]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/match.pd
fenv.h builtins
[thirdparty/gcc.git] / gcc / match.pd
CommitLineData
3d2cf79f
RB
1/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
cbe34bb5 5 Copyright (C) 2014-2017 Free Software Foundation, Inc.
3d2cf79f
RB
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
13Software Foundation; either version 3, or (at your option) any later
14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING3. If not see
23<http://www.gnu.org/licenses/>. */
24
25
26/* Generic tree predicates we inherit. */
27(define_predicates
cc7b5acf 28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
53a19317 29 integer_each_onep integer_truep integer_nonzerop
cc7b5acf 30 real_zerop real_onep real_minus_onep
b0eb889b 31 zerop
f3582e54 32 CONSTANT_CLASS_P
887ab609 33 tree_expr_nonnegative_p
e36c1cfe 34 tree_expr_nonzero_p
67dbe582 35 integer_valued_real_p
53a19317
RB
36 integer_pow2p
37 HONOR_NANS)
e0ee10ed 38
f84e7fd6
RB
39/* Operator lists. */
40(define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42(define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44(define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
534bd33b
MG
46(define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
07cdc2b8
RB
48(define_operator_list simple_comparison lt le eq ne ge gt)
49(define_operator_list swapped_simple_comparison gt ge eq ne le lt)
50
b1dc4a20 51#include "cfn-operators.pd"
257aecb4 52
543a9bcd
RS
53/* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
56
57 Also define operand lists:
58
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62#define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
543a9bcd
RS
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
64 BUILT_IN_L##FN##F \
65 BUILT_IN_LL##FN##F) \
66 (define_operator_list X##FN BUILT_IN_I##FN \
67 BUILT_IN_L##FN \
68 BUILT_IN_LL##FN) \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
70 BUILT_IN_L##FN##L \
71 BUILT_IN_LL##FN##L)
72
543a9bcd
RS
73DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
ed73f46f
MG
77
78/* As opposed to convert?, this still creates a single pattern, so
79 it is not a suitable replacement for convert? in all cases. */
80(match (nop_convert @0)
81 (convert @0)
82 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
83(match (nop_convert @0)
84 (view_convert @0)
85 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
86 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
87 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
88/* This one has to be last, or it shadows the others. */
89(match (nop_convert @0)
90 @0)
f84e7fd6 91
e0ee10ed 92/* Simplifications of operations with one constant operand and
36a60e48 93 simplifications to constants or single values. */
e0ee10ed
RB
94
95(for op (plus pointer_plus minus bit_ior bit_xor)
96 (simplify
97 (op @0 integer_zerop)
98 (non_lvalue @0)))
99
a499aac5
RB
100/* 0 +p index -> (type)index */
101(simplify
102 (pointer_plus integer_zerop @1)
103 (non_lvalue (convert @1)))
104
a7f24614
RB
105/* See if ARG1 is zero and X + ARG1 reduces to X.
106 Likewise if the operands are reversed. */
107(simplify
108 (plus:c @0 real_zerop@1)
109 (if (fold_real_zero_addition_p (type, @1, 0))
110 (non_lvalue @0)))
111
112/* See if ARG1 is zero and X - ARG1 reduces to X. */
113(simplify
114 (minus @0 real_zerop@1)
115 (if (fold_real_zero_addition_p (type, @1, 1))
116 (non_lvalue @0)))
117
e0ee10ed
RB
118/* Simplify x - x.
119 This is unsafe for certain floats even in non-IEEE formats.
120 In IEEE, it is unsafe because it does wrong for NaNs.
121 Also note that operand_equal_p is always false if an operand
122 is volatile. */
123(simplify
a7f24614 124 (minus @0 @0)
1b457aa4 125 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
a7f24614 126 { build_zero_cst (type); }))
e0ee10ed
RB
127
128(simplify
a7f24614
RB
129 (mult @0 integer_zerop@1)
130 @1)
131
132/* Maybe fold x * 0 to 0. The expressions aren't the same
133 when x is NaN, since x * 0 is also NaN. Nor are they the
134 same in modes with signed zeros, since multiplying a
135 negative value by 0 gives -0, not +0. */
136(simplify
137 (mult @0 real_zerop@1)
8b5ee871 138 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
a7f24614
RB
139 @1))
140
141/* In IEEE floating point, x*1 is not equivalent to x for snans.
142 Likewise for complex arithmetic with signed zeros. */
143(simplify
144 (mult @0 real_onep)
8b5ee871
MG
145 (if (!HONOR_SNANS (type)
146 && (!HONOR_SIGNED_ZEROS (type)
a7f24614
RB
147 || !COMPLEX_FLOAT_TYPE_P (type)))
148 (non_lvalue @0)))
149
150/* Transform x * -1.0 into -x. */
151(simplify
152 (mult @0 real_minus_onep)
8b5ee871
MG
153 (if (!HONOR_SNANS (type)
154 && (!HONOR_SIGNED_ZEROS (type)
a7f24614
RB
155 || !COMPLEX_FLOAT_TYPE_P (type)))
156 (negate @0)))
e0ee10ed 157
5b7f6ed0 158/* X * 1, X / 1 -> X. */
e0ee10ed
RB
159(for op (mult trunc_div ceil_div floor_div round_div exact_div)
160 (simplify
161 (op @0 integer_onep)
162 (non_lvalue @0)))
163
71f82be9
JG
164/* (A / (1 << B)) -> (A >> B).
165 Only for unsigned A. For signed A, this would not preserve rounding
166 toward zero.
167 For example: (-1 / ( 1 << B)) != -1 >> B. */
168(simplify
169 (trunc_div @0 (lshift integer_onep@1 @2))
170 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
171 && (!VECTOR_TYPE_P (type)
172 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
173 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
174 (rshift @0 @2)))
175
5b7f6ed0
MG
176/* Preserve explicit divisions by 0: the C++ front-end wants to detect
177 undefined behavior in constexpr evaluation, and assuming that the division
178 traps enables better optimizations than these anyway. */
a7f24614 179(for div (trunc_div ceil_div floor_div round_div exact_div)
5b7f6ed0
MG
180 /* 0 / X is always zero. */
181 (simplify
182 (div integer_zerop@0 @1)
183 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
184 (if (!integer_zerop (@1))
185 @0))
da186c1f 186 /* X / -1 is -X. */
a7f24614 187 (simplify
09240451
MG
188 (div @0 integer_minus_onep@1)
189 (if (!TYPE_UNSIGNED (type))
da186c1f 190 (negate @0)))
5b7f6ed0
MG
191 /* X / X is one. */
192 (simplify
193 (div @0 @0)
194 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
195 (if (!integer_zerop (@0))
196 { build_one_cst (type); }))
da186c1f
RB
197 /* X / abs (X) is X < 0 ? -1 : 1. */
198 (simplify
d96a5585
RB
199 (div:C @0 (abs @0))
200 (if (INTEGRAL_TYPE_P (type)
da186c1f
RB
201 && TYPE_OVERFLOW_UNDEFINED (type))
202 (cond (lt @0 { build_zero_cst (type); })
203 { build_minus_one_cst (type); } { build_one_cst (type); })))
204 /* X / -X is -1. */
205 (simplify
d96a5585 206 (div:C @0 (negate @0))
da186c1f
RB
207 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
208 && TYPE_OVERFLOW_UNDEFINED (type))
209 { build_minus_one_cst (type); })))
a7f24614
RB
210
211/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
212 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
213(simplify
214 (floor_div @0 @1)
09240451
MG
215 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
216 && TYPE_UNSIGNED (type))
a7f24614
RB
217 (trunc_div @0 @1)))
218
28093105
RB
219/* Combine two successive divisions. Note that combining ceil_div
220 and floor_div is trickier and combining round_div even more so. */
221(for div (trunc_div exact_div)
c306cfaf
RB
222 (simplify
223 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
224 (with {
225 bool overflow_p;
226 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
227 }
228 (if (!overflow_p)
8fdc6c67
RB
229 (div @0 { wide_int_to_tree (type, mul); })
230 (if (TYPE_UNSIGNED (type)
231 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
232 { build_zero_cst (type); })))))
c306cfaf 233
a7f24614 234/* Optimize A / A to 1.0 if we don't care about
09240451 235 NaNs or Infinities. */
a7f24614
RB
236(simplify
237 (rdiv @0 @0)
09240451 238 (if (FLOAT_TYPE_P (type)
1b457aa4 239 && ! HONOR_NANS (type)
8b5ee871 240 && ! HONOR_INFINITIES (type))
09240451
MG
241 { build_one_cst (type); }))
242
243/* Optimize -A / A to -1.0 if we don't care about
244 NaNs or Infinities. */
245(simplify
e04d2a35 246 (rdiv:C @0 (negate @0))
09240451 247 (if (FLOAT_TYPE_P (type)
1b457aa4 248 && ! HONOR_NANS (type)
8b5ee871 249 && ! HONOR_INFINITIES (type))
09240451 250 { build_minus_one_cst (type); }))
a7f24614 251
8c6961ca
PK
252/* PR71078: x / abs(x) -> copysign (1.0, x) */
253(simplify
254 (rdiv:C (convert? @0) (convert? (abs @0)))
255 (if (SCALAR_FLOAT_TYPE_P (type)
256 && ! HONOR_NANS (type)
257 && ! HONOR_INFINITIES (type))
258 (switch
259 (if (types_match (type, float_type_node))
260 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
261 (if (types_match (type, double_type_node))
262 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
263 (if (types_match (type, long_double_type_node))
264 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
265
a7f24614
RB
266/* In IEEE floating point, x/1 is not equivalent to x for snans. */
267(simplify
268 (rdiv @0 real_onep)
8b5ee871 269 (if (!HONOR_SNANS (type))
a7f24614
RB
270 (non_lvalue @0)))
271
272/* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
273(simplify
274 (rdiv @0 real_minus_onep)
8b5ee871 275 (if (!HONOR_SNANS (type))
a7f24614
RB
276 (negate @0)))
277
5711ac88
N
278(if (flag_reciprocal_math)
279 /* Convert (A/B)/C to A/(B*C) */
280 (simplify
281 (rdiv (rdiv:s @0 @1) @2)
282 (rdiv @0 (mult @1 @2)))
283
284 /* Convert A/(B/C) to (A/B)*C */
285 (simplify
286 (rdiv @0 (rdiv:s @1 @2))
287 (mult (rdiv @0 @1) @2)))
288
289/* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
290(for div (trunc_div ceil_div floor_div round_div exact_div)
291 (simplify
292 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
293 (if (integer_pow2p (@2)
294 && tree_int_cst_sgn (@2) > 0
295 && wi::add (@2, @1) == 0
296 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
297 (rshift (convert @0) { build_int_cst (integer_type_node,
298 wi::exact_log2 (@2)); }))))
299
a7f24614
RB
300/* If ARG1 is a constant, we can convert this to a multiply by the
