]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/match.pd
PR80131: Simplification of 1U << (31 - x)
[thirdparty/gcc.git] / gcc / match.pd
CommitLineData
3d2cf79f
RB
1/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
cbe34bb5 5 Copyright (C) 2014-2017 Free Software Foundation, Inc.
3d2cf79f
RB
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
13Software Foundation; either version 3, or (at your option) any later
14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING3. If not see
23<http://www.gnu.org/licenses/>. */
24
25
26/* Generic tree predicates we inherit. */
27(define_predicates
cc7b5acf 28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
53a19317 29 integer_each_onep integer_truep integer_nonzerop
cc7b5acf 30 real_zerop real_onep real_minus_onep
b0eb889b 31 zerop
f3582e54 32 CONSTANT_CLASS_P
887ab609 33 tree_expr_nonnegative_p
e36c1cfe 34 tree_expr_nonzero_p
67dbe582 35 integer_valued_real_p
53a19317
RB
36 integer_pow2p
37 HONOR_NANS)
e0ee10ed 38
f84e7fd6
RB
39/* Operator lists. */
40(define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42(define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44(define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
534bd33b
MG
46(define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
07cdc2b8
RB
48(define_operator_list simple_comparison lt le eq ne ge gt)
49(define_operator_list swapped_simple_comparison gt ge eq ne le lt)
50
b1dc4a20 51#include "cfn-operators.pd"
257aecb4 52
543a9bcd
RS
53/* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
56
57 Also define operand lists:
58
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62#define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
543a9bcd
RS
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
64 BUILT_IN_L##FN##F \
65 BUILT_IN_LL##FN##F) \
66 (define_operator_list X##FN BUILT_IN_I##FN \
67 BUILT_IN_L##FN \
68 BUILT_IN_LL##FN) \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
70 BUILT_IN_L##FN##L \
71 BUILT_IN_LL##FN##L)
72
543a9bcd
RS
73DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
ed73f46f
MG
77
78/* As opposed to convert?, this still creates a single pattern, so
79 it is not a suitable replacement for convert? in all cases. */
80(match (nop_convert @0)
81 (convert @0)
82 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
83(match (nop_convert @0)
84 (view_convert @0)
85 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
86 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
87 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
88/* This one has to be last, or it shadows the others. */
89(match (nop_convert @0)
90 @0)
f84e7fd6 91
e0ee10ed 92/* Simplifications of operations with one constant operand and
36a60e48 93 simplifications to constants or single values. */
e0ee10ed
RB
94
95(for op (plus pointer_plus minus bit_ior bit_xor)
96 (simplify
97 (op @0 integer_zerop)
98 (non_lvalue @0)))
99
a499aac5
RB
100/* 0 +p index -> (type)index */
101(simplify
102 (pointer_plus integer_zerop @1)
103 (non_lvalue (convert @1)))
104
a7f24614
RB
105/* See if ARG1 is zero and X + ARG1 reduces to X.
106 Likewise if the operands are reversed. */
107(simplify
108 (plus:c @0 real_zerop@1)
109 (if (fold_real_zero_addition_p (type, @1, 0))
110 (non_lvalue @0)))
111
112/* See if ARG1 is zero and X - ARG1 reduces to X. */
113(simplify
114 (minus @0 real_zerop@1)
115 (if (fold_real_zero_addition_p (type, @1, 1))
116 (non_lvalue @0)))
117
e0ee10ed
RB
118/* Simplify x - x.
119 This is unsafe for certain floats even in non-IEEE formats.
120 In IEEE, it is unsafe because it does wrong for NaNs.
121 Also note that operand_equal_p is always false if an operand
122 is volatile. */
123(simplify
a7f24614 124 (minus @0 @0)
1b457aa4 125 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
a7f24614 126 { build_zero_cst (type); }))
e0ee10ed
RB
127
128(simplify
a7f24614
RB
129 (mult @0 integer_zerop@1)
130 @1)
131
132/* Maybe fold x * 0 to 0. The expressions aren't the same
133 when x is NaN, since x * 0 is also NaN. Nor are they the
134 same in modes with signed zeros, since multiplying a
135 negative value by 0 gives -0, not +0. */
136(simplify
137 (mult @0 real_zerop@1)
8b5ee871 138 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
a7f24614
RB
139 @1))
140
141/* In IEEE floating point, x*1 is not equivalent to x for snans.
142 Likewise for complex arithmetic with signed zeros. */
143(simplify
144 (mult @0 real_onep)
8b5ee871
MG
145 (if (!HONOR_SNANS (type)
146 && (!HONOR_SIGNED_ZEROS (type)
a7f24614
RB
147 || !COMPLEX_FLOAT_TYPE_P (type)))
148 (non_lvalue @0)))
149
150/* Transform x * -1.0 into -x. */
151(simplify
152 (mult @0 real_minus_onep)
8b5ee871
MG
153 (if (!HONOR_SNANS (type)
154 && (!HONOR_SIGNED_ZEROS (type)
a7f24614
RB
155 || !COMPLEX_FLOAT_TYPE_P (type)))
156 (negate @0)))
e0ee10ed 157
8c2805bb
AP
158(for cmp (gt ge lt le)
159 outp (convert convert negate negate)
160 outn (negate negate convert convert)
161 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
162 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
163 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
164 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
165 (simplify
166 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
167 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
168 && types_match (type, TREE_TYPE (@0)))
169 (switch
170 (if (types_match (type, float_type_node))
171 (BUILT_IN_COPYSIGNF @1 (outp @0)))
172 (if (types_match (type, double_type_node))
173 (BUILT_IN_COPYSIGN @1 (outp @0)))
174 (if (types_match (type, long_double_type_node))
175 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
176 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
177 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
178 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
179 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
180 (simplify
181 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
182 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
183 && types_match (type, TREE_TYPE (@0)))
184 (switch
185 (if (types_match (type, float_type_node))
186 (BUILT_IN_COPYSIGNF @1 (outn @0)))
187 (if (types_match (type, double_type_node))
188 (BUILT_IN_COPYSIGN @1 (outn @0)))
189 (if (types_match (type, long_double_type_node))
190 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
191
192/* Transform X * copysign (1.0, X) into abs(X). */
193(simplify
194 (mult:c @0 (COPYSIGN real_onep @0))
195 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
196 (abs @0)))
197
198/* Transform X * copysign (1.0, -X) into -abs(X). */
199(simplify
200 (mult:c @0 (COPYSIGN real_onep (negate @0)))
201 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
202 (negate (abs @0))))
203
204/* Transform copysign (CST, X) into copysign (ABS(CST), X). */
205(simplify
206 (COPYSIGN REAL_CST@0 @1)
207 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
208 (COPYSIGN (negate @0) @1)))
209
5b7f6ed0 210/* X * 1, X / 1 -> X. */
e0ee10ed
RB
211(for op (mult trunc_div ceil_div floor_div round_div exact_div)
212 (simplify
213 (op @0 integer_onep)
214 (non_lvalue @0)))
215
71f82be9
JG
216/* (A / (1 << B)) -> (A >> B).
217 Only for unsigned A. For signed A, this would not preserve rounding
218 toward zero.
219 For example: (-1 / ( 1 << B)) != -1 >> B. */
220(simplify
221 (trunc_div @0 (lshift integer_onep@1 @2))
222 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
223 && (!VECTOR_TYPE_P (type)
224 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
225 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
226 (rshift @0 @2)))
227
5b7f6ed0
MG
228/* Preserve explicit divisions by 0: the C++ front-end wants to detect
229 undefined behavior in constexpr evaluation, and assuming that the division
230 traps enables better optimizations than these anyway. */
a7f24614 231(for div (trunc_div ceil_div floor_div round_div exact_div)
5b7f6ed0
MG
232 /* 0 / X is always zero. */
233 (simplify
234 (div integer_zerop@0 @1)
235 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
236 (if (!integer_zerop (@1))
237 @0))
da186c1f 238 /* X / -1 is -X. */
a7f24614 239 (simplify
09240451
MG
240 (div @0 integer_minus_onep@1)
241 (if (!TYPE_UNSIGNED (type))
da186c1f 242 (negate @0)))
5b7f6ed0
MG
243 /* X / X is one. */
244 (simplify
245 (div @0 @0)
9ebce098
JJ
246 /* But not for 0 / 0 so that we can get the proper warnings and errors.
247 And not for _Fract types where we can't build 1. */
248 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
5b7f6ed0 249 { build_one_cst (type); }))
da186c1f
RB
250 /* X / abs (X) is X < 0 ? -1 : 1. */
251 (simplify
d96a5585
RB
252 (div:C @0 (abs @0))
253 (if (INTEGRAL_TYPE_P (type)
da186c1f
RB
254 && TYPE_OVERFLOW_UNDEFINED (type))
255 (cond (lt @0 { build_zero_cst (type); })
256 { build_minus_one_cst (type); } { build_one_cst (type); })))
257 /* X / -X is -1. */
258 (simplify
d96a5585 259 (div:C @0 (negate @0))
da186c1f
RB
260 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
261 && TYPE_OVERFLOW_UNDEFINED (type))
262 { build_minus_one_cst (type); })))
a7f24614
RB
263
264/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
265 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
266(simplify
267 (floor_div @0 @1)
09240451
MG
268 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
269 && TYPE_UNSIGNED (type))
a7f24614
RB
270 (trunc_div @0 @1)))
271
28093105
RB
272/* Combine two successive divisions. Note that combining ceil_div
273 and floor_div is trickier and combining round_div even more so. */
274(for div (trunc_div exact_div)
c306cfaf
RB
275 (simplify
276 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
277 (with {
278 bool overflow_p;
8e6cdc90
RS
279 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
280 TYPE_SIGN (type), &overflow_p);
c306cfaf
RB
281 }
282 (if (!overflow_p)
8fdc6c67
RB
283 (div @0 { wide_int_to_tree (type, mul); })
284 (if (TYPE_UNSIGNED (type)
285 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
286 { build_zero_cst (type); })))))
c306cfaf 287
288fe52e
AM
288/* Combine successive multiplications. Similar to above, but handling
289 overflow is different. */
290(simplify
291 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
292 (with {
293 bool overflow_p;
8e6cdc90
RS
294 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
295 TYPE_SIGN (type), &overflow_p);
288fe52e
AM
296 }
297 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
298 otherwise undefined overflow implies that @0 must be zero. */
299 (if (!overflow_p || TYPE_OVERFLOW_WRAPS (type))
300 (mult @0 { wide_int_to_tree (type, mul); }))))
301
a7f24614 302/* Optimize A / A to 1.0 if we don't care about
09240451 303 NaNs or Infinities. */
a7f24614
RB
304(simplify
305 (rdiv @0 @0)
09240451 306 (if (FLOAT_TYPE_P (type)
1b457aa4 307 && ! HONOR_NANS (type)
8b5ee871 308 && ! HONOR_INFINITIES (type))
09240451
MG
309 { build_one_cst (type); }))
310
311/* Optimize -A / A to -1.0 if we don't care about
312 NaNs or Infinities. */
313(simplify
e04d2a35 314 (rdiv:C @0 (negate @0))
09240451 315 (if (FLOAT_TYPE_P (type)
1b457aa4 316 && ! HONOR_NANS (type)
8b5ee871 317 && ! HONOR_INFINITIES (type))
09240451 318 { build_minus_one_cst (type); }))
a7f24614 319
8c6961ca
PK
320/* PR71078: x / abs(x) -> copysign (1.0, x) */
321(simplify
322 (rdiv:C (convert? @0) (convert? (abs @0)))
323 (if (SCALAR_FLOAT_TYPE_P (type)
324 && ! HONOR_NANS (type)
325 && ! HONOR_INFINITIES (type))
326 (switch
327 (if (types_match (type, float_type_node))
328 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
329 (if (types_match (type, double_type_node))
330 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
331 (if (types_match (type, long_double_type_node))
332 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
333
a7f24614
RB
334/* In IEEE floating point, x/1 is not equivalent to x for snans. */
335(simplify
336 (rdiv @0 real_onep)
8b5ee871 337 (if (!HONOR_SNANS (type))
a7f24614
RB
338 (non_lvalue @0)))
339
340/* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
341(simplify
342 (rdiv @0 real_minus_onep)
8b5ee871 343 (if (!HONOR_SNANS (type))
a7f24614
RB
344 (negate @0)))
345
5711ac88
N
346(if (flag_reciprocal_math)
347 /* Convert (A/B)/C to A/(B*C) */
348 (simplify
349 (rdiv (rdiv:s @0 @1) @2)
350 (rdiv @0 (mult @1 @2)))
351
352 /* Convert A/(B/C) to (A/B)*C */
353 (simplify
354 (rdiv @0 (rdiv:s @1 @2))
355 (mult (rdiv @0 @1) @2)))
356
357/* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
358(for div (trunc_div ceil_div floor_div round_div exact_div)
359 (simplify
360 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
361 (if (integer_pow2p (@2)
362 && tree_int_cst_sgn (@2) > 0
a1488398 363 && tree_nop_conversion_p (type, TREE_TYPE (@0))
8e6cdc90
RS
364 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
365 (rshift (convert @0)
366 { build_int_cst (integer_type_node,
367 wi::exact_log2 (wi::to_wide (@2))); }))))
5711ac88 368
a7f24614
RB
369/* If ARG1 is a constant, we can convert this to a multiply by the
370 reciprocal. This does not have the same rounding properties,
371 so only do this if -freciprocal-math. We can actually
372 always safely do it if ARG1 is a power of two, but it's hard to
373 tell if it is or not in a portable manner. */
374(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
375 (simplify
376 (rdiv @0 cst@1)
377 (if (optimize)
53bc4b3a
RB
378 (if (flag_reciprocal_math
379 && !real_zerop (@1))
a7f24614 380 (with
249700b5 381 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
a7f24614 382 (if (tem)
8fdc6c67
RB
383 (mult @0 { tem; } )))
384 (if (cst != COMPLEX_CST)
385 (with { tree inverse = exact_inverse (type, @1); }
386 (if (inverse)
387 (mult @0 { inverse; } ))))))))
a7f24614 388
a7f24614 389(for mod (ceil_mod floor_mod round_mod trunc_mod)
e0ee10ed
RB
390 /* 0 % X is always zero. */
391 (simplify
a7f24614 392 (mod integer_zerop@0 @1)
e0ee10ed
RB
393 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
394 (if (!integer_zerop (@1))
395 @0))
396 /* X % 1 is always zero. */
397 (simplify
a7f24614
RB
398 (mod @0 integer_onep)
399 { build_zero_cst (type); })
400 /* X % -1 is zero. */
401 (simplify
09240451
MG
402 (mod @0 integer_minus_onep@1)
403 (if (!TYPE_UNSIGNED (type))
bc4315fb 404 { build_zero_cst (type); }))
5b7f6ed0
MG
405 /* X % X is zero. */
406 (simplify
407 (mod @0 @0)
408 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
409 (if (!integer_zerop (@0))
410 { build_zero_cst (type); }))
bc4315fb
MG
411 /* (X % Y) % Y is just X % Y. */
412 (simplify
413 (mod (mod@2 @0 @1) @1)
98e30e51
RB
414 @2)
415 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
416 (simplify
417 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
418 (if (ANY_INTEGRAL_TYPE_P (type)
419 && TYPE_OVERFLOW_UNDEFINED (type)
8e6cdc90
RS
420 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
421 TYPE_SIGN (type)))
98e30e51 422 { build_zero_cst (type); })))
a7f24614
RB
423
424/* X % -C is the same as X % C. */
425(simplify
426 (trunc_mod @0 INTEGER_CST@1)
427 (if (TYPE_SIGN (type) == SIGNED
428 && !TREE_OVERFLOW (@1)
8e6cdc90 429 && wi::neg_p (wi::to_wide (@1))
a7f24614
RB
430 && !TYPE_OVERFLOW_TRAPS (type)
431 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
432 && !sign_bit_p (@1, @1))
433 (trunc_mod @0 (negate @1))))
e0ee10ed 434
8f0c696a
RB
435/* X % -Y is the same as X % Y. */
436(simplify
437 (trunc_mod @0 (convert? (negate @1)))
a2a743a1
MP
438 (if (INTEGRAL_TYPE_P (type)
439 && !TYPE_UNSIGNED (type)
8f0c696a 440 && !TYPE_OVERFLOW_TRAPS (type)
20b8d734
JJ
441 && tree_nop_conversion_p (type, TREE_TYPE (@1))
442 /* Avoid this transformation if X might be INT_MIN or
443 Y might be -1, because we would then change valid
444 INT_MIN % -(-1) into invalid INT_MIN % -1. */
8e6cdc90 445 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
20b8d734
JJ
446 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
447 (TREE_TYPE (@1))))))
8f0c696a
RB
448 (trunc_mod @0 (convert @1))))
449
f461569a
MP
450/* X - (X / Y) * Y is the same as X % Y. */
451(simplify
2eef1fc1
RB
452 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
453 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
fba46f03 454 (convert (trunc_mod @0 @1))))
f461569a 455
8f0c696a
RB
456/* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
457 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
458 Also optimize A % (C << N) where C is a power of 2,
459 to A & ((C << N) - 1). */
460(match (power_of_two_cand @1)
461 INTEGER_CST@1)
462(match (power_of_two_cand @1)
463 (lshift INTEGER_CST@1 @2))
464(for mod (trunc_mod floor_mod)
465 (simplify
4ab1e111 466 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
8f0c696a
RB
467 (if ((TYPE_UNSIGNED (type)
468 || tree_expr_nonnegative_p (@0))
4ab1e111 469 && tree_nop_conversion_p (type, TREE_TYPE (@3))
8f0c696a 470 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
4ab1e111 471 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
8f0c696a 472
887ab609
N
473/* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
474(simplify
475 (trunc_div (mult @0 integer_pow2p@1) @1)
476 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
477 (bit_and @0 { wide_int_to_tree
8e6cdc90
RS
478 (type, wi::mask (TYPE_PRECISION (type)
479 - wi::exact_log2 (wi::to_wide (@1)),
887ab609
N
480 false, TYPE_PRECISION (type))); })))
481
5f8d832e
N
482/* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
483(simplify
484 (mult (trunc_div @0 integer_pow2p@1) @1)
485 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
486 (bit_and @0 (negate @1))))
487
95765f36
N
488/* Simplify (t * 2) / 2) -> t. */
489(for div (trunc_div ceil_div floor_div round_div exact_div)
490 (simplify
491 (div (mult @0 @1) @1)
492 (if (ANY_INTEGRAL_TYPE_P (type)
493 && TYPE_OVERFLOW_UNDEFINED (type))
494 @0)))
495
d202f9bd 496(for op (negate abs)
9b054b08
RS
497 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
498 (for coss (COS COSH)
499 (simplify
500 (coss (op @0))
501 (coss @0)))
502 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
503 (for pows (POW)
504 (simplify
505 (pows (op @0) REAL_CST@1)
506 (with { HOST_WIDE_INT n; }
507 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
5d3498b4 508 (pows @0 @1)))))
de3fbea3
RB
509 /* Likewise for powi. */
510 (for pows (POWI)
511 (simplify
512 (pows (op @0) INTEGER_CST@1)
8e6cdc90 513 (if ((wi::to_wide (@1) & 1) == 0)
