]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/match.pd
* match.pd: Use single_use throughout.
[thirdparty/gcc.git] / gcc / match.pd
CommitLineData
3d2cf79f
RB
1/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5624e564 5 Copyright (C) 2014-2015 Free Software Foundation, Inc.
3d2cf79f
RB
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
13Software Foundation; either version 3, or (at your option) any later
14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING3. If not see
23<http://www.gnu.org/licenses/>. */
24
25
26/* Generic tree predicates we inherit. */
27(define_predicates
cc7b5acf 28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
09240451 29 integer_each_onep integer_truep
cc7b5acf 30 real_zerop real_onep real_minus_onep
f3582e54
RB
31 CONSTANT_CLASS_P
32 tree_expr_nonnegative_p)
e0ee10ed 33
f84e7fd6
RB
34/* Operator lists. */
35(define_operator_list tcc_comparison
36 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
37(define_operator_list inverted_tcc_comparison
38 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
39(define_operator_list inverted_tcc_comparison_with_nans
40 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
534bd33b
MG
41(define_operator_list swapped_tcc_comparison
42 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
f84e7fd6 43
e0ee10ed
RB
44
45/* Simplifications of operations with one constant operand and
36a60e48 46 simplifications to constants or single values. */
e0ee10ed
RB
47
48(for op (plus pointer_plus minus bit_ior bit_xor)
49 (simplify
50 (op @0 integer_zerop)
51 (non_lvalue @0)))
52
a499aac5
RB
53/* 0 +p index -> (type)index */
54(simplify
55 (pointer_plus integer_zerop @1)
56 (non_lvalue (convert @1)))
57
a7f24614
RB
58/* See if ARG1 is zero and X + ARG1 reduces to X.
59 Likewise if the operands are reversed. */
60(simplify
61 (plus:c @0 real_zerop@1)
62 (if (fold_real_zero_addition_p (type, @1, 0))
63 (non_lvalue @0)))
64
65/* See if ARG1 is zero and X - ARG1 reduces to X. */
66(simplify
67 (minus @0 real_zerop@1)
68 (if (fold_real_zero_addition_p (type, @1, 1))
69 (non_lvalue @0)))
70
e0ee10ed
RB
71/* Simplify x - x.
72 This is unsafe for certain floats even in non-IEEE formats.
73 In IEEE, it is unsafe because it does wrong for NaNs.
74 Also note that operand_equal_p is always false if an operand
75 is volatile. */
76(simplify
a7f24614 77 (minus @0 @0)
1b457aa4 78 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
a7f24614 79 { build_zero_cst (type); }))
e0ee10ed
RB
80
81(simplify
a7f24614
RB
82 (mult @0 integer_zerop@1)
83 @1)
84
85/* Maybe fold x * 0 to 0. The expressions aren't the same
86 when x is NaN, since x * 0 is also NaN. Nor are they the
87 same in modes with signed zeros, since multiplying a
88 negative value by 0 gives -0, not +0. */
89(simplify
90 (mult @0 real_zerop@1)
1b457aa4 91 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (element_mode (type)))
a7f24614
RB
92 @1))
93
94/* In IEEE floating point, x*1 is not equivalent to x for snans.
95 Likewise for complex arithmetic with signed zeros. */
96(simplify
97 (mult @0 real_onep)
09240451
MG
98 (if (!HONOR_SNANS (element_mode (type))
99 && (!HONOR_SIGNED_ZEROS (element_mode (type))
a7f24614
RB
100 || !COMPLEX_FLOAT_TYPE_P (type)))
101 (non_lvalue @0)))
102
103/* Transform x * -1.0 into -x. */
104(simplify
105 (mult @0 real_minus_onep)
09240451
MG
106 (if (!HONOR_SNANS (element_mode (type))
107 && (!HONOR_SIGNED_ZEROS (element_mode (type))
a7f24614
RB
108 || !COMPLEX_FLOAT_TYPE_P (type)))
109 (negate @0)))
e0ee10ed
RB
110
111/* Make sure to preserve divisions by zero. This is the reason why
112 we don't simplify x / x to 1 or 0 / x to 0. */
113(for op (mult trunc_div ceil_div floor_div round_div exact_div)
114 (simplify
115 (op @0 integer_onep)
116 (non_lvalue @0)))
117
a7f24614
RB
118/* X / -1 is -X. */
119(for div (trunc_div ceil_div floor_div round_div exact_div)
120 (simplify
09240451
MG
121 (div @0 integer_minus_onep@1)
122 (if (!TYPE_UNSIGNED (type))
a7f24614
RB
123 (negate @0))))
124
125/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
126 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
127(simplify
128 (floor_div @0 @1)
09240451
MG
129 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
130 && TYPE_UNSIGNED (type))
a7f24614
RB
131 (trunc_div @0 @1)))
132
28093105
RB
133/* Combine two successive divisions. Note that combining ceil_div
134 and floor_div is trickier and combining round_div even more so. */
135(for div (trunc_div exact_div)
c306cfaf
RB
136 (simplify
137 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
138 (with {
139 bool overflow_p;
140 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
141 }
142 (if (!overflow_p)
143 (div @0 { wide_int_to_tree (type, mul); }))
ac19a303
RB
144 (if (overflow_p
145 && (TYPE_UNSIGNED (type)
146 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED)))
c306cfaf
RB
147 { build_zero_cst (type); }))))
148
a7f24614 149/* Optimize A / A to 1.0 if we don't care about
09240451 150 NaNs or Infinities. */
a7f24614
RB
151(simplify
152 (rdiv @0 @0)
09240451 153 (if (FLOAT_TYPE_P (type)
1b457aa4 154 && ! HONOR_NANS (type)
09240451
MG
155 && ! HONOR_INFINITIES (element_mode (type)))
156 { build_one_cst (type); }))
157
158/* Optimize -A / A to -1.0 if we don't care about
159 NaNs or Infinities. */
160(simplify
161 (rdiv:c @0 (negate @0))
