]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/match.pd
re PR tree-optimization/90510 (Unnecessary permutation)
[thirdparty/gcc.git] / gcc / match.pd
CommitLineData
3d2cf79f
RB
1/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
a5544970 5 Copyright (C) 2014-2019 Free Software Foundation, Inc.
3d2cf79f
RB
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
13Software Foundation; either version 3, or (at your option) any later
14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING3. If not see
23<http://www.gnu.org/licenses/>. */
24
25
26/* Generic tree predicates we inherit. */
27(define_predicates
cc7b5acf 28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
53a19317 29 integer_each_onep integer_truep integer_nonzerop
cc7b5acf 30 real_zerop real_onep real_minus_onep
b0eb889b 31 zerop
46c66a46 32 initializer_each_zero_or_onep
f3582e54 33 CONSTANT_CLASS_P
887ab609 34 tree_expr_nonnegative_p
e36c1cfe 35 tree_expr_nonzero_p
67dbe582 36 integer_valued_real_p
53a19317 37 integer_pow2p
f06e47d7 38 uniform_integer_cst_p
53a19317 39 HONOR_NANS)
e0ee10ed 40
f84e7fd6
RB
41/* Operator lists. */
42(define_operator_list tcc_comparison
43 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
44(define_operator_list inverted_tcc_comparison
45 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
46(define_operator_list inverted_tcc_comparison_with_nans
47 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
534bd33b
MG
48(define_operator_list swapped_tcc_comparison
49 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
07cdc2b8
RB
50(define_operator_list simple_comparison lt le eq ne ge gt)
51(define_operator_list swapped_simple_comparison gt ge eq ne le lt)
52
b1dc4a20 53#include "cfn-operators.pd"
257aecb4 54
543a9bcd
RS
55/* Define operand lists for math rounding functions {,i,l,ll}FN,
56 where the versions prefixed with "i" return an int, those prefixed with
57 "l" return a long and those prefixed with "ll" return a long long.
58
59 Also define operand lists:
60
61 X<FN>F for all float functions, in the order i, l, ll
62 X<FN> for all double functions, in the same order
63 X<FN>L for all long double functions, in the same order. */
64#define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
543a9bcd
RS
65 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
66 BUILT_IN_L##FN##F \
67 BUILT_IN_LL##FN##F) \
68 (define_operator_list X##FN BUILT_IN_I##FN \
69 BUILT_IN_L##FN \
70 BUILT_IN_LL##FN) \
71 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
72 BUILT_IN_L##FN##L \
73 BUILT_IN_LL##FN##L)
74
543a9bcd
RS
75DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
76DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
77DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
78DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
0d2b3bca
RS
79
80/* Binary operations and their associated IFN_COND_* function. */
81(define_operator_list UNCOND_BINARY
82 plus minus
6c4fd4a9 83 mult trunc_div trunc_mod rdiv
0d2b3bca
RS
84 min max
85 bit_and bit_ior bit_xor)
86(define_operator_list COND_BINARY
87 IFN_COND_ADD IFN_COND_SUB
6c4fd4a9 88 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
0d2b3bca
RS
89 IFN_COND_MIN IFN_COND_MAX
90 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR)
b41d1f6e
RS
91
92/* Same for ternary operations. */
93(define_operator_list UNCOND_TERNARY
94 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
95(define_operator_list COND_TERNARY
96 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
03cc70b5 97
ed73f46f
MG
98/* As opposed to convert?, this still creates a single pattern, so
99 it is not a suitable replacement for convert? in all cases. */
100(match (nop_convert @0)
101 (convert @0)
102 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
103(match (nop_convert @0)
104 (view_convert @0)
105 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
928686b1
RS
106 && known_eq (TYPE_VECTOR_SUBPARTS (type),
107 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
ed73f46f
MG
108 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
109/* This one has to be last, or it shadows the others. */
110(match (nop_convert @0)
03cc70b5 111 @0)
f84e7fd6 112
e197e64e
KV
113/* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
114 ABSU_EXPR returns unsigned absolute value of the operand and the operand
115 of the ABSU_EXPR will have the corresponding signed type. */
116(simplify (abs (convert @0))
117 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
118 && !TYPE_UNSIGNED (TREE_TYPE (@0))
119 && element_precision (type) > element_precision (TREE_TYPE (@0)))
120 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
121 (convert (absu:utype @0)))))
122
123
e0ee10ed 124/* Simplifications of operations with one constant operand and
36a60e48 125 simplifications to constants or single values. */
e0ee10ed
RB
126
127(for op (plus pointer_plus minus bit_ior bit_xor)
128 (simplify
129 (op @0 integer_zerop)
130 (non_lvalue @0)))
131
a499aac5
RB
132/* 0 +p index -> (type)index */
133(simplify
134 (pointer_plus integer_zerop @1)
135 (non_lvalue (convert @1)))
136
d43177ad
MG
137/* ptr - 0 -> (type)ptr */
138(simplify
139 (pointer_diff @0 integer_zerop)
140 (convert @0))
141
a7f24614
RB
142/* See if ARG1 is zero and X + ARG1 reduces to X.
143 Likewise if the operands are reversed. */
144(simplify
145 (plus:c @0 real_zerop@1)
146 (if (fold_real_zero_addition_p (type, @1, 0))
147 (non_lvalue @0)))
148
149/* See if ARG1 is zero and X - ARG1 reduces to X. */
150(simplify
151 (minus @0 real_zerop@1)
152 (if (fold_real_zero_addition_p (type, @1, 1))
153 (non_lvalue @0)))
f7b7e5d0
JJ
154
155/* Even if the fold_real_zero_addition_p can't simplify X + 0.0
156 into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
157 or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
158 if not -frounding-math. For sNaNs the first operation would raise
159 exceptions but turn the result into qNan, so the second operation
160 would not raise it. */
161(for inner_op (plus minus)
162 (for outer_op (plus minus)
163 (simplify
164 (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
165 (if (real_zerop (@1)
166 && real_zerop (@2)
167 && !HONOR_SIGN_DEPENDENT_ROUNDING (type))
168 (with { bool inner_plus = ((inner_op == PLUS_EXPR)
169 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
170 bool outer_plus
171 = ((outer_op == PLUS_EXPR)
172 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
173 (if (outer_plus && !inner_plus)
174 (outer_op @0 @2)
175 @3))))))
a7f24614 176
e0ee10ed
RB
177/* Simplify x - x.
178 This is unsafe for certain floats even in non-IEEE formats.
179 In IEEE, it is unsafe because it does wrong for NaNs.
180 Also note that operand_equal_p is always false if an operand
181 is volatile. */
182(simplify
a7f24614 183 (minus @0 @0)
1b457aa4 184 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
a7f24614 185 { build_zero_cst (type); }))
1af4ebf5
MG
186(simplify
187 (pointer_diff @@0 @0)
188 { build_zero_cst (type); })
e0ee10ed
RB
189
190(simplify
a7f24614
RB
191 (mult @0 integer_zerop@1)
192 @1)
193
194/* Maybe fold x * 0 to 0. The expressions aren't the same
195 when x is NaN, since x * 0 is also NaN. Nor are they the
196 same in modes with signed zeros, since multiplying a
197 negative value by 0 gives -0, not +0. */
198(simplify
199 (mult @0 real_zerop@1)
8b5ee871 200 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
a7f24614
RB
201 @1))
202
203/* In IEEE floating point, x*1 is not equivalent to x for snans.
204 Likewise for complex arithmetic with signed zeros. */
205(simplify
206 (mult @0 real_onep)
8b5ee871
MG
207 (if (!HONOR_SNANS (type)
208 && (!HONOR_SIGNED_ZEROS (type)
a7f24614
RB
209 || !COMPLEX_FLOAT_TYPE_P (type)))
210 (non_lvalue @0)))
211
212/* Transform x * -1.0 into -x. */
213(simplify
214 (mult @0 real_minus_onep)
8b5ee871
MG
215 (if (!HONOR_SNANS (type)
216 && (!HONOR_SIGNED_ZEROS (type)
a7f24614
RB
217 || !COMPLEX_FLOAT_TYPE_P (type)))
218 (negate @0)))
e0ee10ed 219
46c66a46
RS
220/* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
221 unless the target has native support for the former but not the latter. */
222(simplify
223 (mult @0 VECTOR_CST@1)
224 (if (initializer_each_zero_or_onep (@1)
225 && !HONOR_SNANS (type)
226 && !HONOR_SIGNED_ZEROS (type))
227 (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
228 (if (itype
229 && (!VECTOR_MODE_P (TYPE_MODE (type))
230 || (VECTOR_MODE_P (TYPE_MODE (itype))
231 && optab_handler (and_optab,
232 TYPE_MODE (itype)) != CODE_FOR_nothing)))
233 (view_convert (bit_and:itype (view_convert @0)
234 (ne @1 { build_zero_cst (type); })))))))
235
8c2805bb
AP
236(for cmp (gt ge lt le)
237 outp (convert convert negate negate)
238 outn (negate negate convert convert)
239 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
240 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
241 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
242 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
243 (simplify
244 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
245 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
246 && types_match (type, TREE_TYPE (@0)))
247 (switch
248 (if (types_match (type, float_type_node))
249 (BUILT_IN_COPYSIGNF @1 (outp @0)))
250 (if (types_match (type, double_type_node))
251 (BUILT_IN_COPYSIGN @1 (outp @0)))
252 (if (types_match (type, long_double_type_node))
253 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
254 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
255 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
256 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
257 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
258 (simplify
259 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
260 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
261 && types_match (type, TREE_TYPE (@0)))
262 (switch
263 (if (types_match (type, float_type_node))
264 (BUILT_IN_COPYSIGNF @1 (outn @0)))
265 (if (types_match (type, double_type_node))
266 (BUILT_IN_COPYSIGN @1 (outn @0)))
267 (if (types_match (type, long_double_type_node))
268 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
269
270/* Transform X * copysign (1.0, X) into abs(X). */
271(simplify
c6cfa2bf 272 (mult:c @0 (COPYSIGN_ALL real_onep @0))
8c2805bb
AP
273 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
274 (abs @0)))
275
276/* Transform X * copysign (1.0, -X) into -abs(X). */
277(simplify
c6cfa2bf 278 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
8c2805bb
AP
279 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
280 (negate (abs @0))))
281
282/* Transform copysign (CST, X) into copysign (ABS(CST), X). */
283(simplify
c6cfa2bf 284 (COPYSIGN_ALL REAL_CST@0 @1)
8c2805bb 285 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
c6cfa2bf 286 (COPYSIGN_ALL (negate @0) @1)))
8c2805bb 287
5b7f6ed0 288/* X * 1, X / 1 -> X. */
e0ee10ed
RB
289(for op (mult trunc_div ceil_div floor_div round_div exact_div)
290 (simplify
291 (op @0 integer_onep)
292 (non_lvalue @0)))
293
71f82be9
JG
294/* (A / (1 << B)) -> (A >> B).
295 Only for unsigned A. For signed A, this would not preserve rounding
296 toward zero.
297 For example: (-1 / ( 1 << B)) != -1 >> B. */
298(simplify
299 (trunc_div @0 (lshift integer_onep@1 @2))
300 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
301 && (!VECTOR_TYPE_P (type)
302 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
303 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
304 (rshift @0 @2)))
305
5b7f6ed0
MG
306/* Preserve explicit divisions by 0: the C++ front-end wants to detect
307 undefined behavior in constexpr evaluation, and assuming that the division
308 traps enables better optimizations than these anyway. */
a7f24614 309(for div (trunc_div ceil_div floor_div round_div exact_div)
5b7f6ed0
MG
310 /* 0 / X is always zero. */
311 (simplify
312 (div integer_zerop@0 @1)
313 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
314 (if (!integer_zerop (@1))
315 @0))
da186c1f 316 /* X / -1 is -X. */
a7f24614 317 (simplify
09240451
MG
318 (div @0 integer_minus_onep@1)
319 (if (!TYPE_UNSIGNED (type))
da186c1f 320 (negate @0)))
5b7f6ed0
MG
321 /* X / X is one. */
322 (simplify
323 (div @0 @0)
9ebce098
JJ
324 /* But not for 0 / 0 so that we can get the proper warnings and errors.
325 And not for _Fract types where we can't build 1. */
326 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
5b7f6ed0 327 { build_one_cst (type); }))
03cc70b5 328 /* X / abs (X) is X < 0 ? -1 : 1. */
da186c1f 329 (simplify
d96a5585
RB
330 (div:C @0 (abs @0))
331 (if (INTEGRAL_TYPE_P (type)
da186c1f
RB
332 && TYPE_OVERFLOW_UNDEFINED (type))
333 (cond (lt @0 { build_zero_cst (type); })
334 { build_minus_one_cst (type); } { build_one_cst (type); })))
335 /* X / -X is -1. */
336 (simplify
d96a5585 337 (div:C @0 (negate @0))
da186c1f
RB
338 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
339 && TYPE_OVERFLOW_UNDEFINED (type))
340 { build_minus_one_cst (type); })))
a7f24614
RB
341
342/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
343 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
344(simplify
345 (floor_div @0 @1)
09240451
MG
346 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
347 && TYPE_UNSIGNED (type))
a7f24614
RB
348 (trunc_div @0 @1)))
349
28093105
RB
350/* Combine two successive divisions. Note that combining ceil_div
351 and floor_div is trickier and combining round_div even more so. */
352(for div (trunc_div exact_div)
c306cfaf 353 (simplify
98610dc5 354 (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
c306cfaf 355 (with {
4a669ac3 356 wi::overflow_type overflow;
8e6cdc90 357 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
4a669ac3 358 TYPE_SIGN (type), &overflow);
c306cfaf 359 }
98610dc5
JJ
360 (if (div == EXACT_DIV_EXPR
361 || optimize_successive_divisions_p (@2, @3))
362 (if (!overflow)
363 (div @0 { wide_int_to_tree (type, mul); })
364 (if (TYPE_UNSIGNED (type)
365 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
366 { build_zero_cst (type); }))))))
c306cfaf 367
288fe52e
AM
368/* Combine successive multiplications. Similar to above, but handling
369 overflow is different. */
370(simplify
371 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
372 (with {
4a669ac3 373 wi::overflow_type overflow;
8e6cdc90 374 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
4a669ac3 375 TYPE_SIGN (type), &overflow);
288fe52e
AM
376 }
377 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
378 otherwise undefined overflow implies that @0 must be zero. */
4a669ac3 379 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
288fe52e
AM
380 (mult @0 { wide_int_to_tree (type, mul); }))))
381
a7f24614 382/* Optimize A / A to 1.0 if we don't care about
09240451 383 NaNs or Infinities. */
a7f24614
RB
384(simplify
385 (rdiv @0 @0)
09240451 386 (if (FLOAT_TYPE_P (type)
1b457aa4 387 && ! HONOR_NANS (type)
8b5ee871 388 && ! HONOR_INFINITIES (type))
09240451
MG
389 { build_one_cst (type); }))
390
391/* Optimize -A / A to -1.0 if we don't care about
392 NaNs or Infinities. */
393(simplify
e04d2a35 394 (rdiv:C @0 (negate @0))
09240451 395 (if (FLOAT_TYPE_P (type)
1b457aa4 396 && ! HONOR_NANS (type)
8b5ee871 397 && ! HONOR_INFINITIES (type))
09240451 398 { build_minus_one_cst (type); }))
a7f24614 399
8c6961ca
PK
400/* PR71078: x / abs(x) -> copysign (1.0, x) */
401(simplify
402 (rdiv:C (convert? @0) (convert? (abs @0)))
403 (if (SCALAR_FLOAT_TYPE_P (type)
404 && ! HONOR_NANS (type)
405 && ! HONOR_INFINITIES (type))
406 (switch
407 (if (types_match (type, float_type_node))
408 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
409 (if (types_match (type, double_type_node))
410 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
411 (if (types_match (type, long_double_type_node))
412 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
413
a7f24614
RB
414/* In IEEE floating point, x/1 is not equivalent to x for snans. */
415(simplify
416 (rdiv @0 real_onep)
8b5ee871 417 (if (!HONOR_SNANS (type))
a7f24614
RB
418 (non_lvalue @0)))
419
420/* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
421(simplify
422 (rdiv @0 real_minus_onep)
8b5ee871 423 (if (!HONOR_SNANS (type))
a7f24614
RB
424 (negate @0)))
425
5711ac88 426(if (flag_reciprocal_math)
81825e28 427 /* Convert (A/B)/C to A/(B*C). */
5711ac88
N
428 (simplify
429 (rdiv (rdiv:s @0 @1) @2)
81825e28
WD
430 (rdiv @0 (mult @1 @2)))
431
432 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
433 (simplify
434 (rdiv @0 (mult:s @1 REAL_CST@2))
435 (with
436 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
437 (if (tem)
438 (rdiv (mult @0 { tem; } ) @1))))
5711ac88
N
439
440 /* Convert A/(B/C) to (A/B)*C */
441 (simplify
442 (rdiv @0 (rdiv:s @1 @2))
443 (mult (rdiv @0 @1) @2)))
444
6a435314
WD
445/* Simplify x / (- y) to -x / y. */
446(simplify
447 (rdiv @0 (negate @1))
448 (rdiv (negate @0) @1))
449
5e21d765
WD
450(if (flag_unsafe_math_optimizations)
451 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
452 Since C / x may underflow to zero, do this only for unsafe math. */
453 (for op (lt le gt ge)
454 neg_op (gt ge lt le)
455 (simplify
456 (op (rdiv REAL_CST@0 @1) real_zerop@2)
457 (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
458 (switch
459 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
460 (op @1 @2))
461 /* For C < 0, use the inverted operator. */
462 (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
463 (neg_op @1 @2)))))))
464
5711ac88
N
465/* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
466(for div (trunc_div ceil_div floor_div round_div exact_div)
467 (simplify
468 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
469 (if (integer_pow2p (@2)
470 && tree_int_cst_sgn (@2) > 0
a1488398 471 && tree_nop_conversion_p (type, TREE_TYPE (@0))
8e6cdc90
RS
472 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
473 (rshift (convert @0)
474 { build_int_cst (integer_type_node,
475 wi::exact_log2 (wi::to_wide (@2))); }))))
5711ac88 476
a7f24614
RB
477/* If ARG1 is a constant, we can convert this to a multiply by the
478 reciprocal. This does not have the same rounding properties,
479 so only do this if -freciprocal-math. We can actually
480 always safely do it if ARG1 is a power of two, but it's hard to
481 tell if it is or not in a portable manner. */
482(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
483 (simplify
484 (rdiv @0 cst@1)
485 (if (optimize)
53bc4b3a
RB
486 (if (flag_reciprocal_math
487 && !real_zerop (@1))
a7f24614 488 (with
249700b5 489 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
a7f24614 490 (if (tem)
8fdc6c67
RB
491 (mult @0 { tem; } )))
492 (if (cst != COMPLEX_CST)
493 (with { tree inverse = exact_inverse (type, @1); }
494 (if (inverse)
495 (mult @0 { inverse; } ))))))))
a7f24614 496
a7f24614 497(for mod (ceil_mod floor_mod round_mod trunc_mod)
e0ee10ed
RB
498 /* 0 % X is always zero. */
499 (simplify
a7f24614 500 (mod integer_zerop@0 @1)
e0ee10ed
RB
501 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
502 (if (!integer_zerop (@1))
503 @0))
504 /* X % 1 is always zero. */
505 (simplify
a7f24614
RB
506 (mod @0 integer_onep)
507 { build_zero_cst (type); })
508 /* X % -1 is zero. */
509 (simplify
09240451
MG
510 (mod @0 integer_minus_onep@1)
511 (if (!TYPE_UNSIGNED (type))
bc4315fb 512 { build_zero_cst (type); }))
5b7f6ed0
MG
513 /* X % X is zero. */
514 (simplify
515 (mod @0 @0)
516 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
517 (if (!integer_zerop (@0))
518 { build_zero_cst (type); }))
bc4315fb
MG
519 /* (X % Y) % Y is just X % Y. */
520 (simplify
521 (mod (mod@2 @0 @1) @1)
98e30e51
RB
522 @2)
523 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
524 (simplify
525 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
526 (if (ANY_INTEGRAL_TYPE_P (type)
527 && TYPE_OVERFLOW_UNDEFINED (type)
8e6cdc90
RS
528 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
529 TYPE_SIGN (type)))
392750c5
JJ
530 { build_zero_cst (type); }))
531 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
532 modulo and comparison, since it is simpler and equivalent. */
533 (for cmp (eq ne)
534 (simplify
535 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
536 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
537 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
538 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
a7f24614
RB
539
540/* X % -C is the same as X % C. */
541(simplify
542 (trunc_mod @0 INTEGER_CST@1)
543 (if (TYPE_SIGN (type) == SIGNED
544 && !TREE_OVERFLOW (@1)
8e6cdc90 545 && wi::neg_p (wi::to_wide (@1))
a7f24614
RB
546 && !TYPE_OVERFLOW_TRAPS (type)
547 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
548 && !sign_bit_p (@1, @1))
549 (trunc_mod @0 (negate @1))))
e0ee10ed 550
8f0c696a
RB
551/* X % -Y is the same as X % Y. */
552(simplify
553 (trunc_mod @0 (convert? (negate @1)))
a2a743a1
MP
554 (if (INTEGRAL_TYPE_P (type)
555 && !TYPE_UNSIGNED (type)
8f0c696a 556 && !TYPE_OVERFLOW_TRAPS (type)
20b8d734
JJ
557 && tree_nop_conversion_p (type, TREE_TYPE (@1))
558 /* Avoid this transformation if X might be INT_MIN or
559 Y might be -1, because we would then change valid
560 INT_MIN % -(-1) into invalid INT_MIN % -1. */
8e6cdc90 561 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
20b8d734
JJ
562 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
563 (TREE_TYPE (@1))))))
8f0c696a
RB
564 (trunc_mod @0 (convert @1))))
565
f461569a
MP
566/* X - (X / Y) * Y is the same as X % Y. */
567(simplify
2eef1fc1
RB
568 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
569 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
fba46f03 570 (convert (trunc_mod @0 @1))))
f461569a 571
8f0c696a
RB
572/* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
573 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
574 Also optimize A % (C << N) where C is a power of 2,
575 to A & ((C << N) - 1). */
576(match (power_of_two_cand @1)
577 INTEGER_CST@1)
578(match (power_of_two_cand @1)
579 (lshift INTEGER_CST@1 @2))
580(for mod (trunc_mod floor_mod)
581 (simplify
4ab1e111 582 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
8f0c696a
RB
583 (if ((TYPE_UNSIGNED (type)
584 || tree_expr_nonnegative_p (@0))
4ab1e111 585 && tree_nop_conversion_p (type, TREE_TYPE (@3))
8f0c696a 586 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
4ab1e111 587 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
8f0c696a 588
887ab609
N
589/* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
590(simplify
591 (trunc_div (mult @0 integer_pow2p@1) @1)
592 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
593 (bit_and @0 { wide_int_to_tree
8e6cdc90
RS
594 (type, wi::mask (TYPE_PRECISION (type)
595 - wi::exact_log2 (wi::to_wide (@1)),
887ab609
N
596 false, TYPE_PRECISION (type))); })))
597
5f8d832e
N
598/* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
599(simplify
600 (mult (trunc_div @0 integer_pow2p@1) @1)
601 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
602 (bit_and @0 (negate @1))))
603
95765f36
N
604/* Simplify (t * 2) / 2) -> t. */
605(for div (trunc_div ceil_div floor_div round_div exact_div)
606 (simplify
55d84e61 607 (div (mult:c @0 @1) @1)
95765f36
N
608 (if (ANY_INTEGRAL_TYPE_P (type)
609 && TYPE_OVERFLOW_UNDEFINED (type))
610 @0)))
611
d202f9bd 612(for op (negate abs)
9b054b08
RS
613 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
614 (for coss (COS COSH)
615 (simplify
616 (coss (op @0))
617 (coss @0)))
618 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
619 (for pows (POW)
620 (simplify
621 (pows (op @0) REAL_CST@1)
622 (with { HOST_WIDE_INT n; }
623 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
5d3498b4 624 (pows @0 @1)))))
de3fbea3
RB
625 /* Likewise for powi. */
626 (for pows (POWI)
627 (simplify
628 (pows (op @0) INTEGER_CST@1)
8e6cdc90 629 (if ((wi::to_wide (@1) & 1) == 0)
de3fbea3 630 (pows @0 @1))))
5d3498b4
RS
631 /* Strip negate and abs from both operands of hypot. */
632 (for hypots (HYPOT)
633 (simplify
634 (hypots (op @0) @1)
635 (hypots @0 @1))
636 (simplify
637 (hypots @0 (op @1))
638 (hypots @0 @1)))
639 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
c6cfa2bf 640 (for copysigns (COPYSIGN_ALL)
5d3498b4
RS
641 (simplify
642 (copysigns (op @0) @1)
643 (copysigns @0 @1))))
644
645/* abs(x)*abs(x) -> x*x. Should be valid for all types. */
646(simplify
647 (mult (abs@1 @0) @1)
648 (mult @0 @0))
649
64f7ea7c
KV
650/* Convert absu(x)*absu(x) -> x*x. */
651(simplify
652 (mult (absu@1 @0) @1)
653 (mult (convert@2 @0) @2))
654
5d3498b4
RS
655/* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
656(for coss (COS COSH)
657 copysigns (COPYSIGN)
658 (simplify
659 (coss (copysigns @0 @1))
660 (coss @0)))
661
662/* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
663(for pows (POW)
664 copysigns (COPYSIGN)
665 (simplify
de3fbea3 666 (pows (copysigns @0 @2) REAL_CST@1)
5d3498b4
RS
667 (with { HOST_WIDE_INT n; }
668 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
669 (pows @0 @1)))))
de3fbea3
RB
670/* Likewise for powi. */
671(for pows (POWI)
672 copysigns (COPYSIGN)
673 (simplify
674 (pows (copysigns @0 @2) INTEGER_CST@1)
8e6cdc90 675 (if ((wi::to_wide (@1) & 1) == 0)
de3fbea3 676 (pows @0 @1))))
5d3498b4
RS
677
678(for hypots (HYPOT)
679 copysigns (COPYSIGN)
680 /* hypot(copysign(x, y), z) -> hypot(x, z). */
681 (simplify
682 (hypots (copysigns @0 @1) @2)
683 (hypots @0 @2))
684 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
685 (simplify
686 (hypots @0 (copysigns @1 @2))
687 (hypots @0 @1)))
688
eeb57981 689/* copysign(x, CST) -> [-]abs (x). */
c6cfa2bf 690(for copysigns (COPYSIGN_ALL)
eeb57981
RB
691 (simplify
692 (copysigns @0 REAL_CST@1)
693 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
694 (negate (abs @0))
695 (abs @0))))
696
5d3498b4 697/* copysign(copysign(x, y), z) -> copysign(x, z). */
c6cfa2bf 698(for copysigns (COPYSIGN_ALL)
5d3498b4
RS
699 (simplify
700 (copysigns (copysigns @0 @1) @2)
701 (copysigns @0 @2)))
702
703/* copysign(x,y)*copysign(x,y) -> x*x. */
c6cfa2bf 704(for copysigns (COPYSIGN_ALL)
5d3498b4
RS
705 (simplify
706 (mult (copysigns@2 @0 @1) @2)
707 (mult @0 @0)))
708
709/* ccos(-x) -> ccos(x). Similarly for ccosh. */
710(for ccoss (CCOS CCOSH)
711 (simplify
712 (ccoss (negate @0))
713 (ccoss @0)))
d202f9bd 714
abcc43f5
RS
715/* cabs(-x) and cos(conj(x)) -> cabs(x). */
716(for ops (conj negate)
717 (for cabss (CABS)
718 (simplify
719 (cabss (ops @0))
720 (cabss @0))))
721
0a8f32b8
RB
722/* Fold (a * (1 << b)) into (a << b) */
723(simplify
724 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
725 (if (! FLOAT_TYPE_P (type)
9ff6fb6e 726 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
0a8f32b8
RB
727 (lshift @0 @2)))
728
4349b15f
SD
729/* Fold (1 << (C - x)) where C = precision(type) - 1
730 into ((1 << C) >> x). */
731(simplify
732 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
733 (if (INTEGRAL_TYPE_P (type)
56ccfbd6 734 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
4349b15f
SD
735 && single_use (@1))
736 (if (TYPE_UNSIGNED (type))
737 (rshift (lshift @0 @2) @3)
738 (with
739 { tree utype = unsigned_type_for (type); }
740 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
741
0a8f32b8
RB
742/* Fold (C1/X)*C2 into (C1*C2)/X. */
743(simplify
ff86345f
RB
744 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
745 (if (flag_associative_math
746 && single_use (@3))
0a8f32b8
RB
747 (with
748 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
749 (if (tem)
750 (rdiv { tem; } @1)))))
751
752/* Simplify ~X & X as zero. */
753(simplify
754 (bit_and:c (convert? @0) (convert? (bit_not @0)))
755 { build_zero_cst (type); })
756
89b80c42
PK
757/* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
758(simplify
759 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
760 (if (TYPE_UNSIGNED (type))
761 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
762
7aa13860
PK
763(for bitop (bit_and bit_ior)
764 cmp (eq ne)
a93952d2
JJ
765 /* PR35691: Transform
766 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
767 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
7aa13860
PK
768 (simplify
769 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
770 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
a93952d2
JJ
771 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
772 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
773 (cmp (bit_ior @0 (convert @1)) @2)))
774 /* Transform:
775 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
776 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
777 (simplify
778 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
779 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
780 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
781 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
782 (cmp (bit_and @0 (convert @1)) @2))))
7aa13860 783
10158317
RB
784/* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
785(simplify
a9658b11 786 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
10158317
RB
787 (minus (bit_xor @0 @1) @1))
788(simplify
789 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
8e6cdc90 790 (if (~wi::to_wide (@2) == wi::to_wide (@1))
10158317
RB
791 (minus (bit_xor @0 @1) @1)))
792
793/* Fold (A & B) - (A & ~B) into B - (A ^ B). */
794(simplify
a8e9f9a3 795 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
10158317
RB
796 (minus @1 (bit_xor @0 @1)))
797
42bd89ce
MG
798/* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
799(for op (bit_ior bit_xor plus)
800 (simplify
801 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
802 (bit_xor @0 @1))
803 (simplify
804 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
8e6cdc90 805 (if (~wi::to_wide (@2) == wi::to_wide (@1))
42bd89ce 806 (bit_xor @0 @1))))
2066ef6a
PK
807
808/* PR53979: Transform ((a ^ b) | a) -> (a | b) */
809(simplify
810 (bit_ior:c (bit_xor:c @0 @1) @0)
811 (bit_ior @0 @1))
812
e268a77b
MG
813/* (a & ~b) | (a ^ b) --> a ^ b */
814(simplify
815 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
816 @2)
817
818/* (a & ~b) ^ ~a --> ~(a & b) */
819(simplify
820 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
821 (bit_not (bit_and @0 @1)))
822
823/* (a | b) & ~(a ^ b) --> a & b */
824(simplify
825 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
826 (bit_and @0 @1))
827
828/* a | ~(a ^ b) --> a | ~b */
829(simplify
830 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
831 (bit_ior @0 (bit_not @1)))
832
833/* (a | b) | (a &^ b) --> a | b */
834(for op (bit_and bit_xor)
835 (simplify
836 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
837 @2))
838
839/* (a & b) | ~(a ^ b) --> ~(a ^ b) */
840(simplify
841 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
842 @2)
843
844/* ~(~a & b) --> a | ~b */
845(simplify
846 (bit_not (bit_and:cs (bit_not @0) @1))
847 (bit_ior @0 (bit_not @1)))
848
fd8303a5
MC
849/* ~(~a | b) --> a & ~b */
850(simplify
851 (bit_not (bit_ior:cs (bit_not @0) @1))
852 (bit_and @0 (bit_not @1)))
853
d982c5b7
MG
854/* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
855#if GIMPLE
856(simplify
857 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
858 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
8e6cdc90 859 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
d982c5b7
MG
860 (bit_xor @0 @1)))
861#endif
10158317 862
f2901002
JJ
863/* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
864 ((A & N) + B) & M -> (A + B) & M
865 Similarly if (N & M) == 0,
866 ((A | N) + B) & M -> (A + B) & M
867 and for - instead of + (or unary - instead of +)
868 and/or ^ instead of |.