301 reciprocal. This does not have the same rounding properties,
302 so only do this if -freciprocal-math. We can actually
303 always safely do it if ARG1 is a power of two, but it's hard to
304 tell if it is or not in a portable manner. */
305(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
306 (simplify
307 (rdiv @0 cst@1)
308 (if (optimize)
53bc4b3a
RB
309 (if (flag_reciprocal_math
310 && !real_zerop (@1))
a7f24614 311 (with
249700b5 312 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
a7f24614 313 (if (tem)
8fdc6c67
RB
314 (mult @0 { tem; } )))
315 (if (cst != COMPLEX_CST)
316 (with { tree inverse = exact_inverse (type, @1); }
317 (if (inverse)
318 (mult @0 { inverse; } ))))))))
a7f24614 319
a7f24614 320(for mod (ceil_mod floor_mod round_mod trunc_mod)
e0ee10ed
RB
321 /* 0 % X is always zero. */
322 (simplify
a7f24614 323 (mod integer_zerop@0 @1)
e0ee10ed
RB
324 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
325 (if (!integer_zerop (@1))
326 @0))
327 /* X % 1 is always zero. */
328 (simplify
a7f24614
RB
329 (mod @0 integer_onep)
330 { build_zero_cst (type); })
331 /* X % -1 is zero. */
332 (simplify
09240451
MG
333 (mod @0 integer_minus_onep@1)
334 (if (!TYPE_UNSIGNED (type))
bc4315fb 335 { build_zero_cst (type); }))
5b7f6ed0
MG
336 /* X % X is zero. */
337 (simplify
338 (mod @0 @0)
339 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
340 (if (!integer_zerop (@0))
341 { build_zero_cst (type); }))
bc4315fb
MG
342 /* (X % Y) % Y is just X % Y. */
343 (simplify
344 (mod (mod@2 @0 @1) @1)
98e30e51
RB
345 @2)
346 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
347 (simplify
348 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
349 (if (ANY_INTEGRAL_TYPE_P (type)
350 && TYPE_OVERFLOW_UNDEFINED (type)
351 && wi::multiple_of_p (@1, @2, TYPE_SIGN (type)))
352 { build_zero_cst (type); })))
a7f24614
RB
353
354/* X % -C is the same as X % C. */
355(simplify
356 (trunc_mod @0 INTEGER_CST@1)
357 (if (TYPE_SIGN (type) == SIGNED
358 && !TREE_OVERFLOW (@1)
359 && wi::neg_p (@1)
360 && !TYPE_OVERFLOW_TRAPS (type)
361 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
362 && !sign_bit_p (@1, @1))
363 (trunc_mod @0 (negate @1))))
e0ee10ed 364
8f0c696a
RB
365/* X % -Y is the same as X % Y. */
366(simplify
367 (trunc_mod @0 (convert? (negate @1)))
a2a743a1
MP
368 (if (INTEGRAL_TYPE_P (type)
369 && !TYPE_UNSIGNED (type)
8f0c696a 370 && !TYPE_OVERFLOW_TRAPS (type)
20b8d734
JJ
371 && tree_nop_conversion_p (type, TREE_TYPE (@1))
372 /* Avoid this transformation if X might be INT_MIN or
373 Y might be -1, because we would then change valid
374 INT_MIN % -(-1) into invalid INT_MIN % -1. */
375 && (expr_not_equal_to (@0, TYPE_MIN_VALUE (type))
376 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
377 (TREE_TYPE (@1))))))
8f0c696a
RB
378 (trunc_mod @0 (convert @1))))
379
f461569a
MP
380/* X - (X / Y) * Y is the same as X % Y. */
381(simplify
2eef1fc1
RB
382 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
383 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
fba46f03 384 (convert (trunc_mod @0 @1))))
f461569a 385
8f0c696a
RB
386/* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
387 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
388 Also optimize A % (C << N) where C is a power of 2,
389 to A & ((C << N) - 1). */
390(match (power_of_two_cand @1)
391 INTEGER_CST@1)
392(match (power_of_two_cand @1)
393 (lshift INTEGER_CST@1 @2))
394(for mod (trunc_mod floor_mod)
395 (simplify
4ab1e111 396 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
8f0c696a
RB
397 (if ((TYPE_UNSIGNED (type)
398 || tree_expr_nonnegative_p (@0))
4ab1e111 399 && tree_nop_conversion_p (type, TREE_TYPE (@3))
8f0c696a 400 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
4ab1e111 401 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
8f0c696a 402
887ab609
N
403/* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
404(simplify
405 (trunc_div (mult @0 integer_pow2p@1) @1)
406 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
407 (bit_and @0 { wide_int_to_tree
408 (type, wi::mask (TYPE_PRECISION (type) - wi::exact_log2 (@1),
409 false, TYPE_PRECISION (type))); })))
410
5f8d832e
N
411/* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
412(simplify
413 (mult (trunc_div @0 integer_pow2p@1) @1)
414 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
415 (bit_and @0 (negate @1))))
416
95765f36
N
417/* Simplify (t * 2) / 2) -> t. */
418(for div (trunc_div ceil_div floor_div round_div exact_div)
419 (simplify
420 (div (mult @0 @1) @1)
421 (if (ANY_INTEGRAL_TYPE_P (type)
422 && TYPE_OVERFLOW_UNDEFINED (type))
423 @0)))
424
d202f9bd 425(for op (negate abs)
9b054b08
RS
426 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
427 (for coss (COS COSH)
428 (simplify
429 (coss (op @0))
430 (coss @0)))
431 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
432 (for pows (POW)
433 (simplify
434 (pows (op @0) REAL_CST@1)
435 (with { HOST_WIDE_INT n; }
436 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
5d3498b4 437 (pows @0 @1)))))
de3fbea3
RB
438 /* Likewise for powi. */
439 (for pows (POWI)
440 (simplify
441 (pows (op @0) INTEGER_CST@1)
442 (if (wi::bit_and (@1, 1) == 0)
443 (pows @0 @1))))
5d3498b4
RS
444 /* Strip negate and abs from both operands of hypot. */
445 (for hypots (HYPOT)
446 (simplify
447 (hypots (op @0) @1)
448 (hypots @0 @1))
449 (simplify
450 (hypots @0 (op @1))
451 (hypots @0 @1)))
452 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
453 (for copysigns (COPYSIGN)
454 (simplify
455 (copysigns (op @0) @1)
456 (copysigns @0 @1))))
457
458/* abs(x)*abs(x) -> x*x. Should be valid for all types. */
459(simplify
460 (mult (abs@1 @0) @1)
461 (mult @0 @0))
462
463/* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
464(for coss (COS COSH)
465 copysigns (COPYSIGN)
466 (simplify
467 (coss (copysigns @0 @1))
468 (coss @0)))
469
470/* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
471(for pows (POW)
472 copysigns (COPYSIGN)
473 (simplify
de3fbea3 474 (pows (copysigns @0 @2) REAL_CST@1)
5d3498b4
RS
475 (with { HOST_WIDE_INT n; }
476 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
477 (pows @0 @1)))))
de3fbea3
RB
478/* Likewise for powi. */
479(for pows (POWI)
480 copysigns (COPYSIGN)
481 (simplify
482 (pows (copysigns @0 @2) INTEGER_CST@1)
483 (if (wi::bit_and (@1, 1) == 0)
484 (pows @0 @1))))
5d3498b4
RS
485
486(for hypots (HYPOT)
487 copysigns (COPYSIGN)
488 /* hypot(copysign(x, y), z) -> hypot(x, z). */
489 (simplify
490 (hypots (copysigns @0 @1) @2)
491 (hypots @0 @2))
492 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
493 (simplify
494 (hypots @0 (copysigns @1 @2))
495 (hypots @0 @1)))
496
eeb57981
RB
497/* copysign(x, CST) -> [-]abs (x). */
498(for copysigns (COPYSIGN)
499 (simplify
500 (copysigns @0 REAL_CST@1)
501 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
502 (negate (abs @0))
503 (abs @0))))
504
5d3498b4
RS
505/* copysign(copysign(x, y), z) -> copysign(x, z). */
506(for copysigns (COPYSIGN)
507 (simplify
508 (copysigns (copysigns @0 @1) @2)
509 (copysigns @0 @2)))
510
511/* copysign(x,y)*copysign(x,y) -> x*x. */
512(for copysigns (COPYSIGN)
513 (simplify
514 (mult (copysigns@2 @0 @1) @2)
515 (mult @0 @0)))
516
517/* ccos(-x) -> ccos(x). Similarly for ccosh. */
518(for ccoss (CCOS CCOSH)
519 (simplify
520 (ccoss (negate @0))
521 (ccoss @0)))
d202f9bd 522
abcc43f5
RS
523/* cabs(-x) and cos(conj(x)) -> cabs(x). */
524(for ops (conj negate)
525 (for cabss (CABS)
526 (simplify
527 (cabss (ops @0))
528 (cabss @0))))
529
0a8f32b8
RB
530/* Fold (a * (1 << b)) into (a << b) */
531(simplify
532 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
533 (if (! FLOAT_TYPE_P (type)
9ff6fb6e 534 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
0a8f32b8
RB
535 (lshift @0 @2)))
536
537/* Fold (C1/X)*C2 into (C1*C2)/X. */
538(simplify
ff86345f
RB
539 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
540 (if (flag_associative_math
541 && single_use (@3))
0a8f32b8
RB
542 (with
543 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
544 (if (tem)
545 (rdiv { tem; } @1)))))
546
5711ac88
N
547/* Convert C1/(X*C2) into (C1/C2)/X */
548(simplify
549 (rdiv REAL_CST@0 (mult @1 REAL_CST@2))
550 (if (flag_reciprocal_math)
551 (with
552 { tree tem = const_binop (RDIV_EXPR, type, @0, @2); }
553 (if (tem)
554 (rdiv { tem; } @1)))))
555
0a8f32b8
RB
556/* Simplify ~X & X as zero. */
557(simplify
558 (bit_and:c (convert? @0) (convert? (bit_not @0)))
559 { build_zero_cst (type); })
560
89b80c42
PK
561/* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
562(simplify
563 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
564 (if (TYPE_UNSIGNED (type))
565 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
566
7aa13860
PK
567/* PR35691: Transform
568 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
569 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
570(for bitop (bit_and bit_ior)
571 cmp (eq ne)
572 (simplify
573 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
574 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
575 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
576 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
577 (cmp (bit_ior @0 (convert @1)) @2))))
578
10158317
RB
579/* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
580(simplify
a9658b11 581 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
10158317
RB
582 (minus (bit_xor @0 @1) @1))
583(simplify
584 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
585 (if (wi::bit_not (@2) == @1)
586 (minus (bit_xor @0 @1) @1)))
587
588/* Fold (A & B) - (A & ~B) into B - (A ^ B). */
589(simplify
a8e9f9a3 590 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
10158317
RB
591 (minus @1 (bit_xor @0 @1)))
592
593/* Simplify (X & ~Y) | (~X & Y) -> X ^ Y. */
594(simplify
a9658b11 595 (bit_ior (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
10158317
RB
596 (bit_xor @0 @1))
597(simplify
598 (bit_ior:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
599 (if (wi::bit_not (@2) == @1)