de3fbea3 514 (pows @0 @1))))
5d3498b4
RS
515 /* Strip negate and abs from both operands of hypot. */
516 (for hypots (HYPOT)
517 (simplify
518 (hypots (op @0) @1)
519 (hypots @0 @1))
520 (simplify
521 (hypots @0 (op @1))
522 (hypots @0 @1)))
523 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
524 (for copysigns (COPYSIGN)
525 (simplify
526 (copysigns (op @0) @1)
527 (copysigns @0 @1))))
528
529/* abs(x)*abs(x) -> x*x. Should be valid for all types. */
530(simplify
531 (mult (abs@1 @0) @1)
532 (mult @0 @0))
533
534/* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
535(for coss (COS COSH)
536 copysigns (COPYSIGN)
537 (simplify
538 (coss (copysigns @0 @1))
539 (coss @0)))
540
541/* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
542(for pows (POW)
543 copysigns (COPYSIGN)
544 (simplify
de3fbea3 545 (pows (copysigns @0 @2) REAL_CST@1)
5d3498b4
RS
546 (with { HOST_WIDE_INT n; }
547 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
548 (pows @0 @1)))))
de3fbea3
RB
549/* Likewise for powi. */
550(for pows (POWI)
551 copysigns (COPYSIGN)
552 (simplify
553 (pows (copysigns @0 @2) INTEGER_CST@1)
8e6cdc90 554 (if ((wi::to_wide (@1) & 1) == 0)
de3fbea3 555 (pows @0 @1))))
5d3498b4
RS
556
557(for hypots (HYPOT)
558 copysigns (COPYSIGN)
559 /* hypot(copysign(x, y), z) -> hypot(x, z). */
560 (simplify
561 (hypots (copysigns @0 @1) @2)
562 (hypots @0 @2))
563 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
564 (simplify
565 (hypots @0 (copysigns @1 @2))
566 (hypots @0 @1)))
567
eeb57981
RB
568/* copysign(x, CST) -> [-]abs (x). */
569(for copysigns (COPYSIGN)
570 (simplify
571 (copysigns @0 REAL_CST@1)
572 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
573 (negate (abs @0))
574 (abs @0))))
575
5d3498b4
RS
576/* copysign(copysign(x, y), z) -> copysign(x, z). */
577(for copysigns (COPYSIGN)
578 (simplify
579 (copysigns (copysigns @0 @1) @2)
580 (copysigns @0 @2)))
581
582/* copysign(x,y)*copysign(x,y) -> x*x. */
583(for copysigns (COPYSIGN)
584 (simplify
585 (mult (copysigns@2 @0 @1) @2)
586 (mult @0 @0)))
587
588/* ccos(-x) -> ccos(x). Similarly for ccosh. */
589(for ccoss (CCOS CCOSH)
590 (simplify
591 (ccoss (negate @0))
592 (ccoss @0)))
d202f9bd 593
abcc43f5
RS
594/* cabs(-x) and cos(conj(x)) -> cabs(x). */
595(for ops (conj negate)
596 (for cabss (CABS)
597 (simplify
598 (cabss (ops @0))
599 (cabss @0))))
600
0a8f32b8
RB
601/* Fold (a * (1 << b)) into (a << b) */
602(simplify
603 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
604 (if (! FLOAT_TYPE_P (type)
9ff6fb6e 605 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
0a8f32b8
RB
606 (lshift @0 @2)))
607
4349b15f
SD
608/* Fold (1 << (C - x)) where C = precision(type) - 1
609 into ((1 << C) >> x). */
610(simplify
611 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
612 (if (INTEGRAL_TYPE_P (type)
613 && wi::eq_p (@2, TYPE_PRECISION (type) - 1)
614 && single_use (@1))
615 (if (TYPE_UNSIGNED (type))
616 (rshift (lshift @0 @2) @3)
617 (with
618 { tree utype = unsigned_type_for (type); }
619 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
620
0a8f32b8
RB
621/* Fold (C1/X)*C2 into (C1*C2)/X. */
622(simplify
ff86345f
RB
623 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
624 (if (flag_associative_math
625 && single_use (@3))
0a8f32b8
RB
626 (with
627 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
628 (if (tem)
629 (rdiv { tem; } @1)))))
630
5711ac88
N
631/* Convert C1/(X*C2) into (C1/C2)/X */
632(simplify
633 (rdiv REAL_CST@0 (mult @1 REAL_CST@2))
634 (if (flag_reciprocal_math)
635 (with
636 { tree tem = const_binop (RDIV_EXPR, type, @0, @2); }
637 (if (tem)
638 (rdiv { tem; } @1)))))
639
0a8f32b8
RB
640/* Simplify ~X & X as zero. */
641(simplify
642 (bit_and:c (convert? @0) (convert? (bit_not @0)))
643 { build_zero_cst (type); })
644
89b80c42
PK
645/* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
646(simplify
647 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
648 (if (TYPE_UNSIGNED (type))
649 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
650
7aa13860
PK
651(for bitop (bit_and bit_ior)
652 cmp (eq ne)
a93952d2
JJ
653 /* PR35691: Transform
654 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
655 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
7aa13860
PK
656 (simplify
657 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
658 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
a93952d2
JJ
659 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
660 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
661 (cmp (bit_ior @0 (convert @1)) @2)))
662 /* Transform:
663 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
664 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
665 (simplify
666 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
667 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
668 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
669 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
670 (cmp (bit_and @0 (convert @1)) @2))))
7aa13860 671
10158317
RB
672/* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
673(simplify
a9658b11 674 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
10158317
RB
675 (minus (bit_xor @0 @1) @1))
676(simplify
677 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
8e6cdc90 678 (if (~wi::to_wide (@2) == wi::to_wide (@1))
10158317
RB
679 (minus (bit_xor @0 @1) @1)))
680
681/* Fold (A & B) - (A & ~B) into B - (A ^ B). */
682(simplify
a8e9f9a3 683 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
10158317
RB
684 (minus @1 (bit_xor @0 @1)))
685
42bd89ce
MG
686/* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
687(for op (bit_ior bit_xor plus)
688 (simplify
689 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
690 (bit_xor @0 @1))
691 (simplify
692 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
8e6cdc90 693 (if (~wi::to_wide (@2) == wi::to_wide (@1))
42bd89ce 694 (bit_xor @0 @1))))
2066ef6a
PK
695
696/* PR53979: Transform ((a ^ b) | a) -> (a | b) */
697(simplify
698 (bit_ior:c (bit_xor:c @0 @1) @0)
699 (bit_ior @0 @1))
700
e268a77b
MG
701/* (a & ~b) | (a ^ b) --> a ^ b */
702(simplify
703 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
704 @2)
705
706/* (a & ~b) ^ ~a --> ~(a & b) */
707(simplify
708 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
709 (bit_not (bit_and @0 @1)))
710
711/* (a | b) & ~(a ^ b) --> a & b */
712(simplify
713 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
714 (bit_and @0 @1))
715
716/* a | ~(a ^ b) --> a | ~b */
717(simplify
718 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
719 (bit_ior @0 (bit_not @1)))
720
721/* (a | b) | (a &^ b) --> a | b */
722(for op (bit_and bit_xor)
723 (simplify
724 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
725 @2))
726
727/* (a & b) | ~(a ^ b) --> ~(a ^ b) */
728(simplify
729 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
730 @2)
731
732/* ~(~a & b) --> a | ~b */
733(simplify
734 (bit_not (bit_and:cs (bit_not @0) @1))
735 (bit_ior @0 (bit_not @1)))
736
d982c5b7
MG
737/* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
738#if GIMPLE
739(simplify
740 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
741 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
8e6cdc90 742 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
d982c5b7
MG
743 (bit_xor @0 @1)))
744#endif
10158317 745
bc4315fb
MG
746/* X % Y is smaller than Y. */
747(for cmp (lt ge)
748 (simplify
749 (cmp (trunc_mod @0 @1) @1)
750 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
751 { constant_boolean_node (cmp == LT_EXPR, type); })))
752(for cmp (gt le)
753 (simplify
754 (cmp @1 (trunc_mod @0 @1))
755 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
756 { constant_boolean_node (cmp == GT_EXPR, type); })))
757
e0ee10ed
RB
758/* x | ~0 -> ~0 */
759(simplify
ca0b7ece
RB
760 (bit_ior @0 integer_all_onesp@1)
761 @1)
762
763/* x | 0 -> x */
764(simplify
765 (bit_ior @0 integer_zerop)
766 @0)
e0ee10ed
RB
767
768/* x & 0 -> 0 */
769(simplify
ca0b7ece
RB
770 (bit_and @0 integer_zerop@1)
771 @1)
e0ee10ed 772
a4398a30 773/* ~x | x -> -1 */
8b5ee871
MG
774/* ~x ^ x -> -1 */
775/* ~x + x -> -1 */
776(for op (bit_ior bit_xor plus)
777 (simplify
778 (op:c (convert? @0) (convert? (bit_not @0)))
779 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
a4398a30 780
e0ee10ed
RB
781/* x ^ x -> 0 */
782(simplify
783 (bit_xor @0 @0)
784 { build_zero_cst (type); })
785
36a60e48
RB
786/* Canonicalize X ^ ~0 to ~X. */
787(simplify
788 (bit_xor @0 integer_all_onesp@1)
789 (bit_not @0))
790
791/* x & ~0 -> x */
792(simplify
793 (bit_and @0 integer_all_onesp)
794 (non_lvalue @0))
795
796/* x & x -> x, x | x -> x */
797(for bitop (bit_and bit_ior)
798 (simplify
799 (bitop @0 @0)
800 (non_lvalue @0)))
801
c7986356
MG
802/* x & C -> x if we know that x & ~C == 0. */
803#if GIMPLE
804(simplify
805 (bit_and SSA_NAME@0 INTEGER_CST@1)
806 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
8e6cdc90 807 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
c7986356
MG
808 @0))
809#endif
810
0f770b01
RV
811/* x + (x & 1) -> (x + 1) & ~1 */
812(simplify
44fc0a51
RB
813 (plus:c @0 (bit_and:s @0 integer_onep@1))
814 (bit_and (plus @0 @1) (bit_not @1)))
0f770b01
RV
815
816/* x & ~(x & y) -> x & ~y */
817/* x | ~(x | y) -> x | ~y */
818(for bitop (bit_and bit_ior)
af563d4b 819 (simplify
44fc0a51
RB
820 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
821 (bitop @0 (bit_not @1))))
af563d4b
MG
822
823/* (x | y) & ~x -> y & ~x */
824/* (x & y) | ~x -> y | ~x */
825(for bitop (bit_and bit_ior)
826 rbitop (bit_ior bit_and)
827 (simplify
828 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
829 (bitop @1 @2)))
0f770b01 830
f13c4673
MP
831/* (x & y) ^ (x | y) -> x ^ y */
832(simplify
2d6f2dce
MP
833 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
834 (bit_xor @0 @1))
f13c4673 835
9ea65ca6
MP
836/* (x ^ y) ^ (x | y) -> x & y */
837(simplify
838 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
839 (bit_and @0 @1))
840
841/* (x & y) + (x ^ y) -> x | y */
842/* (x & y) | (x ^ y) -> x | y */
843/* (x & y) ^ (x ^ y) -> x | y */
844(for op (plus bit_ior bit_xor)
845 (simplify
846 (op:c (bit_and @0 @1) (bit_xor @0 @1))
847 (bit_ior @0 @1)))
848
849/* (x & y) + (x | y) -> x + y */
850(simplify
851 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
852 (plus @0 @1))
853
9737efaf
MP
854/* (x + y) - (x | y) -> x & y */
855(simplify
856 (minus (plus @0 @1) (bit_ior @0 @1))
857 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
858 && !TYPE_SATURATING (type))
859 (bit_and @0 @1)))
860
861/* (x + y) - (x & y) -> x | y */
862(simplify
863 (minus (plus @0 @1) (bit_and @0 @1))
864 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
865 && !TYPE_SATURATING (type))
866 (bit_ior @0 @1)))
867
9ea65ca6
MP
868/* (x | y) - (x ^ y) -> x & y */
869(simplify
870 (minus (bit_ior @0 @1) (bit_xor @0 @1))
871 (bit_and @0 @1))
872
873/* (x | y) - (x & y) -> x ^ y */
874(simplify
875 (minus (bit_ior @0 @1) (bit_and @0 @1))
876 (bit_xor @0 @1))
877
66cc6273
MP
878/* (x | y) & ~(x & y) -> x ^ y */
879(simplify
880 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
881 (bit_xor @0 @1))
882
883/* (x | y) & (~x ^ y) -> x & y */
884(simplify
885 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
886 (bit_and @0 @1))
887
5b00d921
RB
888/* ~x & ~y -> ~(x | y)
889 ~x | ~y -> ~(x & y) */
890(for op (bit_and bit_ior)
891 rop (bit_ior bit_and)
892 (simplify
893 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
ece46666
MG
894 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
895 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
5b00d921
RB
896 (bit_not (rop (convert @0) (convert @1))))))
897
14ea9f92 898/* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
5b00d921
RB
899 with a constant, and the two constants have no bits in common,
900 we should treat this as a BIT_IOR_EXPR since this may produce more
901 simplifications. */
14ea9f92
RB
902(for op (bit_xor plus)
903 (simplify
904 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
905 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
906 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
907 && tree_nop_conversion_p (type, TREE_TYPE (@2))
8e6cdc90 908 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
14ea9f92 909 (bit_ior (convert @4) (convert @5)))))
5b00d921
RB
910
911/* (X | Y) ^ X -> Y & ~ X*/
912(simplify
2eef1fc1 913 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
5b00d921
RB
914 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
915 (convert (bit_and @1 (bit_not @0)))))
916
917/* Convert ~X ^ ~Y to X ^ Y. */
918(simplify
919 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
ece46666
MG
920 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
921 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
5b00d921
RB
922 (bit_xor (convert @0) (convert @1))))
923
924/* Convert ~X ^ C to X ^ ~C. */
925(simplify
926 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
c8ba6498
EB
927 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
928 (bit_xor (convert @0) (bit_not @1))))
5b00d921 929
e39dab2c
MG
930/* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
931(for opo (bit_and bit_xor)
932 opi (bit_xor bit_and)
933 (simplify
934 (opo:c (opi:c @0 @1) @1)
935 (bit_and (bit_not @0) @1)))
97e77391 936
14ea9f92
RB
937/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
938 operands are another bit-wise operation with a common input. If so,
939 distribute the bit operations to save an operation and possibly two if
940 constants are involved. For example, convert
941 (A | B) & (A | C) into A | (B & C)
942 Further simplification will occur if B and C are constants. */
e07ab2fe
MG
943(for op (bit_and bit_ior bit_xor)
944 rop (bit_ior bit_and bit_and)
14ea9f92 945 (simplify
2eef1fc1 946 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
e07ab2fe
MG
947 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
948 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
14ea9f92
RB
949 (rop (convert @0) (op (convert @1) (convert @2))))))
950
e39dab2c
MG
951/* Some simple reassociation for bit operations, also handled in reassoc. */
952/* (X & Y) & Y -> X & Y
953 (X | Y) | Y -> X | Y */
954(for op (bit_and bit_ior)
955 (simplify
2eef1fc1 956 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
e39dab2c
MG
957 @2))
958/* (X ^ Y) ^ Y -> X */
959(simplify
2eef1fc1 960 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
ece46666 961 (convert @0))
e39dab2c
MG
962/* (X & Y) & (X & Z) -> (X & Y) & Z
963 (X | Y) | (X | Z) -> (X | Y) | Z */
964(for op (bit_and bit_ior)
965 (simplify
6c35e5b0 966 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
e39dab2c
MG
967 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
968 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
969 (if (single_use (@5) && single_use (@6))
970 (op @3 (convert @2))
971 (if (single_use (@3) && single_use (@4))
972 (op (convert @1) @5))))))
973/* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
974(simplify
975 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
976 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
977 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
d78789f5 978 (bit_xor (convert @1) (convert @2))))
5b00d921 979
b14a9c57
RB
980(simplify
981 (abs (abs@1 @0))
982 @1)
f3582e54
RB
983(simplify
984 (abs (negate @0))
985 (abs @0))
986(simplify
987 (abs tree_expr_nonnegative_p@0)
988 @0)
989
55cf3946
RB
990/* A few cases of fold-const.c negate_expr_p predicate. */
991(match negate_expr_p
992 INTEGER_CST
b14a9c57 993 (if ((INTEGRAL_TYPE_P (type)
56a6d474 994 && TYPE_UNSIGNED (type))
b14a9c57 995 || (!TYPE_OVERFLOW_SANITIZED (type)
55cf3946
RB
996 && may_negate_without_overflow_p (t)))))
997(match negate_expr_p
998 FIXED_CST)
999(match negate_expr_p
1000 (negate @0)
1001 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1002(match negate_expr_p
1003 REAL_CST
1004 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1005/* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1006 ways. */
1007(match negate_expr_p
1008 VECTOR_CST
1009 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
81bd903a
MG
1010(match negate_expr_p
1011 (minus @0 @1)
1012 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1013 || (FLOAT_TYPE_P (type)
1014 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1015 && !HONOR_SIGNED_ZEROS (type)))))
0a8f32b8
RB
1016
1017/* (-A) * (-B) -> A * B */
1018(simplify
1019 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1020 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1021 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1022 (mult (convert @0) (convert (negate @1)))))
55cf3946
RB
1023
1024/* -(A + B) -> (-B) - A. */
b14a9c57 1025(simplify
55cf3946
RB
1026 (negate (plus:c @0 negate_expr_p@1))
1027 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1028 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1029 (minus (negate @1) @0)))
1030
81bd903a
MG
1031/* -(A - B) -> B - A. */
1032(simplify
1033 (negate (minus @0 @1))
1034 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1035 || (FLOAT_TYPE_P (type)
1036 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1037 && !HONOR_SIGNED_ZEROS (type)))
1038 (minus @1 @0)))
1039
55cf3946 1040/* A - B -> A + (-B) if B is easily negatable. */
b14a9c57 1041(simplify
55cf3946 1042 (minus @0 negate_expr_p@1)
e4e96a4f
KT
1043 (if (!FIXED_POINT_TYPE_P (type))
1044 (plus @0 (negate @1))))
d4573ffe 1045
5609420f
RB
1046/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1047 when profitable.
1048 For bitwise binary operations apply operand conversions to the
1049 binary operation result instead of to the operands. This allows
1050 to combine successive conversions and bitwise binary operations.
1051 We combine the above two cases by using a conditional convert. */
1052(for bitop (bit_and bit_ior bit_xor)
1053 (simplify
1054 (bitop (convert @0) (convert? @1))
1055 (if (((TREE_CODE (@1) == INTEGER_CST
1056 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
ad6f996c 1057 && int_fits_type_p (@1, TREE_TYPE (@0)))
aea417d7 1058 || types_match (@0, @1))
ad6f996c
RB
1059 /* ??? This transform conflicts with fold-const.c doing
1060 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1061 constants (if x has signed type, the sign bit cannot be set
1062 in c). This folds extension into the BIT_AND_EXPR.