162 (if (FLOAT_TYPE_P (type)
1b457aa4 163 && ! HONOR_NANS (type)
09240451
MG
164 && ! HONOR_INFINITIES (element_mode (type)))
165 { build_minus_one_cst (type); }))
a7f24614
RB
166
167/* In IEEE floating point, x/1 is not equivalent to x for snans. */
168(simplify
169 (rdiv @0 real_onep)
09240451 170 (if (!HONOR_SNANS (element_mode (type)))
a7f24614
RB
171 (non_lvalue @0)))
172
173/* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
174(simplify
175 (rdiv @0 real_minus_onep)
09240451 176 (if (!HONOR_SNANS (element_mode (type)))
a7f24614
RB
177 (negate @0)))
178
179/* If ARG1 is a constant, we can convert this to a multiply by the
180 reciprocal. This does not have the same rounding properties,
181 so only do this if -freciprocal-math. We can actually
182 always safely do it if ARG1 is a power of two, but it's hard to
183 tell if it is or not in a portable manner. */
184(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
185 (simplify
186 (rdiv @0 cst@1)
187 (if (optimize)
53bc4b3a
RB
188 (if (flag_reciprocal_math
189 && !real_zerop (@1))
a7f24614 190 (with
249700b5 191 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
a7f24614
RB
192 (if (tem)
193 (mult @0 { tem; } ))))
194 (if (cst != COMPLEX_CST)
195 (with { tree inverse = exact_inverse (type, @1); }
196 (if (inverse)
197 (mult @0 { inverse; } )))))))
198
e0ee10ed
RB
199/* Same applies to modulo operations, but fold is inconsistent here
200 and simplifies 0 % x to 0, only preserving literal 0 % 0. */
a7f24614 201(for mod (ceil_mod floor_mod round_mod trunc_mod)
e0ee10ed
RB
202 /* 0 % X is always zero. */
203 (simplify
a7f24614 204 (mod integer_zerop@0 @1)
e0ee10ed
RB
205 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
206 (if (!integer_zerop (@1))
207 @0))
208 /* X % 1 is always zero. */
209 (simplify
a7f24614
RB
210 (mod @0 integer_onep)
211 { build_zero_cst (type); })
212 /* X % -1 is zero. */
213 (simplify
09240451
MG
214 (mod @0 integer_minus_onep@1)
215 (if (!TYPE_UNSIGNED (type))
bc4315fb
MG
216 { build_zero_cst (type); }))
217 /* (X % Y) % Y is just X % Y. */
218 (simplify
219 (mod (mod@2 @0 @1) @1)
220 @2))
a7f24614
RB
221
222/* X % -C is the same as X % C. */
223(simplify
224 (trunc_mod @0 INTEGER_CST@1)
225 (if (TYPE_SIGN (type) == SIGNED
226 && !TREE_OVERFLOW (@1)
227 && wi::neg_p (@1)
228 && !TYPE_OVERFLOW_TRAPS (type)
229 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
230 && !sign_bit_p (@1, @1))
231 (trunc_mod @0 (negate @1))))
e0ee10ed 232
8f0c696a
RB
233/* X % -Y is the same as X % Y. */
234(simplify
235 (trunc_mod @0 (convert? (negate @1)))
236 (if (!TYPE_UNSIGNED (type)
237 && !TYPE_OVERFLOW_TRAPS (type)
238 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
239 (trunc_mod @0 (convert @1))))
240
241/* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
242 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
243 Also optimize A % (C << N) where C is a power of 2,
244 to A & ((C << N) - 1). */
245(match (power_of_two_cand @1)
246 INTEGER_CST@1)
247(match (power_of_two_cand @1)
248 (lshift INTEGER_CST@1 @2))
249(for mod (trunc_mod floor_mod)
250 (simplify
4ab1e111 251 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
8f0c696a
RB
252 (if ((TYPE_UNSIGNED (type)
253 || tree_expr_nonnegative_p (@0))
4ab1e111 254 && tree_nop_conversion_p (type, TREE_TYPE (@3))
8f0c696a 255 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
4ab1e111 256 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
8f0c696a 257
bc4315fb
MG
258/* X % Y is smaller than Y. */
259(for cmp (lt ge)
260 (simplify
261 (cmp (trunc_mod @0 @1) @1)
262 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
263 { constant_boolean_node (cmp == LT_EXPR, type); })))
264(for cmp (gt le)
265 (simplify
266 (cmp @1 (trunc_mod @0 @1))
267 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
268 { constant_boolean_node (cmp == GT_EXPR, type); })))
269
e0ee10ed
RB
270/* x | ~0 -> ~0 */
271(simplify
272 (bit_ior @0 integer_all_onesp@1)
273 @1)
274
275/* x & 0 -> 0 */
276(simplify
277 (bit_and @0 integer_zerop@1)
278 @1)
279
280/* x ^ x -> 0 */
281(simplify
282 (bit_xor @0 @0)
283 { build_zero_cst (type); })
284
36a60e48
RB
285/* Canonicalize X ^ ~0 to ~X. */
286(simplify
287 (bit_xor @0 integer_all_onesp@1)
288 (bit_not @0))
289
290/* x & ~0 -> x */
291(simplify
292 (bit_and @0 integer_all_onesp)
293 (non_lvalue @0))
294
295/* x & x -> x, x | x -> x */
296(for bitop (bit_and bit_ior)
297 (simplify
298 (bitop @0 @0)
299 (non_lvalue @0)))
300
0f770b01
RV
301/* x + (x & 1) -> (x + 1) & ~1 */
302(simplify
303 (plus:c @0 (bit_and@2 @0 integer_onep@1))
6e28e516 304 (if (single_use (@2))
0f770b01
RV
305 (bit_and (plus @0 @1) (bit_not @1))))
306
307/* x & ~(x & y) -> x & ~y */
308/* x | ~(x | y) -> x | ~y */
309(for bitop (bit_and bit_ior)
af563d4b
MG
310 (simplify
311 (bitop:c @0 (bit_not (bitop:c@2 @0 @1)))
6e28e516 312 (if (single_use (@2))
af563d4b
MG
313 (bitop @0 (bit_not @1)))))
314
315/* (x | y) & ~x -> y & ~x */
316/* (x & y) | ~x -> y | ~x */
317(for bitop (bit_and bit_ior)
318 rbitop (bit_ior bit_and)
319 (simplify
320 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
321 (bitop @1 @2)))
0f770b01 322
f3582e54
RB
323(simplify
324 (abs (negate @0))
325 (abs @0))
326(simplify
327 (abs tree_expr_nonnegative_p@0)
328 @0)
329
d4573ffe 330
5609420f
RB
331/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
332 when profitable.
