]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/match.pd
cet.m4 (GCC_CET_FLAGS): Default to --disable-cet, replace --enable-cet=default with...
[thirdparty/gcc.git] / gcc / match.pd
CommitLineData
3d2cf79f
RB
1/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
85ec4feb 5 Copyright (C) 2014-2018 Free Software Foundation, Inc.
3d2cf79f
RB
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
13Software Foundation; either version 3, or (at your option) any later
14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING3. If not see
23<http://www.gnu.org/licenses/>. */
24
25
26/* Generic tree predicates we inherit. */
27(define_predicates
cc7b5acf 28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
53a19317 29 integer_each_onep integer_truep integer_nonzerop
cc7b5acf 30 real_zerop real_onep real_minus_onep
b0eb889b 31 zerop
f3582e54 32 CONSTANT_CLASS_P
887ab609 33 tree_expr_nonnegative_p
e36c1cfe 34 tree_expr_nonzero_p
67dbe582 35 integer_valued_real_p
53a19317
RB
36 integer_pow2p
37 HONOR_NANS)
e0ee10ed 38
f84e7fd6
RB
39/* Operator lists. */
40(define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42(define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44(define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
534bd33b
MG
46(define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
07cdc2b8
RB
48(define_operator_list simple_comparison lt le eq ne ge gt)
49(define_operator_list swapped_simple_comparison gt ge eq ne le lt)
50
b1dc4a20 51#include "cfn-operators.pd"
257aecb4 52
543a9bcd
RS
53/* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
56
57 Also define operand lists:
58
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62#define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
543a9bcd
RS
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
64 BUILT_IN_L##FN##F \
65 BUILT_IN_LL##FN##F) \
66 (define_operator_list X##FN BUILT_IN_I##FN \
67 BUILT_IN_L##FN \
68 BUILT_IN_LL##FN) \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
70 BUILT_IN_L##FN##L \
71 BUILT_IN_LL##FN##L)
72
543a9bcd
RS
73DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
ed73f46f
MG
77
78/* As opposed to convert?, this still creates a single pattern, so
79 it is not a suitable replacement for convert? in all cases. */
80(match (nop_convert @0)
81 (convert @0)
82 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
83(match (nop_convert @0)
84 (view_convert @0)
85 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
928686b1
RS
86 && known_eq (TYPE_VECTOR_SUBPARTS (type),
87 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
ed73f46f
MG
88 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
89/* This one has to be last, or it shadows the others. */
90(match (nop_convert @0)
91 @0)
f84e7fd6 92
e0ee10ed 93/* Simplifications of operations with one constant operand and
36a60e48 94 simplifications to constants or single values. */
e0ee10ed
RB
95
96(for op (plus pointer_plus minus bit_ior bit_xor)
97 (simplify
98 (op @0 integer_zerop)
99 (non_lvalue @0)))
100
a499aac5
RB
101/* 0 +p index -> (type)index */
102(simplify
103 (pointer_plus integer_zerop @1)
104 (non_lvalue (convert @1)))
105
d43177ad
MG
106/* ptr - 0 -> (type)ptr */
107(simplify
108 (pointer_diff @0 integer_zerop)
109 (convert @0))
110
a7f24614
RB
111/* See if ARG1 is zero and X + ARG1 reduces to X.
112 Likewise if the operands are reversed. */
113(simplify
114 (plus:c @0 real_zerop@1)
115 (if (fold_real_zero_addition_p (type, @1, 0))
116 (non_lvalue @0)))
117
118/* See if ARG1 is zero and X - ARG1 reduces to X. */
119(simplify
120 (minus @0 real_zerop@1)
121 (if (fold_real_zero_addition_p (type, @1, 1))
122 (non_lvalue @0)))
123
e0ee10ed
RB
124/* Simplify x - x.
125 This is unsafe for certain floats even in non-IEEE formats.
126 In IEEE, it is unsafe because it does wrong for NaNs.
127 Also note that operand_equal_p is always false if an operand
128 is volatile. */
129(simplify
a7f24614 130 (minus @0 @0)
1b457aa4 131 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
a7f24614 132 { build_zero_cst (type); }))
1af4ebf5
MG
133(simplify
134 (pointer_diff @@0 @0)
135 { build_zero_cst (type); })
e0ee10ed
RB
136
137(simplify
a7f24614
RB
138 (mult @0 integer_zerop@1)
139 @1)
140
141/* Maybe fold x * 0 to 0. The expressions aren't the same
142 when x is NaN, since x * 0 is also NaN. Nor are they the
143 same in modes with signed zeros, since multiplying a
144 negative value by 0 gives -0, not +0. */
145(simplify
146 (mult @0 real_zerop@1)
8b5ee871 147 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
a7f24614
RB
148 @1))
149
150/* In IEEE floating point, x*1 is not equivalent to x for snans.
151 Likewise for complex arithmetic with signed zeros. */
152(simplify
153 (mult @0 real_onep)
8b5ee871
MG
154 (if (!HONOR_SNANS (type)
155 && (!HONOR_SIGNED_ZEROS (type)
a7f24614
RB
156 || !COMPLEX_FLOAT_TYPE_P (type)))
157 (non_lvalue @0)))
158
159/* Transform x * -1.0 into -x. */
160(simplify
161 (mult @0 real_minus_onep)
8b5ee871
MG
162 (if (!HONOR_SNANS (type)
163 && (!HONOR_SIGNED_ZEROS (type)
a7f24614
RB
164 || !COMPLEX_FLOAT_TYPE_P (type)))
165 (negate @0)))
e0ee10ed 166
8c2805bb
AP
167(for cmp (gt ge lt le)
168 outp (convert convert negate negate)
169 outn (negate negate convert convert)
170 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
171 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
172 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
173 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
174 (simplify
175 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
176 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
177 && types_match (type, TREE_TYPE (@0)))
178 (switch
179 (if (types_match (type, float_type_node))
180 (BUILT_IN_COPYSIGNF @1 (outp @0)))
181 (if (types_match (type, double_type_node))
182 (BUILT_IN_COPYSIGN @1 (outp @0)))
183 (if (types_match (type, long_double_type_node))
184 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
185 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
186 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
187 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
188 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
189 (simplify
190 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
191 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
192 && types_match (type, TREE_TYPE (@0)))
193 (switch
194 (if (types_match (type, float_type_node))
195 (BUILT_IN_COPYSIGNF @1 (outn @0)))
196 (if (types_match (type, double_type_node))
197 (BUILT_IN_COPYSIGN @1 (outn @0)))
198 (if (types_match (type, long_double_type_node))
199 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
200
201/* Transform X * copysign (1.0, X) into abs(X). */
202(simplify
c6cfa2bf 203 (mult:c @0 (COPYSIGN_ALL real_onep @0))
8c2805bb
AP
204 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
205 (abs @0)))
206
207/* Transform X * copysign (1.0, -X) into -abs(X). */
208(simplify
c6cfa2bf 209 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
8c2805bb
AP
210 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
211 (negate (abs @0))))
212
213/* Transform copysign (CST, X) into copysign (ABS(CST), X). */
214(simplify
c6cfa2bf 215 (COPYSIGN_ALL REAL_CST@0 @1)
8c2805bb 216 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
c6cfa2bf 217 (COPYSIGN_ALL (negate @0) @1)))
8c2805bb 218
5b7f6ed0 219/* X * 1, X / 1 -> X. */
e0ee10ed
RB
220(for op (mult trunc_div ceil_div floor_div round_div exact_div)
221 (simplify
222 (op @0 integer_onep)
223 (non_lvalue @0)))
224
71f82be9
JG
225/* (A / (1 << B)) -> (A >> B).
226 Only for unsigned A. For signed A, this would not preserve rounding
227 toward zero.
228 For example: (-1 / ( 1 << B)) != -1 >> B. */
229(simplify
230 (trunc_div @0 (lshift integer_onep@1 @2))
231 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
232 && (!VECTOR_TYPE_P (type)
233 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
234 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
235 (rshift @0 @2)))
236
5b7f6ed0
MG
237/* Preserve explicit divisions by 0: the C++ front-end wants to detect
238 undefined behavior in constexpr evaluation, and assuming that the division
239 traps enables better optimizations than these anyway. */
a7f24614 240(for div (trunc_div ceil_div floor_div round_div exact_div)
5b7f6ed0
MG
241 /* 0 / X is always zero. */
242 (simplify
243 (div integer_zerop@0 @1)
244 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
245 (if (!integer_zerop (@1))
246 @0))
da186c1f 247 /* X / -1 is -X. */
a7f24614 248 (simplify
09240451
MG
249 (div @0 integer_minus_onep@1)
250 (if (!TYPE_UNSIGNED (type))
da186c1f 251 (negate @0)))
5b7f6ed0
MG
252 /* X / X is one. */
253 (simplify
254 (div @0 @0)
9ebce098
JJ
255 /* But not for 0 / 0 so that we can get the proper warnings and errors.
256 And not for _Fract types where we can't build 1. */
257 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
5b7f6ed0 258 { build_one_cst (type); }))
da186c1f
RB
259 /* X / abs (X) is X < 0 ? -1 : 1. */
260 (simplify
d96a5585
RB
261 (div:C @0 (abs @0))
262 (if (INTEGRAL_TYPE_P (type)
da186c1f
RB
263 && TYPE_OVERFLOW_UNDEFINED (type))
264 (cond (lt @0 { build_zero_cst (type); })
265 { build_minus_one_cst (type); } { build_one_cst (type); })))
266 /* X / -X is -1. */
267 (simplify
d96a5585 268 (div:C @0 (negate @0))
da186c1f
RB
269 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
270 && TYPE_OVERFLOW_UNDEFINED (type))
271 { build_minus_one_cst (type); })))
a7f24614
RB
272
273/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
274 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
275(simplify
276 (floor_div @0 @1)
09240451
MG
277 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
278 && TYPE_UNSIGNED (type))
a7f24614
RB
279 (trunc_div @0 @1)))
280
28093105
RB
281/* Combine two successive divisions. Note that combining ceil_div
282 and floor_div is trickier and combining round_div even more so. */
283(for div (trunc_div exact_div)
c306cfaf
RB
284 (simplify
285 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
286 (with {
287 bool overflow_p;
8e6cdc90
RS
288 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
289 TYPE_SIGN (type), &overflow_p);
c306cfaf
RB
290 }
291 (if (!overflow_p)
8fdc6c67
RB
292 (div @0 { wide_int_to_tree (type, mul); })
293 (if (TYPE_UNSIGNED (type)
294 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
295 { build_zero_cst (type); })))))
c306cfaf 296
288fe52e
AM
297/* Combine successive multiplications. Similar to above, but handling
298 overflow is different. */
299(simplify
300 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
301 (with {
302 bool overflow_p;
8e6cdc90
RS
303 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
304 TYPE_SIGN (type), &overflow_p);
288fe52e
AM
305 }
306 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
307 otherwise undefined overflow implies that @0 must be zero. */
308 (if (!overflow_p || TYPE_OVERFLOW_WRAPS (type))
309 (mult @0 { wide_int_to_tree (type, mul); }))))
310
a7f24614 311/* Optimize A / A to 1.0 if we don't care about
09240451 312 NaNs or Infinities. */
a7f24614
RB
313(simplify
314 (rdiv @0 @0)
09240451 315 (if (FLOAT_TYPE_P (type)
1b457aa4 316 && ! HONOR_NANS (type)
8b5ee871 317 && ! HONOR_INFINITIES (type))
09240451
MG
318 { build_one_cst (type); }))
319
320/* Optimize -A / A to -1.0 if we don't care about
321 NaNs or Infinities. */
322(simplify
e04d2a35 323 (rdiv:C @0 (negate @0))
09240451 324 (if (FLOAT_TYPE_P (type)
1b457aa4 325 && ! HONOR_NANS (type)
8b5ee871 326 && ! HONOR_INFINITIES (type))
09240451 327 { build_minus_one_cst (type); }))
a7f24614 328
8c6961ca
PK
329/* PR71078: x / abs(x) -> copysign (1.0, x) */
330(simplify
331 (rdiv:C (convert? @0) (convert? (abs @0)))
332 (if (SCALAR_FLOAT_TYPE_P (type)
333 && ! HONOR_NANS (type)
334 && ! HONOR_INFINITIES (type))
335 (switch
336 (if (types_match (type, float_type_node))
337 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
338 (if (types_match (type, double_type_node))
339 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
340 (if (types_match (type, long_double_type_node))
341 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
342
a7f24614
RB
343/* In IEEE floating point, x/1 is not equivalent to x for snans. */
344(simplify
345 (rdiv @0 real_onep)
8b5ee871 346 (if (!HONOR_SNANS (type))
a7f24614
RB
347 (non_lvalue @0)))
348
349/* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
350(simplify
351 (rdiv @0 real_minus_onep)
8b5ee871 352 (if (!HONOR_SNANS (type))
a7f24614
RB
353 (negate @0)))
354
5711ac88 355(if (flag_reciprocal_math)
81825e28 356 /* Convert (A/B)/C to A/(B*C). */
5711ac88
N
357 (simplify
358 (rdiv (rdiv:s @0 @1) @2)
81825e28
WD
359 (rdiv @0 (mult @1 @2)))
360
361 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
362 (simplify
363 (rdiv @0 (mult:s @1 REAL_CST@2))
364 (with
365 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
366 (if (tem)
367 (rdiv (mult @0 { tem; } ) @1))))
5711ac88
N
368
369 /* Convert A/(B/C) to (A/B)*C */
370 (simplify
371 (rdiv @0 (rdiv:s @1 @2))
372 (mult (rdiv @0 @1) @2)))
373
6a435314
WD
374/* Simplify x / (- y) to -x / y. */
375(simplify
376 (rdiv @0 (negate @1))
377 (rdiv (negate @0) @1))
378
5711ac88
N
379/* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
380(for div (trunc_div ceil_div floor_div round_div exact_div)
381 (simplify
382 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
383 (if (integer_pow2p (@2)
384 && tree_int_cst_sgn (@2) > 0
a1488398 385 && tree_nop_conversion_p (type, TREE_TYPE (@0))
8e6cdc90
RS
386 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
387 (rshift (convert @0)
388 { build_int_cst (integer_type_node,
389 wi::exact_log2 (wi::to_wide (@2))); }))))
5711ac88 390
a7f24614
RB
391/* If ARG1 is a constant, we can convert this to a multiply by the
392 reciprocal. This does not have the same rounding properties,
393 so only do this if -freciprocal-math. We can actually
394 always safely do it if ARG1 is a power of two, but it's hard to
395 tell if it is or not in a portable manner. */
396(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
397 (simplify
398 (rdiv @0 cst@1)
399 (if (optimize)
53bc4b3a
RB
400 (if (flag_reciprocal_math
401 && !real_zerop (@1))
a7f24614 402 (with
249700b5 403 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
a7f24614 404 (if (tem)
8fdc6c67
RB
405 (mult @0 { tem; } )))
406 (if (cst != COMPLEX_CST)
407 (with { tree inverse = exact_inverse (type, @1); }
408 (if (inverse)
409 (mult @0 { inverse; } ))))))))
a7f24614 410
a7f24614 411(for mod (ceil_mod floor_mod round_mod trunc_mod)
e0ee10ed
RB
412 /* 0 % X is always zero. */
413 (simplify
a7f24614 414 (mod integer_zerop@0 @1)
e0ee10ed
RB
415 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
416 (if (!integer_zerop (@1))
417 @0))
418 /* X % 1 is always zero. */
419 (simplify
a7f24614
RB
420 (mod @0 integer_onep)
421 { build_zero_cst (type); })
422 /* X % -1 is zero. */
423 (simplify
09240451
MG
424 (mod @0 integer_minus_onep@1)
425 (if (!TYPE_UNSIGNED (type))
bc4315fb 426 { build_zero_cst (type); }))
5b7f6ed0
MG
427 /* X % X is zero. */
428 (simplify
429 (mod @0 @0)
430 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
431 (if (!integer_zerop (@0))
432 { build_zero_cst (type); }))
bc4315fb
MG
433 /* (X % Y) % Y is just X % Y. */
434 (simplify
435 (mod (mod@2 @0 @1) @1)
98e30e51
RB
436 @2)
437 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
438 (simplify
439 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
440 (if (ANY_INTEGRAL_TYPE_P (type)
441 && TYPE_OVERFLOW_UNDEFINED (type)
8e6cdc90
RS
442 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
443 TYPE_SIGN (type)))
98e30e51 444 { build_zero_cst (type); })))
a7f24614
RB
445
446/* X % -C is the same as X % C. */
447(simplify
448 (trunc_mod @0 INTEGER_CST@1)
449 (if (TYPE_SIGN (type) == SIGNED
450 && !TREE_OVERFLOW (@1)
8e6cdc90 451 && wi::neg_p (wi::to_wide (@1))
a7f24614
RB
452 && !TYPE_OVERFLOW_TRAPS (type)
453 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
454 && !sign_bit_p (@1, @1))
455 (trunc_mod @0 (negate @1))))
e0ee10ed 456
8f0c696a
RB
457/* X % -Y is the same as X % Y. */
458(simplify
459 (trunc_mod @0 (convert? (negate @1)))
a2a743a1
MP
460 (if (INTEGRAL_TYPE_P (type)
461 && !TYPE_UNSIGNED (type)
8f0c696a 462 && !TYPE_OVERFLOW_TRAPS (type)
20b8d734
JJ
463 && tree_nop_conversion_p (type, TREE_TYPE (@1))
464 /* Avoid this transformation if X might be INT_MIN or
465 Y might be -1, because we would then change valid
466 INT_MIN % -(-1) into invalid INT_MIN % -1. */
8e6cdc90 467 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
20b8d734
JJ
468 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
469 (TREE_TYPE (@1))))))
8f0c696a
RB
470 (trunc_mod @0 (convert @1))))
471
f461569a
MP
472/* X - (X / Y) * Y is the same as X % Y. */
473(simplify
2eef1fc1
RB
474 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
475 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
fba46f03 476 (convert (trunc_mod @0 @1))))
f461569a 477
8f0c696a
RB
478/* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
479 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
480 Also optimize A % (C << N) where C is a power of 2,
481 to A & ((C << N) - 1). */
482(match (power_of_two_cand @1)
483 INTEGER_CST@1)
484(match (power_of_two_cand @1)
485 (lshift INTEGER_CST@1 @2))
486(for mod (trunc_mod floor_mod)
487 (simplify
4ab1e111 488 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
8f0c696a
RB
489 (if ((TYPE_UNSIGNED (type)
490 || tree_expr_nonnegative_p (@0))
4ab1e111 491 && tree_nop_conversion_p (type, TREE_TYPE (@3))
8f0c696a 492 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
4ab1e111 493 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
8f0c696a 494
887ab609
N
495/* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
496(simplify
497 (trunc_div (mult @0 integer_pow2p@1) @1)
498 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
499 (bit_and @0 { wide_int_to_tree
8e6cdc90
RS
500 (type, wi::mask (TYPE_PRECISION (type)
501 - wi::exact_log2 (wi::to_wide (@1)),
887ab609
N
502 false, TYPE_PRECISION (type))); })))
503
5f8d832e
N
504/* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
505(simplify
506 (mult (trunc_div @0 integer_pow2p@1) @1)
507 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
508 (bit_and @0 (negate @1))))
509
95765f36
N
510/* Simplify (t * 2) / 2) -> t. */
511(for div (trunc_div ceil_div floor_div round_div exact_div)
512 (simplify
55d84e61 513 (div (mult:c @0 @1) @1)
95765f36
N
514 (if (ANY_INTEGRAL_TYPE_P (type)
515 && TYPE_OVERFLOW_UNDEFINED (type))
516 @0)))
517
d202f9bd 518(for op (negate abs)
9b054b08
RS
519 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
520 (for coss (COS COSH)
521 (simplify
522 (coss (op @0))
523 (coss @0)))
524 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
525 (for pows (POW)
526 (simplify
527 (pows (op @0) REAL_CST@1)
528 (with { HOST_WIDE_INT n; }
529 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
5d3498b4 530 (pows @0 @1)))))
de3fbea3
RB
531 /* Likewise for powi. */
532 (for pows (POWI)
533 (simplify
534 (pows (op @0) INTEGER_CST@1)
8e6cdc90 535 (if ((wi::to_wide (@1) & 1) == 0)
de3fbea3 536 (pows @0 @1))))
5d3498b4
RS
537 /* Strip negate and abs from both operands of hypot. */
538 (for hypots (HYPOT)
539 (simplify
540 (hypots (op @0) @1)
541 (hypots @0 @1))
542 (simplify
543 (hypots @0 (op @1))
544 (hypots @0 @1)))
545 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
c6cfa2bf 546 (for copysigns (COPYSIGN_ALL)
5d3498b4
RS
547 (simplify
548 (copysigns (op @0) @1)
549 (copysigns @0 @1))))
550
551/* abs(x)*abs(x) -> x*x. Should be valid for all types. */
552(simplify
553 (mult (abs@1 @0) @1)