869 If B is constant and (B & M) == 0, fold into A & M. */
870(for op (plus minus)
871 (for bitop (bit_and bit_ior bit_xor)
872 (simplify
873 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
874 (with
875 { tree pmop[2];
876 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
877 @3, @4, @1, ERROR_MARK, NULL_TREE,
878 NULL_TREE, pmop); }
879 (if (utype)
880 (convert (bit_and (op (convert:utype { pmop[0]; })
881 (convert:utype { pmop[1]; }))
882 (convert:utype @2))))))
883 (simplify
884 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
885 (with
886 { tree pmop[2];
887 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
888 NULL_TREE, NULL_TREE, @1, bitop, @3,
889 @4, pmop); }
890 (if (utype)
891 (convert (bit_and (op (convert:utype { pmop[0]; })
892 (convert:utype { pmop[1]; }))
893 (convert:utype @2)))))))
894 (simplify
895 (bit_and (op:s @0 @1) INTEGER_CST@2)
896 (with
897 { tree pmop[2];
898 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
899 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
900 NULL_TREE, NULL_TREE, pmop); }
901 (if (utype)
902 (convert (bit_and (op (convert:utype { pmop[0]; })
903 (convert:utype { pmop[1]; }))
904 (convert:utype @2)))))))
905(for bitop (bit_and bit_ior bit_xor)
906 (simplify
907 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
908 (with
909 { tree pmop[2];
910 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
911 bitop, @2, @3, NULL_TREE, ERROR_MARK,
912 NULL_TREE, NULL_TREE, pmop); }
913 (if (utype)
914 (convert (bit_and (negate (convert:utype { pmop[0]; }))
915 (convert:utype @1)))))))
916
bc4315fb
MG
917/* X % Y is smaller than Y. */
918(for cmp (lt ge)
919 (simplify
920 (cmp (trunc_mod @0 @1) @1)
921 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
922 { constant_boolean_node (cmp == LT_EXPR, type); })))
923(for cmp (gt le)
924 (simplify
925 (cmp @1 (trunc_mod @0 @1))
926 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
927 { constant_boolean_node (cmp == GT_EXPR, type); })))
928
e0ee10ed
RB
929/* x | ~0 -> ~0 */
930(simplify
ca0b7ece
RB
931 (bit_ior @0 integer_all_onesp@1)
932 @1)
933
934/* x | 0 -> x */
935(simplify
936 (bit_ior @0 integer_zerop)
937 @0)
e0ee10ed
RB
938
939/* x & 0 -> 0 */
940(simplify
ca0b7ece
RB
941 (bit_and @0 integer_zerop@1)
942 @1)
e0ee10ed 943
a4398a30 944/* ~x | x -> -1 */
8b5ee871
MG
945/* ~x ^ x -> -1 */
946/* ~x + x -> -1 */
947(for op (bit_ior bit_xor plus)
948 (simplify
949 (op:c (convert? @0) (convert? (bit_not @0)))
950 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
a4398a30 951
e0ee10ed
RB
952/* x ^ x -> 0 */
953(simplify
954 (bit_xor @0 @0)
955 { build_zero_cst (type); })
956
36a60e48
RB
957/* Canonicalize X ^ ~0 to ~X. */
958(simplify
959 (bit_xor @0 integer_all_onesp@1)
960 (bit_not @0))
961
962/* x & ~0 -> x */
963(simplify
964 (bit_and @0 integer_all_onesp)
965 (non_lvalue @0))
966
967/* x & x -> x, x | x -> x */
968(for bitop (bit_and bit_ior)
969 (simplify
970 (bitop @0 @0)
971 (non_lvalue @0)))
972
c7986356
MG
973/* x & C -> x if we know that x & ~C == 0. */
974#if GIMPLE
975(simplify
976 (bit_and SSA_NAME@0 INTEGER_CST@1)
977 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
8e6cdc90 978 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
c7986356
MG
979 @0))
980#endif
981
0f770b01
RV
982/* x + (x & 1) -> (x + 1) & ~1 */
983(simplify
44fc0a51
RB
984 (plus:c @0 (bit_and:s @0 integer_onep@1))
985 (bit_and (plus @0 @1) (bit_not @1)))
0f770b01
RV
986
987/* x & ~(x & y) -> x & ~y */
988/* x | ~(x | y) -> x | ~y */
989(for bitop (bit_and bit_ior)
af563d4b 990 (simplify
44fc0a51
RB
991 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
992 (bitop @0 (bit_not @1))))
af563d4b 993
03cc70b5
MC
994/* (~x & y) | ~(x | y) -> ~x */
995(simplify
996 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
997 @2)
998
999/* (x | y) ^ (x | ~y) -> ~x */
1000(simplify
1001 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
1002 (bit_not @0))
1003
1004/* (x & y) | ~(x | y) -> ~(x ^ y) */
1005(simplify
1006 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1007 (bit_not (bit_xor @0 @1)))
1008
1009/* (~x | y) ^ (x ^ y) -> x | ~y */
1010(simplify
1011 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
1012 (bit_ior @0 (bit_not @1)))
1013
1014/* (x ^ y) | ~(x | y) -> ~(x & y) */
1015(simplify
1016 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1017 (bit_not (bit_and @0 @1)))
1018
af563d4b
MG
1019/* (x | y) & ~x -> y & ~x */
1020/* (x & y) | ~x -> y | ~x */
1021(for bitop (bit_and bit_ior)
1022 rbitop (bit_ior bit_and)
1023 (simplify
1024 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1025 (bitop @1 @2)))
0f770b01 1026
f13c4673
MP
1027/* (x & y) ^ (x | y) -> x ^ y */
1028(simplify
2d6f2dce
MP
1029 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1030 (bit_xor @0 @1))
f13c4673 1031
9ea65ca6
MP
1032/* (x ^ y) ^ (x | y) -> x & y */
1033(simplify
1034 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1035 (bit_and @0 @1))
1036
1037/* (x & y) + (x ^ y) -> x | y */
1038/* (x & y) | (x ^ y) -> x | y */
1039/* (x & y) ^ (x ^ y) -> x | y */
1040(for op (plus bit_ior bit_xor)
1041 (simplify
1042 (op:c (bit_and @0 @1) (bit_xor @0 @1))
1043 (bit_ior @0 @1)))
1044
1045/* (x & y) + (x | y) -> x + y */
1046(simplify
1047 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1048 (plus @0 @1))
1049
9737efaf
MP
1050/* (x + y) - (x | y) -> x & y */
1051(simplify
1052 (minus (plus @0 @1) (bit_ior @0 @1))
1053 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1054 && !TYPE_SATURATING (type))
1055 (bit_and @0 @1)))
1056
1057/* (x + y) - (x & y) -> x | y */
1058(simplify
1059 (minus (plus @0 @1) (bit_and @0 @1))
1060 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1061 && !TYPE_SATURATING (type))
1062 (bit_ior @0 @1)))
1063
9ea65ca6
MP
1064/* (x | y) - (x ^ y) -> x & y */
1065(simplify
1066 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1067 (bit_and @0 @1))
1068
1069/* (x | y) - (x & y) -> x ^ y */
1070(simplify
1071 (minus (bit_ior @0 @1) (bit_and @0 @1))
1072 (bit_xor @0 @1))
1073
66cc6273
MP
1074/* (x | y) & ~(x & y) -> x ^ y */
1075(simplify
1076 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1077 (bit_xor @0 @1))
1078
1079/* (x | y) & (~x ^ y) -> x & y */
1080(simplify
1081 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1082 (bit_and @0 @1))
1083
fd8303a5
MC
1084/* (~x | y) & (x | ~y) -> ~(x ^ y) */
1085(simplify
1086 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1087 (bit_not (bit_xor @0 @1)))
1088
1089/* (~x | y) ^ (x | ~y) -> x ^ y */
1090(simplify
1091 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1092 (bit_xor @0 @1))
1093
5b00d921
RB
1094/* ~x & ~y -> ~(x | y)
1095 ~x | ~y -> ~(x & y) */
1096(for op (bit_and bit_ior)
1097 rop (bit_ior bit_and)
1098 (simplify
1099 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
ece46666
MG
1100 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1101 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
5b00d921
RB
1102 (bit_not (rop (convert @0) (convert @1))))))
1103
14ea9f92 1104/* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
5b00d921
RB
1105 with a constant, and the two constants have no bits in common,
1106 we should treat this as a BIT_IOR_EXPR since this may produce more
1107 simplifications. */
14ea9f92
RB
1108(for op (bit_xor plus)
1109 (simplify
1110 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1111 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1112 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1113 && tree_nop_conversion_p (type, TREE_TYPE (@2))
8e6cdc90 1114 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
14ea9f92 1115 (bit_ior (convert @4) (convert @5)))))
5b00d921
RB
1116
1117/* (X | Y) ^ X -> Y & ~ X*/
1118(simplify
2eef1fc1 1119 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
5b00d921
RB
1120 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1121 (convert (bit_and @1 (bit_not @0)))))
1122
1123/* Convert ~X ^ ~Y to X ^ Y. */
1124(simplify
1125 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
ece46666
MG
1126 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1127 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
5b00d921
RB
1128 (bit_xor (convert @0) (convert @1))))
1129
1130/* Convert ~X ^ C to X ^ ~C. */
1131(simplify
1132 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
c8ba6498
EB
1133 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1134 (bit_xor (convert @0) (bit_not @1))))
5b00d921 1135
e39dab2c
MG
1136/* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1137(for opo (bit_and bit_xor)
1138 opi (bit_xor bit_and)
1139 (simplify
de5b5228 1140 (opo:c (opi:cs @0 @1) @1)
e39dab2c 1141 (bit_and (bit_not @0) @1)))
97e77391 1142
14ea9f92
RB
1143/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1144 operands are another bit-wise operation with a common input. If so,
1145 distribute the bit operations to save an operation and possibly two if
1146 constants are involved. For example, convert
1147 (A | B) & (A | C) into A | (B & C)
1148 Further simplification will occur if B and C are constants. */
e07ab2fe
MG
1149(for op (bit_and bit_ior bit_xor)
1150 rop (bit_ior bit_and bit_and)
14ea9f92 1151 (simplify
2eef1fc1 1152 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
e07ab2fe
MG
1153 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1154 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
14ea9f92
RB
1155 (rop (convert @0) (op (convert @1) (convert @2))))))
1156
e39dab2c
MG
1157/* Some simple reassociation for bit operations, also handled in reassoc. */
1158/* (X & Y) & Y -> X & Y
1159 (X | Y) | Y -> X | Y */
1160(for op (bit_and bit_ior)
1161 (simplify
2eef1fc1 1162 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
e39dab2c
MG
1163 @2))
1164/* (X ^ Y) ^ Y -> X */
1165(simplify
2eef1fc1 1166 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
ece46666 1167 (convert @0))
e39dab2c
MG
1168/* (X & Y) & (X & Z) -> (X & Y) & Z
1169 (X | Y) | (X | Z) -> (X | Y) | Z */
1170(for op (bit_and bit_ior)
1171 (simplify
6c35e5b0 1172 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
e39dab2c
MG
1173 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1174 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1175 (if (single_use (@5) && single_use (@6))
1176 (op @3 (convert @2))
1177 (if (single_use (@3) && single_use (@4))
1178 (op (convert @1) @5))))))
1179/* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1180(simplify
1181 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1182 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1183 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
d78789f5 1184 (bit_xor (convert @1) (convert @2))))
5b00d921 1185
64f7ea7c
KV
1186/* Convert abs (abs (X)) into abs (X).
1187 also absu (absu (X)) into absu (X). */
b14a9c57
RB
1188(simplify
1189 (abs (abs@1 @0))
1190 @1)
64f7ea7c
KV
1191
1192(simplify
1193 (absu (convert@2 (absu@1 @0)))
1194 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1195 @1))
1196
1197/* Convert abs[u] (-X) -> abs[u] (X). */
f3582e54
RB
1198(simplify
1199 (abs (negate @0))
1200 (abs @0))
64f7ea7c
KV
1201
1202(simplify
1203 (absu (negate @0))
1204 (absu @0))
1205
1206/* Convert abs[u] (X) where X is nonnegative -> (X). */
f3582e54
RB
1207(simplify
1208 (abs tree_expr_nonnegative_p@0)
1209 @0)
1210
64f7ea7c
KV
1211(simplify
1212 (absu tree_expr_nonnegative_p@0)
1213 (convert @0))
1214
55cf3946
RB
1215/* A few cases of fold-const.c negate_expr_p predicate. */
1216(match negate_expr_p
1217 INTEGER_CST
b14a9c57 1218 (if ((INTEGRAL_TYPE_P (type)
56a6d474 1219 && TYPE_UNSIGNED (type))
b14a9c57 1220 || (!TYPE_OVERFLOW_SANITIZED (type)
55cf3946
RB
1221 && may_negate_without_overflow_p (t)))))
1222(match negate_expr_p
1223 FIXED_CST)
1224(match negate_expr_p
1225 (negate @0)
1226 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1227(match negate_expr_p
1228 REAL_CST
1229 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1230/* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1231 ways. */
1232(match negate_expr_p
1233 VECTOR_CST
1234 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
81bd903a
MG
1235(match negate_expr_p
1236 (minus @0 @1)
1237 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1238 || (FLOAT_TYPE_P (type)
1239 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1240 && !HONOR_SIGNED_ZEROS (type)))))
0a8f32b8
RB
1241
1242/* (-A) * (-B) -> A * B */
1243(simplify
1244 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1245 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1246 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1247 (mult (convert @0) (convert (negate @1)))))
03cc70b5 1248
55cf3946 1249/* -(A + B) -> (-B) - A. */
b14a9c57 1250(simplify
55cf3946
RB
1251 (negate (plus:c @0 negate_expr_p@1))
1252 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1253 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1254 (minus (negate @1) @0)))
1255
81bd903a
MG
1256/* -(A - B) -> B - A. */
1257(simplify
1258 (negate (minus @0 @1))
1259 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1260 || (FLOAT_TYPE_P (type)
1261 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1262 && !HONOR_SIGNED_ZEROS (type)))
1263 (minus @1 @0)))
1af4ebf5
MG
1264(simplify
1265 (negate (pointer_diff @0 @1))
1266 (if (TYPE_OVERFLOW_UNDEFINED (type))
1267 (pointer_diff @1 @0)))
81bd903a 1268
55cf3946 1269/* A - B -> A + (-B) if B is easily negatable. */
b14a9c57 1270(simplify
55cf3946 1271 (minus @0 negate_expr_p@1)
e4e96a4f
KT
1272 (if (!FIXED_POINT_TYPE_P (type))
1273 (plus @0 (negate @1))))
d4573ffe 1274
5609420f
RB
1275/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1276 when profitable.
1277 For bitwise binary operations apply operand conversions to the
1278 binary operation result instead of to the operands. This allows
1279 to combine successive conversions and bitwise binary operations.
1280 We combine the above two cases by using a conditional convert. */
1281(for bitop (bit_and bit_ior bit_xor)
1282 (simplify
1283 (bitop (convert @0) (convert? @1))
1284 (if (((TREE_CODE (@1) == INTEGER_CST
1285 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
ad6f996c 1286 && int_fits_type_p (@1, TREE_TYPE (@0)))
aea417d7 1287 || types_match (@0, @1))
ad6f996c
RB
1288 /* ??? This transform conflicts with fold-const.c doing
1289 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1290 constants (if x has signed type, the sign bit cannot be set
1291 in c). This folds extension into the BIT_AND_EXPR.
1292 Restrict it to GIMPLE to avoid endless recursions. */
1293 && (bitop != BIT_AND_EXPR || GIMPLE)
5609420f
RB
1294 && (/* That's a good idea if the conversion widens the operand, thus
1295 after hoisting the conversion the operation will be narrower. */
1296 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1297 /* It's also a good idea if the conversion is to a non-integer
1298 mode. */
1299 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1300 /* Or if the precision of TO is not the same as the precision
1301 of its mode. */
2be65d9e 1302 || !type_has_mode_precision_p (type)))
5609420f
RB
1303 (convert (bitop @0 (convert @1))))))
1304
b14a9c57
RB
1305(for bitop (bit_and bit_ior)
1306 rbitop (bit_ior bit_and)
1307 /* (x | y) & x -> x */
1308 /* (x & y) | x -> x */
1309 (simplify
1310 (bitop:c (rbitop:c @0 @1) @0)
1311 @0)
1312 /* (~x | y) & x -> x & y */
1313 /* (~x & y) | x -> x | y */
1314 (simplify
1315 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1316 (bitop @0 @1)))
1317
5609420f
RB
1318/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1319(simplify
1320 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1321 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1322
1323/* Combine successive equal operations with constants. */
1324(for bitop (bit_and bit_ior bit_xor)
1325 (simplify
1326 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
fba05d9e
RS
1327 (if (!CONSTANT_CLASS_P (@0))
1328 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1329 folded to a constant. */
1330 (bitop @0 (bitop @1 @2))
1331 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1332 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1333 the values involved are such that the operation can't be decided at
1334 compile time. Try folding one of @0 or @1 with @2 to see whether
1335 that combination can be decided at compile time.