1063 Restrict it to GIMPLE to avoid endless recursions. */
1064 && (bitop != BIT_AND_EXPR || GIMPLE)
5609420f
RB
1065 && (/* That's a good idea if the conversion widens the operand, thus
1066 after hoisting the conversion the operation will be narrower. */
1067 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1068 /* It's also a good idea if the conversion is to a non-integer
1069 mode. */
1070 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1071 /* Or if the precision of TO is not the same as the precision
1072 of its mode. */
2be65d9e 1073 || !type_has_mode_precision_p (type)))
5609420f
RB
1074 (convert (bitop @0 (convert @1))))))
1075
b14a9c57
RB
1076(for bitop (bit_and bit_ior)
1077 rbitop (bit_ior bit_and)
1078 /* (x | y) & x -> x */
1079 /* (x & y) | x -> x */
1080 (simplify
1081 (bitop:c (rbitop:c @0 @1) @0)
1082 @0)
1083 /* (~x | y) & x -> x & y */
1084 /* (~x & y) | x -> x | y */
1085 (simplify
1086 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1087 (bitop @0 @1)))
1088
5609420f
RB
1089/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1090(simplify
1091 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1092 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1093
1094/* Combine successive equal operations with constants. */
1095(for bitop (bit_and bit_ior bit_xor)
1096 (simplify
1097 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1098 (bitop @0 (bitop @1 @2))))
1099
1100/* Try simple folding for X op !X, and X op X with the help
1101 of the truth_valued_p and logical_inverted_value predicates. */
1102(match truth_valued_p
1103 @0
1104 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
f84e7fd6 1105(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
5609420f
RB
1106 (match truth_valued_p
1107 (op @0 @1)))
1108(match truth_valued_p
1109 (truth_not @0))
1110
0a8f32b8
RB
1111(match (logical_inverted_value @0)
1112 (truth_not @0))
5609420f
RB
1113(match (logical_inverted_value @0)
1114 (bit_not truth_valued_p@0))
1115(match (logical_inverted_value @0)
09240451 1116 (eq @0 integer_zerop))
5609420f 1117(match (logical_inverted_value @0)
09240451 1118 (ne truth_valued_p@0 integer_truep))
5609420f 1119(match (logical_inverted_value @0)
09240451 1120 (bit_xor truth_valued_p@0 integer_truep))
5609420f
RB
1121
1122/* X & !X -> 0. */
1123(simplify
1124 (bit_and:c @0 (logical_inverted_value @0))
1125 { build_zero_cst (type); })
1126/* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1127(for op (bit_ior bit_xor)
1128 (simplify
1129 (op:c truth_valued_p@0 (logical_inverted_value @0))
f84e7fd6 1130 { constant_boolean_node (true, type); }))
59c20dc7
RB
1131/* X ==/!= !X is false/true. */
1132(for op (eq ne)
1133 (simplify
1134 (op:c truth_valued_p@0 (logical_inverted_value @0))
1135 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
5609420f 1136
5609420f
RB
1137/* ~~x -> x */
1138(simplify
1139 (bit_not (bit_not @0))
1140 @0)
1141
b14a9c57
RB
1142/* Convert ~ (-A) to A - 1. */
1143(simplify
1144 (bit_not (convert? (negate @0)))
ece46666
MG
1145 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1146 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
8b5ee871 1147 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
b14a9c57 1148
81bd903a
MG
1149/* Convert - (~A) to A + 1. */
1150(simplify
1151 (negate (nop_convert (bit_not @0)))
1152 (plus (view_convert @0) { build_each_one_cst (type); }))
1153
b14a9c57
RB
1154/* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1155(simplify
8b5ee871 1156 (bit_not (convert? (minus @0 integer_each_onep)))
ece46666
MG
1157 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1158 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
b14a9c57
RB
1159 (convert (negate @0))))
1160(simplify
1161 (bit_not (convert? (plus @0 integer_all_onesp)))
ece46666
MG
1162 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1163 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
b14a9c57
RB
1164 (convert (negate @0))))
1165
1166/* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1167(simplify
1168 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1169 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1170 (convert (bit_xor @0 (bit_not @1)))))
1171(simplify
1172 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1173 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1174 (convert (bit_xor @0 @1))))
1175
e268a77b
MG
1176/* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1177(simplify
1178 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1179 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1180 (bit_not (bit_xor (view_convert @0) @1))))
1181
f52baa7b
MP
1182/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1183(simplify
44fc0a51
RB
1184 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1185 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
f52baa7b 1186
f7b7b0aa
MP
1187/* Fold A - (A & B) into ~B & A. */
1188(simplify
2eef1fc1 1189 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
f7b7b0aa
MP
1190 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1191 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1192 (convert (bit_and (bit_not @1) @0))))
5609420f 1193
2071f8f9
N
1194/* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1195(for cmp (gt lt ge le)
1196(simplify
1197 (mult (convert (cmp @0 @1)) @2)
1198 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1199
e36c1cfe
N
1200/* For integral types with undefined overflow and C != 0 fold
1201 x * C EQ/NE y * C into x EQ/NE y. */
1202(for cmp (eq ne)
1203 (simplify
1204 (cmp (mult:c @0 @1) (mult:c @2 @1))
1205 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1206 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1207 && tree_expr_nonzero_p (@1))
1208 (cmp @0 @2))))
1209
42bd89ce
MG
1210/* For integral types with wrapping overflow and C odd fold
1211 x * C EQ/NE y * C into x EQ/NE y. */
1212(for cmp (eq ne)
1213 (simplify
1214 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1215 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1216 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1217 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1218 (cmp @0 @2))))
1219
e36c1cfe
N
1220/* For integral types with undefined overflow and C != 0 fold
1221 x * C RELOP y * C into:
84ff66b8 1222
e36c1cfe
N
1223 x RELOP y for nonnegative C
1224 y RELOP x for negative C */
1225(for cmp (lt gt le ge)
1226 (simplify
1227 (cmp (mult:c @0 @1) (mult:c @2 @1))
1228 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1229 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1230 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1231 (cmp @0 @2)
1232 (if (TREE_CODE (@1) == INTEGER_CST
8e6cdc90 1233 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
e36c1cfe 1234 (cmp @2 @0))))))
84ff66b8 1235
564e405c
JJ
1236/* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1237(for cmp (le gt)
1238 icmp (gt le)
1239 (simplify
1240 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1241 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1242 && TYPE_UNSIGNED (TREE_TYPE (@0))
1243 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
8e6cdc90
RS
1244 && (wi::to_wide (@2)
1245 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
564e405c
JJ
1246 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1247 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1248
a8492d5e
MG
1249/* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1250(for cmp (simple_comparison)
1251 (simplify
1252 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
8e6cdc90 1253 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
a8492d5e
MG
1254 (cmp @0 @1))))
1255
8d1628eb
JJ
1256/* X / C1 op C2 into a simple range test. */
1257(for cmp (simple_comparison)
1258 (simplify
1259 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1260 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1261 && integer_nonzerop (@1)
1262 && !TREE_OVERFLOW (@1)
1263 && !TREE_OVERFLOW (@2))
1264 (with { tree lo, hi; bool neg_overflow;
1265 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1266 &neg_overflow); }
1267 (switch
1268 (if (code == LT_EXPR || code == GE_EXPR)
1269 (if (TREE_OVERFLOW (lo))
1270 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1271 (if (code == LT_EXPR)
1272 (lt @0 { lo; })
1273 (ge @0 { lo; }))))
1274 (if (code == LE_EXPR || code == GT_EXPR)
1275 (if (TREE_OVERFLOW (hi))
1276 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1277 (if (code == LE_EXPR)
1278 (le @0 { hi; })
1279 (gt @0 { hi; }))))
1280 (if (!lo && !hi)
1281 { build_int_cst (type, code == NE_EXPR); })
1282 (if (code == EQ_EXPR && !hi)
1283 (ge @0 { lo; }))
1284 (if (code == EQ_EXPR && !lo)
1285 (le @0 { hi; }))
1286 (if (code == NE_EXPR && !hi)
1287 (lt @0 { lo; }))
1288 (if (code == NE_EXPR && !lo)
1289 (gt @0 { hi; }))
1290 (if (GENERIC)
1291 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1292 lo, hi); })
1293 (with
1294 {
1295 tree etype = range_check_type (TREE_TYPE (@0));
1296 if (etype)
1297 {
1298 if (! TYPE_UNSIGNED (etype))
1299 etype = unsigned_type_for (etype);
1300 hi = fold_convert (etype, hi);
1301 lo = fold_convert (etype, lo);
1302 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1303 }
1304 }
1305 (if (etype && hi && !TREE_OVERFLOW (hi))
1306 (if (code == EQ_EXPR)
1307 (le (minus (convert:etype @0) { lo; }) { hi; })
1308 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1309
d35256b6
MG
1310/* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1311(for op (lt le ge gt)
1312 (simplify
1313 (op (plus:c @0 @2) (plus:c @1 @2))
1314 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1315 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1316 (op @0 @1))))
1317/* For equality and subtraction, this is also true with wrapping overflow. */
1318(for op (eq ne minus)
1319 (simplify
1320 (op (plus:c @0 @2) (plus:c @1 @2))
1321 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1322 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1323 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1324 (op @0 @1))))
1325
1326/* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1327(for op (lt le ge gt)
1328 (simplify
1329 (op (minus @0 @2) (minus @1 @2))
1330 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1331 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1332 (op @0 @1))))
1333/* For equality and subtraction, this is also true with wrapping overflow. */
1334(for op (eq ne minus)
1335 (simplify
1336 (op (minus @0 @2) (minus @1 @2))
1337 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1338 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1339 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1340 (op @0 @1))))
1341
1342/* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1343(for op (lt le ge gt)
1344 (simplify
1345 (op (minus @2 @0) (minus @2 @1))
1346 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1347 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1348 (op @1 @0))))
1349/* For equality and subtraction, this is also true with wrapping overflow. */
1350(for op (eq ne minus)
1351 (simplify
1352 (op (minus @2 @0) (minus @2 @1))
1353 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1354 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1355 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1356 (op @1 @0))))
1357
6358a676
MG
1358/* X + Y < Y is the same as X < 0 when there is no overflow. */
1359(for op (lt le gt ge)
1360 (simplify
1361 (op:c (plus:c@2 @0 @1) @1)
1362 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1363 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1364 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1365 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1366/* For equality, this is also true with wrapping overflow. */
1367(for op (eq ne)
1368 (simplify
1369 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1370 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1371 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1372 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1373 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1374 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1375 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1376 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1377 (simplify
1378 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1379 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1380 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1381 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1382 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1383
1384/* X - Y < X is the same as Y > 0 when there is no overflow.
1385 For equality, this is also true with wrapping overflow. */
1386(for op (simple_comparison)
1387 (simplify
1388 (op:c @0 (minus@2 @0 @1))
1389 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1390 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1391 || ((op == EQ_EXPR || op == NE_EXPR)
1392 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1393 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1394 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1395
1d6fadee
PK
1396/* Transform:
1397 * (X / Y) == 0 -> X < Y if X, Y are unsigned.
1398 * (X / Y) != 0 -> X >= Y, if X, Y are unsigned.
1399 */
1400(for cmp (eq ne)
1401 ocmp (lt ge)
1402 (simplify
1403 (cmp (trunc_div @0 @1) integer_zerop)
1404 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1405 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1406 (ocmp @0 @1))))
1407
8b656ca7
MG
1408/* X == C - X can never be true if C is odd. */
1409(for cmp (eq ne)
1410 (simplify
1411 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1412 (if (TREE_INT_CST_LOW (@1) & 1)
1413 { constant_boolean_node (cmp == NE_EXPR, type); })))
1414
10bc8017
MG
1415/* Arguments on which one can call get_nonzero_bits to get the bits
1416 possibly set. */
1417(match with_possible_nonzero_bits
1418 INTEGER_CST@0)
1419(match with_possible_nonzero_bits
1420 SSA_NAME@0
1421 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1422/* Slightly extended version, do not make it recursive to keep it cheap. */
1423(match (with_possible_nonzero_bits2 @0)
1424 with_possible_nonzero_bits@0)
1425(match (with_possible_nonzero_bits2 @0)
1426 (bit_and:c with_possible_nonzero_bits@0 @2))
1427
1428/* Same for bits that are known to be set, but we do not have
1429 an equivalent to get_nonzero_bits yet. */
1430(match (with_certain_nonzero_bits2 @0)
1431 INTEGER_CST@0)
1432(match (with_certain_nonzero_bits2 @0)
1433 (bit_ior @1 INTEGER_CST@0))
1434
1435/* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1436(for cmp (eq ne)
1437 (simplify
1438 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
8e6cdc90 1439 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
10bc8017
MG
1440 { constant_boolean_node (cmp == NE_EXPR, type); })))
1441
84ff66b8
AV
1442/* ((X inner_op C0) outer_op C1)
1443 With X being a tree where value_range has reasoned certain bits to always be
1444 zero throughout its computed value range,
1445 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1446 where zero_mask has 1's for all bits that are sure to be 0 in
1447 and 0's otherwise.
1448 if (inner_op == '^') C0 &= ~C1;
1449 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1450 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1451*/
1452(for inner_op (bit_ior bit_xor)
1453 outer_op (bit_xor bit_ior)
1454(simplify
1455 (outer_op
1456 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1457 (with
1458 {
1459 bool fail = false;
1460 wide_int zero_mask_not;
1461 wide_int C0;
1462 wide_int cst_emit;
1463
1464 if (TREE_CODE (@2) == SSA_NAME)
1465 zero_mask_not = get_nonzero_bits (@2);
1466 else
1467 fail = true;
1468
1469 if (inner_op == BIT_XOR_EXPR)
1470 {
8e6cdc90
RS
1471 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1472 cst_emit = C0 | wi::to_wide (@1);
84ff66b8
AV
1473 }
1474 else
1475 {
8e6cdc90
RS
1476 C0 = wi::to_wide (@0);
1477 cst_emit = C0 ^ wi::to_wide (@1);
84ff66b8
AV
1478 }
1479 }
8e6cdc90 1480 (if (!fail && (C0 & zero_mask_not) == 0)
84ff66b8 1481 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
8e6cdc90 1482 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
84ff66b8
AV
1483 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1484
a499aac5
RB
1485/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1486(simplify
44fc0a51
RB
1487 (pointer_plus (pointer_plus:s @0 @1) @3)
1488 (pointer_plus @0 (plus @1 @3)))
a499aac5
RB
1489
1490/* Pattern match
1491 tem1 = (long) ptr1;
1492 tem2 = (long) ptr2;
1493 tem3 = tem2 - tem1;
1494 tem4 = (unsigned long) tem3;
1495 tem5 = ptr1 + tem4;
1496 and produce
1497 tem5 = ptr2; */
1498(simplify
1499 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1500 /* Conditionally look through a sign-changing conversion. */
1501 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1502 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1503 || (GENERIC && type == TREE_TYPE (@1))))
1504 @1))
1505
1506/* Pattern match
1507 tem = (sizetype) ptr;
1508 tem = tem & algn;
1509 tem = -tem;
1510 ... = ptr p+ tem;
1511 and produce the simpler and easier to analyze with respect to alignment
1512 ... = ptr & ~algn; */
1513(simplify
1514 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
8e6cdc90 1515 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
a499aac5
RB
1516 (bit_and @0 { algn; })))
1517
99e943a2
RB
1518/* Try folding difference of addresses. */
1519(simplify
1520 (minus (convert ADDR_EXPR@0) (convert @1))
1521 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1522 (with { HOST_WIDE_INT diff; }
1523 (if (ptr_difference_const (@0, @1, &diff))
1524 { build_int_cst_type (type, diff); }))))
1525(simplify
1526 (minus (convert @0) (convert ADDR_EXPR@1))
1527 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1528 (with { HOST_WIDE_INT diff; }
1529 (if (ptr_difference_const (@0, @1, &diff))
1530 { build_int_cst_type (type, diff); }))))
1531
bab73f11
RB
1532/* If arg0 is derived from the address of an object or function, we may
1533 be able to fold this expression using the object or function's
1534 alignment. */
1535(simplify
1536 (bit_and (convert? @0) INTEGER_CST@1)
1537 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1538 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1539 (with
1540 {
1541 unsigned int align;
1542 unsigned HOST_WIDE_INT bitpos;
1543 get_pointer_alignment_1 (@0, &align, &bitpos);
1544 }
8e6cdc90
RS
1545 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1546 { wide_int_to_tree (type, (wi::to_wide (@1)
1547 & (bitpos / BITS_PER_UNIT))); }))))
99e943a2 1548
a499aac5 1549
cc7b5acf
RB
1550/* We can't reassociate at all for saturating types. */
1551(if (!TYPE_SATURATING (type))
1552
1553 /* Contract negates. */
1554 /* A + (-B) -> A - B */
1555 (simplify
248179b5
RB
1556 (plus:c @0 (convert? (negate @1)))
1557 /* Apply STRIP_NOPS on the negate. */
1558 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1559 && !TYPE_OVERFLOW_SANITIZED (type))
248179b5
RB
1560 (with
1561 {
1562 tree t1 = type;
1563 if (INTEGRAL_TYPE_P (type)
1564 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1565 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1566 }
1567 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
cc7b5acf
RB
1568 /* A - (-B) -> A + B */
1569 (simplify
248179b5
RB
1570 (minus @0 (convert? (negate @1)))
1571 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1572 && !TYPE_OVERFLOW_SANITIZED (type))
248179b5
RB
1573 (with
1574 {
1575 tree t1 = type;
1576 if (INTEGRAL_TYPE_P (type)
1577 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1578 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1579 }
1580 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
63626547
MG
1581 /* -(T)(-A) -> (T)A
1582 Sign-extension is ok except for INT_MIN, which thankfully cannot
1583 happen without overflow. */
1584 (simplify
1585 (negate (convert (negate @1)))
1586 (if (INTEGRAL_TYPE_P (type)
1587 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1588 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1589 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1590 && !TYPE_OVERFLOW_SANITIZED (type)
1591 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
a0f12cf8 1592 (convert @1)))
63626547
MG
1593 (simplify
1594 (negate (convert negate_expr_p@1))
1595 (if (SCALAR_FLOAT_TYPE_P (type)
1596 && ((DECIMAL_FLOAT_TYPE_P (type)
1597 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1598 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1599 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1600 (convert (negate @1))))
1601 (simplify
1602 (negate (nop_convert (negate @1)))
1603 (if (!TYPE_OVERFLOW_SANITIZED (type)
1604 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1605 (view_convert @1)))
cc7b5acf 1606
7318e44f
RB
1607 /* We can't reassociate floating-point unless -fassociative-math
1608 or fixed-point plus or minus because of saturation to +-Inf. */
1609 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1610 && !FIXED_POINT_TYPE_P (type))
cc7b5acf
RB
1611
1612 /* Match patterns that allow contracting a plus-minus pair
1613 irrespective of overflow issues. */
1614 /* (A +- B) - A -> +- B */
1615 /* (A +- B) -+ B -> A */
1616 /* A - (A +- B) -> -+ B */
1617 /* A +- (B -+ A) -> +- B */
1618 (simplify
1619 (minus (plus:c @0 @1) @0)
1620 @1)
1621 (simplify
1622 (minus (minus @0 @1) @0)
1623 (negate @1))
1624 (simplify
1625 (plus:c (minus @0 @1) @1)
1626 @0)
1627 (simplify
1628 (minus @0 (plus:c @0 @1))
1629 (negate @1))
1630 (simplify
1631 (minus @0 (minus @0 @1))
1632 @1)
1e7df2e6
MG
1633 /* (A +- B) + (C - A) -> C +- B */
1634 /* (A + B) - (A - C) -> B + C */
1635 /* More cases are handled with comparisons. */
1636 (simplify
1637 (plus:c (plus:c @0 @1) (minus @2 @0))
1638 (plus @2 @1))
1639 (simplify
1640 (plus:c (minus @0 @1) (minus @2 @0))
1641 (minus @2 @1))
1642 (simplify
1643 (minus (plus:c @0 @1) (minus @0 @2))
1644 (plus @1 @2))
cc7b5acf 1645
ed73f46f
MG
1646 /* (A +- CST1) +- CST2 -> A + CST3
1647 Use view_convert because it is safe for vectors and equivalent for
1648 scalars. */
cc7b5acf
RB
1649 (for outer_op (plus minus)
1650 (for inner_op (plus minus)
ed73f46f 1651 neg_inner_op (minus plus)
cc7b5acf 1652 (simplify
ed73f46f
MG
1653 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1654 CONSTANT_CLASS_P@2)
1655 /* If one of the types wraps, use that one. */
1656 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1657 (if (outer_op == PLUS_EXPR)
1658 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1659 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1))))
1660 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1661 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1662 (if (outer_op == PLUS_EXPR)
1663 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1664 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1665 /* If the constant operation overflows we cannot do the transform
1666 directly as we would introduce undefined overflow, for example
1667 with (a - 1) + INT_MIN. */
1668 (if (types_match (type, @0))
1669 (with { tree cst = const_binop (outer_op == inner_op
1670 ? PLUS_EXPR : MINUS_EXPR,
1671 type, @1, @2); }
1672 (if (cst && !TREE_OVERFLOW (cst))
1673 (inner_op @0 { cst; } )
1674 /* X+INT_MAX+1 is X-INT_MIN. */
1675 (if (INTEGRAL_TYPE_P (type) && cst
8e6cdc90
RS
1676 && wi::to_wide (cst) == wi::min_value (type))
1677 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
ed73f46f
MG
1678 /* Last resort, use some unsigned type. */
1679 (with { tree utype = unsigned_type_for (type); }
1680 (view_convert (inner_op
1681 (view_convert:utype @0)
1682 (view_convert:utype
1683 { drop_tree_overflow (cst); })))))))))))))
cc7b5acf 1684
b302f2e0 1685 /* (CST1 - A) +- CST2 -> CST3 - A */
cc7b5acf
RB
1686 (for outer_op (plus minus)
1687 (simplify
1688 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
23f27839 1689 (with { tree cst = const_binop (outer_op, type, @1, @2); }
cc7b5acf
RB
1690 (if (cst && !TREE_OVERFLOW (cst))
1691 (minus { cst; } @0)))))
1692
b302f2e0
RB
1693 /* CST1 - (CST2 - A) -> CST3 + A */
1694 (simplify
1695 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1696 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1697 (if (cst && !TREE_OVERFLOW (cst))
1698 (plus { cst; } @0))))
1699
cc7b5acf
RB
1700 /* ~A + A -> -1 */
1701 (simplify
1702 (plus:c (bit_not @0) @0)
1703 (if (!TYPE_OVERFLOW_TRAPS (type))
1704 { build_all_ones_cst (type); }))
1705
1706 /* ~A + 1 -> -A */
1707 (simplify
e19740ae
RB
1708 (plus (convert? (bit_not @0)) integer_each_onep)
1709 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1710 (negate (convert @0))))
1711
1712 /* -A - 1 -> ~A */
1713 (simplify
1714 (minus (convert? (negate @0)) integer_each_onep)
1715 (if (!TYPE_OVERFLOW_TRAPS (type)
1716 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1717 (bit_not (convert @0))))
1718
1719 /* -1 - A -> ~A */
1720 (simplify
1721 (minus integer_all_onesp @0)
bc4315fb 1722 (bit_not @0))
cc7b5acf
RB
1723
1724 /* (T)(P + A) - (T)P -> (T) A */
1725 (for add (plus pointer_plus)
1726 (simplify
2eef1fc1 1727 (minus (convert (add @@0 @1))
cc7b5acf 1728 (convert @0))
09240451 1729 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
cc7b5acf
RB
1730 /* For integer types, if A has a smaller type
1731 than T the result depends on the possible
1732 overflow in P + A.
1733 E.g. T=size_t, A=(unsigned)429497295, P>0.
1734 However, if an overflow in P + A would cause
1735 undefined behavior, we can assume that there
1736 is no overflow. */
1737 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1738 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1739 /* For pointer types, if the conversion of A to the
1740 final type requires a sign- or zero-extension,
1741 then we have to punt - it is not defined which
1742 one is correct. */
1743 || (POINTER_TYPE_P (TREE_TYPE (@0))
1744 && TREE_CODE (@1) == INTEGER_CST
1745 && tree_int_cst_sign_bit (@1) == 0))
a8fc2579
RB
1746 (convert @1))))
1747
1748 /* (T)P - (T)(P + A) -> -(T) A */
1749 (for add (plus pointer_plus)
1750 (simplify
1751 (minus (convert @0)
2eef1fc1 1752 (convert (add @@0 @1)))
a8fc2579
RB
1753 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1754 /* For integer types, if A has a smaller type
1755 than T the result depends on the possible
1756 overflow in P + A.