600 (bit_xor @0 @1)))
2066ef6a
PK
601
602/* PR53979: Transform ((a ^ b) | a) -> (a | b) */
603(simplify
604 (bit_ior:c (bit_xor:c @0 @1) @0)
605 (bit_ior @0 @1))
606
d982c5b7
MG
607/* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
608#if GIMPLE
609(simplify
610 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
611 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
612 && (get_nonzero_bits (@0) & wi::bit_not (@1)) == 0)
613 (bit_xor @0 @1)))
614#endif
10158317 615
bc4315fb
MG
616/* X % Y is smaller than Y. */
617(for cmp (lt ge)
618 (simplify
619 (cmp (trunc_mod @0 @1) @1)
620 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
621 { constant_boolean_node (cmp == LT_EXPR, type); })))
622(for cmp (gt le)
623 (simplify
624 (cmp @1 (trunc_mod @0 @1))
625 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
626 { constant_boolean_node (cmp == GT_EXPR, type); })))
627
e0ee10ed
RB
628/* x | ~0 -> ~0 */
629(simplify
ca0b7ece
RB
630 (bit_ior @0 integer_all_onesp@1)
631 @1)
632
633/* x | 0 -> x */
634(simplify
635 (bit_ior @0 integer_zerop)
636 @0)
e0ee10ed
RB
637
638/* x & 0 -> 0 */
639(simplify
ca0b7ece
RB
640 (bit_and @0 integer_zerop@1)
641 @1)
e0ee10ed 642
a4398a30 643/* ~x | x -> -1 */
8b5ee871
MG
644/* ~x ^ x -> -1 */
645/* ~x + x -> -1 */
646(for op (bit_ior bit_xor plus)
647 (simplify
648 (op:c (convert? @0) (convert? (bit_not @0)))
649 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
a4398a30 650
e0ee10ed
RB
651/* x ^ x -> 0 */
652(simplify
653 (bit_xor @0 @0)
654 { build_zero_cst (type); })
655
36a60e48
RB
656/* Canonicalize X ^ ~0 to ~X. */
657(simplify
658 (bit_xor @0 integer_all_onesp@1)
659 (bit_not @0))
660
661/* x & ~0 -> x */
662(simplify
663 (bit_and @0 integer_all_onesp)
664 (non_lvalue @0))
665
666/* x & x -> x, x | x -> x */
667(for bitop (bit_and bit_ior)
668 (simplify
669 (bitop @0 @0)
670 (non_lvalue @0)))
671
c7986356
MG
672/* x & C -> x if we know that x & ~C == 0. */
673#if GIMPLE
674(simplify
675 (bit_and SSA_NAME@0 INTEGER_CST@1)
676 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
677 && (get_nonzero_bits (@0) & wi::bit_not (@1)) == 0)
678 @0))
679#endif
680
0f770b01
RV
681/* x + (x & 1) -> (x + 1) & ~1 */
682(simplify
44fc0a51
RB
683 (plus:c @0 (bit_and:s @0 integer_onep@1))
684 (bit_and (plus @0 @1) (bit_not @1)))
0f770b01
RV
685
686/* x & ~(x & y) -> x & ~y */
687/* x | ~(x | y) -> x | ~y */
688(for bitop (bit_and bit_ior)
af563d4b 689 (simplify
44fc0a51
RB
690 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
691 (bitop @0 (bit_not @1))))
af563d4b
MG
692
693/* (x | y) & ~x -> y & ~x */
694/* (x & y) | ~x -> y | ~x */
695(for bitop (bit_and bit_ior)
696 rbitop (bit_ior bit_and)
697 (simplify
698 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
699 (bitop @1 @2)))
0f770b01 700
f13c4673
MP
701/* (x & y) ^ (x | y) -> x ^ y */
702(simplify
2d6f2dce
MP
703 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
704 (bit_xor @0 @1))
f13c4673 705
9ea65ca6
MP
706/* (x ^ y) ^ (x | y) -> x & y */
707(simplify
708 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
709 (bit_and @0 @1))
710
711/* (x & y) + (x ^ y) -> x | y */
712/* (x & y) | (x ^ y) -> x | y */
713/* (x & y) ^ (x ^ y) -> x | y */
714(for op (plus bit_ior bit_xor)
715 (simplify
716 (op:c (bit_and @0 @1) (bit_xor @0 @1))
717 (bit_ior @0 @1)))
718
719/* (x & y) + (x | y) -> x + y */
720(simplify
721 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
722 (plus @0 @1))
723
9737efaf
MP
724/* (x + y) - (x | y) -> x & y */
725(simplify
726 (minus (plus @0 @1) (bit_ior @0 @1))
727 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
728 && !TYPE_SATURATING (type))
729 (bit_and @0 @1)))
730
731/* (x + y) - (x & y) -> x | y */
732(simplify
733 (minus (plus @0 @1) (bit_and @0 @1))
734 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
735 && !TYPE_SATURATING (type))
736 (bit_ior @0 @1)))
737
9ea65ca6
MP
738/* (x | y) - (x ^ y) -> x & y */
739(simplify
740 (minus (bit_ior @0 @1) (bit_xor @0 @1))
741 (bit_and @0 @1))
742
743/* (x | y) - (x & y) -> x ^ y */
744(simplify
745 (minus (bit_ior @0 @1) (bit_and @0 @1))
746 (bit_xor @0 @1))
747
66cc6273
MP
748/* (x | y) & ~(x & y) -> x ^ y */
749(simplify
750 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
751 (bit_xor @0 @1))
752
753/* (x | y) & (~x ^ y) -> x & y */
754(simplify
755 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
756 (bit_and @0 @1))
757
5b00d921
RB
758/* ~x & ~y -> ~(x | y)
759 ~x | ~y -> ~(x & y) */
760(for op (bit_and bit_ior)
761 rop (bit_ior bit_and)
762 (simplify
763 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
ece46666
MG
764 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
765 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
5b00d921
RB
766 (bit_not (rop (convert @0) (convert @1))))))
767
14ea9f92 768/* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
5b00d921
RB
769 with a constant, and the two constants have no bits in common,
770 we should treat this as a BIT_IOR_EXPR since this may produce more
771 simplifications. */
14ea9f92
RB
772(for op (bit_xor plus)
773 (simplify
774 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
775 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
776 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
777 && tree_nop_conversion_p (type, TREE_TYPE (@2))
778 && wi::bit_and (@1, @3) == 0)
779 (bit_ior (convert @4) (convert @5)))))
5b00d921
RB
780
781/* (X | Y) ^ X -> Y & ~ X*/
782(simplify
2eef1fc1 783 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
5b00d921
RB
784 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
785 (convert (bit_and @1 (bit_not @0)))))
786
787/* Convert ~X ^ ~Y to X ^ Y. */
788(simplify
789 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
ece46666
MG
790 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
791 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
5b00d921
RB
792 (bit_xor (convert @0) (convert @1))))
793
794/* Convert ~X ^ C to X ^ ~C. */
795(simplify
796 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
c8ba6498
EB
797 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
798 (bit_xor (convert @0) (bit_not @1))))
5b00d921 799
e39dab2c
MG
800/* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
801(for opo (bit_and bit_xor)
802 opi (bit_xor bit_and)
803 (simplify
804 (opo:c (opi:c @0 @1) @1)
805 (bit_and (bit_not @0) @1)))
97e77391 806
14ea9f92
RB
807/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
808 operands are another bit-wise operation with a common input. If so,
809 distribute the bit operations to save an operation and possibly two if
810 constants are involved. For example, convert
811 (A | B) & (A | C) into A | (B & C)
812 Further simplification will occur if B and C are constants. */
e07ab2fe
MG
813(for op (bit_and bit_ior bit_xor)
814 rop (bit_ior bit_and bit_and)
14ea9f92 815 (simplify
2eef1fc1 816 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
e07ab2fe
MG
817 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
818 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
14ea9f92
RB
819 (rop (convert @0) (op (convert @1) (convert @2))))))
820
e39dab2c
MG
821/* Some simple reassociation for bit operations, also handled in reassoc. */
822/* (X & Y) & Y -> X & Y
823 (X | Y) | Y -> X | Y */
824(for op (bit_and bit_ior)
825 (simplify
2eef1fc1 826 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
e39dab2c
MG
827 @2))
828/* (X ^ Y) ^ Y -> X */
829(simplify
2eef1fc1 830 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
ece46666 831 (convert @0))
e39dab2c
MG
832/* (X & Y) & (X & Z) -> (X & Y) & Z
833 (X | Y) | (X | Z) -> (X | Y) | Z */
834(for op (bit_and bit_ior)
835 (simplify
836 (op:c (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
837 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
838 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
839 (if (single_use (@5) && single_use (@6))
840 (op @3 (convert @2))
841 (if (single_use (@3) && single_use (@4))
842 (op (convert @1) @5))))))
843/* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
844(simplify
845 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
846 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
847 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
d78789f5 848 (bit_xor (convert @1) (convert @2))))
5b00d921 849
b14a9c57
RB
850(simplify
851 (abs (abs@1 @0))
852 @1)
f3582e54
RB
853(simplify
854 (abs (negate @0))
855 (abs @0))
856(simplify
857 (abs tree_expr_nonnegative_p@0)
858 @0)
859
55cf3946
RB
860/* A few cases of fold-const.c negate_expr_p predicate. */
861(match negate_expr_p
862 INTEGER_CST
b14a9c57
RB
863 (if ((INTEGRAL_TYPE_P (type)
864 && TYPE_OVERFLOW_WRAPS (type))
865 || (!TYPE_OVERFLOW_SANITIZED (type)
55cf3946
RB
866 && may_negate_without_overflow_p (t)))))
867(match negate_expr_p
868 FIXED_CST)
869(match negate_expr_p
870 (negate @0)
871 (if (!TYPE_OVERFLOW_SANITIZED (type))))
872(match negate_expr_p
873 REAL_CST
874 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
875/* VECTOR_CST handling of non-wrapping types would recurse in unsupported
876 ways. */
877(match negate_expr_p
878 VECTOR_CST
879 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
0a8f32b8
RB
880
881/* (-A) * (-B) -> A * B */
882(simplify
883 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
884 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
885 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
886 (mult (convert @0) (convert (negate @1)))))
55cf3946
RB
887
888/* -(A + B) -> (-B) - A. */
b14a9c57 889(simplify
55cf3946
RB
890 (negate (plus:c @0 negate_expr_p@1))
891 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
892 && !HONOR_SIGNED_ZEROS (element_mode (type)))
893 (minus (negate @1) @0)))
894
895/* A - B -> A + (-B) if B is easily negatable. */
b14a9c57 896(simplify
55cf3946 897 (minus @0 negate_expr_p@1)
e4e96a4f
KT
898 (if (!FIXED_POINT_TYPE_P (type))
899 (plus @0 (negate @1))))
d4573ffe 900
5609420f
RB
901/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
902 when profitable.