333 For bitwise binary operations apply operand conversions to the
334 binary operation result instead of to the operands. This allows
335 to combine successive conversions and bitwise binary operations.
336 We combine the above two cases by using a conditional convert. */
337(for bitop (bit_and bit_ior bit_xor)
338 (simplify
339 (bitop (convert @0) (convert? @1))
340 (if (((TREE_CODE (@1) == INTEGER_CST
341 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
ad6f996c 342 && int_fits_type_p (@1, TREE_TYPE (@0)))
aea417d7 343 || types_match (@0, @1))
ad6f996c
RB
344 /* ??? This transform conflicts with fold-const.c doing
345 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
346 constants (if x has signed type, the sign bit cannot be set
347 in c). This folds extension into the BIT_AND_EXPR.
348 Restrict it to GIMPLE to avoid endless recursions. */
349 && (bitop != BIT_AND_EXPR || GIMPLE)
5609420f
RB
350 && (/* That's a good idea if the conversion widens the operand, thus
351 after hoisting the conversion the operation will be narrower. */
352 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
353 /* It's also a good idea if the conversion is to a non-integer
354 mode. */
355 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
356 /* Or if the precision of TO is not the same as the precision
357 of its mode. */
358 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
359 (convert (bitop @0 (convert @1))))))
360
361/* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
362(for bitop (bit_and bit_ior bit_xor)
363 (simplify
364 (bitop (bit_and:c @0 @1) (bit_and @2 @1))
365 (bit_and (bitop @0 @2) @1)))
366
367/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
368(simplify
369 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
370 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
371
372/* Combine successive equal operations with constants. */
373(for bitop (bit_and bit_ior bit_xor)
374 (simplify
375 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
376 (bitop @0 (bitop @1 @2))))
377
378/* Try simple folding for X op !X, and X op X with the help
379 of the truth_valued_p and logical_inverted_value predicates. */
380(match truth_valued_p
381 @0
382 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
f84e7fd6 383(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
5609420f
RB
384 (match truth_valued_p
385 (op @0 @1)))
386(match truth_valued_p
387 (truth_not @0))
388
389(match (logical_inverted_value @0)
390 (bit_not truth_valued_p@0))
391(match (logical_inverted_value @0)
09240451 392 (eq @0 integer_zerop))
5609420f 393(match (logical_inverted_value @0)
09240451 394 (ne truth_valued_p@0 integer_truep))
5609420f 395(match (logical_inverted_value @0)
09240451 396 (bit_xor truth_valued_p@0 integer_truep))
5609420f
RB
397
398/* X & !X -> 0. */
399(simplify
400 (bit_and:c @0 (logical_inverted_value @0))
401 { build_zero_cst (type); })
402/* X | !X and X ^ !X -> 1, , if X is truth-valued. */
403(for op (bit_ior bit_xor)
404 (simplify
405 (op:c truth_valued_p@0 (logical_inverted_value @0))
f84e7fd6 406 { constant_boolean_node (true, type); }))
5609420f
RB
407
408(for bitop (bit_and bit_ior)
409 rbitop (bit_ior bit_and)
410 /* (x | y) & x -> x */
411 /* (x & y) | x -> x */
412 (simplify
413 (bitop:c (rbitop:c @0 @1) @0)
414 @0)
415 /* (~x | y) & x -> x & y */
416 /* (~x & y) | x -> x | y */
417 (simplify
418 (bitop:c (rbitop:c (bit_not @0) @1) @0)
419 (bitop @0 @1)))
420
421/* If arg1 and arg2 are booleans (or any single bit type)
422 then try to simplify:
423
424 (~X & Y) -> X < Y
425 (X & ~Y) -> Y < X
426 (~X | Y) -> X <= Y
427 (X | ~Y) -> Y <= X
428
429 But only do this if our result feeds into a comparison as
430 this transformation is not always a win, particularly on
431 targets with and-not instructions.
