]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/match.pd
Update copyright years.
[thirdparty/gcc.git] / gcc / match.pd
CommitLineData
3d2cf79f
RB
1/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
a5544970 5 Copyright (C) 2014-2019 Free Software Foundation, Inc.
3d2cf79f
RB
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
13Software Foundation; either version 3, or (at your option) any later
14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING3. If not see
23<http://www.gnu.org/licenses/>. */
24
25
26/* Generic tree predicates we inherit. */
27(define_predicates
cc7b5acf 28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
53a19317 29 integer_each_onep integer_truep integer_nonzerop
cc7b5acf 30 real_zerop real_onep real_minus_onep
b0eb889b 31 zerop
f3582e54 32 CONSTANT_CLASS_P
887ab609 33 tree_expr_nonnegative_p
e36c1cfe 34 tree_expr_nonzero_p
67dbe582 35 integer_valued_real_p
53a19317 36 integer_pow2p
f06e47d7 37 uniform_integer_cst_p
53a19317 38 HONOR_NANS)
e0ee10ed 39
f84e7fd6
RB
40/* Operator lists. */
41(define_operator_list tcc_comparison
42 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
43(define_operator_list inverted_tcc_comparison
44 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
45(define_operator_list inverted_tcc_comparison_with_nans
46 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
534bd33b
MG
47(define_operator_list swapped_tcc_comparison
48 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
07cdc2b8
RB
49(define_operator_list simple_comparison lt le eq ne ge gt)
50(define_operator_list swapped_simple_comparison gt ge eq ne le lt)
51
b1dc4a20 52#include "cfn-operators.pd"
257aecb4 53
543a9bcd
RS
54/* Define operand lists for math rounding functions {,i,l,ll}FN,
55 where the versions prefixed with "i" return an int, those prefixed with
56 "l" return a long and those prefixed with "ll" return a long long.
57
58 Also define operand lists:
59
60 X<FN>F for all float functions, in the order i, l, ll
61 X<FN> for all double functions, in the same order
62 X<FN>L for all long double functions, in the same order. */
63#define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
543a9bcd
RS
64 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
65 BUILT_IN_L##FN##F \
66 BUILT_IN_LL##FN##F) \
67 (define_operator_list X##FN BUILT_IN_I##FN \
68 BUILT_IN_L##FN \
69 BUILT_IN_LL##FN) \
70 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
71 BUILT_IN_L##FN##L \
72 BUILT_IN_LL##FN##L)
73
543a9bcd
RS
74DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
75DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
76DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
77DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
0d2b3bca
RS
78
79/* Binary operations and their associated IFN_COND_* function. */
80(define_operator_list UNCOND_BINARY
81 plus minus
6c4fd4a9 82 mult trunc_div trunc_mod rdiv
0d2b3bca
RS
83 min max
84 bit_and bit_ior bit_xor)
85(define_operator_list COND_BINARY
86 IFN_COND_ADD IFN_COND_SUB
6c4fd4a9 87 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
0d2b3bca
RS
88 IFN_COND_MIN IFN_COND_MAX
89 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR)
b41d1f6e
RS
90
91/* Same for ternary operations. */
92(define_operator_list UNCOND_TERNARY
93 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
94(define_operator_list COND_TERNARY
95 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
03cc70b5 96
ed73f46f
MG
97/* As opposed to convert?, this still creates a single pattern, so
98 it is not a suitable replacement for convert? in all cases. */
99(match (nop_convert @0)
100 (convert @0)
101 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
102(match (nop_convert @0)
103 (view_convert @0)
104 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
928686b1
RS
105 && known_eq (TYPE_VECTOR_SUBPARTS (type),
106 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
ed73f46f
MG
107 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
108/* This one has to be last, or it shadows the others. */
109(match (nop_convert @0)
03cc70b5 110 @0)
f84e7fd6 111
e197e64e
KV
112/* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
113 ABSU_EXPR returns unsigned absolute value of the operand and the operand
114 of the ABSU_EXPR will have the corresponding signed type. */
115(simplify (abs (convert @0))
116 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
117 && !TYPE_UNSIGNED (TREE_TYPE (@0))
118 && element_precision (type) > element_precision (TREE_TYPE (@0)))
119 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
120 (convert (absu:utype @0)))))
121
122
e0ee10ed 123/* Simplifications of operations with one constant operand and
36a60e48 124 simplifications to constants or single values. */
e0ee10ed
RB
125
126(for op (plus pointer_plus minus bit_ior bit_xor)
127 (simplify
128 (op @0 integer_zerop)
129 (non_lvalue @0)))
130
a499aac5
RB
131/* 0 +p index -> (type)index */
132(simplify
133 (pointer_plus integer_zerop @1)
134 (non_lvalue (convert @1)))
135
d43177ad
MG
136/* ptr - 0 -> (type)ptr */
137(simplify
138 (pointer_diff @0 integer_zerop)
139 (convert @0))
140
a7f24614
RB
141/* See if ARG1 is zero and X + ARG1 reduces to X.
142 Likewise if the operands are reversed. */
143(simplify
144 (plus:c @0 real_zerop@1)
145 (if (fold_real_zero_addition_p (type, @1, 0))
146 (non_lvalue @0)))
147
148/* See if ARG1 is zero and X - ARG1 reduces to X. */
149(simplify
150 (minus @0 real_zerop@1)
151 (if (fold_real_zero_addition_p (type, @1, 1))
152 (non_lvalue @0)))
153
e0ee10ed
RB
154/* Simplify x - x.
155 This is unsafe for certain floats even in non-IEEE formats.
156 In IEEE, it is unsafe because it does wrong for NaNs.
157 Also note that operand_equal_p is always false if an operand
158 is volatile. */
159(simplify
a7f24614 160 (minus @0 @0)
1b457aa4 161 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
a7f24614 162 { build_zero_cst (type); }))
1af4ebf5
MG
163(simplify
164 (pointer_diff @@0 @0)
165 { build_zero_cst (type); })
e0ee10ed
RB
166
167(simplify
a7f24614
RB
168 (mult @0 integer_zerop@1)
169 @1)
170
171/* Maybe fold x * 0 to 0. The expressions aren't the same
172 when x is NaN, since x * 0 is also NaN. Nor are they the
173 same in modes with signed zeros, since multiplying a
174 negative value by 0 gives -0, not +0. */
175(simplify
176 (mult @0 real_zerop@1)
8b5ee871 177 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
a7f24614
RB
178 @1))
179
180/* In IEEE floating point, x*1 is not equivalent to x for snans.
181 Likewise for complex arithmetic with signed zeros. */
182(simplify
183 (mult @0 real_onep)
8b5ee871
MG
184 (if (!HONOR_SNANS (type)
185 && (!HONOR_SIGNED_ZEROS (type)
a7f24614
RB
186 || !COMPLEX_FLOAT_TYPE_P (type)))
187 (non_lvalue @0)))
188
189/* Transform x * -1.0 into -x. */
190(simplify
191 (mult @0 real_minus_onep)
8b5ee871
MG
192 (if (!HONOR_SNANS (type)
193 && (!HONOR_SIGNED_ZEROS (type)
a7f24614
RB
194 || !COMPLEX_FLOAT_TYPE_P (type)))
195 (negate @0)))
e0ee10ed 196
8c2805bb
AP
197(for cmp (gt ge lt le)
198 outp (convert convert negate negate)
199 outn (negate negate convert convert)
200 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
201 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
202 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
203 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
204 (simplify
205 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
206 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
207 && types_match (type, TREE_TYPE (@0)))
208 (switch
209 (if (types_match (type, float_type_node))
210 (BUILT_IN_COPYSIGNF @1 (outp @0)))
211 (if (types_match (type, double_type_node))
212 (BUILT_IN_COPYSIGN @1 (outp @0)))
213 (if (types_match (type, long_double_type_node))
214 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
215 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
216 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
217 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
218 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
219 (simplify
220 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
221 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
222 && types_match (type, TREE_TYPE (@0)))
223 (switch
224 (if (types_match (type, float_type_node))
225 (BUILT_IN_COPYSIGNF @1 (outn @0)))
226 (if (types_match (type, double_type_node))
227 (BUILT_IN_COPYSIGN @1 (outn @0)))
228 (if (types_match (type, long_double_type_node))
229 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
230
231/* Transform X * copysign (1.0, X) into abs(X). */
232(simplify
c6cfa2bf 233 (mult:c @0 (COPYSIGN_ALL real_onep @0))
8c2805bb
AP
234 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
235 (abs @0)))
236
237/* Transform X * copysign (1.0, -X) into -abs(X). */
238(simplify
c6cfa2bf 239 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
8c2805bb
AP
240 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
241 (negate (abs @0))))
242
243/* Transform copysign (CST, X) into copysign (ABS(CST), X). */
244(simplify
c6cfa2bf 245 (COPYSIGN_ALL REAL_CST@0 @1)
8c2805bb 246 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
c6cfa2bf 247 (COPYSIGN_ALL (negate @0) @1)))
8c2805bb 248
5b7f6ed0 249/* X * 1, X / 1 -> X. */
e0ee10ed
RB
250(for op (mult trunc_div ceil_div floor_div round_div exact_div)
251 (simplify
252 (op @0 integer_onep)
253 (non_lvalue @0)))
254
71f82be9
JG
255/* (A / (1 << B)) -> (A >> B).
256 Only for unsigned A. For signed A, this would not preserve rounding
257 toward zero.
258 For example: (-1 / ( 1 << B)) != -1 >> B. */
259(simplify
260 (trunc_div @0 (lshift integer_onep@1 @2))
261 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
262 && (!VECTOR_TYPE_P (type)
263 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
264 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
265 (rshift @0 @2)))
266
5b7f6ed0
MG
267/* Preserve explicit divisions by 0: the C++ front-end wants to detect
268 undefined behavior in constexpr evaluation, and assuming that the division
269 traps enables better optimizations than these anyway. */
a7f24614 270(for div (trunc_div ceil_div floor_div round_div exact_div)
5b7f6ed0
MG
271 /* 0 / X is always zero. */
272 (simplify
273 (div integer_zerop@0 @1)
274 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
275 (if (!integer_zerop (@1))
276 @0))
da186c1f 277 /* X / -1 is -X. */
a7f24614 278 (simplify
09240451
MG
279 (div @0 integer_minus_onep@1)
280 (if (!TYPE_UNSIGNED (type))
da186c1f 281 (negate @0)))
5b7f6ed0
MG
282 /* X / X is one. */
283 (simplify
284 (div @0 @0)
9ebce098
JJ
285 /* But not for 0 / 0 so that we can get the proper warnings and errors.
286 And not for _Fract types where we can't build 1. */
287 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
5b7f6ed0 288 { build_one_cst (type); }))
03cc70b5 289 /* X / abs (X) is X < 0 ? -1 : 1. */
da186c1f 290 (simplify
d96a5585
RB
291 (div:C @0 (abs @0))
292 (if (INTEGRAL_TYPE_P (type)
da186c1f
RB
293 && TYPE_OVERFLOW_UNDEFINED (type))
294 (cond (lt @0 { build_zero_cst (type); })
295 { build_minus_one_cst (type); } { build_one_cst (type); })))
296 /* X / -X is -1. */
297 (simplify
d96a5585 298 (div:C @0 (negate @0))
da186c1f
RB
299 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
300 && TYPE_OVERFLOW_UNDEFINED (type))
301 { build_minus_one_cst (type); })))
a7f24614
RB
302
303/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
304 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
305(simplify
306 (floor_div @0 @1)
09240451
MG
307 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
308 && TYPE_UNSIGNED (type))
a7f24614
RB
309 (trunc_div @0 @1)))
310
28093105
RB
311/* Combine two successive divisions. Note that combining ceil_div
312 and floor_div is trickier and combining round_div even more so. */
313(for div (trunc_div exact_div)
c306cfaf 314 (simplify
98610dc5 315 (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
c306cfaf 316 (with {
4a669ac3 317 wi::overflow_type overflow;
8e6cdc90 318 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
4a669ac3 319 TYPE_SIGN (type), &overflow);
c306cfaf 320 }
98610dc5
JJ
321 (if (div == EXACT_DIV_EXPR
322 || optimize_successive_divisions_p (@2, @3))
323 (if (!overflow)
324 (div @0 { wide_int_to_tree (type, mul); })
325 (if (TYPE_UNSIGNED (type)
326 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
327 { build_zero_cst (type); }))))))
c306cfaf 328
288fe52e
AM
329/* Combine successive multiplications. Similar to above, but handling
330 overflow is different. */
331(simplify
332 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
333 (with {
4a669ac3 334 wi::overflow_type overflow;
8e6cdc90 335 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
4a669ac3 336 TYPE_SIGN (type), &overflow);
288fe52e
AM
337 }
338 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
339 otherwise undefined overflow implies that @0 must be zero. */
4a669ac3 340 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
288fe52e
AM
341 (mult @0 { wide_int_to_tree (type, mul); }))))
342
a7f24614 343/* Optimize A / A to 1.0 if we don't care about
09240451 344 NaNs or Infinities. */
a7f24614
RB
345(simplify
346 (rdiv @0 @0)
09240451 347 (if (FLOAT_TYPE_P (type)
1b457aa4 348 && ! HONOR_NANS (type)
8b5ee871 349 && ! HONOR_INFINITIES (type))
09240451
MG
350 { build_one_cst (type); }))
351
352/* Optimize -A / A to -1.0 if we don't care about
353 NaNs or Infinities. */
354(simplify
e04d2a35 355 (rdiv:C @0 (negate @0))
09240451 356 (if (FLOAT_TYPE_P (type)
1b457aa4 357 && ! HONOR_NANS (type)
8b5ee871 358 && ! HONOR_INFINITIES (type))
09240451 359 { build_minus_one_cst (type); }))
a7f24614 360
8c6961ca
PK
361/* PR71078: x / abs(x) -> copysign (1.0, x) */
362(simplify
363 (rdiv:C (convert? @0) (convert? (abs @0)))
364 (if (SCALAR_FLOAT_TYPE_P (type)
365 && ! HONOR_NANS (type)
366 && ! HONOR_INFINITIES (type))
367 (switch
368 (if (types_match (type, float_type_node))
369 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
370 (if (types_match (type, double_type_node))
371 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
372 (if (types_match (type, long_double_type_node))
373 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
374
a7f24614
RB
375/* In IEEE floating point, x/1 is not equivalent to x for snans. */
376(simplify
377 (rdiv @0 real_onep)
8b5ee871 378 (if (!HONOR_SNANS (type))
a7f24614
RB
379 (non_lvalue @0)))
380
381/* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
382(simplify
383 (rdiv @0 real_minus_onep)
8b5ee871 384 (if (!HONOR_SNANS (type))
a7f24614
RB
385 (negate @0)))
386
5711ac88 387(if (flag_reciprocal_math)
81825e28 388 /* Convert (A/B)/C to A/(B*C). */
5711ac88
N
389 (simplify
390 (rdiv (rdiv:s @0 @1) @2)
81825e28
WD
391 (rdiv @0 (mult @1 @2)))
392
393 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
394 (simplify
395 (rdiv @0 (mult:s @1 REAL_CST@2))
396 (with
397 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
398 (if (tem)
399 (rdiv (mult @0 { tem; } ) @1))))
5711ac88
N
400
401 /* Convert A/(B/C) to (A/B)*C */
402 (simplify
403 (rdiv @0 (rdiv:s @1 @2))
404 (mult (rdiv @0 @1) @2)))
405
6a435314
WD
406/* Simplify x / (- y) to -x / y. */
407(simplify
408 (rdiv @0 (negate @1))
409 (rdiv (negate @0) @1))
410
5e21d765
WD
411(if (flag_unsafe_math_optimizations)
412 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
413 Since C / x may underflow to zero, do this only for unsafe math. */
414 (for op (lt le gt ge)
415 neg_op (gt ge lt le)
416 (simplify
417 (op (rdiv REAL_CST@0 @1) real_zerop@2)
418 (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
419 (switch
420 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
421 (op @1 @2))
422 /* For C < 0, use the inverted operator. */
423 (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
424 (neg_op @1 @2)))))))
425
5711ac88
N
426/* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
427(for div (trunc_div ceil_div floor_div round_div exact_div)
428 (simplify
429 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
430 (if (integer_pow2p (@2)
431 && tree_int_cst_sgn (@2) > 0
a1488398 432 && tree_nop_conversion_p (type, TREE_TYPE (@0))
8e6cdc90
RS
433 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
434 (rshift (convert @0)
435 { build_int_cst (integer_type_node,
436 wi::exact_log2 (wi::to_wide (@2))); }))))
5711ac88 437
a7f24614
RB
438/* If ARG1 is a constant, we can convert this to a multiply by the
439 reciprocal. This does not have the same rounding properties,
440 so only do this if -freciprocal-math. We can actually
441 always safely do it if ARG1 is a power of two, but it's hard to
442 tell if it is or not in a portable manner. */
443(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
444 (simplify
445 (rdiv @0 cst@1)
446 (if (optimize)
53bc4b3a
RB
447 (if (flag_reciprocal_math
448 && !real_zerop (@1))
a7f24614 449 (with
249700b5 450 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
a7f24614 451 (if (tem)
8fdc6c67
RB
452 (mult @0 { tem; } )))
453 (if (cst != COMPLEX_CST)
454 (with { tree inverse = exact_inverse (type, @1); }
455 (if (inverse)
456 (mult @0 { inverse; } ))))))))
a7f24614 457
a7f24614 458(for mod (ceil_mod floor_mod round_mod trunc_mod)
e0ee10ed
RB
459 /* 0 % X is always zero. */
460 (simplify
a7f24614 461 (mod integer_zerop@0 @1)
e0ee10ed
RB
462 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
463 (if (!integer_zerop (@1))
464 @0))
465 /* X % 1 is always zero. */
466 (simplify
a7f24614
RB
467 (mod @0 integer_onep)
468 { build_zero_cst (type); })
469 /* X % -1 is zero. */
470 (simplify
09240451
MG
471 (mod @0 integer_minus_onep@1)
472 (if (!TYPE_UNSIGNED (type))
bc4315fb 473 { build_zero_cst (type); }))
5b7f6ed0
MG
474 /* X % X is zero. */
475 (simplify
476 (mod @0 @0)
477 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
478 (if (!integer_zerop (@0))
479 { build_zero_cst (type); }))
bc4315fb
MG
480 /* (X % Y) % Y is just X % Y. */
481 (simplify
482 (mod (mod@2 @0 @1) @1)
98e30e51
RB
483 @2)
484 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
485 (simplify
486 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
487 (if (ANY_INTEGRAL_TYPE_P (type)
488 && TYPE_OVERFLOW_UNDEFINED (type)
8e6cdc90
RS
489 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
490 TYPE_SIGN (type)))
392750c5
JJ
491 { build_zero_cst (type); }))
492 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
493 modulo and comparison, since it is simpler and equivalent. */
494 (for cmp (eq ne)
495 (simplify
496 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
497 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
498 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
499 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
a7f24614
RB
500
501/* X % -C is the same as X % C. */
502(simplify
503 (trunc_mod @0 INTEGER_CST@1)
504 (if (TYPE_SIGN (type) == SIGNED
505 && !TREE_OVERFLOW (@1)
8e6cdc90 506 && wi::neg_p (wi::to_wide (@1))
a7f24614
RB
507 && !TYPE_OVERFLOW_TRAPS (type)
508 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
509 && !sign_bit_p (@1, @1))
510 (trunc_mod @0 (negate @1))))
e0ee10ed 511
8f0c696a
RB
512/* X % -Y is the same as X % Y. */
513(simplify
514 (trunc_mod @0 (convert? (negate @1)))
a2a743a1
MP
515 (if (INTEGRAL_TYPE_P (type)
516 && !TYPE_UNSIGNED (type)
8f0c696a 517 && !TYPE_OVERFLOW_TRAPS (type)
20b8d734
JJ
518 && tree_nop_conversion_p (type, TREE_TYPE (@1))
519 /* Avoid this transformation if X might be INT_MIN or
520 Y might be -1, because we would then change valid
521 INT_MIN % -(-1) into invalid INT_MIN % -1. */
8e6cdc90 522 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
20b8d734
JJ
523 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
524 (TREE_TYPE (@1))))))
8f0c696a
RB
525 (trunc_mod @0 (convert @1))))
526
f461569a
MP
527/* X - (X / Y) * Y is the same as X % Y. */
528(simplify
2eef1fc1
RB
529 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
530 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
fba46f03 531 (convert (trunc_mod @0 @1))))
f461569a 532
8f0c696a
RB
533/* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
534 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
535 Also optimize A % (C << N) where C is a power of 2,
536 to A & ((C << N) - 1). */
537(match (power_of_two_cand @1)
538 INTEGER_CST@1)
539(match (power_of_two_cand @1)
540 (lshift INTEGER_CST@1 @2))
541(for mod (trunc_mod floor_mod)
542 (simplify
4ab1e111 543 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
8f0c696a
RB
544 (if ((TYPE_UNSIGNED (type)
545 || tree_expr_nonnegative_p (@0))
4ab1e111 546 && tree_nop_conversion_p (type, TREE_TYPE (@3))
8f0c696a 547 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
4ab1e111 548 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
8f0c696a 549
887ab609
N
550/* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
551(simplify
552 (trunc_div (mult @0 integer_pow2p@1) @1)
553 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
554 (bit_and @0 { wide_int_to_tree
8e6cdc90
RS
555 (type, wi::mask (TYPE_PRECISION (type)
556 - wi::exact_log2 (wi::to_wide (@1)),
887ab609
N
557 false, TYPE_PRECISION (type))); })))
558
5f8d832e
N
559/* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
560(simplify
561 (mult (trunc_div @0 integer_pow2p@1) @1)
562 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
563 (bit_and @0 (negate @1))))
564
95765f36
N
565/* Simplify (t * 2) / 2) -> t. */
566(for div (trunc_div ceil_div floor_div round_div exact_div)
567 (simplify
55d84e61 568 (div (mult:c @0 @1) @1)
95765f36
N
569 (if (ANY_INTEGRAL_TYPE_P (type)
570 && TYPE_OVERFLOW_UNDEFINED (type))
571 @0)))
572
d202f9bd 573(for op (negate abs)
9b054b08
RS
574 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
575 (for coss (COS COSH)
576 (simplify
577 (coss (op @0))
578 (coss @0)))
579 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
580 (for pows (POW)
581 (simplify
582 (pows (op @0) REAL_CST@1)
583 (with { HOST_WIDE_INT n; }
584 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
5d3498b4 585 (pows @0 @1)))))
de3fbea3
RB
586 /* Likewise for powi. */
587 (for pows (POWI)
588 (simplify
589 (pows (op @0) INTEGER_CST@1)
8e6cdc90 590 (if ((wi::to_wide (@1) & 1) == 0)
de3fbea3 591 (pows @0 @1))))
5d3498b4
RS
592 /* Strip negate and abs from both operands of hypot. */
593 (for hypots (HYPOT)
594 (simplify
595 (hypots (op @0) @1)
596 (hypots @0 @1))
597 (simplify
598 (hypots @0 (op @1))
599 (hypots @0 @1)))
600 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
c6cfa2bf 601 (for copysigns (COPYSIGN_ALL)
5d3498b4
RS
602 (simplify
603 (copysigns (op @0) @1)
604 (copysigns @0 @1))))
605
606/* abs(x)*abs(x) -> x*x. Should be valid for all types. */
607(simplify
608 (mult (abs@1 @0) @1)
609 (mult @0 @0))
610
64f7ea7c
KV
611/* Convert absu(x)*absu(x) -> x*x. */
612(simplify
613 (mult (absu@1 @0) @1)
614 (mult (convert@2 @0) @2))
615
5d3498b4
RS
616/* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
617(for coss (COS COSH)
618 copysigns (COPYSIGN)
619 (simplify
620 (coss (copysigns @0 @1))
621 (coss @0)))
622
623/* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
624(for pows (POW)
625 copysigns (COPYSIGN)
626 (simplify
de3fbea3 627 (pows (copysigns @0 @2) REAL_CST@1)
5d3498b4
RS
628 (with { HOST_WIDE_INT n; }
629 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
630 (pows @0 @1)))))
de3fbea3
RB
631/* Likewise for powi. */
632(for pows (POWI)
633 copysigns (COPYSIGN)
634 (simplify
635 (pows (copysigns @0 @2) INTEGER_CST@1)
8e6cdc90 636 (if ((wi::to_wide (@1) & 1) == 0)
de3fbea3 637 (pows @0 @1))))
5d3498b4
RS
638
639(for hypots (HYPOT)
640 copysigns (COPYSIGN)
641 /* hypot(copysign(x, y), z) -> hypot(x, z). */
642 (simplify
643 (hypots (copysigns @0 @1) @2)
644 (hypots @0 @2))
645 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
646 (simplify
647 (hypots @0 (copysigns @1 @2))
648 (hypots @0 @1)))
649
eeb57981 650/* copysign(x, CST) -> [-]abs (x). */
c6cfa2bf 651(for copysigns (COPYSIGN_ALL)
eeb57981
RB
652 (simplify
653 (copysigns @0 REAL_CST@1)
654 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
655 (negate (abs @0))
656 (abs @0))))
657
5d3498b4 658/* copysign(copysign(x, y), z) -> copysign(x, z). */
c6cfa2bf 659(for copysigns (COPYSIGN_ALL)
5d3498b4
RS
660 (simplify
661 (copysigns (copysigns @0 @1) @2)
662 (copysigns @0 @2)))
663
664/* copysign(x,y)*copysign(x,y) -> x*x. */
c6cfa2bf 665(for copysigns (COPYSIGN_ALL)
5d3498b4
RS
666 (simplify
667 (mult (copysigns@2 @0 @1) @2)
668 (mult @0 @0)))
669
670/* ccos(-x) -> ccos(x). Similarly for ccosh. */
671(for ccoss (CCOS CCOSH)
672 (simplify
673 (ccoss (negate @0))
674 (ccoss @0)))
d202f9bd 675
abcc43f5
RS
676/* cabs(-x) and cos(conj(x)) -> cabs(x). */
677(for ops (conj negate)
678 (for cabss (CABS)
679 (simplify
680 (cabss (ops @0))
681 (cabss @0))))
682
0a8f32b8
RB
683/* Fold (a * (1 << b)) into (a << b) */
684(simplify
685 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
686 (if (! FLOAT_TYPE_P (type)
9ff6fb6e 687 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
0a8f32b8
RB
688 (lshift @0 @2)))
689
4349b15f
SD
690/* Fold (1 << (C - x)) where C = precision(type) - 1
691 into ((1 << C) >> x). */
692(simplify
693 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
694 (if (INTEGRAL_TYPE_P (type)
56ccfbd6 695 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
4349b15f
SD
696 && single_use (@1))
697 (if (TYPE_UNSIGNED (type))
698 (rshift (lshift @0 @2) @3)
699 (with
700 { tree utype = unsigned_type_for (type); }
701 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
702
0a8f32b8
RB
703/* Fold (C1/X)*C2 into (C1*C2)/X. */
704(simplify
ff86345f
RB
705 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
706 (if (flag_associative_math
707 && single_use (@3))
0a8f32b8
RB
708 (with
709 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
710 (if (tem)
711 (rdiv { tem; } @1)))))
712
713/* Simplify ~X & X as zero. */
714(simplify
715 (bit_and:c (convert? @0) (convert? (bit_not @0)))
716 { build_zero_cst (type); })
717
89b80c42
PK
718/* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
719(simplify
720 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
721 (if (TYPE_UNSIGNED (type))
722 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
723
7aa13860
PK
724(for bitop (bit_and bit_ior)
725 cmp (eq ne)
a93952d2
JJ
726 /* PR35691: Transform
727 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
728 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
7aa13860
PK
729 (simplify
730 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
731 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
a93952d2
JJ
732 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
733 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
734 (cmp (bit_ior @0 (convert @1)) @2)))
735 /* Transform:
736 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
737 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
738 (simplify
739 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
740 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
741 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
742 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
743 (cmp (bit_and @0 (convert @1)) @2))))
7aa13860 744
10158317
RB
745/* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
746(simplify
a9658b11 747 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
10158317
RB
748 (minus (bit_xor @0 @1) @1))
749(simplify
750 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
8e6cdc90 751 (if (~wi::to_wide (@2) == wi::to_wide (@1))
10158317
RB
752 (minus (bit_xor @0 @1) @1)))
753
754/* Fold (A & B) - (A & ~B) into B - (A ^ B). */
755(simplify
a8e9f9a3 756 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
10158317
RB
757 (minus @1 (bit_xor @0 @1)))
758
42bd89ce
MG
759/* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
760(for op (bit_ior bit_xor plus)
761 (simplify
762 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
763 (bit_xor @0 @1))
764 (simplify
765 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
8e6cdc90 766 (if (~wi::to_wide (@2) == wi::to_wide (@1))
42bd89ce 767 (bit_xor @0 @1))))
2066ef6a
PK
768
769/* PR53979: Transform ((a ^ b) | a) -> (a | b) */
770(simplify
771 (bit_ior:c (bit_xor:c @0 @1) @0)
772 (bit_ior @0 @1))
773
e268a77b
MG
774/* (a & ~b) | (a ^ b) --> a ^ b */
775(simplify
776 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
777 @2)
778
779/* (a & ~b) ^ ~a --> ~(a & b) */
780(simplify
781 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
782 (bit_not (bit_and @0 @1)))
783
784/* (a | b) & ~(a ^ b) --> a & b */
785(simplify
786 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
787 (bit_and @0 @1))
788
789/* a | ~(a ^ b) --> a | ~b */
790(simplify
791 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
792 (bit_ior @0 (bit_not @1)))
793
794/* (a | b) | (a &^ b) --> a | b */
795(for op (bit_and bit_xor)
796 (simplify
797 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
798 @2))
799
800/* (a & b) | ~(a ^ b) --> ~(a ^ b) */
801(simplify
802 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
803 @2)
804
805/* ~(~a & b) --> a | ~b */
806(simplify
807 (bit_not (bit_and:cs (bit_not @0) @1))
808 (bit_ior @0 (bit_not @1)))
809
fd8303a5
MC
810/* ~(~a | b) --> a & ~b */
811(simplify
812 (bit_not (bit_ior:cs (bit_not @0) @1))
813 (bit_and @0 (bit_not @1)))
814
d982c5b7
MG
815/* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
816#if GIMPLE
817(simplify
818 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
819 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
8e6cdc90 820 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
d982c5b7
MG
821 (bit_xor @0 @1)))
822#endif
10158317 823
f2901002
JJ
824/* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
825 ((A & N) + B) & M -> (A + B) & M
826 Similarly if (N & M) == 0,
827 ((A | N) + B) & M -> (A + B) & M
828 and for - instead of + (or unary - instead of +)
829 and/or ^ instead of |.