554 (mult @0 @0))
555
556/* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
557(for coss (COS COSH)
558 copysigns (COPYSIGN)
559 (simplify
560 (coss (copysigns @0 @1))
561 (coss @0)))
562
563/* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
564(for pows (POW)
565 copysigns (COPYSIGN)
566 (simplify
de3fbea3 567 (pows (copysigns @0 @2) REAL_CST@1)
5d3498b4
RS
568 (with { HOST_WIDE_INT n; }
569 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
570 (pows @0 @1)))))
de3fbea3
RB
571/* Likewise for powi. */
572(for pows (POWI)
573 copysigns (COPYSIGN)
574 (simplify
575 (pows (copysigns @0 @2) INTEGER_CST@1)
8e6cdc90 576 (if ((wi::to_wide (@1) & 1) == 0)
de3fbea3 577 (pows @0 @1))))
5d3498b4
RS
578
579(for hypots (HYPOT)
580 copysigns (COPYSIGN)
581 /* hypot(copysign(x, y), z) -> hypot(x, z). */
582 (simplify
583 (hypots (copysigns @0 @1) @2)
584 (hypots @0 @2))
585 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
586 (simplify
587 (hypots @0 (copysigns @1 @2))
588 (hypots @0 @1)))
589
eeb57981 590/* copysign(x, CST) -> [-]abs (x). */
c6cfa2bf 591(for copysigns (COPYSIGN_ALL)
eeb57981
RB
592 (simplify
593 (copysigns @0 REAL_CST@1)
594 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
595 (negate (abs @0))
596 (abs @0))))
597
5d3498b4 598/* copysign(copysign(x, y), z) -> copysign(x, z). */
c6cfa2bf 599(for copysigns (COPYSIGN_ALL)
5d3498b4
RS
600 (simplify
601 (copysigns (copysigns @0 @1) @2)
602 (copysigns @0 @2)))
603
604/* copysign(x,y)*copysign(x,y) -> x*x. */
c6cfa2bf 605(for copysigns (COPYSIGN_ALL)
5d3498b4
RS
606 (simplify
607 (mult (copysigns@2 @0 @1) @2)
608 (mult @0 @0)))
609
610/* ccos(-x) -> ccos(x). Similarly for ccosh. */
611(for ccoss (CCOS CCOSH)
612 (simplify
613 (ccoss (negate @0))
614 (ccoss @0)))
d202f9bd 615
abcc43f5
RS
616/* cabs(-x) and cos(conj(x)) -> cabs(x). */
617(for ops (conj negate)
618 (for cabss (CABS)
619 (simplify
620 (cabss (ops @0))
621 (cabss @0))))
622
0a8f32b8
RB
623/* Fold (a * (1 << b)) into (a << b) */
624(simplify
625 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
626 (if (! FLOAT_TYPE_P (type)
9ff6fb6e 627 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
0a8f32b8
RB
628 (lshift @0 @2)))
629
4349b15f
SD
630/* Fold (1 << (C - x)) where C = precision(type) - 1
631 into ((1 << C) >> x). */
632(simplify
633 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
634 (if (INTEGRAL_TYPE_P (type)
56ccfbd6 635 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
4349b15f
SD
636 && single_use (@1))
637 (if (TYPE_UNSIGNED (type))
638 (rshift (lshift @0 @2) @3)
639 (with
640 { tree utype = unsigned_type_for (type); }
641 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
642
0a8f32b8
RB
643/* Fold (C1/X)*C2 into (C1*C2)/X. */
644(simplify
ff86345f
RB
645 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
646 (if (flag_associative_math
647 && single_use (@3))
0a8f32b8
RB
648 (with
649 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
650 (if (tem)
651 (rdiv { tem; } @1)))))
652
653/* Simplify ~X & X as zero. */
654(simplify
655 (bit_and:c (convert? @0) (convert? (bit_not @0)))
656 { build_zero_cst (type); })
657
89b80c42
PK
658/* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
659(simplify
660 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
661 (if (TYPE_UNSIGNED (type))
662 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
663
7aa13860
PK
664(for bitop (bit_and bit_ior)
665 cmp (eq ne)
a93952d2
JJ
666 /* PR35691: Transform
667 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
668 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
7aa13860
PK
669 (simplify
670 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
671 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
a93952d2
JJ
672 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
673 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
674 (cmp (bit_ior @0 (convert @1)) @2)))
675 /* Transform:
676 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
677 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
678 (simplify
679 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
680 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
681 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
682 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
683 (cmp (bit_and @0 (convert @1)) @2))))
7aa13860 684
10158317
RB
685/* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
686(simplify
a9658b11 687 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
10158317
RB
688 (minus (bit_xor @0 @1) @1))
689(simplify
690 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
8e6cdc90 691 (if (~wi::to_wide (@2) == wi::to_wide (@1))
10158317
RB
692 (minus (bit_xor @0 @1) @1)))
693
694/* Fold (A & B) - (A & ~B) into B - (A ^ B). */
695(simplify
a8e9f9a3 696 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
10158317
RB
697 (minus @1 (bit_xor @0 @1)))
698
42bd89ce
MG
699/* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
700(for op (bit_ior bit_xor plus)
701 (simplify
702 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
703 (bit_xor @0 @1))
704 (simplify
705 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
8e6cdc90 706 (if (~wi::to_wide (@2) == wi::to_wide (@1))
42bd89ce 707 (bit_xor @0 @1))))
2066ef6a
PK
708
709/* PR53979: Transform ((a ^ b) | a) -> (a | b) */
710(simplify
711 (bit_ior:c (bit_xor:c @0 @1) @0)
712 (bit_ior @0 @1))
713
e268a77b
MG
714/* (a & ~b) | (a ^ b) --> a ^ b */
715(simplify
716 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
717 @2)
718
719/* (a & ~b) ^ ~a --> ~(a & b) */
720(simplify
721 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
722 (bit_not (bit_and @0 @1)))
723
724/* (a | b) & ~(a ^ b) --> a & b */
725(simplify
726 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
727 (bit_and @0 @1))
728
729/* a | ~(a ^ b) --> a | ~b */
730(simplify
731 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
732 (bit_ior @0 (bit_not @1)))
733
734/* (a | b) | (a &^ b) --> a | b */
735(for op (bit_and bit_xor)
736 (simplify
737 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
738 @2))
739
740/* (a & b) | ~(a ^ b) --> ~(a ^ b) */
741(simplify
742 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
743 @2)
744
745/* ~(~a & b) --> a | ~b */
746(simplify
747 (bit_not (bit_and:cs (bit_not @0) @1))
748 (bit_ior @0 (bit_not @1)))
749
d982c5b7
MG
750/* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
751#if GIMPLE
752(simplify
753 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
754 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
8e6cdc90 755 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
d982c5b7
MG
756 (bit_xor @0 @1)))
757#endif
10158317 758
bc4315fb
MG
759/* X % Y is smaller than Y. */
760(for cmp (lt ge)
761 (simplify
762 (cmp (trunc_mod @0 @1) @1)
763 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
764 { constant_boolean_node (cmp == LT_EXPR, type); })))
765(for cmp (gt le)
766 (simplify
767 (cmp @1 (trunc_mod @0 @1))
768 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
769 { constant_boolean_node (cmp == GT_EXPR, type); })))
770
e0ee10ed
RB
771/* x | ~0 -> ~0 */
772(simplify
ca0b7ece
RB
773 (bit_ior @0 integer_all_onesp@1)
774 @1)
775
776/* x | 0 -> x */
777(simplify
778 (bit_ior @0 integer_zerop)
779 @0)
e0ee10ed
RB
780
781/* x & 0 -> 0 */
782(simplify
ca0b7ece
RB
783 (bit_and @0 integer_zerop@1)
784 @1)
e0ee10ed 785
a4398a30 786/* ~x | x -> -1 */
8b5ee871
MG
787/* ~x ^ x -> -1 */
788/* ~x + x -> -1 */
789(for op (bit_ior bit_xor plus)
790 (simplify
791 (op:c (convert? @0) (convert? (bit_not @0)))
792 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
a4398a30 793
e0ee10ed
RB
794/* x ^ x -> 0 */
795(simplify
796 (bit_xor @0 @0)
797 { build_zero_cst (type); })
798
36a60e48
RB
799/* Canonicalize X ^ ~0 to ~X. */
800(simplify
801 (bit_xor @0 integer_all_onesp@1)
802 (bit_not @0))
803
804/* x & ~0 -> x */
805(simplify
806 (bit_and @0 integer_all_onesp)
807 (non_lvalue @0))
808
809/* x & x -> x, x | x -> x */
810(for bitop (bit_and bit_ior)
811 (simplify
812 (bitop @0 @0)
813 (non_lvalue @0)))
814
c7986356
MG
815/* x & C -> x if we know that x & ~C == 0. */
816#if GIMPLE
817(simplify
818 (bit_and SSA_NAME@0 INTEGER_CST@1)
819 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
8e6cdc90 820 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
c7986356
MG
821 @0))
822#endif
823
0f770b01
RV
824/* x + (x & 1) -> (x + 1) & ~1 */
825(simplify
44fc0a51
RB
826 (plus:c @0 (bit_and:s @0 integer_onep@1))
827 (bit_and (plus @0 @1) (bit_not @1)))
0f770b01
RV
828
829/* x & ~(x & y) -> x & ~y */
830/* x | ~(x | y) -> x | ~y */
831(for bitop (bit_and bit_ior)
af563d4b 832 (simplify
44fc0a51
RB
833 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
834 (bitop @0 (bit_not @1))))
af563d4b
MG
835
836/* (x | y) & ~x -> y & ~x */
837/* (x & y) | ~x -> y | ~x */
838(for bitop (bit_and bit_ior)
839 rbitop (bit_ior bit_and)
840 (simplify
841 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
842 (bitop @1 @2)))
0f770b01 843
f13c4673
MP
844/* (x & y) ^ (x | y) -> x ^ y */
845(simplify
2d6f2dce
MP
846 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
847 (bit_xor @0 @1))
f13c4673 848
9ea65ca6
MP
849/* (x ^ y) ^ (x | y) -> x & y */
850(simplify
851 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
852 (bit_and @0 @1))
853
854/* (x & y) + (x ^ y) -> x | y */
855/* (x & y) | (x ^ y) -> x | y */
856/* (x & y) ^ (x ^ y) -> x | y */
857(for op (plus bit_ior bit_xor)
858 (simplify
859 (op:c (bit_and @0 @1) (bit_xor @0 @1))
860 (bit_ior @0 @1)))
861
862/* (x & y) + (x | y) -> x + y */
863(simplify
864 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
865 (plus @0 @1))
866
9737efaf
MP
867/* (x + y) - (x | y) -> x & y */
868(simplify
869 (minus (plus @0 @1) (bit_ior @0 @1))
870 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
871 && !TYPE_SATURATING (type))
872 (bit_and @0 @1)))
873
874/* (x + y) - (x & y) -> x | y */
875(simplify
876 (minus (plus @0 @1) (bit_and @0 @1))
877 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
878 && !TYPE_SATURATING (type))
879 (bit_ior @0 @1)))
880
9ea65ca6
MP
881/* (x | y) - (x ^ y) -> x & y */
882(simplify
883 (minus (bit_ior @0 @1) (bit_xor @0 @1))
884 (bit_and @0 @1))
885
886/* (x | y) - (x & y) -> x ^ y */
887(simplify
888 (minus (bit_ior @0 @1) (bit_and @0 @1))
889 (bit_xor @0 @1))
890
66cc6273
MP
891/* (x | y) & ~(x & y) -> x ^ y */
892(simplify
893 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
894 (bit_xor @0 @1))
895
896/* (x | y) & (~x ^ y) -> x & y */
897(simplify
898 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
899 (bit_and @0 @1))
900
5b00d921
RB
901/* ~x & ~y -> ~(x | y)
902 ~x | ~y -> ~(x & y) */
903(for op (bit_and bit_ior)
904 rop (bit_ior bit_and)
905 (simplify
906 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
ece46666
MG
907 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
908 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
5b00d921
RB
909 (bit_not (rop (convert @0) (convert @1))))))
910
14ea9f92 911/* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
5b00d921
RB
912 with a constant, and the two constants have no bits in common,
913 we should treat this as a BIT_IOR_EXPR since this may produce more
914 simplifications. */
14ea9f92
RB
915(for op (bit_xor plus)
916 (simplify
917 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
918 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
919 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
920 && tree_nop_conversion_p (type, TREE_TYPE (@2))
8e6cdc90 921 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
14ea9f92 922 (bit_ior (convert @4) (convert @5)))))
5b00d921
RB
923
924/* (X | Y) ^ X -> Y & ~ X*/
925(simplify
2eef1fc1 926 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
5b00d921
RB
927 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
928 (convert (bit_and @1 (bit_not @0)))))
929
930/* Convert ~X ^ ~Y to X ^ Y. */
931(simplify
932 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
ece46666
MG
933 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
934 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
5b00d921
RB
935 (bit_xor (convert @0) (convert @1))))
936
937/* Convert ~X ^ C to X ^ ~C. */
938(simplify
939 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
c8ba6498
EB
940 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
941 (bit_xor (convert @0) (bit_not @1))))
5b00d921 942
e39dab2c
MG
943/* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
944(for opo (bit_and bit_xor)
945 opi (bit_xor bit_and)
946 (simplify
947 (opo:c (opi:c @0 @1) @1)
948 (bit_and (bit_not @0) @1)))
97e77391 949
14ea9f92
RB
950/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
951 operands are another bit-wise operation with a common input. If so,
952 distribute the bit operations to save an operation and possibly two if
953 constants are involved. For example, convert
954 (A | B) & (A | C) into A | (B & C)
955 Further simplification will occur if B and C are constants. */
e07ab2fe
MG
956(for op (bit_and bit_ior bit_xor)
957 rop (bit_ior bit_and bit_and)
14ea9f92 958 (simplify
2eef1fc1 959 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
e07ab2fe
MG
960 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
961 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
14ea9f92
RB
962 (rop (convert @0) (op (convert @1) (convert @2))))))
963
e39dab2c
MG
964/* Some simple reassociation for bit operations, also handled in reassoc. */
965/* (X & Y) & Y -> X & Y
966 (X | Y) | Y -> X | Y */
967(for op (bit_and bit_ior)
968 (simplify
2eef1fc1 969 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
e39dab2c
MG
970 @2))
971/* (X ^ Y) ^ Y -> X */
972(simplify
2eef1fc1 973 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
ece46666 974 (convert @0))
e39dab2c
MG
975/* (X & Y) & (X & Z) -> (X & Y) & Z
976 (X | Y) | (X | Z) -> (X | Y) | Z */
977(for op (bit_and bit_ior)
978 (simplify
6c35e5b0 979 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
e39dab2c
MG
980 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
981 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
982 (if (single_use (@5) && single_use (@6))
983 (op @3 (convert @2))
984 (if (single_use (@3) && single_use (@4))
985 (op (convert @1) @5))))))
986/* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
987(simplify
988 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
989 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
990 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
d78789f5 991 (bit_xor (convert @1) (convert @2))))
5b00d921 992
b14a9c57
RB
993(simplify
994 (abs (abs@1 @0))
995 @1)
f3582e54
RB
996(simplify
997 (abs (negate @0))
998 (abs @0))
999(simplify
1000 (abs tree_expr_nonnegative_p@0)
1001 @0)
1002
55cf3946
RB
1003/* A few cases of fold-const.c negate_expr_p predicate. */
1004(match negate_expr_p
1005 INTEGER_CST
b14a9c57 1006 (if ((INTEGRAL_TYPE_P (type)
56a6d474 1007 && TYPE_UNSIGNED (type))
b14a9c57 1008 || (!TYPE_OVERFLOW_SANITIZED (type)
55cf3946
RB
1009 && may_negate_without_overflow_p (t)))))
1010(match negate_expr_p
1011 FIXED_CST)
1012(match negate_expr_p
1013 (negate @0)
1014 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1015(match negate_expr_p
1016 REAL_CST
1017 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1018/* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1019 ways. */
1020(match negate_expr_p
1021 VECTOR_CST
1022 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
81bd903a
MG
1023(match negate_expr_p
1024 (minus @0 @1)
1025 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1026 || (FLOAT_TYPE_P (type)
1027 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1028 && !HONOR_SIGNED_ZEROS (type)))))
0a8f32b8
RB
1029
1030/* (-A) * (-B) -> A * B */
1031(simplify
1032 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1033 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1034 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1035 (mult (convert @0) (convert (negate @1)))))
55cf3946
RB
1036
1037/* -(A + B) -> (-B) - A. */
b14a9c57 1038(simplify
55cf3946
RB
1039 (negate (plus:c @0 negate_expr_p@1))
1040 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1041 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1042 (minus (negate @1) @0)))
1043
81bd903a
MG
1044/* -(A - B) -> B - A. */
1045(simplify
1046 (negate (minus @0 @1))
1047 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1048 || (FLOAT_TYPE_P (type)
1049 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1050 && !HONOR_SIGNED_ZEROS (type)))
1051 (minus @1 @0)))
1af4ebf5
MG
1052(simplify
1053 (negate (pointer_diff @0 @1))
1054 (if (TYPE_OVERFLOW_UNDEFINED (type))
1055 (pointer_diff @1 @0)))
81bd903a 1056
55cf3946 1057/* A - B -> A + (-B) if B is easily negatable. */
b14a9c57 1058(simplify
55cf3946 1059 (minus @0 negate_expr_p@1)
e4e96a4f
KT
1060 (if (!FIXED_POINT_TYPE_P (type))
1061 (plus @0 (negate @1))))
d4573ffe 1062
5609420f
RB
1063/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1064 when profitable.
1065 For bitwise binary operations apply operand conversions to the
1066 binary operation result instead of to the operands. This allows
1067 to combine successive conversions and bitwise binary operations.
1068 We combine the above two cases by using a conditional convert. */
1069(for bitop (bit_and bit_ior bit_xor)
1070 (simplify
1071 (bitop (convert @0) (convert? @1))
1072 (if (((TREE_CODE (@1) == INTEGER_CST
1073 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
ad6f996c 1074 && int_fits_type_p (@1, TREE_TYPE (@0)))
aea417d7 1075 || types_match (@0, @1))
ad6f996c
RB
1076 /* ??? This transform conflicts with fold-const.c doing
1077 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1078 constants (if x has signed type, the sign bit cannot be set
1079 in c). This folds extension into the BIT_AND_EXPR.
1080 Restrict it to GIMPLE to avoid endless recursions. */
1081 && (bitop != BIT_AND_EXPR || GIMPLE)
5609420f
RB
1082 && (/* That's a good idea if the conversion widens the operand, thus
1083 after hoisting the conversion the operation will be narrower. */
1084 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1085 /* It's also a good idea if the conversion is to a non-integer
1086 mode. */
1087 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1088 /* Or if the precision of TO is not the same as the precision
1089 of its mode. */
2be65d9e 1090 || !type_has_mode_precision_p (type)))
5609420f
RB
1091 (convert (bitop @0 (convert @1))))))
1092
b14a9c57
RB
1093(for bitop (bit_and bit_ior)
1094 rbitop (bit_ior bit_and)
1095 /* (x | y) & x -> x */
1096 /* (x & y) | x -> x */
1097 (simplify
1098 (bitop:c (rbitop:c @0 @1) @0)
1099 @0)
1100 /* (~x | y) & x -> x & y */
1101 /* (~x & y) | x -> x | y */
1102 (simplify
1103 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1104 (bitop @0 @1)))
1105
5609420f
RB
1106/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1107(simplify
1108 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1109 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1110
1111/* Combine successive equal operations with constants. */
1112(for bitop (bit_and bit_ior bit_xor)
1113 (simplify
1114 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
fba05d9e
RS
1115 (if (!CONSTANT_CLASS_P (@0))
1116 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1117 folded to a constant. */
1118 (bitop @0 (bitop @1 @2))
1119 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1120 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1121 the values involved are such that the operation can't be decided at
1122 compile time. Try folding one of @0 or @1 with @2 to see whether
1123 that combination can be decided at compile time.