432 -> simplify_bitwise_binary_boolean */
433(simplify
434 (ne (bit_and:c (bit_not @0) @1) integer_zerop)
435 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
436 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
437 (lt @0 @1)))
438(simplify
439 (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
440 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
441 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
442 (le @0 @1)))
443
5609420f
RB
444/* ~~x -> x */
445(simplify
446 (bit_not (bit_not @0))
447 @0)
448
f52baa7b
MP
449/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
450(simplify
451 (bit_ior:c (bit_and:c@3 @0 (bit_not @2)) (bit_and:c@4 @1 @2))
6e28e516 452 (if (single_use (@3) && single_use (@4))
f52baa7b
MP
453 (bit_xor (bit_and (bit_xor @0 @1) @2) @0)))
454
5609420f 455
a499aac5
RB
456/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
457(simplify
e6121733 458 (pointer_plus (pointer_plus@2 @0 @1) @3)
6e28e516 459 (if (single_use (@2))
e6121733 460 (pointer_plus @0 (plus @1 @3))))
a499aac5
RB
461
462/* Pattern match
463 tem1 = (long) ptr1;
464 tem2 = (long) ptr2;
465 tem3 = tem2 - tem1;
466 tem4 = (unsigned long) tem3;
467 tem5 = ptr1 + tem4;
468 and produce
469 tem5 = ptr2; */
470(simplify
471 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
472 /* Conditionally look through a sign-changing conversion. */
473 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
474 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
475 || (GENERIC && type == TREE_TYPE (@1))))
476 @1))
477
478/* Pattern match
479 tem = (sizetype) ptr;
480 tem = tem & algn;
481 tem = -tem;
482 ... = ptr p+ tem;
483 and produce the simpler and easier to analyze with respect to alignment
484 ... = ptr & ~algn; */
485(simplify
486 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
487 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
488 (bit_and @0 { algn; })))
489
490
cc7b5acf
RB
491/* We can't reassociate at all for saturating types. */
492(if (!TYPE_SATURATING (type))
493
494 /* Contract negates. */
495 /* A + (-B) -> A - B */
496 (simplify
497 (plus:c (convert1? @0) (convert2? (negate @1)))
498 /* Apply STRIP_NOPS on @0 and the negate. */
499 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
500 && tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 501 && !TYPE_OVERFLOW_SANITIZED (type))
cc7b5acf
RB
502 (minus (convert @0) (convert @1))))
503 /* A - (-B) -> A + B */
504 (simplify
505 (minus (convert1? @0) (convert2? (negate @1)))
506 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
2f68e8bc 507 && tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 508 && !TYPE_OVERFLOW_SANITIZED (type))
cc7b5acf
RB
509 (plus (convert @0) (convert @1))))
510 /* -(-A) -> A */
511 (simplify
512 (negate (convert? (negate @1)))
513 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 514 && !TYPE_OVERFLOW_SANITIZED (type))
a0f12cf8 515 (convert @1)))
cc7b5acf
RB
516
517 /* We can't reassociate floating-point or fixed-point plus or minus
518 because of saturation to +-Inf. */
519 (if (!FLOAT_TYPE_P (type) && !FIXED_POINT_TYPE_P (type))
520
521 /* Match patterns that allow contracting a plus-minus pair
522 irrespective of overflow issues. */
523 /* (A +- B) - A -> +- B */
524 /* (A +- B) -+ B -> A */
525 /* A - (A +- B) -> -+ B */
526 /* A +- (B -+ A) -> +- B */
527 (simplify
528 (minus (plus:c @0 @1) @0)
529 @1)
530 (simplify
531 (minus (minus @0 @1) @0)
532 (negate @1))
533 (simplify
534 (plus:c (minus @0 @1) @1)
535 @0)
536 (simplify
537 (minus @0 (plus:c @0 @1))
538 (negate @1))
539 (simplify
540 (minus @0 (minus @0 @1))
541 @1)
542
543 /* (A +- CST) +- CST -> A + CST */
544 (for outer_op (plus minus)
545 (for inner_op (plus minus)
546 (simplify
547 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
548 /* If the constant operation overflows we cannot do the transform
549 as we would introduce undefined overflow, for example
550 with (a - 1) + INT_MIN. */
551 (with { tree cst = fold_binary (outer_op == inner_op
552 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
553 (if (cst && !TREE_OVERFLOW (cst))
554 (inner_op @0 { cst; } ))))))
555
556 /* (CST - A) +- CST -> CST - A */
557 (for outer_op (plus minus)
558 (simplify
559 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
560 (with { tree cst = fold_binary (outer_op, type, @1, @2); }
561 (if (cst && !TREE_OVERFLOW (cst))
562 (minus { cst; } @0)))))
563
564 /* ~A + A -> -1 */
565 (simplify
566 (plus:c (bit_not @0) @0)
567 (if (!TYPE_OVERFLOW_TRAPS (type))
568 { build_all_ones_cst (type); }))
569
570 /* ~A + 1 -> -A */
571 (simplify
e19740ae
RB
572 (plus (convert? (bit_not @0)) integer_each_onep)
573 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
574 (negate (convert @0))))
575
576 /* -A - 1 -> ~A */
577 (simplify
578 (minus (convert? (negate @0)) integer_each_onep)
579 (if (!TYPE_OVERFLOW_TRAPS (type)
580 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
581 (bit_not (convert @0))))
582
583 /* -1 - A -> ~A */
584 (simplify
585 (minus integer_all_onesp @0)
bc4315fb 586 (bit_not @0))
cc7b5acf
RB
587
588 /* (T)(P + A) - (T)P -> (T) A */
589 (for add (plus pointer_plus)
590 (simplify
591 (minus (convert (add @0 @1))
592 (convert @0))
09240451 593 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
cc7b5acf
RB
594 /* For integer types, if A has a smaller type
595 than T the result depends on the possible
596 overflow in P + A.