1757 E.g. T=size_t, A=(unsigned)429497295, P>0.
1758 However, if an overflow in P + A would cause
1759 undefined behavior, we can assume that there
1760 is no overflow. */
1761 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1762 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1763 /* For pointer types, if the conversion of A to the
1764 final type requires a sign- or zero-extension,
1765 then we have to punt - it is not defined which
1766 one is correct. */
1767 || (POINTER_TYPE_P (TREE_TYPE (@0))
1768 && TREE_CODE (@1) == INTEGER_CST
1769 && tree_int_cst_sign_bit (@1) == 0))
1770 (negate (convert @1)))))
1771
1772 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
1773 (for add (plus pointer_plus)
1774 (simplify
2eef1fc1 1775 (minus (convert (add @@0 @1))
a8fc2579
RB
1776 (convert (add @0 @2)))
1777 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1778 /* For integer types, if A has a smaller type
1779 than T the result depends on the possible
1780 overflow in P + A.
1781 E.g. T=size_t, A=(unsigned)429497295, P>0.
1782 However, if an overflow in P + A would cause
1783 undefined behavior, we can assume that there
1784 is no overflow. */
1785 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1786 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1787 /* For pointer types, if the conversion of A to the
1788 final type requires a sign- or zero-extension,
1789 then we have to punt - it is not defined which
1790 one is correct. */
1791 || (POINTER_TYPE_P (TREE_TYPE (@0))
1792 && TREE_CODE (@1) == INTEGER_CST
1793 && tree_int_cst_sign_bit (@1) == 0
1794 && TREE_CODE (@2) == INTEGER_CST
1795 && tree_int_cst_sign_bit (@2) == 0))
1796 (minus (convert @1) (convert @2)))))))
cc7b5acf
RB
1797
1798
0122e8e5 1799/* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
a7f24614 1800
0122e8e5 1801(for minmax (min max FMIN FMAX)
a7f24614
RB
1802 (simplify
1803 (minmax @0 @0)
1804 @0))
4a334cba
RS
1805/* min(max(x,y),y) -> y. */
1806(simplify
1807 (min:c (max:c @0 @1) @1)
1808 @1)
1809/* max(min(x,y),y) -> y. */
1810(simplify
1811 (max:c (min:c @0 @1) @1)
1812 @1)
d657e995
RB
1813/* max(a,-a) -> abs(a). */
1814(simplify
1815 (max:c @0 (negate @0))
1816 (if (TREE_CODE (type) != COMPLEX_TYPE
1817 && (! ANY_INTEGRAL_TYPE_P (type)
1818 || TYPE_OVERFLOW_UNDEFINED (type)))
1819 (abs @0)))
54f84ca9
RB
1820/* min(a,-a) -> -abs(a). */
1821(simplify
1822 (min:c @0 (negate @0))
1823 (if (TREE_CODE (type) != COMPLEX_TYPE
1824 && (! ANY_INTEGRAL_TYPE_P (type)
1825 || TYPE_OVERFLOW_UNDEFINED (type)))
1826 (negate (abs @0))))
a7f24614
RB
1827(simplify
1828 (min @0 @1)
2c2870a1
MG
1829 (switch
1830 (if (INTEGRAL_TYPE_P (type)
1831 && TYPE_MIN_VALUE (type)
1832 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
1833 @1)
1834 (if (INTEGRAL_TYPE_P (type)
1835 && TYPE_MAX_VALUE (type)
1836 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
1837 @0)))
a7f24614
RB
1838(simplify
1839 (max @0 @1)
2c2870a1
MG
1840 (switch
1841 (if (INTEGRAL_TYPE_P (type)
1842 && TYPE_MAX_VALUE (type)
1843 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
1844 @1)
1845 (if (INTEGRAL_TYPE_P (type)
1846 && TYPE_MIN_VALUE (type)
1847 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
1848 @0)))
ad6e4ba8 1849
182f37c9
N
1850/* max (a, a + CST) -> a + CST where CST is positive. */
1851/* max (a, a + CST) -> a where CST is negative. */
1852(simplify
1853 (max:c @0 (plus@2 @0 INTEGER_CST@1))
1854 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1855 (if (tree_int_cst_sgn (@1) > 0)
1856 @2
1857 @0)))
1858
1859/* min (a, a + CST) -> a where CST is positive. */
1860/* min (a, a + CST) -> a + CST where CST is negative. */
1861(simplify
1862 (min:c @0 (plus@2 @0 INTEGER_CST@1))
1863 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1864 (if (tree_int_cst_sgn (@1) > 0)
1865 @0
1866 @2)))
1867
ad6e4ba8
BC
1868/* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
1869 and the outer convert demotes the expression back to x's type. */
1870(for minmax (min max)
1871 (simplify
1872 (convert (minmax@0 (convert @1) INTEGER_CST@2))
ebf41734
BC
1873 (if (INTEGRAL_TYPE_P (type)
1874 && types_match (@1, type) && int_fits_type_p (@2, type)
ad6e4ba8
BC
1875 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
1876 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
1877 (minmax @1 (convert @2)))))
1878
0122e8e5
RS
1879(for minmax (FMIN FMAX)
1880 /* If either argument is NaN, return the other one. Avoid the
1881 transformation if we get (and honor) a signalling NaN. */
1882 (simplify
1883 (minmax:c @0 REAL_CST@1)
1884 (if (real_isnan (TREE_REAL_CST_PTR (@1))
1885 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
1886 @0)))
1887/* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
1888 functions to return the numeric arg if the other one is NaN.
1889 MIN and MAX don't honor that, so only transform if -ffinite-math-only
1890 is set. C99 doesn't require -0.0 to be handled, so we don't have to
1891 worry about it either. */
1892(if (flag_finite_math_only)
1893 (simplify
1894 (FMIN @0 @1)
1895 (min @0 @1))
1896 (simplify
1897 (FMAX @0 @1)
1898 (max @0 @1)))
ce0e66ff
MG
1899/* min (-A, -B) -> -max (A, B) */
1900(for minmax (min max FMIN FMAX)
1901 maxmin (max min FMAX FMIN)
1902 (simplify
1903 (minmax (negate:s@2 @0) (negate:s@3 @1))
1904 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1905 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1906 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1907 (negate (maxmin @0 @1)))))
1908/* MIN (~X, ~Y) -> ~MAX (X, Y)
1909 MAX (~X, ~Y) -> ~MIN (X, Y) */
1910(for minmax (min max)
1911 maxmin (max min)
1912 (simplify
1913 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
1914 (bit_not (maxmin @0 @1))))
a7f24614 1915
b4817bd6
MG
1916/* MIN (X, Y) == X -> X <= Y */
1917(for minmax (min min max max)
1918 cmp (eq ne eq ne )
1919 out (le gt ge lt )
1920 (simplify
1921 (cmp:c (minmax:c @0 @1) @0)
1922 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
1923 (out @0 @1))))
1924/* MIN (X, 5) == 0 -> X == 0
1925 MIN (X, 5) == 7 -> false */
1926(for cmp (eq ne)
1927 (simplify
1928 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
8e6cdc90
RS
1929 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
1930 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6 1931 { constant_boolean_node (cmp == NE_EXPR, type); }
8e6cdc90
RS
1932 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
1933 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6
MG
1934 (cmp @0 @2)))))
1935(for cmp (eq ne)
1936 (simplify
1937 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
8e6cdc90
RS
1938 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
1939 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6 1940 { constant_boolean_node (cmp == NE_EXPR, type); }
8e6cdc90
RS
1941 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
1942 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6
MG
1943 (cmp @0 @2)))))
1944/* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
1945(for minmax (min min max max min min max max )
1946 cmp (lt le gt ge gt ge lt le )
1947 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
1948 (simplify
1949 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
1950 (comb (cmp @0 @2) (cmp @1 @2))))
1951
a7f24614
RB
1952/* Simplifications of shift and rotates. */
1953
1954(for rotate (lrotate rrotate)
1955 (simplify
1956 (rotate integer_all_onesp@0 @1)
1957 @0))
1958
1959/* Optimize -1 >> x for arithmetic right shifts. */
1960(simplify
1961 (rshift integer_all_onesp@0 @1)
1962 (if (!TYPE_UNSIGNED (type)
1963 && tree_expr_nonnegative_p (@1))
1964 @0))
1965
12085390
N
1966/* Optimize (x >> c) << c into x & (-1<<c). */
1967(simplify
1968 (lshift (rshift @0 INTEGER_CST@1) @1)
8e6cdc90 1969 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
12085390
N
1970 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
1971
1972/* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
1973 types. */
1974(simplify
1975 (rshift (lshift @0 INTEGER_CST@1) @1)
1976 (if (TYPE_UNSIGNED (type)
8e6cdc90 1977 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
12085390
N
1978 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
1979
a7f24614
RB
1980(for shiftrotate (lrotate rrotate lshift rshift)
1981 (simplify
1982 (shiftrotate @0 integer_zerop)
1983 (non_lvalue @0))
1984 (simplify
1985 (shiftrotate integer_zerop@0 @1)
1986 @0)
1987 /* Prefer vector1 << scalar to vector1 << vector2
1988 if vector2 is uniform. */
1989 (for vec (VECTOR_CST CONSTRUCTOR)
1990 (simplify
1991 (shiftrotate @0 vec@1)
1992 (with { tree tem = uniform_vector_p (@1); }
1993 (if (tem)
1994 (shiftrotate @0 { tem; }))))))
1995
165ba2e9
JJ
1996/* Simplify X << Y where Y's low width bits are 0 to X, as only valid
1997 Y is 0. Similarly for X >> Y. */
1998#if GIMPLE
1999(for shift (lshift rshift)
2000 (simplify
2001 (shift @0 SSA_NAME@1)
2002 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2003 (with {
2004 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2005 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2006 }
2007 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2008 @0)))))
2009#endif
2010
a7f24614
RB
2011/* Rewrite an LROTATE_EXPR by a constant into an
2012 RROTATE_EXPR by a new constant. */
2013(simplify
2014 (lrotate @0 INTEGER_CST@1)
23f27839 2015 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
a7f24614
RB
2016 build_int_cst (TREE_TYPE (@1),
2017 element_precision (type)), @1); }))
2018
14ea9f92
RB
2019/* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2020(for op (lrotate rrotate rshift lshift)
2021 (simplify
2022 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2023 (with { unsigned int prec = element_precision (type); }
8e6cdc90
RS
2024 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2025 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2026 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2027 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
a1488398
RS
2028 (with { unsigned int low = (tree_to_uhwi (@1)
2029 + tree_to_uhwi (@2)); }
14ea9f92
RB
2030 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2031 being well defined. */
2032 (if (low >= prec)
2033 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
8fdc6c67 2034 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
50301115 2035 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
8fdc6c67
RB
2036 { build_zero_cst (type); }
2037 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2038 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
14ea9f92
RB
2039
2040
01ada710
MP
2041/* ((1 << A) & 1) != 0 -> A == 0
2042 ((1 << A) & 1) == 0 -> A != 0 */
2043(for cmp (ne eq)
2044 icmp (eq ne)
2045 (simplify
2046 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2047 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
cc7b5acf 2048
f2e609c3
MP
2049/* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2050 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2051 if CST2 != 0. */
2052(for cmp (ne eq)
2053 (simplify
2054 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
8e6cdc90 2055 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
f2e609c3
MP
2056 (if (cand < 0
2057 || (!integer_zerop (@2)
8e6cdc90 2058 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
8fdc6c67
RB
2059 { constant_boolean_node (cmp == NE_EXPR, type); }
2060 (if (!integer_zerop (@2)
8e6cdc90 2061 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
8fdc6c67 2062 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
f2e609c3 2063
1ffbaa3f
RB
2064/* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2065 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2066 if the new mask might be further optimized. */
2067(for shift (lshift rshift)
2068 (simplify
44fc0a51
RB
2069 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2070 INTEGER_CST@2)
1ffbaa3f
RB
2071 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2072 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2073 && tree_fits_uhwi_p (@1)
2074 && tree_to_uhwi (@1) > 0
2075 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2076 (with
2077 {
2078 unsigned int shiftc = tree_to_uhwi (@1);
2079 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2080 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2081 tree shift_type = TREE_TYPE (@3);
2082 unsigned int prec;
2083
2084 if (shift == LSHIFT_EXPR)
fecfbfa4 2085 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
1ffbaa3f 2086 else if (shift == RSHIFT_EXPR
2be65d9e 2087 && type_has_mode_precision_p (shift_type))
1ffbaa3f
RB
2088 {
2089 prec = TYPE_PRECISION (TREE_TYPE (@3));
2090 tree arg00 = @0;
2091 /* See if more bits can be proven as zero because of
2092 zero extension. */
2093 if (@3 != @0
2094 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2095 {
2096 tree inner_type = TREE_TYPE (@0);
2be65d9e 2097 if (type_has_mode_precision_p (inner_type)
1ffbaa3f
RB
2098 && TYPE_PRECISION (inner_type) < prec)
2099 {
2100 prec = TYPE_PRECISION (inner_type);
2101 /* See if we can shorten the right shift. */
2102 if (shiftc < prec)
2103 shift_type = inner_type;
2104 /* Otherwise X >> C1 is all zeros, so we'll optimize
2105 it into (X, 0) later on by making sure zerobits
2106 is all ones. */
2107 }
2108 }
dd4786fe 2109 zerobits = HOST_WIDE_INT_M1U;
1ffbaa3f
RB
2110 if (shiftc < prec)
2111 {
2112 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2113 zerobits <<= prec - shiftc;
2114 }
2115 /* For arithmetic shift if sign bit could be set, zerobits
2116 can contain actually sign bits, so no transformation is
2117 possible, unless MASK masks them all away. In that
2118 case the shift needs to be converted into logical shift. */
2119 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2120 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2121 {
2122 if ((mask & zerobits) == 0)
2123 shift_type = unsigned_type_for (TREE_TYPE (@3));
2124 else
2125 zerobits = 0;
2126 }
2127 }
2128 }
2129 /* ((X << 16) & 0xff00) is (X, 0). */
2130 (if ((mask & zerobits) == mask)
8fdc6c67
RB
2131 { build_int_cst (type, 0); }
2132 (with { newmask = mask | zerobits; }
2133 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2134 (with
2135 {
2136 /* Only do the transformation if NEWMASK is some integer
2137 mode's mask. */
2138 for (prec = BITS_PER_UNIT;
2139 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
fecfbfa4 2140 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
8fdc6c67
RB
2141 break;
2142 }
2143 (if (prec < HOST_BITS_PER_WIDE_INT
dd4786fe 2144 || newmask == HOST_WIDE_INT_M1U)
8fdc6c67
RB
2145 (with
2146 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2147 (if (!tree_int_cst_equal (newmaskt, @2))
2148 (if (shift_type != TREE_TYPE (@3))
2149 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2150 (bit_and @4 { newmaskt; })))))))))))))
1ffbaa3f 2151
84ff66b8
AV
2152/* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2153 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
98e30e51 2154(for shift (lshift rshift)
84ff66b8
AV
2155 (for bit_op (bit_and bit_xor bit_ior)
2156 (simplify
2157 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2158 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2159 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2160 (bit_op (shift (convert @0) @1) { mask; }))))))
98e30e51 2161
ad1d92ab
MM
2162/* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2163(simplify
2164 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2165 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
ece46666
MG
2166 && (element_precision (TREE_TYPE (@0))
2167 <= element_precision (TREE_TYPE (@1))
2168 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
ad1d92ab
MM
2169 (with
2170 { tree shift_type = TREE_TYPE (@0); }
2171 (convert (rshift (convert:shift_type @1) @2)))))
2172
2173/* ~(~X >>r Y) -> X >>r Y
2174 ~(~X <<r Y) -> X <<r Y */
2175(for rotate (lrotate rrotate)
2176 (simplify
2177 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
ece46666
MG
2178 (if ((element_precision (TREE_TYPE (@0))
2179 <= element_precision (TREE_TYPE (@1))
2180 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2181 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2182 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
ad1d92ab
MM
2183 (with
2184 { tree rotate_type = TREE_TYPE (@0); }
2185 (convert (rotate (convert:rotate_type @1) @2))))))
98e30e51 2186
d4573ffe
RB
2187/* Simplifications of conversions. */
2188
2189/* Basic strip-useless-type-conversions / strip_nops. */
f3582e54 2190(for cvt (convert view_convert float fix_trunc)
d4573ffe
RB
2191 (simplify
2192 (cvt @0)
2193 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2194 || (GENERIC && type == TREE_TYPE (@0)))
2195 @0)))
2196
2197/* Contract view-conversions. */
2198(simplify
2199 (view_convert (view_convert @0))
2200 (view_convert @0))
2201
2202/* For integral conversions with the same precision or pointer
2203 conversions use a NOP_EXPR instead. */
2204(simplify
2205 (view_convert @0)
2206 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2207 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2208 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2209 (convert @0)))
2210
bce8ef71
MG
2211/* Strip inner integral conversions that do not change precision or size, or
2212 zero-extend while keeping the same size (for bool-to-char). */
d4573ffe
RB
2213(simplify
2214 (view_convert (convert@0 @1))
2215 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2216 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
bce8ef71
MG
2217 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2218 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2219 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2220 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
d4573ffe
RB
2221 (view_convert @1)))
2222
2223/* Re-association barriers around constants and other re-association
2224 barriers can be removed. */
2225(simplify
2226 (paren CONSTANT_CLASS_P@0)
2227 @0)
2228(simplify
2229 (paren (paren@1 @0))
2230 @1)
1e51d0a2
RB
2231
2232/* Handle cases of two conversions in a row. */
2233(for ocvt (convert float fix_trunc)
2234 (for icvt (convert float)
2235 (simplify
2236 (ocvt (icvt@1 @0))
2237 (with
2238 {
2239 tree inside_type = TREE_TYPE (@0);
2240 tree inter_type = TREE_TYPE (@1);
2241 int inside_int = INTEGRAL_TYPE_P (inside_type);
2242 int inside_ptr = POINTER_TYPE_P (inside_type);
2243 int inside_float = FLOAT_TYPE_P (inside_type);
09240451 2244 int inside_vec = VECTOR_TYPE_P (inside_type);
1e51d0a2
RB
2245 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2246 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2247 int inter_int = INTEGRAL_TYPE_P (inter_type);
2248 int inter_ptr = POINTER_TYPE_P (inter_type);
2249 int inter_float = FLOAT_TYPE_P (inter_type);
09240451 2250 int inter_vec = VECTOR_TYPE_P (inter_type);
1e51d0a2
RB
2251 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2252 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2253 int final_int = INTEGRAL_TYPE_P (type);
2254 int final_ptr = POINTER_TYPE_P (type);
2255 int final_float = FLOAT_TYPE_P (type);
09240451 2256 int final_vec = VECTOR_TYPE_P (type);
1e51d0a2
RB