830 If B is constant and (B & M) == 0, fold into A & M. */
831(for op (plus minus)
832 (for bitop (bit_and bit_ior bit_xor)
833 (simplify
834 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
835 (with
836 { tree pmop[2];
837 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
838 @3, @4, @1, ERROR_MARK, NULL_TREE,
839 NULL_TREE, pmop); }
840 (if (utype)
841 (convert (bit_and (op (convert:utype { pmop[0]; })
842 (convert:utype { pmop[1]; }))
843 (convert:utype @2))))))
844 (simplify
845 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
846 (with
847 { tree pmop[2];
848 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
849 NULL_TREE, NULL_TREE, @1, bitop, @3,
850 @4, pmop); }
851 (if (utype)
852 (convert (bit_and (op (convert:utype { pmop[0]; })
853 (convert:utype { pmop[1]; }))
854 (convert:utype @2)))))))
855 (simplify
856 (bit_and (op:s @0 @1) INTEGER_CST@2)
857 (with
858 { tree pmop[2];
859 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
860 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
861 NULL_TREE, NULL_TREE, pmop); }
862 (if (utype)
863 (convert (bit_and (op (convert:utype { pmop[0]; })
864 (convert:utype { pmop[1]; }))
865 (convert:utype @2)))))))
866(for bitop (bit_and bit_ior bit_xor)
867 (simplify
868 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
869 (with
870 { tree pmop[2];
871 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
872 bitop, @2, @3, NULL_TREE, ERROR_MARK,
873 NULL_TREE, NULL_TREE, pmop); }
874 (if (utype)
875 (convert (bit_and (negate (convert:utype { pmop[0]; }))
876 (convert:utype @1)))))))
877
bc4315fb
MG
878/* X % Y is smaller than Y. */
879(for cmp (lt ge)
880 (simplify
881 (cmp (trunc_mod @0 @1) @1)
882 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
883 { constant_boolean_node (cmp == LT_EXPR, type); })))
884(for cmp (gt le)
885 (simplify
886 (cmp @1 (trunc_mod @0 @1))
887 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
888 { constant_boolean_node (cmp == GT_EXPR, type); })))
889
e0ee10ed
RB
890/* x | ~0 -> ~0 */
891(simplify
ca0b7ece
RB
892 (bit_ior @0 integer_all_onesp@1)
893 @1)
894
895/* x | 0 -> x */
896(simplify
897 (bit_ior @0 integer_zerop)
898 @0)
e0ee10ed
RB
899
900/* x & 0 -> 0 */
901(simplify
ca0b7ece
RB
902 (bit_and @0 integer_zerop@1)
903 @1)
e0ee10ed 904
a4398a30 905/* ~x | x -> -1 */
8b5ee871
MG
906/* ~x ^ x -> -1 */
907/* ~x + x -> -1 */
908(for op (bit_ior bit_xor plus)
909 (simplify
910 (op:c (convert? @0) (convert? (bit_not @0)))
911 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
a4398a30 912
e0ee10ed
RB
913/* x ^ x -> 0 */
914(simplify
915 (bit_xor @0 @0)
916 { build_zero_cst (type); })
917
36a60e48
RB
918/* Canonicalize X ^ ~0 to ~X. */
919(simplify
920 (bit_xor @0 integer_all_onesp@1)
921 (bit_not @0))
922
923/* x & ~0 -> x */
924(simplify
925 (bit_and @0 integer_all_onesp)
926 (non_lvalue @0))
927
928/* x & x -> x, x | x -> x */
929(for bitop (bit_and bit_ior)
930 (simplify
931 (bitop @0 @0)
932 (non_lvalue @0)))
933
c7986356
MG
934/* x & C -> x if we know that x & ~C == 0. */
935#if GIMPLE
936(simplify
937 (bit_and SSA_NAME@0 INTEGER_CST@1)
938 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
8e6cdc90 939 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
c7986356
MG
940 @0))
941#endif
942
0f770b01
RV
943/* x + (x & 1) -> (x + 1) & ~1 */
944(simplify
44fc0a51
RB
945 (plus:c @0 (bit_and:s @0 integer_onep@1))
946 (bit_and (plus @0 @1) (bit_not @1)))
0f770b01
RV
947
948/* x & ~(x & y) -> x & ~y */
949/* x | ~(x | y) -> x | ~y */
950(for bitop (bit_and bit_ior)
af563d4b 951 (simplify
44fc0a51
RB
952 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
953 (bitop @0 (bit_not @1))))
af563d4b 954
03cc70b5
MC
955/* (~x & y) | ~(x | y) -> ~x */
956(simplify
957 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
958 @2)
959
960/* (x | y) ^ (x | ~y) -> ~x */
961(simplify
962 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
963 (bit_not @0))
964
965/* (x & y) | ~(x | y) -> ~(x ^ y) */
966(simplify
967 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
968 (bit_not (bit_xor @0 @1)))
969
970/* (~x | y) ^ (x ^ y) -> x | ~y */
971(simplify
972 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
973 (bit_ior @0 (bit_not @1)))
974
975/* (x ^ y) | ~(x | y) -> ~(x & y) */
976(simplify
977 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
978 (bit_not (bit_and @0 @1)))
979
af563d4b
MG
980/* (x | y) & ~x -> y & ~x */
981/* (x & y) | ~x -> y | ~x */
982(for bitop (bit_and bit_ior)
983 rbitop (bit_ior bit_and)
984 (simplify
985 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
986 (bitop @1 @2)))
0f770b01 987
f13c4673
MP
988/* (x & y) ^ (x | y) -> x ^ y */
989(simplify
2d6f2dce
MP
990 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
991 (bit_xor @0 @1))
f13c4673 992
9ea65ca6
MP
993/* (x ^ y) ^ (x | y) -> x & y */
994(simplify
995 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
996 (bit_and @0 @1))
997
998/* (x & y) + (x ^ y) -> x | y */
999/* (x & y) | (x ^ y) -> x | y */
1000/* (x & y) ^ (x ^ y) -> x | y */
1001(for op (plus bit_ior bit_xor)
1002 (simplify
1003 (op:c (bit_and @0 @1) (bit_xor @0 @1))
1004 (bit_ior @0 @1)))
1005
1006/* (x & y) + (x | y) -> x + y */
1007(simplify
1008 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1009 (plus @0 @1))
1010
9737efaf
MP
1011/* (x + y) - (x | y) -> x & y */
1012(simplify
1013 (minus (plus @0 @1) (bit_ior @0 @1))
1014 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1015 && !TYPE_SATURATING (type))
1016 (bit_and @0 @1)))
1017
1018/* (x + y) - (x & y) -> x | y */
1019(simplify
1020 (minus (plus @0 @1) (bit_and @0 @1))
1021 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1022 && !TYPE_SATURATING (type))
1023 (bit_ior @0 @1)))
1024
9ea65ca6
MP
1025/* (x | y) - (x ^ y) -> x & y */
1026(simplify
1027 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1028 (bit_and @0 @1))
1029
1030/* (x | y) - (x & y) -> x ^ y */
1031(simplify
1032 (minus (bit_ior @0 @1) (bit_and @0 @1))
1033 (bit_xor @0 @1))
1034
66cc6273
MP
1035/* (x | y) & ~(x & y) -> x ^ y */
1036(simplify
1037 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1038 (bit_xor @0 @1))
1039
1040/* (x | y) & (~x ^ y) -> x & y */
1041(simplify
1042 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1043 (bit_and @0 @1))
1044
fd8303a5
MC
1045/* (~x | y) & (x | ~y) -> ~(x ^ y) */
1046(simplify
1047 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1048 (bit_not (bit_xor @0 @1)))
1049
1050/* (~x | y) ^ (x | ~y) -> x ^ y */
1051(simplify
1052 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1053 (bit_xor @0 @1))
1054
5b00d921
RB
1055/* ~x & ~y -> ~(x | y)
1056 ~x | ~y -> ~(x & y) */
1057(for op (bit_and bit_ior)
1058 rop (bit_ior bit_and)
1059 (simplify
1060 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
ece46666
MG
1061 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1062 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
5b00d921
RB
1063 (bit_not (rop (convert @0) (convert @1))))))
1064
14ea9f92 1065/* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
5b00d921
RB
1066 with a constant, and the two constants have no bits in common,
1067 we should treat this as a BIT_IOR_EXPR since this may produce more
1068 simplifications. */
14ea9f92
RB
1069(for op (bit_xor plus)
1070 (simplify
1071 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1072 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1073 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1074 && tree_nop_conversion_p (type, TREE_TYPE (@2))
8e6cdc90 1075 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
14ea9f92 1076 (bit_ior (convert @4) (convert @5)))))
5b00d921
RB
1077
1078/* (X | Y) ^ X -> Y & ~ X*/
1079(simplify
2eef1fc1 1080 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
5b00d921
RB
1081 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1082 (convert (bit_and @1 (bit_not @0)))))
1083
1084/* Convert ~X ^ ~Y to X ^ Y. */
1085(simplify
1086 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
ece46666
MG
1087 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1088 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
5b00d921
RB
1089 (bit_xor (convert @0) (convert @1))))
1090
1091/* Convert ~X ^ C to X ^ ~C. */
1092(simplify
1093 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
c8ba6498
EB
1094 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1095 (bit_xor (convert @0) (bit_not @1))))
5b00d921 1096
e39dab2c
MG
1097/* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1098(for opo (bit_and bit_xor)
1099 opi (bit_xor bit_and)
1100 (simplify
de5b5228 1101 (opo:c (opi:cs @0 @1) @1)
e39dab2c 1102 (bit_and (bit_not @0) @1)))
97e77391 1103
14ea9f92
RB
1104/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1105 operands are another bit-wise operation with a common input. If so,
1106 distribute the bit operations to save an operation and possibly two if
1107 constants are involved. For example, convert
1108 (A | B) & (A | C) into A | (B & C)
1109 Further simplification will occur if B and C are constants. */
e07ab2fe
MG
1110(for op (bit_and bit_ior bit_xor)
1111 rop (bit_ior bit_and bit_and)
14ea9f92 1112 (simplify
2eef1fc1 1113 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
e07ab2fe
MG
1114 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1115 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
14ea9f92
RB
1116 (rop (convert @0) (op (convert @1) (convert @2))))))
1117
e39dab2c
MG
1118/* Some simple reassociation for bit operations, also handled in reassoc. */
1119/* (X & Y) & Y -> X & Y
1120 (X | Y) | Y -> X | Y */
1121(for op (bit_and bit_ior)
1122 (simplify
2eef1fc1 1123 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
e39dab2c
MG
1124 @2))
1125/* (X ^ Y) ^ Y -> X */
1126(simplify
2eef1fc1 1127 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
ece46666 1128 (convert @0))
e39dab2c
MG
1129/* (X & Y) & (X & Z) -> (X & Y) & Z
1130 (X | Y) | (X | Z) -> (X | Y) | Z */
1131(for op (bit_and bit_ior)
1132 (simplify
6c35e5b0 1133 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
e39dab2c
MG
1134 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1135 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1136 (if (single_use (@5) && single_use (@6))
1137 (op @3 (convert @2))
1138 (if (single_use (@3) && single_use (@4))
1139 (op (convert @1) @5))))))
1140/* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1141(simplify
1142 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1143 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1144 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
d78789f5 1145 (bit_xor (convert @1) (convert @2))))
5b00d921 1146
64f7ea7c
KV
1147/* Convert abs (abs (X)) into abs (X).
1148 also absu (absu (X)) into absu (X). */
b14a9c57
RB
1149(simplify
1150 (abs (abs@1 @0))
1151 @1)
64f7ea7c
KV
1152
1153(simplify
1154 (absu (convert@2 (absu@1 @0)))
1155 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1156 @1))
1157
1158/* Convert abs[u] (-X) -> abs[u] (X). */
f3582e54
RB
1159(simplify
1160 (abs (negate @0))
1161 (abs @0))
64f7ea7c
KV
1162
1163(simplify
1164 (absu (negate @0))
1165 (absu @0))
1166
1167/* Convert abs[u] (X) where X is nonnegative -> (X). */
f3582e54
RB
1168(simplify
1169 (abs tree_expr_nonnegative_p@0)
1170 @0)
1171
64f7ea7c
KV
1172(simplify
1173 (absu tree_expr_nonnegative_p@0)
1174 (convert @0))
1175
55cf3946
RB
1176/* A few cases of fold-const.c negate_expr_p predicate. */
1177(match negate_expr_p
1178 INTEGER_CST
b14a9c57 1179 (if ((INTEGRAL_TYPE_P (type)
56a6d474 1180 && TYPE_UNSIGNED (type))
b14a9c57 1181 || (!TYPE_OVERFLOW_SANITIZED (type)
55cf3946
RB
1182 && may_negate_without_overflow_p (t)))))
1183(match negate_expr_p
1184 FIXED_CST)
1185(match negate_expr_p
1186 (negate @0)
1187 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1188(match negate_expr_p
1189 REAL_CST
1190 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1191/* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1192 ways. */
1193(match negate_expr_p
1194 VECTOR_CST
1195 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
81bd903a
MG
1196(match negate_expr_p
1197 (minus @0 @1)
1198 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1199 || (FLOAT_TYPE_P (type)
1200 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1201 && !HONOR_SIGNED_ZEROS (type)))))
0a8f32b8
RB
1202
1203/* (-A) * (-B) -> A * B */
1204(simplify
1205 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1206 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1207 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1208 (mult (convert @0) (convert (negate @1)))))
03cc70b5 1209
55cf3946 1210/* -(A + B) -> (-B) - A. */
b14a9c57 1211(simplify
55cf3946
RB
1212 (negate (plus:c @0 negate_expr_p@1))
1213 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1214 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1215 (minus (negate @1) @0)))
1216
81bd903a
MG
1217/* -(A - B) -> B - A. */
1218(simplify
1219 (negate (minus @0 @1))
1220 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1221 || (FLOAT_TYPE_P (type)
1222 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1223 && !HONOR_SIGNED_ZEROS (type)))
1224 (minus @1 @0)))
1af4ebf5
MG
1225(simplify
1226 (negate (pointer_diff @0 @1))
1227 (if (TYPE_OVERFLOW_UNDEFINED (type))
1228 (pointer_diff @1 @0)))
81bd903a 1229
55cf3946 1230/* A - B -> A + (-B) if B is easily negatable. */
b14a9c57 1231(simplify
55cf3946 1232 (minus @0 negate_expr_p@1)
e4e96a4f
KT
1233 (if (!FIXED_POINT_TYPE_P (type))
1234 (plus @0 (negate @1))))
d4573ffe 1235
5609420f
RB
1236/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1237 when profitable.
1238 For bitwise binary operations apply operand conversions to the
1239 binary operation result instead of to the operands. This allows
1240 to combine successive conversions and bitwise binary operations.
1241 We combine the above two cases by using a conditional convert. */
1242(for bitop (bit_and bit_ior bit_xor)
1243 (simplify
1244 (bitop (convert @0) (convert? @1))
1245 (if (((TREE_CODE (@1) == INTEGER_CST
1246 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
ad6f996c 1247 && int_fits_type_p (@1, TREE_TYPE (@0)))
aea417d7 1248 || types_match (@0, @1))
ad6f996c
RB
1249 /* ??? This transform conflicts with fold-const.c doing
1250 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1251 constants (if x has signed type, the sign bit cannot be set
1252 in c). This folds extension into the BIT_AND_EXPR.
1253 Restrict it to GIMPLE to avoid endless recursions. */
1254 && (bitop != BIT_AND_EXPR || GIMPLE)
5609420f
RB
1255 && (/* That's a good idea if the conversion widens the operand, thus
1256 after hoisting the conversion the operation will be narrower. */
1257 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1258 /* It's also a good idea if the conversion is to a non-integer
1259 mode. */
1260 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1261 /* Or if the precision of TO is not the same as the precision
1262 of its mode. */
2be65d9e 1263 || !type_has_mode_precision_p (type)))
5609420f
RB
1264 (convert (bitop @0 (convert @1))))))
1265
b14a9c57
RB
1266(for bitop (bit_and bit_ior)
1267 rbitop (bit_ior bit_and)
1268 /* (x | y) & x -> x */
1269 /* (x & y) | x -> x */
1270 (simplify
1271 (bitop:c (rbitop:c @0 @1) @0)
1272 @0)
1273 /* (~x | y) & x -> x & y */
1274 /* (~x & y) | x -> x | y */
1275 (simplify
1276 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1277 (bitop @0 @1)))
1278
5609420f
RB
1279/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1280(simplify
1281 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1282 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1283
1284/* Combine successive equal operations with constants. */
1285(for bitop (bit_and bit_ior bit_xor)
1286 (simplify
1287 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
fba05d9e
RS
1288 (if (!CONSTANT_CLASS_P (@0))
1289 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1290 folded to a constant. */
1291 (bitop @0 (bitop @1 @2))
1292 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1293 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1294 the values involved are such that the operation can't be decided at
1295 compile time. Try folding one of @0 or @1 with @2 to see whether
1296 that combination can be decided at compile time.