597 E.g. T=size_t, A=(unsigned)429497295, P>0.
598 However, if an overflow in P + A would cause
599 undefined behavior, we can assume that there
600 is no overflow. */
601 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
602 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
603 /* For pointer types, if the conversion of A to the
604 final type requires a sign- or zero-extension,
605 then we have to punt - it is not defined which
606 one is correct. */
607 || (POINTER_TYPE_P (TREE_TYPE (@0))
608 && TREE_CODE (@1) == INTEGER_CST
609 && tree_int_cst_sign_bit (@1) == 0))
610 (convert @1))))))
611
612
a7f24614
RB
613/* Simplifications of MIN_EXPR and MAX_EXPR. */
614
615(for minmax (min max)
616 (simplify
617 (minmax @0 @0)
618 @0))
619(simplify
620 (min @0 @1)
621 (if (INTEGRAL_TYPE_P (type)
622 && TYPE_MIN_VALUE (type)
623 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
624 @1))
625(simplify
626 (max @0 @1)
627 (if (INTEGRAL_TYPE_P (type)
628 && TYPE_MAX_VALUE (type)
629 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
630 @1))
631
632
633/* Simplifications of shift and rotates. */
634
635(for rotate (lrotate rrotate)
636 (simplify
637 (rotate integer_all_onesp@0 @1)
638 @0))
639
640/* Optimize -1 >> x for arithmetic right shifts. */
641(simplify
642 (rshift integer_all_onesp@0 @1)
643 (if (!TYPE_UNSIGNED (type)
644 && tree_expr_nonnegative_p (@1))
645 @0))
646
647(for shiftrotate (lrotate rrotate lshift rshift)
648 (simplify
649 (shiftrotate @0 integer_zerop)
650 (non_lvalue @0))
651 (simplify
652 (shiftrotate integer_zerop@0 @1)
653 @0)
654 /* Prefer vector1 << scalar to vector1 << vector2
655 if vector2 is uniform. */
656 (for vec (VECTOR_CST CONSTRUCTOR)
657 (simplify
658 (shiftrotate @0 vec@1)
659 (with { tree tem = uniform_vector_p (@1); }
660 (if (tem)
661 (shiftrotate @0 { tem; }))))))
662
663/* Rewrite an LROTATE_EXPR by a constant into an
664 RROTATE_EXPR by a new constant. */
665(simplify
666 (lrotate @0 INTEGER_CST@1)
667 (rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
668 build_int_cst (TREE_TYPE (@1),
669 element_precision (type)), @1); }))
670
01ada710
MP
671/* ((1 << A) & 1) != 0 -> A == 0
672 ((1 << A) & 1) == 0 -> A != 0 */
673(for cmp (ne eq)
674 icmp (eq ne)
675 (simplify
676 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
677 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
cc7b5acf 678
f2e609c3
MP
679/* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
680 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
681 if CST2 != 0. */
682(for cmp (ne eq)
683 (simplify
684 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
685 (with { int cand = wi::ctz (@2) - wi::ctz (@0); }
686 (if (cand < 0
687 || (!integer_zerop (@2)
688 && wi::ne_p (wi::lshift (@0, cand), @2)))
689 { constant_boolean_node (cmp == NE_EXPR, type); })
690 (if (!integer_zerop (@2)
691 && wi::eq_p (wi::lshift (@0, cand), @2))
692 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); })))))
693
d4573ffe
RB
694/* Simplifications of conversions. */
695
696/* Basic strip-useless-type-conversions / strip_nops. */
f3582e54 697(for cvt (convert view_convert float fix_trunc)
d4573ffe
RB
698 (simplify
699 (cvt @0)
700 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
701 || (GENERIC && type == TREE_TYPE (@0)))
702 @0)))
703
704/* Contract view-conversions. */
705(simplify
706 (view_convert (view_convert @0))
707 (view_convert @0))
708
709/* For integral conversions with the same precision or pointer
710 conversions use a NOP_EXPR instead. */
711(simplify
712 (view_convert @0)
713 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
714 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
715 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
716 (convert @0)))
717
718/* Strip inner integral conversions that do not change precision or size. */
719(simplify
720 (view_convert (convert@0 @1))
721 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
722 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
723 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
724 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
725 (view_convert @1)))
726
727/* Re-association barriers around constants and other re-association
728 barriers can be removed. */
729(simplify
730 (paren CONSTANT_CLASS_P@0)
731 @0)
732(simplify
733 (paren (paren@1 @0))
734 @1)
1e51d0a2
RB
735
736/* Handle cases of two conversions in a row. */
737(for ocvt (convert float fix_trunc)
738 (for icvt (convert float)
739 (simplify
740 (ocvt (icvt@1 @0))
741 (with
742 {
743 tree inside_type = TREE_TYPE (@0);
744 tree inter_type = TREE_TYPE (@1);
745 int inside_int = INTEGRAL_TYPE_P (inside_type);
746 int inside_ptr = POINTER_TYPE_P (inside_type);
747 int inside_float = FLOAT_TYPE_P (inside_type);
09240451 748 int inside_vec = VECTOR_TYPE_P (inside_type);
1e51d0a2
RB
749 unsigned int inside_prec = TYPE_PRECISION (inside_type);
750 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
751 int inter_int = INTEGRAL_TYPE_P (inter_type);
752 int inter_ptr = POINTER_TYPE_P (inter_type);
753 int inter_float = FLOAT_TYPE_P (inter_type);
09240451 754 int inter_vec = VECTOR_TYPE_P (inter_type);
1e51d0a2
RB
755 unsigned int inter_prec = TYPE_PRECISION (inter_type);
756 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
757 int final_int = INTEGRAL_TYPE_P (type);
758 int final_ptr = POINTER_TYPE_P (type);
759 int final_float = FLOAT_TYPE_P (type);
09240451 760 int final_vec = VECTOR_TYPE_P (type);
1e51d0a2
RB
761 unsigned int final_prec = TYPE_PRECISION (type);
762 int final_unsignedp = TYPE_UNSIGNED (type);
763 }
764 /* In addition to the cases of two conversions in a row
765 handled below, if we are converting something to its own
766 type via an object of identical or wider precision, neither
767 conversion is needed. */
768 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