1336
1337 Keep the existing form if both folds fail, to avoid endless
1338 oscillation. */
1339 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1340 (if (cst1)
1341 (bitop @1 { cst1; })
1342 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1343 (if (cst2)
1344 (bitop @0 { cst2; }))))))))
5609420f
RB
1345
1346/* Try simple folding for X op !X, and X op X with the help
1347 of the truth_valued_p and logical_inverted_value predicates. */
1348(match truth_valued_p
1349 @0
1350 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
f84e7fd6 1351(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
5609420f
RB
1352 (match truth_valued_p
1353 (op @0 @1)))
1354(match truth_valued_p
1355 (truth_not @0))
1356
0a8f32b8
RB
1357(match (logical_inverted_value @0)
1358 (truth_not @0))
5609420f
RB
1359(match (logical_inverted_value @0)
1360 (bit_not truth_valued_p@0))
1361(match (logical_inverted_value @0)
09240451 1362 (eq @0 integer_zerop))
5609420f 1363(match (logical_inverted_value @0)
09240451 1364 (ne truth_valued_p@0 integer_truep))
5609420f 1365(match (logical_inverted_value @0)
09240451 1366 (bit_xor truth_valued_p@0 integer_truep))
5609420f
RB
1367
1368/* X & !X -> 0. */
1369(simplify
1370 (bit_and:c @0 (logical_inverted_value @0))
1371 { build_zero_cst (type); })
1372/* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1373(for op (bit_ior bit_xor)
1374 (simplify
1375 (op:c truth_valued_p@0 (logical_inverted_value @0))
f84e7fd6 1376 { constant_boolean_node (true, type); }))
59c20dc7
RB
1377/* X ==/!= !X is false/true. */
1378(for op (eq ne)
1379 (simplify
1380 (op:c truth_valued_p@0 (logical_inverted_value @0))
1381 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
5609420f 1382
5609420f
RB
1383/* ~~x -> x */
1384(simplify
1385 (bit_not (bit_not @0))
1386 @0)
1387
b14a9c57
RB
1388/* Convert ~ (-A) to A - 1. */
1389(simplify
1390 (bit_not (convert? (negate @0)))
ece46666
MG
1391 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1392 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
8b5ee871 1393 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
b14a9c57 1394
81bd903a
MG
1395/* Convert - (~A) to A + 1. */
1396(simplify
1397 (negate (nop_convert (bit_not @0)))
1398 (plus (view_convert @0) { build_each_one_cst (type); }))
1399
b14a9c57
RB
1400/* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1401(simplify
8b5ee871 1402 (bit_not (convert? (minus @0 integer_each_onep)))
ece46666
MG
1403 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1404 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
b14a9c57
RB
1405 (convert (negate @0))))
1406(simplify
1407 (bit_not (convert? (plus @0 integer_all_onesp)))
ece46666
MG
1408 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1409 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
b14a9c57
RB
1410 (convert (negate @0))))
1411
1412/* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1413(simplify
1414 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1415 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1416 (convert (bit_xor @0 (bit_not @1)))))
1417(simplify
1418 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1419 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1420 (convert (bit_xor @0 @1))))
1421
e268a77b
MG
1422/* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1423(simplify
1424 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1425 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1426 (bit_not (bit_xor (view_convert @0) @1))))
1427
f52baa7b
MP
1428/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1429(simplify
44fc0a51
RB
1430 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1431 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
f52baa7b 1432
f7b7b0aa
MP
1433/* Fold A - (A & B) into ~B & A. */
1434(simplify
2eef1fc1 1435 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
f7b7b0aa
MP
1436 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1437 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1438 (convert (bit_and (bit_not @1) @0))))
5609420f 1439
2071f8f9
N
1440/* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1441(for cmp (gt lt ge le)
1442(simplify
1443 (mult (convert (cmp @0 @1)) @2)
1444 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1445
e36c1cfe
N
1446/* For integral types with undefined overflow and C != 0 fold
1447 x * C EQ/NE y * C into x EQ/NE y. */
1448(for cmp (eq ne)
1449 (simplify
1450 (cmp (mult:c @0 @1) (mult:c @2 @1))
1451 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1452 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1453 && tree_expr_nonzero_p (@1))
1454 (cmp @0 @2))))
1455
42bd89ce
MG
1456/* For integral types with wrapping overflow and C odd fold
1457 x * C EQ/NE y * C into x EQ/NE y. */
1458(for cmp (eq ne)
1459 (simplify
1460 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1461 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1462 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1463 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1464 (cmp @0 @2))))
1465
e36c1cfe
N
1466/* For integral types with undefined overflow and C != 0 fold
1467 x * C RELOP y * C into:
84ff66b8 1468
e36c1cfe
N
1469 x RELOP y for nonnegative C
1470 y RELOP x for negative C */
1471(for cmp (lt gt le ge)
1472 (simplify
1473 (cmp (mult:c @0 @1) (mult:c @2 @1))
1474 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1475 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1476 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1477 (cmp @0 @2)
1478 (if (TREE_CODE (@1) == INTEGER_CST
8e6cdc90 1479 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
e36c1cfe 1480 (cmp @2 @0))))))
84ff66b8 1481
564e405c
JJ
1482/* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1483(for cmp (le gt)
1484 icmp (gt le)
1485 (simplify
1486 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1487 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1488 && TYPE_UNSIGNED (TREE_TYPE (@0))
1489 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
8e6cdc90
RS
1490 && (wi::to_wide (@2)
1491 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
564e405c
JJ
1492 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1493 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1494
a8492d5e
MG
1495/* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1496(for cmp (simple_comparison)
1497 (simplify
1498 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
8e6cdc90 1499 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
a8492d5e
MG
1500 (cmp @0 @1))))
1501
8d1628eb
JJ
1502/* X / C1 op C2 into a simple range test. */
1503(for cmp (simple_comparison)
1504 (simplify
1505 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1506 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1507 && integer_nonzerop (@1)
1508 && !TREE_OVERFLOW (@1)
1509 && !TREE_OVERFLOW (@2))
1510 (with { tree lo, hi; bool neg_overflow;
1511 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1512 &neg_overflow); }
1513 (switch
1514 (if (code == LT_EXPR || code == GE_EXPR)
1515 (if (TREE_OVERFLOW (lo))
1516 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1517 (if (code == LT_EXPR)
1518 (lt @0 { lo; })
1519 (ge @0 { lo; }))))
1520 (if (code == LE_EXPR || code == GT_EXPR)
1521 (if (TREE_OVERFLOW (hi))
1522 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1523 (if (code == LE_EXPR)
1524 (le @0 { hi; })
1525 (gt @0 { hi; }))))
1526 (if (!lo && !hi)
1527 { build_int_cst (type, code == NE_EXPR); })
1528 (if (code == EQ_EXPR && !hi)
1529 (ge @0 { lo; }))
1530 (if (code == EQ_EXPR && !lo)
1531 (le @0 { hi; }))
1532 (if (code == NE_EXPR && !hi)
1533 (lt @0 { lo; }))
1534 (if (code == NE_EXPR && !lo)
1535 (gt @0 { hi; }))
1536 (if (GENERIC)
1537 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1538 lo, hi); })
1539 (with
1540 {
1541 tree etype = range_check_type (TREE_TYPE (@0));
1542 if (etype)
1543 {
1544 if (! TYPE_UNSIGNED (etype))
1545 etype = unsigned_type_for (etype);
1546 hi = fold_convert (etype, hi);
1547 lo = fold_convert (etype, lo);
1548 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1549 }
1550 }
1551 (if (etype && hi && !TREE_OVERFLOW (hi))
1552 (if (code == EQ_EXPR)
1553 (le (minus (convert:etype @0) { lo; }) { hi; })
1554 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1555
d35256b6
MG
1556/* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1557(for op (lt le ge gt)
1558 (simplify
1559 (op (plus:c @0 @2) (plus:c @1 @2))
1560 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1561 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1562 (op @0 @1))))
1563/* For equality and subtraction, this is also true with wrapping overflow. */
1564(for op (eq ne minus)
1565 (simplify
1566 (op (plus:c @0 @2) (plus:c @1 @2))
1567 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1568 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1569 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1570 (op @0 @1))))
1571
1572/* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1573(for op (lt le ge gt)
1574 (simplify
1575 (op (minus @0 @2) (minus @1 @2))
1576 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1577 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1578 (op @0 @1))))
1579/* For equality and subtraction, this is also true with wrapping overflow. */
1580(for op (eq ne minus)
1581 (simplify
1582 (op (minus @0 @2) (minus @1 @2))
1583 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1584 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1585 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1586 (op @0 @1))))
1af4ebf5
MG
1587/* And for pointers... */
1588(for op (simple_comparison)
1589 (simplify
1590 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1591 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1592 (op @0 @1))))
1593(simplify
1594 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1595 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1596 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1597 (pointer_diff @0 @1)))
d35256b6
MG
1598
1599/* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1600(for op (lt le ge gt)
1601 (simplify
1602 (op (minus @2 @0) (minus @2 @1))
1603 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1604 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1605 (op @1 @0))))
1606/* For equality and subtraction, this is also true with wrapping overflow. */
1607(for op (eq ne minus)
1608 (simplify
1609 (op (minus @2 @0) (minus @2 @1))
1610 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1611 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1612 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1613 (op @1 @0))))
1af4ebf5
MG
1614/* And for pointers... */
1615(for op (simple_comparison)
1616 (simplify
1617 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1618 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1619 (op @1 @0))))
1620(simplify
1621 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1622 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1623 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1624 (pointer_diff @1 @0)))
d35256b6 1625
6358a676
MG
1626/* X + Y < Y is the same as X < 0 when there is no overflow. */
1627(for op (lt le gt ge)
1628 (simplify
1629 (op:c (plus:c@2 @0 @1) @1)
1630 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1631 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
cbd42900 1632 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
6358a676
MG
1633 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1634 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1635/* For equality, this is also true with wrapping overflow. */
1636(for op (eq ne)
1637 (simplify
1638 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1639 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1640 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1641 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1642 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1643 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1644 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1645 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1646 (simplify
1647 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1648 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1649 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1650 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1651 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1652
1653/* X - Y < X is the same as Y > 0 when there is no overflow.
1654 For equality, this is also true with wrapping overflow. */
1655(for op (simple_comparison)
1656 (simplify
1657 (op:c @0 (minus@2 @0 @1))
1658 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1659 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1660 || ((op == EQ_EXPR || op == NE_EXPR)
1661 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1662 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1663 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1664
1d6fadee 1665/* Transform:
b8d85005
JJ
1666 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1667 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1d6fadee
PK
1668(for cmp (eq ne)
1669 ocmp (lt ge)
1670 (simplify
1671 (cmp (trunc_div @0 @1) integer_zerop)
1672 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
b8d85005
JJ
1673 /* Complex ==/!= is allowed, but not </>=. */
1674 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1d6fadee
PK
1675 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1676 (ocmp @0 @1))))
1677
8b656ca7
MG
1678/* X == C - X can never be true if C is odd. */
1679(for cmp (eq ne)
1680 (simplify
1681 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1682 (if (TREE_INT_CST_LOW (@1) & 1)
1683 { constant_boolean_node (cmp == NE_EXPR, type); })))
1684
10bc8017
MG
1685/* Arguments on which one can call get_nonzero_bits to get the bits
1686 possibly set. */
1687(match with_possible_nonzero_bits
1688 INTEGER_CST@0)
1689(match with_possible_nonzero_bits
1690 SSA_NAME@0
1691 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1692/* Slightly extended version, do not make it recursive to keep it cheap. */
1693(match (with_possible_nonzero_bits2 @0)
1694 with_possible_nonzero_bits@0)
1695(match (with_possible_nonzero_bits2 @0)
1696 (bit_and:c with_possible_nonzero_bits@0 @2))
1697
1698/* Same for bits that are known to be set, but we do not have
1699 an equivalent to get_nonzero_bits yet. */
1700(match (with_certain_nonzero_bits2 @0)
1701 INTEGER_CST@0)
1702(match (with_certain_nonzero_bits2 @0)
1703 (bit_ior @1 INTEGER_CST@0))
1704
1705/* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1706(for cmp (eq ne)
1707 (simplify
1708 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
8e6cdc90 1709 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
10bc8017
MG
1710 { constant_boolean_node (cmp == NE_EXPR, type); })))
1711
84ff66b8
AV
1712/* ((X inner_op C0) outer_op C1)
1713 With X being a tree where value_range has reasoned certain bits to always be
1714 zero throughout its computed value range,
1715 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1716 where zero_mask has 1's for all bits that are sure to be 0 in
1717 and 0's otherwise.
1718 if (inner_op == '^') C0 &= ~C1;
1719 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1720 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1721*/
1722(for inner_op (bit_ior bit_xor)
1723 outer_op (bit_xor bit_ior)
1724(simplify
1725 (outer_op
1726 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1727 (with
1728 {
1729 bool fail = false;
1730 wide_int zero_mask_not;
1731 wide_int C0;
1732 wide_int cst_emit;
1733
1734 if (TREE_CODE (@2) == SSA_NAME)
1735 zero_mask_not = get_nonzero_bits (@2);
1736 else
1737 fail = true;
1738
1739 if (inner_op == BIT_XOR_EXPR)
1740 {
8e6cdc90
RS
1741 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1742 cst_emit = C0 | wi::to_wide (@1);
84ff66b8
AV
1743 }
1744 else
1745 {
8e6cdc90
RS
1746 C0 = wi::to_wide (@0);
1747 cst_emit = C0 ^ wi::to_wide (@1);
84ff66b8
AV
1748 }
1749 }
8e6cdc90 1750 (if (!fail && (C0 & zero_mask_not) == 0)
84ff66b8 1751 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
8e6cdc90 1752 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
84ff66b8
AV
1753 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1754
a499aac5
RB
1755/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1756(simplify
44fc0a51
RB
1757 (pointer_plus (pointer_plus:s @0 @1) @3)
1758 (pointer_plus @0 (plus @1 @3)))
a499aac5
RB
1759
1760/* Pattern match
1761 tem1 = (long) ptr1;
1762 tem2 = (long) ptr2;
1763 tem3 = tem2 - tem1;
1764 tem4 = (unsigned long) tem3;
1765 tem5 = ptr1 + tem4;
1766 and produce
1767 tem5 = ptr2; */
1768(simplify
1769 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1770 /* Conditionally look through a sign-changing conversion. */
1771 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1772 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1773 || (GENERIC && type == TREE_TYPE (@1))))
1774 @1))
1af4ebf5
MG
1775(simplify
1776 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1777 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1778 (convert @1)))
a499aac5
RB
1779
1780/* Pattern match
1781 tem = (sizetype) ptr;
1782 tem = tem & algn;
1783 tem = -tem;
1784 ... = ptr p+ tem;
1785 and produce the simpler and easier to analyze with respect to alignment
1786 ... = ptr & ~algn; */
1787(simplify
1788 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
8e6cdc90 1789 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
a499aac5
RB
1790 (bit_and @0 { algn; })))
1791
99e943a2
RB
1792/* Try folding difference of addresses. */
1793(simplify
1794 (minus (convert ADDR_EXPR@0) (convert @1))
1795 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
f37fac2b 1796 (with { poly_int64 diff; }
99e943a2
RB
1797 (if (ptr_difference_const (@0, @1, &diff))
1798 { build_int_cst_type (type, diff); }))))
1799(simplify
1800 (minus (convert @0) (convert ADDR_EXPR@1))
1801 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
f37fac2b 1802 (with { poly_int64 diff; }
99e943a2
RB
1803 (if (ptr_difference_const (@0, @1, &diff))
1804 { build_int_cst_type (type, diff); }))))
1af4ebf5 1805(simplify
67fccea4 1806 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
1af4ebf5
MG
1807 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1808 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
f37fac2b 1809 (with { poly_int64 diff; }
1af4ebf5
MG
1810 (if (ptr_difference_const (@0, @1, &diff))
1811 { build_int_cst_type (type, diff); }))))
1812(simplify
67fccea4 1813 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
1af4ebf5
MG
1814 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1815 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
f37fac2b 1816 (with { poly_int64 diff; }
1af4ebf5
MG
1817 (if (ptr_difference_const (@0, @1, &diff))
1818 { build_int_cst_type (type, diff); }))))
99e943a2 1819
bab73f11
RB
1820/* If arg0 is derived from the address of an object or function, we may
1821 be able to fold this expression using the object or function's
1822 alignment. */
1823(simplify
1824 (bit_and (convert? @0) INTEGER_CST@1)
1825 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1826 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1827 (with
1828 {
1829 unsigned int align;
1830 unsigned HOST_WIDE_INT bitpos;
1831 get_pointer_alignment_1 (@0, &align, &bitpos);
1832 }
8e6cdc90
RS
1833 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1834 { wide_int_to_tree (type, (wi::to_wide (@1)
1835 & (bitpos / BITS_PER_UNIT))); }))))
99e943a2 1836
a499aac5 1837
cc7b5acf
RB
1838/* We can't reassociate at all for saturating types. */
1839(if (!TYPE_SATURATING (type))
1840
1841 /* Contract negates. */
1842 /* A + (-B) -> A - B */
1843 (simplify
248179b5
RB
1844 (plus:c @0 (convert? (negate @1)))
1845 /* Apply STRIP_NOPS on the negate. */
1846 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1847 && !TYPE_OVERFLOW_SANITIZED (type))
248179b5
RB
1848 (with
1849 {
1850 tree t1 = type;
1851 if (INTEGRAL_TYPE_P (type)
1852 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1853 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1854 }
1855 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
cc7b5acf
RB
1856 /* A - (-B) -> A + B */
1857 (simplify
248179b5
RB
1858 (minus @0 (convert? (negate @1)))
1859 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1860 && !TYPE_OVERFLOW_SANITIZED (type))
248179b5
RB
1861 (with
1862 {
1863 tree t1 = type;
1864 if (INTEGRAL_TYPE_P (type)
1865 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1866 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1867 }
1868 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
63626547
MG
1869 /* -(T)(-A) -> (T)A
1870 Sign-extension is ok except for INT_MIN, which thankfully cannot
1871 happen without overflow. */
1872 (simplify
1873 (negate (convert (negate @1)))
1874 (if (INTEGRAL_TYPE_P (type)
1875 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1876 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1877 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1878 && !TYPE_OVERFLOW_SANITIZED (type)
1879 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
a0f12cf8 1880 (convert @1)))
63626547
MG
1881 (simplify
1882 (negate (convert negate_expr_p@1))
1883 (if (SCALAR_FLOAT_TYPE_P (type)
1884 && ((DECIMAL_FLOAT_TYPE_P (type)
1885 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1886 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1887 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1888 (convert (negate @1))))
1889 (simplify
1890 (negate (nop_convert (negate @1)))
1891 (if (!TYPE_OVERFLOW_SANITIZED (type)
1892 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1893 (view_convert @1)))
cc7b5acf 1894
7318e44f
RB
1895 /* We can't reassociate floating-point unless -fassociative-math
1896 or fixed-point plus or minus because of saturation to +-Inf. */
1897 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1898 && !FIXED_POINT_TYPE_P (type))
cc7b5acf
RB
1899
1900 /* Match patterns that allow contracting a plus-minus pair
1901 irrespective of overflow issues. */
1902 /* (A +- B) - A -> +- B */
1903 /* (A +- B) -+ B -> A */
1904 /* A - (A +- B) -> -+ B */
1905 /* A +- (B -+ A) -> +- B */
1906 (simplify
1907 (minus (plus:c @0 @1) @0)
1908 @1)
1909 (simplify
1910 (minus (minus @0 @1) @0)
1911 (negate @1))
1912 (simplify
1913 (plus:c (minus @0 @1) @1)
1914 @0)
1915 (simplify
1916 (minus @0 (plus:c @0 @1))
1917 (negate @1))
1918 (simplify
1919 (minus @0 (minus @0 @1))
1920 @1)
1e7df2e6
MG
1921 /* (A +- B) + (C - A) -> C +- B */
1922 /* (A + B) - (A - C) -> B + C */
1923 /* More cases are handled with comparisons. */
1924 (simplify
1925 (plus:c (plus:c @0 @1) (minus @2 @0))
1926 (plus @2 @1))
1927 (simplify
1928 (plus:c (minus @0 @1) (minus @2 @0))
1929 (minus @2 @1))
1af4ebf5
MG
1930 (simplify
1931 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1932 (if (TYPE_OVERFLOW_UNDEFINED (type)
1933 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1934 (pointer_diff @2 @1)))
1e7df2e6
MG
1935 (simplify
1936 (minus (plus:c @0 @1) (minus @0 @2))
1937 (plus @1 @2))
cc7b5acf 1938
ed73f46f
MG
1939 /* (A +- CST1) +- CST2 -> A + CST3
1940 Use view_convert because it is safe for vectors and equivalent for
1941 scalars. */
cc7b5acf
RB
1942 (for outer_op (plus minus)
1943 (for inner_op (plus minus)
ed73f46f 1944 neg_inner_op (minus plus)
cc7b5acf 1945 (simplify
ed73f46f
MG
1946 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1947 CONSTANT_CLASS_P@2)
1948 /* If one of the types wraps, use that one. */
1949 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
3eb1eecf
JJ
1950 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1951 forever if something doesn't simplify into a constant. */
1952 (if (!CONSTANT_CLASS_P (@0))
1953 (if (outer_op == PLUS_EXPR)
1954 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1955 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
ed73f46f
MG
1956 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1957 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1958 (if (outer_op == PLUS_EXPR)
1959 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1960 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1961 /* If the constant operation overflows we cannot do the transform
1962 directly as we would introduce undefined overflow, for example
1963 with (a - 1) + INT_MIN. */
1964 (if (types_match (type, @0))
1965 (with { tree cst = const_binop (outer_op == inner_op
1966 ? PLUS_EXPR : MINUS_EXPR,
1967 type, @1, @2); }
1968 (if (cst && !TREE_OVERFLOW (cst))
1969 (inner_op @0 { cst; } )
1970 /* X+INT_MAX+1 is X-INT_MIN. */
1971 (if (INTEGRAL_TYPE_P (type) && cst
8e6cdc90
RS
1972 && wi::to_wide (cst) == wi::min_value (type))
1973 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
ed73f46f
MG
1974 /* Last resort, use some unsigned type. */
1975 (with { tree utype = unsigned_type_for (type); }
48fcd201
JJ
1976 (if (utype)
1977 (view_convert (inner_op
1978 (view_convert:utype @0)
1979 (view_convert:utype
1980 { drop_tree_overflow (cst); }))))))))))))))
cc7b5acf 1981
b302f2e0 1982 /* (CST1 - A) +- CST2 -> CST3 - A */
cc7b5acf
RB
1983 (for outer_op (plus minus)
1984 (simplify
1985 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
23f27839 1986 (with { tree cst = const_binop (outer_op, type, @1, @2); }
cc7b5acf
RB
1987 (if (cst && !TREE_OVERFLOW (cst))
1988 (minus { cst; } @0)))))
1989
b302f2e0
RB
1990 /* CST1 - (CST2 - A) -> CST3 + A */
1991 (simplify
1992 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1993 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1994 (if (cst && !TREE_OVERFLOW (cst))
1995 (plus { cst; } @0))))
1996
cc7b5acf
RB
1997 /* ~A + A -> -1 */
1998 (simplify
1999 (plus:c (bit_not @0) @0)
2000 (if (!TYPE_OVERFLOW_TRAPS (type))
2001 { build_all_ones_cst (type); }))
2002
2003 /* ~A + 1 -> -A */
2004 (simplify
e19740ae
RB
2005 (plus (convert? (bit_not @0)) integer_each_onep)
2006 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2007 (negate (convert @0))))
2008
2009 /* -A - 1 -> ~A */
2010 (simplify
2011 (minus (convert? (negate @0)) integer_each_onep)
2012 (if (!TYPE_OVERFLOW_TRAPS (type)
2013 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2014 (bit_not (convert @0))))
2015
2016 /* -1 - A -> ~A */
2017 (simplify
2018 (minus integer_all_onesp @0)
bc4315fb 2019 (bit_not @0))
cc7b5acf
RB
2020
2021 /* (T)(P + A) - (T)P -> (T) A */
d7f44d4d 2022 (simplify
a72610d4
JJ
2023 (minus (convert (plus:c @@0 @1))
2024 (convert? @0))
d7f44d4d
JJ
2025 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2026 /* For integer types, if A has a smaller type
2027 than T the result depends on the possible
2028 overflow in P + A.
2029 E.g. T=size_t, A=(unsigned)429497295, P>0.
2030 However, if an overflow in P + A would cause
2031 undefined behavior, we can assume that there
2032 is no overflow. */
a72610d4
JJ
2033 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2034 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
d7f44d4d
JJ
2035 (convert @1)))
2036 (simplify
2037 (minus (convert (pointer_plus @@0 @1))
2038 (convert @0))
2039 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2040 /* For pointer types, if the conversion of A to the
2041 final type requires a sign- or zero-extension,
2042 then we have to punt - it is not defined which
2043 one is correct. */
2044 || (POINTER_TYPE_P (TREE_TYPE (@0))
2045 && TREE_CODE (@1) == INTEGER_CST
2046 && tree_int_cst_sign_bit (@1) == 0))
2047 (convert @1)))
1af4ebf5
MG
2048 (simplify
2049 (pointer_diff (pointer_plus @@0 @1) @0)
2050 /* The second argument of pointer_plus must be interpreted as signed, and
2051 thus sign-extended if necessary. */
2052 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
8ae43881
JJ
2053 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2054 second arg is unsigned even when we need to consider it as signed,
2055 we don't want to diagnose overflow here. */
2056 (convert (view_convert:stype @1))))
a8fc2579
RB
2057
2058 /* (T)P - (T)(P + A) -> -(T) A */
d7f44d4d 2059 (simplify
a72610d4
JJ
2060 (minus (convert? @0)
2061 (convert (plus:c @@0 @1)))
d7f44d4d
JJ
2062 (if (INTEGRAL_TYPE_P (type)
2063 && TYPE_OVERFLOW_UNDEFINED (type)
2064 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2065 (with { tree utype = unsigned_type_for (type); }
2066 (convert (negate (convert:utype @1))))
a8fc2579
RB
2067 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2068 /* For integer types, if A has a smaller type
2069 than T the result depends on the possible
2070 overflow in P + A.
2071 E.g. T=size_t, A=(unsigned)429497295, P>0.
2072 However, if an overflow in P + A would cause
2073 undefined behavior, we can assume that there
2074 is no overflow. */
a72610d4
JJ
2075 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2076 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
d7f44d4d
JJ
2077 (negate (convert @1)))))
2078 (simplify
2079 (minus (convert @0)
2080 (convert (pointer_plus @@0 @1)))
2081 (if (INTEGRAL_TYPE_P (type)
2082 && TYPE_OVERFLOW_UNDEFINED (type)
2083 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2084 (with { tree utype = unsigned_type_for (type); }
2085 (convert (negate (convert:utype @1))))
2086 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
a8fc2579
RB
2087 /* For pointer types, if the conversion of A to the
2088 final type requires a sign- or zero-extension,
2089 then we have to punt - it is not defined which
2090 one is correct. */
2091 || (POINTER_TYPE_P (TREE_TYPE (@0))
2092 && TREE_CODE (@1) == INTEGER_CST
2093 && tree_int_cst_sign_bit (@1) == 0))
2094 (negate (convert @1)))))
1af4ebf5
MG
2095 (simplify
2096 (pointer_diff @0 (pointer_plus @@0 @1))
2097 /* The second argument of pointer_plus must be interpreted as signed, and
2098 thus sign-extended if necessary. */
2099 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
8ae43881
JJ
2100 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2101 second arg is unsigned even when we need to consider it as signed,
2102 we don't want to diagnose overflow here. */
2103 (negate (convert (view_convert:stype @1)))))
a8fc2579
RB
2104
2105 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
d7f44d4d 2106 (simplify
a72610d4 2107 (minus (convert (plus:c @@0 @1))
d7f44d4d
JJ
2108 (convert (plus:c @0 @2)))
2109 (if (INTEGRAL_TYPE_P (type)
2110 && TYPE_OVERFLOW_UNDEFINED (type)
a72610d4
JJ
2111 && element_precision (type) <= element_precision (TREE_TYPE (@1))
2112 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
d7f44d4d
JJ
2113 (with { tree utype = unsigned_type_for (type); }
2114 (convert (minus (convert:utype @1) (convert:utype @2))))
a72610d4
JJ
2115 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2116 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2117 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2118 /* For integer types, if A has a smaller type
2119 than T the result depends on the possible
2120 overflow in P + A.