1297
1298 Keep the existing form if both folds fail, to avoid endless
1299 oscillation. */
1300 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1301 (if (cst1)
1302 (bitop @1 { cst1; })
1303 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1304 (if (cst2)
1305 (bitop @0 { cst2; }))))))))
5609420f
RB
1306
1307/* Try simple folding for X op !X, and X op X with the help
1308 of the truth_valued_p and logical_inverted_value predicates. */
1309(match truth_valued_p
1310 @0
1311 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
f84e7fd6 1312(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
5609420f
RB
1313 (match truth_valued_p
1314 (op @0 @1)))
1315(match truth_valued_p
1316 (truth_not @0))
1317
0a8f32b8
RB
1318(match (logical_inverted_value @0)
1319 (truth_not @0))
5609420f
RB
1320(match (logical_inverted_value @0)
1321 (bit_not truth_valued_p@0))
1322(match (logical_inverted_value @0)
09240451 1323 (eq @0 integer_zerop))
5609420f 1324(match (logical_inverted_value @0)
09240451 1325 (ne truth_valued_p@0 integer_truep))
5609420f 1326(match (logical_inverted_value @0)
09240451 1327 (bit_xor truth_valued_p@0 integer_truep))
5609420f
RB
1328
1329/* X & !X -> 0. */
1330(simplify
1331 (bit_and:c @0 (logical_inverted_value @0))
1332 { build_zero_cst (type); })
1333/* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1334(for op (bit_ior bit_xor)
1335 (simplify
1336 (op:c truth_valued_p@0 (logical_inverted_value @0))
f84e7fd6 1337 { constant_boolean_node (true, type); }))
59c20dc7
RB
1338/* X ==/!= !X is false/true. */
1339(for op (eq ne)
1340 (simplify
1341 (op:c truth_valued_p@0 (logical_inverted_value @0))
1342 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
5609420f 1343
5609420f
RB
1344/* ~~x -> x */
1345(simplify
1346 (bit_not (bit_not @0))
1347 @0)
1348
b14a9c57
RB
1349/* Convert ~ (-A) to A - 1. */
1350(simplify
1351 (bit_not (convert? (negate @0)))
ece46666
MG
1352 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1353 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
8b5ee871 1354 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
b14a9c57 1355
81bd903a
MG
1356/* Convert - (~A) to A + 1. */
1357(simplify
1358 (negate (nop_convert (bit_not @0)))
1359 (plus (view_convert @0) { build_each_one_cst (type); }))
1360
b14a9c57
RB
1361/* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1362(simplify
8b5ee871 1363 (bit_not (convert? (minus @0 integer_each_onep)))
ece46666
MG
1364 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1365 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
b14a9c57
RB
1366 (convert (negate @0))))
1367(simplify
1368 (bit_not (convert? (plus @0 integer_all_onesp)))
ece46666
MG
1369 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1370 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
b14a9c57
RB
1371 (convert (negate @0))))
1372
1373/* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1374(simplify
1375 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1376 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1377 (convert (bit_xor @0 (bit_not @1)))))
1378(simplify
1379 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1380 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1381 (convert (bit_xor @0 @1))))
1382
e268a77b
MG
1383/* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1384(simplify
1385 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1386 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1387 (bit_not (bit_xor (view_convert @0) @1))))
1388
f52baa7b
MP
1389/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1390(simplify
44fc0a51
RB
1391 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1392 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
f52baa7b 1393
f7b7b0aa
MP
1394/* Fold A - (A & B) into ~B & A. */
1395(simplify
2eef1fc1 1396 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
f7b7b0aa
MP
1397 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1398 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1399 (convert (bit_and (bit_not @1) @0))))
5609420f 1400
2071f8f9
N
1401/* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1402(for cmp (gt lt ge le)
1403(simplify
1404 (mult (convert (cmp @0 @1)) @2)
1405 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1406
e36c1cfe
N
1407/* For integral types with undefined overflow and C != 0 fold
1408 x * C EQ/NE y * C into x EQ/NE y. */
1409(for cmp (eq ne)
1410 (simplify
1411 (cmp (mult:c @0 @1) (mult:c @2 @1))
1412 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1413 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1414 && tree_expr_nonzero_p (@1))
1415 (cmp @0 @2))))
1416
42bd89ce
MG
1417/* For integral types with wrapping overflow and C odd fold
1418 x * C EQ/NE y * C into x EQ/NE y. */
1419(for cmp (eq ne)
1420 (simplify
1421 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1422 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1423 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1424 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1425 (cmp @0 @2))))
1426
e36c1cfe
N
1427/* For integral types with undefined overflow and C != 0 fold
1428 x * C RELOP y * C into:
84ff66b8 1429
e36c1cfe
N
1430 x RELOP y for nonnegative C
1431 y RELOP x for negative C */
1432(for cmp (lt gt le ge)
1433 (simplify
1434 (cmp (mult:c @0 @1) (mult:c @2 @1))
1435 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1436 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1437 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1438 (cmp @0 @2)
1439 (if (TREE_CODE (@1) == INTEGER_CST
8e6cdc90 1440 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
e36c1cfe 1441 (cmp @2 @0))))))
84ff66b8 1442
564e405c
JJ
1443/* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1444(for cmp (le gt)
1445 icmp (gt le)
1446 (simplify
1447 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1448 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1449 && TYPE_UNSIGNED (TREE_TYPE (@0))
1450 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
8e6cdc90
RS
1451 && (wi::to_wide (@2)
1452 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
564e405c
JJ
1453 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1454 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1455
a8492d5e
MG
1456/* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1457(for cmp (simple_comparison)
1458 (simplify
1459 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
8e6cdc90 1460 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
a8492d5e
MG
1461 (cmp @0 @1))))
1462
8d1628eb
JJ
1463/* X / C1 op C2 into a simple range test. */
1464(for cmp (simple_comparison)
1465 (simplify
1466 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1467 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1468 && integer_nonzerop (@1)
1469 && !TREE_OVERFLOW (@1)
1470 && !TREE_OVERFLOW (@2))
1471 (with { tree lo, hi; bool neg_overflow;
1472 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1473 &neg_overflow); }
1474 (switch
1475 (if (code == LT_EXPR || code == GE_EXPR)
1476 (if (TREE_OVERFLOW (lo))
1477 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1478 (if (code == LT_EXPR)
1479 (lt @0 { lo; })
1480 (ge @0 { lo; }))))
1481 (if (code == LE_EXPR || code == GT_EXPR)
1482 (if (TREE_OVERFLOW (hi))
1483 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1484 (if (code == LE_EXPR)
1485 (le @0 { hi; })
1486 (gt @0 { hi; }))))
1487 (if (!lo && !hi)
1488 { build_int_cst (type, code == NE_EXPR); })
1489 (if (code == EQ_EXPR && !hi)
1490 (ge @0 { lo; }))
1491 (if (code == EQ_EXPR && !lo)
1492 (le @0 { hi; }))
1493 (if (code == NE_EXPR && !hi)
1494 (lt @0 { lo; }))
1495 (if (code == NE_EXPR && !lo)
1496 (gt @0 { hi; }))
1497 (if (GENERIC)
1498 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1499 lo, hi); })
1500 (with
1501 {
1502 tree etype = range_check_type (TREE_TYPE (@0));
1503 if (etype)
1504 {
1505 if (! TYPE_UNSIGNED (etype))
1506 etype = unsigned_type_for (etype);
1507 hi = fold_convert (etype, hi);
1508 lo = fold_convert (etype, lo);
1509 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1510 }
1511 }
1512 (if (etype && hi && !TREE_OVERFLOW (hi))
1513 (if (code == EQ_EXPR)
1514 (le (minus (convert:etype @0) { lo; }) { hi; })
1515 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1516
d35256b6
MG
1517/* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1518(for op (lt le ge gt)
1519 (simplify
1520 (op (plus:c @0 @2) (plus:c @1 @2))
1521 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1522 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1523 (op @0 @1))))
1524/* For equality and subtraction, this is also true with wrapping overflow. */
1525(for op (eq ne minus)
1526 (simplify
1527 (op (plus:c @0 @2) (plus:c @1 @2))
1528 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1529 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1530 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1531 (op @0 @1))))
1532
1533/* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1534(for op (lt le ge gt)
1535 (simplify
1536 (op (minus @0 @2) (minus @1 @2))
1537 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1538 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1539 (op @0 @1))))
1540/* For equality and subtraction, this is also true with wrapping overflow. */
1541(for op (eq ne minus)
1542 (simplify
1543 (op (minus @0 @2) (minus @1 @2))
1544 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1545 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1546 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1547 (op @0 @1))))
1af4ebf5
MG
1548/* And for pointers... */
1549(for op (simple_comparison)
1550 (simplify
1551 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1552 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1553 (op @0 @1))))
1554(simplify
1555 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1556 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1557 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1558 (pointer_diff @0 @1)))
d35256b6
MG
1559
1560/* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1561(for op (lt le ge gt)
1562 (simplify
1563 (op (minus @2 @0) (minus @2 @1))
1564 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1565 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1566 (op @1 @0))))
1567/* For equality and subtraction, this is also true with wrapping overflow. */
1568(for op (eq ne minus)
1569 (simplify
1570 (op (minus @2 @0) (minus @2 @1))
1571 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1572 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1573 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1574 (op @1 @0))))
1af4ebf5
MG
1575/* And for pointers... */
1576(for op (simple_comparison)
1577 (simplify
1578 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1579 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1580 (op @1 @0))))
1581(simplify
1582 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1583 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1584 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1585 (pointer_diff @1 @0)))
d35256b6 1586
6358a676
MG
1587/* X + Y < Y is the same as X < 0 when there is no overflow. */
1588(for op (lt le gt ge)
1589 (simplify
1590 (op:c (plus:c@2 @0 @1) @1)
1591 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1592 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
cbd42900 1593 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
6358a676
MG
1594 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1595 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1596/* For equality, this is also true with wrapping overflow. */
1597(for op (eq ne)
1598 (simplify
1599 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1600 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1601 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1602 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1603 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1604 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1605 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1606 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1607 (simplify
1608 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1609 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1610 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1611 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1612 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1613
1614/* X - Y < X is the same as Y > 0 when there is no overflow.
1615 For equality, this is also true with wrapping overflow. */
1616(for op (simple_comparison)
1617 (simplify
1618 (op:c @0 (minus@2 @0 @1))
1619 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1620 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1621 || ((op == EQ_EXPR || op == NE_EXPR)
1622 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1623 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1624 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1625
1d6fadee 1626/* Transform:
b8d85005
JJ
1627 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1628 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1d6fadee
PK
1629(for cmp (eq ne)
1630 ocmp (lt ge)
1631 (simplify
1632 (cmp (trunc_div @0 @1) integer_zerop)
1633 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
b8d85005
JJ
1634 /* Complex ==/!= is allowed, but not </>=. */
1635 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1d6fadee
PK
1636 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1637 (ocmp @0 @1))))
1638
8b656ca7
MG
1639/* X == C - X can never be true if C is odd. */
1640(for cmp (eq ne)
1641 (simplify
1642 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1643 (if (TREE_INT_CST_LOW (@1) & 1)
1644 { constant_boolean_node (cmp == NE_EXPR, type); })))
1645
10bc8017
MG
1646/* Arguments on which one can call get_nonzero_bits to get the bits
1647 possibly set. */
1648(match with_possible_nonzero_bits
1649 INTEGER_CST@0)
1650(match with_possible_nonzero_bits
1651 SSA_NAME@0
1652 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1653/* Slightly extended version, do not make it recursive to keep it cheap. */
1654(match (with_possible_nonzero_bits2 @0)
1655 with_possible_nonzero_bits@0)
1656(match (with_possible_nonzero_bits2 @0)
1657 (bit_and:c with_possible_nonzero_bits@0 @2))
1658
1659/* Same for bits that are known to be set, but we do not have
1660 an equivalent to get_nonzero_bits yet. */
1661(match (with_certain_nonzero_bits2 @0)
1662 INTEGER_CST@0)
1663(match (with_certain_nonzero_bits2 @0)
1664 (bit_ior @1 INTEGER_CST@0))
1665
1666/* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1667(for cmp (eq ne)
1668 (simplify
1669 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
8e6cdc90 1670 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
10bc8017
MG
1671 { constant_boolean_node (cmp == NE_EXPR, type); })))
1672
84ff66b8
AV
1673/* ((X inner_op C0) outer_op C1)
1674 With X being a tree where value_range has reasoned certain bits to always be
1675 zero throughout its computed value range,
1676 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1677 where zero_mask has 1's for all bits that are sure to be 0 in
1678 and 0's otherwise.
1679 if (inner_op == '^') C0 &= ~C1;
1680 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1681 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1682*/
1683(for inner_op (bit_ior bit_xor)
1684 outer_op (bit_xor bit_ior)
1685(simplify
1686 (outer_op
1687 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1688 (with
1689 {
1690 bool fail = false;
1691 wide_int zero_mask_not;
1692 wide_int C0;
1693 wide_int cst_emit;
1694
1695 if (TREE_CODE (@2) == SSA_NAME)
1696 zero_mask_not = get_nonzero_bits (@2);
1697 else
1698 fail = true;
1699
1700 if (inner_op == BIT_XOR_EXPR)
1701 {
8e6cdc90
RS
1702 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1703 cst_emit = C0 | wi::to_wide (@1);
84ff66b8
AV
1704 }
1705 else
1706 {
8e6cdc90
RS
1707 C0 = wi::to_wide (@0);
1708 cst_emit = C0 ^ wi::to_wide (@1);
84ff66b8
AV
1709 }
1710 }
8e6cdc90 1711 (if (!fail && (C0 & zero_mask_not) == 0)
84ff66b8 1712 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
8e6cdc90 1713 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
84ff66b8
AV
1714 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1715
a499aac5
RB
1716/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1717(simplify
44fc0a51
RB
1718 (pointer_plus (pointer_plus:s @0 @1) @3)
1719 (pointer_plus @0 (plus @1 @3)))
a499aac5
RB
1720
1721/* Pattern match
1722 tem1 = (long) ptr1;
1723 tem2 = (long) ptr2;
1724 tem3 = tem2 - tem1;
1725 tem4 = (unsigned long) tem3;
1726 tem5 = ptr1 + tem4;
1727 and produce
1728 tem5 = ptr2; */
1729(simplify
1730 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1731 /* Conditionally look through a sign-changing conversion. */
1732 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1733 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1734 || (GENERIC && type == TREE_TYPE (@1))))
1735 @1))
1af4ebf5
MG
1736(simplify
1737 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1738 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1739 (convert @1)))
a499aac5
RB
1740
1741/* Pattern match
1742 tem = (sizetype) ptr;
1743 tem = tem & algn;
1744 tem = -tem;
1745 ... = ptr p+ tem;
1746 and produce the simpler and easier to analyze with respect to alignment
1747 ... = ptr & ~algn; */
1748(simplify
1749 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
8e6cdc90 1750 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
a499aac5
RB
1751 (bit_and @0 { algn; })))
1752
99e943a2
RB
1753/* Try folding difference of addresses. */
1754(simplify
1755 (minus (convert ADDR_EXPR@0) (convert @1))
1756 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
f37fac2b 1757 (with { poly_int64 diff; }
99e943a2
RB
1758 (if (ptr_difference_const (@0, @1, &diff))
1759 { build_int_cst_type (type, diff); }))))
1760(simplify
1761 (minus (convert @0) (convert ADDR_EXPR@1))
1762 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
f37fac2b 1763 (with { poly_int64 diff; }
99e943a2
RB
1764 (if (ptr_difference_const (@0, @1, &diff))
1765 { build_int_cst_type (type, diff); }))))
1af4ebf5 1766(simplify
67fccea4 1767 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
1af4ebf5
MG
1768 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1769 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
f37fac2b 1770 (with { poly_int64 diff; }
1af4ebf5
MG
1771 (if (ptr_difference_const (@0, @1, &diff))
1772 { build_int_cst_type (type, diff); }))))
1773(simplify
67fccea4 1774 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
1af4ebf5
MG
1775 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1776 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
f37fac2b 1777 (with { poly_int64 diff; }
1af4ebf5
MG
1778 (if (ptr_difference_const (@0, @1, &diff))
1779 { build_int_cst_type (type, diff); }))))
99e943a2 1780
bab73f11
RB
1781/* If arg0 is derived from the address of an object or function, we may
1782 be able to fold this expression using the object or function's
1783 alignment. */
1784(simplify
1785 (bit_and (convert? @0) INTEGER_CST@1)
1786 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1787 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1788 (with
1789 {
1790 unsigned int align;
1791 unsigned HOST_WIDE_INT bitpos;
1792 get_pointer_alignment_1 (@0, &align, &bitpos);
1793 }
8e6cdc90
RS
1794 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1795 { wide_int_to_tree (type, (wi::to_wide (@1)
1796 & (bitpos / BITS_PER_UNIT))); }))))
99e943a2 1797
a499aac5 1798
cc7b5acf
RB
1799/* We can't reassociate at all for saturating types. */
1800(if (!TYPE_SATURATING (type))
1801
1802 /* Contract negates. */
1803 /* A + (-B) -> A - B */
1804 (simplify
248179b5
RB
1805 (plus:c @0 (convert? (negate @1)))
1806 /* Apply STRIP_NOPS on the negate. */
1807 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1808 && !TYPE_OVERFLOW_SANITIZED (type))
248179b5
RB
1809 (with
1810 {
1811 tree t1 = type;
1812 if (INTEGRAL_TYPE_P (type)
1813 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1814 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1815 }
1816 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
cc7b5acf
RB
1817 /* A - (-B) -> A + B */
1818 (simplify
248179b5
RB
1819 (minus @0 (convert? (negate @1)))
1820 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1821 && !TYPE_OVERFLOW_SANITIZED (type))
248179b5
RB
1822 (with
1823 {
1824 tree t1 = type;
1825 if (INTEGRAL_TYPE_P (type)
1826 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1827 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1828 }
1829 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
63626547
MG
1830 /* -(T)(-A) -> (T)A
1831 Sign-extension is ok except for INT_MIN, which thankfully cannot
1832 happen without overflow. */
1833 (simplify
1834 (negate (convert (negate @1)))
1835 (if (INTEGRAL_TYPE_P (type)
1836 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1837 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1838 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1839 && !TYPE_OVERFLOW_SANITIZED (type)
1840 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
a0f12cf8 1841 (convert @1)))
63626547
MG
1842 (simplify
1843 (negate (convert negate_expr_p@1))
1844 (if (SCALAR_FLOAT_TYPE_P (type)
1845 && ((DECIMAL_FLOAT_TYPE_P (type)
1846 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1847 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1848 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1849 (convert (negate @1))))
1850 (simplify
1851 (negate (nop_convert (negate @1)))
1852 (if (!TYPE_OVERFLOW_SANITIZED (type)
1853 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1854 (view_convert @1)))
cc7b5acf 1855
7318e44f
RB
1856 /* We can't reassociate floating-point unless -fassociative-math
1857 or fixed-point plus or minus because of saturation to +-Inf. */
1858 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1859 && !FIXED_POINT_TYPE_P (type))
cc7b5acf
RB
1860
1861 /* Match patterns that allow contracting a plus-minus pair
1862 irrespective of overflow issues. */
1863 /* (A +- B) - A -> +- B */
1864 /* (A +- B) -+ B -> A */
1865 /* A - (A +- B) -> -+ B */
1866 /* A +- (B -+ A) -> +- B */
1867 (simplify
1868 (minus (plus:c @0 @1) @0)
1869 @1)
1870 (simplify
1871 (minus (minus @0 @1) @0)
1872 (negate @1))
1873 (simplify
1874 (plus:c (minus @0 @1) @1)
1875 @0)
1876 (simplify
1877 (minus @0 (plus:c @0 @1))
1878 (negate @1))
1879 (simplify
1880 (minus @0 (minus @0 @1))
1881 @1)
1e7df2e6
MG
1882 /* (A +- B) + (C - A) -> C +- B */
1883 /* (A + B) - (A - C) -> B + C */
1884 /* More cases are handled with comparisons. */
1885 (simplify
1886 (plus:c (plus:c @0 @1) (minus @2 @0))
1887 (plus @2 @1))
1888 (simplify
1889 (plus:c (minus @0 @1) (minus @2 @0))
1890 (minus @2 @1))
1af4ebf5
MG
1891 (simplify
1892 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1893 (if (TYPE_OVERFLOW_UNDEFINED (type)
1894 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1895 (pointer_diff @2 @1)))
1e7df2e6
MG
1896 (simplify
1897 (minus (plus:c @0 @1) (minus @0 @2))
1898 (plus @1 @2))
cc7b5acf 1899
ed73f46f
MG
1900 /* (A +- CST1) +- CST2 -> A + CST3
1901 Use view_convert because it is safe for vectors and equivalent for
1902 scalars. */
cc7b5acf
RB
1903 (for outer_op (plus minus)
1904 (for inner_op (plus minus)
ed73f46f 1905 neg_inner_op (minus plus)
cc7b5acf 1906 (simplify
ed73f46f
MG
1907 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1908 CONSTANT_CLASS_P@2)
1909 /* If one of the types wraps, use that one. */
1910 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
3eb1eecf
JJ
1911 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1912 forever if something doesn't simplify into a constant. */
1913 (if (!CONSTANT_CLASS_P (@0))
1914 (if (outer_op == PLUS_EXPR)
1915 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1916 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
ed73f46f
MG
1917 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1918 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1919 (if (outer_op == PLUS_EXPR)
1920 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1921 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1922 /* If the constant operation overflows we cannot do the transform
1923 directly as we would introduce undefined overflow, for example
1924 with (a - 1) + INT_MIN. */
1925 (if (types_match (type, @0))
1926 (with { tree cst = const_binop (outer_op == inner_op
1927 ? PLUS_EXPR : MINUS_EXPR,
1928 type, @1, @2); }
1929 (if (cst && !TREE_OVERFLOW (cst))
1930 (inner_op @0 { cst; } )
1931 /* X+INT_MAX+1 is X-INT_MIN. */
1932 (if (INTEGRAL_TYPE_P (type) && cst
8e6cdc90
RS
1933 && wi::to_wide (cst) == wi::min_value (type))
1934 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
ed73f46f
MG
1935 /* Last resort, use some unsigned type. */
1936 (with { tree utype = unsigned_type_for (type); }
48fcd201
JJ
1937 (if (utype)
1938 (view_convert (inner_op
1939 (view_convert:utype @0)
1940 (view_convert:utype
1941 { drop_tree_overflow (cst); }))))))))))))))
cc7b5acf 1942
b302f2e0 1943 /* (CST1 - A) +- CST2 -> CST3 - A */
cc7b5acf
RB
1944 (for outer_op (plus minus)
1945 (simplify
1946 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
23f27839 1947 (with { tree cst = const_binop (outer_op, type, @1, @2); }
cc7b5acf
RB
1948 (if (cst && !TREE_OVERFLOW (cst))
1949 (minus { cst; } @0)))))
1950
b302f2e0
RB
1951 /* CST1 - (CST2 - A) -> CST3 + A */
1952 (simplify
1953 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1954 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1955 (if (cst && !TREE_OVERFLOW (cst))
1956 (plus { cst; } @0))))
1957
cc7b5acf
RB
1958 /* ~A + A -> -1 */
1959 (simplify
1960 (plus:c (bit_not @0) @0)
1961 (if (!TYPE_OVERFLOW_TRAPS (type))
1962 { build_all_ones_cst (type); }))
1963
1964 /* ~A + 1 -> -A */
1965 (simplify
e19740ae
RB
1966 (plus (convert? (bit_not @0)) integer_each_onep)
1967 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1968 (negate (convert @0))))
1969
1970 /* -A - 1 -> ~A */
1971 (simplify
1972 (minus (convert? (negate @0)) integer_each_onep)
1973 (if (!TYPE_OVERFLOW_TRAPS (type)
1974 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1975 (bit_not (convert @0))))
1976
1977 /* -1 - A -> ~A */
1978 (simplify
1979 (minus integer_all_onesp @0)
bc4315fb 1980 (bit_not @0))
cc7b5acf
RB
1981
1982 /* (T)(P + A) - (T)P -> (T) A */
d7f44d4d 1983 (simplify
a72610d4
JJ
1984 (minus (convert (plus:c @@0 @1))
1985 (convert? @0))
d7f44d4d
JJ
1986 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1987 /* For integer types, if A has a smaller type
1988 than T the result depends on the possible
1989 overflow in P + A.
1990 E.g. T=size_t, A=(unsigned)429497295, P>0.
1991 However, if an overflow in P + A would cause
1992 undefined behavior, we can assume that there
1993 is no overflow. */
a72610d4
JJ
1994 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1995 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
d7f44d4d
JJ
1996 (convert @1)))
1997 (simplify
1998 (minus (convert (pointer_plus @@0 @1))
1999 (convert @0))
2000 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2001 /* For pointer types, if the conversion of A to the
2002 final type requires a sign- or zero-extension,
2003 then we have to punt - it is not defined which
2004 one is correct. */
2005 || (POINTER_TYPE_P (TREE_TYPE (@0))
2006 && TREE_CODE (@1) == INTEGER_CST
2007 && tree_int_cst_sign_bit (@1) == 0))
2008 (convert @1)))
1af4ebf5
MG
2009 (simplify
2010 (pointer_diff (pointer_plus @@0 @1) @0)
2011 /* The second argument of pointer_plus must be interpreted as signed, and
2012 thus sign-extended if necessary. */
2013 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
8ae43881
JJ
2014 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2015 second arg is unsigned even when we need to consider it as signed,
2016 we don't want to diagnose overflow here. */
2017 (convert (view_convert:stype @1))))
a8fc2579
RB
2018
2019 /* (T)P - (T)(P + A) -> -(T) A */
d7f44d4d 2020 (simplify
a72610d4
JJ
2021 (minus (convert? @0)
2022 (convert (plus:c @@0 @1)))
d7f44d4d
JJ
2023 (if (INTEGRAL_TYPE_P (type)
2024 && TYPE_OVERFLOW_UNDEFINED (type)
2025 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2026 (with { tree utype = unsigned_type_for (type); }
2027 (convert (negate (convert:utype @1))))
a8fc2579
RB
2028 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2029 /* For integer types, if A has a smaller type
2030 than T the result depends on the possible
2031 overflow in P + A.