903 For bitwise binary operations apply operand conversions to the
904 binary operation result instead of to the operands. This allows
905 to combine successive conversions and bitwise binary operations.
906 We combine the above two cases by using a conditional convert. */
907(for bitop (bit_and bit_ior bit_xor)
908 (simplify
909 (bitop (convert @0) (convert? @1))
910 (if (((TREE_CODE (@1) == INTEGER_CST
911 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
ad6f996c 912 && int_fits_type_p (@1, TREE_TYPE (@0)))
aea417d7 913 || types_match (@0, @1))
ad6f996c
RB
914 /* ??? This transform conflicts with fold-const.c doing
915 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
916 constants (if x has signed type, the sign bit cannot be set
917 in c). This folds extension into the BIT_AND_EXPR.
918 Restrict it to GIMPLE to avoid endless recursions. */
919 && (bitop != BIT_AND_EXPR || GIMPLE)
5609420f
RB
920 && (/* That's a good idea if the conversion widens the operand, thus
921 after hoisting the conversion the operation will be narrower. */
922 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
923 /* It's also a good idea if the conversion is to a non-integer
924 mode. */
925 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
926 /* Or if the precision of TO is not the same as the precision
927 of its mode. */
928 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
929 (convert (bitop @0 (convert @1))))))
930
b14a9c57
RB
931(for bitop (bit_and bit_ior)
932 rbitop (bit_ior bit_and)
933 /* (x | y) & x -> x */
934 /* (x & y) | x -> x */
935 (simplify
936 (bitop:c (rbitop:c @0 @1) @0)
937 @0)
938 /* (~x | y) & x -> x & y */
939 /* (~x & y) | x -> x | y */
940 (simplify
941 (bitop:c (rbitop:c (bit_not @0) @1) @0)
942 (bitop @0 @1)))
943
5609420f
RB
944/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
945(simplify
946 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
947 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
948
949/* Combine successive equal operations with constants. */
950(for bitop (bit_and bit_ior bit_xor)
951 (simplify
952 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
953 (bitop @0 (bitop @1 @2))))
954
955/* Try simple folding for X op !X, and X op X with the help
956 of the truth_valued_p and logical_inverted_value predicates. */
957(match truth_valued_p
958 @0
959 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
f84e7fd6 960(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
5609420f
RB
961 (match truth_valued_p
962 (op @0 @1)))
963(match truth_valued_p
964 (truth_not @0))
965
0a8f32b8
RB
966(match (logical_inverted_value @0)
967 (truth_not @0))
5609420f
RB
968(match (logical_inverted_value @0)
969 (bit_not truth_valued_p@0))
970(match (logical_inverted_value @0)
09240451 971 (eq @0 integer_zerop))
5609420f 972(match (logical_inverted_value @0)
09240451 973 (ne truth_valued_p@0 integer_truep))
5609420f 974(match (logical_inverted_value @0)
09240451 975 (bit_xor truth_valued_p@0 integer_truep))
5609420f
RB
976
977/* X & !X -> 0. */
978(simplify
979 (bit_and:c @0 (logical_inverted_value @0))
980 { build_zero_cst (type); })
981/* X | !X and X ^ !X -> 1, , if X is truth-valued. */
982(for op (bit_ior bit_xor)
983 (simplify
984 (op:c truth_valued_p@0 (logical_inverted_value @0))
f84e7fd6 985 { constant_boolean_node (true, type); }))
59c20dc7
RB
986/* X ==/!= !X is false/true. */
987(for op (eq ne)
988 (simplify
989 (op:c truth_valued_p@0 (logical_inverted_value @0))
990 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
5609420f 991
5609420f
RB
992/* ~~x -> x */
993(simplify
994 (bit_not (bit_not @0))
995 @0)
996
b14a9c57
RB
997/* Convert ~ (-A) to A - 1. */
998(simplify
999 (bit_not (convert? (negate @0)))
ece46666
MG
1000 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1001 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
8b5ee871 1002 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
b14a9c57
RB
1003
1004/* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1005(simplify
8b5ee871 1006 (bit_not (convert? (minus @0 integer_each_onep)))
ece46666
MG
1007 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1008 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
b14a9c57
RB
1009 (convert (negate @0))))
1010(simplify
1011 (bit_not (convert? (plus @0 integer_all_onesp)))
ece46666
MG
1012 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1013 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
b14a9c57
RB
1014 (convert (negate @0))))
1015
1016/* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1017(simplify
1018 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1019 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1020 (convert (bit_xor @0 (bit_not @1)))))
1021(simplify
1022 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1023 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1024 (convert (bit_xor @0 @1))))
1025
f52baa7b
MP
1026/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1027(simplify
44fc0a51
RB
1028 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1029 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
f52baa7b 1030
f7b7b0aa
MP
1031/* Fold A - (A & B) into ~B & A. */
1032(simplify
2eef1fc1 1033 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
f7b7b0aa
MP
1034 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1035 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1036 (convert (bit_and (bit_not @1) @0))))
5609420f 1037
e36c1cfe
N
1038/* For integral types with undefined overflow and C != 0 fold
1039 x * C EQ/NE y * C into x EQ/NE y. */
1040(for cmp (eq ne)
1041 (simplify
1042 (cmp (mult:c @0 @1) (mult:c @2 @1))
1043 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1044 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1045 && tree_expr_nonzero_p (@1))
1046 (cmp @0 @2))))
1047
1048/* For integral types with undefined overflow and C != 0 fold
1049 x * C RELOP y * C into:
84ff66b8 1050
e36c1cfe
N
1051 x RELOP y for nonnegative C
1052 y RELOP x for negative C */
1053(for cmp (lt gt le ge)
1054 (simplify
1055 (cmp (mult:c @0 @1) (mult:c @2 @1))
1056 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1057 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1058 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1059 (cmp @0 @2)
1060 (if (TREE_CODE (@1) == INTEGER_CST
1061 && wi::neg_p (@1, TYPE_SIGN (TREE_TYPE (@1))))
1062 (cmp @2 @0))))))
84ff66b8 1063
a8492d5e
MG
1064/* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1065(for cmp (simple_comparison)
1066 (simplify
1067 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
1068 (if (wi::gt_p(@2, 0, TYPE_SIGN (TREE_TYPE (@2))))
1069 (cmp @0 @1))))
1070
d35256b6
MG
1071/* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1072(for op (lt le ge gt)
1073 (simplify
1074 (op (plus:c @0 @2) (plus:c @1 @2))
1075 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1076 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1077 (op @0 @1))))
1078/* For equality and subtraction, this is also true with wrapping overflow. */
1079(for op (eq ne minus)
1080 (simplify
1081 (op (plus:c @0 @2) (plus:c @1 @2))
1082 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1083 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1084 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1085 (op @0 @1))))
1086
1087/* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1088(for op (lt le ge gt)
1089 (simplify
1090 (op (minus @0 @2) (minus @1 @2))
1091 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1092 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1093 (op @0 @1))))
1094/* For equality and subtraction, this is also true with wrapping overflow. */
1095(for op (eq ne minus)
1096 (simplify
1097 (op (minus @0 @2) (minus @1 @2))
1098 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1099 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1100 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1101 (op @0 @1))))
1102
1103/* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1104(for op (lt le ge gt)
1105 (simplify
1106 (op (minus @2 @0) (minus @2 @1))
1107 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1108 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1109 (op @1 @0))))
1110/* For equality and subtraction, this is also true with wrapping overflow. */
1111(for op (eq ne minus)
1112 (simplify
1113 (op (minus @2 @0) (minus @2 @1))
1114 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1115 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1116 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1117 (op @1 @0))))
1118
8b656ca7
MG
1119/* X == C - X can never be true if C is odd. */
1120(for cmp (eq ne)
1121 (simplify
1122 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1123 (if (TREE_INT_CST_LOW (@1) & 1)
1124 { constant_boolean_node (cmp == NE_EXPR, type); })))
1125
10bc8017
MG
1126/* Arguments on which one can call get_nonzero_bits to get the bits
1127 possibly set. */
1128(match with_possible_nonzero_bits
1129 INTEGER_CST@0)
1130(match with_possible_nonzero_bits
1131 SSA_NAME@0
1132 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1133/* Slightly extended version, do not make it recursive to keep it cheap. */
1134(match (with_possible_nonzero_bits2 @0)
1135 with_possible_nonzero_bits@0)
1136(match (with_possible_nonzero_bits2 @0)
1137 (bit_and:c with_possible_nonzero_bits@0 @2))
1138
1139/* Same for bits that are known to be set, but we do not have
1140 an equivalent to get_nonzero_bits yet. */
1141(match (with_certain_nonzero_bits2 @0)
1142 INTEGER_CST@0)
1143(match (with_certain_nonzero_bits2 @0)
1144 (bit_ior @1 INTEGER_CST@0))
1145
1146/* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1147(for cmp (eq ne)
1148 (simplify
1149 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1150 (if ((~get_nonzero_bits (@0) & @1) != 0)
1151 { constant_boolean_node (cmp == NE_EXPR, type); })))
1152
84ff66b8
AV
1153/* ((X inner_op C0) outer_op C1)
1154 With X being a tree where value_range has reasoned certain bits to always be
1155 zero throughout its computed value range,
1156 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1157 where zero_mask has 1's for all bits that are sure to be 0 in
1158 and 0's otherwise.