2121 E.g. T=size_t, A=(unsigned)429497295, P>0.
2122 However, if an overflow in P + A would cause
2123 undefined behavior, we can assume that there
2124 is no overflow. */
2125 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2126 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2127 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2128 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
d7f44d4d
JJ
2129 (minus (convert @1) (convert @2)))))
2130 (simplify
2131 (minus (convert (pointer_plus @@0 @1))
2132 (convert (pointer_plus @0 @2)))
2133 (if (INTEGRAL_TYPE_P (type)
2134 && TYPE_OVERFLOW_UNDEFINED (type)
2135 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2136 (with { tree utype = unsigned_type_for (type); }
2137 (convert (minus (convert:utype @1) (convert:utype @2))))
2138 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
a8fc2579
RB
2139 /* For pointer types, if the conversion of A to the
2140 final type requires a sign- or zero-extension,
2141 then we have to punt - it is not defined which
2142 one is correct. */
2143 || (POINTER_TYPE_P (TREE_TYPE (@0))
2144 && TREE_CODE (@1) == INTEGER_CST
2145 && tree_int_cst_sign_bit (@1) == 0
2146 && TREE_CODE (@2) == INTEGER_CST
2147 && tree_int_cst_sign_bit (@2) == 0))
d7f44d4d 2148 (minus (convert @1) (convert @2)))))
1af4ebf5
MG
2149 (simplify
2150 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2151 /* The second argument of pointer_plus must be interpreted as signed, and
2152 thus sign-extended if necessary. */
2153 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
8ae43881
JJ
2154 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2155 second arg is unsigned even when we need to consider it as signed,
2156 we don't want to diagnose overflow here. */
2157 (minus (convert (view_convert:stype @1))
2158 (convert (view_convert:stype @2)))))))
cc7b5acf 2159
5b55e6e3
RB
2160/* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2161 Modeled after fold_plusminus_mult_expr. */
2162(if (!TYPE_SATURATING (type)
2163 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2164 (for plusminus (plus minus)
2165 (simplify
c1bbe5b3
RB
2166 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2167 (if ((!ANY_INTEGRAL_TYPE_P (type)
5b55e6e3
RB
2168 || TYPE_OVERFLOW_WRAPS (type)
2169 || (INTEGRAL_TYPE_P (type)
2170 && tree_expr_nonzero_p (@0)
2171 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
c1bbe5b3
RB
2172 /* If @1 +- @2 is constant require a hard single-use on either
2173 original operand (but not on both). */
2174 && (single_use (@3) || single_use (@4)))
2175 (mult (plusminus @1 @2) @0)))
2176 /* We cannot generate constant 1 for fract. */
2177 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2178 (simplify
2179 (plusminus @0 (mult:c@3 @0 @2))
2180 (if ((!ANY_INTEGRAL_TYPE_P (type)
2181 || TYPE_OVERFLOW_WRAPS (type)
2182 || (INTEGRAL_TYPE_P (type)
2183 && tree_expr_nonzero_p (@0)
2184 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2185 && single_use (@3))
5b55e6e3
RB
2186 (mult (plusminus { build_one_cst (type); } @2) @0)))
2187 (simplify
c1bbe5b3
RB
2188 (plusminus (mult:c@3 @0 @2) @0)
2189 (if ((!ANY_INTEGRAL_TYPE_P (type)
2190 || TYPE_OVERFLOW_WRAPS (type)
2191 || (INTEGRAL_TYPE_P (type)
2192 && tree_expr_nonzero_p (@0)
2193 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2194 && single_use (@3))
5b55e6e3 2195 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
cc7b5acf 2196
0122e8e5 2197/* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
a7f24614 2198
c6cfa2bf 2199(for minmax (min max FMIN_ALL FMAX_ALL)
a7f24614
RB
2200 (simplify
2201 (minmax @0 @0)
2202 @0))
4a334cba
RS
2203/* min(max(x,y),y) -> y. */
2204(simplify
2205 (min:c (max:c @0 @1) @1)
2206 @1)
2207/* max(min(x,y),y) -> y. */
2208(simplify
2209 (max:c (min:c @0 @1) @1)
2210 @1)
d657e995
RB
2211/* max(a,-a) -> abs(a). */
2212(simplify
2213 (max:c @0 (negate @0))
2214 (if (TREE_CODE (type) != COMPLEX_TYPE
2215 && (! ANY_INTEGRAL_TYPE_P (type)
2216 || TYPE_OVERFLOW_UNDEFINED (type)))
2217 (abs @0)))
54f84ca9
RB
2218/* min(a,-a) -> -abs(a). */
2219(simplify
2220 (min:c @0 (negate @0))
2221 (if (TREE_CODE (type) != COMPLEX_TYPE
2222 && (! ANY_INTEGRAL_TYPE_P (type)
2223 || TYPE_OVERFLOW_UNDEFINED (type)))
2224 (negate (abs @0))))
a7f24614
RB
2225(simplify
2226 (min @0 @1)
2c2870a1
MG
2227 (switch
2228 (if (INTEGRAL_TYPE_P (type)
2229 && TYPE_MIN_VALUE (type)
2230 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2231 @1)
2232 (if (INTEGRAL_TYPE_P (type)
2233 && TYPE_MAX_VALUE (type)
2234 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2235 @0)))
a7f24614
RB
2236(simplify
2237 (max @0 @1)
2c2870a1
MG
2238 (switch
2239 (if (INTEGRAL_TYPE_P (type)
2240 && TYPE_MAX_VALUE (type)
2241 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2242 @1)
2243 (if (INTEGRAL_TYPE_P (type)
2244 && TYPE_MIN_VALUE (type)
2245 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2246 @0)))
ad6e4ba8 2247
182f37c9
N
2248/* max (a, a + CST) -> a + CST where CST is positive. */
2249/* max (a, a + CST) -> a where CST is negative. */
2250(simplify
2251 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2252 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2253 (if (tree_int_cst_sgn (@1) > 0)
2254 @2
2255 @0)))
2256
2257/* min (a, a + CST) -> a where CST is positive. */
2258/* min (a, a + CST) -> a + CST where CST is negative. */
2259(simplify
2260 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2261 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2262 (if (tree_int_cst_sgn (@1) > 0)
2263 @0
2264 @2)))
2265
ad6e4ba8
BC
2266/* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2267 and the outer convert demotes the expression back to x's type. */
2268(for minmax (min max)
2269 (simplify
2270 (convert (minmax@0 (convert @1) INTEGER_CST@2))
ebf41734
BC
2271 (if (INTEGRAL_TYPE_P (type)
2272 && types_match (@1, type) && int_fits_type_p (@2, type)
ad6e4ba8
BC
2273 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2274 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2275 (minmax @1 (convert @2)))))
2276
c6cfa2bf 2277(for minmax (FMIN_ALL FMAX_ALL)
0122e8e5
RS
2278 /* If either argument is NaN, return the other one. Avoid the
2279 transformation if we get (and honor) a signalling NaN. */
2280 (simplify
2281 (minmax:c @0 REAL_CST@1)
2282 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2283 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2284 @0)))
2285/* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2286 functions to return the numeric arg if the other one is NaN.
2287 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2288 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2289 worry about it either. */
2290(if (flag_finite_math_only)
2291 (simplify
c6cfa2bf 2292 (FMIN_ALL @0 @1)
0122e8e5 2293 (min @0 @1))
4119b2eb 2294 (simplify
c6cfa2bf 2295 (FMAX_ALL @0 @1)
0122e8e5 2296 (max @0 @1)))
ce0e66ff 2297/* min (-A, -B) -> -max (A, B) */
c6cfa2bf
MM
2298(for minmax (min max FMIN_ALL FMAX_ALL)
2299 maxmin (max min FMAX_ALL FMIN_ALL)
ce0e66ff
MG
2300 (simplify
2301 (minmax (negate:s@2 @0) (negate:s@3 @1))
2302 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2303 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2304 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2305 (negate (maxmin @0 @1)))))
2306/* MIN (~X, ~Y) -> ~MAX (X, Y)
2307 MAX (~X, ~Y) -> ~MIN (X, Y) */
2308(for minmax (min max)
2309 maxmin (max min)
2310 (simplify
2311 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2312 (bit_not (maxmin @0 @1))))
a7f24614 2313
b4817bd6
MG
2314/* MIN (X, Y) == X -> X <= Y */
2315(for minmax (min min max max)
2316 cmp (eq ne eq ne )
2317 out (le gt ge lt )
2318 (simplify
2319 (cmp:c (minmax:c @0 @1) @0)
2320 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2321 (out @0 @1))))
2322/* MIN (X, 5) == 0 -> X == 0
2323 MIN (X, 5) == 7 -> false */
2324(for cmp (eq ne)
2325 (simplify
2326 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
8e6cdc90
RS
2327 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2328 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6 2329 { constant_boolean_node (cmp == NE_EXPR, type); }
8e6cdc90
RS
2330 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2331 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6
MG
2332 (cmp @0 @2)))))
2333(for cmp (eq ne)
2334 (simplify
2335 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
8e6cdc90
RS
2336 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2337 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6 2338 { constant_boolean_node (cmp == NE_EXPR, type); }
8e6cdc90
RS
2339 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2340 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6
MG
2341 (cmp @0 @2)))))
2342/* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2343(for minmax (min min max max min min max max )
2344 cmp (lt le gt ge gt ge lt le )
2345 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2346 (simplify
2347 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2348 (comb (cmp @0 @2) (cmp @1 @2))))
2349
a7f24614
RB
2350/* Simplifications of shift and rotates. */
2351
2352(for rotate (lrotate rrotate)
2353 (simplify
2354 (rotate integer_all_onesp@0 @1)
2355 @0))
2356
2357/* Optimize -1 >> x for arithmetic right shifts. */
2358(simplify
2359 (rshift integer_all_onesp@0 @1)
2360 (if (!TYPE_UNSIGNED (type)
2361 && tree_expr_nonnegative_p (@1))
2362 @0))
2363
12085390
N
2364/* Optimize (x >> c) << c into x & (-1<<c). */
2365(simplify
2366 (lshift (rshift @0 INTEGER_CST@1) @1)
8e6cdc90 2367 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
12085390
N
2368 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2369
2370/* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2371 types. */
2372(simplify
2373 (rshift (lshift @0 INTEGER_CST@1) @1)
2374 (if (TYPE_UNSIGNED (type)
8e6cdc90 2375 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
12085390
N
2376 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2377
a7f24614
RB
2378(for shiftrotate (lrotate rrotate lshift rshift)
2379 (simplify
2380 (shiftrotate @0 integer_zerop)
2381 (non_lvalue @0))
2382 (simplify
2383 (shiftrotate integer_zerop@0 @1)
2384 @0)
2385 /* Prefer vector1 << scalar to vector1 << vector2
2386 if vector2 is uniform. */
2387 (for vec (VECTOR_CST CONSTRUCTOR)
2388 (simplify
2389 (shiftrotate @0 vec@1)
2390 (with { tree tem = uniform_vector_p (@1); }
2391 (if (tem)
2392 (shiftrotate @0 { tem; }))))))
2393
165ba2e9
JJ
2394/* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2395 Y is 0. Similarly for X >> Y. */
2396#if GIMPLE
2397(for shift (lshift rshift)
2398 (simplify
2399 (shift @0 SSA_NAME@1)
2400 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2401 (with {
2402 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2403 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2404 }
2405 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2406 @0)))))
2407#endif
2408
a7f24614
RB
2409/* Rewrite an LROTATE_EXPR by a constant into an
2410 RROTATE_EXPR by a new constant. */
2411(simplify
2412 (lrotate @0 INTEGER_CST@1)
23f27839 2413 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
a7f24614
RB
2414 build_int_cst (TREE_TYPE (@1),
2415 element_precision (type)), @1); }))
2416
14ea9f92
RB
2417/* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2418(for op (lrotate rrotate rshift lshift)
2419 (simplify
2420 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2421 (with { unsigned int prec = element_precision (type); }
8e6cdc90
RS
2422 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2423 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2424 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2425 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
a1488398
RS
2426 (with { unsigned int low = (tree_to_uhwi (@1)
2427 + tree_to_uhwi (@2)); }
14ea9f92
RB
2428 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2429 being well defined. */
2430 (if (low >= prec)
2431 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
8fdc6c67 2432 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
50301115 2433 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
8fdc6c67
RB
2434 { build_zero_cst (type); }
2435 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2436 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
14ea9f92
RB
2437
2438
01ada710
MP
2439/* ((1 << A) & 1) != 0 -> A == 0
2440 ((1 << A) & 1) == 0 -> A != 0 */
2441(for cmp (ne eq)
2442 icmp (eq ne)
2443 (simplify
2444 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2445 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
cc7b5acf 2446
f2e609c3
MP
2447/* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2448 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2449 if CST2 != 0. */
2450(for cmp (ne eq)
2451 (simplify
2452 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
8e6cdc90 2453 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
f2e609c3
MP
2454 (if (cand < 0
2455 || (!integer_zerop (@2)
8e6cdc90 2456 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
8fdc6c67
RB
2457 { constant_boolean_node (cmp == NE_EXPR, type); }
2458 (if (!integer_zerop (@2)
8e6cdc90 2459 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
8fdc6c67 2460 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
f2e609c3 2461
1ffbaa3f
RB
2462/* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2463 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2464 if the new mask might be further optimized. */
2465(for shift (lshift rshift)
2466 (simplify
44fc0a51
RB
2467 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2468 INTEGER_CST@2)
1ffbaa3f
RB
2469 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2470 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2471 && tree_fits_uhwi_p (@1)
2472 && tree_to_uhwi (@1) > 0
2473 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2474 (with
2475 {
2476 unsigned int shiftc = tree_to_uhwi (@1);
2477 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2478 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2479 tree shift_type = TREE_TYPE (@3);
2480 unsigned int prec;
2481
2482 if (shift == LSHIFT_EXPR)
fecfbfa4 2483 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
1ffbaa3f 2484 else if (shift == RSHIFT_EXPR
2be65d9e 2485 && type_has_mode_precision_p (shift_type))
1ffbaa3f
RB
2486 {
2487 prec = TYPE_PRECISION (TREE_TYPE (@3));
2488 tree arg00 = @0;
2489 /* See if more bits can be proven as zero because of
2490 zero extension. */
2491 if (@3 != @0
2492 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2493 {
2494 tree inner_type = TREE_TYPE (@0);
2be65d9e 2495 if (type_has_mode_precision_p (inner_type)
1ffbaa3f
RB
2496 && TYPE_PRECISION (inner_type) < prec)
2497 {
2498 prec = TYPE_PRECISION (inner_type);
2499 /* See if we can shorten the right shift. */
2500 if (shiftc < prec)
2501 shift_type = inner_type;
2502 /* Otherwise X >> C1 is all zeros, so we'll optimize
2503 it into (X, 0) later on by making sure zerobits
2504 is all ones. */
2505 }
2506 }
dd4786fe 2507 zerobits = HOST_WIDE_INT_M1U;
1ffbaa3f
RB
2508 if (shiftc < prec)
2509 {
2510 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2511 zerobits <<= prec - shiftc;
2512 }
2513 /* For arithmetic shift if sign bit could be set, zerobits
2514 can contain actually sign bits, so no transformation is
2515 possible, unless MASK masks them all away. In that
2516 case the shift needs to be converted into logical shift. */
2517 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2518 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2519 {
2520 if ((mask & zerobits) == 0)
2521 shift_type = unsigned_type_for (TREE_TYPE (@3));
2522 else
2523 zerobits = 0;
2524 }
2525 }
2526 }
2527 /* ((X << 16) & 0xff00) is (X, 0). */
2528 (if ((mask & zerobits) == mask)
8fdc6c67
RB
2529 { build_int_cst (type, 0); }
2530 (with { newmask = mask | zerobits; }
2531 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2532 (with
2533 {
2534 /* Only do the transformation if NEWMASK is some integer
2535 mode's mask. */
2536 for (prec = BITS_PER_UNIT;
2537 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
fecfbfa4 2538 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
8fdc6c67
RB
2539 break;
2540 }
2541 (if (prec < HOST_BITS_PER_WIDE_INT
dd4786fe 2542 || newmask == HOST_WIDE_INT_M1U)
8fdc6c67
RB
2543 (with
2544 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2545 (if (!tree_int_cst_equal (newmaskt, @2))
2546 (if (shift_type != TREE_TYPE (@3))
2547 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2548 (bit_and @4 { newmaskt; })))))))))))))
1ffbaa3f 2549
84ff66b8
AV
2550/* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2551 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
98e30e51 2552(for shift (lshift rshift)
84ff66b8
AV
2553 (for bit_op (bit_and bit_xor bit_ior)
2554 (simplify
2555 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2556 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2557 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2558 (bit_op (shift (convert @0) @1) { mask; }))))))
98e30e51 2559
ad1d92ab
MM
2560/* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2561(simplify
2562 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2563 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
ece46666
MG
2564 && (element_precision (TREE_TYPE (@0))
2565 <= element_precision (TREE_TYPE (@1))
2566 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
ad1d92ab
MM
2567 (with
2568 { tree shift_type = TREE_TYPE (@0); }
2569 (convert (rshift (convert:shift_type @1) @2)))))
2570
2571/* ~(~X >>r Y) -> X >>r Y
2572 ~(~X <<r Y) -> X <<r Y */
2573(for rotate (lrotate rrotate)
2574 (simplify
2575 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
ece46666
MG
2576 (if ((element_precision (TREE_TYPE (@0))
2577 <= element_precision (TREE_TYPE (@1))
2578 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2579 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2580 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
ad1d92ab
MM
2581 (with
2582 { tree rotate_type = TREE_TYPE (@0); }
2583 (convert (rotate (convert:rotate_type @1) @2))))))
98e30e51 2584
d4573ffe
RB
2585/* Simplifications of conversions. */
2586
2587/* Basic strip-useless-type-conversions / strip_nops. */
f3582e54 2588(for cvt (convert view_convert float fix_trunc)
d4573ffe
RB
2589 (simplify
2590 (cvt @0)
2591 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2592 || (GENERIC && type == TREE_TYPE (@0)))
2593 @0)))
2594
2595/* Contract view-conversions. */
2596(simplify
2597 (view_convert (view_convert @0))
2598 (view_convert @0))
2599
2600/* For integral conversions with the same precision or pointer
2601 conversions use a NOP_EXPR instead. */
2602(simplify
2603 (view_convert @0)
2604 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2605 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2606 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2607 (convert @0)))
2608
bce8ef71
MG
2609/* Strip inner integral conversions that do not change precision or size, or
2610 zero-extend while keeping the same size (for bool-to-char). */
d4573ffe
RB
2611(simplify
2612 (view_convert (convert@0 @1))
2613 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2614 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
bce8ef71
MG
2615 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2616 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2617 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2618 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
d4573ffe
RB
2619 (view_convert @1)))
2620
f469220d
RB
2621/* Simplify a view-converted empty constructor. */
2622(simplify
2623 (view_convert CONSTRUCTOR@0)
2624 (if (TREE_CODE (@0) != SSA_NAME
2625 && CONSTRUCTOR_NELTS (@0) == 0)
2626 { build_zero_cst (type); }))
2627
d4573ffe
RB
2628/* Re-association barriers around constants and other re-association
2629 barriers can be removed. */
2630(simplify
2631 (paren CONSTANT_CLASS_P@0)
2632 @0)
2633(simplify
2634 (paren (paren@1 @0))
2635 @1)
1e51d0a2
RB
2636
2637/* Handle cases of two conversions in a row. */
2638(for ocvt (convert float fix_trunc)
2639 (for icvt (convert float)
2640 (simplify
2641 (ocvt (icvt@1 @0))
2642 (with
2643 {
2644 tree inside_type = TREE_TYPE (@0);
2645 tree inter_type = TREE_TYPE (@1);
2646 int inside_int = INTEGRAL_TYPE_P (inside_type);
2647 int inside_ptr = POINTER_TYPE_P (inside_type);
2648 int inside_float = FLOAT_TYPE_P (inside_type);
09240451 2649 int inside_vec = VECTOR_TYPE_P (inside_type);
1e51d0a2
RB
2650 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2651 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2652 int inter_int = INTEGRAL_TYPE_P (inter_type);
2653 int inter_ptr = POINTER_TYPE_P (inter_type);
2654 int inter_float = FLOAT_TYPE_P (inter_type);
09240451 2655 int inter_vec = VECTOR_TYPE_P (inter_type);
1e51d0a2
RB
2656 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2657 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2658 int final_int = INTEGRAL_TYPE_P (type);
2659 int final_ptr = POINTER_TYPE_P (type);
2660 int final_float = FLOAT_TYPE_P (type);
09240451 2661 int final_vec = VECTOR_TYPE_P (type);
1e51d0a2
RB
2662 unsigned int final_prec = TYPE_PRECISION (type);
2663 int final_unsignedp = TYPE_UNSIGNED (type);
2664 }
64d3a1f0
RB
2665 (switch
2666 /* In addition to the cases of two conversions in a row
2667 handled below, if we are converting something to its own
2668 type via an object of identical or wider precision, neither
2669 conversion is needed. */
2670 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2671 || (GENERIC
2672 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2673 && (((inter_int || inter_ptr) && final_int)
2674 || (inter_float && final_float))
2675 && inter_prec >= final_prec)
2676 (ocvt @0))
2677
2678 /* Likewise, if the intermediate and initial types are either both
2679 float or both integer, we don't need the middle conversion if the
2680 former is wider than the latter and doesn't change the signedness
2681 (for integers). Avoid this if the final type is a pointer since
36088299 2682 then we sometimes need the middle conversion. */
64d3a1f0
RB
2683 (if (((inter_int && inside_int) || (inter_float && inside_float))
2684 && (final_int || final_float)
2685 && inter_prec >= inside_prec
36088299 2686 && (inter_float || inter_unsignedp == inside_unsignedp))
64d3a1f0
RB
2687 (ocvt @0))
2688
2689 /* If we have a sign-extension of a zero-extended value, we can
2690 replace that by a single zero-extension. Likewise if the
2691 final conversion does not change precision we can drop the
2692 intermediate conversion. */
2693 (if (inside_int && inter_int && final_int
2694 && ((inside_prec < inter_prec && inter_prec < final_prec
2695 && inside_unsignedp && !inter_unsignedp)
2696 || final_prec == inter_prec))
2697 (ocvt @0))
2698
2699 /* Two conversions in a row are not needed unless:
1e51d0a2
RB
2700 - some conversion is floating-point (overstrict for now), or
2701 - some conversion is a vector (overstrict for now), or
2702 - the intermediate type is narrower than both initial and
2703 final, or
2704 - the intermediate type and innermost type differ in signedness,
2705 and the outermost type is wider than the intermediate, or
2706 - the initial type is a pointer type and the precisions of the
2707 intermediate and final types differ, or
2708 - the final type is a pointer type and the precisions of the
2709 initial and intermediate types differ. */
64d3a1f0
RB
2710 (if (! inside_float && ! inter_float && ! final_float
2711 && ! inside_vec && ! inter_vec && ! final_vec
2712 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2713 && ! (inside_int && inter_int
2714 && inter_unsignedp != inside_unsignedp
2715 && inter_prec < final_prec)
2716 && ((inter_unsignedp && inter_prec > inside_prec)
2717 == (final_unsignedp && final_prec > inter_prec))
2718 && ! (inside_ptr && inter_prec != final_prec)
36088299 2719 && ! (final_ptr && inside_prec != inter_prec))
64d3a1f0
RB
2720 (ocvt @0))
2721
2722 /* A truncation to an unsigned type (a zero-extension) should be
2723 canonicalized as bitwise and of a mask. */
1d510e04
JJ
2724 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2725 && final_int && inter_int && inside_int
64d3a1f0
RB
2726 && final_prec == inside_prec
2727 && final_prec > inter_prec
2728 && inter_unsignedp)
2729 (convert (bit_and @0 { wide_int_to_tree
2730 (inside_type,
2731 wi::mask (inter_prec, false,
2732 TYPE_PRECISION (inside_type))); })))
2733
2734 /* If we are converting an integer to a floating-point that can
2735 represent it exactly and back to an integer, we can skip the
2736 floating-point conversion. */
2737 (if (GIMPLE /* PR66211 */
2738 && inside_int && inter_float && final_int &&
2739 (unsigned) significand_size (TYPE_MODE (inter_type))
2740 >= inside_prec - !inside_unsignedp)
2741 (convert @0)))))))
ea2042ba
RB
2742
2743/* If we have a narrowing conversion to an integral type that is fed by a
2744 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2745 masks off bits outside the final type (and nothing else). */
2746(simplify
2747 (convert (bit_and @0 INTEGER_CST@1))
2748 (if (INTEGRAL_TYPE_P (type)
2749 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2750 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2751 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2752 TYPE_PRECISION (type)), 0))
2753 (convert @0)))
a25454ea
RB
2754
2755
2756/* (X /[ex] A) * A -> X. */
2757(simplify
2eef1fc1
RB
2758 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2759 (convert @0))
eaeba53a 2760
839d0860
RB
2761/* Simplify (A / B) * B + (A % B) -> A. */
2762(for div (trunc_div ceil_div floor_div round_div)
2763 mod (trunc_mod ceil_mod floor_mod round_mod)
2764 (simplify
2765 (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
2766 @0))
2767
0036218b
MG
2768/* ((X /[ex] A) +- B) * A --> X +- A * B. */
2769(for op (plus minus)
2770 (simplify
2771 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
2772 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
2773 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
2774 (with
2775 {
2776 wi::overflow_type overflow;
2777 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
2778 TYPE_SIGN (type), &overflow);
2779 }
2780 (if (types_match (type, TREE_TYPE (@2))
2781 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
2782 (op @0 { wide_int_to_tree (type, mul); })
2783 (with { tree utype = unsigned_type_for (type); }
2784 (convert (op (convert:utype @0)
2785 (mult (convert:utype @1) (convert:utype @2))))))))))
2786
a7f24614
RB
2787/* Canonicalization of binary operations. */
2788
2789/* Convert X + -C into X - C. */
2790(simplify
2791 (plus @0 REAL_CST@1)
2792 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
23f27839 2793 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
a7f24614
RB
2794 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2795 (minus @0 { tem; })))))
2796
6b6aa8d3 2797/* Convert x+x into x*2. */
a7f24614
RB
2798(simplify
2799 (plus @0 @0)
2800 (if (SCALAR_FLOAT_TYPE_P (type))
6b6aa8d3
MG
2801 (mult @0 { build_real (type, dconst2); })
2802 (if (INTEGRAL_TYPE_P (type))
2803 (mult @0 { build_int_cst (type, 2); }))))
a7f24614 2804
406520e2 2805/* 0 - X -> -X. */
a7f24614
RB
2806(simplify
2807 (minus integer_zerop @1)
2808 (negate @1))
406520e2
MG
2809(simplify
2810 (pointer_diff integer_zerop @1)
2811 (negate (convert @1)))
a7f24614
RB
2812
2813/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2814 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2815 (-ARG1 + ARG0) reduces to -ARG1. */
2816(simplify
2817 (minus real_zerop@0 @1)
2818 (if (fold_real_zero_addition_p (type, @0, 0))
2819 (negate @1)))
2820
2821/* Transform x * -1 into -x. */
2822(simplify
2823 (mult @0 integer_minus_onep)
2824 (negate @0))
eaeba53a 2825
b771c609
AM
2826/* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2827 signed overflow for CST != 0 && CST != -1. */
2828(simplify
b46ebc6c 2829 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
b771c609 2830 (if (TREE_CODE (@2) != INTEGER_CST
b46ebc6c 2831 && single_use (@3)
b771c609
AM
2832 && !integer_zerop (@1) && !integer_minus_onep (@1))
2833 (mult (mult @0 @2) @1)))
2834
96285749
RS
2835/* True if we can easily extract the real and imaginary parts of a complex
2836 number. */
2837(match compositional_complex
2838 (convert? (complex @0 @1)))
2839
eaeba53a
RB
2840/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2841(simplify
2842 (complex (realpart @0) (imagpart @0))
2843 @0)
2844(simplify
2845 (realpart (complex @0 @1))
2846 @0)
2847(simplify
2848 (imagpart (complex @0 @1))
2849 @1)
83633539 2850
77c028c5
MG
2851/* Sometimes we only care about half of a complex expression. */
2852(simplify
2853 (realpart (convert?:s (conj:s @0)))
2854 (convert (realpart @0)))
2855(simplify
2856 (imagpart (convert?:s (conj:s @0)))
2857 (convert (negate (imagpart @0))))
2858(for part (realpart imagpart)
2859 (for op (plus minus)
2860 (simplify
2861 (part (convert?:s@2 (op:s @0 @1)))
2862 (convert (op (part @0) (part @1))))))
2863(simplify
2864 (realpart (convert?:s (CEXPI:s @0)))
2865 (convert (COS @0)))
2866(simplify
2867 (imagpart (convert?:s (CEXPI:s @0)))
2868 (convert (SIN @0)))
2869
2870/* conj(conj(x)) -> x */
2871(simplify
2872 (conj (convert? (conj @0)))
2873 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2874 (convert @0)))
2875
2876/* conj({x,y}) -> {x,-y} */
2877(simplify
2878 (conj (convert?:s (complex:s @0 @1)))
2879 (with { tree itype = TREE_TYPE (type); }
2880 (complex (convert:itype @0) (negate (convert:itype @1)))))
83633539
RB
2881
2882/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2883(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2884 (simplify
2885 (bswap (bswap @0))
2886 @0)
2887 (simplify
2888 (bswap (bit_not (bswap @0)))
2889 (bit_not @0))
2890 (for bitop (bit_xor bit_ior bit_and)
2891 (simplify
2892 (bswap (bitop:c (bswap @0) @1))
2893 (bitop @0 (bswap @1)))))
96994de0
RB
2894
2895
2896/* Combine COND_EXPRs and VEC_COND_EXPRs. */
2897
2898/* Simplify constant conditions.