2032 E.g. T=size_t, A=(unsigned)429497295, P>0.
2033 However, if an overflow in P + A would cause
2034 undefined behavior, we can assume that there
2035 is no overflow. */
a72610d4
JJ
2036 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2037 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
d7f44d4d
JJ
2038 (negate (convert @1)))))
2039 (simplify
2040 (minus (convert @0)
2041 (convert (pointer_plus @@0 @1)))
2042 (if (INTEGRAL_TYPE_P (type)
2043 && TYPE_OVERFLOW_UNDEFINED (type)
2044 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2045 (with { tree utype = unsigned_type_for (type); }
2046 (convert (negate (convert:utype @1))))
2047 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
a8fc2579
RB
2048 /* For pointer types, if the conversion of A to the
2049 final type requires a sign- or zero-extension,
2050 then we have to punt - it is not defined which
2051 one is correct. */
2052 || (POINTER_TYPE_P (TREE_TYPE (@0))
2053 && TREE_CODE (@1) == INTEGER_CST
2054 && tree_int_cst_sign_bit (@1) == 0))
2055 (negate (convert @1)))))
1af4ebf5
MG
2056 (simplify
2057 (pointer_diff @0 (pointer_plus @@0 @1))
2058 /* The second argument of pointer_plus must be interpreted as signed, and
2059 thus sign-extended if necessary. */
2060 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
8ae43881
JJ
2061 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2062 second arg is unsigned even when we need to consider it as signed,
2063 we don't want to diagnose overflow here. */
2064 (negate (convert (view_convert:stype @1)))))
a8fc2579
RB
2065
2066 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
d7f44d4d 2067 (simplify
a72610d4 2068 (minus (convert (plus:c @@0 @1))
d7f44d4d
JJ
2069 (convert (plus:c @0 @2)))
2070 (if (INTEGRAL_TYPE_P (type)
2071 && TYPE_OVERFLOW_UNDEFINED (type)
a72610d4
JJ
2072 && element_precision (type) <= element_precision (TREE_TYPE (@1))
2073 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
d7f44d4d
JJ
2074 (with { tree utype = unsigned_type_for (type); }
2075 (convert (minus (convert:utype @1) (convert:utype @2))))
a72610d4
JJ
2076 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2077 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2078 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2079 /* For integer types, if A has a smaller type
2080 than T the result depends on the possible
2081 overflow in P + A.
2082 E.g. T=size_t, A=(unsigned)429497295, P>0.
2083 However, if an overflow in P + A would cause
2084 undefined behavior, we can assume that there
2085 is no overflow. */
2086 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2087 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2088 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2089 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
d7f44d4d
JJ
2090 (minus (convert @1) (convert @2)))))
2091 (simplify
2092 (minus (convert (pointer_plus @@0 @1))
2093 (convert (pointer_plus @0 @2)))
2094 (if (INTEGRAL_TYPE_P (type)
2095 && TYPE_OVERFLOW_UNDEFINED (type)
2096 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2097 (with { tree utype = unsigned_type_for (type); }
2098 (convert (minus (convert:utype @1) (convert:utype @2))))
2099 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
a8fc2579
RB
2100 /* For pointer types, if the conversion of A to the
2101 final type requires a sign- or zero-extension,
2102 then we have to punt - it is not defined which
2103 one is correct. */
2104 || (POINTER_TYPE_P (TREE_TYPE (@0))
2105 && TREE_CODE (@1) == INTEGER_CST
2106 && tree_int_cst_sign_bit (@1) == 0
2107 && TREE_CODE (@2) == INTEGER_CST
2108 && tree_int_cst_sign_bit (@2) == 0))
d7f44d4d 2109 (minus (convert @1) (convert @2)))))
1af4ebf5
MG
2110 (simplify
2111 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2112 /* The second argument of pointer_plus must be interpreted as signed, and
2113 thus sign-extended if necessary. */
2114 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
8ae43881
JJ
2115 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2116 second arg is unsigned even when we need to consider it as signed,
2117 we don't want to diagnose overflow here. */
2118 (minus (convert (view_convert:stype @1))
2119 (convert (view_convert:stype @2)))))))
cc7b5acf 2120
5b55e6e3
RB
2121/* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2122 Modeled after fold_plusminus_mult_expr. */
2123(if (!TYPE_SATURATING (type)
2124 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2125 (for plusminus (plus minus)
2126 (simplify
c1bbe5b3
RB
2127 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2128 (if ((!ANY_INTEGRAL_TYPE_P (type)
5b55e6e3
RB
2129 || TYPE_OVERFLOW_WRAPS (type)
2130 || (INTEGRAL_TYPE_P (type)
2131 && tree_expr_nonzero_p (@0)
2132 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
c1bbe5b3
RB
2133 /* If @1 +- @2 is constant require a hard single-use on either
2134 original operand (but not on both). */
2135 && (single_use (@3) || single_use (@4)))
2136 (mult (plusminus @1 @2) @0)))
2137 /* We cannot generate constant 1 for fract. */
2138 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2139 (simplify
2140 (plusminus @0 (mult:c@3 @0 @2))
2141 (if ((!ANY_INTEGRAL_TYPE_P (type)
2142 || TYPE_OVERFLOW_WRAPS (type)
2143 || (INTEGRAL_TYPE_P (type)
2144 && tree_expr_nonzero_p (@0)
2145 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2146 && single_use (@3))
5b55e6e3
RB
2147 (mult (plusminus { build_one_cst (type); } @2) @0)))
2148 (simplify
c1bbe5b3
RB
2149 (plusminus (mult:c@3 @0 @2) @0)
2150 (if ((!ANY_INTEGRAL_TYPE_P (type)
2151 || TYPE_OVERFLOW_WRAPS (type)
2152 || (INTEGRAL_TYPE_P (type)
2153 && tree_expr_nonzero_p (@0)
2154 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2155 && single_use (@3))
5b55e6e3 2156 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
cc7b5acf 2157
0122e8e5 2158/* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
a7f24614 2159
c6cfa2bf 2160(for minmax (min max FMIN_ALL FMAX_ALL)
a7f24614
RB
2161 (simplify
2162 (minmax @0 @0)
2163 @0))
4a334cba
RS
2164/* min(max(x,y),y) -> y. */
2165(simplify
2166 (min:c (max:c @0 @1) @1)
2167 @1)
2168/* max(min(x,y),y) -> y. */
2169(simplify
2170 (max:c (min:c @0 @1) @1)
2171 @1)
d657e995
RB
2172/* max(a,-a) -> abs(a). */
2173(simplify
2174 (max:c @0 (negate @0))
2175 (if (TREE_CODE (type) != COMPLEX_TYPE
2176 && (! ANY_INTEGRAL_TYPE_P (type)
2177 || TYPE_OVERFLOW_UNDEFINED (type)))
2178 (abs @0)))
54f84ca9
RB
2179/* min(a,-a) -> -abs(a). */
2180(simplify
2181 (min:c @0 (negate @0))
2182 (if (TREE_CODE (type) != COMPLEX_TYPE
2183 && (! ANY_INTEGRAL_TYPE_P (type)
2184 || TYPE_OVERFLOW_UNDEFINED (type)))
2185 (negate (abs @0))))
a7f24614
RB
2186(simplify
2187 (min @0 @1)
2c2870a1
MG
2188 (switch
2189 (if (INTEGRAL_TYPE_P (type)
2190 && TYPE_MIN_VALUE (type)
2191 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2192 @1)
2193 (if (INTEGRAL_TYPE_P (type)
2194 && TYPE_MAX_VALUE (type)
2195 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2196 @0)))
a7f24614
RB
2197(simplify
2198 (max @0 @1)
2c2870a1
MG
2199 (switch
2200 (if (INTEGRAL_TYPE_P (type)
2201 && TYPE_MAX_VALUE (type)
2202 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2203 @1)
2204 (if (INTEGRAL_TYPE_P (type)
2205 && TYPE_MIN_VALUE (type)
2206 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2207 @0)))
ad6e4ba8 2208
182f37c9
N
2209/* max (a, a + CST) -> a + CST where CST is positive. */
2210/* max (a, a + CST) -> a where CST is negative. */
2211(simplify
2212 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2213 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2214 (if (tree_int_cst_sgn (@1) > 0)
2215 @2
2216 @0)))
2217
2218/* min (a, a + CST) -> a where CST is positive. */
2219/* min (a, a + CST) -> a + CST where CST is negative. */
2220(simplify
2221 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2222 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2223 (if (tree_int_cst_sgn (@1) > 0)
2224 @0
2225 @2)))
2226
ad6e4ba8
BC
2227/* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2228 and the outer convert demotes the expression back to x's type. */
2229(for minmax (min max)
2230 (simplify
2231 (convert (minmax@0 (convert @1) INTEGER_CST@2))
ebf41734
BC
2232 (if (INTEGRAL_TYPE_P (type)
2233 && types_match (@1, type) && int_fits_type_p (@2, type)
ad6e4ba8
BC
2234 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2235 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2236 (minmax @1 (convert @2)))))
2237
c6cfa2bf 2238(for minmax (FMIN_ALL FMAX_ALL)
0122e8e5
RS
2239 /* If either argument is NaN, return the other one. Avoid the
2240 transformation if we get (and honor) a signalling NaN. */
2241 (simplify
2242 (minmax:c @0 REAL_CST@1)
2243 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2244 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2245 @0)))
2246/* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2247 functions to return the numeric arg if the other one is NaN.
2248 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2249 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2250 worry about it either. */
2251(if (flag_finite_math_only)
2252 (simplify
c6cfa2bf 2253 (FMIN_ALL @0 @1)
0122e8e5 2254 (min @0 @1))
4119b2eb 2255 (simplify
c6cfa2bf 2256 (FMAX_ALL @0 @1)
0122e8e5 2257 (max @0 @1)))
ce0e66ff 2258/* min (-A, -B) -> -max (A, B) */
c6cfa2bf
MM
2259(for minmax (min max FMIN_ALL FMAX_ALL)
2260 maxmin (max min FMAX_ALL FMIN_ALL)
ce0e66ff
MG
2261 (simplify
2262 (minmax (negate:s@2 @0) (negate:s@3 @1))
2263 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2264 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2265 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2266 (negate (maxmin @0 @1)))))
2267/* MIN (~X, ~Y) -> ~MAX (X, Y)
2268 MAX (~X, ~Y) -> ~MIN (X, Y) */
2269(for minmax (min max)
2270 maxmin (max min)
2271 (simplify
2272 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2273 (bit_not (maxmin @0 @1))))
a7f24614 2274
b4817bd6
MG
2275/* MIN (X, Y) == X -> X <= Y */
2276(for minmax (min min max max)
2277 cmp (eq ne eq ne )
2278 out (le gt ge lt )
2279 (simplify
2280 (cmp:c (minmax:c @0 @1) @0)
2281 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2282 (out @0 @1))))
2283/* MIN (X, 5) == 0 -> X == 0
2284 MIN (X, 5) == 7 -> false */
2285(for cmp (eq ne)
2286 (simplify
2287 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
8e6cdc90
RS
2288 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2289 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6 2290 { constant_boolean_node (cmp == NE_EXPR, type); }
8e6cdc90
RS
2291 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2292 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6
MG
2293 (cmp @0 @2)))))
2294(for cmp (eq ne)
2295 (simplify
2296 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
8e6cdc90
RS
2297 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2298 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6 2299 { constant_boolean_node (cmp == NE_EXPR, type); }
8e6cdc90
RS
2300 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2301 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6
MG
2302 (cmp @0 @2)))))
2303/* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2304(for minmax (min min max max min min max max )
2305 cmp (lt le gt ge gt ge lt le )
2306 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2307 (simplify
2308 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2309 (comb (cmp @0 @2) (cmp @1 @2))))
2310
a7f24614
RB
2311/* Simplifications of shift and rotates. */
2312
2313(for rotate (lrotate rrotate)
2314 (simplify
2315 (rotate integer_all_onesp@0 @1)
2316 @0))
2317
2318/* Optimize -1 >> x for arithmetic right shifts. */
2319(simplify
2320 (rshift integer_all_onesp@0 @1)
2321 (if (!TYPE_UNSIGNED (type)
2322 && tree_expr_nonnegative_p (@1))
2323 @0))
2324
12085390
N
2325/* Optimize (x >> c) << c into x & (-1<<c). */
2326(simplify
2327 (lshift (rshift @0 INTEGER_CST@1) @1)
8e6cdc90 2328 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
12085390
N
2329 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2330
2331/* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2332 types. */
2333(simplify
2334 (rshift (lshift @0 INTEGER_CST@1) @1)
2335 (if (TYPE_UNSIGNED (type)
8e6cdc90 2336 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
12085390
N
2337 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2338
a7f24614
RB
2339(for shiftrotate (lrotate rrotate lshift rshift)
2340 (simplify
2341 (shiftrotate @0 integer_zerop)
2342 (non_lvalue @0))
2343 (simplify
2344 (shiftrotate integer_zerop@0 @1)
2345 @0)
2346 /* Prefer vector1 << scalar to vector1 << vector2
2347 if vector2 is uniform. */
2348 (for vec (VECTOR_CST CONSTRUCTOR)
2349 (simplify
2350 (shiftrotate @0 vec@1)
2351 (with { tree tem = uniform_vector_p (@1); }
2352 (if (tem)
2353 (shiftrotate @0 { tem; }))))))
2354
165ba2e9
JJ
2355/* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2356 Y is 0. Similarly for X >> Y. */
2357#if GIMPLE
2358(for shift (lshift rshift)
2359 (simplify
2360 (shift @0 SSA_NAME@1)
2361 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2362 (with {
2363 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2364 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2365 }
2366 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2367 @0)))))
2368#endif
2369
a7f24614
RB
2370/* Rewrite an LROTATE_EXPR by a constant into an
2371 RROTATE_EXPR by a new constant. */
2372(simplify
2373 (lrotate @0 INTEGER_CST@1)
23f27839 2374 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
a7f24614
RB
2375 build_int_cst (TREE_TYPE (@1),
2376 element_precision (type)), @1); }))
2377
14ea9f92
RB
2378/* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2379(for op (lrotate rrotate rshift lshift)
2380 (simplify
2381 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2382 (with { unsigned int prec = element_precision (type); }
8e6cdc90
RS
2383 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2384 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2385 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2386 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
a1488398
RS
2387 (with { unsigned int low = (tree_to_uhwi (@1)
2388 + tree_to_uhwi (@2)); }
14ea9f92
RB
2389 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2390 being well defined. */
2391 (if (low >= prec)
2392 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
8fdc6c67 2393 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
50301115 2394 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
8fdc6c67
RB
2395 { build_zero_cst (type); }
2396 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2397 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
14ea9f92
RB
2398
2399
01ada710
MP
2400/* ((1 << A) & 1) != 0 -> A == 0
2401 ((1 << A) & 1) == 0 -> A != 0 */
2402(for cmp (ne eq)
2403 icmp (eq ne)
2404 (simplify
2405 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2406 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
cc7b5acf 2407
f2e609c3
MP
2408/* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2409 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2410 if CST2 != 0. */
2411(for cmp (ne eq)
2412 (simplify
2413 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
8e6cdc90 2414 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
f2e609c3
MP
2415 (if (cand < 0
2416 || (!integer_zerop (@2)
8e6cdc90 2417 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
8fdc6c67
RB
2418 { constant_boolean_node (cmp == NE_EXPR, type); }
2419 (if (!integer_zerop (@2)
8e6cdc90 2420 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
8fdc6c67 2421 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
f2e609c3 2422
1ffbaa3f
RB
2423/* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2424 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2425 if the new mask might be further optimized. */
2426(for shift (lshift rshift)
2427 (simplify
44fc0a51
RB
2428 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2429 INTEGER_CST@2)
1ffbaa3f
RB
2430 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2431 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2432 && tree_fits_uhwi_p (@1)
2433 && tree_to_uhwi (@1) > 0
2434 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2435 (with
2436 {
2437 unsigned int shiftc = tree_to_uhwi (@1);
2438 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2439 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2440 tree shift_type = TREE_TYPE (@3);
2441 unsigned int prec;
2442
2443 if (shift == LSHIFT_EXPR)
fecfbfa4 2444 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
1ffbaa3f 2445 else if (shift == RSHIFT_EXPR
2be65d9e 2446 && type_has_mode_precision_p (shift_type))
1ffbaa3f
RB
2447 {
2448 prec = TYPE_PRECISION (TREE_TYPE (@3));
2449 tree arg00 = @0;
2450 /* See if more bits can be proven as zero because of
2451 zero extension. */
2452 if (@3 != @0
2453 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2454 {
2455 tree inner_type = TREE_TYPE (@0);
2be65d9e 2456 if (type_has_mode_precision_p (inner_type)
1ffbaa3f
RB
2457 && TYPE_PRECISION (inner_type) < prec)
2458 {
2459 prec = TYPE_PRECISION (inner_type);
2460 /* See if we can shorten the right shift. */
2461 if (shiftc < prec)
2462 shift_type = inner_type;
2463 /* Otherwise X >> C1 is all zeros, so we'll optimize
2464 it into (X, 0) later on by making sure zerobits
2465 is all ones. */
2466 }
2467 }
dd4786fe 2468 zerobits = HOST_WIDE_INT_M1U;
1ffbaa3f
RB
2469 if (shiftc < prec)
2470 {
2471 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2472 zerobits <<= prec - shiftc;
2473 }
2474 /* For arithmetic shift if sign bit could be set, zerobits
2475 can contain actually sign bits, so no transformation is
2476 possible, unless MASK masks them all away. In that
2477 case the shift needs to be converted into logical shift. */
2478 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2479 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2480 {
2481 if ((mask & zerobits) == 0)
2482 shift_type = unsigned_type_for (TREE_TYPE (@3));
2483 else
2484 zerobits = 0;
2485 }
2486 }
2487 }
2488 /* ((X << 16) & 0xff00) is (X, 0). */
2489 (if ((mask & zerobits) == mask)
8fdc6c67
RB
2490 { build_int_cst (type, 0); }
2491 (with { newmask = mask | zerobits; }
2492 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2493 (with
2494 {
2495 /* Only do the transformation if NEWMASK is some integer
2496 mode's mask. */
2497 for (prec = BITS_PER_UNIT;
2498 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
fecfbfa4 2499 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
8fdc6c67
RB
2500 break;
2501 }
2502 (if (prec < HOST_BITS_PER_WIDE_INT
dd4786fe 2503 || newmask == HOST_WIDE_INT_M1U)
8fdc6c67
RB
2504 (with
2505 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2506 (if (!tree_int_cst_equal (newmaskt, @2))
2507 (if (shift_type != TREE_TYPE (@3))
2508 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2509 (bit_and @4 { newmaskt; })))))))))))))
1ffbaa3f 2510
84ff66b8
AV
2511/* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2512 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
98e30e51 2513(for shift (lshift rshift)
84ff66b8
AV
2514 (for bit_op (bit_and bit_xor bit_ior)
2515 (simplify
2516 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2517 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2518 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2519 (bit_op (shift (convert @0) @1) { mask; }))))))
98e30e51 2520
ad1d92ab
MM
2521/* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2522(simplify
2523 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2524 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
ece46666
MG
2525 && (element_precision (TREE_TYPE (@0))
2526 <= element_precision (TREE_TYPE (@1))
2527 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
ad1d92ab
MM
2528 (with
2529 { tree shift_type = TREE_TYPE (@0); }
2530 (convert (rshift (convert:shift_type @1) @2)))))
2531
2532/* ~(~X >>r Y) -> X >>r Y
2533 ~(~X <<r Y) -> X <<r Y */
2534(for rotate (lrotate rrotate)
2535 (simplify
2536 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
ece46666
MG
2537 (if ((element_precision (TREE_TYPE (@0))
2538 <= element_precision (TREE_TYPE (@1))
2539 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2540 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2541 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
ad1d92ab
MM
2542 (with
2543 { tree rotate_type = TREE_TYPE (@0); }
2544 (convert (rotate (convert:rotate_type @1) @2))))))
98e30e51 2545
d4573ffe
RB
2546/* Simplifications of conversions. */
2547
2548/* Basic strip-useless-type-conversions / strip_nops. */
f3582e54 2549(for cvt (convert view_convert float fix_trunc)
d4573ffe
RB
2550 (simplify
2551 (cvt @0)
2552 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2553 || (GENERIC && type == TREE_TYPE (@0)))
2554 @0)))
2555
2556/* Contract view-conversions. */
2557(simplify
2558 (view_convert (view_convert @0))
2559 (view_convert @0))
2560
2561/* For integral conversions with the same precision or pointer
2562 conversions use a NOP_EXPR instead. */
2563(simplify
2564 (view_convert @0)
2565 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2566 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2567 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2568 (convert @0)))
2569
bce8ef71
MG
2570/* Strip inner integral conversions that do not change precision or size, or
2571 zero-extend while keeping the same size (for bool-to-char). */
d4573ffe
RB
2572(simplify
2573 (view_convert (convert@0 @1))
2574 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2575 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
bce8ef71
MG
2576 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2577 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2578 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2579 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
d4573ffe
RB
2580 (view_convert @1)))
2581
2582/* Re-association barriers around constants and other re-association
2583 barriers can be removed. */
2584(simplify
2585 (paren CONSTANT_CLASS_P@0)
2586 @0)
2587(simplify
2588 (paren (paren@1 @0))
2589 @1)
1e51d0a2
RB
2590
2591/* Handle cases of two conversions in a row. */
2592(for ocvt (convert float fix_trunc)
2593 (for icvt (convert float)
2594 (simplify
2595 (ocvt (icvt@1 @0))
2596 (with
2597 {
2598 tree inside_type = TREE_TYPE (@0);
2599 tree inter_type = TREE_TYPE (@1);
2600 int inside_int = INTEGRAL_TYPE_P (inside_type);
2601 int inside_ptr = POINTER_TYPE_P (inside_type);
2602 int inside_float = FLOAT_TYPE_P (inside_type);
09240451 2603 int inside_vec = VECTOR_TYPE_P (inside_type);
1e51d0a2
RB
2604 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2605 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2606 int inter_int = INTEGRAL_TYPE_P (inter_type);
2607 int inter_ptr = POINTER_TYPE_P (inter_type);
2608 int inter_float = FLOAT_TYPE_P (inter_type);
09240451 2609 int inter_vec = VECTOR_TYPE_P (inter_type);
1e51d0a2
RB
2610 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2611 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2612 int final_int = INTEGRAL_TYPE_P (type);
2613 int final_ptr = POINTER_TYPE_P (type);
2614 int final_float = FLOAT_TYPE_P (type);
09240451 2615 int final_vec = VECTOR_TYPE_P (type);
1e51d0a2
RB
2616 unsigned int final_prec = TYPE_PRECISION (type);
2617 int final_unsignedp = TYPE_UNSIGNED (type);
2618 }
64d3a1f0
RB
2619 (switch
2620 /* In addition to the cases of two conversions in a row
2621 handled below, if we are converting something to its own
2622 type via an object of identical or wider precision, neither
2623 conversion is needed. */
2624 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2625 || (GENERIC
2626 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2627 && (((inter_int || inter_ptr) && final_int)
2628 || (inter_float && final_float))
2629 && inter_prec >= final_prec)
2630 (ocvt @0))
2631
2632 /* Likewise, if the intermediate and initial types are either both
2633 float or both integer, we don't need the middle conversion if the
2634 former is wider than the latter and doesn't change the signedness
2635 (for integers). Avoid this if the final type is a pointer since
36088299 2636 then we sometimes need the middle conversion. */
64d3a1f0
RB
2637 (if (((inter_int && inside_int) || (inter_float && inside_float))
2638 && (final_int || final_float)
2639 && inter_prec >= inside_prec
36088299 2640 && (inter_float || inter_unsignedp == inside_unsignedp))
64d3a1f0
RB
2641 (ocvt @0))
2642
2643 /* If we have a sign-extension of a zero-extended value, we can
2644 replace that by a single zero-extension. Likewise if the
2645 final conversion does not change precision we can drop the
2646 intermediate conversion. */
2647 (if (inside_int && inter_int && final_int
2648 && ((inside_prec < inter_prec && inter_prec < final_prec
2649 && inside_unsignedp && !inter_unsignedp)
2650 || final_prec == inter_prec))
2651 (ocvt @0))
2652
2653 /* Two conversions in a row are not needed unless:
1e51d0a2
RB
2654 - some conversion is floating-point (overstrict for now), or
2655 - some conversion is a vector (overstrict for now), or
2656 - the intermediate type is narrower than both initial and
2657 final, or
2658 - the intermediate type and innermost type differ in signedness,
2659 and the outermost type is wider than the intermediate, or
2660 - the initial type is a pointer type and the precisions of the
2661 intermediate and final types differ, or
2662 - the final type is a pointer type and the precisions of the
2663 initial and intermediate types differ. */
64d3a1f0
RB
2664 (if (! inside_float && ! inter_float && ! final_float
2665 && ! inside_vec && ! inter_vec && ! final_vec
2666 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2667 && ! (inside_int && inter_int
2668 && inter_unsignedp != inside_unsignedp
2669 && inter_prec < final_prec)
2670 && ((inter_unsignedp && inter_prec > inside_prec)
2671 == (final_unsignedp && final_prec > inter_prec))
2672 && ! (inside_ptr && inter_prec != final_prec)
36088299 2673 && ! (final_ptr && inside_prec != inter_prec))
64d3a1f0
RB
2674 (ocvt @0))
2675
2676 /* A truncation to an unsigned type (a zero-extension) should be
2677 canonicalized as bitwise and of a mask. */
1d510e04
JJ
2678 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2679 && final_int && inter_int && inside_int
64d3a1f0
RB
2680 && final_prec == inside_prec
2681 && final_prec > inter_prec
2682 && inter_unsignedp)
2683 (convert (bit_and @0 { wide_int_to_tree
2684 (inside_type,
2685 wi::mask (inter_prec, false,
2686 TYPE_PRECISION (inside_type))); })))
2687
2688 /* If we are converting an integer to a floating-point that can
2689 represent it exactly and back to an integer, we can skip the
2690 floating-point conversion. */
2691 (if (GIMPLE /* PR66211 */
2692 && inside_int && inter_float && final_int &&
2693 (unsigned) significand_size (TYPE_MODE (inter_type))
2694 >= inside_prec - !inside_unsignedp)
2695 (convert @0)))))))
ea2042ba
RB
2696
2697/* If we have a narrowing conversion to an integral type that is fed by a
2698 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2699 masks off bits outside the final type (and nothing else). */
2700(simplify
2701 (convert (bit_and @0 INTEGER_CST@1))
2702 (if (INTEGRAL_TYPE_P (type)
2703 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2704 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2705 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2706 TYPE_PRECISION (type)), 0))
2707 (convert @0)))
a25454ea
RB
2708
2709
2710/* (X /[ex] A) * A -> X. */
2711(simplify
2eef1fc1
RB
2712 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2713 (convert @0))
eaeba53a 2714
0036218b
MG
2715/* ((X /[ex] A) +- B) * A --> X +- A * B. */
2716(for op (plus minus)
2717 (simplify
2718 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
2719 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
2720 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
2721 (with
2722 {
2723 wi::overflow_type overflow;
2724 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
2725 TYPE_SIGN (type), &overflow);
2726 }
2727 (if (types_match (type, TREE_TYPE (@2))
2728 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
2729 (op @0 { wide_int_to_tree (type, mul); })
2730 (with { tree utype = unsigned_type_for (type); }
2731 (convert (op (convert:utype @0)
2732 (mult (convert:utype @1) (convert:utype @2))))))))))
2733
a7f24614
RB
2734/* Canonicalization of binary operations. */
2735
2736/* Convert X + -C into X - C. */
2737(simplify
2738 (plus @0 REAL_CST@1)
2739 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
23f27839 2740 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
a7f24614
RB
2741 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2742 (minus @0 { tem; })))))
2743
6b6aa8d3 2744/* Convert x+x into x*2. */
a7f24614
RB
2745(simplify
2746 (plus @0 @0)
2747 (if (SCALAR_FLOAT_TYPE_P (type))
6b6aa8d3
MG
2748 (mult @0 { build_real (type, dconst2); })
2749 (if (INTEGRAL_TYPE_P (type))
2750 (mult @0 { build_int_cst (type, 2); }))))
a7f24614 2751
406520e2 2752/* 0 - X -> -X. */
a7f24614
RB
2753(simplify
2754 (minus integer_zerop @1)
2755 (negate @1))
406520e2
MG
2756(simplify
2757 (pointer_diff integer_zerop @1)
2758 (negate (convert @1)))
a7f24614
RB
2759
2760/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2761 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2762 (-ARG1 + ARG0) reduces to -ARG1. */
2763(simplify
2764 (minus real_zerop@0 @1)
2765 (if (fold_real_zero_addition_p (type, @0, 0))
2766 (negate @1)))
2767
2768/* Transform x * -1 into -x. */
2769(simplify
2770 (mult @0 integer_minus_onep)
2771 (negate @0))
eaeba53a 2772
b771c609
AM
2773/* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2774 signed overflow for CST != 0 && CST != -1. */
2775(simplify
b46ebc6c 2776 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
b771c609 2777 (if (TREE_CODE (@2) != INTEGER_CST
b46ebc6c 2778 && single_use (@3)
b771c609
AM
2779 && !integer_zerop (@1) && !integer_minus_onep (@1))
2780 (mult (mult @0 @2) @1)))
2781
96285749
RS
2782/* True if we can easily extract the real and imaginary parts of a complex
2783 number. */
2784(match compositional_complex
2785 (convert? (complex @0 @1)))
2786
eaeba53a
RB
2787/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2788(simplify
2789 (complex (realpart @0) (imagpart @0))
2790 @0)
2791(simplify
2792 (realpart (complex @0 @1))
2793 @0)
2794(simplify
2795 (imagpart (complex @0 @1))
2796 @1)
83633539 2797
77c028c5
MG
2798/* Sometimes we only care about half of a complex expression. */
2799(simplify
2800 (realpart (convert?:s (conj:s @0)))
2801 (convert (realpart @0)))
2802(simplify
2803 (imagpart (convert?:s (conj:s @0)))
2804 (convert (negate (imagpart @0))))
2805(for part (realpart imagpart)
2806 (for op (plus minus)
2807 (simplify
2808 (part (convert?:s@2 (op:s @0 @1)))
2809 (convert (op (part @0) (part @1))))))
2810(simplify
2811 (realpart (convert?:s (CEXPI:s @0)))
2812 (convert (COS @0)))
2813(simplify
2814 (imagpart (convert?:s (CEXPI:s @0)))
2815 (convert (SIN @0)))
2816
2817/* conj(conj(x)) -> x */
2818(simplify
2819 (conj (convert? (conj @0)))
2820 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2821 (convert @0)))
2822
2823/* conj({x,y}) -> {x,-y} */
2824(simplify
2825 (conj (convert?:s (complex:s @0 @1)))
2826 (with { tree itype = TREE_TYPE (type); }
2827 (complex (convert:itype @0) (negate (convert:itype @1)))))
83633539
RB
2828
2829/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2830(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2831 (simplify
2832 (bswap (bswap @0))
2833 @0)
2834 (simplify
2835 (bswap (bit_not (bswap @0)))
2836 (bit_not @0))
2837 (for bitop (bit_xor bit_ior bit_and)
2838 (simplify
2839 (bswap (bitop:c (bswap @0) @1))
2840 (bitop @0 (bswap @1)))))
96994de0
RB
2841
2842
2843/* Combine COND_EXPRs and VEC_COND_EXPRs. */
2844
2845/* Simplify constant conditions.