769 || (GENERIC
770 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
771 && (((inter_int || inter_ptr) && final_int)
772 || (inter_float && final_float))
773 && inter_prec >= final_prec)
774 (ocvt @0))
775
776 /* Likewise, if the intermediate and initial types are either both
777 float or both integer, we don't need the middle conversion if the
778 former is wider than the latter and doesn't change the signedness
779 (for integers). Avoid this if the final type is a pointer since
780 then we sometimes need the middle conversion. Likewise if the
781 final type has a precision not equal to the size of its mode. */
d51a6714
JJ
782 (if (((inter_int && inside_int) || (inter_float && inside_float))
783 && (final_int || final_float)
1e51d0a2 784 && inter_prec >= inside_prec
d51a6714
JJ
785 && (inter_float || inter_unsignedp == inside_unsignedp)
786 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
787 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1e51d0a2
RB
788 (ocvt @0))
789
790 /* If we have a sign-extension of a zero-extended value, we can
791 replace that by a single zero-extension. Likewise if the
792 final conversion does not change precision we can drop the
793 intermediate conversion. */
794 (if (inside_int && inter_int && final_int
795 && ((inside_prec < inter_prec && inter_prec < final_prec
796 && inside_unsignedp && !inter_unsignedp)
797 || final_prec == inter_prec))
798 (ocvt @0))
799
800 /* Two conversions in a row are not needed unless:
801 - some conversion is floating-point (overstrict for now), or
802 - some conversion is a vector (overstrict for now), or
803 - the intermediate type is narrower than both initial and
804 final, or
805 - the intermediate type and innermost type differ in signedness,
806 and the outermost type is wider than the intermediate, or
807 - the initial type is a pointer type and the precisions of the
808 intermediate and final types differ, or
809 - the final type is a pointer type and the precisions of the
810 initial and intermediate types differ. */
811 (if (! inside_float && ! inter_float && ! final_float
812 && ! inside_vec && ! inter_vec && ! final_vec
813 && (inter_prec >= inside_prec || inter_prec >= final_prec)
814 && ! (inside_int && inter_int
815 && inter_unsignedp != inside_unsignedp
816 && inter_prec < final_prec)
817 && ((inter_unsignedp && inter_prec > inside_prec)
818 == (final_unsignedp && final_prec > inter_prec))
819 && ! (inside_ptr && inter_prec != final_prec)
820 && ! (final_ptr && inside_prec != inter_prec)
821 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
822 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1f00c1b9
RB
823 (ocvt @0))
824
825 /* A truncation to an unsigned type (a zero-extension) should be
826 canonicalized as bitwise and of a mask. */
827 (if (final_int && inter_int && inside_int
828 && final_prec == inside_prec
829 && final_prec > inter_prec
830 && inter_unsignedp)
831 (convert (bit_and @0 { wide_int_to_tree
832 (inside_type,
833 wi::mask (inter_prec, false,
834 TYPE_PRECISION (inside_type))); })))
835
836 /* If we are converting an integer to a floating-point that can
837 represent it exactly and back to an integer, we can skip the
838 floating-point conversion. */
5ba3ae6d
RB
839 (if (GIMPLE /* PR66211 */
840 && inside_int && inter_float && final_int &&
1f00c1b9
RB
841 (unsigned) significand_size (TYPE_MODE (inter_type))
842 >= inside_prec - !inside_unsignedp)
843 (convert @0))))))
ea2042ba
RB
844
845/* If we have a narrowing conversion to an integral type that is fed by a
846 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
847 masks off bits outside the final type (and nothing else). */
848(simplify
849 (convert (bit_and @0 INTEGER_CST@1))
850 (if (INTEGRAL_TYPE_P (type)
851 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
852 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
853 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
854 TYPE_PRECISION (type)), 0))
855 (convert @0)))
a25454ea
RB
856
857
858/* (X /[ex] A) * A -> X. */
859(simplify
860 (mult (convert? (exact_div @0 @1)) @1)
861 /* Look through a sign-changing conversion. */
257b01ba 862 (convert @0))
eaeba53a 863
a7f24614
RB
864/* Canonicalization of binary operations. */
865
866/* Convert X + -C into X - C. */
867(simplify
868 (plus @0 REAL_CST@1)
869 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
870 (with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
871 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
872 (minus @0 { tem; })))))
873
874/* Convert x+x into x*2.0. */
875(simplify
876 (plus @0 @0)
877 (if (SCALAR_FLOAT_TYPE_P (type))
878 (mult @0 { build_real (type, dconst2); })))
879
880(simplify
881 (minus integer_zerop @1)
882 (negate @1))
883
884/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
885 ARG0 is zero and X + ARG0 reduces to X, since that would mean
886 (-ARG1 + ARG0) reduces to -ARG1. */
887(simplify
888 (minus real_zerop@0 @1)
889 (if (fold_real_zero_addition_p (type, @0, 0))
890 (negate @1)))
891
892/* Transform x * -1 into -x. */
893(simplify
894 (mult @0 integer_minus_onep)
895 (negate @0))
eaeba53a
RB
896
897/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
898(simplify
899 (complex (realpart @0) (imagpart @0))
900 @0)
901(simplify
902 (realpart (complex @0 @1))
903 @0)
904(simplify
905 (imagpart (complex @0 @1))
906 @1)
83633539
RB
907
908
909/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
910(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
911 (simplify
912 (bswap (bswap @0))
913 @0)
914 (simplify
915 (bswap (bit_not (bswap @0)))
916 (bit_not @0))
917 (for bitop (bit_xor bit_ior bit_and)
918 (simplify
919 (bswap (bitop:c (bswap @0) @1))
920 (bitop @0 (bswap @1)))))
96994de0
RB
921
922
923/* Combine COND_EXPRs and VEC_COND_EXPRs. */
924
925/* Simplify constant conditions.