2899 Only optimize constant conditions when the selected branch
2900 has the same type as the COND_EXPR. This avoids optimizing
2901 away "c ? x : throw", where the throw has a void type.
2902 Note that we cannot throw away the fold-const.c variant nor
2903 this one as we depend on doing this transform before possibly
2904 A ? B : B -> B triggers and the fold-const.c one can optimize
2905 0 ? A : B to B even if A has side-effects. Something
2906 genmatch cannot handle. */
2907(simplify
2908 (cond INTEGER_CST@0 @1 @2)
8fdc6c67
RB
2909 (if (integer_zerop (@0))
2910 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2911 @2)
2912 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2913 @1)))
96994de0
RB
2914(simplify
2915 (vec_cond VECTOR_CST@0 @1 @2)
2916 (if (integer_all_onesp (@0))
8fdc6c67
RB
2917 @1
2918 (if (integer_zerop (@0))
2919 @2)))
96994de0 2920
b5481987
BC
2921/* Simplification moved from fold_cond_expr_with_comparison. It may also
2922 be extended. */
e2535011
BC
2923/* This pattern implements two kinds simplification:
2924
2925 Case 1)
2926 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
b5481987
BC
2927 1) Conversions are type widening from smaller type.
2928 2) Const c1 equals to c2 after canonicalizing comparison.
2929 3) Comparison has tree code LT, LE, GT or GE.
2930 This specific pattern is needed when (cmp (convert x) c) may not
2931 be simplified by comparison patterns because of multiple uses of
2932 x. It also makes sense here because simplifying across multiple
e2535011
BC
2933 referred var is always benefitial for complicated cases.
2934
2935 Case 2)
2936 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2937(for cmp (lt le gt ge eq)
b5481987 2938 (simplify
ae22bc5d 2939 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
b5481987
BC
2940 (with
2941 {
2942 tree from_type = TREE_TYPE (@1);
2943 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
ae22bc5d 2944 enum tree_code code = ERROR_MARK;
b5481987 2945
ae22bc5d
BC
2946 if (INTEGRAL_TYPE_P (from_type)
2947 && int_fits_type_p (@2, from_type)
b5481987
BC
2948 && (types_match (c1_type, from_type)
2949 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2950 && (TYPE_UNSIGNED (from_type)
2951 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2952 && (types_match (c2_type, from_type)
2953 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2954 && (TYPE_UNSIGNED (from_type)
2955 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2956 {
ae22bc5d 2957 if (cmp != EQ_EXPR)
b5481987 2958 {
e2535011
BC
2959 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2960 {
2961 /* X <= Y - 1 equals to X < Y. */
ae22bc5d 2962 if (cmp == LE_EXPR)
e2535011
BC
2963 code = LT_EXPR;
2964 /* X > Y - 1 equals to X >= Y. */
ae22bc5d 2965 if (cmp == GT_EXPR)
e2535011
BC
2966 code = GE_EXPR;
2967 }
2968 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2969 {
2970 /* X < Y + 1 equals to X <= Y. */
ae22bc5d 2971 if (cmp == LT_EXPR)
e2535011
BC
2972 code = LE_EXPR;
2973 /* X >= Y + 1 equals to X > Y. */
ae22bc5d 2974 if (cmp == GE_EXPR)
e2535011
BC
2975 code = GT_EXPR;
2976 }
ae22bc5d
BC
2977 if (code != ERROR_MARK
2978 || wi::to_widest (@2) == wi::to_widest (@3))
e2535011 2979 {
ae22bc5d 2980 if (cmp == LT_EXPR || cmp == LE_EXPR)
e2535011 2981 code = MIN_EXPR;
ae22bc5d 2982 if (cmp == GT_EXPR || cmp == GE_EXPR)
e2535011
BC
2983 code = MAX_EXPR;
2984 }
b5481987 2985 }
e2535011 2986 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
ae22bc5d
BC
2987 else if (int_fits_type_p (@3, from_type))
2988 code = EQ_EXPR;
b5481987
BC
2989 }
2990 }
2991 (if (code == MAX_EXPR)
21aaaf1e 2992 (convert (max @1 (convert @2)))
b5481987 2993 (if (code == MIN_EXPR)
21aaaf1e 2994 (convert (min @1 (convert @2)))
e2535011 2995 (if (code == EQ_EXPR)
ae22bc5d 2996 (convert (cond (eq @1 (convert @3))
21aaaf1e 2997 (convert:from_type @3) (convert:from_type @2)))))))))
b5481987 2998
714445ae
BC
2999/* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
3000
3001 1) OP is PLUS or MINUS.
3002 2) CMP is LT, LE, GT or GE.
3003 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
3004
3005 This pattern also handles special cases like:
3006
3007 A) Operand x is a unsigned to signed type conversion and c1 is
3008 integer zero. In this case,
3009 (signed type)x < 0 <=> x > MAX_VAL(signed type)
3010 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
3011 B) Const c1 may not equal to (C3 op' C2). In this case we also
3012 check equality for (c1+1) and (c1-1) by adjusting comparison
3013 code.
3014
3015 TODO: Though signed type is handled by this pattern, it cannot be
3016 simplified at the moment because C standard requires additional
3017 type promotion. In order to match&simplify it here, the IR needs
3018 to be cleaned up by other optimizers, i.e, VRP. */
3019(for op (plus minus)
3020 (for cmp (lt le gt ge)
3021 (simplify
3022 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
3023 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
3024 (if (types_match (from_type, to_type)
3025 /* Check if it is special case A). */
3026 || (TYPE_UNSIGNED (from_type)
3027 && !TYPE_UNSIGNED (to_type)
3028 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
3029 && integer_zerop (@1)
3030 && (cmp == LT_EXPR || cmp == GE_EXPR)))
3031 (with
3032 {
4a669ac3 3033 wi::overflow_type overflow = wi::OVF_NONE;
714445ae 3034 enum tree_code code, cmp_code = cmp;
8e6cdc90
RS
3035 wide_int real_c1;
3036 wide_int c1 = wi::to_wide (@1);
3037 wide_int c2 = wi::to_wide (@2);
3038 wide_int c3 = wi::to_wide (@3);
714445ae
BC
3039 signop sgn = TYPE_SIGN (from_type);
3040
3041 /* Handle special case A), given x of unsigned type:
3042 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
3043 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
3044 if (!types_match (from_type, to_type))
3045 {
3046 if (cmp_code == LT_EXPR)
3047 cmp_code = GT_EXPR;
3048 if (cmp_code == GE_EXPR)
3049 cmp_code = LE_EXPR;
3050 c1 = wi::max_value (to_type);
3051 }
3052 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
3053 compute (c3 op' c2) and check if it equals to c1 with op' being
3054 the inverted operator of op. Make sure overflow doesn't happen
3055 if it is undefined. */
3056 if (op == PLUS_EXPR)
3057 real_c1 = wi::sub (c3, c2, sgn, &overflow);
3058 else
3059 real_c1 = wi::add (c3, c2, sgn, &overflow);
3060
3061 code = cmp_code;
3062 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
3063 {
3064 /* Check if c1 equals to real_c1. Boundary condition is handled
3065 by adjusting comparison operation if necessary. */
3066 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
3067 && !overflow)
3068 {
3069 /* X <= Y - 1 equals to X < Y. */
3070 if (cmp_code == LE_EXPR)
3071 code = LT_EXPR;
3072 /* X > Y - 1 equals to X >= Y. */
3073 if (cmp_code == GT_EXPR)
3074 code = GE_EXPR;
3075 }
3076 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
3077 && !overflow)
3078 {
3079 /* X < Y + 1 equals to X <= Y. */
3080 if (cmp_code == LT_EXPR)
3081 code = LE_EXPR;
3082 /* X >= Y + 1 equals to X > Y. */
3083 if (cmp_code == GE_EXPR)
3084 code = GT_EXPR;
3085 }
3086 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
3087 {
3088 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
3089 code = MIN_EXPR;
3090 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
3091 code = MAX_EXPR;
3092 }
3093 }
3094 }
3095 (if (code == MAX_EXPR)
3096 (op (max @X { wide_int_to_tree (from_type, real_c1); })
3097 { wide_int_to_tree (from_type, c2); })
3098 (if (code == MIN_EXPR)
3099 (op (min @X { wide_int_to_tree (from_type, real_c1); })
3100 { wide_int_to_tree (from_type, c2); })))))))))
3101
96994de0
RB
3102(for cnd (cond vec_cond)
3103 /* A ? B : (A ? X : C) -> A ? B : C. */
3104 (simplify
3105 (cnd @0 (cnd @0 @1 @2) @3)
3106 (cnd @0 @1 @3))
3107 (simplify
3108 (cnd @0 @1 (cnd @0 @2 @3))
3109 (cnd @0 @1 @3))
24a179f8
RB
3110 /* A ? B : (!A ? C : X) -> A ? B : C. */
3111 /* ??? This matches embedded conditions open-coded because genmatch
3112 would generate matching code for conditions in separate stmts only.
3113 The following is still important to merge then and else arm cases
3114 from if-conversion. */
3115 (simplify
3116 (cnd @0 @1 (cnd @2 @3 @4))
2c58d42c 3117 (if (inverse_conditions_p (@0, @2))
24a179f8
RB
3118 (cnd @0 @1 @3)))
3119 (simplify
3120 (cnd @0 (cnd @1 @2 @3) @4)
2c58d42c 3121 (if (inverse_conditions_p (@0, @1))
24a179f8 3122 (cnd @0 @3 @4)))
96994de0
RB
3123
3124 /* A ? B : B -> B. */
3125 (simplify
3126 (cnd @0 @1 @1)
09240451 3127 @1)
96994de0 3128
09240451
MG
3129 /* !A ? B : C -> A ? C : B. */
3130 (simplify
3131 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
3132 (cnd @0 @2 @1)))
f84e7fd6 3133
a3ca1bc5
RB
3134/* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
3135 return all -1 or all 0 results. */
f43d102e
RS
3136/* ??? We could instead convert all instances of the vec_cond to negate,
3137 but that isn't necessarily a win on its own. */
3138(simplify
a3ca1bc5 3139 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
f43d102e 3140 (if (VECTOR_TYPE_P (type)
928686b1
RS
3141 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3142 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
f43d102e 3143 && (TYPE_MODE (TREE_TYPE (type))
4d8989d5 3144 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
a3ca1bc5 3145 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
f43d102e 3146
a3ca1bc5 3147/* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
f43d102e 3148(simplify
a3ca1bc5 3149 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
f43d102e 3150 (if (VECTOR_TYPE_P (type)
928686b1
RS
3151 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3152 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
f43d102e 3153 && (TYPE_MODE (TREE_TYPE (type))
4d8989d5 3154 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
a3ca1bc5 3155 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
f84e7fd6 3156
2ee05f1e 3157
f84e7fd6
RB
3158/* Simplifications of comparisons. */
3159
24f1db9c
RB
3160/* See if we can reduce the magnitude of a constant involved in a
3161 comparison by changing the comparison code. This is a canonicalization
3162 formerly done by maybe_canonicalize_comparison_1. */
3163(for cmp (le gt)
3164 acmp (lt ge)
3165 (simplify
f06e47d7
JJ
3166 (cmp @0 uniform_integer_cst_p@1)
3167 (with { tree cst = uniform_integer_cst_p (@1); }
3168 (if (tree_int_cst_sgn (cst) == -1)
3169 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3170 wide_int_to_tree (TREE_TYPE (cst),
3171 wi::to_wide (cst)
3172 + 1)); })))))
24f1db9c
RB
3173(for cmp (ge lt)
3174 acmp (gt le)
3175 (simplify
f06e47d7
JJ
3176 (cmp @0 uniform_integer_cst_p@1)
3177 (with { tree cst = uniform_integer_cst_p (@1); }
3178 (if (tree_int_cst_sgn (cst) == 1)
3179 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3180 wide_int_to_tree (TREE_TYPE (cst),
3181 wi::to_wide (cst) - 1)); })))))
24f1db9c 3182
f84e7fd6
RB
3183/* We can simplify a logical negation of a comparison to the
3184 inverted comparison. As we cannot compute an expression
3185 operator using invert_tree_comparison we have to simulate
3186 that with expression code iteration. */
3187(for cmp (tcc_comparison)
3188 icmp (inverted_tcc_comparison)
3189 ncmp (inverted_tcc_comparison_with_nans)
3190 /* Ideally we'd like to combine the following two patterns
3191 and handle some more cases by using
3192 (logical_inverted_value (cmp @0 @1))
3193 here but for that genmatch would need to "inline" that.
3194 For now implement what forward_propagate_comparison did. */
3195 (simplify
3196 (bit_not (cmp @0 @1))
3197 (if (VECTOR_TYPE_P (type)
3198 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3199 /* Comparison inversion may be impossible for trapping math,
3200 invert_tree_comparison will tell us. But we can't use
3201 a computed operator in the replacement tree thus we have
3202 to play the trick below. */
3203 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 3204 (cmp, HONOR_NANS (@0)); }
f84e7fd6 3205 (if (ic == icmp)
8fdc6c67
RB
3206 (icmp @0 @1)
3207 (if (ic == ncmp)
3208 (ncmp @0 @1))))))
f84e7fd6 3209 (simplify
09240451
MG
3210 (bit_xor (cmp @0 @1) integer_truep)
3211 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 3212 (cmp, HONOR_NANS (@0)); }
09240451 3213 (if (ic == icmp)
8fdc6c67
RB
3214 (icmp @0 @1)
3215 (if (ic == ncmp)
3216 (ncmp @0 @1))))))
e18c1d66 3217
2ee05f1e
RB
3218/* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3219 ??? The transformation is valid for the other operators if overflow
3220 is undefined for the type, but performing it here badly interacts
3221 with the transformation in fold_cond_expr_with_comparison which
3222 attempts to synthetize ABS_EXPR. */
3223(for cmp (eq ne)
1af4ebf5
MG
3224 (for sub (minus pointer_diff)
3225 (simplify
3226 (cmp (sub@2 @0 @1) integer_zerop)
3227 (if (single_use (@2))
3228 (cmp @0 @1)))))
2ee05f1e
RB
3229
3230/* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3231 signed arithmetic case. That form is created by the compiler
3232 often enough for folding it to be of value. One example is in
3233 computing loop trip counts after Operator Strength Reduction. */
07cdc2b8
RB
3234(for cmp (simple_comparison)
3235 scmp (swapped_simple_comparison)
2ee05f1e 3236 (simplify
bc6e9db4 3237 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
2ee05f1e
RB
3238 /* Handle unfolded multiplication by zero. */
3239 (if (integer_zerop (@1))
8fdc6c67
RB
3240 (cmp @1 @2)
3241 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
bc6e9db4
RB
3242 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3243 && single_use (@3))
8fdc6c67
RB
3244 /* If @1 is negative we swap the sense of the comparison. */
3245 (if (tree_int_cst_sgn (@1) < 0)
3246 (scmp @0 @2)
3247 (cmp @0 @2))))))
03cc70b5 3248
2ee05f1e
RB
3249/* Simplify comparison of something with itself. For IEEE
3250 floating-point, we can only do some of these simplifications. */
287f8f17 3251(for cmp (eq ge le)
2ee05f1e
RB
3252 (simplify
3253 (cmp @0 @0)
287f8f17 3254 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
b9407883 3255 || ! HONOR_NANS (@0))
287f8f17
RB
3256 { constant_boolean_node (true, type); }
3257 (if (cmp != EQ_EXPR)
3258 (eq @0 @0)))))
2ee05f1e
RB
3259(for cmp (ne gt lt)
3260 (simplify
3261 (cmp @0 @0)
3262 (if (cmp != NE_EXPR
3263 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
b9407883 3264 || ! HONOR_NANS (@0))
2ee05f1e 3265 { constant_boolean_node (false, type); })))
b5d3d787
RB
3266(for cmp (unle unge uneq)
3267 (simplify
3268 (cmp @0 @0)
3269 { constant_boolean_node (true, type); }))
dd53d197
MG
3270(for cmp (unlt ungt)
3271 (simplify
3272 (cmp @0 @0)
3273 (unordered @0 @0)))
b5d3d787
RB
3274(simplify
3275 (ltgt @0 @0)
3276 (if (!flag_trapping_math)
3277 { constant_boolean_node (false, type); }))
2ee05f1e
RB
3278
3279/* Fold ~X op ~Y as Y op X. */
07cdc2b8 3280(for cmp (simple_comparison)
2ee05f1e 3281 (simplify
7fe996ba
RB
3282 (cmp (bit_not@2 @0) (bit_not@3 @1))
3283 (if (single_use (@2) && single_use (@3))
3284 (cmp @1 @0))))
2ee05f1e
RB
3285
3286/* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
07cdc2b8
RB
3287(for cmp (simple_comparison)
3288 scmp (swapped_simple_comparison)
2ee05f1e 3289 (simplify
7fe996ba
RB
3290 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3291 (if (single_use (@2)
3292 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
2ee05f1e
RB
3293 (scmp @0 (bit_not @1)))))
3294
07cdc2b8
RB
3295(for cmp (simple_comparison)
3296 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3297 (simplify
3298 (cmp (convert@2 @0) (convert? @1))
3299 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3300 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3301 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3302 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3303 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3304 (with
3305 {
3306 tree type1 = TREE_TYPE (@1);
3307 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3308 {
3309 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3310 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3311 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3312 type1 = float_type_node;
3313 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3314 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3315 type1 = double_type_node;
3316 }
3317 tree newtype
3318 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
03cc70b5 3319 ? TREE_TYPE (@0) : type1);
07cdc2b8
RB
3320 }
3321 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3322 (cmp (convert:newtype @0) (convert:newtype @1))))))
03cc70b5 3323
07cdc2b8
RB
3324 (simplify
3325 (cmp @0 REAL_CST@1)
3326 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
64d3a1f0
RB
3327 (switch
3328 /* a CMP (-0) -> a CMP 0 */
3329 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3330 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3331 /* x != NaN is always true, other ops are always false. */
3332 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3333 && ! HONOR_SNANS (@1))
3334 { constant_boolean_node (cmp == NE_EXPR, type); })
3335 /* Fold comparisons against infinity. */
3336 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3337 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3338 (with
3339 {
3340 REAL_VALUE_TYPE max;
3341 enum tree_code code = cmp;
3342 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3343 if (neg)
3344 code = swap_tree_comparison (code);
3345 }
3346 (switch
e96a5786 3347 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
64d3a1f0 3348 (if (code == GT_EXPR
e96a5786 3349 && !(HONOR_NANS (@0) && flag_trapping_math))
64d3a1f0
RB
3350 { constant_boolean_node (false, type); })
3351 (if (code == LE_EXPR)
e96a5786 3352 /* x <= +Inf is always true, if we don't care about NaNs. */
64d3a1f0
RB
3353 (if (! HONOR_NANS (@0))
3354 { constant_boolean_node (true, type); }
e96a5786
JM
3355 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3356 an "invalid" exception. */
3357 (if (!flag_trapping_math)
3358 (eq @0 @0))))
3359 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3360 for == this introduces an exception for x a NaN. */
3361 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3362 || code == GE_EXPR)
64d3a1f0
RB
3363 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3364 (if (neg)
3365 (lt @0 { build_real (TREE_TYPE (@0), max); })
3366 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3367 /* x < +Inf is always equal to x <= DBL_MAX. */
3368 (if (code == LT_EXPR)
3369 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3370 (if (neg)
3371 (ge @0 { build_real (TREE_TYPE (@0), max); })
3372 (le @0 { build_real (TREE_TYPE (@0), max); }))))
e96a5786
JM
3373 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3374 an exception for x a NaN so use an unordered comparison. */
64d3a1f0
RB
3375 (if (code == NE_EXPR)
3376 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3377 (if (! HONOR_NANS (@0))
3378 (if (neg)
3379 (ge @0 { build_real (TREE_TYPE (@0), max); })
3380 (le @0 { build_real (TREE_TYPE (@0), max); }))
3381 (if (neg)
e96a5786
JM
3382 (unge @0 { build_real (TREE_TYPE (@0), max); })
3383 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
07cdc2b8
RB
3384
3385 /* If this is a comparison of a real constant with a PLUS_EXPR
3386 or a MINUS_EXPR of a real constant, we can convert it into a
3387 comparison with a revised real constant as long as no overflow
3388 occurs when unsafe_math_optimizations are enabled. */
3389 (if (flag_unsafe_math_optimizations)
3390 (for op (plus minus)
3391 (simplify
3392 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3393 (with
3394 {
3395 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3396 TREE_TYPE (@1), @2, @1);
3397 }
f980c9a2 3398 (if (tem && !TREE_OVERFLOW (tem))
07cdc2b8
RB
3399 (cmp @0 { tem; }))))))
3400
3401 /* Likewise, we can simplify a comparison of a real constant with
3402 a MINUS_EXPR whose first operand is also a real constant, i.e.