2846 Only optimize constant conditions when the selected branch
2847 has the same type as the COND_EXPR. This avoids optimizing
2848 away "c ? x : throw", where the throw has a void type.
2849 Note that we cannot throw away the fold-const.c variant nor
2850 this one as we depend on doing this transform before possibly
2851 A ? B : B -> B triggers and the fold-const.c one can optimize
2852 0 ? A : B to B even if A has side-effects. Something
2853 genmatch cannot handle. */
2854(simplify
2855 (cond INTEGER_CST@0 @1 @2)
8fdc6c67
RB
2856 (if (integer_zerop (@0))
2857 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2858 @2)
2859 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2860 @1)))
96994de0
RB
2861(simplify
2862 (vec_cond VECTOR_CST@0 @1 @2)
2863 (if (integer_all_onesp (@0))
8fdc6c67
RB
2864 @1
2865 (if (integer_zerop (@0))
2866 @2)))
96994de0 2867
b5481987
BC
2868/* Simplification moved from fold_cond_expr_with_comparison. It may also
2869 be extended. */
e2535011
BC
2870/* This pattern implements two kinds simplification:
2871
2872 Case 1)
2873 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
b5481987
BC
2874 1) Conversions are type widening from smaller type.
2875 2) Const c1 equals to c2 after canonicalizing comparison.
2876 3) Comparison has tree code LT, LE, GT or GE.
2877 This specific pattern is needed when (cmp (convert x) c) may not
2878 be simplified by comparison patterns because of multiple uses of
2879 x. It also makes sense here because simplifying across multiple
e2535011
BC
2880 referred var is always benefitial for complicated cases.
2881
2882 Case 2)
2883 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2884(for cmp (lt le gt ge eq)
b5481987 2885 (simplify
ae22bc5d 2886 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
b5481987
BC
2887 (with
2888 {
2889 tree from_type = TREE_TYPE (@1);
2890 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
ae22bc5d 2891 enum tree_code code = ERROR_MARK;
b5481987 2892
ae22bc5d
BC
2893 if (INTEGRAL_TYPE_P (from_type)
2894 && int_fits_type_p (@2, from_type)
b5481987
BC
2895 && (types_match (c1_type, from_type)
2896 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2897 && (TYPE_UNSIGNED (from_type)
2898 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2899 && (types_match (c2_type, from_type)
2900 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2901 && (TYPE_UNSIGNED (from_type)
2902 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2903 {
ae22bc5d 2904 if (cmp != EQ_EXPR)
b5481987 2905 {
e2535011
BC
2906 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2907 {
2908 /* X <= Y - 1 equals to X < Y. */
ae22bc5d 2909 if (cmp == LE_EXPR)
e2535011
BC
2910 code = LT_EXPR;
2911 /* X > Y - 1 equals to X >= Y. */
ae22bc5d 2912 if (cmp == GT_EXPR)
e2535011
BC
2913 code = GE_EXPR;
2914 }
2915 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2916 {
2917 /* X < Y + 1 equals to X <= Y. */
ae22bc5d 2918 if (cmp == LT_EXPR)
e2535011
BC
2919 code = LE_EXPR;
2920 /* X >= Y + 1 equals to X > Y. */
ae22bc5d 2921 if (cmp == GE_EXPR)
e2535011
BC
2922 code = GT_EXPR;
2923 }
ae22bc5d
BC
2924 if (code != ERROR_MARK
2925 || wi::to_widest (@2) == wi::to_widest (@3))
e2535011 2926 {
ae22bc5d 2927 if (cmp == LT_EXPR || cmp == LE_EXPR)
e2535011 2928 code = MIN_EXPR;
ae22bc5d 2929 if (cmp == GT_EXPR || cmp == GE_EXPR)
e2535011
BC
2930 code = MAX_EXPR;
2931 }
b5481987 2932 }
e2535011 2933 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
ae22bc5d
BC
2934 else if (int_fits_type_p (@3, from_type))
2935 code = EQ_EXPR;
b5481987
BC
2936 }
2937 }
2938 (if (code == MAX_EXPR)
21aaaf1e 2939 (convert (max @1 (convert @2)))
b5481987 2940 (if (code == MIN_EXPR)
21aaaf1e 2941 (convert (min @1 (convert @2)))
e2535011 2942 (if (code == EQ_EXPR)
ae22bc5d 2943 (convert (cond (eq @1 (convert @3))
21aaaf1e 2944 (convert:from_type @3) (convert:from_type @2)))))))))
b5481987 2945
714445ae
BC
2946/* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2947
2948 1) OP is PLUS or MINUS.
2949 2) CMP is LT, LE, GT or GE.
2950 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2951
2952 This pattern also handles special cases like:
2953
2954 A) Operand x is a unsigned to signed type conversion and c1 is
2955 integer zero. In this case,
2956 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2957 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2958 B) Const c1 may not equal to (C3 op' C2). In this case we also
2959 check equality for (c1+1) and (c1-1) by adjusting comparison
2960 code.
2961
2962 TODO: Though signed type is handled by this pattern, it cannot be
2963 simplified at the moment because C standard requires additional
2964 type promotion. In order to match&simplify it here, the IR needs
2965 to be cleaned up by other optimizers, i.e, VRP. */
2966(for op (plus minus)
2967 (for cmp (lt le gt ge)
2968 (simplify
2969 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2970 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2971 (if (types_match (from_type, to_type)
2972 /* Check if it is special case A). */
2973 || (TYPE_UNSIGNED (from_type)
2974 && !TYPE_UNSIGNED (to_type)
2975 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2976 && integer_zerop (@1)
2977 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2978 (with
2979 {
4a669ac3 2980 wi::overflow_type overflow = wi::OVF_NONE;
714445ae 2981 enum tree_code code, cmp_code = cmp;
8e6cdc90
RS
2982 wide_int real_c1;
2983 wide_int c1 = wi::to_wide (@1);
2984 wide_int c2 = wi::to_wide (@2);
2985 wide_int c3 = wi::to_wide (@3);
714445ae
BC
2986 signop sgn = TYPE_SIGN (from_type);
2987
2988 /* Handle special case A), given x of unsigned type:
2989 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2990 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2991 if (!types_match (from_type, to_type))
2992 {
2993 if (cmp_code == LT_EXPR)
2994 cmp_code = GT_EXPR;
2995 if (cmp_code == GE_EXPR)
2996 cmp_code = LE_EXPR;
2997 c1 = wi::max_value (to_type);
2998 }
2999 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
3000 compute (c3 op' c2) and check if it equals to c1 with op' being
3001 the inverted operator of op. Make sure overflow doesn't happen
3002 if it is undefined. */
3003 if (op == PLUS_EXPR)
3004 real_c1 = wi::sub (c3, c2, sgn, &overflow);
3005 else
3006 real_c1 = wi::add (c3, c2, sgn, &overflow);
3007
3008 code = cmp_code;
3009 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
3010 {
3011 /* Check if c1 equals to real_c1. Boundary condition is handled
3012 by adjusting comparison operation if necessary. */
3013 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
3014 && !overflow)
3015 {
3016 /* X <= Y - 1 equals to X < Y. */
3017 if (cmp_code == LE_EXPR)
3018 code = LT_EXPR;
3019 /* X > Y - 1 equals to X >= Y. */
3020 if (cmp_code == GT_EXPR)
3021 code = GE_EXPR;
3022 }
3023 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
3024 && !overflow)
3025 {
3026 /* X < Y + 1 equals to X <= Y. */
3027 if (cmp_code == LT_EXPR)
3028 code = LE_EXPR;
3029 /* X >= Y + 1 equals to X > Y. */
3030 if (cmp_code == GE_EXPR)
3031 code = GT_EXPR;
3032 }
3033 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
3034 {
3035 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
3036 code = MIN_EXPR;
3037 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
3038 code = MAX_EXPR;
3039 }
3040 }
3041 }
3042 (if (code == MAX_EXPR)
3043 (op (max @X { wide_int_to_tree (from_type, real_c1); })
3044 { wide_int_to_tree (from_type, c2); })
3045 (if (code == MIN_EXPR)
3046 (op (min @X { wide_int_to_tree (from_type, real_c1); })
3047 { wide_int_to_tree (from_type, c2); })))))))))
3048
96994de0
RB
3049(for cnd (cond vec_cond)
3050 /* A ? B : (A ? X : C) -> A ? B : C. */
3051 (simplify
3052 (cnd @0 (cnd @0 @1 @2) @3)
3053 (cnd @0 @1 @3))
3054 (simplify
3055 (cnd @0 @1 (cnd @0 @2 @3))
3056 (cnd @0 @1 @3))
24a179f8
RB
3057 /* A ? B : (!A ? C : X) -> A ? B : C. */
3058 /* ??? This matches embedded conditions open-coded because genmatch
3059 would generate matching code for conditions in separate stmts only.
3060 The following is still important to merge then and else arm cases
3061 from if-conversion. */
3062 (simplify
3063 (cnd @0 @1 (cnd @2 @3 @4))
2c58d42c 3064 (if (inverse_conditions_p (@0, @2))
24a179f8
RB
3065 (cnd @0 @1 @3)))
3066 (simplify
3067 (cnd @0 (cnd @1 @2 @3) @4)
2c58d42c 3068 (if (inverse_conditions_p (@0, @1))
24a179f8 3069 (cnd @0 @3 @4)))
96994de0
RB
3070
3071 /* A ? B : B -> B. */
3072 (simplify
3073 (cnd @0 @1 @1)
09240451 3074 @1)
96994de0 3075
09240451
MG
3076 /* !A ? B : C -> A ? C : B. */
3077 (simplify
3078 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
3079 (cnd @0 @2 @1)))
f84e7fd6 3080
a3ca1bc5
RB
3081/* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
3082 return all -1 or all 0 results. */
f43d102e
RS
3083/* ??? We could instead convert all instances of the vec_cond to negate,
3084 but that isn't necessarily a win on its own. */
3085(simplify
a3ca1bc5 3086 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
f43d102e 3087 (if (VECTOR_TYPE_P (type)
928686b1
RS
3088 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3089 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
f43d102e 3090 && (TYPE_MODE (TREE_TYPE (type))
4d8989d5 3091 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
a3ca1bc5 3092 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
f43d102e 3093
a3ca1bc5 3094/* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
f43d102e 3095(simplify
a3ca1bc5 3096 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
f43d102e 3097 (if (VECTOR_TYPE_P (type)
928686b1
RS
3098 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3099 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
f43d102e 3100 && (TYPE_MODE (TREE_TYPE (type))
4d8989d5 3101 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
a3ca1bc5 3102 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
f84e7fd6 3103
2ee05f1e 3104
f84e7fd6
RB
3105/* Simplifications of comparisons. */
3106
24f1db9c
RB
3107/* See if we can reduce the magnitude of a constant involved in a
3108 comparison by changing the comparison code. This is a canonicalization
3109 formerly done by maybe_canonicalize_comparison_1. */
3110(for cmp (le gt)
3111 acmp (lt ge)
3112 (simplify
f06e47d7
JJ
3113 (cmp @0 uniform_integer_cst_p@1)
3114 (with { tree cst = uniform_integer_cst_p (@1); }
3115 (if (tree_int_cst_sgn (cst) == -1)
3116 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3117 wide_int_to_tree (TREE_TYPE (cst),
3118 wi::to_wide (cst)
3119 + 1)); })))))
24f1db9c
RB
3120(for cmp (ge lt)
3121 acmp (gt le)
3122 (simplify
f06e47d7
JJ
3123 (cmp @0 uniform_integer_cst_p@1)
3124 (with { tree cst = uniform_integer_cst_p (@1); }
3125 (if (tree_int_cst_sgn (cst) == 1)
3126 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3127 wide_int_to_tree (TREE_TYPE (cst),
3128 wi::to_wide (cst) - 1)); })))))
24f1db9c 3129
f84e7fd6
RB
3130/* We can simplify a logical negation of a comparison to the
3131 inverted comparison. As we cannot compute an expression
3132 operator using invert_tree_comparison we have to simulate
3133 that with expression code iteration. */
3134(for cmp (tcc_comparison)
3135 icmp (inverted_tcc_comparison)
3136 ncmp (inverted_tcc_comparison_with_nans)
3137 /* Ideally we'd like to combine the following two patterns
3138 and handle some more cases by using
3139 (logical_inverted_value (cmp @0 @1))
3140 here but for that genmatch would need to "inline" that.
3141 For now implement what forward_propagate_comparison did. */
3142 (simplify
3143 (bit_not (cmp @0 @1))
3144 (if (VECTOR_TYPE_P (type)
3145 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3146 /* Comparison inversion may be impossible for trapping math,
3147 invert_tree_comparison will tell us. But we can't use
3148 a computed operator in the replacement tree thus we have
3149 to play the trick below. */
3150 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 3151 (cmp, HONOR_NANS (@0)); }
f84e7fd6 3152 (if (ic == icmp)
8fdc6c67
RB
3153 (icmp @0 @1)
3154 (if (ic == ncmp)
3155 (ncmp @0 @1))))))
f84e7fd6 3156 (simplify
09240451
MG
3157 (bit_xor (cmp @0 @1) integer_truep)
3158 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 3159 (cmp, HONOR_NANS (@0)); }
09240451 3160 (if (ic == icmp)
8fdc6c67
RB
3161 (icmp @0 @1)
3162 (if (ic == ncmp)
3163 (ncmp @0 @1))))))
e18c1d66 3164
2ee05f1e
RB
3165/* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3166 ??? The transformation is valid for the other operators if overflow
3167 is undefined for the type, but performing it here badly interacts
3168 with the transformation in fold_cond_expr_with_comparison which
3169 attempts to synthetize ABS_EXPR. */
3170(for cmp (eq ne)
1af4ebf5
MG
3171 (for sub (minus pointer_diff)
3172 (simplify
3173 (cmp (sub@2 @0 @1) integer_zerop)
3174 (if (single_use (@2))
3175 (cmp @0 @1)))))
2ee05f1e
RB
3176
3177/* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3178 signed arithmetic case. That form is created by the compiler
3179 often enough for folding it to be of value. One example is in
3180 computing loop trip counts after Operator Strength Reduction. */
07cdc2b8
RB
3181(for cmp (simple_comparison)
3182 scmp (swapped_simple_comparison)
2ee05f1e 3183 (simplify
bc6e9db4 3184 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
2ee05f1e
RB
3185 /* Handle unfolded multiplication by zero. */
3186 (if (integer_zerop (@1))
8fdc6c67
RB
3187 (cmp @1 @2)
3188 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
bc6e9db4
RB
3189 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3190 && single_use (@3))
8fdc6c67
RB
3191 /* If @1 is negative we swap the sense of the comparison. */
3192 (if (tree_int_cst_sgn (@1) < 0)
3193 (scmp @0 @2)
3194 (cmp @0 @2))))))
03cc70b5 3195
2ee05f1e
RB
3196/* Simplify comparison of something with itself. For IEEE
3197 floating-point, we can only do some of these simplifications. */
287f8f17 3198(for cmp (eq ge le)
2ee05f1e
RB
3199 (simplify
3200 (cmp @0 @0)
287f8f17 3201 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
b9407883 3202 || ! HONOR_NANS (@0))
287f8f17
RB
3203 { constant_boolean_node (true, type); }
3204 (if (cmp != EQ_EXPR)
3205 (eq @0 @0)))))
2ee05f1e
RB
3206(for cmp (ne gt lt)
3207 (simplify
3208 (cmp @0 @0)
3209 (if (cmp != NE_EXPR
3210 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
b9407883 3211 || ! HONOR_NANS (@0))
2ee05f1e 3212 { constant_boolean_node (false, type); })))
b5d3d787
RB
3213(for cmp (unle unge uneq)
3214 (simplify
3215 (cmp @0 @0)
3216 { constant_boolean_node (true, type); }))
dd53d197
MG
3217(for cmp (unlt ungt)
3218 (simplify
3219 (cmp @0 @0)
3220 (unordered @0 @0)))
b5d3d787
RB
3221(simplify
3222 (ltgt @0 @0)
3223 (if (!flag_trapping_math)
3224 { constant_boolean_node (false, type); }))
2ee05f1e
RB
3225
3226/* Fold ~X op ~Y as Y op X. */
07cdc2b8 3227(for cmp (simple_comparison)
2ee05f1e 3228 (simplify
7fe996ba
RB
3229 (cmp (bit_not@2 @0) (bit_not@3 @1))
3230 (if (single_use (@2) && single_use (@3))
3231 (cmp @1 @0))))
2ee05f1e
RB
3232
3233/* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
07cdc2b8
RB
3234(for cmp (simple_comparison)
3235 scmp (swapped_simple_comparison)
2ee05f1e 3236 (simplify
7fe996ba
RB
3237 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3238 (if (single_use (@2)
3239 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
2ee05f1e
RB
3240 (scmp @0 (bit_not @1)))))
3241
07cdc2b8
RB
3242(for cmp (simple_comparison)
3243 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3244 (simplify
3245 (cmp (convert@2 @0) (convert? @1))
3246 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3247 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3248 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3249 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3250 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3251 (with
3252 {
3253 tree type1 = TREE_TYPE (@1);
3254 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3255 {
3256 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3257 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3258 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3259 type1 = float_type_node;
3260 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3261 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3262 type1 = double_type_node;
3263 }
3264 tree newtype
3265 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
03cc70b5 3266 ? TREE_TYPE (@0) : type1);
07cdc2b8
RB
3267 }
3268 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3269 (cmp (convert:newtype @0) (convert:newtype @1))))))
03cc70b5 3270
07cdc2b8
RB
3271 (simplify
3272 (cmp @0 REAL_CST@1)
3273 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
64d3a1f0
RB
3274 (switch
3275 /* a CMP (-0) -> a CMP 0 */
3276 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3277 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3278 /* x != NaN is always true, other ops are always false. */
3279 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3280 && ! HONOR_SNANS (@1))
3281 { constant_boolean_node (cmp == NE_EXPR, type); })
3282 /* Fold comparisons against infinity. */
3283 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3284 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3285 (with
3286 {
3287 REAL_VALUE_TYPE max;
3288 enum tree_code code = cmp;
3289 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3290 if (neg)
3291 code = swap_tree_comparison (code);
3292 }
3293 (switch
e96a5786 3294 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
64d3a1f0 3295 (if (code == GT_EXPR
e96a5786 3296 && !(HONOR_NANS (@0) && flag_trapping_math))
64d3a1f0
RB
3297 { constant_boolean_node (false, type); })
3298 (if (code == LE_EXPR)
e96a5786 3299 /* x <= +Inf is always true, if we don't care about NaNs. */
64d3a1f0
RB
3300 (if (! HONOR_NANS (@0))
3301 { constant_boolean_node (true, type); }
e96a5786
JM
3302 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3303 an "invalid" exception. */
3304 (if (!flag_trapping_math)
3305 (eq @0 @0))))
3306 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3307 for == this introduces an exception for x a NaN. */
3308 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3309 || code == GE_EXPR)
64d3a1f0
RB
3310 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3311 (if (neg)
3312 (lt @0 { build_real (TREE_TYPE (@0), max); })
3313 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3314 /* x < +Inf is always equal to x <= DBL_MAX. */
3315 (if (code == LT_EXPR)
3316 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3317 (if (neg)
3318 (ge @0 { build_real (TREE_TYPE (@0), max); })
3319 (le @0 { build_real (TREE_TYPE (@0), max); }))))
e96a5786
JM
3320 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3321 an exception for x a NaN so use an unordered comparison. */
64d3a1f0
RB
3322 (if (code == NE_EXPR)
3323 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3324 (if (! HONOR_NANS (@0))
3325 (if (neg)
3326 (ge @0 { build_real (TREE_TYPE (@0), max); })
3327 (le @0 { build_real (TREE_TYPE (@0), max); }))
3328 (if (neg)
e96a5786
JM
3329 (unge @0 { build_real (TREE_TYPE (@0), max); })
3330 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
07cdc2b8
RB
3331
3332 /* If this is a comparison of a real constant with a PLUS_EXPR
3333 or a MINUS_EXPR of a real constant, we can convert it into a
3334 comparison with a revised real constant as long as no overflow
3335 occurs when unsafe_math_optimizations are enabled. */
3336 (if (flag_unsafe_math_optimizations)
3337 (for op (plus minus)
3338 (simplify
3339 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3340 (with
3341 {
3342 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3343 TREE_TYPE (@1), @2, @1);
3344 }
f980c9a2 3345 (if (tem && !TREE_OVERFLOW (tem))
07cdc2b8
RB
3346 (cmp @0 { tem; }))))))
3347
3348 /* Likewise, we can simplify a comparison of a real constant with
3349 a MINUS_EXPR whose first operand is also a real constant, i.e.