2257 unsigned int final_prec = TYPE_PRECISION (type);
2258 int final_unsignedp = TYPE_UNSIGNED (type);
2259 }
64d3a1f0
RB
2260 (switch
2261 /* In addition to the cases of two conversions in a row
2262 handled below, if we are converting something to its own
2263 type via an object of identical or wider precision, neither
2264 conversion is needed. */
2265 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2266 || (GENERIC
2267 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2268 && (((inter_int || inter_ptr) && final_int)
2269 || (inter_float && final_float))
2270 && inter_prec >= final_prec)
2271 (ocvt @0))
2272
2273 /* Likewise, if the intermediate and initial types are either both
2274 float or both integer, we don't need the middle conversion if the
2275 former is wider than the latter and doesn't change the signedness
2276 (for integers). Avoid this if the final type is a pointer since
36088299 2277 then we sometimes need the middle conversion. */
64d3a1f0
RB
2278 (if (((inter_int && inside_int) || (inter_float && inside_float))
2279 && (final_int || final_float)
2280 && inter_prec >= inside_prec
36088299 2281 && (inter_float || inter_unsignedp == inside_unsignedp))
64d3a1f0
RB
2282 (ocvt @0))
2283
2284 /* If we have a sign-extension of a zero-extended value, we can
2285 replace that by a single zero-extension. Likewise if the
2286 final conversion does not change precision we can drop the
2287 intermediate conversion. */
2288 (if (inside_int && inter_int && final_int
2289 && ((inside_prec < inter_prec && inter_prec < final_prec
2290 && inside_unsignedp && !inter_unsignedp)
2291 || final_prec == inter_prec))
2292 (ocvt @0))
2293
2294 /* Two conversions in a row are not needed unless:
1e51d0a2
RB
2295 - some conversion is floating-point (overstrict for now), or
2296 - some conversion is a vector (overstrict for now), or
2297 - the intermediate type is narrower than both initial and
2298 final, or
2299 - the intermediate type and innermost type differ in signedness,
2300 and the outermost type is wider than the intermediate, or
2301 - the initial type is a pointer type and the precisions of the
2302 intermediate and final types differ, or
2303 - the final type is a pointer type and the precisions of the
2304 initial and intermediate types differ. */
64d3a1f0
RB
2305 (if (! inside_float && ! inter_float && ! final_float
2306 && ! inside_vec && ! inter_vec && ! final_vec
2307 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2308 && ! (inside_int && inter_int
2309 && inter_unsignedp != inside_unsignedp
2310 && inter_prec < final_prec)
2311 && ((inter_unsignedp && inter_prec > inside_prec)
2312 == (final_unsignedp && final_prec > inter_prec))
2313 && ! (inside_ptr && inter_prec != final_prec)
36088299 2314 && ! (final_ptr && inside_prec != inter_prec))
64d3a1f0
RB
2315 (ocvt @0))
2316
2317 /* A truncation to an unsigned type (a zero-extension) should be
2318 canonicalized as bitwise and of a mask. */
1d510e04
JJ
2319 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2320 && final_int && inter_int && inside_int
64d3a1f0
RB
2321 && final_prec == inside_prec
2322 && final_prec > inter_prec
2323 && inter_unsignedp)
2324 (convert (bit_and @0 { wide_int_to_tree
2325 (inside_type,
2326 wi::mask (inter_prec, false,
2327 TYPE_PRECISION (inside_type))); })))
2328
2329 /* If we are converting an integer to a floating-point that can
2330 represent it exactly and back to an integer, we can skip the
2331 floating-point conversion. */
2332 (if (GIMPLE /* PR66211 */
2333 && inside_int && inter_float && final_int &&
2334 (unsigned) significand_size (TYPE_MODE (inter_type))
2335 >= inside_prec - !inside_unsignedp)
2336 (convert @0)))))))
ea2042ba
RB
2337
2338/* If we have a narrowing conversion to an integral type that is fed by a
2339 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2340 masks off bits outside the final type (and nothing else). */
2341(simplify
2342 (convert (bit_and @0 INTEGER_CST@1))
2343 (if (INTEGRAL_TYPE_P (type)
2344 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2345 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2346 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2347 TYPE_PRECISION (type)), 0))
2348 (convert @0)))
a25454ea
RB
2349
2350
2351/* (X /[ex] A) * A -> X. */
2352(simplify
2eef1fc1
RB
2353 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2354 (convert @0))
eaeba53a 2355
a7f24614
RB
2356/* Canonicalization of binary operations. */
2357
2358/* Convert X + -C into X - C. */
2359(simplify
2360 (plus @0 REAL_CST@1)
2361 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
23f27839 2362 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
a7f24614
RB
2363 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2364 (minus @0 { tem; })))))
2365
6b6aa8d3 2366/* Convert x+x into x*2. */
a7f24614
RB
2367(simplify
2368 (plus @0 @0)
2369 (if (SCALAR_FLOAT_TYPE_P (type))
6b6aa8d3
MG
2370 (mult @0 { build_real (type, dconst2); })
2371 (if (INTEGRAL_TYPE_P (type))
2372 (mult @0 { build_int_cst (type, 2); }))))
a7f24614
RB
2373
2374(simplify
2375 (minus integer_zerop @1)
2376 (negate @1))
2377
2378/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2379 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2380 (-ARG1 + ARG0) reduces to -ARG1. */
2381(simplify
2382 (minus real_zerop@0 @1)
2383 (if (fold_real_zero_addition_p (type, @0, 0))
2384 (negate @1)))
2385
2386/* Transform x * -1 into -x. */
2387(simplify
2388 (mult @0 integer_minus_onep)
2389 (negate @0))
eaeba53a 2390
b771c609
AM
2391/* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2392 signed overflow for CST != 0 && CST != -1. */
2393(simplify
2394 (mult:c (mult:s @0 INTEGER_CST@1) @2)
2395 (if (TREE_CODE (@2) != INTEGER_CST
2396 && !integer_zerop (@1) && !integer_minus_onep (@1))
2397 (mult (mult @0 @2) @1)))
2398
96285749
RS
2399/* True if we can easily extract the real and imaginary parts of a complex
2400 number. */
2401(match compositional_complex
2402 (convert? (complex @0 @1)))
2403
eaeba53a
RB
2404/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2405(simplify
2406 (complex (realpart @0) (imagpart @0))
2407 @0)
2408(simplify
2409 (realpart (complex @0 @1))
2410 @0)
2411(simplify
2412 (imagpart (complex @0 @1))
2413 @1)
83633539 2414
77c028c5
MG
2415/* Sometimes we only care about half of a complex expression. */
2416(simplify
2417 (realpart (convert?:s (conj:s @0)))
2418 (convert (realpart @0)))
2419(simplify
2420 (imagpart (convert?:s (conj:s @0)))
2421 (convert (negate (imagpart @0))))
2422(for part (realpart imagpart)
2423 (for op (plus minus)
2424 (simplify
2425 (part (convert?:s@2 (op:s @0 @1)))
2426 (convert (op (part @0) (part @1))))))
2427(simplify
2428 (realpart (convert?:s (CEXPI:s @0)))
2429 (convert (COS @0)))
2430(simplify
2431 (imagpart (convert?:s (CEXPI:s @0)))
2432 (convert (SIN @0)))
2433
2434/* conj(conj(x)) -> x */
2435(simplify
2436 (conj (convert? (conj @0)))
2437 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2438 (convert @0)))
2439
2440/* conj({x,y}) -> {x,-y} */
2441(simplify
2442 (conj (convert?:s (complex:s @0 @1)))
2443 (with { tree itype = TREE_TYPE (type); }
2444 (complex (convert:itype @0) (negate (convert:itype @1)))))
83633539
RB
2445
2446/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2447(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2448 (simplify
2449 (bswap (bswap @0))
2450 @0)
2451 (simplify
2452 (bswap (bit_not (bswap @0)))
2453 (bit_not @0))
2454 (for bitop (bit_xor bit_ior bit_and)
2455 (simplify
2456 (bswap (bitop:c (bswap @0) @1))
2457 (bitop @0 (bswap @1)))))
96994de0
RB
2458
2459
2460/* Combine COND_EXPRs and VEC_COND_EXPRs. */
2461
2462/* Simplify constant conditions.
2463 Only optimize constant conditions when the selected branch
2464 has the same type as the COND_EXPR. This avoids optimizing
2465 away "c ? x : throw", where the throw has a void type.
2466 Note that we cannot throw away the fold-const.c variant nor
2467 this one as we depend on doing this transform before possibly
2468 A ? B : B -> B triggers and the fold-const.c one can optimize
2469 0 ? A : B to B even if A has side-effects. Something
2470 genmatch cannot handle. */
2471(simplify
2472 (cond INTEGER_CST@0 @1 @2)
8fdc6c67
RB
2473 (if (integer_zerop (@0))
2474 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2475 @2)
2476 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2477 @1)))
96994de0
RB
2478(simplify
2479 (vec_cond VECTOR_CST@0 @1 @2)
2480 (if (integer_all_onesp (@0))
8fdc6c67
RB
2481 @1
2482 (if (integer_zerop (@0))
2483 @2)))
96994de0 2484
b5481987
BC
2485/* Simplification moved from fold_cond_expr_with_comparison. It may also
2486 be extended. */
e2535011
BC
2487/* This pattern implements two kinds simplification:
2488
2489 Case 1)
2490 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
b5481987
BC
2491 1) Conversions are type widening from smaller type.
2492 2) Const c1 equals to c2 after canonicalizing comparison.
2493 3) Comparison has tree code LT, LE, GT or GE.
2494 This specific pattern is needed when (cmp (convert x) c) may not
2495 be simplified by comparison patterns because of multiple uses of
2496 x. It also makes sense here because simplifying across multiple
e2535011
BC
2497 referred var is always benefitial for complicated cases.
2498
2499 Case 2)
2500 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2501(for cmp (lt le gt ge eq)
b5481987 2502 (simplify
ae22bc5d 2503 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
b5481987
BC
2504 (with
2505 {
2506 tree from_type = TREE_TYPE (@1);
2507 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
ae22bc5d 2508 enum tree_code code = ERROR_MARK;
b5481987 2509
ae22bc5d
BC
2510 if (INTEGRAL_TYPE_P (from_type)
2511 && int_fits_type_p (@2, from_type)
b5481987
BC
2512 && (types_match (c1_type, from_type)
2513 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2514 && (TYPE_UNSIGNED (from_type)
2515 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2516 && (types_match (c2_type, from_type)
2517 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2518 && (TYPE_UNSIGNED (from_type)
2519 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2520 {
ae22bc5d 2521 if (cmp != EQ_EXPR)
b5481987 2522 {
e2535011
BC
2523 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2524 {
2525 /* X <= Y - 1 equals to X < Y. */
ae22bc5d 2526 if (cmp == LE_EXPR)
e2535011
BC
2527 code = LT_EXPR;
2528 /* X > Y - 1 equals to X >= Y. */
ae22bc5d 2529 if (cmp == GT_EXPR)
e2535011
BC
2530 code = GE_EXPR;
2531 }
2532 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2533 {
2534 /* X < Y + 1 equals to X <= Y. */
ae22bc5d 2535 if (cmp == LT_EXPR)
e2535011
BC
2536 code = LE_EXPR;
2537 /* X >= Y + 1 equals to X > Y. */
ae22bc5d 2538 if (cmp == GE_EXPR)
e2535011
BC
2539 code = GT_EXPR;
2540 }
ae22bc5d
BC
2541 if (code != ERROR_MARK
2542 || wi::to_widest (@2) == wi::to_widest (@3))
e2535011 2543 {
ae22bc5d 2544 if (cmp == LT_EXPR || cmp == LE_EXPR)
e2535011 2545 code = MIN_EXPR;
ae22bc5d 2546 if (cmp == GT_EXPR || cmp == GE_EXPR)
e2535011
BC
2547 code = MAX_EXPR;
2548 }
b5481987 2549 }
e2535011 2550 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
ae22bc5d
BC
2551 else if (int_fits_type_p (@3, from_type))
2552 code = EQ_EXPR;
b5481987
BC
2553 }
2554 }
2555 (if (code == MAX_EXPR)
21aaaf1e 2556 (convert (max @1 (convert @2)))
b5481987 2557 (if (code == MIN_EXPR)
21aaaf1e 2558 (convert (min @1 (convert @2)))
e2535011 2559 (if (code == EQ_EXPR)
ae22bc5d 2560 (convert (cond (eq @1 (convert @3))
21aaaf1e 2561 (convert:from_type @3) (convert:from_type @2)))))))))
b5481987 2562
714445ae
BC
2563/* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2564
2565 1) OP is PLUS or MINUS.
2566 2) CMP is LT, LE, GT or GE.
2567 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2568
2569 This pattern also handles special cases like:
2570
2571 A) Operand x is a unsigned to signed type conversion and c1 is
2572 integer zero. In this case,
2573 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2574 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2575 B) Const c1 may not equal to (C3 op' C2). In this case we also
2576 check equality for (c1+1) and (c1-1) by adjusting comparison
2577 code.
2578
2579 TODO: Though signed type is handled by this pattern, it cannot be
2580 simplified at the moment because C standard requires additional
2581 type promotion. In order to match&simplify it here, the IR needs
2582 to be cleaned up by other optimizers, i.e, VRP. */
2583(for op (plus minus)
2584 (for cmp (lt le gt ge)
2585 (simplify
2586 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2587 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2588 (if (types_match (from_type, to_type)
2589 /* Check if it is special case A). */
2590 || (TYPE_UNSIGNED (from_type)
2591 && !TYPE_UNSIGNED (to_type)
2592 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2593 && integer_zerop (@1)
2594 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2595 (with
2596 {
2597 bool overflow = false;
2598 enum tree_code code, cmp_code = cmp;
8e6cdc90
RS
2599 wide_int real_c1;
2600 wide_int c1 = wi::to_wide (@1);
2601 wide_int c2 = wi::to_wide (@2);
2602 wide_int c3 = wi::to_wide (@3);
714445ae
BC
2603 signop sgn = TYPE_SIGN (from_type);
2604
2605 /* Handle special case A), given x of unsigned type:
2606 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2607 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2608 if (!types_match (from_type, to_type))
2609 {
2610 if (cmp_code == LT_EXPR)
2611 cmp_code = GT_EXPR;
2612 if (cmp_code == GE_EXPR)
2613 cmp_code = LE_EXPR;
2614 c1 = wi::max_value (to_type);
2615 }
2616 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
2617 compute (c3 op' c2) and check if it equals to c1 with op' being
2618 the inverted operator of op. Make sure overflow doesn't happen
2619 if it is undefined. */
2620 if (op == PLUS_EXPR)
2621 real_c1 = wi::sub (c3, c2, sgn, &overflow);
2622 else
2623 real_c1 = wi::add (c3, c2, sgn, &overflow);
2624
2625 code = cmp_code;
2626 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2627 {
2628 /* Check if c1 equals to real_c1. Boundary condition is handled
2629 by adjusting comparison operation if necessary. */
2630 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2631 && !overflow)
2632 {
2633 /* X <= Y - 1 equals to X < Y. */
2634 if (cmp_code == LE_EXPR)
2635 code = LT_EXPR;
2636 /* X > Y - 1 equals to X >= Y. */
2637 if (cmp_code == GT_EXPR)
2638 code = GE_EXPR;
2639 }
2640 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
2641 && !overflow)
2642 {
2643 /* X < Y + 1 equals to X <= Y. */
2644 if (cmp_code == LT_EXPR)
2645 code = LE_EXPR;
2646 /* X >= Y + 1 equals to X > Y. */
2647 if (cmp_code == GE_EXPR)
2648 code = GT_EXPR;
2649 }
2650 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
2651 {
2652 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
2653 code = MIN_EXPR;
2654 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
2655 code = MAX_EXPR;
2656 }
2657 }
2658 }
2659 (if (code == MAX_EXPR)
2660 (op (max @X { wide_int_to_tree (from_type, real_c1); })
2661 { wide_int_to_tree (from_type, c2); })
2662 (if (code == MIN_EXPR)
2663 (op (min @X { wide_int_to_tree (from_type, real_c1); })
2664 { wide_int_to_tree (from_type, c2); })))))))))
2665
96994de0
RB
2666(for cnd (cond vec_cond)
2667 /* A ? B : (A ? X : C) -> A ? B : C. */
2668 (simplify
2669 (cnd @0 (cnd @0 @1 @2) @3)
2670 (cnd @0 @1 @3))
2671 (simplify
2672 (cnd @0 @1 (cnd @0 @2 @3))
2673 (cnd @0 @1 @3))
24a179f8
RB
2674 /* A ? B : (!A ? C : X) -> A ? B : C. */
2675 /* ??? This matches embedded conditions open-coded because genmatch
2676 would generate matching code for conditions in separate stmts only.
2677 The following is still important to merge then and else arm cases
2678 from if-conversion. */
2679 (simplify
2680 (cnd @0 @1 (cnd @2 @3 @4))
2681 (if (COMPARISON_CLASS_P (@0)
2682 && COMPARISON_CLASS_P (@2)
2683 && invert_tree_comparison
2684 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@2)
2685 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@2, 0), 0)
2686 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@2, 1), 0))
2687 (cnd @0 @1 @3)))
2688 (simplify
2689 (cnd @0 (cnd @1 @2 @3) @4)
2690 (if (COMPARISON_CLASS_P (@0)
2691 && COMPARISON_CLASS_P (@1)
2692 && invert_tree_comparison
2693 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@1)
2694 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@1, 0), 0)
2695 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@1, 1), 0))
2696 (cnd @0 @3 @4)))
96994de0
RB
2697
2698 /* A ? B : B -> B. */
2699 (simplify
2700 (cnd @0 @1 @1)
09240451 2701 @1)
96994de0 2702
09240451
MG
2703 /* !A ? B : C -> A ? C : B. */
2704 (simplify
2705 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
2706 (cnd @0 @2 @1)))
f84e7fd6 2707
a3ca1bc5
RB
2708/* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
2709 return all -1 or all 0 results. */
f43d102e
RS
2710/* ??? We could instead convert all instances of the vec_cond to negate,
2711 but that isn't necessarily a win on its own. */
2712(simplify
a3ca1bc5 2713 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
f43d102e 2714 (if (VECTOR_TYPE_P (type)
4d8989d5 2715 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1))
f43d102e 2716 && (TYPE_MODE (TREE_TYPE (type))
4d8989d5 2717 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
a3ca1bc5 2718 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
f43d102e 2719
a3ca1bc5 2720/* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
f43d102e 2721(simplify
a3ca1bc5 2722 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
f43d102e 2723 (if (VECTOR_TYPE_P (type)
4d8989d5 2724 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1))
f43d102e 2725 && (TYPE_MODE (TREE_TYPE (type))
4d8989d5 2726 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
a3ca1bc5 2727 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
f84e7fd6 2728
2ee05f1e 2729
f84e7fd6
RB
2730/* Simplifications of comparisons. */
2731
24f1db9c
RB
2732/* See if we can reduce the magnitude of a constant involved in a
2733 comparison by changing the comparison code. This is a canonicalization
2734 formerly done by maybe_canonicalize_comparison_1. */
2735(for cmp (le gt)
2736 acmp (lt ge)
2737 (simplify
2738 (cmp @0 INTEGER_CST@1)
2739 (if (tree_int_cst_sgn (@1) == -1)
8e6cdc90 2740 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
24f1db9c
RB
2741(for cmp (ge lt)
2742 acmp (gt le)
2743 (simplify
2744 (cmp @0 INTEGER_CST@1)
2745 (if (tree_int_cst_sgn (@1) == 1)
8e6cdc90 2746 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
24f1db9c
RB
2747
2748
f84e7fd6
RB
2749/* We can simplify a logical negation of a comparison to the
2750 inverted comparison. As we cannot compute an expression
2751 operator using invert_tree_comparison we have to simulate
2752 that with expression code iteration. */
2753(for cmp (tcc_comparison)
2754 icmp (inverted_tcc_comparison)
2755 ncmp (inverted_tcc_comparison_with_nans)
2756 /* Ideally we'd like to combine the following two patterns
2757 and handle some more cases by using
2758 (logical_inverted_value (cmp @0 @1))
2759 here but for that genmatch would need to "inline" that.