1159 if (inner_op == '^') C0 &= ~C1;
1160 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1161 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1162*/
1163(for inner_op (bit_ior bit_xor)
1164 outer_op (bit_xor bit_ior)
1165(simplify
1166 (outer_op
1167 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1168 (with
1169 {
1170 bool fail = false;
1171 wide_int zero_mask_not;
1172 wide_int C0;
1173 wide_int cst_emit;
1174
1175 if (TREE_CODE (@2) == SSA_NAME)
1176 zero_mask_not = get_nonzero_bits (@2);
1177 else
1178 fail = true;
1179
1180 if (inner_op == BIT_XOR_EXPR)
1181 {
1182 C0 = wi::bit_and_not (@0, @1);
1183 cst_emit = wi::bit_or (C0, @1);
1184 }
1185 else
1186 {
1187 C0 = @0;
1188 cst_emit = wi::bit_xor (@0, @1);
1189 }
1190 }
1191 (if (!fail && wi::bit_and (C0, zero_mask_not) == 0)
1192 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1193 (if (!fail && wi::bit_and (@1, zero_mask_not) == 0)
1194 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1195
a499aac5
RB
1196/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1197(simplify
44fc0a51
RB
1198 (pointer_plus (pointer_plus:s @0 @1) @3)
1199 (pointer_plus @0 (plus @1 @3)))
a499aac5
RB
1200
1201/* Pattern match
1202 tem1 = (long) ptr1;
1203 tem2 = (long) ptr2;
1204 tem3 = tem2 - tem1;
1205 tem4 = (unsigned long) tem3;
1206 tem5 = ptr1 + tem4;
1207 and produce
1208 tem5 = ptr2; */
1209(simplify
1210 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1211 /* Conditionally look through a sign-changing conversion. */
1212 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1213 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1214 || (GENERIC && type == TREE_TYPE (@1))))
1215 @1))
1216
1217/* Pattern match
1218 tem = (sizetype) ptr;
1219 tem = tem & algn;
1220 tem = -tem;
1221 ... = ptr p+ tem;
1222 and produce the simpler and easier to analyze with respect to alignment
1223 ... = ptr & ~algn; */
1224(simplify
1225 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1226 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
1227 (bit_and @0 { algn; })))
1228
99e943a2
RB
1229/* Try folding difference of addresses. */
1230(simplify
1231 (minus (convert ADDR_EXPR@0) (convert @1))
1232 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1233 (with { HOST_WIDE_INT diff; }
1234 (if (ptr_difference_const (@0, @1, &diff))
1235 { build_int_cst_type (type, diff); }))))
1236(simplify
1237 (minus (convert @0) (convert ADDR_EXPR@1))
1238 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1239 (with { HOST_WIDE_INT diff; }
1240 (if (ptr_difference_const (@0, @1, &diff))
1241 { build_int_cst_type (type, diff); }))))
1242
bab73f11
RB
1243/* If arg0 is derived from the address of an object or function, we may
1244 be able to fold this expression using the object or function's
1245 alignment. */
1246(simplify
1247 (bit_and (convert? @0) INTEGER_CST@1)
1248 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1249 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1250 (with
1251 {
1252 unsigned int align;
1253 unsigned HOST_WIDE_INT bitpos;
1254 get_pointer_alignment_1 (@0, &align, &bitpos);
1255 }
1256 (if (wi::ltu_p (@1, align / BITS_PER_UNIT))
1257 { wide_int_to_tree (type, wi::bit_and (@1, bitpos / BITS_PER_UNIT)); }))))
99e943a2 1258
a499aac5 1259
cc7b5acf
RB
1260/* We can't reassociate at all for saturating types. */
1261(if (!TYPE_SATURATING (type))
1262
1263 /* Contract negates. */
1264 /* A + (-B) -> A - B */
1265 (simplify
248179b5
RB
1266 (plus:c @0 (convert? (negate @1)))
1267 /* Apply STRIP_NOPS on the negate. */
1268 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1269 && !TYPE_OVERFLOW_SANITIZED (type))
248179b5
RB
1270 (with
1271 {
1272 tree t1 = type;
1273 if (INTEGRAL_TYPE_P (type)
1274 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1275 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1276 }
1277 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
cc7b5acf
RB
1278 /* A - (-B) -> A + B */
1279 (simplify
248179b5
RB
1280 (minus @0 (convert? (negate @1)))
1281 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1282 && !TYPE_OVERFLOW_SANITIZED (type))
248179b5
RB
1283 (with
1284 {
1285 tree t1 = type;
1286 if (INTEGRAL_TYPE_P (type)
1287 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1288 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1289 }
1290 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
cc7b5acf
RB
1291 /* -(-A) -> A */
1292 (simplify
1293 (negate (convert? (negate @1)))
1294 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1295 && !TYPE_OVERFLOW_SANITIZED (type))
a0f12cf8 1296 (convert @1)))
cc7b5acf 1297
7318e44f
RB
1298 /* We can't reassociate floating-point unless -fassociative-math
1299 or fixed-point plus or minus because of saturation to +-Inf. */
1300 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1301 && !FIXED_POINT_TYPE_P (type))
cc7b5acf
RB
1302
1303 /* Match patterns that allow contracting a plus-minus pair
1304 irrespective of overflow issues. */
1305 /* (A +- B) - A -> +- B */
1306 /* (A +- B) -+ B -> A */
1307 /* A - (A +- B) -> -+ B */
1308 /* A +- (B -+ A) -> +- B */
1309 (simplify
1310 (minus (plus:c @0 @1) @0)
1311 @1)
1312 (simplify
1313 (minus (minus @0 @1) @0)
1314 (negate @1))
1315 (simplify
1316 (plus:c (minus @0 @1) @1)
1317 @0)
1318 (simplify
1319 (minus @0 (plus:c @0 @1))
1320 (negate @1))
1321 (simplify
1322 (minus @0 (minus @0 @1))
1323 @1)
1324
ed73f46f
MG
1325 /* (A +- CST1) +- CST2 -> A + CST3
1326 Use view_convert because it is safe for vectors and equivalent for
1327 scalars. */
cc7b5acf
RB
1328 (for outer_op (plus minus)
1329 (for inner_op (plus minus)
ed73f46f 1330 neg_inner_op (minus plus)
cc7b5acf 1331 (simplify
ed73f46f
MG
1332 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1333 CONSTANT_CLASS_P@2)
1334 /* If one of the types wraps, use that one. */
1335 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1336 (if (outer_op == PLUS_EXPR)
1337 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1338 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1))))
1339 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1340 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1341 (if (outer_op == PLUS_EXPR)
1342 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1343 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1344 /* If the constant operation overflows we cannot do the transform
1345 directly as we would introduce undefined overflow, for example
1346 with (a - 1) + INT_MIN. */
1347 (if (types_match (type, @0))
1348 (with { tree cst = const_binop (outer_op == inner_op
1349 ? PLUS_EXPR : MINUS_EXPR,
1350 type, @1, @2); }
1351 (if (cst && !TREE_OVERFLOW (cst))
1352 (inner_op @0 { cst; } )
1353 /* X+INT_MAX+1 is X-INT_MIN. */
1354 (if (INTEGRAL_TYPE_P (type) && cst
1355 && wi::eq_p (cst, wi::min_value (type)))
1356 (neg_inner_op @0 { wide_int_to_tree (type, cst); })
1357 /* Last resort, use some unsigned type. */
1358 (with { tree utype = unsigned_type_for (type); }
1359 (view_convert (inner_op
1360 (view_convert:utype @0)
1361 (view_convert:utype
1362 { drop_tree_overflow (cst); })))))))))))))
cc7b5acf 1363
b302f2e0 1364 /* (CST1 - A) +- CST2 -> CST3 - A */
cc7b5acf
RB
1365 (for outer_op (plus minus)
1366 (simplify
1367 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
23f27839 1368 (with { tree cst = const_binop (outer_op, type, @1, @2); }
cc7b5acf
RB
1369 (if (cst && !TREE_OVERFLOW (cst))
1370 (minus { cst; } @0)))))
1371
b302f2e0
RB
1372 /* CST1 - (CST2 - A) -> CST3 + A */
1373 (simplify
1374 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1375 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1376 (if (cst && !TREE_OVERFLOW (cst))
1377 (plus { cst; } @0))))
1378
cc7b5acf
RB
1379 /* ~A + A -> -1 */
1380 (simplify
1381 (plus:c (bit_not @0) @0)
1382 (if (!TYPE_OVERFLOW_TRAPS (type))
1383 { build_all_ones_cst (type); }))
1384
1385 /* ~A + 1 -> -A */
1386 (simplify
e19740ae
RB
1387 (plus (convert? (bit_not @0)) integer_each_onep)
1388 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1389 (negate (convert @0))))
1390
1391 /* -A - 1 -> ~A */
1392 (simplify
1393 (minus (convert? (negate @0)) integer_each_onep)
1394 (if (!TYPE_OVERFLOW_TRAPS (type)
1395 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1396 (bit_not (convert @0))))
1397
1398 /* -1 - A -> ~A */
1399 (simplify
1400 (minus integer_all_onesp @0)
bc4315fb 1401 (bit_not @0))
cc7b5acf
RB
1402
1403 /* (T)(P + A) - (T)P -> (T) A */
1404 (for add (plus pointer_plus)
1405 (simplify
2eef1fc1 1406 (minus (convert (add @@0 @1))
cc7b5acf 1407 (convert @0))
09240451 1408 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
cc7b5acf
RB
1409 /* For integer types, if A has a smaller type
1410 than T the result depends on the possible
1411 overflow in P + A.