3350 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3351 floating-point types only if -fassociative-math is set. */
3352 (if (flag_associative_math)
3353 (simplify
0409237b 3354 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
07cdc2b8 3355 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
f980c9a2 3356 (if (tem && !TREE_OVERFLOW (tem))
07cdc2b8
RB
3357 (cmp { tem; } @1)))))
3358
3359 /* Fold comparisons against built-in math functions. */
3360 (if (flag_unsafe_math_optimizations
3361 && ! flag_errno_math)
3362 (for sq (SQRT)
3363 (simplify
3364 (cmp (sq @0) REAL_CST@1)
64d3a1f0
RB
3365 (switch
3366 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3367 (switch
3368 /* sqrt(x) < y is always false, if y is negative. */
3369 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
8fdc6c67 3370 { constant_boolean_node (false, type); })
64d3a1f0
RB
3371 /* sqrt(x) > y is always true, if y is negative and we
3372 don't care about NaNs, i.e. negative values of x. */
3373 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3374 { constant_boolean_node (true, type); })
3375 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3376 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
c53233c6
RS
3377 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3378 (switch
3379 /* sqrt(x) < 0 is always false. */
3380 (if (cmp == LT_EXPR)
3381 { constant_boolean_node (false, type); })
3382 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3383 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3384 { constant_boolean_node (true, type); })
3385 /* sqrt(x) <= 0 -> x == 0. */
3386 (if (cmp == LE_EXPR)
3387 (eq @0 @1))
3388 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3389 == or !=. In the last case:
3390
3391 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3392
3393 if x is negative or NaN. Due to -funsafe-math-optimizations,
3394 the results for other x follow from natural arithmetic. */
3395 (cmp @0 @1)))
64d3a1f0
RB
3396 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3397 (with
3398 {
3399 REAL_VALUE_TYPE c2;
5c88ea94
RS
3400 real_arithmetic (&c2, MULT_EXPR,
3401 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
64d3a1f0
RB
3402 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3403 }
3404 (if (REAL_VALUE_ISINF (c2))
3405 /* sqrt(x) > y is x == +Inf, when y is very large. */
3406 (if (HONOR_INFINITIES (@0))
3407 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3408 { constant_boolean_node (false, type); })
3409 /* sqrt(x) > c is the same as x > c*c. */
3410 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3411 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3412 (with
3413 {
3414 REAL_VALUE_TYPE c2;
5c88ea94
RS
3415 real_arithmetic (&c2, MULT_EXPR,
3416 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
64d3a1f0
RB
3417 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3418 }
3419 (if (REAL_VALUE_ISINF (c2))
3420 (switch
3421 /* sqrt(x) < y is always true, when y is a very large
3422 value and we don't care about NaNs or Infinities. */
3423 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3424 { constant_boolean_node (true, type); })
3425 /* sqrt(x) < y is x != +Inf when y is very large and we
3426 don't care about NaNs. */
3427 (if (! HONOR_NANS (@0))
3428 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3429 /* sqrt(x) < y is x >= 0 when y is very large and we
3430 don't care about Infinities. */
3431 (if (! HONOR_INFINITIES (@0))
3432 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3433 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3434 (if (GENERIC)
3435 (truth_andif
3436 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3437 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3438 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3439 (if (! HONOR_NANS (@0))
3440 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3441 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3442 (if (GENERIC)
3443 (truth_andif
3444 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
0ca2e7f7
PK
3445 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3446 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3447 (simplify
3448 (cmp (sq @0) (sq @1))
3449 (if (! HONOR_NANS (@0))
3450 (cmp @0 @1))))))
2ee05f1e 3451
e41ec71b 3452/* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
f3842847
YG
3453(for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
3454 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
e41ec71b
YG
3455 (simplify
3456 (cmp (float@0 @1) (float @2))
3457 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
3458 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3459 (with
3460 {
3461 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
3462 tree type1 = TREE_TYPE (@1);
3463 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
3464 tree type2 = TREE_TYPE (@2);
3465 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
3466 }
3467 (if (fmt.can_represent_integral_type_p (type1)
3468 && fmt.can_represent_integral_type_p (type2))
f3842847
YG
3469 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
3470 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
3471 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
3472 && type1_signed_p >= type2_signed_p)
3473 (icmp @1 (convert @2))
3474 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
3475 && type1_signed_p <= type2_signed_p)
3476 (icmp (convert:type2 @1) @2)
3477 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
3478 && type1_signed_p == type2_signed_p)
3479 (icmp @1 @2))))))))))
e41ec71b 3480
c779bea5
YG
3481/* Optimize various special cases of (FTYPE) N CMP CST. */
3482(for cmp (lt le eq ne ge gt)
3483 icmp (le le eq ne ge ge)
3484 (simplify
3485 (cmp (float @0) REAL_CST@1)
3486 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3487 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3488 (with
3489 {
3490 tree itype = TREE_TYPE (@0);
c779bea5
YG
3491 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3492 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3493 /* Be careful to preserve any potential exceptions due to
3494 NaNs. qNaNs are ok in == or != context.
3495 TODO: relax under -fno-trapping-math or
3496 -fno-signaling-nans. */
3497 bool exception_p
3498 = real_isnan (cst) && (cst->signalling
c651dca2 3499 || (cmp != EQ_EXPR && cmp != NE_EXPR));
c779bea5
YG
3500 }
3501 /* TODO: allow non-fitting itype and SNaNs when
3502 -fno-trapping-math. */
e41ec71b 3503 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
c779bea5
YG
3504 (with
3505 {
e41ec71b 3506 signop isign = TYPE_SIGN (itype);
c779bea5
YG
3507 REAL_VALUE_TYPE imin, imax;
3508 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3509 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3510
3511 REAL_VALUE_TYPE icst;
3512 if (cmp == GT_EXPR || cmp == GE_EXPR)
3513 real_ceil (&icst, fmt, cst);
3514 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3515 real_floor (&icst, fmt, cst);
3516 else
3517 real_trunc (&icst, fmt, cst);
3518
b09bf97b 3519 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
c779bea5
YG
3520
3521 bool overflow_p = false;
3522 wide_int icst_val
3523 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3524 }
3525 (switch
3526 /* Optimize cases when CST is outside of ITYPE's range. */
3527 (if (real_compare (LT_EXPR, cst, &imin))
3528 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3529 type); })
3530 (if (real_compare (GT_EXPR, cst, &imax))
3531 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3532 type); })
3533 /* Remove cast if CST is an integer representable by ITYPE. */
3534 (if (cst_int_p)
3535 (cmp @0 { gcc_assert (!overflow_p);
3536 wide_int_to_tree (itype, icst_val); })
3537 )
3538 /* When CST is fractional, optimize
3539 (FTYPE) N == CST -> 0
3540 (FTYPE) N != CST -> 1. */
3541 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
03cc70b5 3542 { constant_boolean_node (cmp == NE_EXPR, type); })
c779bea5
YG
3543 /* Otherwise replace with sensible integer constant. */
3544 (with
3545 {
3546 gcc_checking_assert (!overflow_p);
3547 }
3548 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3549
40fd269a
MG
3550/* Fold A /[ex] B CMP C to A CMP B * C. */
3551(for cmp (eq ne)
3552 (simplify
3553 (cmp (exact_div @0 @1) INTEGER_CST@2)
3554 (if (!integer_zerop (@1))
8e6cdc90 3555 (if (wi::to_wide (@2) == 0)
40fd269a
MG
3556 (cmp @0 @2)
3557 (if (TREE_CODE (@1) == INTEGER_CST)
3558 (with
3559 {
4a669ac3 3560 wi::overflow_type ovf;
8e6cdc90
RS
3561 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3562 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
40fd269a
MG
3563 }
3564 (if (ovf)
3565 { constant_boolean_node (cmp == NE_EXPR, type); }
3566 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3567(for cmp (lt le gt ge)
3568 (simplify
3569 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
8e6cdc90 3570 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
40fd269a
MG
3571 (with
3572 {
4a669ac3 3573 wi::overflow_type ovf;
8e6cdc90
RS
3574 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3575 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
40fd269a
MG
3576 }
3577 (if (ovf)
8e6cdc90
RS
3578 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3579 TYPE_SIGN (TREE_TYPE (@2)))
40fd269a
MG
3580 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3581 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3582
cfdc4f33
MG
3583/* Unordered tests if either argument is a NaN. */
3584(simplify
3585 (bit_ior (unordered @0 @0) (unordered @1 @1))
aea417d7 3586 (if (types_match (@0, @1))
cfdc4f33 3587 (unordered @0 @1)))
257b01ba
MG
3588(simplify
3589 (bit_and (ordered @0 @0) (ordered @1 @1))
3590 (if (types_match (@0, @1))
3591 (ordered @0 @1)))
cfdc4f33
MG
3592(simplify
3593 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3594 @2)
257b01ba
MG
3595(simplify
3596 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3597 @2)
e18c1d66 3598
90c6f26c
RB
3599/* Simple range test simplifications. */
3600/* A < B || A >= B -> true. */
5d30c58d
RB
3601(for test1 (lt le le le ne ge)
3602 test2 (ge gt ge ne eq ne)
90c6f26c
RB
3603 (simplify
3604 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3605 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3606 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3607 { constant_boolean_node (true, type); })))
3608/* A < B && A >= B -> false. */
3609(for test1 (lt lt lt le ne eq)
3610 test2 (ge gt eq gt eq gt)
3611 (simplify
3612 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3613 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3614 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3615 { constant_boolean_node (false, type); })))
3616
9ebc3467
YG
3617/* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3618 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3619
3620 Note that comparisons
3621 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3622 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3623 will be canonicalized to above so there's no need to
3624 consider them here.
3625 */
3626
3627(for cmp (le gt)
3628 eqcmp (eq ne)
3629 (simplify
3630 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3631 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3632 (with
3633 {
3634 tree ty = TREE_TYPE (@0);
3635 unsigned prec = TYPE_PRECISION (ty);
3636 wide_int mask = wi::to_wide (@2, prec);
3637 wide_int rhs = wi::to_wide (@3, prec);
3638 signop sgn = TYPE_SIGN (ty);
3639 }
3640 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3641 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3642 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3643 { build_zero_cst (ty); }))))))
3644
534bd33b
MG
3645/* -A CMP -B -> B CMP A. */
3646(for cmp (tcc_comparison)
3647 scmp (swapped_tcc_comparison)
3648 (simplify
3649 (cmp (negate @0) (negate @1))
3650 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3651 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3652 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3653 (scmp @0 @1)))
3654 (simplify
3655 (cmp (negate @0) CONSTANT_CLASS_P@1)
3656 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3657 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3658 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
23f27839 3659 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
534bd33b
MG
3660 (if (tem && !TREE_OVERFLOW (tem))
3661 (scmp @0 { tem; }))))))
3662
b0eb889b
MG
3663/* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3664(for op (eq ne)
3665 (simplify
3666 (op (abs @0) zerop@1)
3667 (op @0 @1)))
3668
6358a676
MG
3669/* From fold_sign_changed_comparison and fold_widened_comparison.
3670 FIXME: the lack of symmetry is disturbing. */
79d4f7c6
RB
3671(for cmp (simple_comparison)
3672 (simplify
3673 (cmp (convert@0 @00) (convert?@1 @10))
452ec2a5 3674 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
79d4f7c6
RB
3675 /* Disable this optimization if we're casting a function pointer
3676 type on targets that require function pointer canonicalization. */
3677 && !(targetm.have_canonicalize_funcptr_for_compare ()
400bc526
JDA
3678 && ((POINTER_TYPE_P (TREE_TYPE (@00))
3679 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
3680 || (POINTER_TYPE_P (TREE_TYPE (@10))
3681 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
2fde61e3 3682 && single_use (@0))
79d4f7c6
RB
3683 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3684 && (TREE_CODE (@10) == INTEGER_CST
6358a676 3685 || @1 != @10)
79d4f7c6
RB
3686 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3687 || cmp == NE_EXPR
3688 || cmp == EQ_EXPR)
6358a676 3689 && !POINTER_TYPE_P (TREE_TYPE (@00)))
79d4f7c6
RB
3690 /* ??? The special-casing of INTEGER_CST conversion was in the original
3691 code and here to avoid a spurious overflow flag on the resulting
3692 constant which fold_convert produces. */
3693 (if (TREE_CODE (@1) == INTEGER_CST)
3694 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3695 TREE_OVERFLOW (@1)); })
3696 (cmp @00 (convert @1)))
3697
3698 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3699 /* If possible, express the comparison in the shorter mode. */
3700 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
7fd82d52
PP
3701 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3702 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3703 && TYPE_UNSIGNED (TREE_TYPE (@00))))
79d4f7c6
RB
3704 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3705 || ((TYPE_PRECISION (TREE_TYPE (@00))
3706 >= TYPE_PRECISION (TREE_TYPE (@10)))
3707 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3708 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3709 || (TREE_CODE (@10) == INTEGER_CST
f6c15759 3710 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
79d4f7c6
RB
3711 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3712 (cmp @00 (convert @10))
3713 (if (TREE_CODE (@10) == INTEGER_CST
f6c15759 3714 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
79d4f7c6
RB
3715 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3716 (with
3717 {
3718 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3719 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3720 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3721 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3722 }
3723 (if (above || below)
3724 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3725 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3726 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3727 { constant_boolean_node (above ? true : false, type); }
3728 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3729 { constant_boolean_node (above ? false : true, type); }))))))))))))
66e1cacf 3730
96a111a3
RB
3731(for cmp (eq ne)
3732 /* A local variable can never be pointed to by
3733 the default SSA name of an incoming parameter.
3734 SSA names are canonicalized to 2nd place. */
3735 (simplify
3736 (cmp addr@0 SSA_NAME@1)
3737 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3738 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3739 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3740 (if (TREE_CODE (base) == VAR_DECL
3741 && auto_var_in_fn_p (base, current_function_decl))
3742 (if (cmp == NE_EXPR)
3743 { constant_boolean_node (true, type); }
3744 { constant_boolean_node (false, type); }))))))
3745
66e1cacf
RB
3746/* Equality compare simplifications from fold_binary */
3747(for cmp (eq ne)
3748
3749 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3750 Similarly for NE_EXPR. */
3751 (simplify
3752 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3753 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
8e6cdc90 3754 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
66e1cacf
RB
3755 { constant_boolean_node (cmp == NE_EXPR, type); }))
3756
3757 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3758 (simplify
3759 (cmp (bit_xor @0 @1) integer_zerop)
3760 (cmp @0 @1))
3761
3762 /* (X ^ Y) == Y becomes X == 0.
3763 Likewise (X ^ Y) == X becomes Y == 0. */
3764 (simplify
99e943a2 3765 (cmp:c (bit_xor:c @0 @1) @0)
66e1cacf
RB
3766 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3767
3768 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3769 (simplify
3770 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3771 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
d057c866 3772 (cmp @0 (bit_xor @1 (convert @2)))))
d057c866
RB
3773
3774 (simplify
3775 (cmp (convert? addr@0) integer_zerop)
3776 (if (tree_single_nonzero_warnv_p (@0, NULL))
3777 { constant_boolean_node (cmp == NE_EXPR, type); })))
3778
b0eb889b
MG
3779/* If we have (A & C) == C where C is a power of 2, convert this into
3780 (A & C) != 0. Similarly for NE_EXPR. */
3781(for cmp (eq ne)
3782 icmp (ne eq)
3783 (simplify
3784 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3785 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
03cc70b5 3786
519e0faa
PB
3787/* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3788 convert this into a shift followed by ANDing with D. */
3789(simplify
3790 (cond
3791 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
9e61e48e
JJ
3792 INTEGER_CST@2 integer_zerop)
3793 (if (integer_pow2p (@2))
3794 (with {
3795 int shift = (wi::exact_log2 (wi::to_wide (@2))
3796 - wi::exact_log2 (wi::to_wide (@1)));
3797 }
3798 (if (shift > 0)
3799 (bit_and
3800 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3801 (bit_and
3802 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
3803 @2)))))
519e0faa 3804
b0eb889b
MG
3805/* If we have (A & C) != 0 where C is the sign bit of A, convert
3806 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3807(for cmp (eq ne)
3808 ncmp (ge lt)
3809 (simplify
3810 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3811 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2be65d9e 3812 && type_has_mode_precision_p (TREE_TYPE (@0))
b0eb889b 3813 && element_precision (@2) >= element_precision (@0)
8e6cdc90 3814 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
b0eb889b
MG
3815 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3816 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3817
519e0faa 3818/* If we have A < 0 ? C : 0 where C is a power of 2, convert
c0140e3c 3819 this into a right shift or sign extension followed by ANDing with C. */
519e0faa
PB
3820(simplify
3821 (cond
3822 (lt @0 integer_zerop)
9e61e48e
JJ
3823 INTEGER_CST@1 integer_zerop)
3824 (if (integer_pow2p (@1)
3825 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
c0140e3c 3826 (with {
8e6cdc90 3827 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
c0140e3c
JJ
3828 }
3829 (if (shift >= 0)
3830 (bit_and
3831 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3832 @1)
3833 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3834 sign extension followed by AND with C will achieve the effect. */
3835 (bit_and (convert @0) @1)))))
519e0faa 3836
68aba1f6
RB
3837/* When the addresses are not directly of decls compare base and offset.
3838 This implements some remaining parts of fold_comparison address
3839 comparisons but still no complete part of it. Still it is good
3840 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3841(for cmp (simple_comparison)
3842 (simplify
f501d5cd 3843 (cmp (convert1?@2 addr@0) (convert2? addr@1))
68aba1f6
RB
3844 (with
3845 {
a90c8804 3846 poly_int64 off0, off1;
68aba1f6
RB
3847 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3848 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3849 if (base0 && TREE_CODE (base0) == MEM_REF)
3850 {
aca52e6f 3851 off0 += mem_ref_offset (base0).force_shwi ();
68aba1f6
RB
3852 base0 = TREE_OPERAND (base0, 0);
3853 }
3854 if (base1 && TREE_CODE (base1) == MEM_REF)
3855 {
aca52e6f 3856 off1 += mem_ref_offset (base1).force_shwi ();
68aba1f6
RB
3857 base1 = TREE_OPERAND (base1, 0);
3858 }
3859 }
da571fda
RB
3860 (if (base0 && base1)
3861 (with
3862 {
aad88aed 3863 int equal = 2;
70f40fea
JJ
3864 /* Punt in GENERIC on variables with value expressions;
3865 the value expressions might point to fields/elements
3866 of other vars etc. */
3867 if (GENERIC
3868 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3869 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3870 ;
3871 else if (decl_in_symtab_p (base0)
3872 && decl_in_symtab_p (base1))
da571fda
RB
3873 equal = symtab_node::get_create (base0)
3874 ->equal_address_to (symtab_node::get_create (base1));
c3bea076
RB
3875 else if ((DECL_P (base0)
3876 || TREE_CODE (base0) == SSA_NAME
3877 || TREE_CODE (base0) == STRING_CST)
3878 && (DECL_P (base1)
3879 || TREE_CODE (base1) == SSA_NAME
3880 || TREE_CODE (base1) == STRING_CST))
aad88aed 3881 equal = (base0 == base1);
da571fda 3882 }
3fccbb9e
JJ
3883 (if (equal == 1
3884 && (cmp == EQ_EXPR || cmp == NE_EXPR
3885 /* If the offsets are equal we can ignore overflow. */
3886 || known_eq (off0, off1)
3887 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3888 /* Or if we compare using pointers to decls or strings. */
3889 || (POINTER_TYPE_P (TREE_TYPE (@2))
3890 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
da571fda 3891 (switch
a90c8804
RS
3892 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3893 { constant_boolean_node (known_eq (off0, off1), type); })
3894 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3895 { constant_boolean_node (known_ne (off0, off1), type); })
3896 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
3897 { constant_boolean_node (known_lt (off0, off1), type); })
3898 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
3899 { constant_boolean_node (known_le (off0, off1), type); })
3900 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
3901 { constant_boolean_node (known_ge (off0, off1), type); })
3902 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
3903 { constant_boolean_node (known_gt (off0, off1), type); }))
da571fda
RB
3904 (if (equal == 0
3905 && DECL_P (base0) && DECL_P (base1)
3906 /* If we compare this as integers require equal offset. */
3907 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
a90c8804 3908 || known_eq (off0, off1)))
da571fda
RB
3909 (switch
3910 (if (cmp == EQ_EXPR)
3911 { constant_boolean_node (false, type); })
3912 (if (cmp == NE_EXPR)
3913 { constant_boolean_node (true, type); })))))))))
66e1cacf 3914
98998245
RB
3915/* Simplify pointer equality compares using PTA. */
3916(for neeq (ne eq)
3917 (simplify
3918 (neeq @0 @1)
3919 (if (POINTER_TYPE_P (TREE_TYPE (@0))
3920 && ptrs_compare_unequal (@0, @1))
f913ff2a 3921 { constant_boolean_node (neeq != EQ_EXPR, type); })))
98998245 3922
8f63caf6 3923/* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
467719fb
PK
3924 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3925 Disable the transform if either operand is pointer to function.