926 Only optimize constant conditions when the selected branch
927 has the same type as the COND_EXPR. This avoids optimizing
928 away "c ? x : throw", where the throw has a void type.
929 Note that we cannot throw away the fold-const.c variant nor
930 this one as we depend on doing this transform before possibly
931 A ? B : B -> B triggers and the fold-const.c one can optimize
932 0 ? A : B to B even if A has side-effects. Something
933 genmatch cannot handle. */
934(simplify
935 (cond INTEGER_CST@0 @1 @2)
936 (if (integer_zerop (@0)
937 && (!VOID_TYPE_P (TREE_TYPE (@2))
938 || VOID_TYPE_P (type)))
939 @2)
940 (if (!integer_zerop (@0)
941 && (!VOID_TYPE_P (TREE_TYPE (@1))
942 || VOID_TYPE_P (type)))
943 @1))
944(simplify
945 (vec_cond VECTOR_CST@0 @1 @2)
946 (if (integer_all_onesp (@0))
947 @1)
948 (if (integer_zerop (@0))
949 @2))
950
951(for cnd (cond vec_cond)
952 /* A ? B : (A ? X : C) -> A ? B : C. */
953 (simplify
954 (cnd @0 (cnd @0 @1 @2) @3)
955 (cnd @0 @1 @3))
956 (simplify
957 (cnd @0 @1 (cnd @0 @2 @3))
958 (cnd @0 @1 @3))
959
960 /* A ? B : B -> B. */
961 (simplify
962 (cnd @0 @1 @1)
09240451 963 @1)
96994de0 964
09240451
MG
965 /* !A ? B : C -> A ? C : B. */
966 (simplify
967 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
968 (cnd @0 @2 @1)))
f84e7fd6
RB
969
970
971/* Simplifications of comparisons. */
972
973/* We can simplify a logical negation of a comparison to the
974 inverted comparison. As we cannot compute an expression
975 operator using invert_tree_comparison we have to simulate
976 that with expression code iteration. */
977(for cmp (tcc_comparison)
978 icmp (inverted_tcc_comparison)
979 ncmp (inverted_tcc_comparison_with_nans)
980 /* Ideally we'd like to combine the following two patterns
981 and handle some more cases by using
982 (logical_inverted_value (cmp @0 @1))
983 here but for that genmatch would need to "inline" that.
984 For now implement what forward_propagate_comparison did. */
985 (simplify
986 (bit_not (cmp @0 @1))
987 (if (VECTOR_TYPE_P (type)
988 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
989 /* Comparison inversion may be impossible for trapping math,
990 invert_tree_comparison will tell us. But we can't use
991 a computed operator in the replacement tree thus we have
992 to play the trick below. */
993 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 994 (cmp, HONOR_NANS (@0)); }
f84e7fd6
RB
995 (if (ic == icmp)
996 (icmp @0 @1))
997 (if (ic == ncmp)
998 (ncmp @0 @1)))))
999 (simplify
09240451
MG
1000 (bit_xor (cmp @0 @1) integer_truep)
1001 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 1002 (cmp, HONOR_NANS (@0)); }
09240451
MG
1003 (if (ic == icmp)
1004 (icmp @0 @1))
1005 (if (ic == ncmp)
1006 (ncmp @0 @1)))))
e18c1d66 1007
cfdc4f33
MG
1008/* Unordered tests if either argument is a NaN. */
1009(simplify
1010 (bit_ior (unordered @0 @0) (unordered @1 @1))
aea417d7 1011 (if (types_match (@0, @1))
cfdc4f33 1012 (unordered @0 @1)))
257b01ba
MG
1013(simplify
1014 (bit_and (ordered @0 @0) (ordered @1 @1))
1015 (if (types_match (@0, @1))
1016 (ordered @0 @1)))
cfdc4f33
MG
1017(simplify
1018 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
1019 @2)
257b01ba
MG
1020(simplify
1021 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
1022 @2)
e18c1d66 1023
534bd33b
MG
1024/* -A CMP -B -> B CMP A. */
1025(for cmp (tcc_comparison)
1026 scmp (swapped_tcc_comparison)
1027 (simplify
1028 (cmp (negate @0) (negate @1))
1029 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1030 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1031 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1032 (scmp @0 @1)))
1033 (simplify
1034 (cmp (negate @0) CONSTANT_CLASS_P@1)
1035 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1036 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1037 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1038 (with { tree tem = fold_unary (NEGATE_EXPR, TREE_TYPE (@0), @1); }
1039 (if (tem && !TREE_OVERFLOW (tem))
1040 (scmp @0 { tem; }))))))
1041
e18c1d66
RB
1042/* Simplification of math builtins. */
1043
1044(define_operator_list LOG BUILT_IN_LOGF BUILT_IN_LOG BUILT_IN_LOGL)
1045(define_operator_list EXP BUILT_IN_EXPF BUILT_IN_EXP BUILT_IN_EXPL)
1046(define_operator_list LOG2 BUILT_IN_LOG2F BUILT_IN_LOG2 BUILT_IN_LOG2L)
1047(define_operator_list EXP2 BUILT_IN_EXP2F BUILT_IN_EXP2 BUILT_IN_EXP2L)
1048(define_operator_list LOG10 BUILT_IN_LOG10F BUILT_IN_LOG10 BUILT_IN_LOG10L)
1049(define_operator_list EXP10 BUILT_IN_EXP10F BUILT_IN_EXP10 BUILT_IN_EXP10L)
1050(define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
1051(define_operator_list POW10 BUILT_IN_POW10F BUILT_IN_POW10 BUILT_IN_POW10L)
1052(define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
1053(define_operator_list CBRT BUILT_IN_CBRTF BUILT_IN_CBRT BUILT_IN_CBRTL)
1054
1055
1056/* fold_builtin_logarithm */
1057(if (flag_unsafe_math_optimizations)
1058 /* Special case, optimize logN(expN(x)) = x. */
1059 (for logs (LOG LOG2 LOG10)
1060 exps (EXP EXP2 EXP10)
1061 (simplify
1062 (logs (exps @0))
1063 @0))
1064 /* Optimize logN(func()) for various exponential functions. We
1065 want to determine the value "x" and the power "exponent" in
1066 order to transform logN(x**exponent) into exponent*logN(x). */
1067 (for logs (LOG LOG LOG LOG
1068 LOG2 LOG2 LOG2 LOG2