1412 E.g. T=size_t, A=(unsigned)429497295, P>0.
1413 However, if an overflow in P + A would cause
1414 undefined behavior, we can assume that there
1415 is no overflow. */
1416 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1417 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1418 /* For pointer types, if the conversion of A to the
1419 final type requires a sign- or zero-extension,
1420 then we have to punt - it is not defined which
1421 one is correct. */
1422 || (POINTER_TYPE_P (TREE_TYPE (@0))
1423 && TREE_CODE (@1) == INTEGER_CST
1424 && tree_int_cst_sign_bit (@1) == 0))
a8fc2579
RB
1425 (convert @1))))
1426
1427 /* (T)P - (T)(P + A) -> -(T) A */
1428 (for add (plus pointer_plus)
1429 (simplify
1430 (minus (convert @0)
2eef1fc1 1431 (convert (add @@0 @1)))
a8fc2579
RB
1432 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1433 /* For integer types, if A has a smaller type
1434 than T the result depends on the possible
1435 overflow in P + A.
1436 E.g. T=size_t, A=(unsigned)429497295, P>0.
1437 However, if an overflow in P + A would cause
1438 undefined behavior, we can assume that there
1439 is no overflow. */
1440 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1441 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1442 /* For pointer types, if the conversion of A to the
1443 final type requires a sign- or zero-extension,
1444 then we have to punt - it is not defined which
1445 one is correct. */
1446 || (POINTER_TYPE_P (TREE_TYPE (@0))
1447 && TREE_CODE (@1) == INTEGER_CST
1448 && tree_int_cst_sign_bit (@1) == 0))
1449 (negate (convert @1)))))
1450
1451 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
1452 (for add (plus pointer_plus)
1453 (simplify
2eef1fc1 1454 (minus (convert (add @@0 @1))
a8fc2579
RB
1455 (convert (add @0 @2)))
1456 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1457 /* For integer types, if A has a smaller type
1458 than T the result depends on the possible
1459 overflow in P + A.
1460 E.g. T=size_t, A=(unsigned)429497295, P>0.
1461 However, if an overflow in P + A would cause
1462 undefined behavior, we can assume that there
1463 is no overflow. */
1464 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1465 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1466 /* For pointer types, if the conversion of A to the
1467 final type requires a sign- or zero-extension,
1468 then we have to punt - it is not defined which
1469 one is correct. */
1470 || (POINTER_TYPE_P (TREE_TYPE (@0))
1471 && TREE_CODE (@1) == INTEGER_CST
1472 && tree_int_cst_sign_bit (@1) == 0
1473 && TREE_CODE (@2) == INTEGER_CST
1474 && tree_int_cst_sign_bit (@2) == 0))
1475 (minus (convert @1) (convert @2)))))))
cc7b5acf
RB
1476
1477
0122e8e5 1478/* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
a7f24614 1479
0122e8e5 1480(for minmax (min max FMIN FMAX)
a7f24614
RB
1481 (simplify
1482 (minmax @0 @0)
1483 @0))
4a334cba
RS
1484/* min(max(x,y),y) -> y. */
1485(simplify
1486 (min:c (max:c @0 @1) @1)
1487 @1)
1488/* max(min(x,y),y) -> y. */
1489(simplify
1490 (max:c (min:c @0 @1) @1)
1491 @1)
d657e995
RB
1492/* max(a,-a) -> abs(a). */
1493(simplify
1494 (max:c @0 (negate @0))
1495 (if (TREE_CODE (type) != COMPLEX_TYPE
1496 && (! ANY_INTEGRAL_TYPE_P (type)
1497 || TYPE_OVERFLOW_UNDEFINED (type)))
1498 (abs @0)))
54f84ca9
RB
1499/* min(a,-a) -> -abs(a). */
1500(simplify
1501 (min:c @0 (negate @0))
1502 (if (TREE_CODE (type) != COMPLEX_TYPE
1503 && (! ANY_INTEGRAL_TYPE_P (type)
1504 || TYPE_OVERFLOW_UNDEFINED (type)))
1505 (negate (abs @0))))
a7f24614
RB
1506(simplify
1507 (min @0 @1)
2c2870a1
MG
1508 (switch
1509 (if (INTEGRAL_TYPE_P (type)
1510 && TYPE_MIN_VALUE (type)
1511 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
1512 @1)
1513 (if (INTEGRAL_TYPE_P (type)
1514 && TYPE_MAX_VALUE (type)
1515 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
1516 @0)))
a7f24614
RB
1517(simplify
1518 (max @0 @1)
2c2870a1
MG
1519 (switch
1520 (if (INTEGRAL_TYPE_P (type)
1521 && TYPE_MAX_VALUE (type)
1522 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
1523 @1)
1524 (if (INTEGRAL_TYPE_P (type)
1525 && TYPE_MIN_VALUE (type)
1526 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
1527 @0)))
ad6e4ba8 1528
182f37c9
N
1529/* max (a, a + CST) -> a + CST where CST is positive. */
1530/* max (a, a + CST) -> a where CST is negative. */
1531(simplify
1532 (max:c @0 (plus@2 @0 INTEGER_CST@1))
1533 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1534 (if (tree_int_cst_sgn (@1) > 0)
1535 @2
1536 @0)))
1537
1538/* min (a, a + CST) -> a where CST is positive. */
1539/* min (a, a + CST) -> a + CST where CST is negative. */
1540(simplify
1541 (min:c @0 (plus@2 @0 INTEGER_CST@1))
1542 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1543 (if (tree_int_cst_sgn (@1) > 0)
1544 @0
1545 @2)))
1546
ad6e4ba8
BC
1547/* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
1548 and the outer convert demotes the expression back to x's type. */
1549(for minmax (min max)
1550 (simplify
1551 (convert (minmax@0 (convert @1) INTEGER_CST@2))
ebf41734
BC
1552 (if (INTEGRAL_TYPE_P (type)
1553 && types_match (@1, type) && int_fits_type_p (@2, type)
ad6e4ba8
BC
1554 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
1555 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
1556 (minmax @1 (convert @2)))))
1557
0122e8e5
RS
1558(for minmax (FMIN FMAX)
1559 /* If either argument is NaN, return the other one. Avoid the
1560 transformation if we get (and honor) a signalling NaN. */
1561 (simplify
1562 (minmax:c @0 REAL_CST@1)
1563 (if (real_isnan (TREE_REAL_CST_PTR (@1))
1564 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
1565 @0)))
1566/* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
1567 functions to return the numeric arg if the other one is NaN.
1568 MIN and MAX don't honor that, so only transform if -ffinite-math-only
1569 is set. C99 doesn't require -0.0 to be handled, so we don't have to
1570 worry about it either. */
1571(if (flag_finite_math_only)
1572 (simplify
1573 (FMIN @0 @1)
1574 (min @0 @1))
1575 (simplify
1576 (FMAX @0 @1)
1577 (max @0 @1)))
ce0e66ff
MG
1578/* min (-A, -B) -> -max (A, B) */
1579(for minmax (min max FMIN FMAX)
1580 maxmin (max min FMAX FMIN)
1581 (simplify
1582 (minmax (negate:s@2 @0) (negate:s@3 @1))
1583 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1584 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1585 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1586 (negate (maxmin @0 @1)))))
1587/* MIN (~X, ~Y) -> ~MAX (X, Y)
1588 MAX (~X, ~Y) -> ~MIN (X, Y) */
1589(for minmax (min max)
1590 maxmin (max min)
1591 (simplify
1592 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
1593 (bit_not (maxmin @0 @1))))
a7f24614 1594
b4817bd6
MG
1595/* MIN (X, Y) == X -> X <= Y */
1596(for minmax (min min max max)
1597 cmp (eq ne eq ne )
1598 out (le gt ge lt )
1599 (simplify
1600 (cmp:c (minmax:c @0 @1) @0)
1601 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
1602 (out @0 @1))))
1603/* MIN (X, 5) == 0 -> X == 0
1604 MIN (X, 5) == 7 -> false */
1605(for cmp (eq ne)
1606 (simplify
1607 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
1608 (if (wi::lt_p (@1, @2, TYPE_SIGN (TREE_TYPE (@0))))
1609 { constant_boolean_node (cmp == NE_EXPR, type); }
1610 (if (wi::gt_p (@1, @2, TYPE_SIGN (TREE_TYPE (@0))))
1611 (cmp @0 @2)))))
1612(for cmp (eq ne)
1613 (simplify
1614 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
1615 (if (wi::gt_p (@1, @2, TYPE_SIGN (TREE_TYPE (@0))))
1616 { constant_boolean_node (cmp == NE_EXPR, type); }
1617 (if (wi::lt_p (@1, @2, TYPE_SIGN (TREE_TYPE (@0))))
1618 (cmp @0 @2)))))
1619/* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
1620(for minmax (min min max max min min max max )
1621 cmp (lt le gt ge gt ge lt le )
1622 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
1623 (simplify
1624 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
1625 (comb (cmp @0 @2) (cmp @1 @2))))
1626
a7f24614
RB
1627/* Simplifications of shift and rotates. */
1628
1629(for rotate (lrotate rrotate)
1630 (simplify
1631 (rotate integer_all_onesp@0 @1)
1632 @0))
1633
1634/* Optimize -1 >> x for arithmetic right shifts. */
1635(simplify
1636 (rshift integer_all_onesp@0 @1)
1637 (if (!TYPE_UNSIGNED (type)
1638 && tree_expr_nonnegative_p (@1))
1639 @0))
1640
12085390
N
1641/* Optimize (x >> c) << c into x & (-1<<c). */
1642(simplify
1643 (lshift (rshift @0 INTEGER_CST@1) @1)
1644 (if (wi::ltu_p (@1, element_precision (type)))
1645 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
1646
1647/* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
1648 types. */
1649(simplify
1650 (rshift (lshift @0 INTEGER_CST@1) @1)
1651 (if (TYPE_UNSIGNED (type)
1652 && (wi::ltu_p (@1, element_precision (type))))
1653 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
1654
a7f24614
RB
1655(for shiftrotate (lrotate rrotate lshift rshift)
1656 (simplify
1657 (shiftrotate @0 integer_zerop)
1658 (non_lvalue @0))
1659 (simplify
1660 (shiftrotate integer_zerop@0 @1)
1661 @0)
1662 /* Prefer vector1 << scalar to vector1 << vector2
1663 if vector2 is uniform. */
1664 (for vec (VECTOR_CST CONSTRUCTOR)
1665 (simplify
1666 (shiftrotate @0 vec@1)
1667 (with { tree tem = uniform_vector_p (@1); }
1668 (if (tem)
1669 (shiftrotate @0 { tem; }))))))
1670
165ba2e9
JJ
1671/* Simplify X << Y where Y's low width bits are 0 to X, as only valid
1672 Y is 0. Similarly for X >> Y. */
1673#if GIMPLE
1674(for shift (lshift rshift)
1675 (simplify