3926 This broke pr22051-2.c for arm where function pointer
3927 canonicalizaion is not wanted. */
1c0a8806 3928
8f63caf6
RB
3929(for cmp (ne eq)
3930 (simplify
3931 (cmp (convert @0) INTEGER_CST@1)
f53e7e13
JJ
3932 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
3933 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3934 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3935 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3936 && POINTER_TYPE_P (TREE_TYPE (@1))
3937 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
3938 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
8f63caf6
RB
3939 (cmp @0 (convert @1)))))
3940
21aacde4
RB
3941/* Non-equality compare simplifications from fold_binary */
3942(for cmp (lt gt le ge)
3943 /* Comparisons with the highest or lowest possible integer of
3944 the specified precision will have known values. */
3945 (simplify
f06e47d7
JJ
3946 (cmp (convert?@2 @0) uniform_integer_cst_p@1)
3947 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
3948 || POINTER_TYPE_P (TREE_TYPE (@1))
3949 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
21aacde4
RB
3950 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3951 (with
3952 {
f06e47d7
JJ
3953 tree cst = uniform_integer_cst_p (@1);
3954 tree arg1_type = TREE_TYPE (cst);
21aacde4
RB
3955 unsigned int prec = TYPE_PRECISION (arg1_type);
3956 wide_int max = wi::max_value (arg1_type);
3957 wide_int signed_max = wi::max_value (prec, SIGNED);
3958 wide_int min = wi::min_value (arg1_type);
3959 }
3960 (switch
f06e47d7 3961 (if (wi::to_wide (cst) == max)
21aacde4
RB
3962 (switch
3963 (if (cmp == GT_EXPR)
3964 { constant_boolean_node (false, type); })
3965 (if (cmp == GE_EXPR)
3966 (eq @2 @1))
3967 (if (cmp == LE_EXPR)
3968 { constant_boolean_node (true, type); })
3969 (if (cmp == LT_EXPR)
3970 (ne @2 @1))))
f06e47d7 3971 (if (wi::to_wide (cst) == min)
21aacde4
RB
3972 (switch
3973 (if (cmp == LT_EXPR)
3974 { constant_boolean_node (false, type); })
3975 (if (cmp == LE_EXPR)
3976 (eq @2 @1))
3977 (if (cmp == GE_EXPR)
3978 { constant_boolean_node (true, type); })
3979 (if (cmp == GT_EXPR)
3980 (ne @2 @1))))
f06e47d7 3981 (if (wi::to_wide (cst) == max - 1)
9bc22d19
RB
3982 (switch
3983 (if (cmp == GT_EXPR)
f06e47d7
JJ
3984 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
3985 wide_int_to_tree (TREE_TYPE (cst),
3986 wi::to_wide (cst)
3987 + 1)); }))
9bc22d19 3988 (if (cmp == LE_EXPR)
f06e47d7
JJ
3989 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
3990 wide_int_to_tree (TREE_TYPE (cst),
3991 wi::to_wide (cst)
3992 + 1)); }))))
3993 (if (wi::to_wide (cst) == min + 1)
21aacde4
RB
3994 (switch
3995 (if (cmp == GE_EXPR)
f06e47d7
JJ
3996 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
3997 wide_int_to_tree (TREE_TYPE (cst),
3998 wi::to_wide (cst)
3999 - 1)); }))
21aacde4 4000 (if (cmp == LT_EXPR)
f06e47d7
JJ
4001 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4002 wide_int_to_tree (TREE_TYPE (cst),
4003 wi::to_wide (cst)
4004 - 1)); }))))
4005 (if (wi::to_wide (cst) == signed_max
21aacde4
RB
4006 && TYPE_UNSIGNED (arg1_type)
4007 /* We will flip the signedness of the comparison operator
4008 associated with the mode of @1, so the sign bit is
4009 specified by this mode. Check that @1 is the signed
4010 max associated with this sign bit. */
7a504f33 4011 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
21aacde4
RB
4012 /* signed_type does not work on pointer types. */
4013 && INTEGRAL_TYPE_P (arg1_type))
4014 /* The following case also applies to X < signed_max+1
4015 and X >= signed_max+1 because previous transformations. */
4016 (if (cmp == LE_EXPR || cmp == GT_EXPR)
f06e47d7
JJ
4017 (with { tree st = signed_type_for (TREE_TYPE (@1)); }
4018 (switch
4019 (if (cst == @1 && cmp == LE_EXPR)
4020 (ge (convert:st @0) { build_zero_cst (st); }))
4021 (if (cst == @1 && cmp == GT_EXPR)
4022 (lt (convert:st @0) { build_zero_cst (st); }))
4023 (if (cmp == LE_EXPR)
4024 (ge (view_convert:st @0) { build_zero_cst (st); }))
4025 (if (cmp == GT_EXPR)
4026 (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
03cc70b5 4027
b5d3d787
RB
4028(for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
4029 /* If the second operand is NaN, the result is constant. */
4030 (simplify
4031 (cmp @0 REAL_CST@1)
4032 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4033 && (cmp != LTGT_EXPR || ! flag_trapping_math))
50301115 4034 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
b5d3d787 4035 ? false : true, type); })))
21aacde4 4036
55cf3946
RB
4037/* bool_var != 0 becomes bool_var. */
4038(simplify
b5d3d787 4039 (ne @0 integer_zerop)
55cf3946
RB
4040 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4041 && types_match (type, TREE_TYPE (@0)))
4042 (non_lvalue @0)))
4043/* bool_var == 1 becomes bool_var. */
4044(simplify
b5d3d787 4045 (eq @0 integer_onep)
55cf3946
RB
4046 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4047 && types_match (type, TREE_TYPE (@0)))
4048 (non_lvalue @0)))
b5d3d787
RB
4049/* Do not handle
4050 bool_var == 0 becomes !bool_var or
4051 bool_var != 1 becomes !bool_var
4052 here because that only is good in assignment context as long
4053 as we require a tcc_comparison in GIMPLE_CONDs where we'd
4054 replace if (x == 0) with tem = ~x; if (tem != 0) which is
4055 clearly less optimal and which we'll transform again in forwprop. */
55cf3946 4056
ca1206be
MG
4057/* When one argument is a constant, overflow detection can be simplified.
4058 Currently restricted to single use so as not to interfere too much with
4059 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
4060 A + CST CMP A -> A CMP' CST' */
4061(for cmp (lt le ge gt)
4062 out (gt gt le le)
4063 (simplify
a8e9f9a3 4064 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
ca1206be
MG
4065 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4066 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
8e6cdc90 4067 && wi::to_wide (@1) != 0
ca1206be 4068 && single_use (@2))
8e6cdc90
RS
4069 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
4070 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
4071 wi::max_value (prec, UNSIGNED)
4072 - wi::to_wide (@1)); })))))
ca1206be 4073
3563f78f
MG
4074/* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
4075 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
4076 expects the long form, so we restrict the transformation for now. */
4077(for cmp (gt le)
4078 (simplify
a8e9f9a3 4079 (cmp:c (minus@2 @0 @1) @0)
3563f78f
MG
4080 (if (single_use (@2)
4081 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4082 && TYPE_UNSIGNED (TREE_TYPE (@0))
4083 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4084 (cmp @1 @0))))
3563f78f
MG
4085
4086/* Testing for overflow is unnecessary if we already know the result. */
3563f78f
MG
4087/* A - B > A */
4088(for cmp (gt le)
4089 out (ne eq)
4090 (simplify
a8e9f9a3 4091 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3563f78f
MG
4092 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4093 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4094 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4095/* A + B < A */
4096(for cmp (lt ge)
4097 out (ne eq)
4098 (simplify
a8e9f9a3 4099 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3563f78f
MG
4100 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4101 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4102 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4103
603aeb87 4104/* For unsigned operands, -1 / B < A checks whether A * B would overflow.
0557293f 4105 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
0557293f
AM
4106(for cmp (lt ge)
4107 out (ne eq)
4108 (simplify
603aeb87 4109 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
0557293f
AM
4110 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
4111 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
4112 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
55cf3946 4113
53f3cd25
RS
4114/* Simplification of math builtins. These rules must all be optimizations
4115 as well as IL simplifications. If there is a possibility that the new
4116 form could be a pessimization, the rule should go in the canonicalization
4117 section that follows this one.
e18c1d66 4118
53f3cd25
RS
4119 Rules can generally go in this section if they satisfy one of
4120 the following:
4121
4122 - the rule describes an identity
4123
4124 - the rule replaces calls with something as simple as addition or
4125 multiplication
4126
4127 - the rule contains unary calls only and simplifies the surrounding
4128 arithmetic. (The idea here is to exclude non-unary calls in which
4129 one operand is constant and in which the call is known to be cheap
4130 when the operand has that value.) */
52c6378a 4131
53f3cd25 4132(if (flag_unsafe_math_optimizations)
52c6378a
N
4133 /* Simplify sqrt(x) * sqrt(x) -> x. */
4134 (simplify
c6cfa2bf 4135 (mult (SQRT_ALL@1 @0) @1)
52c6378a
N
4136 (if (!HONOR_SNANS (type))
4137 @0))
4138
ed17cb57
JW
4139 (for op (plus minus)
4140 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
4141 (simplify
4142 (op (rdiv @0 @1)
4143 (rdiv @2 @1))
4144 (rdiv (op @0 @2) @1)))
4145
5e21d765
WD
4146 (for cmp (lt le gt ge)
4147 neg_cmp (gt ge lt le)
4148 /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
4149 (simplify
4150 (cmp (mult @0 REAL_CST@1) REAL_CST@2)
4151 (with
4152 { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
4153 (if (tem
4154 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
4155 || (real_zerop (tem) && !real_zerop (@1))))
4156 (switch
4157 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
4158 (cmp @0 { tem; }))
4159 (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
4160 (neg_cmp @0 { tem; })))))))
4161
35401640
N
4162 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
4163 (for root (SQRT CBRT)
4164 (simplify
4165 (mult (root:s @0) (root:s @1))
4166 (root (mult @0 @1))))
4167
35401640
N
4168 /* Simplify expN(x) * expN(y) -> expN(x+y). */
4169 (for exps (EXP EXP2 EXP10 POW10)
4170 (simplify
4171 (mult (exps:s @0) (exps:s @1))
4172 (exps (plus @0 @1))))
4173
52c6378a 4174 /* Simplify a/root(b/c) into a*root(c/b). */
35401640
N
4175 (for root (SQRT CBRT)
4176 (simplify
4177 (rdiv @0 (root:s (rdiv:s @1 @2)))
4178 (mult @0 (root (rdiv @2 @1)))))
4179
4180 /* Simplify x/expN(y) into x*expN(-y). */
4181 (for exps (EXP EXP2 EXP10 POW10)
4182 (simplify
4183 (rdiv @0 (exps:s @1))
4184 (mult @0 (exps (negate @1)))))
52c6378a 4185
eee7b6c4
RB
4186 (for logs (LOG LOG2 LOG10 LOG10)
4187 exps (EXP EXP2 EXP10 POW10)
8acda9b2 4188 /* logN(expN(x)) -> x. */
e18c1d66
RB
4189 (simplify
4190 (logs (exps @0))
8acda9b2
RS
4191 @0)
4192 /* expN(logN(x)) -> x. */
4193 (simplify
4194 (exps (logs @0))
4195 @0))
53f3cd25 4196
e18c1d66
RB
4197 /* Optimize logN(func()) for various exponential functions. We
4198 want to determine the value "x" and the power "exponent" in
4199 order to transform logN(x**exponent) into exponent*logN(x). */
eee7b6c4
RB
4200 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
4201 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
e18c1d66
RB
4202 (simplify
4203 (logs (exps @0))
c9e926ce
RS
4204 (if (SCALAR_FLOAT_TYPE_P (type))
4205 (with {
4206 tree x;
4207 switch (exps)
4208 {
4209 CASE_CFN_EXP:
4210 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
4211 x = build_real_truncate (type, dconst_e ());
4212 break;
4213 CASE_CFN_EXP2:
4214 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
4215 x = build_real (type, dconst2);
4216 break;
4217 CASE_CFN_EXP10:
4218 CASE_CFN_POW10:
4219 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
4220 {
4221 REAL_VALUE_TYPE dconst10;
4222 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
4223 x = build_real (type, dconst10);
4224 }
4225 break;
4226 default:
4227 gcc_unreachable ();
4228 }
4229 }
4230 (mult (logs { x; }) @0)))))
53f3cd25 4231
e18c1d66
RB
4232 (for logs (LOG LOG
4233 LOG2 LOG2
4234 LOG10 LOG10)
4235 exps (SQRT CBRT)
4236 (simplify
4237 (logs (exps @0))
c9e926ce
RS
4238 (if (SCALAR_FLOAT_TYPE_P (type))
4239 (with {
4240 tree x;
4241 switch (exps)
4242 {
4243 CASE_CFN_SQRT:
4244 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4245 x = build_real (type, dconsthalf);
4246 break;
4247 CASE_CFN_CBRT:
4248 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4249 x = build_real_truncate (type, dconst_third ());
4250 break;
4251 default:
4252 gcc_unreachable ();
4253 }
4254 }
4255 (mult { x; } (logs @0))))))
53f3cd25
RS
4256
4257 /* logN(pow(x,exponent)) -> exponent*logN(x). */
e18c1d66
RB
4258 (for logs (LOG LOG2 LOG10)
4259 pows (POW)
4260 (simplify
4261 (logs (pows @0 @1))
53f3cd25
RS
4262 (mult @1 (logs @0))))
4263
848bb6fc
JJ
4264 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4265 or if C is a positive power of 2,
4266 pow(C,x) -> exp2(log2(C)*x). */
30a2c10e 4267#if GIMPLE
e83fe013
WD
4268 (for pows (POW)
4269 exps (EXP)
4270 logs (LOG)
848bb6fc
JJ
4271 exp2s (EXP2)
4272 log2s (LOG2)
e83fe013
WD
4273 (simplify
4274 (pows REAL_CST@0 @1)
848bb6fc 4275 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
ef7866a3
JJ
4276 && real_isfinite (TREE_REAL_CST_PTR (@0))
4277 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4278 the use_exp2 case until after vectorization. It seems actually
4279 beneficial for all constants to postpone this until later,
4280 because exp(log(C)*x), while faster, will have worse precision
4281 and if x folds into a constant too, that is unnecessary
4282 pessimization. */
4283 && canonicalize_math_after_vectorization_p ())
848bb6fc
JJ
4284 (with {
4285 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4286 bool use_exp2 = false;
4287 if (targetm.libc_has_function (function_c99_misc)
4288 && value->cl == rvc_normal)
4289 {
4290 REAL_VALUE_TYPE frac_rvt = *value;
4291 SET_REAL_EXP (&frac_rvt, 1);
4292 if (real_equal (&frac_rvt, &dconst1))
4293 use_exp2 = true;
4294 }
4295 }
4296 (if (!use_exp2)
30a2c10e
JJ
4297 (if (optimize_pow_to_exp (@0, @1))
4298 (exps (mult (logs @0) @1)))
ef7866a3 4299 (exp2s (mult (log2s @0) @1)))))))
30a2c10e 4300#endif
e83fe013 4301
16ef0a8c
JJ
4302 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4303 (for pows (POW)
4304 exps (EXP EXP2 EXP10 POW10)
4305 logs (LOG LOG2 LOG10 LOG10)
4306 (simplify
4307 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4308 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4309 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4310 (exps (plus (mult (logs @0) @1) @2)))))
4311
53f3cd25
RS
4312 (for sqrts (SQRT)
4313 cbrts (CBRT)
b4838d77 4314 pows (POW)
53f3cd25
RS
4315 exps (EXP EXP2 EXP10 POW10)
4316 /* sqrt(expN(x)) -> expN(x*0.5). */
4317 (simplify
4318 (sqrts (exps @0))
4319 (exps (mult @0 { build_real (type, dconsthalf); })))
4320 /* cbrt(expN(x)) -> expN(x/3). */
4321 (simplify
4322 (cbrts (exps @0))
b4838d77
RS
4323 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4324 /* pow(expN(x), y) -> expN(x*y). */
4325 (simplify
4326 (pows (exps @0) @1)
4327 (exps (mult @0 @1))))
cfed37a0
RS
4328
4329 /* tan(atan(x)) -> x. */
4330 (for tans (TAN)
4331 atans (ATAN)
4332 (simplify
4333 (tans (atans @0))
4334 @0)))
53f3cd25 4335
121ef08b
GB
4336 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
4337 (for sins (SIN)
4338 atans (ATAN)
4339 sqrts (SQRT)
4340 copysigns (COPYSIGN)
4341 (simplify
4342 (sins (atans:s @0))
4343 (with
4344 {
4345 REAL_VALUE_TYPE r_cst;
4346 build_sinatan_real (&r_cst, type);
4347 tree t_cst = build_real (type, r_cst);
4348 tree t_one = build_one_cst (type);
4349 }
4350 (if (SCALAR_FLOAT_TYPE_P (type))
4351 (cond (le (abs @0) { t_cst; })
4352 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
4353 (copysigns { t_one; } @0))))))
4354
4355/* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
4356 (for coss (COS)
4357 atans (ATAN)
4358 sqrts (SQRT)
4359 copysigns (COPYSIGN)
4360 (simplify
4361 (coss (atans:s @0))
4362 (with
4363 {
4364 REAL_VALUE_TYPE r_cst;
4365 build_sinatan_real (&r_cst, type);
4366 tree t_cst = build_real (type, r_cst);
4367 tree t_one = build_one_cst (type);
4368 tree t_zero = build_zero_cst (type);
4369 }
4370 (if (SCALAR_FLOAT_TYPE_P (type))
4371 (cond (le (abs @0) { t_cst; })
4372 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
4373 (copysigns { t_zero; } @0))))))
4374
4aff6d17
GB
4375 (if (!flag_errno_math)
4376 /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
4377 (for sinhs (SINH)
4378 atanhs (ATANH)
4379 sqrts (SQRT)
4380 (simplify
4381 (sinhs (atanhs:s @0))
4382 (with { tree t_one = build_one_cst (type); }
4383 (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
4384
4385 /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
4386 (for coshs (COSH)
4387 atanhs (ATANH)
4388 sqrts (SQRT)
4389 (simplify
4390 (coshs (atanhs:s @0))
4391 (with { tree t_one = build_one_cst (type); }
4392 (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
4393
abcc43f5
RS
4394/* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4395(simplify
e04d2a35 4396 (CABS (complex:C @0 real_zerop@1))
abcc43f5
RS
4397 (abs @0))
4398
67dbe582 4399/* trunc(trunc(x)) -> trunc(x), etc. */
c6cfa2bf 4400(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
67dbe582
RS
4401 (simplify
4402 (fns (fns @0))
4403 (fns @0)))
4404/* f(x) -> x if x is integer valued and f does nothing for such values. */
c6cfa2bf 4405(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
67dbe582
RS
4406 (simplify
4407 (fns integer_valued_real_p@0)
4408 @0))
67dbe582 4409
4d7836c4
RS
4410/* hypot(x,0) and hypot(0,x) -> abs(x). */
4411(simplify
c9e926ce 4412 (HYPOT:c @0 real_zerop@1)
4d7836c4
RS
4413 (abs @0))
4414
b4838d77
RS
4415/* pow(1,x) -> 1. */
4416(simplify
4417 (POW real_onep@0 @1)
4418 @0)
4419
461e4145
RS
4420(simplify
4421 /* copysign(x,x) -> x. */
c6cfa2bf 4422 (COPYSIGN_ALL @0 @0)
461e4145
RS
4423 @0)
4424
4425(simplify
4426 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
c6cfa2bf 4427 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
461e4145
RS
4428 (abs @0))
4429
86c0733f
RS
4430(for scale (LDEXP SCALBN SCALBLN)
4431 /* ldexp(0, x) -> 0. */
4432 (simplify
4433 (scale real_zerop@0 @1)
4434 @0)
4435 /* ldexp(x, 0) -> x. */
4436 (simplify
4437 (scale @0 integer_zerop@1)
4438 @0)
4439 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4440 (simplify
4441 (scale REAL_CST@0 @1)
4442 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4443 @0)))
4444
53f3cd25
RS
4445/* Canonicalization of sequences of math builtins. These rules represent
4446 IL simplifications but are not necessarily optimizations.
4447
4448 The sincos pass is responsible for picking "optimal" implementations
4449 of math builtins, which may be more complicated and can sometimes go
4450 the other way, e.g. converting pow into a sequence of sqrts.