1124
1125 Keep the existing form if both folds fail, to avoid endless
1126 oscillation. */
1127 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1128 (if (cst1)
1129 (bitop @1 { cst1; })
1130 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1131 (if (cst2)
1132 (bitop @0 { cst2; }))))))))
5609420f
RB
1133
1134/* Try simple folding for X op !X, and X op X with the help
1135 of the truth_valued_p and logical_inverted_value predicates. */
1136(match truth_valued_p
1137 @0
1138 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
f84e7fd6 1139(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
5609420f
RB
1140 (match truth_valued_p
1141 (op @0 @1)))
1142(match truth_valued_p
1143 (truth_not @0))
1144
0a8f32b8
RB
1145(match (logical_inverted_value @0)
1146 (truth_not @0))
5609420f
RB
1147(match (logical_inverted_value @0)
1148 (bit_not truth_valued_p@0))
1149(match (logical_inverted_value @0)
09240451 1150 (eq @0 integer_zerop))
5609420f 1151(match (logical_inverted_value @0)
09240451 1152 (ne truth_valued_p@0 integer_truep))
5609420f 1153(match (logical_inverted_value @0)
09240451 1154 (bit_xor truth_valued_p@0 integer_truep))
5609420f
RB
1155
1156/* X & !X -> 0. */
1157(simplify
1158 (bit_and:c @0 (logical_inverted_value @0))
1159 { build_zero_cst (type); })
1160/* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1161(for op (bit_ior bit_xor)
1162 (simplify
1163 (op:c truth_valued_p@0 (logical_inverted_value @0))
f84e7fd6 1164 { constant_boolean_node (true, type); }))
59c20dc7
RB
1165/* X ==/!= !X is false/true. */
1166(for op (eq ne)
1167 (simplify
1168 (op:c truth_valued_p@0 (logical_inverted_value @0))
1169 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
5609420f 1170
5609420f
RB
1171/* ~~x -> x */
1172(simplify
1173 (bit_not (bit_not @0))
1174 @0)
1175
b14a9c57
RB
1176/* Convert ~ (-A) to A - 1. */
1177(simplify
1178 (bit_not (convert? (negate @0)))
ece46666
MG
1179 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1180 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
8b5ee871 1181 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
b14a9c57 1182
81bd903a
MG
1183/* Convert - (~A) to A + 1. */
1184(simplify
1185 (negate (nop_convert (bit_not @0)))
1186 (plus (view_convert @0) { build_each_one_cst (type); }))
1187
b14a9c57
RB
1188/* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1189(simplify
8b5ee871 1190 (bit_not (convert? (minus @0 integer_each_onep)))
ece46666
MG
1191 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1192 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
b14a9c57
RB
1193 (convert (negate @0))))
1194(simplify
1195 (bit_not (convert? (plus @0 integer_all_onesp)))
ece46666
MG
1196 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1197 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
b14a9c57
RB
1198 (convert (negate @0))))
1199
1200/* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1201(simplify
1202 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1203 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1204 (convert (bit_xor @0 (bit_not @1)))))
1205(simplify
1206 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1207 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1208 (convert (bit_xor @0 @1))))
1209
e268a77b
MG
1210/* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1211(simplify
1212 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1213 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1214 (bit_not (bit_xor (view_convert @0) @1))))
1215
f52baa7b
MP
1216/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1217(simplify
44fc0a51
RB
1218 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1219 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
f52baa7b 1220
f7b7b0aa
MP
1221/* Fold A - (A & B) into ~B & A. */
1222(simplify
2eef1fc1 1223 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
f7b7b0aa
MP
1224 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1225 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1226 (convert (bit_and (bit_not @1) @0))))
5609420f 1227
2071f8f9
N
1228/* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1229(for cmp (gt lt ge le)
1230(simplify
1231 (mult (convert (cmp @0 @1)) @2)
1232 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1233
e36c1cfe
N
1234/* For integral types with undefined overflow and C != 0 fold
1235 x * C EQ/NE y * C into x EQ/NE y. */
1236(for cmp (eq ne)
1237 (simplify
1238 (cmp (mult:c @0 @1) (mult:c @2 @1))
1239 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1240 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1241 && tree_expr_nonzero_p (@1))
1242 (cmp @0 @2))))
1243
42bd89ce
MG
1244/* For integral types with wrapping overflow and C odd fold
1245 x * C EQ/NE y * C into x EQ/NE y. */
1246(for cmp (eq ne)
1247 (simplify
1248 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1249 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1250 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1251 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1252 (cmp @0 @2))))
1253
e36c1cfe
N
1254/* For integral types with undefined overflow and C != 0 fold
1255 x * C RELOP y * C into:
84ff66b8 1256
e36c1cfe
N
1257 x RELOP y for nonnegative C
1258 y RELOP x for negative C */
1259(for cmp (lt gt le ge)
1260 (simplify
1261 (cmp (mult:c @0 @1) (mult:c @2 @1))
1262 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1263 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1264 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1265 (cmp @0 @2)
1266 (if (TREE_CODE (@1) == INTEGER_CST
8e6cdc90 1267 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
e36c1cfe 1268 (cmp @2 @0))))))
84ff66b8 1269
564e405c
JJ
1270/* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1271(for cmp (le gt)
1272 icmp (gt le)
1273 (simplify
1274 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1275 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1276 && TYPE_UNSIGNED (TREE_TYPE (@0))
1277 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
8e6cdc90
RS
1278 && (wi::to_wide (@2)
1279 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
564e405c
JJ
1280 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1281 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1282
a8492d5e
MG
1283/* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1284(for cmp (simple_comparison)
1285 (simplify
1286 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
8e6cdc90 1287 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
a8492d5e
MG
1288 (cmp @0 @1))))
1289
8d1628eb
JJ
1290/* X / C1 op C2 into a simple range test. */
1291(for cmp (simple_comparison)
1292 (simplify
1293 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1294 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1295 && integer_nonzerop (@1)
1296 && !TREE_OVERFLOW (@1)
1297 && !TREE_OVERFLOW (@2))
1298 (with { tree lo, hi; bool neg_overflow;
1299 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1300 &neg_overflow); }
1301 (switch
1302 (if (code == LT_EXPR || code == GE_EXPR)
1303 (if (TREE_OVERFLOW (lo))
1304 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1305 (if (code == LT_EXPR)
1306 (lt @0 { lo; })
1307 (ge @0 { lo; }))))
1308 (if (code == LE_EXPR || code == GT_EXPR)
1309 (if (TREE_OVERFLOW (hi))
1310 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1311 (if (code == LE_EXPR)
1312 (le @0 { hi; })
1313 (gt @0 { hi; }))))
1314 (if (!lo && !hi)
1315 { build_int_cst (type, code == NE_EXPR); })
1316 (if (code == EQ_EXPR && !hi)
1317 (ge @0 { lo; }))
1318 (if (code == EQ_EXPR && !lo)
1319 (le @0 { hi; }))
1320 (if (code == NE_EXPR && !hi)
1321 (lt @0 { lo; }))
1322 (if (code == NE_EXPR && !lo)
1323 (gt @0 { hi; }))
1324 (if (GENERIC)
1325 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1326 lo, hi); })
1327 (with
1328 {
1329 tree etype = range_check_type (TREE_TYPE (@0));
1330 if (etype)
1331 {
1332 if (! TYPE_UNSIGNED (etype))
1333 etype = unsigned_type_for (etype);
1334 hi = fold_convert (etype, hi);
1335 lo = fold_convert (etype, lo);
1336 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1337 }
1338 }
1339 (if (etype && hi && !TREE_OVERFLOW (hi))
1340 (if (code == EQ_EXPR)
1341 (le (minus (convert:etype @0) { lo; }) { hi; })
1342 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1343
d35256b6
MG
1344/* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1345(for op (lt le ge gt)
1346 (simplify
1347 (op (plus:c @0 @2) (plus:c @1 @2))
1348 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1349 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1350 (op @0 @1))))
1351/* For equality and subtraction, this is also true with wrapping overflow. */
1352(for op (eq ne minus)
1353 (simplify
1354 (op (plus:c @0 @2) (plus:c @1 @2))
1355 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1356 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1357 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1358 (op @0 @1))))
1359
1360/* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1361(for op (lt le ge gt)
1362 (simplify
1363 (op (minus @0 @2) (minus @1 @2))
1364 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1365 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1366 (op @0 @1))))
1367/* For equality and subtraction, this is also true with wrapping overflow. */
1368(for op (eq ne minus)
1369 (simplify
1370 (op (minus @0 @2) (minus @1 @2))
1371 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1372 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1373 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1374 (op @0 @1))))
1af4ebf5
MG
1375/* And for pointers... */
1376(for op (simple_comparison)
1377 (simplify
1378 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1379 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1380 (op @0 @1))))
1381(simplify
1382 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1383 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1384 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1385 (pointer_diff @0 @1)))
d35256b6
MG
1386
1387/* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1388(for op (lt le ge gt)
1389 (simplify
1390 (op (minus @2 @0) (minus @2 @1))
1391 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1392 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1393 (op @1 @0))))
1394/* For equality and subtraction, this is also true with wrapping overflow. */
1395(for op (eq ne minus)
1396 (simplify
1397 (op (minus @2 @0) (minus @2 @1))
1398 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1399 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1400 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1401 (op @1 @0))))
1af4ebf5
MG
1402/* And for pointers... */
1403(for op (simple_comparison)
1404 (simplify
1405 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1406 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1407 (op @1 @0))))
1408(simplify
1409 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1410 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1411 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1412 (pointer_diff @1 @0)))
d35256b6 1413
6358a676
MG
1414/* X + Y < Y is the same as X < 0 when there is no overflow. */
1415(for op (lt le gt ge)
1416 (simplify
1417 (op:c (plus:c@2 @0 @1) @1)
1418 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1419 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1420 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1421 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1422/* For equality, this is also true with wrapping overflow. */
1423(for op (eq ne)
1424 (simplify
1425 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1426 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1427 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1428 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1429 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1430 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1431 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1432 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1433 (simplify
1434 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1435 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1436 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1437 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1438 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1439
1440/* X - Y < X is the same as Y > 0 when there is no overflow.
1441 For equality, this is also true with wrapping overflow. */
1442(for op (simple_comparison)
1443 (simplify
1444 (op:c @0 (minus@2 @0 @1))
1445 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1446 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1447 || ((op == EQ_EXPR || op == NE_EXPR)
1448 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1449 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1450 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1451
1d6fadee
PK
1452/* Transform:
1453 * (X / Y) == 0 -> X < Y if X, Y are unsigned.
1454 * (X / Y) != 0 -> X >= Y, if X, Y are unsigned.
1455 */
1456(for cmp (eq ne)
1457 ocmp (lt ge)
1458 (simplify
1459 (cmp (trunc_div @0 @1) integer_zerop)
1460 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1461 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1462 (ocmp @0 @1))))
1463
8b656ca7
MG
1464/* X == C - X can never be true if C is odd. */
1465(for cmp (eq ne)
1466 (simplify
1467 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1468 (if (TREE_INT_CST_LOW (@1) & 1)
1469 { constant_boolean_node (cmp == NE_EXPR, type); })))
1470
10bc8017
MG
1471/* Arguments on which one can call get_nonzero_bits to get the bits
1472 possibly set. */
1473(match with_possible_nonzero_bits
1474 INTEGER_CST@0)
1475(match with_possible_nonzero_bits
1476 SSA_NAME@0
1477 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1478/* Slightly extended version, do not make it recursive to keep it cheap. */
1479(match (with_possible_nonzero_bits2 @0)
1480 with_possible_nonzero_bits@0)
1481(match (with_possible_nonzero_bits2 @0)
1482 (bit_and:c with_possible_nonzero_bits@0 @2))
1483
1484/* Same for bits that are known to be set, but we do not have
1485 an equivalent to get_nonzero_bits yet. */
1486(match (with_certain_nonzero_bits2 @0)
1487 INTEGER_CST@0)
1488(match (with_certain_nonzero_bits2 @0)
1489 (bit_ior @1 INTEGER_CST@0))
1490
1491/* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1492(for cmp (eq ne)
1493 (simplify
1494 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
8e6cdc90 1495 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
10bc8017
MG
1496 { constant_boolean_node (cmp == NE_EXPR, type); })))
1497
84ff66b8
AV
1498/* ((X inner_op C0) outer_op C1)
1499 With X being a tree where value_range has reasoned certain bits to always be
1500 zero throughout its computed value range,
1501 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1502 where zero_mask has 1's for all bits that are sure to be 0 in
1503 and 0's otherwise.
1504 if (inner_op == '^') C0 &= ~C1;
1505 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1506 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1507*/
1508(for inner_op (bit_ior bit_xor)
1509 outer_op (bit_xor bit_ior)
1510(simplify
1511 (outer_op
1512 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1513 (with
1514 {
1515 bool fail = false;
1516 wide_int zero_mask_not;
1517 wide_int C0;
1518 wide_int cst_emit;
1519
1520 if (TREE_CODE (@2) == SSA_NAME)
1521 zero_mask_not = get_nonzero_bits (@2);
1522 else
1523 fail = true;
1524
1525 if (inner_op == BIT_XOR_EXPR)
1526 {
8e6cdc90
RS
1527 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1528 cst_emit = C0 | wi::to_wide (@1);
84ff66b8
AV
1529 }
1530 else
1531 {
8e6cdc90
RS
1532 C0 = wi::to_wide (@0);
1533 cst_emit = C0 ^ wi::to_wide (@1);
84ff66b8
AV
1534 }
1535 }
8e6cdc90 1536 (if (!fail && (C0 & zero_mask_not) == 0)
84ff66b8 1537 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
8e6cdc90 1538 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
84ff66b8
AV
1539 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1540
a499aac5
RB
1541/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1542(simplify
44fc0a51
RB
1543 (pointer_plus (pointer_plus:s @0 @1) @3)
1544 (pointer_plus @0 (plus @1 @3)))
a499aac5
RB
1545
1546/* Pattern match
1547 tem1 = (long) ptr1;
1548 tem2 = (long) ptr2;
1549 tem3 = tem2 - tem1;
1550 tem4 = (unsigned long) tem3;
1551 tem5 = ptr1 + tem4;
1552 and produce
1553 tem5 = ptr2; */
1554(simplify
1555 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1556 /* Conditionally look through a sign-changing conversion. */
1557 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1558 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1559 || (GENERIC && type == TREE_TYPE (@1))))
1560 @1))
1af4ebf5
MG
1561(simplify
1562 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1563 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1564 (convert @1)))
a499aac5
RB
1565
1566/* Pattern match
1567 tem = (sizetype) ptr;
1568 tem = tem & algn;
1569 tem = -tem;
1570 ... = ptr p+ tem;
1571 and produce the simpler and easier to analyze with respect to alignment
1572 ... = ptr & ~algn; */
1573(simplify
1574 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
8e6cdc90 1575 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
a499aac5
RB
1576 (bit_and @0 { algn; })))
1577
99e943a2
RB
1578/* Try folding difference of addresses. */
1579(simplify
1580 (minus (convert ADDR_EXPR@0) (convert @1))
1581 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
f37fac2b 1582 (with { poly_int64 diff; }
99e943a2
RB
1583 (if (ptr_difference_const (@0, @1, &diff))
1584 { build_int_cst_type (type, diff); }))))
1585(simplify
1586 (minus (convert @0) (convert ADDR_EXPR@1))
1587 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
f37fac2b 1588 (with { poly_int64 diff; }
99e943a2
RB
1589 (if (ptr_difference_const (@0, @1, &diff))
1590 { build_int_cst_type (type, diff); }))))
1af4ebf5
MG
1591(simplify
1592 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert?@3 @1))
1593 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1594 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
f37fac2b 1595 (with { poly_int64 diff; }
1af4ebf5
MG
1596 (if (ptr_difference_const (@0, @1, &diff))
1597 { build_int_cst_type (type, diff); }))))
1598(simplify
1599 (pointer_diff (convert?@2 @0) (convert?@3 ADDR_EXPR@1))
1600 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1601 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
f37fac2b 1602 (with { poly_int64 diff; }
1af4ebf5
MG
1603 (if (ptr_difference_const (@0, @1, &diff))
1604 { build_int_cst_type (type, diff); }))))
99e943a2 1605
bab73f11
RB
1606/* If arg0 is derived from the address of an object or function, we may
1607 be able to fold this expression using the object or function's
1608 alignment. */
1609(simplify
1610 (bit_and (convert? @0) INTEGER_CST@1)
1611 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1612 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1613 (with
1614 {
1615 unsigned int align;
1616 unsigned HOST_WIDE_INT bitpos;
1617 get_pointer_alignment_1 (@0, &align, &bitpos);
1618 }
8e6cdc90
RS
1619 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1620 { wide_int_to_tree (type, (wi::to_wide (@1)
1621 & (bitpos / BITS_PER_UNIT))); }))))
99e943a2 1622
a499aac5 1623
cc7b5acf
RB
1624/* We can't reassociate at all for saturating types. */
1625(if (!TYPE_SATURATING (type))
1626
1627 /* Contract negates. */
1628 /* A + (-B) -> A - B */
1629 (simplify
248179b5
RB
1630 (plus:c @0 (convert? (negate @1)))
1631 /* Apply STRIP_NOPS on the negate. */
1632 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1633 && !TYPE_OVERFLOW_SANITIZED (type))
248179b5
RB
1634 (with
1635 {
1636 tree t1 = type;
1637 if (INTEGRAL_TYPE_P (type)
1638 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1639 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1640 }
1641 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
cc7b5acf
RB
1642 /* A - (-B) -> A + B */
1643 (simplify
248179b5
RB
1644 (minus @0 (convert? (negate @1)))
1645 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1646 && !TYPE_OVERFLOW_SANITIZED (type))
248179b5
RB
1647 (with
1648 {
1649 tree t1 = type;
1650 if (INTEGRAL_TYPE_P (type)
1651 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1652 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1653 }
1654 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
63626547
MG
1655 /* -(T)(-A) -> (T)A
1656 Sign-extension is ok except for INT_MIN, which thankfully cannot
1657 happen without overflow. */
1658 (simplify
1659 (negate (convert (negate @1)))
1660 (if (INTEGRAL_TYPE_P (type)
1661 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1662 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1663 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1664 && !TYPE_OVERFLOW_SANITIZED (type)
1665 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
a0f12cf8 1666 (convert @1)))
63626547
MG
1667 (simplify
1668 (negate (convert negate_expr_p@1))
1669 (if (SCALAR_FLOAT_TYPE_P (type)
1670 && ((DECIMAL_FLOAT_TYPE_P (type)
1671 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1672 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1673 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1674 (convert (negate @1))))
1675 (simplify
1676 (negate (nop_convert (negate @1)))
1677 (if (!TYPE_OVERFLOW_SANITIZED (type)
1678 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1679 (view_convert @1)))
cc7b5acf 1680
7318e44f
RB
1681 /* We can't reassociate floating-point unless -fassociative-math
1682 or fixed-point plus or minus because of saturation to +-Inf. */
1683 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1684 && !FIXED_POINT_TYPE_P (type))
cc7b5acf
RB
1685
1686 /* Match patterns that allow contracting a plus-minus pair
1687 irrespective of overflow issues. */
1688 /* (A +- B) - A -> +- B */
1689 /* (A +- B) -+ B -> A */
1690 /* A - (A +- B) -> -+ B */
1691 /* A +- (B -+ A) -> +- B */
1692 (simplify
1693 (minus (plus:c @0 @1) @0)
1694 @1)
1695 (simplify
1696 (minus (minus @0 @1) @0)
1697 (negate @1))
1698 (simplify
1699 (plus:c (minus @0 @1) @1)
1700 @0)
1701 (simplify
1702 (minus @0 (plus:c @0 @1))
1703 (negate @1))
1704 (simplify
1705 (minus @0 (minus @0 @1))
1706 @1)
1e7df2e6
MG
1707 /* (A +- B) + (C - A) -> C +- B */
1708 /* (A + B) - (A - C) -> B + C */
1709 /* More cases are handled with comparisons. */
1710 (simplify
1711 (plus:c (plus:c @0 @1) (minus @2 @0))
1712 (plus @2 @1))
1713 (simplify
1714 (plus:c (minus @0 @1) (minus @2 @0))
1715 (minus @2 @1))
1af4ebf5
MG
1716 (simplify
1717 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1718 (if (TYPE_OVERFLOW_UNDEFINED (type)
1719 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1720 (pointer_diff @2 @1)))
1e7df2e6
MG
1721 (simplify
1722 (minus (plus:c @0 @1) (minus @0 @2))
1723 (plus @1 @2))
cc7b5acf 1724
ed73f46f
MG
1725 /* (A +- CST1) +- CST2 -> A + CST3
1726 Use view_convert because it is safe for vectors and equivalent for
1727 scalars. */
cc7b5acf
RB
1728 (for outer_op (plus minus)
1729 (for inner_op (plus minus)
ed73f46f 1730 neg_inner_op (minus plus)
cc7b5acf 1731 (simplify
ed73f46f
MG
1732 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1733 CONSTANT_CLASS_P@2)
1734 /* If one of the types wraps, use that one. */
1735 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
3eb1eecf
JJ
1736 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1737 forever if something doesn't simplify into a constant. */
1738 (if (!CONSTANT_CLASS_P (@0))
1739 (if (outer_op == PLUS_EXPR)
1740 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1741 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
ed73f46f
MG
1742 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1743 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1744 (if (outer_op == PLUS_EXPR)
1745 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1746 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1747 /* If the constant operation overflows we cannot do the transform
1748 directly as we would introduce undefined overflow, for example
1749 with (a - 1) + INT_MIN. */
1750 (if (types_match (type, @0))
1751 (with { tree cst = const_binop (outer_op == inner_op
1752 ? PLUS_EXPR : MINUS_EXPR,
1753 type, @1, @2); }
1754 (if (cst && !TREE_OVERFLOW (cst))
1755 (inner_op @0 { cst; } )
1756 /* X+INT_MAX+1 is X-INT_MIN. */
1757 (if (INTEGRAL_TYPE_P (type) && cst
8e6cdc90
RS
1758 && wi::to_wide (cst) == wi::min_value (type))
1759 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
ed73f46f
MG
1760 /* Last resort, use some unsigned type. */
1761 (with { tree utype = unsigned_type_for (type); }
1762 (view_convert (inner_op
1763 (view_convert:utype @0)
1764 (view_convert:utype
1765 { drop_tree_overflow (cst); })))))))))))))
cc7b5acf 1766
b302f2e0 1767 /* (CST1 - A) +- CST2 -> CST3 - A */
cc7b5acf
RB
1768 (for outer_op (plus minus)
1769 (simplify
1770 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
23f27839 1771 (with { tree cst = const_binop (outer_op, type, @1, @2); }
cc7b5acf
RB
1772 (if (cst && !TREE_OVERFLOW (cst))
1773 (minus { cst; } @0)))))
1774
b302f2e0
RB
1775 /* CST1 - (CST2 - A) -> CST3 + A */
1776 (simplify
1777 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1778 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1779 (if (cst && !TREE_OVERFLOW (cst))
1780 (plus { cst; } @0))))
1781
cc7b5acf
RB
1782 /* ~A + A -> -1 */
1783 (simplify
1784 (plus:c (bit_not @0) @0)
1785 (if (!TYPE_OVERFLOW_TRAPS (type))
1786 { build_all_ones_cst (type); }))
1787
1788 /* ~A + 1 -> -A */
1789 (simplify
e19740ae
RB
1790 (plus (convert? (bit_not @0)) integer_each_onep)
1791 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1792 (negate (convert @0))))
1793
1794 /* -A - 1 -> ~A */
1795 (simplify
1796 (minus (convert? (negate @0)) integer_each_onep)
1797 (if (!TYPE_OVERFLOW_TRAPS (type)
1798 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1799 (bit_not (convert @0))))
1800
1801 /* -1 - A -> ~A */
1802 (simplify
1803 (minus integer_all_onesp @0)
bc4315fb 1804 (bit_not @0))
cc7b5acf
RB
1805
1806 /* (T)(P + A) - (T)P -> (T) A */
d7f44d4d 1807 (simplify
a72610d4
JJ
1808 (minus (convert (plus:c @@0 @1))
1809 (convert? @0))
d7f44d4d
JJ
1810 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1811 /* For integer types, if A has a smaller type
1812 than T the result depends on the possible
1813 overflow in P + A.