2760 For now implement what forward_propagate_comparison did. */
2761 (simplify
2762 (bit_not (cmp @0 @1))
2763 (if (VECTOR_TYPE_P (type)
2764 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
2765 /* Comparison inversion may be impossible for trapping math,
2766 invert_tree_comparison will tell us. But we can't use
2767 a computed operator in the replacement tree thus we have
2768 to play the trick below. */
2769 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 2770 (cmp, HONOR_NANS (@0)); }
f84e7fd6 2771 (if (ic == icmp)
8fdc6c67
RB
2772 (icmp @0 @1)
2773 (if (ic == ncmp)
2774 (ncmp @0 @1))))))
f84e7fd6 2775 (simplify
09240451
MG
2776 (bit_xor (cmp @0 @1) integer_truep)
2777 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 2778 (cmp, HONOR_NANS (@0)); }
09240451 2779 (if (ic == icmp)
8fdc6c67
RB
2780 (icmp @0 @1)
2781 (if (ic == ncmp)
2782 (ncmp @0 @1))))))
e18c1d66 2783
2ee05f1e
RB
2784/* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
2785 ??? The transformation is valid for the other operators if overflow
2786 is undefined for the type, but performing it here badly interacts
2787 with the transformation in fold_cond_expr_with_comparison which
2788 attempts to synthetize ABS_EXPR. */
2789(for cmp (eq ne)
2790 (simplify
d9ba1961
RB
2791 (cmp (minus@2 @0 @1) integer_zerop)
2792 (if (single_use (@2))
2793 (cmp @0 @1))))
2ee05f1e
RB
2794
2795/* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
2796 signed arithmetic case. That form is created by the compiler
2797 often enough for folding it to be of value. One example is in
2798 computing loop trip counts after Operator Strength Reduction. */
07cdc2b8
RB
2799(for cmp (simple_comparison)
2800 scmp (swapped_simple_comparison)
2ee05f1e 2801 (simplify
bc6e9db4 2802 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
2ee05f1e
RB
2803 /* Handle unfolded multiplication by zero. */
2804 (if (integer_zerop (@1))
8fdc6c67
RB
2805 (cmp @1 @2)
2806 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
bc6e9db4
RB
2807 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2808 && single_use (@3))
8fdc6c67
RB
2809 /* If @1 is negative we swap the sense of the comparison. */
2810 (if (tree_int_cst_sgn (@1) < 0)
2811 (scmp @0 @2)
2812 (cmp @0 @2))))))
2ee05f1e
RB
2813
2814/* Simplify comparison of something with itself. For IEEE
2815 floating-point, we can only do some of these simplifications. */
287f8f17 2816(for cmp (eq ge le)
2ee05f1e
RB
2817 (simplify
2818 (cmp @0 @0)
287f8f17 2819 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
b9407883 2820 || ! HONOR_NANS (@0))
287f8f17
RB
2821 { constant_boolean_node (true, type); }
2822 (if (cmp != EQ_EXPR)
2823 (eq @0 @0)))))
2ee05f1e
RB
2824(for cmp (ne gt lt)
2825 (simplify
2826 (cmp @0 @0)
2827 (if (cmp != NE_EXPR
2828 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
b9407883 2829 || ! HONOR_NANS (@0))
2ee05f1e 2830 { constant_boolean_node (false, type); })))
b5d3d787
RB
2831(for cmp (unle unge uneq)
2832 (simplify
2833 (cmp @0 @0)
2834 { constant_boolean_node (true, type); }))
dd53d197
MG
2835(for cmp (unlt ungt)
2836 (simplify
2837 (cmp @0 @0)
2838 (unordered @0 @0)))
b5d3d787
RB
2839(simplify
2840 (ltgt @0 @0)
2841 (if (!flag_trapping_math)
2842 { constant_boolean_node (false, type); }))
2ee05f1e
RB
2843
2844/* Fold ~X op ~Y as Y op X. */
07cdc2b8 2845(for cmp (simple_comparison)
2ee05f1e 2846 (simplify
7fe996ba
RB
2847 (cmp (bit_not@2 @0) (bit_not@3 @1))
2848 (if (single_use (@2) && single_use (@3))
2849 (cmp @1 @0))))
2ee05f1e
RB
2850
2851/* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
07cdc2b8
RB
2852(for cmp (simple_comparison)
2853 scmp (swapped_simple_comparison)
2ee05f1e 2854 (simplify
7fe996ba
RB
2855 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
2856 (if (single_use (@2)
2857 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
2ee05f1e
RB
2858 (scmp @0 (bit_not @1)))))
2859
07cdc2b8
RB
2860(for cmp (simple_comparison)
2861 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
2862 (simplify
2863 (cmp (convert@2 @0) (convert? @1))
2864 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2865 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
2866 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
2867 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
2868 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
2869 (with
2870 {
2871 tree type1 = TREE_TYPE (@1);
2872 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
2873 {
2874 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
2875 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
2876 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
2877 type1 = float_type_node;
2878 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
2879 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
2880 type1 = double_type_node;
2881 }
2882 tree newtype
2883 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
2884 ? TREE_TYPE (@0) : type1);
2885 }
2886 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
2887 (cmp (convert:newtype @0) (convert:newtype @1))))))
2888
2889 (simplify
2890 (cmp @0 REAL_CST@1)
2891 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
64d3a1f0
RB
2892 (switch
2893 /* a CMP (-0) -> a CMP 0 */
2894 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
2895 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
2896 /* x != NaN is always true, other ops are always false. */
2897 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
2898 && ! HONOR_SNANS (@1))
2899 { constant_boolean_node (cmp == NE_EXPR, type); })
2900 /* Fold comparisons against infinity. */
2901 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
2902 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
2903 (with
2904 {
2905 REAL_VALUE_TYPE max;
2906 enum tree_code code = cmp;
2907 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
2908 if (neg)
2909 code = swap_tree_comparison (code);
2910 }
2911 (switch
2912 /* x > +Inf is always false, if with ignore sNANs. */
2913 (if (code == GT_EXPR
2914 && ! HONOR_SNANS (@0))
2915 { constant_boolean_node (false, type); })
2916 (if (code == LE_EXPR)
2917 /* x <= +Inf is always true, if we don't case about NaNs. */
2918 (if (! HONOR_NANS (@0))
2919 { constant_boolean_node (true, type); }
b0eb889b 2920 /* x <= +Inf is the same as x == x, i.e. !isnan(x). */
64d3a1f0
RB
2921 (eq @0 @0)))
2922 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
2923 (if (code == EQ_EXPR || code == GE_EXPR)
2924 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
2925 (if (neg)
2926 (lt @0 { build_real (TREE_TYPE (@0), max); })
2927 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
2928 /* x < +Inf is always equal to x <= DBL_MAX. */
2929 (if (code == LT_EXPR)
2930 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
2931 (if (neg)
2932 (ge @0 { build_real (TREE_TYPE (@0), max); })
2933 (le @0 { build_real (TREE_TYPE (@0), max); }))))
2934 /* x != +Inf is always equal to !(x > DBL_MAX). */
2935 (if (code == NE_EXPR)
2936 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
2937 (if (! HONOR_NANS (@0))
2938 (if (neg)
2939 (ge @0 { build_real (TREE_TYPE (@0), max); })
2940 (le @0 { build_real (TREE_TYPE (@0), max); }))
2941 (if (neg)
2942 (bit_xor (lt @0 { build_real (TREE_TYPE (@0), max); })
2943 { build_one_cst (type); })
2944 (bit_xor (gt @0 { build_real (TREE_TYPE (@0), max); })
2945 { build_one_cst (type); }))))))))))
07cdc2b8
RB
2946
2947 /* If this is a comparison of a real constant with a PLUS_EXPR
2948 or a MINUS_EXPR of a real constant, we can convert it into a
2949 comparison with a revised real constant as long as no overflow
2950 occurs when unsafe_math_optimizations are enabled. */
2951 (if (flag_unsafe_math_optimizations)
2952 (for op (plus minus)
2953 (simplify
2954 (cmp (op @0 REAL_CST@1) REAL_CST@2)
2955 (with
2956 {
2957 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
2958 TREE_TYPE (@1), @2, @1);
2959 }
f980c9a2 2960 (if (tem && !TREE_OVERFLOW (tem))
07cdc2b8
RB
2961 (cmp @0 { tem; }))))))
2962
2963 /* Likewise, we can simplify a comparison of a real constant with
2964 a MINUS_EXPR whose first operand is also a real constant, i.e.
2965 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
2966 floating-point types only if -fassociative-math is set. */
2967 (if (flag_associative_math)
2968 (simplify
0409237b 2969 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
07cdc2b8 2970 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
f980c9a2 2971 (if (tem && !TREE_OVERFLOW (tem))
07cdc2b8
RB
2972 (cmp { tem; } @1)))))
2973
2974 /* Fold comparisons against built-in math functions. */
2975 (if (flag_unsafe_math_optimizations
2976 && ! flag_errno_math)
2977 (for sq (SQRT)
2978 (simplify
2979 (cmp (sq @0) REAL_CST@1)
64d3a1f0
RB
2980 (switch
2981 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2982 (switch
2983 /* sqrt(x) < y is always false, if y is negative. */
2984 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
8fdc6c67 2985 { constant_boolean_node (false, type); })
64d3a1f0
RB
2986 /* sqrt(x) > y is always true, if y is negative and we
2987 don't care about NaNs, i.e. negative values of x. */
2988 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
2989 { constant_boolean_node (true, type); })
2990 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
2991 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
c53233c6
RS
2992 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
2993 (switch
2994 /* sqrt(x) < 0 is always false. */
2995 (if (cmp == LT_EXPR)
2996 { constant_boolean_node (false, type); })
2997 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
2998 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
2999 { constant_boolean_node (true, type); })
3000 /* sqrt(x) <= 0 -> x == 0. */
3001 (if (cmp == LE_EXPR)
3002 (eq @0 @1))
3003 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3004 == or !=. In the last case:
3005
3006 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3007
3008 if x is negative or NaN. Due to -funsafe-math-optimizations,
3009 the results for other x follow from natural arithmetic. */
3010 (cmp @0 @1)))
64d3a1f0
RB
3011 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3012 (with
3013 {
3014 REAL_VALUE_TYPE c2;
5c88ea94
RS
3015 real_arithmetic (&c2, MULT_EXPR,
3016 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
64d3a1f0
RB
3017 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3018 }
3019 (if (REAL_VALUE_ISINF (c2))
3020 /* sqrt(x) > y is x == +Inf, when y is very large. */
3021 (if (HONOR_INFINITIES (@0))
3022 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3023 { constant_boolean_node (false, type); })
3024 /* sqrt(x) > c is the same as x > c*c. */
3025 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3026 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3027 (with
3028 {
3029 REAL_VALUE_TYPE c2;
5c88ea94
RS
3030 real_arithmetic (&c2, MULT_EXPR,
3031 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
64d3a1f0
RB
3032 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3033 }
3034 (if (REAL_VALUE_ISINF (c2))
3035 (switch
3036 /* sqrt(x) < y is always true, when y is a very large
3037 value and we don't care about NaNs or Infinities. */
3038 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3039 { constant_boolean_node (true, type); })
3040 /* sqrt(x) < y is x != +Inf when y is very large and we
3041 don't care about NaNs. */
3042 (if (! HONOR_NANS (@0))
3043 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3044 /* sqrt(x) < y is x >= 0 when y is very large and we
3045 don't care about Infinities. */
3046 (if (! HONOR_INFINITIES (@0))
3047 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3048 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3049 (if (GENERIC)
3050 (truth_andif
3051 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3052 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3053 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3054 (if (! HONOR_NANS (@0))
3055 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3056 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3057 (if (GENERIC)
3058 (truth_andif
3059 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
0ca2e7f7
PK
3060 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3061 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3062 (simplify
3063 (cmp (sq @0) (sq @1))
3064 (if (! HONOR_NANS (@0))
3065 (cmp @0 @1))))))
2ee05f1e 3066
c779bea5
YG
3067/* Optimize various special cases of (FTYPE) N CMP CST. */
3068(for cmp (lt le eq ne ge gt)
3069 icmp (le le eq ne ge ge)
3070 (simplify
3071 (cmp (float @0) REAL_CST@1)
3072 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3073 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3074 (with
3075 {
3076 tree itype = TREE_TYPE (@0);
3077 signop isign = TYPE_SIGN (itype);
3078 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3079 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3080 /* Be careful to preserve any potential exceptions due to
3081 NaNs. qNaNs are ok in == or != context.
3082 TODO: relax under -fno-trapping-math or
3083 -fno-signaling-nans. */
3084 bool exception_p
3085 = real_isnan (cst) && (cst->signalling
c651dca2 3086 || (cmp != EQ_EXPR && cmp != NE_EXPR));
c779bea5
YG
3087 /* INT?_MIN is power-of-two so it takes
3088 only one mantissa bit. */
3089 bool signed_p = isign == SIGNED;
3090 bool itype_fits_ftype_p
3091 = TYPE_PRECISION (itype) - signed_p <= significand_size (fmt);
3092 }
3093 /* TODO: allow non-fitting itype and SNaNs when
3094 -fno-trapping-math. */
3095 (if (itype_fits_ftype_p && ! exception_p)
3096 (with
3097 {
3098 REAL_VALUE_TYPE imin, imax;
3099 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3100 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3101
3102 REAL_VALUE_TYPE icst;
3103 if (cmp == GT_EXPR || cmp == GE_EXPR)
3104 real_ceil (&icst, fmt, cst);
3105 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3106 real_floor (&icst, fmt, cst);
3107 else
3108 real_trunc (&icst, fmt, cst);
3109
b09bf97b 3110 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
c779bea5
YG
3111
3112 bool overflow_p = false;
3113 wide_int icst_val
3114 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3115 }
3116 (switch
3117 /* Optimize cases when CST is outside of ITYPE's range. */
3118 (if (real_compare (LT_EXPR, cst, &imin))
3119 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3120 type); })
3121 (if (real_compare (GT_EXPR, cst, &imax))
3122 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3123 type); })
3124 /* Remove cast if CST is an integer representable by ITYPE. */
3125 (if (cst_int_p)
3126 (cmp @0 { gcc_assert (!overflow_p);
3127 wide_int_to_tree (itype, icst_val); })
3128 )
3129 /* When CST is fractional, optimize
3130 (FTYPE) N == CST -> 0
3131 (FTYPE) N != CST -> 1. */
3132 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3133 { constant_boolean_node (cmp == NE_EXPR, type); })
3134 /* Otherwise replace with sensible integer constant. */
3135 (with
3136 {
3137 gcc_checking_assert (!overflow_p);
3138 }
3139 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3140
40fd269a
MG
3141/* Fold A /[ex] B CMP C to A CMP B * C. */
3142(for cmp (eq ne)
3143 (simplify
3144 (cmp (exact_div @0 @1) INTEGER_CST@2)
3145 (if (!integer_zerop (@1))
8e6cdc90 3146 (if (wi::to_wide (@2) == 0)
40fd269a
MG
3147 (cmp @0 @2)
3148 (if (TREE_CODE (@1) == INTEGER_CST)
3149 (with
3150 {
3151 bool ovf;
8e6cdc90
RS
3152 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3153 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
40fd269a
MG
3154 }
3155 (if (ovf)
3156 { constant_boolean_node (cmp == NE_EXPR, type); }
3157 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3158(for cmp (lt le gt ge)
3159 (simplify
3160 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
8e6cdc90 3161 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
40fd269a
MG
3162 (with
3163 {
3164 bool ovf;
8e6cdc90
RS
3165 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3166 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
40fd269a
MG
3167 }
3168 (if (ovf)
8e6cdc90
RS
3169 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3170 TYPE_SIGN (TREE_TYPE (@2)))
40fd269a
MG
3171 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3172 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3173
cfdc4f33
MG
3174/* Unordered tests if either argument is a NaN. */
3175(simplify
3176 (bit_ior (unordered @0 @0) (unordered @1 @1))
aea417d7 3177 (if (types_match (@0, @1))
cfdc4f33 3178 (unordered @0 @1)))
257b01ba
MG
3179(simplify
3180 (bit_and (ordered @0 @0) (ordered @1 @1))
3181 (if (types_match (@0, @1))
3182 (ordered @0 @1)))
cfdc4f33
MG
3183(simplify
3184 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3185 @2)
257b01ba
MG
3186(simplify
3187 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3188 @2)
e18c1d66 3189
90c6f26c
RB
3190/* Simple range test simplifications. */
3191/* A < B || A >= B -> true. */
5d30c58d
RB
3192(for test1 (lt le le le ne ge)
3193 test2 (ge gt ge ne eq ne)
90c6f26c
RB
3194 (simplify
3195 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3196 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3197 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3198 { constant_boolean_node (true, type); })))
3199/* A < B && A >= B -> false. */
3200(for test1 (lt lt lt le ne eq)
3201 test2 (ge gt eq gt eq gt)
3202 (simplify
3203 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3204 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3205 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3206 { constant_boolean_node (false, type); })))
3207
9ebc3467
YG
3208/* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3209 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3210
3211 Note that comparisons
3212 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3213 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3214 will be canonicalized to above so there's no need to
3215 consider them here.
3216 */
3217
3218(for cmp (le gt)
3219 eqcmp (eq ne)
3220 (simplify
3221 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3222 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3223 (with
3224 {
3225 tree ty = TREE_TYPE (@0);
3226 unsigned prec = TYPE_PRECISION (ty);
3227 wide_int mask = wi::to_wide (@2, prec);
3228 wide_int rhs = wi::to_wide (@3, prec);
3229 signop sgn = TYPE_SIGN (ty);
3230 }
3231 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3232 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3233 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3234 { build_zero_cst (ty); }))))))
3235
534bd33b
MG
3236/* -A CMP -B -> B CMP A. */
3237(for cmp (tcc_comparison)
3238 scmp (swapped_tcc_comparison)
3239 (simplify
3240 (cmp (negate @0) (negate @1))
3241 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3242 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3243 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3244 (scmp @0 @1)))
3245 (simplify
3246 (cmp (negate @0) CONSTANT_CLASS_P@1)
3247 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3248 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3249 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
23f27839 3250 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
534bd33b
MG
3251 (if (tem && !TREE_OVERFLOW (tem))
3252 (scmp @0 { tem; }))))))
3253
b0eb889b
MG
3254/* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3255(for op (eq ne)
3256 (simplify
3257 (op (abs @0) zerop@1)
3258 (op @0 @1)))
3259
6358a676
MG
3260/* From fold_sign_changed_comparison and fold_widened_comparison.
3261 FIXME: the lack of symmetry is disturbing. */
79d4f7c6
RB
3262(for cmp (simple_comparison)
3263 (simplify
3264 (cmp (convert@0 @00) (convert?@1 @10))
452ec2a5 3265 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
79d4f7c6
RB
3266 /* Disable this optimization if we're casting a function pointer
3267 type on targets that require function pointer canonicalization. */
3268 && !(targetm.have_canonicalize_funcptr_for_compare ()
3269 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
2fde61e3
RB
3270 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
3271 && single_use (@0))
79d4f7c6
RB
3272 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3273 && (TREE_CODE (@10) == INTEGER_CST
6358a676 3274 || @1 != @10)
79d4f7c6
RB
3275 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3276 || cmp == NE_EXPR
3277 || cmp == EQ_EXPR)
6358a676 3278 && !POINTER_TYPE_P (TREE_TYPE (@00)))
79d4f7c6
RB
3279 /* ??? The special-casing of INTEGER_CST conversion was in the original
3280 code and here to avoid a spurious overflow flag on the resulting
3281 constant which fold_convert produces. */
3282 (if (TREE_CODE (@1) == INTEGER_CST)
3283 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3284 TREE_OVERFLOW (@1)); })
3285 (cmp @00 (convert @1)))
3286
3287 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3288 /* If possible, express the comparison in the shorter mode. */
3289 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
7fd82d52
PP
3290 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3291 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3292 && TYPE_UNSIGNED (TREE_TYPE (@00))))
79d4f7c6
RB
3293 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3294 || ((TYPE_PRECISION (TREE_TYPE (@00))
3295 >= TYPE_PRECISION (TREE_TYPE (@10)))
3296 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3297 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3298 || (TREE_CODE (@10) == INTEGER_CST
f6c15759 3299 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
79d4f7c6
RB
3300 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3301 (cmp @00 (convert @10))
3302 (if (TREE_CODE (@10) == INTEGER_CST
f6c15759 3303 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
79d4f7c6
RB
3304 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3305 (with
3306 {
3307 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3308 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3309 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3310 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3311 }
3312 (if (above || below)
3313 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3314 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3315 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3316 { constant_boolean_node (above ? true : false, type); }
3317 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3318 { constant_boolean_node (above ? false : true, type); }))))))))))))
66e1cacf 3319
96a111a3
RB
3320(for cmp (eq ne)
3321 /* A local variable can never be pointed to by
3322 the default SSA name of an incoming parameter.
3323 SSA names are canonicalized to 2nd place. */
3324 (simplify
3325 (cmp addr@0 SSA_NAME@1)
3326 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3327 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3328 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3329 (if (TREE_CODE (base) == VAR_DECL
3330 && auto_var_in_fn_p (base, current_function_decl))
3331 (if (cmp == NE_EXPR)
3332 { constant_boolean_node (true, type); }
3333 { constant_boolean_node (false, type); }))))))
3334
66e1cacf
RB
3335/* Equality compare simplifications from fold_binary */
3336(for cmp (eq ne)
3337
3338 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3339 Similarly for NE_EXPR. */
3340 (simplify
3341 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3342 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
8e6cdc90 3343 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
66e1cacf
RB
3344 { constant_boolean_node (cmp == NE_EXPR, type); }))
3345
3346 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3347 (simplify
3348 (cmp (bit_xor @0 @1) integer_zerop)
3349 (cmp @0 @1))
3350
3351 /* (X ^ Y) == Y becomes X == 0.