3403 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3404 floating-point types only if -fassociative-math is set. */
3405 (if (flag_associative_math)
3406 (simplify
0409237b 3407 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
07cdc2b8 3408 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
f980c9a2 3409 (if (tem && !TREE_OVERFLOW (tem))
07cdc2b8
RB
3410 (cmp { tem; } @1)))))
3411
3412 /* Fold comparisons against built-in math functions. */
3413 (if (flag_unsafe_math_optimizations
3414 && ! flag_errno_math)
3415 (for sq (SQRT)
3416 (simplify
3417 (cmp (sq @0) REAL_CST@1)
64d3a1f0
RB
3418 (switch
3419 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3420 (switch
3421 /* sqrt(x) < y is always false, if y is negative. */
3422 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
8fdc6c67 3423 { constant_boolean_node (false, type); })
64d3a1f0
RB
3424 /* sqrt(x) > y is always true, if y is negative and we
3425 don't care about NaNs, i.e. negative values of x. */
3426 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3427 { constant_boolean_node (true, type); })
3428 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3429 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
c53233c6
RS
3430 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3431 (switch
3432 /* sqrt(x) < 0 is always false. */
3433 (if (cmp == LT_EXPR)
3434 { constant_boolean_node (false, type); })
3435 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3436 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3437 { constant_boolean_node (true, type); })
3438 /* sqrt(x) <= 0 -> x == 0. */
3439 (if (cmp == LE_EXPR)
3440 (eq @0 @1))
3441 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3442 == or !=. In the last case:
3443
3444 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3445
3446 if x is negative or NaN. Due to -funsafe-math-optimizations,
3447 the results for other x follow from natural arithmetic. */
3448 (cmp @0 @1)))
64d3a1f0
RB
3449 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3450 (with
3451 {
3452 REAL_VALUE_TYPE c2;
5c88ea94
RS
3453 real_arithmetic (&c2, MULT_EXPR,
3454 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
64d3a1f0
RB
3455 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3456 }
3457 (if (REAL_VALUE_ISINF (c2))
3458 /* sqrt(x) > y is x == +Inf, when y is very large. */
3459 (if (HONOR_INFINITIES (@0))
3460 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3461 { constant_boolean_node (false, type); })
3462 /* sqrt(x) > c is the same as x > c*c. */
3463 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3464 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3465 (with
3466 {
3467 REAL_VALUE_TYPE c2;
5c88ea94
RS
3468 real_arithmetic (&c2, MULT_EXPR,
3469 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
64d3a1f0
RB
3470 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3471 }
3472 (if (REAL_VALUE_ISINF (c2))
3473 (switch
3474 /* sqrt(x) < y is always true, when y is a very large
3475 value and we don't care about NaNs or Infinities. */
3476 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3477 { constant_boolean_node (true, type); })
3478 /* sqrt(x) < y is x != +Inf when y is very large and we
3479 don't care about NaNs. */
3480 (if (! HONOR_NANS (@0))
3481 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3482 /* sqrt(x) < y is x >= 0 when y is very large and we
3483 don't care about Infinities. */
3484 (if (! HONOR_INFINITIES (@0))
3485 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3486 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3487 (if (GENERIC)
3488 (truth_andif
3489 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3490 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3491 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3492 (if (! HONOR_NANS (@0))
3493 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3494 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3495 (if (GENERIC)
3496 (truth_andif
3497 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
0ca2e7f7
PK
3498 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3499 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3500 (simplify
3501 (cmp (sq @0) (sq @1))
3502 (if (! HONOR_NANS (@0))
3503 (cmp @0 @1))))))
2ee05f1e 3504
e41ec71b 3505/* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
f3842847
YG
3506(for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
3507 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
e41ec71b
YG
3508 (simplify
3509 (cmp (float@0 @1) (float @2))
3510 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
3511 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3512 (with
3513 {
3514 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
3515 tree type1 = TREE_TYPE (@1);
3516 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
3517 tree type2 = TREE_TYPE (@2);
3518 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
3519 }
3520 (if (fmt.can_represent_integral_type_p (type1)
3521 && fmt.can_represent_integral_type_p (type2))
f3842847
YG
3522 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
3523 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
3524 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
3525 && type1_signed_p >= type2_signed_p)
3526 (icmp @1 (convert @2))
3527 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
3528 && type1_signed_p <= type2_signed_p)
3529 (icmp (convert:type2 @1) @2)
3530 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
3531 && type1_signed_p == type2_signed_p)
3532 (icmp @1 @2))))))))))
e41ec71b 3533
c779bea5
YG
3534/* Optimize various special cases of (FTYPE) N CMP CST. */
3535(for cmp (lt le eq ne ge gt)
3536 icmp (le le eq ne ge ge)
3537 (simplify
3538 (cmp (float @0) REAL_CST@1)
3539 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3540 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3541 (with
3542 {
3543 tree itype = TREE_TYPE (@0);
c779bea5
YG
3544 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3545 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3546 /* Be careful to preserve any potential exceptions due to
3547 NaNs. qNaNs are ok in == or != context.
3548 TODO: relax under -fno-trapping-math or
3549 -fno-signaling-nans. */
3550 bool exception_p
3551 = real_isnan (cst) && (cst->signalling
c651dca2 3552 || (cmp != EQ_EXPR && cmp != NE_EXPR));
c779bea5
YG
3553 }
3554 /* TODO: allow non-fitting itype and SNaNs when
3555 -fno-trapping-math. */
e41ec71b 3556 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
c779bea5
YG
3557 (with
3558 {
e41ec71b 3559 signop isign = TYPE_SIGN (itype);
c779bea5
YG
3560 REAL_VALUE_TYPE imin, imax;
3561 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3562 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3563
3564 REAL_VALUE_TYPE icst;
3565 if (cmp == GT_EXPR || cmp == GE_EXPR)
3566 real_ceil (&icst, fmt, cst);
3567 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3568 real_floor (&icst, fmt, cst);
3569 else
3570 real_trunc (&icst, fmt, cst);
3571
b09bf97b 3572 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
c779bea5
YG
3573
3574 bool overflow_p = false;
3575 wide_int icst_val
3576 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3577 }
3578 (switch
3579 /* Optimize cases when CST is outside of ITYPE's range. */
3580 (if (real_compare (LT_EXPR, cst, &imin))
3581 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3582 type); })
3583 (if (real_compare (GT_EXPR, cst, &imax))
3584 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3585 type); })
3586 /* Remove cast if CST is an integer representable by ITYPE. */
3587 (if (cst_int_p)
3588 (cmp @0 { gcc_assert (!overflow_p);
3589 wide_int_to_tree (itype, icst_val); })
3590 )
3591 /* When CST is fractional, optimize
3592 (FTYPE) N == CST -> 0
3593 (FTYPE) N != CST -> 1. */
3594 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
03cc70b5 3595 { constant_boolean_node (cmp == NE_EXPR, type); })
c779bea5
YG
3596 /* Otherwise replace with sensible integer constant. */
3597 (with
3598 {
3599 gcc_checking_assert (!overflow_p);
3600 }
3601 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3602
40fd269a
MG
3603/* Fold A /[ex] B CMP C to A CMP B * C. */
3604(for cmp (eq ne)
3605 (simplify
3606 (cmp (exact_div @0 @1) INTEGER_CST@2)
3607 (if (!integer_zerop (@1))
8e6cdc90 3608 (if (wi::to_wide (@2) == 0)
40fd269a
MG
3609 (cmp @0 @2)
3610 (if (TREE_CODE (@1) == INTEGER_CST)
3611 (with
3612 {
4a669ac3 3613 wi::overflow_type ovf;
8e6cdc90
RS
3614 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3615 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
40fd269a
MG
3616 }
3617 (if (ovf)
3618 { constant_boolean_node (cmp == NE_EXPR, type); }
3619 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3620(for cmp (lt le gt ge)
3621 (simplify
3622 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
8e6cdc90 3623 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
40fd269a
MG
3624 (with
3625 {
4a669ac3 3626 wi::overflow_type ovf;
8e6cdc90
RS
3627 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3628 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
40fd269a
MG
3629 }
3630 (if (ovf)
8e6cdc90
RS
3631 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3632 TYPE_SIGN (TREE_TYPE (@2)))
40fd269a
MG
3633 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3634 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3635
cfdc4f33
MG
3636/* Unordered tests if either argument is a NaN. */
3637(simplify
3638 (bit_ior (unordered @0 @0) (unordered @1 @1))
aea417d7 3639 (if (types_match (@0, @1))
cfdc4f33 3640 (unordered @0 @1)))
257b01ba
MG
3641(simplify
3642 (bit_and (ordered @0 @0) (ordered @1 @1))
3643 (if (types_match (@0, @1))
3644 (ordered @0 @1)))
cfdc4f33
MG
3645(simplify
3646 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3647 @2)
257b01ba
MG
3648(simplify
3649 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3650 @2)
e18c1d66 3651
90c6f26c
RB
3652/* Simple range test simplifications. */
3653/* A < B || A >= B -> true. */
5d30c58d
RB
3654(for test1 (lt le le le ne ge)
3655 test2 (ge gt ge ne eq ne)
90c6f26c
RB
3656 (simplify
3657 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3658 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3659 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3660 { constant_boolean_node (true, type); })))
3661/* A < B && A >= B -> false. */
3662(for test1 (lt lt lt le ne eq)
3663 test2 (ge gt eq gt eq gt)
3664 (simplify
3665 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3666 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3667 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3668 { constant_boolean_node (false, type); })))
3669
9ebc3467
YG
3670/* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3671 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3672
3673 Note that comparisons
3674 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3675 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3676 will be canonicalized to above so there's no need to
3677 consider them here.
3678 */
3679
3680(for cmp (le gt)
3681 eqcmp (eq ne)
3682 (simplify
3683 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3684 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3685 (with
3686 {
3687 tree ty = TREE_TYPE (@0);
3688 unsigned prec = TYPE_PRECISION (ty);
3689 wide_int mask = wi::to_wide (@2, prec);
3690 wide_int rhs = wi::to_wide (@3, prec);
3691 signop sgn = TYPE_SIGN (ty);
3692 }
3693 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3694 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3695 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3696 { build_zero_cst (ty); }))))))
3697
534bd33b
MG
3698/* -A CMP -B -> B CMP A. */
3699(for cmp (tcc_comparison)
3700 scmp (swapped_tcc_comparison)
3701 (simplify
3702 (cmp (negate @0) (negate @1))
3703 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3704 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3705 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3706 (scmp @0 @1)))
3707 (simplify
3708 (cmp (negate @0) CONSTANT_CLASS_P@1)
3709 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3710 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3711 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
23f27839 3712 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
534bd33b
MG
3713 (if (tem && !TREE_OVERFLOW (tem))
3714 (scmp @0 { tem; }))))))
3715
b0eb889b
MG
3716/* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3717(for op (eq ne)
3718 (simplify
3719 (op (abs @0) zerop@1)
3720 (op @0 @1)))
3721
6358a676
MG
3722/* From fold_sign_changed_comparison and fold_widened_comparison.
3723 FIXME: the lack of symmetry is disturbing. */
79d4f7c6
RB
3724(for cmp (simple_comparison)
3725 (simplify
3726 (cmp (convert@0 @00) (convert?@1 @10))
452ec2a5 3727 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
79d4f7c6
RB
3728 /* Disable this optimization if we're casting a function pointer
3729 type on targets that require function pointer canonicalization. */
3730 && !(targetm.have_canonicalize_funcptr_for_compare ()
400bc526
JDA
3731 && ((POINTER_TYPE_P (TREE_TYPE (@00))
3732 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
3733 || (POINTER_TYPE_P (TREE_TYPE (@10))
3734 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
2fde61e3 3735 && single_use (@0))
79d4f7c6
RB
3736 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3737 && (TREE_CODE (@10) == INTEGER_CST
6358a676 3738 || @1 != @10)
79d4f7c6
RB
3739 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3740 || cmp == NE_EXPR
3741 || cmp == EQ_EXPR)
6358a676 3742 && !POINTER_TYPE_P (TREE_TYPE (@00)))
79d4f7c6
RB
3743 /* ??? The special-casing of INTEGER_CST conversion was in the original
3744 code and here to avoid a spurious overflow flag on the resulting
3745 constant which fold_convert produces. */
3746 (if (TREE_CODE (@1) == INTEGER_CST)
3747 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3748 TREE_OVERFLOW (@1)); })
3749 (cmp @00 (convert @1)))
3750
3751 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3752 /* If possible, express the comparison in the shorter mode. */
3753 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
7fd82d52
PP
3754 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3755 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3756 && TYPE_UNSIGNED (TREE_TYPE (@00))))
79d4f7c6
RB
3757 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3758 || ((TYPE_PRECISION (TREE_TYPE (@00))
3759 >= TYPE_PRECISION (TREE_TYPE (@10)))
3760 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3761 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3762 || (TREE_CODE (@10) == INTEGER_CST
f6c15759 3763 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
79d4f7c6
RB
3764 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3765 (cmp @00 (convert @10))
3766 (if (TREE_CODE (@10) == INTEGER_CST
f6c15759 3767 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
79d4f7c6
RB
3768 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3769 (with
3770 {
3771 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3772 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3773 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3774 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3775 }
3776 (if (above || below)
3777 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3778 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3779 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3780 { constant_boolean_node (above ? true : false, type); }
3781 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3782 { constant_boolean_node (above ? false : true, type); }))))))))))))
66e1cacf 3783
96a111a3
RB
3784(for cmp (eq ne)
3785 /* A local variable can never be pointed to by
3786 the default SSA name of an incoming parameter.
3787 SSA names are canonicalized to 2nd place. */
3788 (simplify
3789 (cmp addr@0 SSA_NAME@1)
3790 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3791 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3792 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3793 (if (TREE_CODE (base) == VAR_DECL
3794 && auto_var_in_fn_p (base, current_function_decl))
3795 (if (cmp == NE_EXPR)
3796 { constant_boolean_node (true, type); }
3797 { constant_boolean_node (false, type); }))))))
3798
66e1cacf
RB
3799/* Equality compare simplifications from fold_binary */
3800(for cmp (eq ne)
3801
3802 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3803 Similarly for NE_EXPR. */
3804 (simplify
3805 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3806 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
8e6cdc90 3807 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
66e1cacf
RB
3808 { constant_boolean_node (cmp == NE_EXPR, type); }))
3809
3810 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3811 (simplify
3812 (cmp (bit_xor @0 @1) integer_zerop)
3813 (cmp @0 @1))
3814
3815 /* (X ^ Y) == Y becomes X == 0.
3816 Likewise (X ^ Y) == X becomes Y == 0. */
3817 (simplify
99e943a2 3818 (cmp:c (bit_xor:c @0 @1) @0)
66e1cacf
RB
3819 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3820
3821 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3822 (simplify
3823 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3824 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
d057c866 3825 (cmp @0 (bit_xor @1 (convert @2)))))
d057c866
RB
3826
3827 (simplify
3828 (cmp (convert? addr@0) integer_zerop)
3829 (if (tree_single_nonzero_warnv_p (@0, NULL))
3830 { constant_boolean_node (cmp == NE_EXPR, type); })))
3831
b0eb889b
MG
3832/* If we have (A & C) == C where C is a power of 2, convert this into
3833 (A & C) != 0. Similarly for NE_EXPR. */
3834(for cmp (eq ne)
3835 icmp (ne eq)
3836 (simplify
3837 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3838 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
03cc70b5 3839
519e0faa
PB
3840/* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3841 convert this into a shift followed by ANDing with D. */
3842(simplify
3843 (cond
3844 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
9e61e48e
JJ
3845 INTEGER_CST@2 integer_zerop)
3846 (if (integer_pow2p (@2))
3847 (with {
3848 int shift = (wi::exact_log2 (wi::to_wide (@2))
3849 - wi::exact_log2 (wi::to_wide (@1)));
3850 }
3851 (if (shift > 0)
3852 (bit_and
3853 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3854 (bit_and
3855 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
3856 @2)))))
519e0faa 3857
b0eb889b
MG
3858/* If we have (A & C) != 0 where C is the sign bit of A, convert
3859 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3860(for cmp (eq ne)
3861 ncmp (ge lt)
3862 (simplify
3863 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3864 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2be65d9e 3865 && type_has_mode_precision_p (TREE_TYPE (@0))
b0eb889b 3866 && element_precision (@2) >= element_precision (@0)
8e6cdc90 3867 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
b0eb889b
MG
3868 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3869 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3870
519e0faa 3871/* If we have A < 0 ? C : 0 where C is a power of 2, convert
c0140e3c 3872 this into a right shift or sign extension followed by ANDing with C. */
519e0faa
PB
3873(simplify
3874 (cond
3875 (lt @0 integer_zerop)
9e61e48e
JJ
3876 INTEGER_CST@1 integer_zerop)
3877 (if (integer_pow2p (@1)
3878 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
c0140e3c 3879 (with {
8e6cdc90 3880 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
c0140e3c
JJ
3881 }
3882 (if (shift >= 0)
3883 (bit_and
3884 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3885 @1)
3886 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3887 sign extension followed by AND with C will achieve the effect. */
3888 (bit_and (convert @0) @1)))))
519e0faa 3889
68aba1f6
RB
3890/* When the addresses are not directly of decls compare base and offset.
3891 This implements some remaining parts of fold_comparison address
3892 comparisons but still no complete part of it. Still it is good
3893 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3894(for cmp (simple_comparison)
3895 (simplify
f501d5cd 3896 (cmp (convert1?@2 addr@0) (convert2? addr@1))
68aba1f6
RB
3897 (with
3898 {
a90c8804 3899 poly_int64 off0, off1;
68aba1f6
RB
3900 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3901 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3902 if (base0 && TREE_CODE (base0) == MEM_REF)
3903 {
aca52e6f 3904 off0 += mem_ref_offset (base0).force_shwi ();
68aba1f6
RB
3905 base0 = TREE_OPERAND (base0, 0);
3906 }
3907 if (base1 && TREE_CODE (base1) == MEM_REF)
3908 {
aca52e6f 3909 off1 += mem_ref_offset (base1).force_shwi ();
68aba1f6
RB
3910 base1 = TREE_OPERAND (base1, 0);
3911 }
3912 }
da571fda
RB
3913 (if (base0 && base1)
3914 (with
3915 {
aad88aed 3916 int equal = 2;
70f40fea
JJ
3917 /* Punt in GENERIC on variables with value expressions;
3918 the value expressions might point to fields/elements
3919 of other vars etc. */
3920 if (GENERIC
3921 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3922 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3923 ;
3924 else if (decl_in_symtab_p (base0)
3925 && decl_in_symtab_p (base1))
da571fda
RB
3926 equal = symtab_node::get_create (base0)
3927 ->equal_address_to (symtab_node::get_create (base1));
c3bea076
RB
3928 else if ((DECL_P (base0)
3929 || TREE_CODE (base0) == SSA_NAME
3930 || TREE_CODE (base0) == STRING_CST)
3931 && (DECL_P (base1)
3932 || TREE_CODE (base1) == SSA_NAME
3933 || TREE_CODE (base1) == STRING_CST))
aad88aed 3934 equal = (base0 == base1);
93aa3c4a
JJ
3935 if (equal == 0)
3936 {
a4f9edf3
RB
3937 HOST_WIDE_INT ioff0 = -1, ioff1 = -1;
3938 off0.is_constant (&ioff0);
3939 off1.is_constant (&ioff1);
3940 if ((DECL_P (base0) && TREE_CODE (base1) == STRING_CST)
3941 || (TREE_CODE (base0) == STRING_CST && DECL_P (base1))
3942 || (TREE_CODE (base0) == STRING_CST
3943 && TREE_CODE (base1) == STRING_CST
3944 && ioff0 >= 0 && ioff1 >= 0
3945 && ioff0 < TREE_STRING_LENGTH (base0)
3946 && ioff1 < TREE_STRING_LENGTH (base1)
3947 /* This is a too conservative test that the STRING_CSTs
3948 will not end up being string-merged. */
3949 && strncmp (TREE_STRING_POINTER (base0) + ioff0,
3950 TREE_STRING_POINTER (base1) + ioff1,
3951 MIN (TREE_STRING_LENGTH (base0) - ioff0,
3952 TREE_STRING_LENGTH (base1) - ioff1)) != 0))
3953 ;
3954 else if (!DECL_P (base0) || !DECL_P (base1))
93aa3c4a
JJ
3955 equal = 2;
3956 else if (cmp != EQ_EXPR && cmp != NE_EXPR)
3957 equal = 2;
3958 /* If this is a pointer comparison, ignore for now even
3959 valid equalities where one pointer is the offset zero
3960 of one object and the other to one past end of another one. */
3961 else if (!INTEGRAL_TYPE_P (TREE_TYPE (@2)))
3962 ;
3963 /* Assume that automatic variables can't be adjacent to global
3964 variables. */
3965 else if (is_global_var (base0) != is_global_var (base1))
3966 ;
3967 else
3968 {
3969 tree sz0 = DECL_SIZE_UNIT (base0);
3970 tree sz1 = DECL_SIZE_UNIT (base1);
3971 /* If sizes are unknown, e.g. VLA or not representable,
3972 punt. */
3973 if (!tree_fits_poly_int64_p (sz0)
3974 || !tree_fits_poly_int64_p (sz1))
3975 equal = 2;
3976 else
3977 {
3978 poly_int64 size0 = tree_to_poly_int64 (sz0);
3979 poly_int64 size1 = tree_to_poly_int64 (sz1);
3980 /* If one offset is pointing (or could be) to the beginning
3981 of one object and the other is pointing to one past the
3982 last byte of the other object, punt. */
3983 if (maybe_eq (off0, 0) && maybe_eq (off1, size1))
3984 equal = 2;
3985 else if (maybe_eq (off1, 0) && maybe_eq (off0, size0))
3986 equal = 2;
3987 /* If both offsets are the same, there are some cases
3988 we know that are ok. Either if we know they aren't
3989 zero, or if we know both sizes are no zero. */
3990 if (equal == 2
3991 && known_eq (off0, off1)
3992 && (known_ne (off0, 0)
3993 || (known_ne (size0, 0) && known_ne (size1, 0))))
3994 equal = 0;
3995 }
3996 }
3997 }
da571fda 3998 }
3fccbb9e
JJ
3999 (if (equal == 1
4000 && (cmp == EQ_EXPR || cmp == NE_EXPR
4001 /* If the offsets are equal we can ignore overflow. */
4002 || known_eq (off0, off1)
4003 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4004 /* Or if we compare using pointers to decls or strings. */
4005 || (POINTER_TYPE_P (TREE_TYPE (@2))
4006 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
da571fda 4007 (switch
a90c8804
RS
4008 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4009 { constant_boolean_node (known_eq (off0, off1), type); })
4010 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4011 { constant_boolean_node (known_ne (off0, off1), type); })
4012 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
4013 { constant_boolean_node (known_lt (off0, off1), type); })
4014 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
4015 { constant_boolean_node (known_le (off0, off1), type); })
4016 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
4017 { constant_boolean_node (known_ge (off0, off1), type); })
4018 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
4019 { constant_boolean_node (known_gt (off0, off1), type); }))
93aa3c4a
JJ
4020 (if (equal == 0)
4021 (switch
4022 (if (cmp == EQ_EXPR)
4023 { constant_boolean_node (false, type); })
4024 (if (cmp == NE_EXPR)
4025 { constant_boolean_node (true, type); })))))))))
66e1cacf 4026
98998245
RB
4027/* Simplify pointer equality compares using PTA. */
4028(for neeq (ne eq)
4029 (simplify
4030 (neeq @0 @1)
4031 (if (POINTER_TYPE_P (TREE_TYPE (@0))
4032 && ptrs_compare_unequal (@0, @1))
f913ff2a 4033 { constant_boolean_node (neeq != EQ_EXPR, type); })))
98998245 4034
8f63caf6 4035/* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
467719fb
PK
4036 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
4037 Disable the transform if either operand is pointer to function.
4038 This broke pr22051-2.c for arm where function pointer
4039 canonicalizaion is not wanted. */
1c0a8806 4040
8f63caf6
RB
4041(for cmp (ne eq)
4042 (simplify
4043 (cmp (convert @0) INTEGER_CST@1)
f53e7e13
JJ
4044 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
4045 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
4046 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4047 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4048 && POINTER_TYPE_P (TREE_TYPE (@1))
4049 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
4050 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
8f63caf6
RB
4051 (cmp @0 (convert @1)))))
4052
21aacde4
RB
4053/* Non-equality compare simplifications from fold_binary */
4054(for cmp (lt gt le ge)
4055 /* Comparisons with the highest or lowest possible integer of
4056 the specified precision will have known values. */
4057 (simplify
f06e47d7
JJ
4058 (cmp (convert?@2 @0) uniform_integer_cst_p@1)
4059 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
4060 || POINTER_TYPE_P (TREE_TYPE (@1))
4061 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
21aacde4
RB
4062 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
4063 (with
4064 {
f06e47d7
JJ
4065 tree cst = uniform_integer_cst_p (@1);
4066 tree arg1_type = TREE_TYPE (cst);
21aacde4
RB
4067 unsigned int prec = TYPE_PRECISION (arg1_type);
4068 wide_int max = wi::max_value (arg1_type);
4069 wide_int signed_max = wi::max_value (prec, SIGNED);
4070 wide_int min = wi::min_value (arg1_type);
4071 }
4072 (switch
f06e47d7 4073 (if (wi::to_wide (cst) == max)
21aacde4
RB
4074 (switch
4075 (if (cmp == GT_EXPR)
4076 { constant_boolean_node (false, type); })
4077 (if (cmp == GE_EXPR)
4078 (eq @2 @1))
4079 (if (cmp == LE_EXPR)
4080 { constant_boolean_node (true, type); })
4081 (if (cmp == LT_EXPR)
4082 (ne @2 @1))))
f06e47d7 4083 (if (wi::to_wide (cst) == min)
21aacde4
RB
4084 (switch
4085 (if (cmp == LT_EXPR)
4086 { constant_boolean_node (false, type); })
4087 (if (cmp == LE_EXPR)
4088 (eq @2 @1))
4089 (if (cmp == GE_EXPR)
4090 { constant_boolean_node (true, type); })
4091 (if (cmp == GT_EXPR)
4092 (ne @2 @1))))
f06e47d7 4093 (if (wi::to_wide (cst) == max - 1)
9bc22d19
RB
4094 (switch
4095 (if (cmp == GT_EXPR)
f06e47d7
JJ
4096 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4097 wide_int_to_tree (TREE_TYPE (cst),
4098 wi::to_wide (cst)
4099 + 1)); }))
9bc22d19 4100 (if (cmp == LE_EXPR)
f06e47d7
JJ
4101 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4102 wide_int_to_tree (TREE_TYPE (cst),
4103 wi::to_wide (cst)
4104 + 1)); }))))
4105 (if (wi::to_wide (cst) == min + 1)
21aacde4
RB
4106 (switch
4107 (if (cmp == GE_EXPR)
f06e47d7
JJ
4108 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4109 wide_int_to_tree (TREE_TYPE (cst),
4110 wi::to_wide (cst)
4111 - 1)); }))
21aacde4 4112 (if (cmp == LT_EXPR)
f06e47d7
JJ
4113 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4114 wide_int_to_tree (TREE_TYPE (cst),
4115 wi::to_wide (cst)
4116 - 1)); }))))
4117 (if (wi::to_wide (cst) == signed_max
21aacde4
RB
4118 && TYPE_UNSIGNED (arg1_type)
4119 /* We will flip the signedness of the comparison operator
4120 associated with the mode of @1, so the sign bit is
4121 specified by this mode. Check that @1 is the signed
4122 max associated with this sign bit. */
7a504f33 4123 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
21aacde4
RB
4124 /* signed_type does not work on pointer types. */
4125 && INTEGRAL_TYPE_P (arg1_type))
4126 /* The following case also applies to X < signed_max+1
4127 and X >= signed_max+1 because previous transformations. */
4128 (if (cmp == LE_EXPR || cmp == GT_EXPR)
f06e47d7
JJ
4129 (with { tree st = signed_type_for (TREE_TYPE (@1)); }
4130 (switch
4131 (if (cst == @1 && cmp == LE_EXPR)
4132 (ge (convert:st @0) { build_zero_cst (st); }))
4133 (if (cst == @1 && cmp == GT_EXPR)
4134 (lt (convert:st @0) { build_zero_cst (st); }))
4135 (if (cmp == LE_EXPR)
4136 (ge (view_convert:st @0) { build_zero_cst (st); }))
4137 (if (cmp == GT_EXPR)
4138 (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
03cc70b5 4139
b5d3d787
RB
4140(for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
4141 /* If the second operand is NaN, the result is constant. */
4142 (simplify
4143 (cmp @0 REAL_CST@1)
4144 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4145 && (cmp != LTGT_EXPR || ! flag_trapping_math))
50301115 4146 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
b5d3d787 4147 ? false : true, type); })))
21aacde4 4148
55cf3946
RB
4149/* bool_var != 0 becomes bool_var. */
4150(simplify
b5d3d787 4151 (ne @0 integer_zerop)
55cf3946
RB
4152 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4153 && types_match (type, TREE_TYPE (@0)))
4154 (non_lvalue @0)))
4155/* bool_var == 1 becomes bool_var. */
4156(simplify
b5d3d787 4157 (eq @0 integer_onep)
55cf3946
RB
4158 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4159 && types_match (type, TREE_TYPE (@0)))
4160 (non_lvalue @0)))
b5d3d787
RB
4161/* Do not handle
4162 bool_var == 0 becomes !bool_var or
4163 bool_var != 1 becomes !bool_var
4164 here because that only is good in assignment context as long
4165 as we require a tcc_comparison in GIMPLE_CONDs where we'd
4166 replace if (x == 0) with tem = ~x; if (tem != 0) which is
4167 clearly less optimal and which we'll transform again in forwprop. */
55cf3946 4168
ca1206be
MG
4169/* When one argument is a constant, overflow detection can be simplified.