1069 LOG10 LOG10 LOG10 LOG10)
1070 exps (EXP EXP2 EXP10 POW10)
1071 (simplify
1072 (logs (exps @0))
1073 (with {
1074 tree x;
1075 switch (exps)
1076 {
1077 CASE_FLT_FN (BUILT_IN_EXP):
1078 /* Prepare to do logN(exp(exponent) -> exponent*logN(e). */
1079 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1080 dconst_e ()));
1081 break;
1082 CASE_FLT_FN (BUILT_IN_EXP2):
1083 /* Prepare to do logN(exp2(exponent) -> exponent*logN(2). */
1084 x = build_real (type, dconst2);
1085 break;
1086 CASE_FLT_FN (BUILT_IN_EXP10):
1087 CASE_FLT_FN (BUILT_IN_POW10):
1088 /* Prepare to do logN(exp10(exponent) -> exponent*logN(10). */
1089 {
1090 REAL_VALUE_TYPE dconst10;
1091 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
1092 x = build_real (type, dconst10);
1093 }
1094 break;
1095 }
1096 }
1097 (mult (logs { x; }) @0))))
1098 (for logs (LOG LOG
1099 LOG2 LOG2
1100 LOG10 LOG10)
1101 exps (SQRT CBRT)
1102 (simplify
1103 (logs (exps @0))
1104 (with {
1105 tree x;
1106 switch (exps)
1107 {
1108 CASE_FLT_FN (BUILT_IN_SQRT):
1109 /* Prepare to do logN(sqrt(x) -> 0.5*logN(x). */
1110 x = build_real (type, dconsthalf);
1111 break;
1112 CASE_FLT_FN (BUILT_IN_CBRT):
1113 /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x). */
1114 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1115 dconst_third ()));
1116 break;
1117 }
1118 }
1119 (mult { x; } (logs @0)))))
1120 /* logN(pow(x,exponent) -> exponent*logN(x). */
1121 (for logs (LOG LOG2 LOG10)
1122 pows (POW)
1123 (simplify
1124 (logs (pows @0 @1))
1125 (mult @1 (logs @0)))))
1126
be144838
JL
1127/* Narrowing of arithmetic and logical operations.
1128
1129 These are conceptually similar to the transformations performed for
1130 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
1131 term we want to move all that code out of the front-ends into here. */
1132
1133/* If we have a narrowing conversion of an arithmetic operation where
1134 both operands are widening conversions from the same type as the outer
1135 narrowing conversion. Then convert the innermost operands to a suitable
1136 unsigned type (to avoid introducing undefined behaviour), perform the
1137 operation and convert the result to the desired type. */
1138(for op (plus minus)
1139 (simplify
48451e8f 1140 (convert (op@4 (convert@2 @0) (convert@3 @1)))
be144838
JL
1141 (if (INTEGRAL_TYPE_P (type)
1142 /* We check for type compatibility between @0 and @1 below,
1143 so there's no need to check that @1/@3 are integral types. */
1144 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1145 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1146 /* The precision of the type of each operand must match the
1147 precision of the mode of each operand, similarly for the
1148 result. */
1149 && (TYPE_PRECISION (TREE_TYPE (@0))
1150 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1151 && (TYPE_PRECISION (TREE_TYPE (@1))
1152 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1153 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1154 /* The inner conversion must be a widening conversion. */
1155 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
aea417d7
MG
1156 && types_match (@0, @1)
1157 && types_match (@0, type)
48451e8f 1158 && single_use (@4))
be144838
JL
1159 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1160 (convert (op @0 @1)))
1161 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1162 (convert (op (convert:utype @0) (convert:utype @1)))))))
48451e8f
JL
1163
1164/* This is another case of narrowing, specifically when there's an outer
1165 BIT_AND_EXPR which masks off bits outside the type of the innermost
1166 operands. Like the previous case we have to convert the operands
1167 to unsigned types to avoid introducing undefined behaviour for the
1168 arithmetic operation. */
1169(for op (minus plus)
1170 (simplify
1171 (bit_and (op@5 (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
1172 (if (INTEGRAL_TYPE_P (type)
1173 /* We check for type compatibility between @0 and @1 below,
1174 so there's no need to check that @1/@3 are integral types. */
1175 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1176 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1177 /* The precision of the type of each operand must match the
1178 precision of the mode of each operand, similarly for the
1179 result. */
1180 && (TYPE_PRECISION (TREE_TYPE (@0))
1181 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1182 && (TYPE_PRECISION (TREE_TYPE (@1))
1183 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1184 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1185 /* The inner conversion must be a widening conversion. */
1186 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
aea417d7 1187 && types_match (@0, @1)
a60c51fe 1188 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
48451e8f 1189 <= TYPE_PRECISION (TREE_TYPE (@0)))
a60c51fe
JJ
1190 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1191 || tree_int_cst_sgn (@4) >= 0)
48451e8f
JL
1192 && single_use (@5))
1193 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1194 (with { tree ntype = TREE_TYPE (@0); }
1195 (convert (bit_and (op @0 @1) (convert:ntype @4)))))
1196 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1197 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
1198 (convert:utype @4)))))))
1199