3352 Likewise (X ^ Y) == X becomes Y == 0. */
3353 (simplify
99e943a2 3354 (cmp:c (bit_xor:c @0 @1) @0)
66e1cacf
RB
3355 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3356
3357 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3358 (simplify
3359 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3360 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
d057c866 3361 (cmp @0 (bit_xor @1 (convert @2)))))
d057c866
RB
3362
3363 (simplify
3364 (cmp (convert? addr@0) integer_zerop)
3365 (if (tree_single_nonzero_warnv_p (@0, NULL))
3366 { constant_boolean_node (cmp == NE_EXPR, type); })))
3367
b0eb889b
MG
3368/* If we have (A & C) == C where C is a power of 2, convert this into
3369 (A & C) != 0. Similarly for NE_EXPR. */
3370(for cmp (eq ne)
3371 icmp (ne eq)
3372 (simplify
3373 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3374 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3375
519e0faa
PB
3376/* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3377 convert this into a shift followed by ANDing with D. */
3378(simplify
3379 (cond
3380 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
3381 integer_pow2p@2 integer_zerop)
3382 (with {
8e6cdc90
RS
3383 int shift = (wi::exact_log2 (wi::to_wide (@2))
3384 - wi::exact_log2 (wi::to_wide (@1)));
519e0faa
PB
3385 }
3386 (if (shift > 0)
3387 (bit_and
3388 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3389 (bit_and
3390 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); })) @2))))
3391
b0eb889b
MG
3392/* If we have (A & C) != 0 where C is the sign bit of A, convert
3393 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3394(for cmp (eq ne)
3395 ncmp (ge lt)
3396 (simplify
3397 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3398 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2be65d9e 3399 && type_has_mode_precision_p (TREE_TYPE (@0))
b0eb889b 3400 && element_precision (@2) >= element_precision (@0)
8e6cdc90 3401 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
b0eb889b
MG
3402 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3403 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3404
519e0faa 3405/* If we have A < 0 ? C : 0 where C is a power of 2, convert
c0140e3c 3406 this into a right shift or sign extension followed by ANDing with C. */
519e0faa
PB
3407(simplify
3408 (cond
3409 (lt @0 integer_zerop)
3410 integer_pow2p@1 integer_zerop)
c0140e3c
JJ
3411 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
3412 (with {
8e6cdc90 3413 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
c0140e3c
JJ
3414 }
3415 (if (shift >= 0)
3416 (bit_and
3417 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3418 @1)
3419 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3420 sign extension followed by AND with C will achieve the effect. */
3421 (bit_and (convert @0) @1)))))
519e0faa 3422
68aba1f6
RB
3423/* When the addresses are not directly of decls compare base and offset.
3424 This implements some remaining parts of fold_comparison address
3425 comparisons but still no complete part of it. Still it is good
3426 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3427(for cmp (simple_comparison)
3428 (simplify
f501d5cd 3429 (cmp (convert1?@2 addr@0) (convert2? addr@1))
68aba1f6
RB
3430 (with
3431 {
3432 HOST_WIDE_INT off0, off1;
3433 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3434 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3435 if (base0 && TREE_CODE (base0) == MEM_REF)
3436 {
3437 off0 += mem_ref_offset (base0).to_short_addr ();
3438 base0 = TREE_OPERAND (base0, 0);
3439 }
3440 if (base1 && TREE_CODE (base1) == MEM_REF)
3441 {
3442 off1 += mem_ref_offset (base1).to_short_addr ();
3443 base1 = TREE_OPERAND (base1, 0);
3444 }
3445 }
da571fda
RB
3446 (if (base0 && base1)
3447 (with
3448 {
aad88aed 3449 int equal = 2;
70f40fea
JJ
3450 /* Punt in GENERIC on variables with value expressions;
3451 the value expressions might point to fields/elements
3452 of other vars etc. */
3453 if (GENERIC
3454 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3455 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3456 ;
3457 else if (decl_in_symtab_p (base0)
3458 && decl_in_symtab_p (base1))
da571fda
RB
3459 equal = symtab_node::get_create (base0)
3460 ->equal_address_to (symtab_node::get_create (base1));
c3bea076
RB
3461 else if ((DECL_P (base0)
3462 || TREE_CODE (base0) == SSA_NAME
3463 || TREE_CODE (base0) == STRING_CST)
3464 && (DECL_P (base1)
3465 || TREE_CODE (base1) == SSA_NAME
3466 || TREE_CODE (base1) == STRING_CST))
aad88aed 3467 equal = (base0 == base1);
da571fda 3468 }
5e19d437 3469 (if (equal == 1)
da571fda
RB
3470 (switch
3471 (if (cmp == EQ_EXPR)
3472 { constant_boolean_node (off0 == off1, type); })
3473 (if (cmp == NE_EXPR)
3474 { constant_boolean_node (off0 != off1, type); })
3475 (if (cmp == LT_EXPR)
3476 { constant_boolean_node (off0 < off1, type); })
3477 (if (cmp == LE_EXPR)
3478 { constant_boolean_node (off0 <= off1, type); })
3479 (if (cmp == GE_EXPR)
3480 { constant_boolean_node (off0 >= off1, type); })
3481 (if (cmp == GT_EXPR)
3482 { constant_boolean_node (off0 > off1, type); }))
3483 (if (equal == 0
3484 && DECL_P (base0) && DECL_P (base1)
3485 /* If we compare this as integers require equal offset. */
3486 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
3487 || off0 == off1))
3488 (switch
3489 (if (cmp == EQ_EXPR)
3490 { constant_boolean_node (false, type); })
3491 (if (cmp == NE_EXPR)
3492 { constant_boolean_node (true, type); })))))))))
66e1cacf 3493
98998245
RB
3494/* Simplify pointer equality compares using PTA. */
3495(for neeq (ne eq)
3496 (simplify
3497 (neeq @0 @1)
3498 (if (POINTER_TYPE_P (TREE_TYPE (@0))
3499 && ptrs_compare_unequal (@0, @1))
3500 { neeq == EQ_EXPR ? boolean_false_node : boolean_true_node; })))
3501
8f63caf6 3502/* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
467719fb
PK
3503 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3504 Disable the transform if either operand is pointer to function.
3505 This broke pr22051-2.c for arm where function pointer
3506 canonicalizaion is not wanted. */
1c0a8806 3507
8f63caf6
RB
3508(for cmp (ne eq)
3509 (simplify
3510 (cmp (convert @0) INTEGER_CST@1)
467719fb
PK
3511 (if ((POINTER_TYPE_P (TREE_TYPE (@0)) && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3512 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3513 || (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && POINTER_TYPE_P (TREE_TYPE (@1))
3514 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
8f63caf6
RB
3515 (cmp @0 (convert @1)))))
3516
21aacde4
RB
3517/* Non-equality compare simplifications from fold_binary */
3518(for cmp (lt gt le ge)
3519 /* Comparisons with the highest or lowest possible integer of
3520 the specified precision will have known values. */
3521 (simplify
3522 (cmp (convert?@2 @0) INTEGER_CST@1)
3523 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3524 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3525 (with
3526 {
3527 tree arg1_type = TREE_TYPE (@1);
3528 unsigned int prec = TYPE_PRECISION (arg1_type);
3529 wide_int max = wi::max_value (arg1_type);
3530 wide_int signed_max = wi::max_value (prec, SIGNED);
3531 wide_int min = wi::min_value (arg1_type);
3532 }
3533 (switch
8e6cdc90 3534 (if (wi::to_wide (@1) == max)
21aacde4
RB
3535 (switch
3536 (if (cmp == GT_EXPR)
3537 { constant_boolean_node (false, type); })
3538 (if (cmp == GE_EXPR)
3539 (eq @2 @1))
3540 (if (cmp == LE_EXPR)
3541 { constant_boolean_node (true, type); })
3542 (if (cmp == LT_EXPR)
3543 (ne @2 @1))))
8e6cdc90 3544 (if (wi::to_wide (@1) == min)
21aacde4
RB
3545 (switch
3546 (if (cmp == LT_EXPR)
3547 { constant_boolean_node (false, type); })
3548 (if (cmp == LE_EXPR)
3549 (eq @2 @1))
3550 (if (cmp == GE_EXPR)
3551 { constant_boolean_node (true, type); })
3552 (if (cmp == GT_EXPR)
3553 (ne @2 @1))))
8e6cdc90 3554 (if (wi::to_wide (@1) == max - 1)
9bc22d19
RB
3555 (switch
3556 (if (cmp == GT_EXPR)
8e6cdc90 3557 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))
9bc22d19 3558 (if (cmp == LE_EXPR)
8e6cdc90
RS
3559 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3560 (if (wi::to_wide (@1) == min + 1)
21aacde4
RB
3561 (switch
3562 (if (cmp == GE_EXPR)
8e6cdc90 3563 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))
21aacde4 3564 (if (cmp == LT_EXPR)
8e6cdc90
RS
3565 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3566 (if (wi::to_wide (@1) == signed_max
21aacde4
RB
3567 && TYPE_UNSIGNED (arg1_type)
3568 /* We will flip the signedness of the comparison operator
3569 associated with the mode of @1, so the sign bit is
3570 specified by this mode. Check that @1 is the signed
3571 max associated with this sign bit. */
7a504f33 3572 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
21aacde4
RB
3573 /* signed_type does not work on pointer types. */
3574 && INTEGRAL_TYPE_P (arg1_type))
3575 /* The following case also applies to X < signed_max+1
3576 and X >= signed_max+1 because previous transformations. */
3577 (if (cmp == LE_EXPR || cmp == GT_EXPR)
3578 (with { tree st = signed_type_for (arg1_type); }
3579 (if (cmp == LE_EXPR)
3580 (ge (convert:st @0) { build_zero_cst (st); })
3581 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
3582
b5d3d787
RB
3583(for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
3584 /* If the second operand is NaN, the result is constant. */
3585 (simplify
3586 (cmp @0 REAL_CST@1)
3587 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3588 && (cmp != LTGT_EXPR || ! flag_trapping_math))
50301115 3589 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
b5d3d787 3590 ? false : true, type); })))
21aacde4 3591
55cf3946
RB
3592/* bool_var != 0 becomes bool_var. */
3593(simplify
b5d3d787 3594 (ne @0 integer_zerop)
55cf3946
RB
3595 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3596 && types_match (type, TREE_TYPE (@0)))
3597 (non_lvalue @0)))
3598/* bool_var == 1 becomes bool_var. */
3599(simplify
b5d3d787 3600 (eq @0 integer_onep)
55cf3946
RB
3601 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3602 && types_match (type, TREE_TYPE (@0)))
3603 (non_lvalue @0)))
b5d3d787
RB
3604/* Do not handle
3605 bool_var == 0 becomes !bool_var or
3606 bool_var != 1 becomes !bool_var
3607 here because that only is good in assignment context as long
3608 as we require a tcc_comparison in GIMPLE_CONDs where we'd
3609 replace if (x == 0) with tem = ~x; if (tem != 0) which is
3610 clearly less optimal and which we'll transform again in forwprop. */
55cf3946 3611
ca1206be
MG
3612/* When one argument is a constant, overflow detection can be simplified.
3613 Currently restricted to single use so as not to interfere too much with
3614 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
3615 A + CST CMP A -> A CMP' CST' */
3616(for cmp (lt le ge gt)
3617 out (gt gt le le)
3618 (simplify
a8e9f9a3 3619 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
ca1206be
MG
3620 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3621 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
8e6cdc90 3622 && wi::to_wide (@1) != 0
ca1206be 3623 && single_use (@2))
8e6cdc90
RS
3624 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
3625 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
3626 wi::max_value (prec, UNSIGNED)
3627 - wi::to_wide (@1)); })))))
ca1206be 3628
3563f78f
MG
3629/* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
3630 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
3631 expects the long form, so we restrict the transformation for now. */
3632(for cmp (gt le)
3633 (simplify
a8e9f9a3 3634 (cmp:c (minus@2 @0 @1) @0)
3563f78f
MG
3635 (if (single_use (@2)
3636 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3637 && TYPE_UNSIGNED (TREE_TYPE (@0))
3638 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3639 (cmp @1 @0))))
3563f78f
MG
3640
3641/* Testing for overflow is unnecessary if we already know the result. */
3563f78f
MG
3642/* A - B > A */
3643(for cmp (gt le)
3644 out (ne eq)
3645 (simplify
a8e9f9a3 3646 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3563f78f
MG
3647 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3648 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3649 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3650/* A + B < A */
3651(for cmp (lt ge)
3652 out (ne eq)
3653 (simplify
a8e9f9a3 3654 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3563f78f
MG
3655 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3656 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3657 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3658
603aeb87 3659/* For unsigned operands, -1 / B < A checks whether A * B would overflow.
0557293f 3660 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
0557293f
AM
3661(for cmp (lt ge)
3662 out (ne eq)
3663 (simplify
603aeb87 3664 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
0557293f
AM
3665 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
3666 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
3667 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
55cf3946 3668
53f3cd25
RS
3669/* Simplification of math builtins. These rules must all be optimizations
3670 as well as IL simplifications. If there is a possibility that the new
3671 form could be a pessimization, the rule should go in the canonicalization
3672 section that follows this one.
e18c1d66 3673
53f3cd25
RS
3674 Rules can generally go in this section if they satisfy one of
3675 the following:
3676
3677 - the rule describes an identity
3678
3679 - the rule replaces calls with something as simple as addition or
3680 multiplication
3681
3682 - the rule contains unary calls only and simplifies the surrounding
3683 arithmetic. (The idea here is to exclude non-unary calls in which
3684 one operand is constant and in which the call is known to be cheap
3685 when the operand has that value.) */
52c6378a 3686
53f3cd25 3687(if (flag_unsafe_math_optimizations)
52c6378a
N
3688 /* Simplify sqrt(x) * sqrt(x) -> x. */
3689 (simplify
3690 (mult (SQRT@1 @0) @1)
3691 (if (!HONOR_SNANS (type))
3692 @0))
3693
ed17cb57
JW
3694 (for op (plus minus)
3695 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
3696 (simplify
3697 (op (rdiv @0 @1)
3698 (rdiv @2 @1))
3699 (rdiv (op @0 @2) @1)))
3700
35401640
N
3701 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
3702 (for root (SQRT CBRT)
3703 (simplify
3704 (mult (root:s @0) (root:s @1))
3705 (root (mult @0 @1))))
3706
35401640
N
3707 /* Simplify expN(x) * expN(y) -> expN(x+y). */
3708 (for exps (EXP EXP2 EXP10 POW10)
3709 (simplify
3710 (mult (exps:s @0) (exps:s @1))
3711 (exps (plus @0 @1))))
3712
52c6378a 3713 /* Simplify a/root(b/c) into a*root(c/b). */
35401640
N
3714 (for root (SQRT CBRT)
3715 (simplify
3716 (rdiv @0 (root:s (rdiv:s @1 @2)))
3717 (mult @0 (root (rdiv @2 @1)))))
3718
3719 /* Simplify x/expN(y) into x*expN(-y). */
3720 (for exps (EXP EXP2 EXP10 POW10)
3721 (simplify
3722 (rdiv @0 (exps:s @1))
3723 (mult @0 (exps (negate @1)))))
52c6378a 3724
eee7b6c4
RB
3725 (for logs (LOG LOG2 LOG10 LOG10)
3726 exps (EXP EXP2 EXP10 POW10)
8acda9b2 3727 /* logN(expN(x)) -> x. */
e18c1d66
RB
3728 (simplify
3729 (logs (exps @0))
8acda9b2
RS
3730 @0)
3731 /* expN(logN(x)) -> x. */
3732 (simplify
3733 (exps (logs @0))
3734 @0))
53f3cd25 3735
e18c1d66
RB
3736 /* Optimize logN(func()) for various exponential functions. We
3737 want to determine the value "x" and the power "exponent" in
3738 order to transform logN(x**exponent) into exponent*logN(x). */
eee7b6c4
RB
3739 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
3740 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
e18c1d66
RB
3741 (simplify
3742 (logs (exps @0))
c9e926ce
RS
3743 (if (SCALAR_FLOAT_TYPE_P (type))
3744 (with {
3745 tree x;
3746 switch (exps)
3747 {
3748 CASE_CFN_EXP:
3749 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
3750 x = build_real_truncate (type, dconst_e ());
3751 break;
3752 CASE_CFN_EXP2:
3753 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
3754 x = build_real (type, dconst2);
3755 break;
3756 CASE_CFN_EXP10:
3757 CASE_CFN_POW10:
3758 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
3759 {
3760 REAL_VALUE_TYPE dconst10;
3761 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
3762 x = build_real (type, dconst10);
3763 }
3764 break;
3765 default:
3766 gcc_unreachable ();
3767 }
3768 }
3769 (mult (logs { x; }) @0)))))
53f3cd25 3770
e18c1d66
RB
3771 (for logs (LOG LOG
3772 LOG2 LOG2
3773 LOG10 LOG10)
3774 exps (SQRT CBRT)
3775 (simplify
3776 (logs (exps @0))
c9e926ce
RS
3777 (if (SCALAR_FLOAT_TYPE_P (type))
3778 (with {
3779 tree x;
3780 switch (exps)
3781 {
3782 CASE_CFN_SQRT:
3783 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
3784 x = build_real (type, dconsthalf);
3785 break;
3786 CASE_CFN_CBRT:
3787 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
3788 x = build_real_truncate (type, dconst_third ());
3789 break;
3790 default:
3791 gcc_unreachable ();
3792 }
3793 }
3794 (mult { x; } (logs @0))))))
53f3cd25
RS
3795
3796 /* logN(pow(x,exponent)) -> exponent*logN(x). */
e18c1d66
RB
3797 (for logs (LOG LOG2 LOG10)
3798 pows (POW)
3799 (simplify
3800 (logs (pows @0 @1))
53f3cd25
RS
3801 (mult @1 (logs @0))))
3802
e83fe013
WD
3803 /* pow(C,x) -> exp(log(C)*x) if C > 0. */
3804 (for pows (POW)
3805 exps (EXP)
3806 logs (LOG)
3807 (simplify
3808 (pows REAL_CST@0 @1)
3809 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
3810 && real_isfinite (TREE_REAL_CST_PTR (@0)))
3811 (exps (mult (logs @0) @1)))))
3812
53f3cd25
RS
3813 (for sqrts (SQRT)
3814 cbrts (CBRT)
b4838d77 3815 pows (POW)
53f3cd25
RS
3816 exps (EXP EXP2 EXP10 POW10)
3817 /* sqrt(expN(x)) -> expN(x*0.5). */
3818 (simplify
3819 (sqrts (exps @0))
3820 (exps (mult @0 { build_real (type, dconsthalf); })))
3821 /* cbrt(expN(x)) -> expN(x/3). */
3822 (simplify
3823 (cbrts (exps @0))
b4838d77
RS
3824 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
3825 /* pow(expN(x), y) -> expN(x*y). */
3826 (simplify
3827 (pows (exps @0) @1)
3828 (exps (mult @0 @1))))
cfed37a0
RS
3829
3830 /* tan(atan(x)) -> x. */
3831 (for tans (TAN)
3832 atans (ATAN)
3833 (simplify
3834 (tans (atans @0))
3835 @0)))
53f3cd25 3836
abcc43f5
RS
3837/* cabs(x+0i) or cabs(0+xi) -> abs(x). */
3838(simplify
e04d2a35 3839 (CABS (complex:C @0 real_zerop@1))
abcc43f5
RS
3840 (abs @0))
3841
67dbe582
RS
3842/* trunc(trunc(x)) -> trunc(x), etc. */
3843(for fns (TRUNC FLOOR CEIL ROUND NEARBYINT RINT)
3844 (simplify
3845 (fns (fns @0))
3846 (fns @0)))
3847/* f(x) -> x if x is integer valued and f does nothing for such values. */
afeb246c 3848(for fns (TRUNC FLOOR CEIL ROUND NEARBYINT RINT)
67dbe582
RS
3849 (simplify
3850 (fns integer_valued_real_p@0)
3851 @0))
67dbe582 3852
4d7836c4
RS
3853/* hypot(x,0) and hypot(0,x) -> abs(x). */
3854(simplify
c9e926ce 3855 (HYPOT:c @0 real_zerop@1)
4d7836c4
RS
3856 (abs @0))
3857
b4838d77
RS
3858/* pow(1,x) -> 1. */
3859(simplify
3860 (POW real_onep@0 @1)
3861 @0)
3862
461e4145
RS
3863(simplify
3864 /* copysign(x,x) -> x. */
3865 (COPYSIGN @0 @0)
3866 @0)
3867
3868(simplify
3869 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
3870 (COPYSIGN @0 tree_expr_nonnegative_p@1)
3871 (abs @0))
3872
86c0733f
RS
3873(for scale (LDEXP SCALBN SCALBLN)
3874 /* ldexp(0, x) -> 0. */
3875 (simplify
3876 (scale real_zerop@0 @1)
3877 @0)
3878 /* ldexp(x, 0) -> x. */
3879 (simplify
3880 (scale @0 integer_zerop@1)
3881 @0)
3882 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
3883 (simplify
3884 (scale REAL_CST@0 @1)
3885 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
3886 @0)))
3887
53f3cd25
RS
3888/* Canonicalization of sequences of math builtins. These rules represent
3889 IL simplifications but are not necessarily optimizations.
3890
3891 The sincos pass is responsible for picking "optimal" implementations
3892 of math builtins, which may be more complicated and can sometimes go
3893 the other way, e.g. converting pow into a sequence of sqrts.