4170 Currently restricted to single use so as not to interfere too much with
4171 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
4172 A + CST CMP A -> A CMP' CST' */
4173(for cmp (lt le ge gt)
4174 out (gt gt le le)
4175 (simplify
a8e9f9a3 4176 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
ca1206be
MG
4177 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4178 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
8e6cdc90 4179 && wi::to_wide (@1) != 0
ca1206be 4180 && single_use (@2))
8e6cdc90
RS
4181 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
4182 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
4183 wi::max_value (prec, UNSIGNED)
4184 - wi::to_wide (@1)); })))))
ca1206be 4185
3563f78f
MG
4186/* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
4187 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
4188 expects the long form, so we restrict the transformation for now. */
4189(for cmp (gt le)
4190 (simplify
a8e9f9a3 4191 (cmp:c (minus@2 @0 @1) @0)
3563f78f
MG
4192 (if (single_use (@2)
4193 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4194 && TYPE_UNSIGNED (TREE_TYPE (@0))
4195 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4196 (cmp @1 @0))))
3563f78f
MG
4197
4198/* Testing for overflow is unnecessary if we already know the result. */
3563f78f
MG
4199/* A - B > A */
4200(for cmp (gt le)
4201 out (ne eq)
4202 (simplify
a8e9f9a3 4203 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3563f78f
MG
4204 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4205 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4206 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4207/* A + B < A */
4208(for cmp (lt ge)
4209 out (ne eq)
4210 (simplify
a8e9f9a3 4211 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3563f78f
MG
4212 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4213 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4214 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4215
603aeb87 4216/* For unsigned operands, -1 / B < A checks whether A * B would overflow.
0557293f 4217 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
0557293f
AM
4218(for cmp (lt ge)
4219 out (ne eq)
4220 (simplify
603aeb87 4221 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
0557293f
AM
4222 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
4223 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
4224 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
55cf3946 4225
53f3cd25
RS
4226/* Simplification of math builtins. These rules must all be optimizations
4227 as well as IL simplifications. If there is a possibility that the new
4228 form could be a pessimization, the rule should go in the canonicalization
4229 section that follows this one.
e18c1d66 4230
53f3cd25
RS
4231 Rules can generally go in this section if they satisfy one of
4232 the following:
4233
4234 - the rule describes an identity
4235
4236 - the rule replaces calls with something as simple as addition or
4237 multiplication
4238
4239 - the rule contains unary calls only and simplifies the surrounding
4240 arithmetic. (The idea here is to exclude non-unary calls in which
4241 one operand is constant and in which the call is known to be cheap
4242 when the operand has that value.) */
52c6378a 4243
53f3cd25 4244(if (flag_unsafe_math_optimizations)
52c6378a
N
4245 /* Simplify sqrt(x) * sqrt(x) -> x. */
4246 (simplify
c6cfa2bf 4247 (mult (SQRT_ALL@1 @0) @1)
52c6378a
N
4248 (if (!HONOR_SNANS (type))
4249 @0))
4250
ed17cb57
JW
4251 (for op (plus minus)
4252 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
4253 (simplify
4254 (op (rdiv @0 @1)
4255 (rdiv @2 @1))
4256 (rdiv (op @0 @2) @1)))
4257
5e21d765
WD
4258 (for cmp (lt le gt ge)
4259 neg_cmp (gt ge lt le)
4260 /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
4261 (simplify
4262 (cmp (mult @0 REAL_CST@1) REAL_CST@2)
4263 (with
4264 { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
4265 (if (tem
4266 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
4267 || (real_zerop (tem) && !real_zerop (@1))))
4268 (switch
4269 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
4270 (cmp @0 { tem; }))
4271 (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
4272 (neg_cmp @0 { tem; })))))))
4273
35401640
N
4274 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
4275 (for root (SQRT CBRT)
4276 (simplify
4277 (mult (root:s @0) (root:s @1))
4278 (root (mult @0 @1))))
4279
35401640
N
4280 /* Simplify expN(x) * expN(y) -> expN(x+y). */
4281 (for exps (EXP EXP2 EXP10 POW10)
4282 (simplify
4283 (mult (exps:s @0) (exps:s @1))
4284 (exps (plus @0 @1))))
4285
52c6378a 4286 /* Simplify a/root(b/c) into a*root(c/b). */
35401640
N
4287 (for root (SQRT CBRT)
4288 (simplify
4289 (rdiv @0 (root:s (rdiv:s @1 @2)))
4290 (mult @0 (root (rdiv @2 @1)))))
4291
4292 /* Simplify x/expN(y) into x*expN(-y). */
4293 (for exps (EXP EXP2 EXP10 POW10)
4294 (simplify
4295 (rdiv @0 (exps:s @1))
4296 (mult @0 (exps (negate @1)))))
52c6378a 4297
eee7b6c4
RB
4298 (for logs (LOG LOG2 LOG10 LOG10)
4299 exps (EXP EXP2 EXP10 POW10)
8acda9b2 4300 /* logN(expN(x)) -> x. */
e18c1d66
RB
4301 (simplify
4302 (logs (exps @0))
8acda9b2
RS
4303 @0)
4304 /* expN(logN(x)) -> x. */
4305 (simplify
4306 (exps (logs @0))
4307 @0))
53f3cd25 4308
e18c1d66
RB
4309 /* Optimize logN(func()) for various exponential functions. We
4310 want to determine the value "x" and the power "exponent" in
4311 order to transform logN(x**exponent) into exponent*logN(x). */
eee7b6c4
RB
4312 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
4313 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
e18c1d66
RB
4314 (simplify
4315 (logs (exps @0))
c9e926ce
RS
4316 (if (SCALAR_FLOAT_TYPE_P (type))
4317 (with {
4318 tree x;
4319 switch (exps)
4320 {
4321 CASE_CFN_EXP:
4322 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
4323 x = build_real_truncate (type, dconst_e ());
4324 break;
4325 CASE_CFN_EXP2:
4326 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
4327 x = build_real (type, dconst2);
4328 break;
4329 CASE_CFN_EXP10:
4330 CASE_CFN_POW10:
4331 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
4332 {
4333 REAL_VALUE_TYPE dconst10;
4334 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
4335 x = build_real (type, dconst10);
4336 }
4337 break;
4338 default:
4339 gcc_unreachable ();
4340 }
4341 }
4342 (mult (logs { x; }) @0)))))
53f3cd25 4343
e18c1d66
RB
4344 (for logs (LOG LOG
4345 LOG2 LOG2
4346 LOG10 LOG10)
4347 exps (SQRT CBRT)
4348 (simplify
4349 (logs (exps @0))
c9e926ce
RS
4350 (if (SCALAR_FLOAT_TYPE_P (type))
4351 (with {
4352 tree x;
4353 switch (exps)
4354 {
4355 CASE_CFN_SQRT:
4356 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4357 x = build_real (type, dconsthalf);
4358 break;
4359 CASE_CFN_CBRT:
4360 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4361 x = build_real_truncate (type, dconst_third ());
4362 break;
4363 default:
4364 gcc_unreachable ();
4365 }
4366 }
4367 (mult { x; } (logs @0))))))
53f3cd25
RS
4368
4369 /* logN(pow(x,exponent)) -> exponent*logN(x). */
e18c1d66
RB
4370 (for logs (LOG LOG2 LOG10)
4371 pows (POW)
4372 (simplify
4373 (logs (pows @0 @1))
53f3cd25
RS
4374 (mult @1 (logs @0))))
4375
848bb6fc
JJ
4376 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4377 or if C is a positive power of 2,
4378 pow(C,x) -> exp2(log2(C)*x). */
30a2c10e 4379#if GIMPLE
e83fe013
WD
4380 (for pows (POW)
4381 exps (EXP)
4382 logs (LOG)
848bb6fc
JJ
4383 exp2s (EXP2)
4384 log2s (LOG2)
e83fe013
WD
4385 (simplify
4386 (pows REAL_CST@0 @1)
848bb6fc 4387 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
ef7866a3
JJ
4388 && real_isfinite (TREE_REAL_CST_PTR (@0))
4389 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4390 the use_exp2 case until after vectorization. It seems actually
4391 beneficial for all constants to postpone this until later,
4392 because exp(log(C)*x), while faster, will have worse precision
4393 and if x folds into a constant too, that is unnecessary
4394 pessimization. */
4395 && canonicalize_math_after_vectorization_p ())
848bb6fc
JJ
4396 (with {
4397 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4398 bool use_exp2 = false;
4399 if (targetm.libc_has_function (function_c99_misc)
4400 && value->cl == rvc_normal)
4401 {
4402 REAL_VALUE_TYPE frac_rvt = *value;
4403 SET_REAL_EXP (&frac_rvt, 1);
4404 if (real_equal (&frac_rvt, &dconst1))
4405 use_exp2 = true;
4406 }
4407 }
4408 (if (!use_exp2)
30a2c10e
JJ
4409 (if (optimize_pow_to_exp (@0, @1))
4410 (exps (mult (logs @0) @1)))
ef7866a3 4411 (exp2s (mult (log2s @0) @1)))))))
30a2c10e 4412#endif
e83fe013 4413
16ef0a8c
JJ
4414 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4415 (for pows (POW)
4416 exps (EXP EXP2 EXP10 POW10)
4417 logs (LOG LOG2 LOG10 LOG10)
4418 (simplify
4419 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4420 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4421 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4422 (exps (plus (mult (logs @0) @1) @2)))))
4423
53f3cd25
RS
4424 (for sqrts (SQRT)
4425 cbrts (CBRT)
b4838d77 4426 pows (POW)
53f3cd25
RS
4427 exps (EXP EXP2 EXP10 POW10)
4428 /* sqrt(expN(x)) -> expN(x*0.5). */
4429 (simplify
4430 (sqrts (exps @0))
4431 (exps (mult @0 { build_real (type, dconsthalf); })))
4432 /* cbrt(expN(x)) -> expN(x/3). */
4433 (simplify
4434 (cbrts (exps @0))
b4838d77
RS
4435 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4436 /* pow(expN(x), y) -> expN(x*y). */
4437 (simplify
4438 (pows (exps @0) @1)
4439 (exps (mult @0 @1))))
cfed37a0
RS
4440
4441 /* tan(atan(x)) -> x. */
4442 (for tans (TAN)
4443 atans (ATAN)
4444 (simplify
4445 (tans (atans @0))
4446 @0)))
53f3cd25 4447
121ef08b
GB
4448 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
4449 (for sins (SIN)
4450 atans (ATAN)
4451 sqrts (SQRT)
4452 copysigns (COPYSIGN)
4453 (simplify
4454 (sins (atans:s @0))
4455 (with
4456 {
4457 REAL_VALUE_TYPE r_cst;
4458 build_sinatan_real (&r_cst, type);
4459 tree t_cst = build_real (type, r_cst);
4460 tree t_one = build_one_cst (type);
4461 }
4462 (if (SCALAR_FLOAT_TYPE_P (type))
5f054b17 4463 (cond (lt (abs @0) { t_cst; })
121ef08b
GB
4464 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
4465 (copysigns { t_one; } @0))))))
4466
4467/* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
4468 (for coss (COS)
4469 atans (ATAN)
4470 sqrts (SQRT)
4471 copysigns (COPYSIGN)
4472 (simplify
4473 (coss (atans:s @0))
4474 (with
4475 {
4476 REAL_VALUE_TYPE r_cst;
4477 build_sinatan_real (&r_cst, type);
4478 tree t_cst = build_real (type, r_cst);
4479 tree t_one = build_one_cst (type);
4480 tree t_zero = build_zero_cst (type);
4481 }
4482 (if (SCALAR_FLOAT_TYPE_P (type))
5f054b17 4483 (cond (lt (abs @0) { t_cst; })
121ef08b
GB
4484 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
4485 (copysigns { t_zero; } @0))))))
4486
4aff6d17
GB
4487 (if (!flag_errno_math)
4488 /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
4489 (for sinhs (SINH)
4490 atanhs (ATANH)
4491 sqrts (SQRT)
4492 (simplify
4493 (sinhs (atanhs:s @0))
4494 (with { tree t_one = build_one_cst (type); }
4495 (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
4496
4497 /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
4498 (for coshs (COSH)
4499 atanhs (ATANH)
4500 sqrts (SQRT)
4501 (simplify
4502 (coshs (atanhs:s @0))
4503 (with { tree t_one = build_one_cst (type); }
4504 (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
4505
abcc43f5
RS
4506/* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4507(simplify
e04d2a35 4508 (CABS (complex:C @0 real_zerop@1))
abcc43f5
RS
4509 (abs @0))
4510
67dbe582 4511/* trunc(trunc(x)) -> trunc(x), etc. */
c6cfa2bf 4512(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
67dbe582
RS
4513 (simplify
4514 (fns (fns @0))
4515 (fns @0)))
4516/* f(x) -> x if x is integer valued and f does nothing for such values. */
c6cfa2bf 4517(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
67dbe582
RS
4518 (simplify
4519 (fns integer_valued_real_p@0)
4520 @0))
67dbe582 4521
4d7836c4
RS
4522/* hypot(x,0) and hypot(0,x) -> abs(x). */
4523(simplify
c9e926ce 4524 (HYPOT:c @0 real_zerop@1)
4d7836c4
RS
4525 (abs @0))
4526
b4838d77
RS
4527/* pow(1,x) -> 1. */
4528(simplify
4529 (POW real_onep@0 @1)
4530 @0)
4531
461e4145
RS
4532(simplify
4533 /* copysign(x,x) -> x. */
c6cfa2bf 4534 (COPYSIGN_ALL @0 @0)
461e4145
RS
4535 @0)
4536
4537(simplify
4538 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
c6cfa2bf 4539 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
461e4145
RS
4540 (abs @0))
4541
86c0733f
RS
4542(for scale (LDEXP SCALBN SCALBLN)
4543 /* ldexp(0, x) -> 0. */
4544 (simplify
4545 (scale real_zerop@0 @1)
4546 @0)
4547 /* ldexp(x, 0) -> x. */
4548 (simplify
4549 (scale @0 integer_zerop@1)
4550 @0)
4551 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4552 (simplify
4553 (scale REAL_CST@0 @1)
4554 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4555 @0)))
4556
53f3cd25
RS
4557/* Canonicalization of sequences of math builtins. These rules represent
4558 IL simplifications but are not necessarily optimizations.
4559
4560 The sincos pass is responsible for picking "optimal" implementations
4561 of math builtins, which may be more complicated and can sometimes go
4562 the other way, e.g. converting pow into a sequence of sqrts.
4563 We only want to do these canonicalizations before the pass has run. */
4564
4565(if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4566 /* Simplify tan(x) * cos(x) -> sin(x). */
4567 (simplify
4568 (mult:c (TAN:s @0) (COS:s @0))
4569 (SIN @0))
4570
4571 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4572 (simplify
de3fbea3 4573 (mult:c @0 (POW:s @0 REAL_CST@1))
53f3cd25
RS
4574 (if (!TREE_OVERFLOW (@1))
4575 (POW @0 (plus @1 { build_one_cst (type); }))))
4576
4577 /* Simplify sin(x) / cos(x) -> tan(x). */
4578 (simplify
4579 (rdiv (SIN:s @0) (COS:s @0))
4580 (TAN @0))
4581
4582 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4583 (simplify
4584 (rdiv (COS:s @0) (SIN:s @0))
4585 (rdiv { build_one_cst (type); } (TAN @0)))
4586
4587 /* Simplify sin(x) / tan(x) -> cos(x). */
4588 (simplify
4589 (rdiv (SIN:s @0) (TAN:s @0))
4590 (if (! HONOR_NANS (@0)
4591 && ! HONOR_INFINITIES (@0))
c9e926ce 4592 (COS @0)))
53f3cd25
RS
4593
4594 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4595 (simplify
4596 (rdiv (TAN:s @0) (SIN:s @0))
4597 (if (! HONOR_NANS (@0)
4598 && ! HONOR_INFINITIES (@0))
4599 (rdiv { build_one_cst (type); } (COS @0))))
4600
4601 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4602 (simplify
4603 (mult (POW:s @0 @1) (POW:s @0 @2))
4604 (POW @0 (plus @1 @2)))
4605
4606 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4607 (simplify
4608 (mult (POW:s @0 @1) (POW:s @2 @1))
4609 (POW (mult @0 @2) @1))
4610
de3fbea3
RB
4611 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4612 (simplify
4613 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4614 (POWI (mult @0 @2) @1))
4615
53f3cd25
RS
4616 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4617 (simplify
4618 (rdiv (POW:s @0 REAL_CST@1) @0)
4619 (if (!TREE_OVERFLOW (@1))
4620 (POW @0 (minus @1 { build_one_cst (type); }))))
4621
4622 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4623 (simplify
4624 (rdiv @0 (POW:s @1 @2))
4625 (mult @0 (POW @1 (negate @2))))
4626
4627 (for sqrts (SQRT)
4628 cbrts (CBRT)
4629 pows (POW)
4630 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4631 (simplify
4632 (sqrts (sqrts @0))
4633 (pows @0 { build_real (type, dconst_quarter ()); }))
4634 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4635 (simplify
4636 (sqrts (cbrts @0))
4637 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4638 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4639 (simplify
4640 (cbrts (sqrts @0))
4641 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4642 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4643 (simplify
4644 (cbrts (cbrts tree_expr_nonnegative_p@0))
4645 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4646 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4647 (simplify
4648 (sqrts (pows @0 @1))
4649 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4650 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4651 (simplify
4652 (cbrts (pows tree_expr_nonnegative_p@0 @1))
b4838d77
RS
4653 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4654 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4655 (simplify
4656 (pows (sqrts @0) @1)
4657 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4658 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4659 (simplify
4660 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4661 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4662 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4663 (simplify
4664 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4665 (pows @0 (mult @1 @2))))
abcc43f5
RS
4666
4667 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4668 (simplify
4669 (CABS (complex @0 @0))
96285749
RS
4670 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4671
4d7836c4
RS
4672 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4673 (simplify
4674 (HYPOT @0 @0)
4675 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4676
96285749
RS
4677 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4678 (for cexps (CEXP)
4679 exps (EXP)
4680 cexpis (CEXPI)
4681 (simplify
4682 (cexps compositional_complex@0)
4683 (if (targetm.libc_has_function (function_c99_math_complex))
4684 (complex
4685 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4686 (mult @1 (imagpart @2)))))))
e18c1d66 4687
67dbe582
RS
4688(if (canonicalize_math_p ())
4689 /* floor(x) -> trunc(x) if x is nonnegative. */
c6cfa2bf
MM
4690 (for floors (FLOOR_ALL)
4691 truncs (TRUNC_ALL)
67dbe582
RS
4692 (simplify
4693 (floors tree_expr_nonnegative_p@0)
4694 (truncs @0))))
4695
4696(match double_value_p
4697 @0
4698 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4699(for froms (BUILT_IN_TRUNCL
4700 BUILT_IN_FLOORL
4701 BUILT_IN_CEILL
4702 BUILT_IN_ROUNDL
4703 BUILT_IN_NEARBYINTL
4704 BUILT_IN_RINTL)
4705 tos (BUILT_IN_TRUNC
4706 BUILT_IN_FLOOR
4707 BUILT_IN_CEIL
4708 BUILT_IN_ROUND
4709 BUILT_IN_NEARBYINT
4710 BUILT_IN_RINT)
4711 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4712 (if (optimize && canonicalize_math_p ())
4713 (simplify
4714 (froms (convert double_value_p@0))
4715 (convert (tos @0)))))
4716
4717(match float_value_p
4718 @0
4719 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4720(for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4721 BUILT_IN_FLOORL BUILT_IN_FLOOR
4722 BUILT_IN_CEILL BUILT_IN_CEIL
4723 BUILT_IN_ROUNDL BUILT_IN_ROUND
4724 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4725 BUILT_IN_RINTL BUILT_IN_RINT)
4726 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4727 BUILT_IN_FLOORF BUILT_IN_FLOORF
4728 BUILT_IN_CEILF BUILT_IN_CEILF
4729 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4730 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4731 BUILT_IN_RINTF BUILT_IN_RINTF)
4732 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4733 if x is a float. */
5dac7dbd
JDA
4734 (if (optimize && canonicalize_math_p ()
4735 && targetm.libc_has_function (function_c99_misc))
67dbe582
RS
4736 (simplify
4737 (froms (convert float_value_p@0))
4738 (convert (tos @0)))))
4739
543a9bcd
RS
4740(for froms (XFLOORL XCEILL XROUNDL XRINTL)
4741 tos (XFLOOR XCEIL XROUND XRINT)
4742 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4743 (if (optimize && canonicalize_math_p ())
4744 (simplify
4745 (froms (convert double_value_p@0))
4746 (tos @0))))
4747
4748(for froms (XFLOORL XCEILL XROUNDL XRINTL
4749 XFLOOR XCEIL XROUND XRINT)
4750 tos (XFLOORF XCEILF XROUNDF XRINTF)
4751 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4752 if x is a float. */
4753 (if (optimize && canonicalize_math_p ())
4754 (simplify
4755 (froms (convert float_value_p@0))
4756 (tos @0))))
4757
4758(if (canonicalize_math_p ())
4759 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4760 (for floors (IFLOOR LFLOOR LLFLOOR)
4761 (simplify
4762 (floors tree_expr_nonnegative_p@0)
4763 (fix_trunc @0))))
4764
4765(if (canonicalize_math_p ())
4766 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4767 (for fns (IFLOOR LFLOOR LLFLOOR
4768 ICEIL LCEIL LLCEIL
4769 IROUND LROUND LLROUND)
4770 (simplify
4771 (fns integer_valued_real_p@0)
4772 (fix_trunc @0)))
4773 (if (!flag_errno_math)
4774 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4775 (for rints (IRINT LRINT LLRINT)
4776 (simplify
4777 (rints integer_valued_real_p@0)
4778 (fix_trunc @0)))))
4779
4780(if (canonicalize_math_p ())
4781 (for ifn (IFLOOR ICEIL IROUND IRINT)
4782 lfn (LFLOOR LCEIL LROUND LRINT)
4783 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4784 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4785 sizeof (int) == sizeof (long). */
4786 (if (TYPE_PRECISION (integer_type_node)
4787 == TYPE_PRECISION (long_integer_type_node))
4788 (simplify
4789 (ifn @0)
4790 (lfn:long_integer_type_node @0)))
4791 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4792 sizeof (long long) == sizeof (long). */
4793 (if (TYPE_PRECISION (long_long_integer_type_node)
4794 == TYPE_PRECISION (long_integer_type_node))
4795 (simplify
4796 (llfn @0)
4797 (lfn:long_integer_type_node @0)))))
4798
92c52eab
RS
4799/* cproj(x) -> x if we're ignoring infinities. */
4800(simplify
4801 (CPROJ @0)
4802 (if (!HONOR_INFINITIES (type))
4803 @0))
4804
4534c203
RB
4805/* If the real part is inf and the imag part is known to be
4806 nonnegative, return (inf + 0i). */
4807(simplify
4808 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4809 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
92c52eab
RS
4810 { build_complex_inf (type, false); }))
4811
4534c203
RB
4812/* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4813(simplify
4814 (CPROJ (complex @0 REAL_CST@1))
4815 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
92c52eab 4816 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4534c203 4817
b4838d77
RS
4818(for pows (POW)
4819 sqrts (SQRT)
4820 cbrts (CBRT)
4821 (simplify
4822 (pows @0 REAL_CST@1)
4823 (with {
4824 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4825 REAL_VALUE_TYPE tmp;
4826 }
4827 (switch
4828 /* pow(x,0) -> 1. */
4829 (if (real_equal (value, &dconst0))
4830 { build_real (type, dconst1); })
4831 /* pow(x,1) -> x. */
4832 (if (real_equal (value, &dconst1))
4833 @0)
4834 /* pow(x,-1) -> 1/x. */
4835 (if (real_equal (value, &dconstm1))
4836 (rdiv { build_real (type, dconst1); } @0))
4837 /* pow(x,0.5) -> sqrt(x). */
4838 (if (flag_unsafe_math_optimizations
4839 && canonicalize_math_p ()
4840 && real_equal (value, &dconsthalf))
4841 (sqrts @0))
4842 /* pow(x,1/3) -> cbrt(x). */
4843 (if (flag_unsafe_math_optimizations
4844 && canonicalize_math_p ()
4845 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4846 real_equal (value, &tmp)))
4847 (cbrts @0))))))
4534c203 4848
5ddc84ca
RS
4849/* powi(1,x) -> 1. */
4850(simplify
4851 (POWI real_onep@0 @1)
4852 @0)
4853
4854(simplify
4855 (POWI @0 INTEGER_CST@1)
4856 (switch
4857 /* powi(x,0) -> 1. */
8e6cdc90 4858 (if (wi::to_wide (@1) == 0)
5ddc84ca
RS
4859 { build_real (type, dconst1); })
4860 /* powi(x,1) -> x. */
8e6cdc90 4861 (if (wi::to_wide (@1) == 1)
5ddc84ca
RS
4862 @0)
4863 /* powi(x,-1) -> 1/x. */
8e6cdc90 4864 (if (wi::to_wide (@1) == -1)
5ddc84ca
RS
4865 (rdiv { build_real (type, dconst1); } @0))))
4866
03cc70b5 4867/* Narrowing of arithmetic and logical operations.
