEGRAL_TYPE_P (type)
171f6f05
RB
3357 /* On GIMPLE this should only apply to register arguments. */
3358 && (! GIMPLE || is_gimple_reg (@0))
d3e40b76
RB
3359 /* A bit-field-ref that referenced the full argument can be stripped. */
3360 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
3361 && integer_zerop (@2))
3362 /* Low-parts can be reduced to integral conversions.
3363 ??? The following doesn't work for PDP endian. */
3364 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
3365 /* Don't even think about BITS_BIG_ENDIAN. */
3366 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
3367 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
3368 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
3369 ? (TYPE_PRECISION (TREE_TYPE (@0))
3370 - TYPE_PRECISION (type))
3371 : 0)) == 0)))
3372 (convert @0))))
3373
3374/* Simplify vector extracts. */
3375
3376(simplify
3377 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
3378 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
3379 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
3380 || (VECTOR_TYPE_P (type)
3381 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
3382 (with
3383 {
3384 tree ctor = (TREE_CODE (@0) == SSA_NAME
3385 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
3386 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
3387 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
3388 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
3389 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
3390 }
3391 (if (n != 0
3392 && (idx % width) == 0
3393 && (n % width) == 0
3394 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor)))
3395 (with
3396 {
3397 idx = idx / width;
3398 n = n / width;
3399 /* Constructor elements can be subvectors. */
3400 unsigned HOST_WIDE_INT k = 1;
3401 if (CONSTRUCTOR_NELTS (ctor) != 0)
3402 {
3403 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
3404 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
3405 k = TYPE_VECTOR_SUBPARTS (cons_elem);
3406 }
3407 }
3408 (switch
3409 /* We keep an exact subset of the constructor elements. */
3410 (if ((idx % k) == 0 && (n % k) == 0)
3411 (if (CONSTRUCTOR_NELTS (ctor) == 0)
3412 { build_constructor (type, NULL); }
3413 (with
3414 {
3415 idx /= k;
3416 n /= k;
3417 }
3418 (if (n == 1)
3419 (if (idx < CONSTRUCTOR_NELTS (ctor))
3420 { CONSTRUCTOR_ELT (ctor, idx)->value; }
3421 { build_zero_cst (type); })
3422 {
3423 vec<constructor_elt, va_gc> *vals;
3424 vec_alloc (vals, n);
3425 for (unsigned i = 0;
3426 i < n && idx + i < CONSTRUCTOR_NELTS (ctor); ++i)
3427 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
3428 CONSTRUCTOR_ELT (ctor, idx + i)->value);
3429 build_constructor (type, vals);
3430 }))))
3431 /* The bitfield references a single constructor element. */
3432 (if (idx + n <= (idx / k + 1) * k)
3433 (switch
3434 (if (CONSTRUCTOR_NELTS (ctor) <= idx / k)
3435 { build_zero_cst (type); })
3436 (if (n == k)
3437 { CONSTRUCTOR_ELT (ctor, idx / k)->value; })
3438 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / k)->value; }
3439 @1 { bitsize_int ((idx % k) * width); })))))))))