1814 E.g. T=size_t, A=(unsigned)429497295, P>0.
1815 However, if an overflow in P + A would cause
1816 undefined behavior, we can assume that there
1817 is no overflow. */
a72610d4
JJ
1818 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1819 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
d7f44d4d
JJ
1820 (convert @1)))
1821 (simplify
1822 (minus (convert (pointer_plus @@0 @1))
1823 (convert @0))
1824 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1825 /* For pointer types, if the conversion of A to the
1826 final type requires a sign- or zero-extension,
1827 then we have to punt - it is not defined which
1828 one is correct. */
1829 || (POINTER_TYPE_P (TREE_TYPE (@0))
1830 && TREE_CODE (@1) == INTEGER_CST
1831 && tree_int_cst_sign_bit (@1) == 0))
1832 (convert @1)))
1af4ebf5
MG
1833 (simplify
1834 (pointer_diff (pointer_plus @@0 @1) @0)
1835 /* The second argument of pointer_plus must be interpreted as signed, and
1836 thus sign-extended if necessary. */
1837 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
8ae43881
JJ
1838 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1839 second arg is unsigned even when we need to consider it as signed,
1840 we don't want to diagnose overflow here. */
1841 (convert (view_convert:stype @1))))
a8fc2579
RB
1842
1843 /* (T)P - (T)(P + A) -> -(T) A */
d7f44d4d 1844 (simplify
a72610d4
JJ
1845 (minus (convert? @0)
1846 (convert (plus:c @@0 @1)))
d7f44d4d
JJ
1847 (if (INTEGRAL_TYPE_P (type)
1848 && TYPE_OVERFLOW_UNDEFINED (type)
1849 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1850 (with { tree utype = unsigned_type_for (type); }
1851 (convert (negate (convert:utype @1))))
a8fc2579
RB
1852 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1853 /* For integer types, if A has a smaller type
1854 than T the result depends on the possible
1855 overflow in P + A.
1856 E.g. T=size_t, A=(unsigned)429497295, P>0.
1857 However, if an overflow in P + A would cause
1858 undefined behavior, we can assume that there
1859 is no overflow. */
a72610d4
JJ
1860 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1861 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
d7f44d4d
JJ
1862 (negate (convert @1)))))
1863 (simplify
1864 (minus (convert @0)
1865 (convert (pointer_plus @@0 @1)))
1866 (if (INTEGRAL_TYPE_P (type)
1867 && TYPE_OVERFLOW_UNDEFINED (type)
1868 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1869 (with { tree utype = unsigned_type_for (type); }
1870 (convert (negate (convert:utype @1))))
1871 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
a8fc2579
RB
1872 /* For pointer types, if the conversion of A to the
1873 final type requires a sign- or zero-extension,
1874 then we have to punt - it is not defined which
1875 one is correct. */
1876 || (POINTER_TYPE_P (TREE_TYPE (@0))
1877 && TREE_CODE (@1) == INTEGER_CST
1878 && tree_int_cst_sign_bit (@1) == 0))
1879 (negate (convert @1)))))
1af4ebf5
MG
1880 (simplify
1881 (pointer_diff @0 (pointer_plus @@0 @1))
1882 /* The second argument of pointer_plus must be interpreted as signed, and
1883 thus sign-extended if necessary. */
1884 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
8ae43881
JJ
1885 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1886 second arg is unsigned even when we need to consider it as signed,
1887 we don't want to diagnose overflow here. */
1888 (negate (convert (view_convert:stype @1)))))
a8fc2579
RB
1889
1890 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
d7f44d4d 1891 (simplify
a72610d4 1892 (minus (convert (plus:c @@0 @1))
d7f44d4d
JJ
1893 (convert (plus:c @0 @2)))
1894 (if (INTEGRAL_TYPE_P (type)
1895 && TYPE_OVERFLOW_UNDEFINED (type)
a72610d4
JJ
1896 && element_precision (type) <= element_precision (TREE_TYPE (@1))
1897 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
d7f44d4d
JJ
1898 (with { tree utype = unsigned_type_for (type); }
1899 (convert (minus (convert:utype @1) (convert:utype @2))))
a72610d4
JJ
1900 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
1901 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
1902 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
1903 /* For integer types, if A has a smaller type
1904 than T the result depends on the possible
1905 overflow in P + A.
1906 E.g. T=size_t, A=(unsigned)429497295, P>0.
1907 However, if an overflow in P + A would cause
1908 undefined behavior, we can assume that there
1909 is no overflow. */
1910 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1911 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1912 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
1913 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
d7f44d4d
JJ
1914 (minus (convert @1) (convert @2)))))
1915 (simplify
1916 (minus (convert (pointer_plus @@0 @1))
1917 (convert (pointer_plus @0 @2)))
1918 (if (INTEGRAL_TYPE_P (type)
1919 && TYPE_OVERFLOW_UNDEFINED (type)
1920 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1921 (with { tree utype = unsigned_type_for (type); }
1922 (convert (minus (convert:utype @1) (convert:utype @2))))
1923 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
a8fc2579
RB
1924 /* For pointer types, if the conversion of A to the
1925 final type requires a sign- or zero-extension,
1926 then we have to punt - it is not defined which
1927 one is correct. */
1928 || (POINTER_TYPE_P (TREE_TYPE (@0))
1929 && TREE_CODE (@1) == INTEGER_CST
1930 && tree_int_cst_sign_bit (@1) == 0
1931 && TREE_CODE (@2) == INTEGER_CST
1932 && tree_int_cst_sign_bit (@2) == 0))
d7f44d4d 1933 (minus (convert @1) (convert @2)))))
1af4ebf5
MG
1934 (simplify
1935 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
1936 /* The second argument of pointer_plus must be interpreted as signed, and
1937 thus sign-extended if necessary. */
1938 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
8ae43881
JJ
1939 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1940 second arg is unsigned even when we need to consider it as signed,
1941 we don't want to diagnose overflow here. */
1942 (minus (convert (view_convert:stype @1))
1943 (convert (view_convert:stype @2)))))))
cc7b5acf 1944
5b55e6e3
RB
1945/* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
1946 Modeled after fold_plusminus_mult_expr. */
1947(if (!TYPE_SATURATING (type)
1948 && (!FLOAT_TYPE_P (type) || flag_associative_math))
1949 (for plusminus (plus minus)
1950 (simplify
c1bbe5b3
RB
1951 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
1952 (if ((!ANY_INTEGRAL_TYPE_P (type)
5b55e6e3
RB
1953 || TYPE_OVERFLOW_WRAPS (type)
1954 || (INTEGRAL_TYPE_P (type)
1955 && tree_expr_nonzero_p (@0)
1956 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
c1bbe5b3
RB
1957 /* If @1 +- @2 is constant require a hard single-use on either
1958 original operand (but not on both). */
1959 && (single_use (@3) || single_use (@4)))
1960 (mult (plusminus @1 @2) @0)))
1961 /* We cannot generate constant 1 for fract. */
1962 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
1963 (simplify
1964 (plusminus @0 (mult:c@3 @0 @2))
1965 (if ((!ANY_INTEGRAL_TYPE_P (type)
1966 || TYPE_OVERFLOW_WRAPS (type)
1967 || (INTEGRAL_TYPE_P (type)
1968 && tree_expr_nonzero_p (@0)
1969 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1970 && single_use (@3))
5b55e6e3
RB
1971 (mult (plusminus { build_one_cst (type); } @2) @0)))
1972 (simplify
c1bbe5b3
RB
1973 (plusminus (mult:c@3 @0 @2) @0)
1974 (if ((!ANY_INTEGRAL_TYPE_P (type)
1975 || TYPE_OVERFLOW_WRAPS (type)
1976 || (INTEGRAL_TYPE_P (type)
1977 && tree_expr_nonzero_p (@0)
1978 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1979 && single_use (@3))
5b55e6e3 1980 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
cc7b5acf 1981
0122e8e5 1982/* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
a7f24614 1983
c6cfa2bf 1984(for minmax (min max FMIN_ALL FMAX_ALL)
a7f24614
RB
1985 (simplify
1986 (minmax @0 @0)
1987 @0))
4a334cba
RS
1988/* min(max(x,y),y) -> y. */
1989(simplify
1990 (min:c (max:c @0 @1) @1)
1991 @1)
1992/* max(min(x,y),y) -> y. */
1993(simplify
1994 (max:c (min:c @0 @1) @1)
1995 @1)
d657e995
RB
1996/* max(a,-a) -> abs(a). */
1997(simplify
1998 (max:c @0 (negate @0))
1999 (if (TREE_CODE (type) != COMPLEX_TYPE
2000 && (! ANY_INTEGRAL_TYPE_P (type)
2001 || TYPE_OVERFLOW_UNDEFINED (type)))
2002 (abs @0)))
54f84ca9
RB
2003/* min(a,-a) -> -abs(a). */
2004(simplify
2005 (min:c @0 (negate @0))
2006 (if (TREE_CODE (type) != COMPLEX_TYPE
2007 && (! ANY_INTEGRAL_TYPE_P (type)
2008 || TYPE_OVERFLOW_UNDEFINED (type)))
2009 (negate (abs @0))))
a7f24614
RB
2010(simplify
2011 (min @0 @1)
2c2870a1
MG
2012 (switch
2013 (if (INTEGRAL_TYPE_P (type)
2014 && TYPE_MIN_VALUE (type)
2015 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2016 @1)
2017 (if (INTEGRAL_TYPE_P (type)
2018 && TYPE_MAX_VALUE (type)
2019 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2020 @0)))
a7f24614
RB
2021(simplify
2022 (max @0 @1)
2c2870a1
MG
2023 (switch
2024 (if (INTEGRAL_TYPE_P (type)
2025 && TYPE_MAX_VALUE (type)
2026 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2027 @1)
2028 (if (INTEGRAL_TYPE_P (type)
2029 && TYPE_MIN_VALUE (type)
2030 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2031 @0)))
ad6e4ba8 2032
182f37c9
N
2033/* max (a, a + CST) -> a + CST where CST is positive. */
2034/* max (a, a + CST) -> a where CST is negative. */
2035(simplify
2036 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2037 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2038 (if (tree_int_cst_sgn (@1) > 0)
2039 @2
2040 @0)))
2041
2042/* min (a, a + CST) -> a where CST is positive. */
2043/* min (a, a + CST) -> a + CST where CST is negative. */
2044(simplify
2045 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2046 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2047 (if (tree_int_cst_sgn (@1) > 0)
2048 @0
2049 @2)))
2050
ad6e4ba8
BC
2051/* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2052 and the outer convert demotes the expression back to x's type. */
2053(for minmax (min max)
2054 (simplify
2055 (convert (minmax@0 (convert @1) INTEGER_CST@2))
ebf41734
BC
2056 (if (INTEGRAL_TYPE_P (type)
2057 && types_match (@1, type) && int_fits_type_p (@2, type)
ad6e4ba8
BC
2058 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2059 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2060 (minmax @1 (convert @2)))))
2061
c6cfa2bf 2062(for minmax (FMIN_ALL FMAX_ALL)
0122e8e5
RS
2063 /* If either argument is NaN, return the other one. Avoid the
2064 transformation if we get (and honor) a signalling NaN. */
2065 (simplify
2066 (minmax:c @0 REAL_CST@1)
2067 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2068 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2069 @0)))
2070/* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2071 functions to return the numeric arg if the other one is NaN.
2072 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2073 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2074 worry about it either. */
2075(if (flag_finite_math_only)
2076 (simplify
c6cfa2bf 2077 (FMIN_ALL @0 @1)
0122e8e5 2078 (min @0 @1))
4119b2eb 2079 (simplify
c6cfa2bf 2080 (FMAX_ALL @0 @1)
0122e8e5 2081 (max @0 @1)))
ce0e66ff 2082/* min (-A, -B) -> -max (A, B) */
c6cfa2bf
MM
2083(for minmax (min max FMIN_ALL FMAX_ALL)
2084 maxmin (max min FMAX_ALL FMIN_ALL)
ce0e66ff
MG
2085 (simplify
2086 (minmax (negate:s@2 @0) (negate:s@3 @1))
2087 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2088 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2089 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2090 (negate (maxmin @0 @1)))))
2091/* MIN (~X, ~Y) -> ~MAX (X, Y)
2092 MAX (~X, ~Y) -> ~MIN (X, Y) */
2093(for minmax (min max)
2094 maxmin (max min)
2095 (simplify
2096 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2097 (bit_not (maxmin @0 @1))))
a7f24614 2098
b4817bd6
MG
2099/* MIN (X, Y) == X -> X <= Y */
2100(for minmax (min min max max)
2101 cmp (eq ne eq ne )
2102 out (le gt ge lt )
2103 (simplify
2104 (cmp:c (minmax:c @0 @1) @0)
2105 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2106 (out @0 @1))))
2107/* MIN (X, 5) == 0 -> X == 0
2108 MIN (X, 5) == 7 -> false */
2109(for cmp (eq ne)
2110 (simplify
2111 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
8e6cdc90
RS
2112 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2113 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6 2114 { constant_boolean_node (cmp == NE_EXPR, type); }
8e6cdc90
RS
2115 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2116 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6
MG
2117 (cmp @0 @2)))))
2118(for cmp (eq ne)
2119 (simplify
2120 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
8e6cdc90
RS
2121 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2122 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6 2123 { constant_boolean_node (cmp == NE_EXPR, type); }
8e6cdc90
RS
2124 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2125 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6
MG
2126 (cmp @0 @2)))))
2127/* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2128(for minmax (min min max max min min max max )
2129 cmp (lt le gt ge gt ge lt le )
2130 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2131 (simplify
2132 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2133 (comb (cmp @0 @2) (cmp @1 @2))))
2134
a7f24614
RB
2135/* Simplifications of shift and rotates. */
2136
2137(for rotate (lrotate rrotate)
2138 (simplify
2139 (rotate integer_all_onesp@0 @1)
2140 @0))
2141
2142/* Optimize -1 >> x for arithmetic right shifts. */
2143(simplify
2144 (rshift integer_all_onesp@0 @1)
2145 (if (!TYPE_UNSIGNED (type)
2146 && tree_expr_nonnegative_p (@1))
2147 @0))
2148
12085390
N
2149/* Optimize (x >> c) << c into x & (-1<<c). */
2150(simplify
2151 (lshift (rshift @0 INTEGER_CST@1) @1)
8e6cdc90 2152 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
12085390
N
2153 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2154
2155/* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2156 types. */
2157(simplify
2158 (rshift (lshift @0 INTEGER_CST@1) @1)
2159 (if (TYPE_UNSIGNED (type)
8e6cdc90 2160 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
12085390
N
2161 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2162
a7f24614
RB
2163(for shiftrotate (lrotate rrotate lshift rshift)
2164 (simplify
2165 (shiftrotate @0 integer_zerop)
2166 (non_lvalue @0))
2167 (simplify
2168 (shiftrotate integer_zerop@0 @1)
2169 @0)
2170 /* Prefer vector1 << scalar to vector1 << vector2
2171 if vector2 is uniform. */
2172 (for vec (VECTOR_CST CONSTRUCTOR)
2173 (simplify
2174 (shiftrotate @0 vec@1)
2175 (with { tree tem = uniform_vector_p (@1); }
2176 (if (tem)
2177 (shiftrotate @0 { tem; }))))))
2178
165ba2e9
JJ
2179/* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2180 Y is 0. Similarly for X >> Y. */
2181#if GIMPLE
2182(for shift (lshift rshift)
2183 (simplify
2184 (shift @0 SSA_NAME@1)
2185 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2186 (with {
2187 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2188 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2189 }
2190 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2191 @0)))))
2192#endif
2193
a7f24614
RB
2194/* Rewrite an LROTATE_EXPR by a constant into an
2195 RROTATE_EXPR by a new constant. */
2196(simplify
2197 (lrotate @0 INTEGER_CST@1)
23f27839 2198 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
a7f24614
RB
2199 build_int_cst (TREE_TYPE (@1),
2200 element_precision (type)), @1); }))
2201
14ea9f92
RB
2202/* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2203(for op (lrotate rrotate rshift lshift)
2204 (simplify
2205 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2206 (with { unsigned int prec = element_precision (type); }
8e6cdc90
RS
2207 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2208 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2209 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2210 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
a1488398
RS
2211 (with { unsigned int low = (tree_to_uhwi (@1)
2212 + tree_to_uhwi (@2)); }
14ea9f92
RB
2213 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2214 being well defined. */
2215 (if (low >= prec)
2216 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
8fdc6c67 2217 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
50301115 2218 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
8fdc6c67
RB
2219 { build_zero_cst (type); }
2220 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2221 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
14ea9f92
RB
2222
2223
01ada710
MP
2224/* ((1 << A) & 1) != 0 -> A == 0
2225 ((1 << A) & 1) == 0 -> A != 0 */
2226(for cmp (ne eq)
2227 icmp (eq ne)
2228 (simplify
2229 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2230 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
cc7b5acf 2231
f2e609c3
MP
2232/* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2233 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2234 if CST2 != 0. */
2235(for cmp (ne eq)
2236 (simplify
2237 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
8e6cdc90 2238 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
f2e609c3
MP
2239 (if (cand < 0
2240 || (!integer_zerop (@2)
8e6cdc90 2241 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
8fdc6c67
RB
2242 { constant_boolean_node (cmp == NE_EXPR, type); }
2243 (if (!integer_zerop (@2)
8e6cdc90 2244 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
8fdc6c67 2245 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
f2e609c3 2246
1ffbaa3f
RB
2247/* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2248 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2249 if the new mask might be further optimized. */
2250(for shift (lshift rshift)
2251 (simplify
44fc0a51
RB
2252 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2253 INTEGER_CST@2)
1ffbaa3f
RB
2254 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2255 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2256 && tree_fits_uhwi_p (@1)
2257 && tree_to_uhwi (@1) > 0
2258 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2259 (with
2260 {
2261 unsigned int shiftc = tree_to_uhwi (@1);
2262 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2263 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2264 tree shift_type = TREE_TYPE (@3);
2265 unsigned int prec;
2266
2267 if (shift == LSHIFT_EXPR)
fecfbfa4 2268 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
1ffbaa3f 2269 else if (shift == RSHIFT_EXPR
2be65d9e 2270 && type_has_mode_precision_p (shift_type))
1ffbaa3f
RB
2271 {
2272 prec = TYPE_PRECISION (TREE_TYPE (@3));
2273 tree arg00 = @0;
2274 /* See if more bits can be proven as zero because of
2275 zero extension. */
2276 if (@3 != @0
2277 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2278 {
2279 tree inner_type = TREE_TYPE (@0);
2be65d9e 2280 if (type_has_mode_precision_p (inner_type)
1ffbaa3f
RB
2281 && TYPE_PRECISION (inner_type) < prec)
2282 {
2283 prec = TYPE_PRECISION (inner_type);
2284 /* See if we can shorten the right shift. */
2285 if (shiftc < prec)
2286 shift_type = inner_type;
2287 /* Otherwise X >> C1 is all zeros, so we'll optimize
2288 it into (X, 0) later on by making sure zerobits
2289 is all ones. */
2290 }
2291 }
dd4786fe 2292 zerobits = HOST_WIDE_INT_M1U;
1ffbaa3f
RB
2293 if (shiftc < prec)
2294 {
2295 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2296 zerobits <<= prec - shiftc;
2297 }
2298 /* For arithmetic shift if sign bit could be set, zerobits
2299 can contain actually sign bits, so no transformation is
2300 possible, unless MASK masks them all away. In that
2301 case the shift needs to be converted into logical shift. */
2302 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2303 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2304 {
2305 if ((mask & zerobits) == 0)
2306 shift_type = unsigned_type_for (TREE_TYPE (@3));
2307 else
2308 zerobits = 0;
2309 }
2310 }
2311 }
2312 /* ((X << 16) & 0xff00) is (X, 0). */
2313 (if ((mask & zerobits) == mask)
8fdc6c67
RB
2314 { build_int_cst (type, 0); }
2315 (with { newmask = mask | zerobits; }
2316 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2317 (with
2318 {
2319 /* Only do the transformation if NEWMASK is some integer
2320 mode's mask. */
2321 for (prec = BITS_PER_UNIT;
2322 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
fecfbfa4 2323 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
8fdc6c67
RB
2324 break;
2325 }
2326 (if (prec < HOST_BITS_PER_WIDE_INT
dd4786fe 2327 || newmask == HOST_WIDE_INT_M1U)
8fdc6c67
RB
2328 (with
2329 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2330 (if (!tree_int_cst_equal (newmaskt, @2))
2331 (if (shift_type != TREE_TYPE (@3))
2332 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2333 (bit_and @4 { newmaskt; })))))))))))))
1ffbaa3f 2334
84ff66b8
AV
2335/* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2336 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
98e30e51 2337(for shift (lshift rshift)
84ff66b8
AV
2338 (for bit_op (bit_and bit_xor bit_ior)
2339 (simplify
2340 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2341 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2342 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2343 (bit_op (shift (convert @0) @1) { mask; }))))))
98e30e51 2344
ad1d92ab
MM
2345/* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2346(simplify
2347 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2348 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
ece46666
MG
2349 && (element_precision (TREE_TYPE (@0))
2350 <= element_precision (TREE_TYPE (@1))
2351 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
ad1d92ab
MM
2352 (with
2353 { tree shift_type = TREE_TYPE (@0); }
2354 (convert (rshift (convert:shift_type @1) @2)))))
2355
2356/* ~(~X >>r Y) -> X >>r Y
2357 ~(~X <<r Y) -> X <<r Y */
2358(for rotate (lrotate rrotate)
2359 (simplify
2360 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
ece46666
MG
2361 (if ((element_precision (TREE_TYPE (@0))
2362 <= element_precision (TREE_TYPE (@1))
2363 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2364 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2365 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
ad1d92ab
MM
2366 (with
2367 { tree rotate_type = TREE_TYPE (@0); }