be144838
JL
4868
4869 These are conceptually similar to the transformations performed for
4870 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4871 term we want to move all that code out of the front-ends into here. */
4872
4873/* If we have a narrowing conversion of an arithmetic operation where
4874 both operands are widening conversions from the same type as the outer
4875 narrowing conversion. Then convert the innermost operands to a suitable
9c582551 4876 unsigned type (to avoid introducing undefined behavior), perform the
be144838
JL
4877 operation and convert the result to the desired type. */
4878(for op (plus minus)
4879 (simplify
93f90bec 4880 (convert (op:s (convert@2 @0) (convert?@3 @1)))
be144838
JL
4881 (if (INTEGRAL_TYPE_P (type)
4882 /* We check for type compatibility between @0 and @1 below,
4883 so there's no need to check that @1/@3 are integral types. */
4884 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4885 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4886 /* The precision of the type of each operand must match the
4887 precision of the mode of each operand, similarly for the
4888 result. */
2be65d9e
RS
4889 && type_has_mode_precision_p (TREE_TYPE (@0))
4890 && type_has_mode_precision_p (TREE_TYPE (@1))
4891 && type_has_mode_precision_p (type)
be144838
JL
4892 /* The inner conversion must be a widening conversion. */
4893 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
93f90bec
BC
4894 && types_match (@0, type)
4895 && (types_match (@0, @1)
4896 /* Or the second operand is const integer or converted const
4897 integer from valueize. */
4898 || TREE_CODE (@1) == INTEGER_CST))
be144838 4899 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
93f90bec 4900 (op @0 (convert @1))
8fdc6c67 4901 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
93f90bec
BC
4902 (convert (op (convert:utype @0)
4903 (convert:utype @1))))))))
48451e8f
JL
4904
4905/* This is another case of narrowing, specifically when there's an outer
4906 BIT_AND_EXPR which masks off bits outside the type of the innermost
4907 operands. Like the previous case we have to convert the operands
9c582551 4908 to unsigned types to avoid introducing undefined behavior for the
48451e8f
JL
4909 arithmetic operation. */
4910(for op (minus plus)
8fdc6c67
RB
4911 (simplify
4912 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4913 (if (INTEGRAL_TYPE_P (type)
4914 /* We check for type compatibility between @0 and @1 below,
4915 so there's no need to check that @1/@3 are integral types. */
4916 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4917 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4918 /* The precision of the type of each operand must match the
4919 precision of the mode of each operand, similarly for the
4920 result. */
2be65d9e
RS
4921 && type_has_mode_precision_p (TREE_TYPE (@0))
4922 && type_has_mode_precision_p (TREE_TYPE (@1))
4923 && type_has_mode_precision_p (type)
8fdc6c67
RB
4924 /* The inner conversion must be a widening conversion. */
4925 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4926 && types_match (@0, @1)
4927 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4928 <= TYPE_PRECISION (TREE_TYPE (@0)))
8e6cdc90
RS
4929 && (wi::to_wide (@4)
4930 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4931 true, TYPE_PRECISION (type))) == 0)
8fdc6c67
RB
4932 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4933 (with { tree ntype = TREE_TYPE (@0); }
4934 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4935 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4936 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4937 (convert:utype @4))))))))
4f7a5692 4938
03cc70b5 4939/* Transform (@0 < @1 and @0 < @2) to use min,
4f7a5692 4940 (@0 > @1 and @0 > @2) to use max */
dac920e8
MG
4941(for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
4942 op (lt le gt ge lt le gt ge )
4943 ext (min min max max max max min min )
4f7a5692 4944 (simplify
dac920e8 4945 (logic (op:cs @0 @1) (op:cs @0 @2))
4618c453
RB
4946 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4947 && TREE_CODE (@0) != INTEGER_CST)
4f7a5692
MC
4948 (op @0 (ext @1 @2)))))
4949
7317ef4a
RS
4950(simplify
4951 /* signbit(x) -> 0 if x is nonnegative. */
4952 (SIGNBIT tree_expr_nonnegative_p@0)
4953 { integer_zero_node; })
4954
4955(simplify
4956 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4957 (SIGNBIT @0)
4958 (if (!HONOR_SIGNED_ZEROS (@0))
4959 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
a8b85ce9
MG
4960
4961/* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4962(for cmp (eq ne)
4963 (for op (plus minus)
4964 rop (minus plus)
4965 (simplify
4966 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4967 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4968 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4969 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4970 && !TYPE_SATURATING (TREE_TYPE (@0)))
4971 (with { tree res = int_const_binop (rop, @2, @1); }
75473a91
RB
4972 (if (TREE_OVERFLOW (res)
4973 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
a8b85ce9
MG
4974 { constant_boolean_node (cmp == NE_EXPR, type); }
4975 (if (single_use (@3))
11c1e63c
JJ
4976 (cmp @0 { TREE_OVERFLOW (res)
4977 ? drop_tree_overflow (res) : res; }))))))))
a8b85ce9
MG
4978(for cmp (lt le gt ge)
4979 (for op (plus minus)
4980 rop (minus plus)
4981 (simplify
4982 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4983 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4984 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4985 (with { tree res = int_const_binop (rop, @2, @1); }
4986 (if (TREE_OVERFLOW (res))
4987 {
4988 fold_overflow_warning (("assuming signed overflow does not occur "
4989 "when simplifying conditional to constant"),
4990 WARN_STRICT_OVERFLOW_CONDITIONAL);
4991 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4992 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
8e6cdc90
RS
4993 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4994 TYPE_SIGN (TREE_TYPE (@1)))
a8b85ce9
MG
4995 != (op == MINUS_EXPR);
4996 constant_boolean_node (less == ovf_high, type);
4997 }
4998 (if (single_use (@3))
4999 (with
5000 {
5001 fold_overflow_warning (("assuming signed overflow does not occur "
5002 "when changing X +- C1 cmp C2 to "
5003 "X cmp C2 -+ C1"),
5004 WARN_STRICT_OVERFLOW_COMPARISON);
5005 }
5006 (cmp @0 { res; })))))))))
d3e40b76
RB
5007
5008/* Canonicalizations of BIT_FIELD_REFs. */
5009
6ec96dcb
RB
5010(simplify
5011 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
5012 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
5013
5014(simplify
5015 (BIT_FIELD_REF (view_convert @0) @1 @2)
5016 (BIT_FIELD_REF @0 @1 @2))
5017
5018(simplify
5019 (BIT_FIELD_REF @0 @1 integer_zerop)
5020 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
5021 (view_convert @0)))
5022
d3e40b76
RB
5023(simplify
5024 (BIT_FIELD_REF @0 @1 @2)
5025 (switch
5026 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
5027 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5028 (switch
5029 (if (integer_zerop (@2))
5030 (view_convert (realpart @0)))
5031 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5032 (view_convert (imagpart @0)))))
5033 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5034 && INTEGRAL_TYPE_P (type)
171f6f05
RB
5035 /* On GIMPLE this should only apply to register arguments. */
5036 && (! GIMPLE || is_gimple_reg (@0))
d3e40b76
RB
5037 /* A bit-field-ref that referenced the full argument can be stripped. */
5038 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
5039 && integer_zerop (@2))
5040 /* Low-parts can be reduced to integral conversions.
5041 ??? The following doesn't work for PDP endian. */
5042 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
5043 /* Don't even think about BITS_BIG_ENDIAN. */
5044 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
5045 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
5046 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
5047 ? (TYPE_PRECISION (TREE_TYPE (@0))
5048 - TYPE_PRECISION (type))
5049 : 0)) == 0)))
5050 (convert @0))))
5051
5052/* Simplify vector extracts. */
5053
5054(simplify
5055 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
5056 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
5057 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
5058 || (VECTOR_TYPE_P (type)
5059 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
5060 (with
5061 {
5062 tree ctor = (TREE_CODE (@0) == SSA_NAME
5063 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
5064 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
5065 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
5066 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
5067 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
5068 }
5069 (if (n != 0
5070 && (idx % width) == 0
5071 && (n % width) == 0
928686b1
RS
5072 && known_le ((idx + n) / width,
5073 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
d3e40b76
RB
5074 (with
5075 {
5076 idx = idx / width;
5077 n = n / width;
5078 /* Constructor elements can be subvectors. */
d34457c1 5079 poly_uint64 k = 1;
d3e40b76
RB
5080 if (CONSTRUCTOR_NELTS (ctor) != 0)
5081 {
5082 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
5083 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
5084 k = TYPE_VECTOR_SUBPARTS (cons_elem);
5085 }
d34457c1 5086 unsigned HOST_WIDE_INT elt, count, const_k;
d3e40b76
RB
5087 }
5088 (switch
5089 /* We keep an exact subset of the constructor elements. */
d34457c1 5090 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
d3e40b76
RB
5091 (if (CONSTRUCTOR_NELTS (ctor) == 0)
5092 { build_constructor (type, NULL); }
d34457c1
RS
5093 (if (count == 1)
5094 (if (elt < CONSTRUCTOR_NELTS (ctor))
4c1da8ea 5095 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
d34457c1 5096 { build_zero_cst (type); })
d3e40b76 5097 {
d34457c1
RS
5098 vec<constructor_elt, va_gc> *vals;
5099 vec_alloc (vals, count);
5100 for (unsigned i = 0;
5101 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
5102 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
5103 CONSTRUCTOR_ELT (ctor, elt + i)->value);
5104 build_constructor (type, vals);
5105 })))
d3e40b76 5106 /* The bitfield references a single constructor element. */
d34457c1
RS
5107 (if (k.is_constant (&const_k)
5108 && idx + n <= (idx / const_k + 1) * const_k)
d3e40b76 5109 (switch
d34457c1 5110 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
d3e40b76 5111 { build_zero_cst (type); })
d34457c1 5112 (if (n == const_k)
4c1da8ea 5113 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
d34457c1
RS
5114 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
5115 @1 { bitsize_int ((idx % const_k) * width); })))))))))
92e29a5e
RB
5116
5117/* Simplify a bit extraction from a bit insertion for the cases with
5118 the inserted element fully covering the extraction or the insertion
5119 not touching the extraction. */
5120(simplify
5121 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
5122 (with
5123 {
5124 unsigned HOST_WIDE_INT isize;
5125 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
5126 isize = TYPE_PRECISION (TREE_TYPE (@1));
5127 else
5128 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
5129 }
5130 (switch
8e6cdc90
RS
5131 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
5132 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
5133 wi::to_wide (@ipos) + isize))
92e29a5e 5134 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
8e6cdc90
RS
5135 wi::to_wide (@rpos)
5136 - wi::to_wide (@ipos)); }))
5137 (if (wi::geu_p (wi::to_wide (@ipos),
5138 wi::to_wide (@rpos) + wi::to_wide (@rsize))
5139 || wi::geu_p (wi::to_wide (@rpos),
5140 wi::to_wide (@ipos) + isize))
92e29a5e 5141 (BIT_FIELD_REF @0 @rsize @rpos)))))
c566cc9f 5142
c453ccc2
RS
5143(if (canonicalize_math_after_vectorization_p ())
5144 (for fmas (FMA)
5145 (simplify
5146 (fmas:c (negate @0) @1 @2)
5147 (IFN_FNMA @0 @1 @2))
5148 (simplify
5149 (fmas @0 @1 (negate @2))
5150 (IFN_FMS @0 @1 @2))
5151 (simplify
5152 (fmas:c (negate @0) @1 (negate @2))
5153 (IFN_FNMS @0 @1 @2))
5154 (simplify
5155 (negate (fmas@3 @0 @1 @2))
5156 (if (single_use (@3))
5157 (IFN_FNMS @0 @1 @2))))
5158
c566cc9f 5159 (simplify
c453ccc2
RS
5160 (IFN_FMS:c (negate @0) @1 @2)
5161 (IFN_FNMS @0 @1 @2))
5162 (simplify
5163 (IFN_FMS @0 @1 (negate @2))
5164 (IFN_FMA @0 @1 @2))
5165 (simplify
5166 (IFN_FMS:c (negate @0) @1 (negate @2))
c566cc9f
RS
5167 (IFN_FNMA @0 @1 @2))
5168 (simplify
c453ccc2
RS
5169 (negate (IFN_FMS@3 @0 @1 @2))
5170 (if (single_use (@3))
5171 (IFN_FNMA @0 @1 @2)))
5172
5173 (simplify
5174 (IFN_FNMA:c (negate @0) @1 @2)
5175 (IFN_FMA @0 @1 @2))
c566cc9f 5176 (simplify
c453ccc2 5177 (IFN_FNMA @0 @1 (negate @2))
c566cc9f
RS
5178 (IFN_FNMS @0 @1 @2))
5179 (simplify
c453ccc2
RS
5180 (IFN_FNMA:c (negate @0) @1 (negate @2))
5181 (IFN_FMS @0 @1 @2))
5182 (simplify
5183 (negate (IFN_FNMA@3 @0 @1 @2))
c566cc9f 5184 (if (single_use (@3))
c453ccc2 5185 (IFN_FMS @0 @1 @2)))
c566cc9f 5186
c453ccc2
RS
5187 (simplify
5188 (IFN_FNMS:c (negate @0) @1 @2)
5189 (IFN_FMS @0 @1 @2))
5190 (simplify
5191 (IFN_FNMS @0 @1 (negate @2))
5192 (IFN_FNMA @0 @1 @2))
5193 (simplify
5194 (IFN_FNMS:c (negate @0) @1 (negate @2))
5195 (IFN_FMA @0 @1 @2))
5196 (simplify
5197 (negate (IFN_FNMS@3 @0 @1 @2))
c566cc9f 5198 (if (single_use (@3))
c453ccc2 5199 (IFN_FMA @0 @1 @2))))
ba6557e2
RS
5200
5201/* POPCOUNT simplifications. */
5202(for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
5203 BUILT_IN_POPCOUNTIMAX)
5204 /* popcount(X&1) is nop_expr(X&1). */
5205 (simplify
5206 (popcount @0)
5207 (if (tree_nonzero_bits (@0) == 1)
5208 (convert @0)))
5209 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
5210 (simplify
5211 (plus (popcount:s @0) (popcount:s @1))
5212 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
5213 (popcount (bit_ior @0 @1))))
5214 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
5215 (for cmp (le eq ne gt)
5216 rep (eq eq ne ne)
5217 (simplify
5218 (cmp (popcount @0) integer_zerop)
5219 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
0d2b3bca
RS
5220
5221/* Simplify:
5222
5223 a = a1 op a2
5224 r = c ? a : b;
5225
5226 to:
5227
5228 r = c ? a1 op a2 : b;
5229
5230 if the target can do it in one go. This makes the operation conditional
5231 on c, so could drop potentially-trapping arithmetic, but that's a valid
cff1a122
JJ
5232 simplification if the result of the operation isn't needed.
5233
5234 Avoid speculatively generating a stand-alone vector comparison
5235 on targets that might not support them. Any target implementing
5236 conditional internal functions must support the same comparisons
5237 inside and outside a VEC_COND_EXPR. */
5238
ea5212b7 5239#if GIMPLE
0d2b3bca
RS
5240(for uncond_op (UNCOND_BINARY)
5241 cond_op (COND_BINARY)
5242 (simplify
5243 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
cff1a122
JJ
5244 (with { tree op_type = TREE_TYPE (@4); }
5245 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
ea5212b7 5246 && element_precision (type) == element_precision (op_type))
0d2b3bca
RS
5247 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
5248 (simplify
5249 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
cff1a122
JJ
5250 (with { tree op_type = TREE_TYPE (@4); }
5251 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
ea5212b7 5252 && element_precision (type) == element_precision (op_type))
0d2b3bca 5253 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
6a86928d 5254
b41d1f6e
RS
5255/* Same for ternary operations. */
5256(for uncond_op (UNCOND_TERNARY)
5257 cond_op (COND_TERNARY)
5258 (simplify
5259 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
cff1a122
JJ
5260 (with { tree op_type = TREE_TYPE (@5); }
5261 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
ea5212b7 5262 && element_precision (type) == element_precision (op_type))
b41d1f6e
RS
5263 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
5264 (simplify
5265 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
cff1a122
JJ
5266 (with { tree op_type = TREE_TYPE (@5); }
5267 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
ea5212b7 5268 && element_precision (type) == element_precision (op_type))
b41d1f6e
RS
5269 (view_convert (cond_op (bit_not @0) @2 @3 @4
5270 (view_convert:op_type @1)))))))
ea5212b7 5271#endif
b41d1f6e 5272
6a86928d
RS
5273/* Detect cases in which a VEC_COND_EXPR effectively replaces the
5274 "else" value of an IFN_COND_*. */
5275(for cond_op (COND_BINARY)
5276 (simplify
5277 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
5278 (with { tree op_type = TREE_TYPE (@3); }
5279 (if (element_precision (type) == element_precision (op_type))
2c58d42c
RS
5280 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
5281 (simplify
5282 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
5283 (with { tree op_type = TREE_TYPE (@5); }
5284 (if (inverse_conditions_p (@0, @2)
5285 && element_precision (type) == element_precision (op_type))
5286 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
b41d1f6e
RS
5287
5288/* Same for ternary operations. */
5289(for cond_op (COND_TERNARY)
5290 (simplify
5291 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
5292 (with { tree op_type = TREE_TYPE (@4); }
5293 (if (element_precision (type) == element_precision (op_type))
2c58d42c
RS
5294 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
5295 (simplify
5296 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
5297 (with { tree op_type = TREE_TYPE (@6); }
5298 (if (inverse_conditions_p (@0, @2)
5299 && element_precision (type) == element_precision (op_type))
5300 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
a19f98d5
RS
5301
5302/* For pointers @0 and @2 and nonnegative constant offset @1, look for
5303 expressions like:
5304
5305 A: (@0 + @1 < @2) | (@2 + @1 < @0)
5306 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
5307
5308 If pointers are known not to wrap, B checks whether @1 bytes starting
5309 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
5310 bytes. A is more efficiently tested as:
5311
5312 A: (sizetype) (@0 + @1 - @2) > @1 * 2
5313
5314 The equivalent expression for B is given by replacing @1 with @1 - 1:
5315
5316 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
5317
5318 @0 and @2 can be swapped in both expressions without changing the result.
5319
5320 The folds rely on sizetype's being unsigned (which is always true)
5321 and on its being the same width as the pointer (which we have to check).
5322
5323 The fold replaces two pointer_plus expressions, two comparisons and
5324 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
5325 the best case it's a saving of two operations. The A fold retains one
5326 of the original pointer_pluses, so is a win even if both pointer_pluses
5327 are used elsewhere. The B fold is a wash if both pointer_pluses are
5328 used elsewhere, since all we end up doing is replacing a comparison with
5329 a pointer_plus. We do still apply the fold under those circumstances
5330 though, in case applying it to other conditions eventually makes one of the
5331 pointer_pluses dead. */
5332(for ior (truth_orif truth_or bit_ior)
5333 (for cmp (le lt)
5334 (simplify
5335 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
5336 (cmp:cs (pointer_plus@4 @2 @1) @0))
5337 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
5338 && TYPE_OVERFLOW_WRAPS (sizetype)
5339 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
5340 /* Calculate the rhs constant. */
5341 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
5342 offset_int rhs = off * 2; }
5343 /* Always fails for negative values. */
5344 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
5345 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
5346 pick a canonical order. This increases the chances of using the
5347 same pointer_plus in multiple checks. */
5348 (with { bool swap_p = tree_swap_operands_p (@0, @2);
5349 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
5350 (if (cmp == LT_EXPR)
5351 (gt (convert:sizetype
5352 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
5353 { swap_p ? @0 : @2; }))
5354 { rhs_tree; })
5355 (gt (convert:sizetype
5356 (pointer_diff:ssizetype
5357 (pointer_plus { swap_p ? @2 : @0; }
5358 { wide_int_to_tree (sizetype, off); })
5359 { swap_p ? @0 : @2; }))
5360 { rhs_tree; })))))))))
f4bf2aab
RS
5361
5362/* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
5363 element of @1. */
5364(for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
5365 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
5366 (with { int i = single_nonzero_element (@1); }
5367 (if (i >= 0)
5368 (with { tree elt = vector_cst_elt (@1, i);
5369 tree elt_type = TREE_TYPE (elt);
5370 unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
5371 tree size = bitsize_int (elt_bits);
5372 tree pos = bitsize_int (elt_bits * i); }
5373 (view_convert
5374 (bit_and:elt_type
5375 (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
5376 { elt; })))))))
ebd733a7
RB
5377
5378(simplify
5379 (vec_perm @0 @1 VECTOR_CST@2)
5380 (with
5381 {
5382 tree op0 = @0, op1 = @1, op2 = @2;
5383
5384 /* Build a vector of integers from the tree mask. */
5385 vec_perm_builder builder;
5386 if (!tree_to_vec_perm_builder (&builder, op2))
5387 return NULL_TREE;
5388
5389 /* Create a vec_perm_indices for the integer vector. */
5390 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
5391 bool single_arg = (op0 == op1);
5392 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
5393 }
5394 (if (sel.series_p (0, 1, 0, 1))
5395 { op0; }
5396 (if (sel.series_p (0, 1, nelts, 1))
5397 { op1; }
5398 (with
5399 {
5400 if (!single_arg)
5401 {
5402 if (sel.all_from_input_p (0))
5403 op1 = op0;
5404 else if (sel.all_from_input_p (1))
5405 {
5406 op0 = op1;
5407 sel.rotate_inputs (1);
5408 }
4f8b89f0
RB
5409 else if (known_ge (poly_uint64 (sel[0]), nelts))
5410 {
5411 std::swap (op0, op1);
5412 sel.rotate_inputs (1);
5413 }
ebd733a7
RB
5414 }
5415 gassign *def;
5416 tree cop0 = op0, cop1 = op1;
5417 if (TREE_CODE (op0) == SSA_NAME
5418 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
5419 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
5420 cop0 = gimple_assign_rhs1 (def);
5421 if (TREE_CODE (op1) == SSA_NAME
5422 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
5423 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
5424 cop1 = gimple_assign_rhs1 (def);
5425
5426 tree t;
5427 }
5428 (if ((TREE_CODE (cop0) == VECTOR_CST
5429 || TREE_CODE (cop0) == CONSTRUCTOR)
5430 && (TREE_CODE (cop1) == VECTOR_CST
5431 || TREE_CODE (cop1) == CONSTRUCTOR)
5432 && (t = fold_vec_perm (type, cop0, cop1, sel)))
5433 { t; }
5434 (with
5435 {
5436 bool changed = (op0 == op1 && !single_arg);
4f8b89f0
RB
5437 tree ins = NULL_TREE;
5438 unsigned at = 0;
5439
5440 /* See if the permutation is performing a single element
5441 insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
5442 in that case. But only if the vector mode is supported,
5443 otherwise this is invalid GIMPLE. */
5444 if (TYPE_MODE (type) != BLKmode
5445 && (TREE_CODE (cop0) == VECTOR_CST
5446 || TREE_CODE (cop0) == CONSTRUCTOR
5447 || TREE_CODE (cop1) == VECTOR_CST
5448 || TREE_CODE (cop1) == CONSTRUCTOR))
5449 {
5450 if (sel.series_p (1, 1, nelts + 1, 1))
5451 {
5452 /* After canonicalizing the first elt to come from the
5453 first vector we only can insert the first elt from
5454 the first vector. */
5455 at = 0;
5456 ins = fold_read_from_vector (cop0, 0);
5457 op0 = op1;
5458 }
5459 else
5460 {
5461 unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
5462 for (at = 0; at < encoded_nelts; ++at)
5463 if (maybe_ne (sel[at], at))
5464 break;
5465 if (at < encoded_nelts && sel.series_p (at + 1, 1, at + 1, 1))
5466 {
5467 if (known_lt (at, nelts))
5468 ins = fold_read_from_vector (cop0, sel[at]);
5469 else
5470 ins = fold_read_from_vector (cop1, sel[at] - nelts);
5471 }
5472 }
5473 }
ebd733a7
RB
5474
5475 /* Generate a canonical form of the selector. */
4f8b89f0 5476 if (!ins && sel.encoding () != builder)
ebd733a7
RB
5477 {
5478 /* Some targets are deficient and fail to expand a single
5479 argument permutation while still allowing an equivalent
5480 2-argument version. */
5481 tree oldop2 = op2;
5482 if (sel.ninputs () == 2
5483 || can_vec_perm_const_p (TYPE_MODE (type), sel, false))
5484 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
5485 else
5486 {
5487 vec_perm_indices sel2 (builder, 2, nelts);
5488 if (can_vec_perm_const_p (TYPE_MODE (type), sel2, false))
5489 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
5490 else
5491 /* Not directly supported with either encoding,
5492 so use the preferred form. */
5493 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
5494 }
4f8b89f0
RB
5495 if (!operand_equal_p (op2, oldop2, 0))
5496 changed = true;
ebd733a7
RB
5497 }
5498 }
4f8b89f0
RB
5499 (if (ins)
5500 (bit_insert { op0; } { ins; }
5501 { bitsize_int (at * tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)))); })
5502 (if (changed)
5503 (vec_perm { op0; } { op1; } { op2; }))))))))))