3894 We only want to do these canonicalizations before the pass has run. */
3895
3896(if (flag_unsafe_math_optimizations && canonicalize_math_p ())
3897 /* Simplify tan(x) * cos(x) -> sin(x). */
3898 (simplify
3899 (mult:c (TAN:s @0) (COS:s @0))
3900 (SIN @0))
3901
3902 /* Simplify x * pow(x,c) -> pow(x,c+1). */
3903 (simplify
de3fbea3 3904 (mult:c @0 (POW:s @0 REAL_CST@1))
53f3cd25
RS
3905 (if (!TREE_OVERFLOW (@1))
3906 (POW @0 (plus @1 { build_one_cst (type); }))))
3907
3908 /* Simplify sin(x) / cos(x) -> tan(x). */
3909 (simplify
3910 (rdiv (SIN:s @0) (COS:s @0))
3911 (TAN @0))
3912
3913 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
3914 (simplify
3915 (rdiv (COS:s @0) (SIN:s @0))
3916 (rdiv { build_one_cst (type); } (TAN @0)))
3917
3918 /* Simplify sin(x) / tan(x) -> cos(x). */
3919 (simplify
3920 (rdiv (SIN:s @0) (TAN:s @0))
3921 (if (! HONOR_NANS (@0)
3922 && ! HONOR_INFINITIES (@0))
c9e926ce 3923 (COS @0)))
53f3cd25
RS
3924
3925 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
3926 (simplify
3927 (rdiv (TAN:s @0) (SIN:s @0))
3928 (if (! HONOR_NANS (@0)
3929 && ! HONOR_INFINITIES (@0))
3930 (rdiv { build_one_cst (type); } (COS @0))))
3931
3932 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
3933 (simplify
3934 (mult (POW:s @0 @1) (POW:s @0 @2))
3935 (POW @0 (plus @1 @2)))
3936
3937 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
3938 (simplify
3939 (mult (POW:s @0 @1) (POW:s @2 @1))
3940 (POW (mult @0 @2) @1))
3941
de3fbea3
RB
3942 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
3943 (simplify
3944 (mult (POWI:s @0 @1) (POWI:s @2 @1))
3945 (POWI (mult @0 @2) @1))
3946
53f3cd25
RS
3947 /* Simplify pow(x,c) / x -> pow(x,c-1). */
3948 (simplify
3949 (rdiv (POW:s @0 REAL_CST@1) @0)
3950 (if (!TREE_OVERFLOW (@1))
3951 (POW @0 (minus @1 { build_one_cst (type); }))))
3952
3953 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
3954 (simplify
3955 (rdiv @0 (POW:s @1 @2))
3956 (mult @0 (POW @1 (negate @2))))
3957
3958 (for sqrts (SQRT)
3959 cbrts (CBRT)
3960 pows (POW)
3961 /* sqrt(sqrt(x)) -> pow(x,1/4). */
3962 (simplify
3963 (sqrts (sqrts @0))
3964 (pows @0 { build_real (type, dconst_quarter ()); }))
3965 /* sqrt(cbrt(x)) -> pow(x,1/6). */
3966 (simplify
3967 (sqrts (cbrts @0))
3968 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
3969 /* cbrt(sqrt(x)) -> pow(x,1/6). */
3970 (simplify
3971 (cbrts (sqrts @0))
3972 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
3973 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
3974 (simplify
3975 (cbrts (cbrts tree_expr_nonnegative_p@0))
3976 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
3977 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
3978 (simplify
3979 (sqrts (pows @0 @1))
3980 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
3981 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
3982 (simplify
3983 (cbrts (pows tree_expr_nonnegative_p@0 @1))
b4838d77
RS
3984 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
3985 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
3986 (simplify
3987 (pows (sqrts @0) @1)
3988 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
3989 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
3990 (simplify
3991 (pows (cbrts tree_expr_nonnegative_p@0) @1)
3992 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
3993 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
3994 (simplify
3995 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
3996 (pows @0 (mult @1 @2))))
abcc43f5
RS
3997
3998 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
3999 (simplify
4000 (CABS (complex @0 @0))
96285749
RS
4001 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4002
4d7836c4
RS
4003 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4004 (simplify
4005 (HYPOT @0 @0)
4006 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4007
96285749
RS
4008 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4009 (for cexps (CEXP)
4010 exps (EXP)
4011 cexpis (CEXPI)
4012 (simplify
4013 (cexps compositional_complex@0)
4014 (if (targetm.libc_has_function (function_c99_math_complex))
4015 (complex
4016 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4017 (mult @1 (imagpart @2)))))))
e18c1d66 4018
67dbe582
RS
4019(if (canonicalize_math_p ())
4020 /* floor(x) -> trunc(x) if x is nonnegative. */
4021 (for floors (FLOOR)
4022 truncs (TRUNC)
4023 (simplify
4024 (floors tree_expr_nonnegative_p@0)
4025 (truncs @0))))
4026
4027(match double_value_p
4028 @0
4029 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4030(for froms (BUILT_IN_TRUNCL
4031 BUILT_IN_FLOORL
4032 BUILT_IN_CEILL
4033 BUILT_IN_ROUNDL
4034 BUILT_IN_NEARBYINTL
4035 BUILT_IN_RINTL)
4036 tos (BUILT_IN_TRUNC
4037 BUILT_IN_FLOOR
4038 BUILT_IN_CEIL
4039 BUILT_IN_ROUND
4040 BUILT_IN_NEARBYINT
4041 BUILT_IN_RINT)
4042 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4043 (if (optimize && canonicalize_math_p ())
4044 (simplify
4045 (froms (convert double_value_p@0))
4046 (convert (tos @0)))))
4047
4048(match float_value_p
4049 @0
4050 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4051(for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4052 BUILT_IN_FLOORL BUILT_IN_FLOOR
4053 BUILT_IN_CEILL BUILT_IN_CEIL
4054 BUILT_IN_ROUNDL BUILT_IN_ROUND
4055 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4056 BUILT_IN_RINTL BUILT_IN_RINT)
4057 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4058 BUILT_IN_FLOORF BUILT_IN_FLOORF
4059 BUILT_IN_CEILF BUILT_IN_CEILF
4060 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4061 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4062 BUILT_IN_RINTF BUILT_IN_RINTF)
4063 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4064 if x is a float. */
5dac7dbd
JDA
4065 (if (optimize && canonicalize_math_p ()
4066 && targetm.libc_has_function (function_c99_misc))
67dbe582
RS
4067 (simplify
4068 (froms (convert float_value_p@0))
4069 (convert (tos @0)))))
4070
543a9bcd
RS
4071(for froms (XFLOORL XCEILL XROUNDL XRINTL)
4072 tos (XFLOOR XCEIL XROUND XRINT)
4073 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4074 (if (optimize && canonicalize_math_p ())
4075 (simplify
4076 (froms (convert double_value_p@0))
4077 (tos @0))))
4078
4079(for froms (XFLOORL XCEILL XROUNDL XRINTL
4080 XFLOOR XCEIL XROUND XRINT)
4081 tos (XFLOORF XCEILF XROUNDF XRINTF)
4082 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4083 if x is a float. */
4084 (if (optimize && canonicalize_math_p ())
4085 (simplify
4086 (froms (convert float_value_p@0))
4087 (tos @0))))
4088
4089(if (canonicalize_math_p ())
4090 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4091 (for floors (IFLOOR LFLOOR LLFLOOR)
4092 (simplify
4093 (floors tree_expr_nonnegative_p@0)
4094 (fix_trunc @0))))
4095
4096(if (canonicalize_math_p ())
4097 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4098 (for fns (IFLOOR LFLOOR LLFLOOR
4099 ICEIL LCEIL LLCEIL
4100 IROUND LROUND LLROUND)
4101 (simplify
4102 (fns integer_valued_real_p@0)
4103 (fix_trunc @0)))
4104 (if (!flag_errno_math)
4105 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4106 (for rints (IRINT LRINT LLRINT)
4107 (simplify
4108 (rints integer_valued_real_p@0)
4109 (fix_trunc @0)))))
4110
4111(if (canonicalize_math_p ())
4112 (for ifn (IFLOOR ICEIL IROUND IRINT)
4113 lfn (LFLOOR LCEIL LROUND LRINT)
4114 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4115 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4116 sizeof (int) == sizeof (long). */
4117 (if (TYPE_PRECISION (integer_type_node)
4118 == TYPE_PRECISION (long_integer_type_node))
4119 (simplify
4120 (ifn @0)
4121 (lfn:long_integer_type_node @0)))
4122 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4123 sizeof (long long) == sizeof (long). */
4124 (if (TYPE_PRECISION (long_long_integer_type_node)
4125 == TYPE_PRECISION (long_integer_type_node))
4126 (simplify
4127 (llfn @0)
4128 (lfn:long_integer_type_node @0)))))
4129
92c52eab
RS
4130/* cproj(x) -> x if we're ignoring infinities. */
4131(simplify
4132 (CPROJ @0)
4133 (if (!HONOR_INFINITIES (type))
4134 @0))
4135
4534c203
RB
4136/* If the real part is inf and the imag part is known to be
4137 nonnegative, return (inf + 0i). */
4138(simplify
4139 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4140 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
92c52eab
RS
4141 { build_complex_inf (type, false); }))
4142
4534c203
RB
4143/* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4144(simplify
4145 (CPROJ (complex @0 REAL_CST@1))
4146 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
92c52eab 4147 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4534c203 4148
b4838d77
RS
4149(for pows (POW)
4150 sqrts (SQRT)
4151 cbrts (CBRT)
4152 (simplify
4153 (pows @0 REAL_CST@1)
4154 (with {
4155 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4156 REAL_VALUE_TYPE tmp;
4157 }
4158 (switch
4159 /* pow(x,0) -> 1. */
4160 (if (real_equal (value, &dconst0))
4161 { build_real (type, dconst1); })
4162 /* pow(x,1) -> x. */
4163 (if (real_equal (value, &dconst1))
4164 @0)
4165 /* pow(x,-1) -> 1/x. */
4166 (if (real_equal (value, &dconstm1))
4167 (rdiv { build_real (type, dconst1); } @0))
4168 /* pow(x,0.5) -> sqrt(x). */
4169 (if (flag_unsafe_math_optimizations
4170 && canonicalize_math_p ()
4171 && real_equal (value, &dconsthalf))
4172 (sqrts @0))
4173 /* pow(x,1/3) -> cbrt(x). */
4174 (if (flag_unsafe_math_optimizations
4175 && canonicalize_math_p ()
4176 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4177 real_equal (value, &tmp)))
4178 (cbrts @0))))))
4534c203 4179
5ddc84ca
RS
4180/* powi(1,x) -> 1. */
4181(simplify
4182 (POWI real_onep@0 @1)
4183 @0)
4184
4185(simplify
4186 (POWI @0 INTEGER_CST@1)
4187 (switch
4188 /* powi(x,0) -> 1. */
8e6cdc90 4189 (if (wi::to_wide (@1) == 0)
5ddc84ca
RS
4190 { build_real (type, dconst1); })
4191 /* powi(x,1) -> x. */
8e6cdc90 4192 (if (wi::to_wide (@1) == 1)
5ddc84ca
RS
4193 @0)
4194 /* powi(x,-1) -> 1/x. */
8e6cdc90 4195 (if (wi::to_wide (@1) == -1)
5ddc84ca
RS
4196 (rdiv { build_real (type, dconst1); } @0))))
4197
be144838
JL
4198/* Narrowing of arithmetic and logical operations.
4199
4200 These are conceptually similar to the transformations performed for
4201 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4202 term we want to move all that code out of the front-ends into here. */
4203
4204/* If we have a narrowing conversion of an arithmetic operation where
4205 both operands are widening conversions from the same type as the outer
4206 narrowing conversion. Then convert the innermost operands to a suitable
9c582551 4207 unsigned type (to avoid introducing undefined behavior), perform the
be144838
JL
4208 operation and convert the result to the desired type. */
4209(for op (plus minus)
4210 (simplify
93f90bec 4211 (convert (op:s (convert@2 @0) (convert?@3 @1)))
be144838
JL
4212 (if (INTEGRAL_TYPE_P (type)
4213 /* We check for type compatibility between @0 and @1 below,
4214 so there's no need to check that @1/@3 are integral types. */
4215 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4216 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4217 /* The precision of the type of each operand must match the
4218 precision of the mode of each operand, similarly for the
4219 result. */
2be65d9e
RS
4220 && type_has_mode_precision_p (TREE_TYPE (@0))
4221 && type_has_mode_precision_p (TREE_TYPE (@1))
4222 && type_has_mode_precision_p (type)
be144838
JL
4223 /* The inner conversion must be a widening conversion. */
4224 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
93f90bec
BC
4225 && types_match (@0, type)
4226 && (types_match (@0, @1)
4227 /* Or the second operand is const integer or converted const
4228 integer from valueize. */
4229 || TREE_CODE (@1) == INTEGER_CST))
be144838 4230 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
93f90bec 4231 (op @0 (convert @1))
8fdc6c67 4232 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
93f90bec
BC
4233 (convert (op (convert:utype @0)
4234 (convert:utype @1))))))))
48451e8f
JL
4235
4236/* This is another case of narrowing, specifically when there's an outer
4237 BIT_AND_EXPR which masks off bits outside the type of the innermost
4238 operands. Like the previous case we have to convert the operands
9c582551 4239 to unsigned types to avoid introducing undefined behavior for the
48451e8f
JL
4240 arithmetic operation. */
4241(for op (minus plus)
8fdc6c67
RB
4242 (simplify
4243 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4244 (if (INTEGRAL_TYPE_P (type)
4245 /* We check for type compatibility between @0 and @1 below,
4246 so there's no need to check that @1/@3 are integral types. */
4247 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4248 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4249 /* The precision of the type of each operand must match the
4250 precision of the mode of each operand, similarly for the
4251 result. */
2be65d9e
RS
4252 && type_has_mode_precision_p (TREE_TYPE (@0))
4253 && type_has_mode_precision_p (TREE_TYPE (@1))
4254 && type_has_mode_precision_p (type)
8fdc6c67
RB
4255 /* The inner conversion must be a widening conversion. */
4256 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4257 && types_match (@0, @1)
4258 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4259 <= TYPE_PRECISION (TREE_TYPE (@0)))
8e6cdc90
RS
4260 && (wi::to_wide (@4)
4261 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4262 true, TYPE_PRECISION (type))) == 0)
8fdc6c67
RB
4263 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4264 (with { tree ntype = TREE_TYPE (@0); }
4265 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4266 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4267 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4268 (convert:utype @4))))))))
4f7a5692
MC
4269
4270/* Transform (@0 < @1 and @0 < @2) to use min,
4271 (@0 > @1 and @0 > @2) to use max */
4272(for op (lt le gt ge)
4273 ext (min min max max)
4274 (simplify
4618c453
RB
4275 (bit_and (op:cs @0 @1) (op:cs @0 @2))
4276 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4277 && TREE_CODE (@0) != INTEGER_CST)
4f7a5692
MC
4278 (op @0 (ext @1 @2)))))
4279
7317ef4a
RS
4280(simplify
4281 /* signbit(x) -> 0 if x is nonnegative. */
4282 (SIGNBIT tree_expr_nonnegative_p@0)
4283 { integer_zero_node; })
4284
4285(simplify
4286 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4287 (SIGNBIT @0)
4288 (if (!HONOR_SIGNED_ZEROS (@0))
4289 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
a8b85ce9
MG
4290
4291/* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4292(for cmp (eq ne)
4293 (for op (plus minus)
4294 rop (minus plus)
4295 (simplify
4296 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4297 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4298 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4299 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4300 && !TYPE_SATURATING (TREE_TYPE (@0)))
4301 (with { tree res = int_const_binop (rop, @2, @1); }
75473a91
RB
4302 (if (TREE_OVERFLOW (res)
4303 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
a8b85ce9
MG
4304 { constant_boolean_node (cmp == NE_EXPR, type); }
4305 (if (single_use (@3))
4306 (cmp @0 { res; }))))))))
4307(for cmp (lt le gt ge)
4308 (for op (plus minus)
4309 rop (minus plus)
4310 (simplify
4311 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4312 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4313 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4314 (with { tree res = int_const_binop (rop, @2, @1); }
4315 (if (TREE_OVERFLOW (res))
4316 {
4317 fold_overflow_warning (("assuming signed overflow does not occur "
4318 "when simplifying conditional to constant"),
4319 WARN_STRICT_OVERFLOW_CONDITIONAL);
4320 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4321 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
8e6cdc90
RS
4322 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4323 TYPE_SIGN (TREE_TYPE (@1)))
a8b85ce9
MG
4324 != (op == MINUS_EXPR);
4325 constant_boolean_node (less == ovf_high, type);
4326 }
4327 (if (single_use (@3))
4328 (with
4329 {
4330 fold_overflow_warning (("assuming signed overflow does not occur "
4331 "when changing X +- C1 cmp C2 to "
4332 "X cmp C2 -+ C1"),
4333 WARN_STRICT_OVERFLOW_COMPARISON);
4334 }
4335 (cmp @0 { res; })))))))))
d3e40b76
RB
4336
4337/* Canonicalizations of BIT_FIELD_REFs. */
4338
4339(simplify
4340 (BIT_FIELD_REF @0 @1 @2)
4341 (switch
4342 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
4343 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4344 (switch
4345 (if (integer_zerop (@2))
4346 (view_convert (realpart @0)))
4347 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4348 (view_convert (imagpart @0)))))
4349 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4350 && INTEGRAL_TYPE_P (type)
171f6f05
RB
4351 /* On GIMPLE this should only apply to register arguments. */
4352 && (! GIMPLE || is_gimple_reg (@0))
d3e40b76
RB
4353 /* A bit-field-ref that referenced the full argument can be stripped. */
4354 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
4355 && integer_zerop (@2))
4356 /* Low-parts can be reduced to integral conversions.
4357 ??? The following doesn't work for PDP endian. */
4358 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
4359 /* Don't even think about BITS_BIG_ENDIAN. */
4360 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
4361 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
4362 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
4363 ? (TYPE_PRECISION (TREE_TYPE (@0))
4364 - TYPE_PRECISION (type))
4365 : 0)) == 0)))
4366 (convert @0))))
4367
4368/* Simplify vector extracts. */
4369
4370(simplify
4371 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
4372 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
4373 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
4374 || (VECTOR_TYPE_P (type)
4375 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
4376 (with
4377 {
4378 tree ctor = (TREE_CODE (@0) == SSA_NAME
4379 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
4380 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
4381 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
4382 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
4383 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
4384 }
4385 (if (n != 0
4386 && (idx % width) == 0
4387 && (n % width) == 0
4388 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor)))
4389 (with
4390 {
4391 idx = idx / width;
4392 n = n / width;
4393 /* Constructor elements can be subvectors. */
4394 unsigned HOST_WIDE_INT k = 1;
4395 if (CONSTRUCTOR_NELTS (ctor) != 0)
4396 {
4397 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
4398 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
4399 k = TYPE_VECTOR_SUBPARTS (cons_elem);
4400 }
4401 }
4402 (switch
4403 /* We keep an exact subset of the constructor elements. */
4404 (if ((idx % k) == 0 && (n % k) == 0)
4405 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4406 { build_constructor (type, NULL); }
4407 (with
4408 {
4409 idx /= k;
4410 n /= k;
4411 }
4412 (if (n == 1)
4413 (if (idx < CONSTRUCTOR_NELTS (ctor))
4414 { CONSTRUCTOR_ELT (ctor, idx)->value; }
4415 { build_zero_cst (type); })
4416 {
4417 vec<constructor_elt, va_gc> *vals;
4418 vec_alloc (vals, n);
4419 for (unsigned i = 0;
4420 i < n && idx + i < CONSTRUCTOR_NELTS (ctor); ++i)
4421 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
4422 CONSTRUCTOR_ELT (ctor, idx + i)->value);
4423 build_constructor (type, vals);
4424 }))))
4425 /* The bitfield references a single constructor element. */
4426 (if (idx + n <= (idx / k + 1) * k)
4427 (switch
4428 (if (CONSTRUCTOR_NELTS (ctor) <= idx / k)
4429 { build_zero_cst (type); })
4430 (if (n == k)
4431 { CONSTRUCTOR_ELT (ctor, idx / k)->value; })
4432 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / k)->value; }
4433 @1 { bitsize_int ((idx % k) * width); })))))))))
92e29a5e
RB
4434
4435/* Simplify a bit extraction from a bit insertion for the cases with
4436 the inserted element fully covering the extraction or the insertion
4437 not touching the extraction. */
4438(simplify
4439 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
4440 (with
4441 {
4442 unsigned HOST_WIDE_INT isize;
4443 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4444 isize = TYPE_PRECISION (TREE_TYPE (@1));
4445 else
4446 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
4447 }
4448 (switch
8e6cdc90
RS
4449 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
4450 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
4451 wi::to_wide (@ipos) + isize))
92e29a5e 4452 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
8e6cdc90
RS
4453 wi::to_wide (@rpos)
4454 - wi::to_wide (@ipos)); }))
4455 (if (wi::geu_p (wi::to_wide (@ipos),
4456 wi::to_wide (@rpos) + wi::to_wide (@rsize))
4457 || wi::geu_p (wi::to_wide (@rpos),
4458 wi::to_wide (@ipos) + isize))
92e29a5e 4459 (BIT_FIELD_REF @0 @rsize @rpos)))))