2368 (convert (rotate (convert:rotate_type @1) @2))))))
98e30e51 2369
d4573ffe
RB
2370/* Simplifications of conversions. */
2371
2372/* Basic strip-useless-type-conversions / strip_nops. */
f3582e54 2373(for cvt (convert view_convert float fix_trunc)
d4573ffe
RB
2374 (simplify
2375 (cvt @0)
2376 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2377 || (GENERIC && type == TREE_TYPE (@0)))
2378 @0)))
2379
2380/* Contract view-conversions. */
2381(simplify
2382 (view_convert (view_convert @0))
2383 (view_convert @0))
2384
2385/* For integral conversions with the same precision or pointer
2386 conversions use a NOP_EXPR instead. */
2387(simplify
2388 (view_convert @0)
2389 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2390 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2391 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2392 (convert @0)))
2393
bce8ef71
MG
2394/* Strip inner integral conversions that do not change precision or size, or
2395 zero-extend while keeping the same size (for bool-to-char). */
d4573ffe
RB
2396(simplify
2397 (view_convert (convert@0 @1))
2398 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2399 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
bce8ef71
MG
2400 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2401 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2402 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2403 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
d4573ffe
RB
2404 (view_convert @1)))
2405
2406/* Re-association barriers around constants and other re-association
2407 barriers can be removed. */
2408(simplify
2409 (paren CONSTANT_CLASS_P@0)
2410 @0)
2411(simplify
2412 (paren (paren@1 @0))
2413 @1)
1e51d0a2
RB
2414
2415/* Handle cases of two conversions in a row. */
2416(for ocvt (convert float fix_trunc)
2417 (for icvt (convert float)
2418 (simplify
2419 (ocvt (icvt@1 @0))
2420 (with
2421 {
2422 tree inside_type = TREE_TYPE (@0);
2423 tree inter_type = TREE_TYPE (@1);
2424 int inside_int = INTEGRAL_TYPE_P (inside_type);
2425 int inside_ptr = POINTER_TYPE_P (inside_type);
2426 int inside_float = FLOAT_TYPE_P (inside_type);
09240451 2427 int inside_vec = VECTOR_TYPE_P (inside_type);
1e51d0a2
RB
2428 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2429 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2430 int inter_int = INTEGRAL_TYPE_P (inter_type);
2431 int inter_ptr = POINTER_TYPE_P (inter_type);
2432 int inter_float = FLOAT_TYPE_P (inter_type);
09240451 2433 int inter_vec = VECTOR_TYPE_P (inter_type);
1e51d0a2
RB
2434 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2435 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2436 int final_int = INTEGRAL_TYPE_P (type);
2437 int final_ptr = POINTER_TYPE_P (type);
2438 int final_float = FLOAT_TYPE_P (type);
09240451 2439 int final_vec = VECTOR_TYPE_P (type);
1e51d0a2
RB
2440 unsigned int final_prec = TYPE_PRECISION (type);
2441 int final_unsignedp = TYPE_UNSIGNED (type);
2442 }
64d3a1f0
RB
2443 (switch
2444 /* In addition to the cases of two conversions in a row
2445 handled below, if we are converting something to its own
2446 type via an object of identical or wider precision, neither
2447 conversion is needed. */
2448 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2449 || (GENERIC
2450 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2451 && (((inter_int || inter_ptr) && final_int)
2452 || (inter_float && final_float))
2453 && inter_prec >= final_prec)
2454 (ocvt @0))
2455
2456 /* Likewise, if the intermediate and initial types are either both
2457 float or both integer, we don't need the middle conversion if the
2458 former is wider than the latter and doesn't change the signedness
2459 (for integers). Avoid this if the final type is a pointer since
36088299 2460 then we sometimes need the middle conversion. */
64d3a1f0
RB
2461 (if (((inter_int && inside_int) || (inter_float && inside_float))
2462 && (final_int || final_float)
2463 && inter_prec >= inside_prec
36088299 2464 && (inter_float || inter_unsignedp == inside_unsignedp))
64d3a1f0
RB
2465 (ocvt @0))
2466
2467 /* If we have a sign-extension of a zero-extended value, we can
2468 replace that by a single zero-extension. Likewise if the
2469 final conversion does not change precision we can drop the
2470 intermediate conversion. */
2471 (if (inside_int && inter_int && final_int
2472 && ((inside_prec < inter_prec && inter_prec < final_prec
2473 && inside_unsignedp && !inter_unsignedp)
2474 || final_prec == inter_prec))
2475 (ocvt @0))
2476
2477 /* Two conversions in a row are not needed unless:
1e51d0a2
RB
2478 - some conversion is floating-point (overstrict for now), or
2479 - some conversion is a vector (overstrict for now), or
2480 - the intermediate type is narrower than both initial and
2481 final, or
2482 - the intermediate type and innermost type differ in signedness,
2483 and the outermost type is wider than the intermediate, or
2484 - the initial type is a pointer type and the precisions of the
2485 intermediate and final types differ, or
2486 - the final type is a pointer type and the precisions of the
2487 initial and intermediate types differ. */
64d3a1f0
RB
2488 (if (! inside_float && ! inter_float && ! final_float
2489 && ! inside_vec && ! inter_vec && ! final_vec
2490 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2491 && ! (inside_int && inter_int
2492 && inter_unsignedp != inside_unsignedp
2493 && inter_prec < final_prec)
2494 && ((inter_unsignedp && inter_prec > inside_prec)
2495 == (final_unsignedp && final_prec > inter_prec))
2496 && ! (inside_ptr && inter_prec != final_prec)
36088299 2497 && ! (final_ptr && inside_prec != inter_prec))
64d3a1f0
RB
2498 (ocvt @0))
2499
2500 /* A truncation to an unsigned type (a zero-extension) should be
2501 canonicalized as bitwise and of a mask. */
1d510e04
JJ
2502 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2503 && final_int && inter_int && inside_int
64d3a1f0
RB
2504 && final_prec == inside_prec
2505 && final_prec > inter_prec
2506 && inter_unsignedp)
2507 (convert (bit_and @0 { wide_int_to_tree
2508 (inside_type,
2509 wi::mask (inter_prec, false,
2510 TYPE_PRECISION (inside_type))); })))
2511
2512 /* If we are converting an integer to a floating-point that can
2513 represent it exactly and back to an integer, we can skip the
2514 floating-point conversion. */
2515 (if (GIMPLE /* PR66211 */
2516 && inside_int && inter_float && final_int &&
2517 (unsigned) significand_size (TYPE_MODE (inter_type))
2518 >= inside_prec - !inside_unsignedp)
2519 (convert @0)))))))
ea2042ba
RB
2520
2521/* If we have a narrowing conversion to an integral type that is fed by a
2522 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2523 masks off bits outside the final type (and nothing else). */
2524(simplify
2525 (convert (bit_and @0 INTEGER_CST@1))
2526 (if (INTEGRAL_TYPE_P (type)
2527 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2528 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2529 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2530 TYPE_PRECISION (type)), 0))
2531 (convert @0)))
a25454ea
RB
2532
2533
2534/* (X /[ex] A) * A -> X. */
2535(simplify
2eef1fc1
RB
2536 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2537 (convert @0))
eaeba53a 2538
a7f24614
RB
2539/* Canonicalization of binary operations. */
2540
2541/* Convert X + -C into X - C. */
2542(simplify
2543 (plus @0 REAL_CST@1)
2544 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
23f27839 2545 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
a7f24614
RB
2546 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2547 (minus @0 { tem; })))))
2548
6b6aa8d3 2549/* Convert x+x into x*2. */
a7f24614
RB
2550(simplify
2551 (plus @0 @0)
2552 (if (SCALAR_FLOAT_TYPE_P (type))
6b6aa8d3
MG
2553 (mult @0 { build_real (type, dconst2); })
2554 (if (INTEGRAL_TYPE_P (type))
2555 (mult @0 { build_int_cst (type, 2); }))))
a7f24614 2556
406520e2 2557/* 0 - X -> -X. */
a7f24614
RB
2558(simplify
2559 (minus integer_zerop @1)
2560 (negate @1))
406520e2
MG
2561(simplify
2562 (pointer_diff integer_zerop @1)
2563 (negate (convert @1)))
a7f24614
RB
2564
2565/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2566 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2567 (-ARG1 + ARG0) reduces to -ARG1. */
2568(simplify
2569 (minus real_zerop@0 @1)
2570 (if (fold_real_zero_addition_p (type, @0, 0))
2571 (negate @1)))
2572
2573/* Transform x * -1 into -x. */
2574(simplify
2575 (mult @0 integer_minus_onep)
2576 (negate @0))
eaeba53a 2577
b771c609
AM
2578/* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2579 signed overflow for CST != 0 && CST != -1. */
2580(simplify
2581 (mult:c (mult:s @0 INTEGER_CST@1) @2)
2582 (if (TREE_CODE (@2) != INTEGER_CST
2583 && !integer_zerop (@1) && !integer_minus_onep (@1))
2584 (mult (mult @0 @2) @1)))
2585
96285749
RS
2586/* True if we can easily extract the real and imaginary parts of a complex
2587 number. */
2588(match compositional_complex
2589 (convert? (complex @0 @1)))
2590
eaeba53a
RB
2591/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2592(simplify
2593 (complex (realpart @0) (imagpart @0))
2594 @0)
2595(simplify
2596 (realpart (complex @0 @1))
2597 @0)
2598(simplify
2599 (imagpart (complex @0 @1))
2600 @1)
83633539 2601
77c028c5
MG
2602/* Sometimes we only care about half of a complex expression. */
2603(simplify
2604 (realpart (convert?:s (conj:s @0)))
2605 (convert (realpart @0)))
2606(simplify
2607 (imagpart (convert?:s (conj:s @0)))
2608 (convert (negate (imagpart @0))))
2609(for part (realpart imagpart)
2610 (for op (plus minus)
2611 (simplify
2612 (part (convert?:s@2 (op:s @0 @1)))
2613 (convert (op (part @0) (part @1))))))
2614(simplify
2615 (realpart (convert?:s (CEXPI:s @0)))
2616 (convert (COS @0)))
2617(simplify
2618 (imagpart (convert?:s (CEXPI:s @0)))
2619 (convert (SIN @0)))
2620
2621/* conj(conj(x)) -> x */
2622(simplify
2623 (conj (convert? (conj @0)))
2624 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2625 (convert @0)))
2626
2627/* conj({x,y}) -> {x,-y} */
2628(simplify
2629 (conj (convert?:s (complex:s @0 @1)))
2630 (with { tree itype = TREE_TYPE (type); }
2631 (complex (convert:itype @0) (negate (convert:itype @1)))))
83633539
RB
2632
2633/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2634(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2635 (simplify
2636 (bswap (bswap @0))
2637 @0)
2638 (simplify
2639 (bswap (bit_not (bswap @0)))
2640 (bit_not @0))
2641 (for bitop (bit_xor bit_ior bit_and)
2642 (simplify
2643 (bswap (bitop:c (bswap @0) @1))
2644 (bitop @0 (bswap @1)))))
96994de0
RB
2645
2646
2647/* Combine COND_EXPRs and VEC_COND_EXPRs. */
2648
2649/* Simplify constant conditions.
2650 Only optimize constant conditions when the selected branch
2651 has the same type as the COND_EXPR. This avoids optimizing
2652 away "c ? x : throw", where the throw has a void type.
2653 Note that we cannot throw away the fold-const.c variant nor
2654 this one as we depend on doing this transform before possibly
2655 A ? B : B -> B triggers and the fold-const.c one can optimize
2656 0 ? A : B to B even if A has side-effects. Something
2657 genmatch cannot handle. */
2658(simplify
2659 (cond INTEGER_CST@0 @1 @2)
8fdc6c67
RB
2660 (if (integer_zerop (@0))
2661 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2662 @2)
2663 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2664 @1)))
96994de0
RB
2665(simplify
2666 (vec_cond VECTOR_CST@0 @1 @2)
2667 (if (integer_all_onesp (@0))
8fdc6c67
RB
2668 @1
2669 (if (integer_zerop (@0))
2670 @2)))
96994de0 2671
b5481987
BC
2672/* Simplification moved from fold_cond_expr_with_comparison. It may also
2673 be extended. */
e2535011
BC
2674/* This pattern implements two kinds simplification:
2675
2676 Case 1)
2677 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
b5481987
BC
2678 1) Conversions are type widening from smaller type.
2679 2) Const c1 equals to c2 after canonicalizing comparison.
2680 3) Comparison has tree code LT, LE, GT or GE.
2681 This specific pattern is needed when (cmp (convert x) c) may not
2682 be simplified by comparison patterns because of multiple uses of
2683 x. It also makes sense here because simplifying across multiple
e2535011
BC
2684 referred var is always benefitial for complicated cases.
2685
2686 Case 2)
2687 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2688(for cmp (lt le gt ge eq)
b5481987 2689 (simplify
ae22bc5d 2690 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
b5481987
BC
2691 (with
2692 {
2693 tree from_type = TREE_TYPE (@1);
2694 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
ae22bc5d 2695 enum tree_code code = ERROR_MARK;
b5481987 2696
ae22bc5d
BC
2697 if (INTEGRAL_TYPE_P (from_type)
2698 && int_fits_type_p (@2, from_type)
b5481987
BC
2699 && (types_match (c1_type, from_type)
2700 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2701 && (TYPE_UNSIGNED (from_type)
2702 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2703 && (types_match (c2_type, from_type)
2704 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2705 && (TYPE_UNSIGNED (from_type)
2706 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2707 {
ae22bc5d 2708 if (cmp != EQ_EXPR)
b5481987 2709 {
e2535011
BC
2710 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2711 {
2712 /* X <= Y - 1 equals to X < Y. */
ae22bc5d 2713 if (cmp == LE_EXPR)
e2535011
BC
2714 code = LT_EXPR;
2715 /* X > Y - 1 equals to X >= Y. */
ae22bc5d 2716 if (cmp == GT_EXPR)
e2535011
BC
2717 code = GE_EXPR;
2718 }
2719 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2720 {
2721 /* X < Y + 1 equals to X <= Y. */
ae22bc5d 2722 if (cmp == LT_EXPR)
e2535011
BC
2723 code = LE_EXPR;
2724 /* X >= Y + 1 equals to X > Y. */
ae22bc5d 2725 if (cmp == GE_EXPR)
e2535011
BC
2726 code = GT_EXPR;
2727 }
ae22bc5d
BC
2728 if (code != ERROR_MARK
2729 || wi::to_widest (@2) == wi::to_widest (@3))
e2535011 2730 {
ae22bc5d 2731 if (cmp == LT_EXPR || cmp == LE_EXPR)
e2535011 2732 code = MIN_EXPR;
ae22bc5d 2733 if (cmp == GT_EXPR || cmp == GE_EXPR)
e2535011
BC
2734 code = MAX_EXPR;
2735 }
b5481987 2736 }
e2535011 2737 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
ae22bc5d
BC
2738 else if (int_fits_type_p (@3, from_type))
2739 code = EQ_EXPR;
b5481987
BC
2740 }
2741 }
2742 (if (code == MAX_EXPR)
21aaaf1e 2743 (convert (max @1 (convert @2)))
b5481987 2744 (if (code == MIN_EXPR)
21aaaf1e 2745 (convert (min @1 (convert @2)))
e2535011 2746 (if (code == EQ_EXPR)
ae22bc5d 2747 (convert (cond (eq @1 (convert @3))
21aaaf1e 2748 (convert:from_type @3) (convert:from_type @2)))))))))
b5481987 2749
714445ae
BC
2750/* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2751
2752 1) OP is PLUS or MINUS.
2753 2) CMP is LT, LE, GT or GE.
2754 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2755
2756 This pattern also handles special cases like:
2757
2758 A) Operand x is a unsigned to signed type conversion and c1 is
2759 integer zero. In this case,
2760 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2761 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2762 B) Const c1 may not equal to (C3 op' C2). In this case we also
2763 check equality for (c1+1) and (c1-1) by adjusting comparison
2764 code.
2765
2766 TODO: Though signed type is handled by this pattern, it cannot be
2767 simplified at the moment because C standard requires additional
2768 type promotion. In order to match&simplify it here, the IR needs
2769 to be cleaned up by other optimizers, i.e, VRP. */
2770(for op (plus minus)
2771 (for cmp (lt le gt ge)
2772 (simplify
2773 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2774 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2775 (if (types_match (from_type, to_type)
2776 /* Check if it is special case A). */
2777 || (TYPE_UNSIGNED (from_type)
2778 && !TYPE_UNSIGNED (to_type)
2779 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2780 && integer_zerop (@1)
2781 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2782 (with
2783 {
2784 bool overflow = false;
2785 enum tree_code code, cmp_code = cmp;
8e6cdc90
RS
2786 wide_int real_c1;
2787 wide_int c1 = wi::to_wide (@1);
2788 wide_int c2 = wi::to_wide (@2);
2789 wide_int c3 = wi::to_wide (@3);
714445ae
BC
2790 signop sgn = TYPE_SIGN (from_type);
2791
2792 /* Handle special case A), given x of unsigned type:
2793 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2794 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2795 if (!types_match (from_type, to_type))
2796 {
2797 if (cmp_code == LT_EXPR)
2798 cmp_code = GT_EXPR;
2799 if (cmp_code == GE_EXPR)
2800 cmp_code = LE_EXPR;
2801 c1 = wi::max_value (to_type);
2802 }
2803 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
2804 compute (c3 op' c2) and check if it equals to c1 with op' being
2805 the inverted operator of op. Make sure overflow doesn't happen
2806 if it is undefined. */
2807 if (op == PLUS_EXPR)
2808 real_c1 = wi::sub (c3, c2, sgn, &overflow);
2809 else
2810 real_c1 = wi::add (c3, c2, sgn, &overflow);
2811
2812 code = cmp_code;
2813 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2814 {
2815 /* Check if c1 equals to real_c1. Boundary condition is handled
2816 by adjusting comparison operation if necessary. */
2817 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2818 && !overflow)
2819 {
2820 /* X <= Y - 1 equals to X < Y. */
2821 if (cmp_code == LE_EXPR)
2822 code = LT_EXPR;
2823 /* X > Y - 1 equals to X >= Y. */
2824 if (cmp_code == GT_EXPR)
2825 code = GE_EXPR;
2826 }
2827 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
2828 && !overflow)
2829 {
2830 /* X < Y + 1 equals to X <= Y. */
2831 if (cmp_code == LT_EXPR)
2832 code = LE_EXPR;
2833 /* X >= Y + 1 equals to X > Y. */
2834 if (cmp_code == GE_EXPR)
2835 code = GT_EXPR;
2836 }
2837 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
2838 {
2839 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
2840 code = MIN_EXPR;
2841 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
2842 code = MAX_EXPR;
2843 }
2844 }
2845 }
2846 (if (code == MAX_EXPR)
2847 (op (max @X { wide_int_to_tree (from_type, real_c1); })
2848 { wide_int_to_tree (from_type, c2); })
2849 (if (code == MIN_EXPR)
2850 (op (min @X { wide_int_to_tree (from_type, real_c1); })
2851 { wide_int_to_tree (from_type, c2); })))))))))
2852
96994de0
RB
2853(for cnd (cond vec_cond)
2854 /* A ? B : (A ? X : C) -> A ? B : C. */
2855 (simplify
2856 (cnd @0 (cnd @0 @1 @2) @3)
2857 (cnd @0 @1 @3))
2858 (simplify
2859 (cnd @0 @1 (cnd @0 @2 @3))
2860 (cnd @0 @1 @3))
24a179f8
RB
2861 /* A ? B : (!A ? C : X) -> A ? B : C. */
2862 /* ??? This matches embedded conditions open-coded because genmatch
2863 would generate matching code for conditions in separate stmts only.
2864 The following is still important to merge then and else arm cases
2865 from if-conversion. */
2866 (simplify
2867 (cnd @0 @1 (cnd @2 @3 @4))
2868 (if (COMPARISON_CLASS_P (@0)
2869 && COMPARISON_CLASS_P (@2)
2870 && invert_tree_comparison
2871 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@2)
2872 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@2, 0), 0)
2873 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@2, 1), 0))
2874 (cnd @0 @1 @3)))
2875 (simplify
2876 (cnd @0 (cnd @1 @2 @3) @4)
2877 (if (COMPARISON_CLASS_P (@0)
2878 && COMPARISON_CLASS_P (@1)
2879 && invert_tree_comparison
2880 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@1)
2881 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@1, 0), 0)
2882 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@1, 1), 0))
2883 (cnd @0 @3 @4)))
96994de0
RB
2884
2885 /* A ? B : B -> B. */
2886 (simplify
2887 (cnd @0 @1 @1)
09240451 2888 @1)
96994de0 2889
09240451
MG
2890 /* !A ? B : C -> A ? C : B. */
2891 (simplify
2892 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
2893 (cnd @0 @2 @1)))
f84e7fd6 2894
a3ca1bc5
RB
2895/* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
2896 return all -1 or all 0 results. */
f43d102e
RS
2897/* ??? We could instead convert all instances of the vec_cond to negate,
2898 but that isn't necessarily a win on its own. */
2899(simplify
a3ca1bc5 2900 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
f43d102e 2901 (if (VECTOR_TYPE_P (type)
928686b1
RS
2902 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2903 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
f43d102e 2904 && (TYPE_MODE (TREE_TYPE (type))
4d8989d5 2905 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
a3ca1bc5 2906 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
f43d102e 2907
a3ca1bc5 2908/* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
f43d102e 2909(simplify
a3ca1bc5 2910 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
f43d102e 2911 (if (VECTOR_TYPE_P (type)
928686b1
RS
2912 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2913 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
f43d102e 2914 && (TYPE_MODE (TREE_TYPE (type))
4d8989d5 2915 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
a3ca1bc5 2916 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
f84e7fd6 2917
2ee05f1e 2918
f84e7fd6
RB
2919/* Simplifications of comparisons. */
2920
24f1db9c
RB
2921/* See if we can reduce the magnitude of a constant involved in a
2922 comparison by changing the comparison code. This is a canonicalization
2923 formerly done by maybe_canonicalize_comparison_1. */
2924(for cmp (le gt)
2925 acmp (lt ge)
2926 (simplify
2927 (cmp @0 INTEGER_CST@1)
2928 (if (tree_int_cst_sgn (@1) == -1)
8e6cdc90 2929 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
24f1db9c
RB
2930(for cmp (ge lt)
2931 acmp (gt le)
2932 (simplify
2933 (cmp @0 INTEGER_CST@1)
2934 (if (tree_int_cst_sgn (@1) == 1)
8e6cdc90 2935 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
24f1db9c
RB
2936
2937
f84e7fd6
RB
2938/* We can simplify a logical negation of a comparison to the
2939 inverted comparison. As we cannot compute an expression
2940 operator using invert_tree_comparison we have to simulate
2941 that with expression code iteration. */
2942(for cmp (tcc_comparison)
2943 icmp (inverted_tcc_comparison)
2944 ncmp (inverted_tcc_comparison_with_nans)
2945 /* Ideally we'd like to combine the following two patterns
2946 and handle some more cases by using
2947 (logical_inverted_value (cmp @0 @1))
2948 here but for that genmatch would need to "inline" that.