1676 (shift @0 SSA_NAME@1)
1677 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
1678 (with {
1679 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
1680 int prec = TYPE_PRECISION (TREE_TYPE (@1));
1681 }
1682 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
1683 @0)))))
1684#endif
1685
a7f24614
RB
1686/* Rewrite an LROTATE_EXPR by a constant into an
1687 RROTATE_EXPR by a new constant. */
1688(simplify
1689 (lrotate @0 INTEGER_CST@1)
23f27839 1690 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
a7f24614
RB
1691 build_int_cst (TREE_TYPE (@1),
1692 element_precision (type)), @1); }))
1693
14ea9f92
RB
1694/* Turn (a OP c1) OP c2 into a OP (c1+c2). */
1695(for op (lrotate rrotate rshift lshift)
1696 (simplify
1697 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
1698 (with { unsigned int prec = element_precision (type); }
1699 (if (wi::ge_p (@1, 0, TYPE_SIGN (TREE_TYPE (@1)))
1700 && wi::lt_p (@1, prec, TYPE_SIGN (TREE_TYPE (@1)))
1701 && wi::ge_p (@2, 0, TYPE_SIGN (TREE_TYPE (@2)))
1702 && wi::lt_p (@2, prec, TYPE_SIGN (TREE_TYPE (@2))))
1703 (with { unsigned int low = wi::add (@1, @2).to_uhwi (); }
1704 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
1705 being well defined. */
1706 (if (low >= prec)
1707 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
8fdc6c67 1708 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
50301115 1709 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
8fdc6c67
RB
1710 { build_zero_cst (type); }
1711 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
1712 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
14ea9f92
RB
1713
1714
01ada710
MP
1715/* ((1 << A) & 1) != 0 -> A == 0
1716 ((1 << A) & 1) == 0 -> A != 0 */
1717(for cmp (ne eq)
1718 icmp (eq ne)
1719 (simplify
1720 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
1721 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
cc7b5acf 1722
f2e609c3
MP
1723/* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
1724 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
1725 if CST2 != 0. */
1726(for cmp (ne eq)
1727 (simplify
1728 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
1729 (with { int cand = wi::ctz (@2) - wi::ctz (@0); }
1730 (if (cand < 0
1731 || (!integer_zerop (@2)
1732 && wi::ne_p (wi::lshift (@0, cand), @2)))
8fdc6c67
RB
1733 { constant_boolean_node (cmp == NE_EXPR, type); }
1734 (if (!integer_zerop (@2)
1735 && wi::eq_p (wi::lshift (@0, cand), @2))
1736 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
f2e609c3 1737
1ffbaa3f
RB
1738/* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
1739 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
1740 if the new mask might be further optimized. */
1741(for shift (lshift rshift)
1742 (simplify
44fc0a51
RB
1743 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
1744 INTEGER_CST@2)
1ffbaa3f
RB
1745 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
1746 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
1747 && tree_fits_uhwi_p (@1)
1748 && tree_to_uhwi (@1) > 0
1749 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
1750 (with
1751 {
1752 unsigned int shiftc = tree_to_uhwi (@1);
1753 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
1754 unsigned HOST_WIDE_INT newmask, zerobits = 0;
1755 tree shift_type = TREE_TYPE (@3);
1756 unsigned int prec;
1757
1758 if (shift == LSHIFT_EXPR)
fecfbfa4 1759 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
1ffbaa3f
RB
1760 else if (shift == RSHIFT_EXPR
1761 && (TYPE_PRECISION (shift_type)
1762 == GET_MODE_PRECISION (TYPE_MODE (shift_type))))
1763 {
1764 prec = TYPE_PRECISION (TREE_TYPE (@3));
1765 tree arg00 = @0;
1766 /* See if more bits can be proven as zero because of
1767 zero extension. */
1768 if (@3 != @0
1769 && TYPE_UNSIGNED (TREE_TYPE (@0)))
1770 {
1771 tree inner_type = TREE_TYPE (@0);
1772 if ((TYPE_PRECISION (inner_type)
1773 == GET_MODE_PRECISION (TYPE_MODE (inner_type)))
1774 && TYPE_PRECISION (inner_type) < prec)
1775 {
1776 prec = TYPE_PRECISION (inner_type);
1777 /* See if we can shorten the right shift. */
1778 if (shiftc < prec)
1779 shift_type = inner_type;
1780 /* Otherwise X >> C1 is all zeros, so we'll optimize
1781 it into (X, 0) later on by making sure zerobits
1782 is all ones. */
1783 }
1784 }
dd4786fe 1785 zerobits = HOST_WIDE_INT_M1U;
1ffbaa3f
RB
1786 if (shiftc < prec)
1787 {
1788 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
1789 zerobits <<= prec - shiftc;
1790 }
1791 /* For arithmetic shift if sign bit could be set, zerobits
1792 can contain actually sign bits, so no transformation is
1793 possible, unless MASK masks them all away. In that
1794 case the shift needs to be converted into logical shift. */
1795 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
1796 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
1797 {
1798 if ((mask & zerobits) == 0)
1799 shift_type = unsigned_type_for (TREE_TYPE (@3));
1800 else
1801 zerobits = 0;
1802 }
1803 }
1804 }
1805 /* ((X << 16) & 0xff00) is (X, 0). */
1806 (if ((mask & zerobits) == mask)
8fdc6c67
RB
1807 { build_int_cst (type, 0); }
1808 (with { newmask = mask | zerobits; }
1809 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
1810 (with
1811 {
1812 /* Only do the transformation if NEWMASK is some integer
1813 mode's mask. */
1814 for (prec = BITS_PER_UNIT;
1815 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
fecfbfa4 1816 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
8fdc6c67
RB
1817 break;
1818 }
1819 (if (prec < HOST_BITS_PER_WIDE_INT
dd4786fe 1820 || newmask == HOST_WIDE_INT_M1U)
8fdc6c67
RB
1821 (with
1822 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
1823 (if (!tree_int_cst_equal (newmaskt, @2))
1824 (if (shift_type != TREE_TYPE (@3))
1825 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
1826 (bit_and @4 { newmaskt; })))))))))))))
1ffbaa3f 1827
84ff66b8
AV
1828/* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
1829 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
98e30e51 1830(for shift (lshift rshift)
84ff66b8
AV
1831 (for bit_op (bit_and bit_xor bit_ior)
1832 (simplify
1833 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
1834 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1835 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
1836 (bit_op (shift (convert @0) @1) { mask; }))))))
98e30e51 1837
ad1d92ab
MM
1838/* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
1839(simplify
1840 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
1841 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
ece46666
MG
1842 && (element_precision (TREE_TYPE (@0))
1843 <= element_precision (TREE_TYPE (@1))
1844 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
ad1d92ab
MM
1845 (with
1846 { tree shift_type = TREE_TYPE (@0); }
1847 (convert (rshift (convert:shift_type @1) @2)))))
1848
1849/* ~(~X >>r Y) -> X >>r Y
1850 ~(~X <<r Y) -> X <<r Y */
1851(for rotate (lrotate rrotate)
1852 (simplify
1853 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
ece46666
MG
1854 (if ((element_precision (TREE_TYPE (@0))
1855 <= element_precision (TREE_TYPE (@1))
1856 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
1857 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
1858 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
ad1d92ab
MM
1859 (with
1860 { tree rotate_type = TREE_TYPE (@0); }
1861 (convert (rotate (convert:rotate_type @1) @2))))))
98e30e51 1862
d4573ffe
RB
1863/* Simplifications of conversions. */
1864
1865/* Basic strip-useless-type-conversions / strip_nops. */
f3582e54 1866(for cvt (convert view_convert float fix_trunc)
d4573ffe
RB
1867 (simplify
1868 (cvt @0)
1869 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
1870 || (GENERIC && type == TREE_TYPE (@0)))
1871 @0)))
1872
1873/* Contract view-conversions. */
1874(simplify
1875 (view_convert (view_convert @0))
1876 (view_convert @0))
1877
1878/* For integral conversions with the same precision or pointer
1879 conversions use a NOP_EXPR instead. */
1880(simplify
1881 (view_convert @0)
1882 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
1883 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1884 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
1885 (convert @0)))
1886
bce8ef71
MG
1887/* Strip inner integral conversions that do not change precision or size, or
1888 zero-extend while keeping the same size (for bool-to-char). */
d4573ffe
RB
1889(simplify
1890 (view_convert (convert@0 @1))
1891 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1892 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
bce8ef71
MG
1893 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
1894 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
1895 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
1896 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
d4573ffe
RB
1897 (view_convert @1)))
1898
1899/* Re-association barriers around constants and other re-association
1900 barriers can be removed. */
1901(simplify
1902 (paren CONSTANT_CLASS_P@0)
1903 @0)
1904(simplify
1905 (paren (paren@1 @0))
1906 @1)
1e51d0a2
RB
1907
1908/* Handle cases of two conversions in a row. */
1909(for ocvt (convert float fix_trunc)
1910 (for icvt (convert float)
1911 (simplify
1912 (ocvt (icvt@1 @0))
1913 (with
1914 {
1915 tree inside_type = TREE_TYPE (@0);
1916 tree inter_type = TREE_TYPE (@1);
1917 int inside_int = INTEGRAL_TYPE_P (inside_type);
1918 int inside_ptr = POINTER_TYPE_P (inside_type);
1919 int inside_float = FLOAT_TYPE_P (inside_type);