4451 We only want to do these canonicalizations before the pass has run. */
4452
4453(if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4454 /* Simplify tan(x) * cos(x) -> sin(x). */
4455 (simplify
4456 (mult:c (TAN:s @0) (COS:s @0))
4457 (SIN @0))
4458
4459 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4460 (simplify
de3fbea3 4461 (mult:c @0 (POW:s @0 REAL_CST@1))
53f3cd25
RS
4462 (if (!TREE_OVERFLOW (@1))
4463 (POW @0 (plus @1 { build_one_cst (type); }))))
4464
4465 /* Simplify sin(x) / cos(x) -> tan(x). */
4466 (simplify
4467 (rdiv (SIN:s @0) (COS:s @0))
4468 (TAN @0))
4469
4470 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4471 (simplify
4472 (rdiv (COS:s @0) (SIN:s @0))
4473 (rdiv { build_one_cst (type); } (TAN @0)))
4474
4475 /* Simplify sin(x) / tan(x) -> cos(x). */
4476 (simplify
4477 (rdiv (SIN:s @0) (TAN:s @0))
4478 (if (! HONOR_NANS (@0)
4479 && ! HONOR_INFINITIES (@0))
c9e926ce 4480 (COS @0)))
53f3cd25
RS
4481
4482 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4483 (simplify
4484 (rdiv (TAN:s @0) (SIN:s @0))
4485 (if (! HONOR_NANS (@0)
4486 && ! HONOR_INFINITIES (@0))
4487 (rdiv { build_one_cst (type); } (COS @0))))
4488
4489 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4490 (simplify
4491 (mult (POW:s @0 @1) (POW:s @0 @2))
4492 (POW @0 (plus @1 @2)))
4493
4494 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4495 (simplify
4496 (mult (POW:s @0 @1) (POW:s @2 @1))
4497 (POW (mult @0 @2) @1))
4498
de3fbea3
RB
4499 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4500 (simplify
4501 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4502 (POWI (mult @0 @2) @1))
4503
53f3cd25
RS
4504 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4505 (simplify
4506 (rdiv (POW:s @0 REAL_CST@1) @0)
4507 (if (!TREE_OVERFLOW (@1))
4508 (POW @0 (minus @1 { build_one_cst (type); }))))
4509
4510 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4511 (simplify
4512 (rdiv @0 (POW:s @1 @2))
4513 (mult @0 (POW @1 (negate @2))))
4514
4515 (for sqrts (SQRT)
4516 cbrts (CBRT)
4517 pows (POW)
4518 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4519 (simplify
4520 (sqrts (sqrts @0))
4521 (pows @0 { build_real (type, dconst_quarter ()); }))
4522 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4523 (simplify
4524 (sqrts (cbrts @0))
4525 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4526 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4527 (simplify
4528 (cbrts (sqrts @0))
4529 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4530 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4531 (simplify
4532 (cbrts (cbrts tree_expr_nonnegative_p@0))
4533 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4534 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4535 (simplify
4536 (sqrts (pows @0 @1))
4537 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4538 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4539 (simplify
4540 (cbrts (pows tree_expr_nonnegative_p@0 @1))
b4838d77
RS
4541 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4542 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4543 (simplify
4544 (pows (sqrts @0) @1)
4545 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4546 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4547 (simplify
4548 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4549 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4550 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4551 (simplify
4552 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4553 (pows @0 (mult @1 @2))))
abcc43f5
RS
4554
4555 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4556 (simplify
4557 (CABS (complex @0 @0))
96285749
RS
4558 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4559
4d7836c4
RS
4560 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4561 (simplify
4562 (HYPOT @0 @0)
4563 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4564
96285749
RS
4565 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4566 (for cexps (CEXP)
4567 exps (EXP)
4568 cexpis (CEXPI)
4569 (simplify
4570 (cexps compositional_complex@0)
4571 (if (targetm.libc_has_function (function_c99_math_complex))
4572 (complex
4573 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4574 (mult @1 (imagpart @2)))))))
e18c1d66 4575
67dbe582
RS
4576(if (canonicalize_math_p ())
4577 /* floor(x) -> trunc(x) if x is nonnegative. */
c6cfa2bf
MM
4578 (for floors (FLOOR_ALL)
4579 truncs (TRUNC_ALL)
67dbe582
RS
4580 (simplify
4581 (floors tree_expr_nonnegative_p@0)
4582 (truncs @0))))
4583
4584(match double_value_p
4585 @0
4586 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4587(for froms (BUILT_IN_TRUNCL
4588 BUILT_IN_FLOORL
4589 BUILT_IN_CEILL
4590 BUILT_IN_ROUNDL
4591 BUILT_IN_NEARBYINTL
4592 BUILT_IN_RINTL)
4593 tos (BUILT_IN_TRUNC
4594 BUILT_IN_FLOOR
4595 BUILT_IN_CEIL
4596 BUILT_IN_ROUND
4597 BUILT_IN_NEARBYINT
4598 BUILT_IN_RINT)
4599 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4600 (if (optimize && canonicalize_math_p ())
4601 (simplify
4602 (froms (convert double_value_p@0))
4603 (convert (tos @0)))))
4604
4605(match float_value_p
4606 @0
4607 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4608(for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4609 BUILT_IN_FLOORL BUILT_IN_FLOOR
4610 BUILT_IN_CEILL BUILT_IN_CEIL
4611 BUILT_IN_ROUNDL BUILT_IN_ROUND
4612 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4613 BUILT_IN_RINTL BUILT_IN_RINT)
4614 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4615 BUILT_IN_FLOORF BUILT_IN_FLOORF
4616 BUILT_IN_CEILF BUILT_IN_CEILF
4617 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4618 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4619 BUILT_IN_RINTF BUILT_IN_RINTF)
4620 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4621 if x is a float. */
5dac7dbd
JDA
4622 (if (optimize && canonicalize_math_p ()
4623 && targetm.libc_has_function (function_c99_misc))
67dbe582
RS
4624 (simplify
4625 (froms (convert float_value_p@0))
4626 (convert (tos @0)))))
4627
543a9bcd
RS
4628(for froms (XFLOORL XCEILL XROUNDL XRINTL)
4629 tos (XFLOOR XCEIL XROUND XRINT)
4630 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4631 (if (optimize && canonicalize_math_p ())
4632 (simplify
4633 (froms (convert double_value_p@0))
4634 (tos @0))))
4635
4636(for froms (XFLOORL XCEILL XROUNDL XRINTL
4637 XFLOOR XCEIL XROUND XRINT)
4638 tos (XFLOORF XCEILF XROUNDF XRINTF)
4639 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4640 if x is a float. */
4641 (if (optimize && canonicalize_math_p ())
4642 (simplify
4643 (froms (convert float_value_p@0))
4644 (tos @0))))
4645
4646(if (canonicalize_math_p ())
4647 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4648 (for floors (IFLOOR LFLOOR LLFLOOR)
4649 (simplify
4650 (floors tree_expr_nonnegative_p@0)
4651 (fix_trunc @0))))
4652
4653(if (canonicalize_math_p ())
4654 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4655 (for fns (IFLOOR LFLOOR LLFLOOR
4656 ICEIL LCEIL LLCEIL
4657 IROUND LROUND LLROUND)
4658 (simplify
4659 (fns integer_valued_real_p@0)
4660 (fix_trunc @0)))
4661 (if (!flag_errno_math)
4662 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4663 (for rints (IRINT LRINT LLRINT)
4664 (simplify
4665 (rints integer_valued_real_p@0)
4666 (fix_trunc @0)))))
4667
4668(if (canonicalize_math_p ())
4669 (for ifn (IFLOOR ICEIL IROUND IRINT)
4670 lfn (LFLOOR LCEIL LROUND LRINT)
4671 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4672 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4673 sizeof (int) == sizeof (long). */
4674 (if (TYPE_PRECISION (integer_type_node)
4675 == TYPE_PRECISION (long_integer_type_node))
4676 (simplify
4677 (ifn @0)
4678 (lfn:long_integer_type_node @0)))
4679 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4680 sizeof (long long) == sizeof (long). */
4681 (if (TYPE_PRECISION (long_long_integer_type_node)
4682 == TYPE_PRECISION (long_integer_type_node))
4683 (simplify
4684 (llfn @0)
4685 (lfn:long_integer_type_node @0)))))
4686
92c52eab
RS
4687/* cproj(x) -> x if we're ignoring infinities. */
4688(simplify
4689 (CPROJ @0)
4690 (if (!HONOR_INFINITIES (type))
4691 @0))
4692
4534c203
RB
4693/* If the real part is inf and the imag part is known to be
4694 nonnegative, return (inf + 0i). */
4695(simplify
4696 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4697 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
92c52eab
RS
4698 { build_complex_inf (type, false); }))
4699
4534c203
RB
4700/* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4701(simplify
4702 (CPROJ (complex @0 REAL_CST@1))
4703 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
92c52eab 4704 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4534c203 4705
b4838d77
RS
4706(for pows (POW)
4707 sqrts (SQRT)
4708 cbrts (CBRT)
4709 (simplify
4710 (pows @0 REAL_CST@1)
4711 (with {
4712 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4713 REAL_VALUE_TYPE tmp;
4714 }
4715 (switch
4716 /* pow(x,0) -> 1. */
4717 (if (real_equal (value, &dconst0))
4718 { build_real (type, dconst1); })
4719 /* pow(x,1) -> x. */
4720 (if (real_equal (value, &dconst1))
4721 @0)
4722 /* pow(x,-1) -> 1/x. */
4723 (if (real_equal (value, &dconstm1))
4724 (rdiv { build_real (type, dconst1); } @0))
4725 /* pow(x,0.5) -> sqrt(x). */
4726 (if (flag_unsafe_math_optimizations
4727 && canonicalize_math_p ()
4728 && real_equal (value, &dconsthalf))
4729 (sqrts @0))
4730 /* pow(x,1/3) -> cbrt(x). */
4731 (if (flag_unsafe_math_optimizations
4732 && canonicalize_math_p ()
4733 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4734 real_equal (value, &tmp)))
4735 (cbrts @0))))))
4534c203 4736
5ddc84ca
RS
4737/* powi(1,x) -> 1. */
4738(simplify
4739 (POWI real_onep@0 @1)
4740 @0)
4741
4742(simplify
4743 (POWI @0 INTEGER_CST@1)
4744 (switch
4745 /* powi(x,0) -> 1. */
8e6cdc90 4746 (if (wi::to_wide (@1) == 0)
5ddc84ca
RS
4747 { build_real (type, dconst1); })
4748 /* powi(x,1) -> x. */
8e6cdc90 4749 (if (wi::to_wide (@1) == 1)
5ddc84ca
RS
4750 @0)
4751 /* powi(x,-1) -> 1/x. */
8e6cdc90 4752 (if (wi::to_wide (@1) == -1)
5ddc84ca
RS
4753 (rdiv { build_real (type, dconst1); } @0))))
4754
03cc70b5 4755/* Narrowing of arithmetic and logical operations.
be144838
JL
4756
4757 These are conceptually similar to the transformations performed for
4758 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4759 term we want to move all that code out of the front-ends into here. */
4760
4761/* If we have a narrowing conversion of an arithmetic operation where
4762 both operands are widening conversions from the same type as the outer
4763 narrowing conversion. Then convert the innermost operands to a suitable
9c582551 4764 unsigned type (to avoid introducing undefined behavior), perform the
be144838
JL
4765 operation and convert the result to the desired type. */
4766(for op (plus minus)
4767 (simplify
93f90bec 4768 (convert (op:s (convert@2 @0) (convert?@3 @1)))
be144838
JL
4769 (if (INTEGRAL_TYPE_P (type)
4770 /* We check for type compatibility between @0 and @1 below,
4771 so there's no need to check that @1/@3 are integral types. */
4772 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4773 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4774 /* The precision of the type of each operand must match the
4775 precision of the mode of each operand, similarly for the
4776 result. */
2be65d9e
RS
4777 && type_has_mode_precision_p (TREE_TYPE (@0))
4778 && type_has_mode_precision_p (TREE_TYPE (@1))
4779 && type_has_mode_precision_p (type)
be144838
JL
4780 /* The inner conversion must be a widening conversion. */
4781 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
93f90bec
BC
4782 && types_match (@0, type)
4783 && (types_match (@0, @1)
4784 /* Or the second operand is const integer or converted const
4785 integer from valueize. */
4786 || TREE_CODE (@1) == INTEGER_CST))
be144838 4787 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
93f90bec 4788 (op @0 (convert @1))
8fdc6c67 4789 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
93f90bec
BC
4790 (convert (op (convert:utype @0)
4791 (convert:utype @1))))))))
48451e8f
JL
4792
4793/* This is another case of narrowing, specifically when there's an outer
4794 BIT_AND_EXPR which masks off bits outside the type of the innermost
4795 operands. Like the previous case we have to convert the operands
9c582551 4796 to unsigned types to avoid introducing undefined behavior for the
48451e8f
JL
4797 arithmetic operation. */
4798(for op (minus plus)
8fdc6c67
RB
4799 (simplify
4800 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4801 (if (INTEGRAL_TYPE_P (type)
4802 /* We check for type compatibility between @0 and @1 below,
4803 so there's no need to check that @1/@3 are integral types. */
4804 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4805 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4806 /* The precision of the type of each operand must match the
4807 precision of the mode of each operand, similarly for the
4808 result. */
2be65d9e
RS
4809 && type_has_mode_precision_p (TREE_TYPE (@0))
4810 && type_has_mode_precision_p (TREE_TYPE (@1))
4811 && type_has_mode_precision_p (type)
8fdc6c67
RB
4812 /* The inner conversion must be a widening conversion. */
4813 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4814 && types_match (@0, @1)
4815 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4816 <= TYPE_PRECISION (TREE_TYPE (@0)))
8e6cdc90
RS
4817 && (wi::to_wide (@4)
4818 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4819 true, TYPE_PRECISION (type))) == 0)
8fdc6c67
RB
4820 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4821 (with { tree ntype = TREE_TYPE (@0); }
4822 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4823 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4824 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4825 (convert:utype @4))))))))
4f7a5692 4826
03cc70b5 4827/* Transform (@0 < @1 and @0 < @2) to use min,
4f7a5692 4828 (@0 > @1 and @0 > @2) to use max */
dac920e8
MG
4829(for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
4830 op (lt le gt ge lt le gt ge )
4831 ext (min min max max max max min min )
4f7a5692 4832 (simplify
dac920e8 4833 (logic (op:cs @0 @1) (op:cs @0 @2))
4618c453
RB
4834 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4835 && TREE_CODE (@0) != INTEGER_CST)
4f7a5692
MC
4836 (op @0 (ext @1 @2)))))
4837
7317ef4a
RS
4838(simplify
4839 /* signbit(x) -> 0 if x is nonnegative. */
4840 (SIGNBIT tree_expr_nonnegative_p@0)
4841 { integer_zero_node; })
4842
4843(simplify
4844 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4845 (SIGNBIT @0)
4846 (if (!HONOR_SIGNED_ZEROS (@0))
4847 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
a8b85ce9
MG
4848
4849/* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4850(for cmp (eq ne)
4851 (for op (plus minus)
4852 rop (minus plus)
4853 (simplify
4854 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4855 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4856 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4857 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4858 && !TYPE_SATURATING (TREE_TYPE (@0)))
4859 (with { tree res = int_const_binop (rop, @2, @1); }
75473a91
RB
4860 (if (TREE_OVERFLOW (res)
4861 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
a8b85ce9
MG
4862 { constant_boolean_node (cmp == NE_EXPR, type); }
4863 (if (single_use (@3))
11c1e63c
JJ
4864 (cmp @0 { TREE_OVERFLOW (res)
4865 ? drop_tree_overflow (res) : res; }))))))))
a8b85ce9
MG
4866(for cmp (lt le gt ge)
4867 (for op (plus minus)
4868 rop (minus plus)
4869 (simplify
4870 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4871 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4872 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4873 (with { tree res = int_const_binop (rop, @2, @1); }
4874 (if (TREE_OVERFLOW (res))
4875 {
4876 fold_overflow_warning (("assuming signed overflow does not occur "
4877 "when simplifying conditional to constant"),
4878 WARN_STRICT_OVERFLOW_CONDITIONAL);
4879 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4880 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
8e6cdc90
RS
4881 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4882 TYPE_SIGN (TREE_TYPE (@1)))
a8b85ce9
MG
4883 != (op == MINUS_EXPR);
4884 constant_boolean_node (less == ovf_high, type);
4885 }
4886 (if (single_use (@3))
4887 (with
4888 {
4889 fold_overflow_warning (("assuming signed overflow does not occur "
4890 "when changing X +- C1 cmp C2 to "
4891 "X cmp C2 -+ C1"),
4892 WARN_STRICT_OVERFLOW_COMPARISON);
4893 }
4894 (cmp @0 { res; })))))))))
d3e40b76
RB
4895
4896/* Canonicalizations of BIT_FIELD_REFs. */
4897
6ec96dcb
RB
4898(simplify
4899 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
4900 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
4901
4902(simplify
4903 (BIT_FIELD_REF (view_convert @0) @1 @2)
4904 (BIT_FIELD_REF @0 @1 @2))
4905
4906(simplify
4907 (BIT_FIELD_REF @0 @1 integer_zerop)
4908 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
4909 (view_convert @0)))
4910
d3e40b76
RB
4911(simplify
4912 (BIT_FIELD_REF @0 @1 @2)
4913 (switch
4914 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
4915 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4916 (switch
4917 (if (integer_zerop (@2))
4918 (view_convert (realpart @0)))
4919 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4920 (view_convert (imagpart @0)))))
4921 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4922 && INTEGRAL_TYPE_P (type)
171f6f05
RB
4923 /* On GIMPLE this should only apply to register arguments. */
4924 && (! GIMPLE || is_gimple_reg (@0))
d3e40b76
RB
4925 /* A bit-field-ref that referenced the full argument can be stripped. */
4926 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
4927 && integer_zerop (@2))
4928 /* Low-parts can be reduced to integral conversions.
4929 ??? The following doesn't work for PDP endian. */
4930 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
4931 /* Don't even think about BITS_BIG_ENDIAN. */
4932 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
4933 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
4934 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
4935 ? (TYPE_PRECISION (TREE_TYPE (@0))
4936 - TYPE_PRECISION (type))
4937 : 0)) == 0)))
4938 (convert @0))))
4939
4940/* Simplify vector extracts. */
4941
4942(simplify
4943 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
4944 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
4945 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
4946 || (VECTOR_TYPE_P (type)
4947 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
4948 (with
4949 {
4950 tree ctor = (TREE_CODE (@0) == SSA_NAME
4951 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
4952 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
4953 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
4954 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
4955 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
4956 }
4957 (if (n != 0
4958 && (idx % width) == 0
4959 && (n % width) == 0
928686b1
RS
4960 && known_le ((idx + n) / width,
4961 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
d3e40b76
RB
4962 (with
4963 {
4964 idx = idx / width;
4965 n = n / width;
4966 /* Constructor elements can be subvectors. */
d34457c1 4967 poly_uint64 k = 1;
d3e40b76
RB
4968 if (CONSTRUCTOR_NELTS (ctor) != 0)
4969 {
4970 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
4971 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
4972 k = TYPE_VECTOR_SUBPARTS (cons_elem);
4973 }
d34457c1 4974 unsigned HOST_WIDE_INT elt, count, const_k;
d3e40b76
RB
4975 }
4976 (switch
4977 /* We keep an exact subset of the constructor elements. */
d34457c1 4978 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
d3e40b76
RB
4979 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4980 { build_constructor (type, NULL); }
d34457c1
RS
4981 (if (count == 1)
4982 (if (elt < CONSTRUCTOR_NELTS (ctor))
4c1da8ea 4983 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
d34457c1 4984 { build_zero_cst (type); })
d3e40b76 4985 {
d34457c1
RS
4986 vec<constructor_elt, va_gc> *vals;
4987 vec_alloc (vals, count);
4988 for (unsigned i = 0;
4989 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
4990 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
4991 CONSTRUCTOR_ELT (ctor, elt + i)->value);
4992 build_constructor (type, vals);
4993 })))
d3e40b76 4994 /* The bitfield references a single constructor element. */
d34457c1
RS
4995 (if (k.is_constant (&const_k)
4996 && idx + n <= (idx / const_k + 1) * const_k)
d3e40b76 4997 (switch
d34457c1 4998 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
d3e40b76 4999 { build_zero_cst (type); })
d34457c1 5000 (if (n == const_k)
4c1da8ea 5001 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
d34457c1
RS
5002 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
5003 @1 { bitsize_int ((idx % const_k) * width); })))))))))
92e29a5e
RB
5004
5005/* Simplify a bit extraction from a bit insertion for the cases with
5006 the inserted element fully covering the extraction or the insertion
5007 not touching the extraction. */
5008(simplify
5009 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
5010 (with
5011 {
5012 unsigned HOST_WIDE_INT isize;
5013 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
5014 isize = TYPE_PRECISION (TREE_TYPE (@1));
5015 else
5016 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
5017 }
5018 (switch
8e6cdc90
RS
5019 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
5020 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
5021 wi::to_wide (@ipos) + isize))
92e29a5e 5022 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
8e6cdc90
RS
5023 wi::to_wide (@rpos)
5024 - wi::to_wide (@ipos)); }))
5025 (if (wi::geu_p (wi::to_wide (@ipos),
5026 wi::to_wide (@rpos) + wi::to_wide (@rsize))
5027 || wi::geu_p (wi::to_wide (@rpos),
5028 wi::to_wide (@ipos) + isize))
92e29a5e 5029 (BIT_FIELD_REF @0 @rsize @rpos)))))
c566cc9f 5030
c453ccc2
RS
5031(if (canonicalize_math_after_vectorization_p ())
5032 (for fmas (FMA)
5033 (simplify
5034 (fmas:c (negate @0) @1 @2)
5035 (IFN_FNMA @0 @1 @2))
5036 (simplify
5037 (fmas @0 @1 (negate @2))
5038 (IFN_FMS @0 @1 @2))
5039 (simplify
5040 (fmas:c (negate @0) @1 (negate @2))
5041 (IFN_FNMS @0 @1 @2))
5042 (simplify
5043 (negate (fmas@3 @0 @1 @2))
5044 (if (single_use (@3))
5045 (IFN_FNMS @0 @1 @2))))
5046
c566cc9f 5047 (simplify
c453ccc2
RS
5048 (IFN_FMS:c (negate @0) @1 @2)
5049 (IFN_FNMS @0 @1 @2))
5050 (simplify
5051 (IFN_FMS @0 @1 (negate @2))
5052 (IFN_FMA @0 @1 @2))
5053 (simplify
5054 (IFN_FMS:c (negate @0) @1 (negate @2))
c566cc9f
RS
5055 (IFN_FNMA @0 @1 @2))
5056 (simplify
c453ccc2
RS
5057 (negate (IFN_FMS@3 @0 @1 @2))
5058 (if (single_use (@3))
5059 (IFN_FNMA @0 @1 @2)))
5060
5061 (simplify
5062 (IFN_FNMA:c (negate @0) @1 @2)
5063 (IFN_FMA @0 @1 @2))
c566cc9f 5064 (simplify
c453ccc2 5065 (IFN_FNMA @0 @1 (negate @2))
c566cc9f
RS
5066 (IFN_FNMS @0 @1 @2))
5067 (simplify
c453ccc2
RS
5068 (IFN_FNMA:c (negate @0) @1 (negate @2))
5069 (IFN_FMS @0 @1 @2))
5070 (simplify
5071 (negate (IFN_FNMA@3 @0 @1 @2))
c566cc9f 5072 (if (single_use (@3))
c453ccc2 5073 (IFN_FMS @0 @1 @2)))
c566cc9f 5074
c453ccc2
RS
5075 (simplify
5076 (IFN_FNMS:c (negate @0) @1 @2)
5077 (IFN_FMS @0 @1 @2))
5078 (simplify
5079 (IFN_FNMS @0 @1 (negate @2))
5080 (IFN_FNMA @0 @1 @2))
5081 (simplify
5082 (IFN_FNMS:c (negate @0) @1 (negate @2))
5083 (IFN_FMA @0 @1 @2))
5084 (simplify
5085 (negate (IFN_FNMS@3 @0 @1 @2))
c566cc9f 5086 (if (single_use (@3))
c453ccc2 5087 (IFN_FMA @0 @1 @2))))
ba6557e2
RS
5088
5089/* POPCOUNT simplifications. */
5090(for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
5091 BUILT_IN_POPCOUNTIMAX)
5092 /* popcount(X&1) is nop_expr(X&1). */
5093 (simplify
5094 (popcount @0)
5095 (if (tree_nonzero_bits (@0) == 1)
5096 (convert @0)))
5097 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
5098 (simplify
5099 (plus (popcount:s @0) (popcount:s @1))
5100 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
5101 (popcount (bit_ior @0 @1))))
5102 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
5103 (for cmp (le eq ne gt)
5104 rep (eq eq ne ne)
5105 (simplify
5106 (cmp (popcount @0) integer_zerop)
5107 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
0d2b3bca
RS
5108
5109/* Simplify:
5110
5111 a = a1 op a2
5112 r = c ? a : b;
5113
5114 to:
5115
5116 r = c ? a1 op a2 : b;
5117
5118 if the target can do it in one go. This makes the operation conditional
5119 on c, so could drop potentially-trapping arithmetic, but that's a valid
5120 simplification if the result of the operation isn't needed. */
5121(for uncond_op (UNCOND_BINARY)
5122 cond_op (COND_BINARY)
5123 (simplify
5124 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
5125 (with { tree op_type = TREE_TYPE (@4); }
5126 (if (element_precision (type) == element_precision (op_type))
5127 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
5128 (simplify
5129 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
5130 (with { tree op_type = TREE_TYPE (@4); }
5131 (if (element_precision (type) == element_precision (op_type))
5132 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
6a86928d 5133
b41d1f6e
RS
5134/* Same for ternary operations. */
5135(for uncond_op (UNCOND_TERNARY)
5136 cond_op (COND_TERNARY)
5137 (simplify
5138 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
5139 (with { tree op_type = TREE_TYPE (@5); }
5140 (if (element_precision (type) == element_precision (op_type))
5141 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
5142 (simplify
5143 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
5144 (with { tree op_type = TREE_TYPE (@5); }
5145 (if (element_precision (type) == element_precision (op_type))
5146 (view_convert (cond_op (bit_not @0) @2 @3 @4
5147 (view_convert:op_type @1)))))))
5148
6a86928d
RS
5149/* Detect cases in which a VEC_COND_EXPR effectively replaces the
5150 "else" value of an IFN_COND_*. */
5151(for cond_op (COND_BINARY)
5152 (simplify
5153 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
5154 (with { tree op_type = TREE_TYPE (@3); }
5155 (if (element_precision (type) == element_precision (op_type))
2c58d42c
RS
5156 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
5157 (simplify
5158 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
5159 (with { tree op_type = TREE_TYPE (@5); }
5160 (if (inverse_conditions_p (@0, @2)
5161 && element_precision (type) == element_precision (op_type))
5162 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
b41d1f6e
RS
5163
5164/* Same for ternary operations. */
5165(for cond_op (COND_TERNARY)
5166 (simplify
5167 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
5168 (with { tree op_type = TREE_TYPE (@4); }
5169 (if (element_precision (type) == element_precision (op_type))
2c58d42c
RS
5170 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
5171 (simplify
5172 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
5173 (with { tree op_type = TREE_TYPE (@6); }
5174 (if (inverse_conditions_p (@0, @2)
5175 && element_precision (type) == element_precision (op_type))
5176 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
a19f98d5
RS
5177
5178/* For pointers @0 and @2 and nonnegative constant offset @1, look for
5179 expressions like:
5180
5181 A: (@0 + @1 < @2) | (@2 + @1 < @0)
5182 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
5183
5184 If pointers are known not to wrap, B checks whether @1 bytes starting
5185 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
5186 bytes. A is more efficiently tested as:
5187
5188 A: (sizetype) (@0 + @1 - @2) > @1 * 2
5189
5190 The equivalent expression for B is given by replacing @1 with @1 - 1:
5191
5192 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
5193
5194 @0 and @2 can be swapped in both expressions without changing the result.
5195
5196 The folds rely on sizetype's being unsigned (which is always true)
5197 and on its being the same width as the pointer (which we have to check).
5198
5199 The fold replaces two pointer_plus expressions, two comparisons and
5200 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
5201 the best case it's a saving of two operations. The A fold retains one
5202 of the original pointer_pluses, so is a win even if both pointer_pluses
5203 are used elsewhere. The B fold is a wash if both pointer_pluses are
5204 used elsewhere, since all we end up doing is replacing a comparison with
5205 a pointer_plus. We do still apply the fold under those circumstances
5206 though, in case applying it to other conditions eventually makes one of the
5207 pointer_pluses dead. */
5208(for ior (truth_orif truth_or bit_ior)
5209 (for cmp (le lt)
5210 (simplify
5211 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
5212 (cmp:cs (pointer_plus@4 @2 @1) @0))
5213 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
5214 && TYPE_OVERFLOW_WRAPS (sizetype)
5215 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
5216 /* Calculate the rhs constant. */
5217 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
5218 offset_int rhs = off * 2; }
5219 /* Always fails for negative values. */
5220 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
5221 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
5222 pick a canonical order. This increases the chances of using the
5223 same pointer_plus in multiple checks. */
5224 (with { bool swap_p = tree_swap_operands_p (@0, @2);
5225 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
5226 (if (cmp == LT_EXPR)
5227 (gt (convert:sizetype
5228 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
5229 { swap_p ? @0 : @2; }))
5230 { rhs_tree; })
5231 (gt (convert:sizetype
5232 (pointer_diff:ssizetype
5233 (pointer_plus { swap_p ? @2 : @0; }
5234 { wide_int_to_tree (sizetype, off); })
5235 { swap_p ? @0 : @2; }))
5236 { rhs_tree; })))))))))