2949 For now implement what forward_propagate_comparison did. */
2950 (simplify
2951 (bit_not (cmp @0 @1))
2952 (if (VECTOR_TYPE_P (type)
2953 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
2954 /* Comparison inversion may be impossible for trapping math,
2955 invert_tree_comparison will tell us. But we can't use
2956 a computed operator in the replacement tree thus we have
2957 to play the trick below. */
2958 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 2959 (cmp, HONOR_NANS (@0)); }
f84e7fd6 2960 (if (ic == icmp)
8fdc6c67
RB
2961 (icmp @0 @1)
2962 (if (ic == ncmp)
2963 (ncmp @0 @1))))))
f84e7fd6 2964 (simplify
09240451
MG
2965 (bit_xor (cmp @0 @1) integer_truep)
2966 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 2967 (cmp, HONOR_NANS (@0)); }
09240451 2968 (if (ic == icmp)
8fdc6c67
RB
2969 (icmp @0 @1)
2970 (if (ic == ncmp)
2971 (ncmp @0 @1))))))
e18c1d66 2972
2ee05f1e
RB
2973/* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
2974 ??? The transformation is valid for the other operators if overflow
2975 is undefined for the type, but performing it here badly interacts
2976 with the transformation in fold_cond_expr_with_comparison which
2977 attempts to synthetize ABS_EXPR. */
2978(for cmp (eq ne)
1af4ebf5
MG
2979 (for sub (minus pointer_diff)
2980 (simplify
2981 (cmp (sub@2 @0 @1) integer_zerop)
2982 (if (single_use (@2))
2983 (cmp @0 @1)))))
2ee05f1e
RB
2984
2985/* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
2986 signed arithmetic case. That form is created by the compiler
2987 often enough for folding it to be of value. One example is in
2988 computing loop trip counts after Operator Strength Reduction. */
07cdc2b8
RB
2989(for cmp (simple_comparison)
2990 scmp (swapped_simple_comparison)
2ee05f1e 2991 (simplify
bc6e9db4 2992 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
2ee05f1e
RB
2993 /* Handle unfolded multiplication by zero. */
2994 (if (integer_zerop (@1))
8fdc6c67
RB
2995 (cmp @1 @2)
2996 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
bc6e9db4
RB
2997 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2998 && single_use (@3))
8fdc6c67
RB
2999 /* If @1 is negative we swap the sense of the comparison. */
3000 (if (tree_int_cst_sgn (@1) < 0)
3001 (scmp @0 @2)
3002 (cmp @0 @2))))))
2ee05f1e
RB
3003
3004/* Simplify comparison of something with itself. For IEEE
3005 floating-point, we can only do some of these simplifications. */
287f8f17 3006(for cmp (eq ge le)
2ee05f1e
RB
3007 (simplify
3008 (cmp @0 @0)
287f8f17 3009 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
b9407883 3010 || ! HONOR_NANS (@0))
287f8f17
RB
3011 { constant_boolean_node (true, type); }
3012 (if (cmp != EQ_EXPR)
3013 (eq @0 @0)))))
2ee05f1e
RB
3014(for cmp (ne gt lt)
3015 (simplify
3016 (cmp @0 @0)
3017 (if (cmp != NE_EXPR
3018 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
b9407883 3019 || ! HONOR_NANS (@0))
2ee05f1e 3020 { constant_boolean_node (false, type); })))
b5d3d787
RB
3021(for cmp (unle unge uneq)
3022 (simplify
3023 (cmp @0 @0)
3024 { constant_boolean_node (true, type); }))
dd53d197
MG
3025(for cmp (unlt ungt)
3026 (simplify
3027 (cmp @0 @0)
3028 (unordered @0 @0)))
b5d3d787
RB
3029(simplify
3030 (ltgt @0 @0)
3031 (if (!flag_trapping_math)
3032 { constant_boolean_node (false, type); }))
2ee05f1e
RB
3033
3034/* Fold ~X op ~Y as Y op X. */
07cdc2b8 3035(for cmp (simple_comparison)
2ee05f1e 3036 (simplify
7fe996ba
RB
3037 (cmp (bit_not@2 @0) (bit_not@3 @1))
3038 (if (single_use (@2) && single_use (@3))
3039 (cmp @1 @0))))
2ee05f1e
RB
3040
3041/* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
07cdc2b8
RB
3042(for cmp (simple_comparison)
3043 scmp (swapped_simple_comparison)
2ee05f1e 3044 (simplify
7fe996ba
RB
3045 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3046 (if (single_use (@2)
3047 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
2ee05f1e
RB
3048 (scmp @0 (bit_not @1)))))
3049
07cdc2b8
RB
3050(for cmp (simple_comparison)
3051 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3052 (simplify
3053 (cmp (convert@2 @0) (convert? @1))
3054 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3055 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3056 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3057 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3058 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3059 (with
3060 {
3061 tree type1 = TREE_TYPE (@1);
3062 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3063 {
3064 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3065 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3066 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3067 type1 = float_type_node;
3068 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3069 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3070 type1 = double_type_node;
3071 }
3072 tree newtype
3073 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3074 ? TREE_TYPE (@0) : type1);
3075 }
3076 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3077 (cmp (convert:newtype @0) (convert:newtype @1))))))
3078
3079 (simplify
3080 (cmp @0 REAL_CST@1)
3081 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
64d3a1f0
RB
3082 (switch
3083 /* a CMP (-0) -> a CMP 0 */
3084 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3085 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3086 /* x != NaN is always true, other ops are always false. */
3087 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3088 && ! HONOR_SNANS (@1))
3089 { constant_boolean_node (cmp == NE_EXPR, type); })
3090 /* Fold comparisons against infinity. */
3091 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3092 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3093 (with
3094 {
3095 REAL_VALUE_TYPE max;
3096 enum tree_code code = cmp;
3097 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3098 if (neg)
3099 code = swap_tree_comparison (code);
3100 }
3101 (switch
e96a5786 3102 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
64d3a1f0 3103 (if (code == GT_EXPR
e96a5786 3104 && !(HONOR_NANS (@0) && flag_trapping_math))
64d3a1f0
RB
3105 { constant_boolean_node (false, type); })
3106 (if (code == LE_EXPR)
e96a5786 3107 /* x <= +Inf is always true, if we don't care about NaNs. */
64d3a1f0
RB
3108 (if (! HONOR_NANS (@0))
3109 { constant_boolean_node (true, type); }
e96a5786
JM
3110 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3111 an "invalid" exception. */
3112 (if (!flag_trapping_math)
3113 (eq @0 @0))))
3114 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3115 for == this introduces an exception for x a NaN. */
3116 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3117 || code == GE_EXPR)
64d3a1f0
RB
3118 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3119 (if (neg)
3120 (lt @0 { build_real (TREE_TYPE (@0), max); })
3121 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3122 /* x < +Inf is always equal to x <= DBL_MAX. */
3123 (if (code == LT_EXPR)
3124 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3125 (if (neg)
3126 (ge @0 { build_real (TREE_TYPE (@0), max); })
3127 (le @0 { build_real (TREE_TYPE (@0), max); }))))
e96a5786
JM
3128 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3129 an exception for x a NaN so use an unordered comparison. */
64d3a1f0
RB
3130 (if (code == NE_EXPR)
3131 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3132 (if (! HONOR_NANS (@0))
3133 (if (neg)
3134 (ge @0 { build_real (TREE_TYPE (@0), max); })
3135 (le @0 { build_real (TREE_TYPE (@0), max); }))
3136 (if (neg)
e96a5786
JM
3137 (unge @0 { build_real (TREE_TYPE (@0), max); })
3138 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
07cdc2b8
RB
3139
3140 /* If this is a comparison of a real constant with a PLUS_EXPR
3141 or a MINUS_EXPR of a real constant, we can convert it into a
3142 comparison with a revised real constant as long as no overflow
3143 occurs when unsafe_math_optimizations are enabled. */
3144 (if (flag_unsafe_math_optimizations)
3145 (for op (plus minus)
3146 (simplify
3147 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3148 (with
3149 {
3150 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3151 TREE_TYPE (@1), @2, @1);
3152 }
f980c9a2 3153 (if (tem && !TREE_OVERFLOW (tem))
07cdc2b8
RB
3154 (cmp @0 { tem; }))))))
3155
3156 /* Likewise, we can simplify a comparison of a real constant with
3157 a MINUS_EXPR whose first operand is also a real constant, i.e.
3158 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3159 floating-point types only if -fassociative-math is set. */
3160 (if (flag_associative_math)
3161 (simplify
0409237b 3162 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
07cdc2b8 3163 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
f980c9a2 3164 (if (tem && !TREE_OVERFLOW (tem))
07cdc2b8
RB
3165 (cmp { tem; } @1)))))
3166
3167 /* Fold comparisons against built-in math functions. */
3168 (if (flag_unsafe_math_optimizations
3169 && ! flag_errno_math)
3170 (for sq (SQRT)
3171 (simplify
3172 (cmp (sq @0) REAL_CST@1)
64d3a1f0
RB
3173 (switch
3174 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3175 (switch
3176 /* sqrt(x) < y is always false, if y is negative. */
3177 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
8fdc6c67 3178 { constant_boolean_node (false, type); })
64d3a1f0
RB
3179 /* sqrt(x) > y is always true, if y is negative and we
3180 don't care about NaNs, i.e. negative values of x. */
3181 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3182 { constant_boolean_node (true, type); })
3183 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3184 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
c53233c6
RS
3185 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3186 (switch
3187 /* sqrt(x) < 0 is always false. */
3188 (if (cmp == LT_EXPR)
3189 { constant_boolean_node (false, type); })
3190 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3191 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3192 { constant_boolean_node (true, type); })
3193 /* sqrt(x) <= 0 -> x == 0. */
3194 (if (cmp == LE_EXPR)
3195 (eq @0 @1))
3196 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3197 == or !=. In the last case:
3198
3199 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3200
3201 if x is negative or NaN. Due to -funsafe-math-optimizations,
3202 the results for other x follow from natural arithmetic. */
3203 (cmp @0 @1)))
64d3a1f0
RB
3204 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3205 (with
3206 {
3207 REAL_VALUE_TYPE c2;
5c88ea94
RS
3208 real_arithmetic (&c2, MULT_EXPR,
3209 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
64d3a1f0
RB
3210 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3211 }
3212 (if (REAL_VALUE_ISINF (c2))
3213 /* sqrt(x) > y is x == +Inf, when y is very large. */
3214 (if (HONOR_INFINITIES (@0))
3215 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3216 { constant_boolean_node (false, type); })
3217 /* sqrt(x) > c is the same as x > c*c. */
3218 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3219 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3220 (with
3221 {
3222 REAL_VALUE_TYPE c2;
5c88ea94
RS
3223 real_arithmetic (&c2, MULT_EXPR,
3224 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
64d3a1f0
RB
3225 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3226 }
3227 (if (REAL_VALUE_ISINF (c2))
3228 (switch
3229 /* sqrt(x) < y is always true, when y is a very large
3230 value and we don't care about NaNs or Infinities. */
3231 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3232 { constant_boolean_node (true, type); })
3233 /* sqrt(x) < y is x != +Inf when y is very large and we
3234 don't care about NaNs. */
3235 (if (! HONOR_NANS (@0))
3236 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3237 /* sqrt(x) < y is x >= 0 when y is very large and we
3238 don't care about Infinities. */
3239 (if (! HONOR_INFINITIES (@0))
3240 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3241 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3242 (if (GENERIC)
3243 (truth_andif
3244 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3245 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3246 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3247 (if (! HONOR_NANS (@0))
3248 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3249 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3250 (if (GENERIC)
3251 (truth_andif
3252 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
0ca2e7f7
PK
3253 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3254 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3255 (simplify
3256 (cmp (sq @0) (sq @1))
3257 (if (! HONOR_NANS (@0))
3258 (cmp @0 @1))))))
2ee05f1e 3259
c779bea5
YG
3260/* Optimize various special cases of (FTYPE) N CMP CST. */
3261(for cmp (lt le eq ne ge gt)
3262 icmp (le le eq ne ge ge)
3263 (simplify
3264 (cmp (float @0) REAL_CST@1)
3265 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3266 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3267 (with
3268 {
3269 tree itype = TREE_TYPE (@0);
3270 signop isign = TYPE_SIGN (itype);
3271 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3272 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3273 /* Be careful to preserve any potential exceptions due to
3274 NaNs. qNaNs are ok in == or != context.
3275 TODO: relax under -fno-trapping-math or
3276 -fno-signaling-nans. */
3277 bool exception_p
3278 = real_isnan (cst) && (cst->signalling
c651dca2 3279 || (cmp != EQ_EXPR && cmp != NE_EXPR));
c779bea5
YG
3280 /* INT?_MIN is power-of-two so it takes
3281 only one mantissa bit. */
3282 bool signed_p = isign == SIGNED;
3283 bool itype_fits_ftype_p
3284 = TYPE_PRECISION (itype) - signed_p <= significand_size (fmt);
3285 }
3286 /* TODO: allow non-fitting itype and SNaNs when
3287 -fno-trapping-math. */
3288 (if (itype_fits_ftype_p && ! exception_p)
3289 (with
3290 {
3291 REAL_VALUE_TYPE imin, imax;
3292 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3293 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3294
3295 REAL_VALUE_TYPE icst;
3296 if (cmp == GT_EXPR || cmp == GE_EXPR)
3297 real_ceil (&icst, fmt, cst);
3298 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3299 real_floor (&icst, fmt, cst);
3300 else
3301 real_trunc (&icst, fmt, cst);
3302
b09bf97b 3303 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
c779bea5
YG
3304
3305 bool overflow_p = false;
3306 wide_int icst_val
3307 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3308 }
3309 (switch
3310 /* Optimize cases when CST is outside of ITYPE's range. */
3311 (if (real_compare (LT_EXPR, cst, &imin))
3312 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3313 type); })
3314 (if (real_compare (GT_EXPR, cst, &imax))
3315 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3316 type); })
3317 /* Remove cast if CST is an integer representable by ITYPE. */
3318 (if (cst_int_p)
3319 (cmp @0 { gcc_assert (!overflow_p);
3320 wide_int_to_tree (itype, icst_val); })
3321 )
3322 /* When CST is fractional, optimize
3323 (FTYPE) N == CST -> 0
3324 (FTYPE) N != CST -> 1. */
3325 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3326 { constant_boolean_node (cmp == NE_EXPR, type); })
3327 /* Otherwise replace with sensible integer constant. */
3328 (with
3329 {
3330 gcc_checking_assert (!overflow_p);
3331 }
3332 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3333
40fd269a
MG
3334/* Fold A /[ex] B CMP C to A CMP B * C. */
3335(for cmp (eq ne)
3336 (simplify
3337 (cmp (exact_div @0 @1) INTEGER_CST@2)
3338 (if (!integer_zerop (@1))
8e6cdc90 3339 (if (wi::to_wide (@2) == 0)
40fd269a
MG
3340 (cmp @0 @2)
3341 (if (TREE_CODE (@1) == INTEGER_CST)
3342 (with
3343 {
3344 bool ovf;
8e6cdc90
RS
3345 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3346 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
40fd269a
MG
3347 }
3348 (if (ovf)
3349 { constant_boolean_node (cmp == NE_EXPR, type); }
3350 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3351(for cmp (lt le gt ge)
3352 (simplify
3353 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
8e6cdc90 3354 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
40fd269a
MG
3355 (with
3356 {
3357 bool ovf;
8e6cdc90
RS
3358 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3359 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
40fd269a
MG
3360 }
3361 (if (ovf)
8e6cdc90
RS
3362 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3363 TYPE_SIGN (TREE_TYPE (@2)))
40fd269a
MG
3364 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3365 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3366
cfdc4f33
MG
3367/* Unordered tests if either argument is a NaN. */
3368(simplify
3369 (bit_ior (unordered @0 @0) (unordered @1 @1))
aea417d7 3370 (if (types_match (@0, @1))
cfdc4f33 3371 (unordered @0 @1)))
257b01ba
MG
3372(simplify
3373 (bit_and (ordered @0 @0) (ordered @1 @1))
3374 (if (types_match (@0, @1))
3375 (ordered @0 @1)))
cfdc4f33
MG
3376(simplify
3377 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3378 @2)
257b01ba
MG
3379(simplify
3380 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3381 @2)
e18c1d66 3382
90c6f26c
RB
3383/* Simple range test simplifications. */
3384/* A < B || A >= B -> true. */
5d30c58d
RB
3385(for test1 (lt le le le ne ge)
3386 test2 (ge gt ge ne eq ne)
90c6f26c
RB
3387 (simplify
3388 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3389 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3390 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3391 { constant_boolean_node (true, type); })))
3392/* A < B && A >= B -> false. */
3393(for test1 (lt lt lt le ne eq)
3394 test2 (ge gt eq gt eq gt)
3395 (simplify
3396 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3397 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3398 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3399 { constant_boolean_node (false, type); })))
3400
9ebc3467
YG
3401/* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3402 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3403
3404 Note that comparisons
3405 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3406 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3407 will be canonicalized to above so there's no need to
3408 consider them here.
3409 */
3410
3411(for cmp (le gt)
3412 eqcmp (eq ne)
3413 (simplify
3414 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3415 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3416 (with
3417 {
3418 tree ty = TREE_TYPE (@0);
3419 unsigned prec = TYPE_PRECISION (ty);
3420 wide_int mask = wi::to_wide (@2, prec);
3421 wide_int rhs = wi::to_wide (@3, prec);
3422 signop sgn = TYPE_SIGN (ty);
3423 }
3424 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3425 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3426 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3427 { build_zero_cst (ty); }))))))
3428
534bd33b
MG
3429/* -A CMP -B -> B CMP A. */
3430(for cmp (tcc_comparison)
3431 scmp (swapped_tcc_comparison)
3432 (simplify
3433 (cmp (negate @0) (negate @1))
3434 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3435 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3436 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3437 (scmp @0 @1)))
3438 (simplify
3439 (cmp (negate @0) CONSTANT_CLASS_P@1)
3440 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3441 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3442 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
23f27839 3443 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
534bd33b
MG
3444 (if (tem && !TREE_OVERFLOW (tem))
3445 (scmp @0 { tem; }))))))
3446
b0eb889b
MG
3447/* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3448(for op (eq ne)
3449 (simplify
3450 (op (abs @0) zerop@1)
3451 (op @0 @1)))
3452
6358a676
MG
3453/* From fold_sign_changed_comparison and fold_widened_comparison.
3454 FIXME: the lack of symmetry is disturbing. */
79d4f7c6
RB
3455(for cmp (simple_comparison)
3456 (simplify
3457 (cmp (convert@0 @00) (convert?@1 @10))
452ec2a5 3458 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
79d4f7c6
RB
3459 /* Disable this optimization if we're casting a function pointer
3460 type on targets that require function pointer canonicalization. */
3461 && !(targetm.have_canonicalize_funcptr_for_compare ()
3462 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
2fde61e3
RB
3463 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
3464 && single_use (@0))
79d4f7c6
RB
3465 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3466 && (TREE_CODE (@10) == INTEGER_CST
6358a676 3467 || @1 != @10)
79d4f7c6
RB
3468 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3469 || cmp == NE_EXPR
3470 || cmp == EQ_EXPR)
6358a676 3471 && !POINTER_TYPE_P (TREE_TYPE (@00)))
79d4f7c6
RB
3472 /* ??? The special-casing of INTEGER_CST conversion was in the original
3473 code and here to avoid a spurious overflow flag on the resulting
3474 constant which fold_convert produces. */
3475 (if (TREE_CODE (@1) == INTEGER_CST)
3476 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3477 TREE_OVERFLOW (@1)); })
3478 (cmp @00 (convert @1)))
3479
3480 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3481 /* If possible, express the comparison in the shorter mode. */
3482 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
7fd82d52
PP
3483 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3484 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3485 && TYPE_UNSIGNED (TREE_TYPE (@00))))
79d4f7c6
RB
3486 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3487 || ((TYPE_PRECISION (TREE_TYPE (@00))
3488 >= TYPE_PRECISION (TREE_TYPE (@10)))
3489 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3490 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3491 || (TREE_CODE (@10) == INTEGER_CST
f6c15759 3492 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
79d4f7c6
RB
3493 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3494 (cmp @00 (convert @10))
3495 (if (TREE_CODE (@10) == INTEGER_CST
f6c15759 3496 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
79d4f7c6
RB
3497 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3498 (with
3499 {
3500 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3501 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3502 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3503 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3504 }
3505 (if (above || below)
3506 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3507 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3508 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3509 { constant_boolean_node (above ? true : false, type); }
3510 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3511 { constant_boolean_node (above ? false : true, type); }))))))))))))
66e1cacf 3512
96a111a3
RB
3513(for cmp (eq ne)
3514 /* A local variable can never be pointed to by
3515 the default SSA name of an incoming parameter.
3516 SSA names are canonicalized to 2nd place. */
3517 (simplify
3518 (cmp addr@0 SSA_NAME@1)
3519 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3520 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3521 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3522 (if (TREE_CODE (base) == VAR_DECL
3523 && auto_var_in_fn_p (base, current_function_decl))
3524 (if (cmp == NE_EXPR)
3525 { constant_boolean_node (true, type); }
3526 { constant_boolean_node (false, type); }))))))
3527
66e1cacf
RB
3528/* Equality compare simplifications from fold_binary */
3529(for cmp (eq ne)
3530
3531 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3532 Similarly for NE_EXPR. */
3533 (simplify
3534 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3535 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
8e6cdc90 3536 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
66e1cacf
RB
3537 { constant_boolean_node (cmp == NE_EXPR, type); }))
3538
3539 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3540 (simplify
3541 (cmp (bit_xor @0 @1) integer_zerop)
3542 (cmp @0 @1))
3543
3544 /* (X ^ Y) == Y becomes X == 0.
3545 Likewise (X ^ Y) == X becomes Y == 0. */
3546 (simplify
99e943a2 3547 (cmp:c (bit_xor:c @0 @1) @0)
66e1cacf
RB
3548 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3549
3550 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3551 (simplify
3552 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3553 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
d057c866 3554 (cmp @0 (bit_xor @1 (convert @2)))))
d057c866
RB
3555
3556 (simplify
3557 (cmp (convert? addr@0) integer_zerop)
3558 (if (tree_single_nonzero_warnv_p (@0, NULL))
3559 { constant_boolean_node (cmp == NE_EXPR, type); })))
3560
b0eb889b
MG
3561/* If we have (A & C) == C where C is a power of 2, convert this into
3562 (A & C) != 0. Similarly for NE_EXPR. */
3563(for cmp (eq ne)
3564 icmp (ne eq)
3565 (simplify
3566 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3567 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3568
519e0faa
PB
3569/* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3570 convert this into a shift followed by ANDing with D. */
3571(simplify
3572 (cond
3573 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
9e61e48e
JJ
3574 INTEGER_CST@2 integer_zerop)
3575 (if (integer_pow2p (@2))
3576 (with {
3577 int shift = (wi::exact_log2 (wi::to_wide (@2))
3578 - wi::exact_log2 (wi::to_wide (@1)));
3579 }
3580 (if (shift > 0)
3581 (bit_and
3582 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3583 (bit_and
3584 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
3585 @2)))))
519e0faa 3586
b0eb889b
MG
3587/* If we have (A & C) != 0 where C is the sign bit of A, convert
3588 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3589(for cmp (eq ne)
3590 ncmp (ge lt)
3591 (simplify
3592 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3593 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2be65d9e 3594 && type_has_mode_precision_p (TREE_TYPE (@0))
b0eb889b 3595 && element_precision (@2) >= element_precision (@0)
8e6cdc90 3596 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
b0eb889b
MG
3597 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3598 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3599
519e0faa 3600/* If we have A < 0 ? C : 0 where C is a power of 2, convert
c0140e3c 3601 this into a right shift or sign extension followed by ANDing with C. */
519e0faa
PB
3602(simplify
3603 (cond
3604 (lt @0 integer_zerop)
9e61e48e
JJ
3605 INTEGER_CST@1 integer_zerop)
3606 (if (integer_pow2p (@1)
3607 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
c0140e3c 3608 (with {
8e6cdc90 3609 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
c0140e3c
JJ
3610 }
3611 (if (shift >= 0)
3612 (bit_and
3613 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3614 @1)
3615 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3616 sign extension followed by AND with C will achieve the effect. */
3617 (bit_and (convert @0) @1)))))
519e0faa 3618
68aba1f6
RB
3619/* When the addresses are not directly of decls compare base and offset.
3620 This implements some remaining parts of fold_comparison address
3621 comparisons but still no complete part of it. Still it is good
3622 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3623(for cmp (simple_comparison)
3624 (simplify
f501d5cd 3625 (cmp (convert1?@2 addr@0) (convert2? addr@1))
68aba1f6
RB
3626 (with
3627 {
a90c8804 3628 poly_int64 off0, off1;
68aba1f6
RB
3629 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3630 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3631 if (base0 && TREE_CODE (base0) == MEM_REF)
3632 {
aca52e6f 3633 off0 += mem_ref_offset (base0).force_shwi ();
68aba1f6
RB
3634 base0 = TREE_OPERAND (base0, 0);
3635 }
3636 if (base1 && TREE_CODE (base1) == MEM_REF)
3637 {
aca52e6f 3638 off1 += mem_ref_offset (base1).force_shwi ();
68aba1f6
RB
3639 base1 = TREE_OPERAND (base1, 0);
3640 }
3641 }
da571fda
RB
3642 (if (base0 && base1)
3643 (with
3644 {
aad88aed 3645 int equal = 2;
70f40fea
JJ
3646 /* Punt in GENERIC on variables with value expressions;
3647 the value expressions might point to fields/elements
3648 of other vars etc. */
3649 if (GENERIC
3650 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3651 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3652 ;
3653 else if (decl_in_symtab_p (base0)
3654 && decl_in_symtab_p (base1))
da571fda
RB
3655 equal = symtab_node::get_create (base0)
3656 ->equal_address_to (symtab_node::get_create (base1));
c3bea076
RB
3657 else if ((DECL_P (base0)
3658 || TREE_CODE (base0) == SSA_NAME
3659 || TREE_CODE (base0) == STRING_CST)
3660 && (DECL_P (base1)
3661 || TREE_CODE (base1) == SSA_NAME
3662 || TREE_CODE (base1) == STRING_CST))
aad88aed 3663 equal = (base0 == base1);
da571fda 3664 }
3fccbb9e
JJ
3665 (if (equal == 1
3666 && (cmp == EQ_EXPR || cmp == NE_EXPR
3667 /* If the offsets are equal we can ignore overflow. */
3668 || known_eq (off0, off1)
3669 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3670 /* Or if we compare using pointers to decls or strings. */
3671 || (POINTER_TYPE_P (TREE_TYPE (@2))
3672 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
da571fda 3673 (switch
a90c8804
RS
3674 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3675 { constant_boolean_node (known_eq (off0, off1), type); })
3676 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3677 { constant_boolean_node (known_ne (off0, off1), type); })
3678 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
3679 { constant_boolean_node (known_lt (off0, off1), type); })
3680 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
3681 { constant_boolean_node (known_le (off0, off1), type); })
3682 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
3683 { constant_boolean_node (known_ge (off0, off1), type); })
3684 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
3685 { constant_boolean_node (known_gt (off0, off1), type); }))
da571fda
RB
3686 (if (equal == 0
3687 && DECL_P (base0) && DECL_P (base1)
3688 /* If we compare this as integers require equal offset. */
3689 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
a90c8804 3690 || known_eq (off0, off1)))
da571fda
RB
3691 (switch
3692 (if (cmp == EQ_EXPR)
3693 { constant_boolean_node (false, type); })
3694 (if (cmp == NE_EXPR)
3695 { constant_boolean_node (true, type); })))))))))
66e1cacf 3696
98998245
RB
3697/* Simplify pointer equality compares using PTA. */
3698(for neeq (ne eq)
3699 (simplify
3700 (neeq @0 @1)
3701 (if (POINTER_TYPE_P (TREE_TYPE (@0))
3702 && ptrs_compare_unequal (@0, @1))
f913ff2a 3703 { constant_boolean_node (neeq != EQ_EXPR, type); })))
98998245 3704
8f63caf6 3705/* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
467719fb
PK
3706 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3707 Disable the transform if either operand is pointer to function.
3708 This broke pr22051-2.c for arm where function pointer
3709 canonicalizaion is not wanted. */
1c0a8806 3710
8f63caf6
RB
3711(for cmp (ne eq)
3712 (simplify
3713 (cmp (convert @0) INTEGER_CST@1)
467719fb
PK
3714 (if ((POINTER_TYPE_P (TREE_TYPE (@0)) && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3715 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3716 || (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && POINTER_TYPE_P (TREE_TYPE (@1))
3717 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
8f63caf6
RB
3718 (cmp @0 (convert @1)))))
3719
21aacde4
RB
3720/* Non-equality compare simplifications from fold_binary */
3721(for cmp (lt gt le ge)
3722 /* Comparisons with the highest or lowest possible integer of
3723 the specified precision will have known values. */
3724 (simplify
3725 (cmp (convert?@2 @0) INTEGER_CST@1)
3726 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3727 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3728 (with
3729 {
3730 tree arg1_type = TREE_TYPE (@1);
3731 unsigned int prec = TYPE_PRECISION (arg1_type);
3732 wide_int max = wi::max_value (arg1_type);
3733 wide_int signed_max = wi::max_value (prec, SIGNED);
3734 wide_int min = wi::min_value (arg1_type);
3735 }
3736 (switch
8e6cdc90 3737 (if (wi::to_wide (@1) == max)
21aacde4
RB
3738 (switch
3739 (if (cmp == GT_EXPR)
3740 { constant_boolean_node (false, type); })
3741 (if (cmp == GE_EXPR)
3742 (eq @2 @1))
3743 (if (cmp == LE_EXPR)
3744 { constant_boolean_node (true, type); })
3745 (if (cmp == LT_EXPR)
3746 (ne @2 @1))))
8e6cdc90 3747 (if (wi::to_wide (@1) == min)
21aacde4
RB
3748 (switch
3749 (if (cmp == LT_EXPR)
3750 { constant_boolean_node (false, type); })
3751 (if (cmp == LE_EXPR)
3752 (eq @2 @1))
3753 (if (cmp == GE_EXPR)
3754 { constant_boolean_node (true, type); })
3755 (if (cmp == GT_EXPR)
3756 (ne @2 @1))))
8e6cdc90 3757 (if (wi::to_wide (@1) == max - 1)
9bc22d19
RB
3758 (switch
3759 (if (cmp == GT_EXPR)
8e6cdc90 3760 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))
9bc22d19 3761 (if (cmp == LE_EXPR)
8e6cdc90
RS
3762 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3763 (if (wi::to_wide (@1) == min + 1)
21aacde4
RB
3764 (switch
3765 (if (cmp == GE_EXPR)
8e6cdc90 3766 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))
21aacde4 3767 (if (cmp == LT_EXPR)
8e6cdc90
RS
3768 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3769 (if (wi::to_wide (@1) == signed_max
21aacde4
RB
3770 && TYPE_UNSIGNED (arg1_type)
3771 /* We will flip the signedness of the comparison operator
3772 associated with the mode of @1, so the sign bit is
3773 specified by this mode. Check that @1 is the signed
3774 max associated with this sign bit. */
7a504f33 3775 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
21aacde4
RB
3776 /* signed_type does not work on pointer types. */
3777 && INTEGRAL_TYPE_P (arg1_type))
3778 /* The following case also applies to X < signed_max+1
3779 and X >= signed_max+1 because previous transformations. */
3780 (if (cmp == LE_EXPR || cmp == GT_EXPR)
3781 (with { tree st = signed_type_for (arg1_type); }
3782 (if (cmp == LE_EXPR)
3783 (ge (convert:st @0) { build_zero_cst (st); })
3784 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
3785
b5d3d787
RB
3786(for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
3787 /* If the second operand is NaN, the result is constant. */
3788 (simplify
3789 (cmp @0 REAL_CST@1)
3790 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3791 && (cmp != LTGT_EXPR || ! flag_trapping_math))
50301115 3792 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
b5d3d787 3793 ? false : true, type); })))
21aacde4 3794
55cf3946
RB
3795/* bool_var != 0 becomes bool_var. */
3796(simplify
b5d3d787 3797 (ne @0 integer_zerop)
55cf3946
RB
3798 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3799 && types_match (type, TREE_TYPE (@0)))
3800 (non_lvalue @0)))
3801/* bool_var == 1 becomes bool_var. */
3802(simplify
b5d3d787 3803 (eq @0 integer_onep)
55cf3946
RB
3804 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3805 && types_match (type, TREE_TYPE (@0)))
3806 (non_lvalue @0)))
b5d3d787
RB
3807/* Do not handle
3808 bool_var == 0 becomes !bool_var or
3809 bool_var != 1 becomes !bool_var
3810 here because that only is good in assignment context as long
3811 as we require a tcc_comparison in GIMPLE_CONDs where we'd
3812 replace if (x == 0) with tem = ~x; if (tem != 0) which is
3813 clearly less optimal and which we'll transform again in forwprop. */
55cf3946 3814
ca1206be
MG
3815/* When one argument is a constant, overflow detection can be simplified.
3816 Currently restricted to single use so as not to interfere too much with
3817 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
3818 A + CST CMP A -> A CMP' CST' */
3819(for cmp (lt le ge gt)
3820 out (gt gt le le)
3821 (simplify
a8e9f9a3 3822 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
ca1206be
MG
3823 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3824 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
8e6cdc90 3825 && wi::to_wide (@1) != 0
ca1206be 3826 && single_use (@2))
8e6cdc90
RS
3827 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
3828 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
3829 wi::max_value (prec, UNSIGNED)
3830 - wi::to_wide (@1)); })))))
ca1206be 3831
3563f78f
MG
3832/* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
3833 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
3834 expects the long form, so we restrict the transformation for now. */
3835(for cmp (gt le)
3836 (simplify
a8e9f9a3 3837 (cmp:c (minus@2 @0 @1) @0)
3563f78f
MG
3838 (if (single_use (@2)
3839 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3840 && TYPE_UNSIGNED (TREE_TYPE (@0))
3841 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3842 (cmp @1 @0))))
3563f78f
MG
3843
3844/* Testing for overflow is unnecessary if we already know the result. */
3563f78f
MG
3845/* A - B > A */
3846(for cmp (gt le)
3847 out (ne eq)
3848 (simplify
a8e9f9a3 3849 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3563f78f
MG
3850 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3851 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3852 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3853/* A + B < A */
3854(for cmp (lt ge)
3855 out (ne eq)
3856 (simplify
a8e9f9a3 3857 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3563f78f
MG
3858 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3859 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3860 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3861
603aeb87 3862/* For unsigned operands, -1 / B < A checks whether A * B would overflow.
0557293f 3863 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
0557293f
AM
3864(for cmp (lt ge)
3865 out (ne eq)
3866 (simplify
603aeb87 3867 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
0557293f
AM
3868 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
3869 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
3870 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
55cf3946 3871
53f3cd25
RS
3872/* Simplification of math builtins. These rules must all be optimizations
3873 as well as IL simplifications. If there is a possibility that the new
3874 form could be a pessimization, the rule should go in the canonicalization
3875 section that follows this one.
e18c1d66 3876
53f3cd25
RS
3877 Rules can generally go in this section if they satisfy one of
3878 the following:
3879
3880 - the rule describes an identity
3881
3882 - the rule replaces calls with something as simple as addition or
3883 multiplication
3884
3885 - the rule contains unary calls only and simplifies the surrounding
3886 arithmetic. (The idea here is to exclude non-unary calls in which
3887 one operand is constant and in which the call is known to be cheap
3888 when the operand has that value.) */
52c6378a 3889
53f3cd25 3890(if (flag_unsafe_math_optimizations)
52c6378a
N
3891 /* Simplify sqrt(x) * sqrt(x) -> x. */
3892 (simplify
c6cfa2bf 3893 (mult (SQRT_ALL@1 @0) @1)
52c6378a
N
3894 (if (!HONOR_SNANS (type))
3895 @0))
3896
ed17cb57
JW
3897 (for op (plus minus)
3898 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
3899 (simplify
3900 (op (rdiv @0 @1)
3901 (rdiv @2 @1))
3902 (rdiv (op @0 @2) @1)))
3903
35401640
N
3904 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
3905 (for root (SQRT CBRT)
3906 (simplify
3907 (mult (root:s @0) (root:s @1))
3908 (root (mult @0 @1))))
3909
35401640
N
3910 /* Simplify expN(x) * expN(y) -> expN(x+y). */
3911 (for exps (EXP EXP2 EXP10 POW10)
3912 (simplify
3913 (mult (exps:s @0) (exps:s @1))
3914 (exps (plus @0 @1))))
3915
52c6378a 3916 /* Simplify a/root(b/c) into a*root(c/b). */
35401640
N
3917 (for root (SQRT CBRT)
3918 (simplify
3919 (rdiv @0 (root:s (rdiv:s @1 @2)))
3920 (mult @0 (root (rdiv @2 @1)))))
3921
3922 /* Simplify x/expN(y) into x*expN(-y). */
3923 (for exps (EXP EXP2 EXP10 POW10)
3924 (simplify
3925 (rdiv @0 (exps:s @1))
3926 (mult @0 (exps (negate @1)))))
52c6378a 3927
eee7b6c4
RB
3928 (for logs (LOG LOG2 LOG10 LOG10)
3929 exps (EXP EXP2 EXP10 POW10)
8acda9b2 3930 /* logN(expN(x)) -> x. */
e18c1d66
RB
3931 (simplify
3932 (logs (exps @0))
8acda9b2
RS
3933 @0)
3934 /* expN(logN(x)) -> x. */
3935 (simplify
3936 (exps (logs @0))
3937 @0))
53f3cd25 3938
e18c1d66
RB
3939 /* Optimize logN(func()) for various exponential functions. We
3940 want to determine the value "x" and the power "exponent" in
3941 order to transform logN(x**exponent) into exponent*logN(x). */
eee7b6c4
RB
3942 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
3943 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
e18c1d66
RB
3944 (simplify
3945 (logs (exps @0))
c9e926ce
RS
3946 (if (SCALAR_FLOAT_TYPE_P (type))
3947 (with {
3948 tree x;
3949 switch (exps)
3950 {
3951 CASE_CFN_EXP:
3952 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
3953 x = build_real_truncate (type, dconst_e ());
3954 break;
3955 CASE_CFN_EXP2:
3956 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
3957 x = build_real (type, dconst2);
3958 break;
3959 CASE_CFN_EXP10:
3960 CASE_CFN_POW10:
3961 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
3962 {
3963 REAL_VALUE_TYPE dconst10;
3964 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
3965 x = build_real (type, dconst10);
3966 }
3967 break;
3968 default:
3969 gcc_unreachable ();
3970 }
3971 }
3972 (mult (logs { x; }) @0)))))
53f3cd25 3973
e18c1d66
RB
3974 (for logs (LOG LOG
3975 LOG2 LOG2
3976 LOG10 LOG10)
3977 exps (SQRT CBRT)
3978 (simplify
3979 (logs (exps @0))
c9e926ce
RS
3980 (if (SCALAR_FLOAT_TYPE_P (type))
3981 (with {
3982 tree x;
3983 switch (exps)
3984 {
3985 CASE_CFN_SQRT:
3986 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
3987 x = build_real (type, dconsthalf);
3988 break;
3989 CASE_CFN_CBRT:
3990 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
3991 x = build_real_truncate (type, dconst_third ());
3992 break;
3993 default:
3994 gcc_unreachable ();
3995 }
3996 }
3997 (mult { x; } (logs @0))))))
53f3cd25
RS
3998
3999 /* logN(pow(x,exponent)) -> exponent*logN(x). */
e18c1d66
RB
4000 (for logs (LOG LOG2 LOG10)
4001 pows (POW)
4002 (simplify
4003 (logs (pows @0 @1))
53f3cd25
RS
4004 (mult @1 (logs @0))))
4005
848bb6fc
JJ
4006 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4007 or if C is a positive power of 2,
4008 pow(C,x) -> exp2(log2(C)*x). */
30a2c10e 4009#if GIMPLE
e83fe013
WD
4010 (for pows (POW)
4011 exps (EXP)
4012 logs (LOG)
848bb6fc
JJ
4013 exp2s (EXP2)
4014 log2s (LOG2)
e83fe013
WD
4015 (simplify
4016 (pows REAL_CST@0 @1)
848bb6fc 4017 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
ef7866a3
JJ
4018 && real_isfinite (TREE_REAL_CST_PTR (@0))
4019 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4020 the use_exp2 case until after vectorization. It seems actually
4021 beneficial for all constants to postpone this until later,
4022 because exp(log(C)*x), while faster, will have worse precision
4023 and if x folds into a constant too, that is unnecessary
4024 pessimization. */
4025 && canonicalize_math_after_vectorization_p ())
848bb6fc
JJ
4026 (with {
4027 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4028 bool use_exp2 = false;
4029 if (targetm.libc_has_function (function_c99_misc)
4030 && value->cl == rvc_normal)
4031 {
4032 REAL_VALUE_TYPE frac_rvt = *value;
4033 SET_REAL_EXP (&frac_rvt, 1);
4034 if (real_equal (&frac_rvt, &dconst1))
4035 use_exp2 = true;
4036 }
4037 }
4038 (if (!use_exp2)
30a2c10e
JJ
4039 (if (optimize_pow_to_exp (@0, @1))
4040 (exps (mult (logs @0) @1)))
ef7866a3 4041 (exp2s (mult (log2s @0) @1)))))))
30a2c10e 4042#endif
e83fe013 4043
16ef0a8c
JJ
4044 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4045 (for pows (POW)
4046 exps (EXP EXP2 EXP10 POW10)
4047 logs (LOG LOG2 LOG10 LOG10)
4048 (simplify
4049 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4050 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4051 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4052 (exps (plus (mult (logs @0) @1) @2)))))
4053
53f3cd25
RS
4054 (for sqrts (SQRT)
4055 cbrts (CBRT)
b4838d77 4056 pows (POW)
53f3cd25
RS
4057 exps (EXP EXP2 EXP10 POW10)
4058 /* sqrt(expN(x)) -> expN(x*0.5). */
4059 (simplify
4060 (sqrts (exps @0))
4061 (exps (mult @0 { build_real (type, dconsthalf); })))
4062 /* cbrt(expN(x)) -> expN(x/3). */
4063 (simplify
4064 (cbrts (exps @0))
b4838d77
RS
4065 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4066 /* pow(expN(x), y) -> expN(x*y). */
4067 (simplify
4068 (pows (exps @0) @1)
4069 (exps (mult @0 @1))))
cfed37a0
RS
4070
4071 /* tan(atan(x)) -> x. */
4072 (for tans (TAN)
4073 atans (ATAN)
4074 (simplify
4075 (tans (atans @0))
4076 @0)))
53f3cd25 4077
abcc43f5
RS
4078/* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4079(simplify
e04d2a35 4080 (CABS (complex:C @0 real_zerop@1))
abcc43f5
RS
4081 (abs @0))
4082
67dbe582 4083/* trunc(trunc(x)) -> trunc(x), etc. */
c6cfa2bf 4084(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
67dbe582
RS
4085 (simplify
4086 (fns (fns @0))
4087 (fns @0)))
4088/* f(x) -> x if x is integer valued and f does nothing for such values. */
c6cfa2bf 4089(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
67dbe582
RS
4090 (simplify
4091 (fns integer_valued_real_p@0)
4092 @0))
67dbe582 4093
4d7836c4
RS
4094/* hypot(x,0) and hypot(0,x) -> abs(x). */
4095(simplify
c9e926ce 4096 (HYPOT:c @0 real_zerop@1)
4d7836c4
RS
4097 (abs @0))
4098
b4838d77
RS
4099/* pow(1,x) -> 1. */
4100(simplify
4101 (POW real_onep@0 @1)
4102 @0)
4103
461e4145
RS
4104(simplify
4105 /* copysign(x,x) -> x. */
c6cfa2bf 4106 (COPYSIGN_ALL @0 @0)
461e4145
RS
4107 @0)
4108
4109(simplify
4110 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
c6cfa2bf 4111 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
461e4145
RS
4112 (abs @0))
4113
86c0733f
RS
4114(for scale (LDEXP SCALBN SCALBLN)
4115 /* ldexp(0, x) -> 0. */
4116 (simplify
4117 (scale real_zerop@0 @1)
4118 @0)
4119 /* ldexp(x, 0) -> x. */
4120 (simplify
4121 (scale @0 integer_zerop@1)
4122 @0)
4123 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4124 (simplify
4125 (scale REAL_CST@0 @1)
4126 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4127 @0)))
4128
53f3cd25
RS
4129/* Canonicalization of sequences of math builtins. These rules represent
4130 IL simplifications but are not necessarily optimizations.
4131
4132 The sincos pass is responsible for picking "optimal" implementations
4133 of math builtins, which may be more complicated and can sometimes go
4134 the other way, e.g. converting pow into a sequence of sqrts.
4135 We only want to do these canonicalizations before the pass has run. */
4136
4137(if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4138 /* Simplify tan(x) * cos(x) -> sin(x). */
4139 (simplify
4140 (mult:c (TAN:s @0) (COS:s @0))
4141 (SIN @0))
4142
4143 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4144 (simplify
de3fbea3 4145 (mult:c @0 (POW:s @0 REAL_CST@1))
53f3cd25
RS
4146 (if (!TREE_OVERFLOW (@1))
4147 (POW @0 (plus @1 { build_one_cst (type); }))))
4148
4149 /* Simplify sin(x) / cos(x) -> tan(x). */
4150 (simplify
4151 (rdiv (SIN:s @0) (COS:s @0))
4152 (TAN @0))
4153
4154 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4155 (simplify
4156 (rdiv (COS:s @0) (SIN:s @0))
4157 (rdiv { build_one_cst (type); } (TAN @0)))
4158
4159 /* Simplify sin(x) / tan(x) -> cos(x). */
4160 (simplify
4161 (rdiv (SIN:s @0) (TAN:s @0))
4162 (if (! HONOR_NANS (@0)
4163 && ! HONOR_INFINITIES (@0))
c9e926ce 4164 (COS @0)))
53f3cd25
RS
4165
4166 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4167 (simplify
4168 (rdiv (TAN:s @0) (SIN:s @0))
4169 (if (! HONOR_NANS (@0)
4170 && ! HONOR_INFINITIES (@0))
4171 (rdiv { build_one_cst (type); } (COS @0))))
4172
4173 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4174 (simplify
4175 (mult (POW:s @0 @1) (POW:s @0 @2))
4176 (POW @0 (plus @1 @2)))
4177
4178 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4179 (simplify
4180 (mult (POW:s @0 @1) (POW:s @2 @1))
4181 (POW (mult @0 @2) @1))
4182
de3fbea3
RB
4183 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4184 (simplify
4185 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4186 (POWI (mult @0 @2) @1))
4187
53f3cd25
RS
4188 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4189 (simplify
4190 (rdiv (POW:s @0 REAL_CST@1) @0)
4191 (if (!TREE_OVERFLOW (@1))
4192 (POW @0 (minus @1 { build_one_cst (type); }))))
4193
4194 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4195 (simplify
4196 (rdiv @0 (POW:s @1 @2))
4197 (mult @0 (POW @1 (negate @2))))
4198
4199 (for sqrts (SQRT)
4200 cbrts (CBRT)
4201 pows (POW)
4202 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4203 (simplify
4204 (sqrts (sqrts @0))
4205 (pows @0 { build_real (type, dconst_quarter ()); }))
4206 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4207 (simplify
4208 (sqrts (cbrts @0))
4209 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4210 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4211 (simplify
4212 (cbrts (sqrts @0))
4213 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4214 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4215 (simplify
4216 (cbrts (cbrts tree_expr_nonnegative_p@0))
4217 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4218 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4219 (simplify
4220 (sqrts (pows @0 @1))
4221 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4222 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4223 (simplify
4224 (cbrts (pows tree_expr_nonnegative_p@0 @1))
b4838d77
RS
4225 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4226 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4227 (simplify
4228 (pows (sqrts @0) @1)
4229 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4230 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4231 (simplify
4232 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4233 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4234 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4235 (simplify
4236 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4237 (pows @0 (mult @1 @2))))
abcc43f5
RS
4238
4239 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4240 (simplify
4241 (CABS (complex @0 @0))
96285749
RS
4242 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4243
4d7836c4
RS
4244 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4245 (simplify
4246 (HYPOT @0 @0)
4247 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4248
96285749
RS
4249 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4250 (for cexps (CEXP)
4251 exps (EXP)
4252 cexpis (CEXPI)
4253 (simplify
4254 (cexps compositional_complex@0)
4255 (if (targetm.libc_has_function (function_c99_math_complex))
4256 (complex
4257 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4258 (mult @1 (imagpart @2)))))))
e18c1d66 4259
67dbe582
RS
4260(if (canonicalize_math_p ())
4261 /* floor(x) -> trunc(x) if x is nonnegative. */
c6cfa2bf
MM
4262 (for floors (FLOOR_ALL)
4263 truncs (TRUNC_ALL)
67dbe582
RS
4264 (simplify
4265 (floors tree_expr_nonnegative_p@0)
4266 (truncs @0))))
4267
4268(match double_value_p
4269 @0
4270 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4271(for froms (BUILT_IN_TRUNCL
4272 BUILT_IN_FLOORL
4273 BUILT_IN_CEILL
4274 BUILT_IN_ROUNDL
4275 BUILT_IN_NEARBYINTL
4276 BUILT_IN_RINTL)
4277 tos (BUILT_IN_TRUNC
4278 BUILT_IN_FLOOR
4279 BUILT_IN_CEIL
4280 BUILT_IN_ROUND
4281 BUILT_IN_NEARBYINT
4282 BUILT_IN_RINT)
4283 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4284 (if (optimize && canonicalize_math_p ())
4285 (simplify
4286 (froms (convert double_value_p@0))
4287 (convert (tos @0)))))
4288
4289(match float_value_p
4290 @0
4291 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4292(for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4293 BUILT_IN_FLOORL BUILT_IN_FLOOR
4294 BUILT_IN_CEILL BUILT_IN_CEIL
4295 BUILT_IN_ROUNDL BUILT_IN_ROUND
4296 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4297 BUILT_IN_RINTL BUILT_IN_RINT)
4298 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4299 BUILT_IN_FLOORF BUILT_IN_FLOORF
4300 BUILT_IN_CEILF BUILT_IN_CEILF
4301 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4302 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4303 BUILT_IN_RINTF BUILT_IN_RINTF)
4304 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4305 if x is a float. */
5dac7dbd
JDA
4306 (if (optimize && canonicalize_math_p ()
4307 && targetm.libc_has_function (function_c99_misc))
67dbe582
RS
4308 (simplify
4309 (froms (convert float_value_p@0))
4310 (convert (tos @0)))))
4311
543a9bcd
RS
4312(for froms (XFLOORL XCEILL XROUNDL XRINTL)
4313 tos (XFLOOR XCEIL XROUND XRINT)
4314 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4315 (if (optimize && canonicalize_math_p ())
4316 (simplify
4317 (froms (convert double_value_p@0))
4318 (tos @0))))
4319
4320(for froms (XFLOORL XCEILL XROUNDL XRINTL
4321 XFLOOR XCEIL XROUND XRINT)
4322 tos (XFLOORF XCEILF XROUNDF XRINTF)
4323 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4324 if x is a float. */
4325 (if (optimize && canonicalize_math_p ())
4326 (simplify
4327 (froms (convert float_value_p@0))
4328 (tos @0))))
4329
4330(if (canonicalize_math_p ())
4331 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4332 (for floors (IFLOOR LFLOOR LLFLOOR)
4333 (simplify
4334 (floors tree_expr_nonnegative_p@0)
4335 (fix_trunc @0))))
4336
4337(if (canonicalize_math_p ())
4338 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4339 (for fns (IFLOOR LFLOOR LLFLOOR
4340 ICEIL LCEIL LLCEIL
4341 IROUND LROUND LLROUND)
4342 (simplify
4343 (fns integer_valued_real_p@0)
4344 (fix_trunc @0)))
4345 (if (!flag_errno_math)
4346 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4347 (for rints (IRINT LRINT LLRINT)
4348 (simplify
4349 (rints integer_valued_real_p@0)
4350 (fix_trunc @0)))))
4351
4352(if (canonicalize_math_p ())
4353 (for ifn (IFLOOR ICEIL IROUND IRINT)
4354 lfn (LFLOOR LCEIL LROUND LRINT)
4355 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4356 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4357 sizeof (int) == sizeof (long). */
4358 (if (TYPE_PRECISION (integer_type_node)
4359 == TYPE_PRECISION (long_integer_type_node))
4360 (simplify
4361 (ifn @0)
4362 (lfn:long_integer_type_node @0)))
4363 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4364 sizeof (long long) == sizeof (long). */
4365 (if (TYPE_PRECISION (long_long_integer_type_node)
4366 == TYPE_PRECISION (long_integer_type_node))
4367 (simplify
4368 (llfn @0)
4369 (lfn:long_integer_type_node @0)))))
4370
92c52eab
RS
4371/* cproj(x) -> x if we're ignoring infinities. */
4372(simplify
4373 (CPROJ @0)
4374 (if (!HONOR_INFINITIES (type))
4375 @0))
4376
4534c203
RB
4377/* If the real part is inf and the imag part is known to be
4378 nonnegative, return (inf + 0i). */
4379(simplify
4380 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4381 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
92c52eab
RS
4382 { build_complex_inf (type, false); }))
4383
4534c203
RB
4384/* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4385(simplify
4386 (CPROJ (complex @0 REAL_CST@1))
4387 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
92c52eab 4388 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4534c203 4389
b4838d77
RS
4390(for pows (POW)
4391 sqrts (SQRT)
4392 cbrts (CBRT)
4393 (simplify
4394 (pows @0 REAL_CST@1)
4395 (with {
4396 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4397 REAL_VALUE_TYPE tmp;
4398 }
4399 (switch
4400 /* pow(x,0) -> 1. */
4401 (if (real_equal (value, &dconst0))
4402 { build_real (type, dconst1); })
4403 /* pow(x,1) -> x. */
4404 (if (real_equal (value, &dconst1))
4405 @0)
4406 /* pow(x,-1) -> 1/x. */
4407 (if (real_equal (value, &dconstm1))
4408 (rdiv { build_real (type, dconst1); } @0))
4409 /* pow(x,0.5) -> sqrt(x). */
4410 (if (flag_unsafe_math_optimizations
4411 && canonicalize_math_p ()
4412 && real_equal (value, &dconsthalf))
4413 (sqrts @0))
4414 /* pow(x,1/3) -> cbrt(x). */
4415 (if (flag_unsafe_math_optimizations
4416 && canonicalize_math_p ()
4417 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4418 real_equal (value, &tmp)))
4419 (cbrts @0))))))
4534c203 4420
5ddc84ca
RS
4421/* powi(1,x) -> 1. */
4422(simplify
4423 (POWI real_onep@0 @1)
4424 @0)
4425
4426(simplify
4427 (POWI @0 INTEGER_CST@1)
4428 (switch
4429 /* powi(x,0) -> 1. */
8e6cdc90 4430 (if (wi::to_wide (@1) == 0)
5ddc84ca
RS
4431 { build_real (type, dconst1); })
4432 /* powi(x,1) -> x. */
8e6cdc90 4433 (if (wi::to_wide (@1) == 1)
5ddc84ca
RS
4434 @0)
4435 /* powi(x,-1) -> 1/x. */
8e6cdc90 4436 (if (wi::to_wide (@1) == -1)
5ddc84ca
RS
4437 (rdiv { build_real (type, dconst1); } @0))))
4438
be144838
JL
4439/* Narrowing of arithmetic and logical operations.
4440
4441 These are conceptually similar to the transformations performed for
4442 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4443 term we want to move all that code out of the front-ends into here. */
4444
4445/* If we have a narrowing conversion of an arithmetic operation where
4446 both operands are widening conversions from the same type as the outer
4447 narrowing conversion. Then convert the innermost operands to a suitable
9c582551 4448 unsigned type (to avoid introducing undefined behavior), perform the
be144838
JL
4449 operation and convert the result to the desired type. */
4450(for op (plus minus)
4451 (simplify
93f90bec 4452 (convert (op:s (convert@2 @0) (convert?@3 @1)))
be144838
JL
4453 (if (INTEGRAL_TYPE_P (type)
4454 /* We check for type compatibility between @0 and @1 below,
4455 so there's no need to check that @1/@3 are integral types. */
4456 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4457 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4458 /* The precision of the type of each operand must match the
4459 precision of the mode of each operand, similarly for the
4460 result. */
2be65d9e
RS
4461 && type_has_mode_precision_p (TREE_TYPE (@0))
4462 && type_has_mode_precision_p (TREE_TYPE (@1))
4463 && type_has_mode_precision_p (type)
be144838
JL
4464 /* The inner conversion must be a widening conversion. */
4465 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
93f90bec
BC
4466 && types_match (@0, type)
4467 && (types_match (@0, @1)
4468 /* Or the second operand is const integer or converted const
4469 integer from valueize. */
4470 || TREE_CODE (@1) == INTEGER_CST))
be144838 4471 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
93f90bec 4472 (op @0 (convert @1))
8fdc6c67 4473 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
93f90bec
BC
4474 (convert (op (convert:utype @0)
4475 (convert:utype @1))))))))
48451e8f
JL
4476
4477/* This is another case of narrowing, specifically when there's an outer
4478 BIT_AND_EXPR which masks off bits outside the type of the innermost
4479 operands. Like the previous case we have to convert the operands
9c582551 4480 to unsigned types to avoid introducing undefined behavior for the
48451e8f
JL
4481 arithmetic operation. */
4482(for op (minus plus)
8fdc6c67
RB
4483 (simplify
4484 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4485 (if (INTEGRAL_TYPE_P (type)
4486 /* We check for type compatibility between @0 and @1 below,
4487 so there's no need to check that @1/@3 are integral types. */
4488 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4489 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4490 /* The precision of the type of each operand must match the
4491 precision of the mode of each operand, similarly for the
4492 result. */
2be65d9e
RS
4493 && type_has_mode_precision_p (TREE_TYPE (@0))
4494 && type_has_mode_precision_p (TREE_TYPE (@1))
4495 && type_has_mode_precision_p (type)
8fdc6c67
RB
4496 /* The inner conversion must be a widening conversion. */
4497 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4498 && types_match (@0, @1)
4499 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4500 <= TYPE_PRECISION (TREE_TYPE (@0)))
8e6cdc90
RS
4501 && (wi::to_wide (@4)
4502 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4503 true, TYPE_PRECISION (type))) == 0)
8fdc6c67
RB
4504 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4505 (with { tree ntype = TREE_TYPE (@0); }
4506 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4507 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4508 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4509 (convert:utype @4))))))))
4f7a5692
MC
4510
4511/* Transform (@0 < @1 and @0 < @2) to use min,
4512 (@0 > @1 and @0 > @2) to use max */
4513(for op (lt le gt ge)
4514 ext (min min max max)
4515 (simplify
4618c453
RB
4516 (bit_and (op:cs @0 @1) (op:cs @0 @2))
4517 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4518 && TREE_CODE (@0) != INTEGER_CST)
4f7a5692
MC
4519 (op @0 (ext @1 @2)))))
4520
7317ef4a
RS
4521(simplify
4522 /* signbit(x) -> 0 if x is nonnegative. */
4523 (SIGNBIT tree_expr_nonnegative_p@0)
4524 { integer_zero_node; })
4525
4526(simplify
4527 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4528 (SIGNBIT @0)
4529 (if (!HONOR_SIGNED_ZEROS (@0))
4530 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
a8b85ce9
MG
4531
4532/* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4533(for cmp (eq ne)
4534 (for op (plus minus)
4535 rop (minus plus)
4536 (simplify
4537 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4538 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4539 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4540 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4541 && !TYPE_SATURATING (TREE_TYPE (@0)))
4542 (with { tree res = int_const_binop (rop, @2, @1); }
75473a91
RB
4543 (if (TREE_OVERFLOW (res)
4544 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
a8b85ce9
MG
4545 { constant_boolean_node (cmp == NE_EXPR, type); }
4546 (if (single_use (@3))
11c1e63c
JJ
4547 (cmp @0 { TREE_OVERFLOW (res)
4548 ? drop_tree_overflow (res) : res; }))))))))
a8b85ce9
MG
4549(for cmp (lt le gt ge)
4550 (for op (plus minus)
4551 rop (minus plus)
4552 (simplify
4553 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4554 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4555 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4556 (with { tree res = int_const_binop (rop, @2, @1); }
4557 (if (TREE_OVERFLOW (res))
4558 {
4559 fold_overflow_warning (("assuming signed overflow does not occur "
4560 "when simplifying conditional to constant"),
4561 WARN_STRICT_OVERFLOW_CONDITIONAL);
4562 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4563 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
8e6cdc90
RS
4564 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4565 TYPE_SIGN (TREE_TYPE (@1)))
a8b85ce9
MG
4566 != (op == MINUS_EXPR);
4567 constant_boolean_node (less == ovf_high, type);
4568 }
4569 (if (single_use (@3))
4570 (with
4571 {
4572 fold_overflow_warning (("assuming signed overflow does not occur "
4573 "when changing X +- C1 cmp C2 to "
4574 "X cmp C2 -+ C1"),
4575 WARN_STRICT_OVERFLOW_COMPARISON);
4576 }
4577 (cmp @0 { res; })))))))))
d3e40b76
RB
4578
4579/* Canonicalizations of BIT_FIELD_REFs. */
4580
4581(simplify
4582 (BIT_FIELD_REF @0 @1 @2)
4583 (switch
4584 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
4585 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4586 (switch
4587 (if (integer_zerop (@2))
4588 (view_convert (realpart @0)))
4589 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4590 (view_convert (imagpart @0)))))
4591 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4592 && INTEGRAL_TYPE_P (type)
171f6f05
RB
4593 /* On GIMPLE this should only apply to register arguments. */
4594 && (! GIMPLE || is_gimple_reg (@0))
d3e40b76
RB
4595 /* A bit-field-ref that referenced the full argument can be stripped. */
4596 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
4597 && integer_zerop (@2))
4598 /* Low-parts can be reduced to integral conversions.
4599 ??? The following doesn't work for PDP endian. */
4600 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
4601 /* Don't even think about BITS_BIG_ENDIAN. */
4602 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
4603 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
4604 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
4605 ? (TYPE_PRECISION (TREE_TYPE (@0))
4606 - TYPE_PRECISION (type))
4607 : 0)) == 0)))
4608 (convert @0))))
4609
4610/* Simplify vector extracts. */
4611
4612(simplify
4613 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
4614 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
4615 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
4616 || (VECTOR_TYPE_P (type)
4617 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
4618 (with
4619 {
4620 tree ctor = (TREE_CODE (@0) == SSA_NAME
4621 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
4622 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
4623 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
4624 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
4625 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
4626 }
4627 (if (n != 0
4628 && (idx % width) == 0
4629 && (n % width) == 0
928686b1
RS
4630 && known_le ((idx + n) / width,
4631 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
d3e40b76
RB
4632 (with
4633 {
4634 idx = idx / width;
4635 n = n / width;
4636 /* Constructor elements can be subvectors. */
d34457c1 4637 poly_uint64 k = 1;
d3e40b76
RB
4638 if (CONSTRUCTOR_NELTS (ctor) != 0)
4639 {
4640 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
4641 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
4642 k = TYPE_VECTOR_SUBPARTS (cons_elem);
4643 }
d34457c1 4644 unsigned HOST_WIDE_INT elt, count, const_k;
d3e40b76
RB
4645 }
4646 (switch
4647 /* We keep an exact subset of the constructor elements. */
d34457c1 4648 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
d3e40b76
RB
4649 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4650 { build_constructor (type, NULL); }
d34457c1
RS
4651 (if (count == 1)
4652 (if (elt < CONSTRUCTOR_NELTS (ctor))
4c1da8ea 4653 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
d34457c1 4654 { build_zero_cst (type); })
d3e40b76 4655 {
d34457c1
RS
4656 vec<constructor_elt, va_gc> *vals;
4657 vec_alloc (vals, count);
4658 for (unsigned i = 0;
4659 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
4660 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
4661 CONSTRUCTOR_ELT (ctor, elt + i)->value);
4662 build_constructor (type, vals);
4663 })))
d3e40b76 4664 /* The bitfield references a single constructor element. */
d34457c1
RS
4665 (if (k.is_constant (&const_k)
4666 && idx + n <= (idx / const_k + 1) * const_k)
d3e40b76 4667 (switch
d34457c1 4668 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
d3e40b76 4669 { build_zero_cst (type); })
d34457c1 4670 (if (n == const_k)
4c1da8ea 4671 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
d34457c1
RS
4672 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
4673 @1 { bitsize_int ((idx % const_k) * width); })))))))))
92e29a5e
RB
4674
4675/* Simplify a bit extraction from a bit insertion for the cases with
4676 the inserted element fully covering the extraction or the insertion
4677 not touching the extraction. */
4678(simplify
4679 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
4680 (with
4681 {
4682 unsigned HOST_WIDE_INT isize;
4683 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4684 isize = TYPE_PRECISION (TREE_TYPE (@1));
4685 else
4686 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
4687 }
4688 (switch
8e6cdc90
RS
4689 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
4690 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
4691 wi::to_wide (@ipos) + isize))
92e29a5e 4692 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
8e6cdc90
RS
4693 wi::to_wide (@rpos)
4694 - wi::to_wide (@ipos)); }))
4695 (if (wi::geu_p (wi::to_wide (@ipos),
4696 wi::to_wide (@rpos) + wi::to_wide (@rsize))
4697 || wi::geu_p (wi::to_wide (@rpos),
4698 wi::to_wide (@ipos) + isize))
92e29a5e 4699 (BIT_FIELD_REF @0 @rsize @rpos)))))