09240451 1920 int inside_vec = VECTOR_TYPE_P (inside_type);
1e51d0a2
RB
1921 unsigned int inside_prec = TYPE_PRECISION (inside_type);
1922 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
1923 int inter_int = INTEGRAL_TYPE_P (inter_type);
1924 int inter_ptr = POINTER_TYPE_P (inter_type);
1925 int inter_float = FLOAT_TYPE_P (inter_type);
09240451 1926 int inter_vec = VECTOR_TYPE_P (inter_type);
1e51d0a2
RB
1927 unsigned int inter_prec = TYPE_PRECISION (inter_type);
1928 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
1929 int final_int = INTEGRAL_TYPE_P (type);
1930 int final_ptr = POINTER_TYPE_P (type);
1931 int final_float = FLOAT_TYPE_P (type);
09240451 1932 int final_vec = VECTOR_TYPE_P (type);
1e51d0a2
RB
1933 unsigned int final_prec = TYPE_PRECISION (type);
1934 int final_unsignedp = TYPE_UNSIGNED (type);
1935 }
64d3a1f0
RB
1936 (switch
1937 /* In addition to the cases of two conversions in a row
1938 handled below, if we are converting something to its own
1939 type via an object of identical or wider precision, neither
1940 conversion is needed. */
1941 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
1942 || (GENERIC
1943 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
1944 && (((inter_int || inter_ptr) && final_int)
1945 || (inter_float && final_float))
1946 && inter_prec >= final_prec)
1947 (ocvt @0))
1948
1949 /* Likewise, if the intermediate and initial types are either both
1950 float or both integer, we don't need the middle conversion if the
1951 former is wider than the latter and doesn't change the signedness
1952 (for integers). Avoid this if the final type is a pointer since
36088299 1953 then we sometimes need the middle conversion. */
64d3a1f0
RB
1954 (if (((inter_int && inside_int) || (inter_float && inside_float))
1955 && (final_int || final_float)
1956 && inter_prec >= inside_prec
36088299 1957 && (inter_float || inter_unsignedp == inside_unsignedp))
64d3a1f0
RB
1958 (ocvt @0))
1959
1960 /* If we have a sign-extension of a zero-extended value, we can
1961 replace that by a single zero-extension. Likewise if the
1962 final conversion does not change precision we can drop the
1963 intermediate conversion. */
1964 (if (inside_int && inter_int && final_int
1965 && ((inside_prec < inter_prec && inter_prec < final_prec
1966 && inside_unsignedp && !inter_unsignedp)
1967 || final_prec == inter_prec))
1968 (ocvt @0))
1969
1970 /* Two conversions in a row are not needed unless:
1e51d0a2
RB
1971 - some conversion is floating-point (overstrict for now), or
1972 - some conversion is a vector (overstrict for now), or
1973 - the intermediate type is narrower than both initial and
1974 final, or
1975 - the intermediate type and innermost type differ in signedness,
1976 and the outermost type is wider than the intermediate, or
1977 - the initial type is a pointer type and the precisions of the
1978 intermediate and final types differ, or
1979 - the final type is a pointer type and the precisions of the
1980 initial and intermediate types differ. */
64d3a1f0
RB
1981 (if (! inside_float && ! inter_float && ! final_float
1982 && ! inside_vec && ! inter_vec && ! final_vec
1983 && (inter_prec >= inside_prec || inter_prec >= final_prec)
1984 && ! (inside_int && inter_int
1985 && inter_unsignedp != inside_unsignedp
1986 && inter_prec < final_prec)
1987 && ((inter_unsignedp && inter_prec > inside_prec)
1988 == (final_unsignedp && final_prec > inter_prec))
1989 && ! (inside_ptr && inter_prec != final_prec)
36088299 1990 && ! (final_ptr && inside_prec != inter_prec))
64d3a1f0
RB
1991 (ocvt @0))
1992
1993 /* A truncation to an unsigned type (a zero-extension) should be
1994 canonicalized as bitwise and of a mask. */
1d510e04
JJ
1995 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
1996 && final_int && inter_int && inside_int
64d3a1f0
RB
1997 && final_prec == inside_prec
1998 && final_prec > inter_prec
1999 && inter_unsignedp)
2000 (convert (bit_and @0 { wide_int_to_tree
2001 (inside_type,
2002 wi::mask (inter_prec, false,
2003 TYPE_PRECISION (inside_type))); })))
2004
2005 /* If we are converting an integer to a floating-point that can
2006 represent it exactly and back to an integer, we can skip the
2007 floating-point conversion. */
2008 (if (GIMPLE /* PR66211 */
2009 && inside_int && inter_float && final_int &&
2010 (unsigned) significand_size (TYPE_MODE (inter_type))
2011 >= inside_prec - !inside_unsignedp)
2012 (convert @0)))))))
ea2042ba
RB
2013
2014/* If we have a narrowing conversion to an integral type that is fed by a
2015 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2016 masks off bits outside the final type (and nothing else). */
2017(simplify
2018 (convert (bit_and @0 INTEGER_CST@1))
2019 (if (INTEGRAL_TYPE_P (type)
2020 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2021 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2022 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2023 TYPE_PRECISION (type)), 0))
2024 (convert @0)))
a25454ea
RB
2025
2026
2027/* (X /[ex] A) * A -> X. */
2028(simplify
2eef1fc1
RB
2029 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2030 (convert @0))
eaeba53a 2031
a7f24614
RB
2032/* Canonicalization of binary operations. */
2033
2034/* Convert X + -C into X - C. */
2035(simplify
2036 (plus @0 REAL_CST@1)
2037 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
23f27839 2038 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
a7f24614
RB
2039 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2040 (minus @0 { tem; })))))
2041
6b6aa8d3 2042/* Convert x+x into x*2. */
a7f24614
RB
2043(simplify
2044 (plus @0 @0)
2045 (if (SCALAR_FLOAT_TYPE_P (type))
6b6aa8d3
MG
2046 (mult @0 { build_real (type, dconst2); })
2047 (if (INTEGRAL_TYPE_P (type))
2048 (mult @0 { build_int_cst (type, 2); }))))
a7f24614
RB
2049
2050(simplify
2051 (minus integer_zerop @1)
2052 (negate @1))
2053
2054/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2055 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2056 (-ARG1 + ARG0) reduces to -ARG1. */
2057(simplify
2058 (minus real_zerop@0 @1)
2059 (if (fold_real_zero_addition_p (type, @0, 0))
2060 (negate @1)))
2061
2062/* Transform x * -1 into -x. */
2063(simplify
2064 (mult @0 integer_minus_onep)
2065 (negate @0))
eaeba53a 2066
96285749
RS
2067/* True if we can easily extract the real and imaginary parts of a complex
2068 number. */
2069(match compositional_complex
2070 (convert? (complex @0 @1)))
2071
eaeba53a
RB
2072/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2073(simplify
2074 (complex (realpart @0) (imagpart @0))
2075 @0)
2076(simplify
2077 (realpart (complex @0 @1))
2078 @0)
2079(simplify
2080 (imagpart (complex @0 @1))
2081 @1)
83633539 2082
77c028c5
MG
2083/* Sometimes we only care about half of a complex expression. */
2084(simplify
2085 (realpart (convert?:s (conj:s @0)))
2086 (convert (realpart @0)))
2087(simplify
2088 (imagpart (convert?:s (conj:s @0)))
2089 (convert (negate (imagpart @0))))
2090(for part (realpart imagpart)
2091 (for op (plus minus)
2092 (simplify
2093 (part (convert?:s@2 (op:s @0 @1)))
2094 (convert (op (part @0) (part @1))))))
2095(simplify
2096 (realpart (convert?:s (CEXPI:s @0)))
2097 (convert (COS @0)))
2098(simplify
2099 (imagpart (convert?:s (CEXPI:s @0)))
2100 (convert (SIN @0)))
2101
2102/* conj(conj(x)) -> x */
2103(simplify
2104 (conj (convert? (conj @0)))
2105 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2106 (convert @0)))
2107
2108/* conj({x,y}) -> {x,-y} */
2109(simplify
2110 (conj (convert?:s (complex:s @0 @1)))
2111 (with { tree itype = TREE_TYPE (type); }
2112 (complex (convert:itype @0) (negate (convert:itype @1)))))
83633539
RB
2113
2114/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2115(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2116 (simplify
2117 (bswap (bswap @0))
2118 @0)
2119 (simplify
2120 (bswap (bit_not (bswap @0)))
2121 (bit_not @0))
2122 (for bitop (bit_xor bit_ior bit_and)
2123 (simplify
2124 (bswap (bitop:c (bswap @0) @1))
2125 (bitop @0 (bswap @1)))))
96994de0
RB
2126
2127
2128/* Combine COND_EXPRs and VEC_COND_EXPRs. */
2129
2130/* Simplify constant conditions.
2131 Only optimize constant conditions when the selected branch
2132 has the same type as the COND_EXPR. This avoids optimizing
2133 away "c ? x : throw", where the throw has a void type.
2134 Note that we cannot throw away the fold-const.c variant nor
2135 this one as we depend on doing this transform before possibly
2136 A ? B : B -> B triggers and the fold-const.c one can optimize
2137 0 ? A : B to B even if A has side-effects. Something
2138 genmatch cannot handle. */
2139(simplify
2140 (cond INTEGER_CST@0 @1 @2)
8fdc6c67
RB
2141 (if (integer_zerop (@0))
2142 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2143 @2)
2144 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2145 @1)))
96994de0
RB
2146(simplify
2147 (vec_cond VECTOR_CST@0 @1 @2)
2148 (if (integer_all_onesp (@0))
8fdc6c67
RB
2149 @1
2150 (if (integer_zerop (@0))
2151 @2)))
96994de0 2152
b5481987
BC
2153/* Simplification moved from fold_cond_expr_with_comparison. It may also
2154 be extended. */
e2535011
BC
2155/* This pattern implements two kinds simplification:
2156
2157 Case 1)
2158 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
b5481987
BC
2159 1) Conversions are type widening from smaller type.
2160 2) Const c1 equals to c2 after canonicalizing comparison.
2161 3) Comparison has tree code LT, LE, GT or GE.
2162 This specific pattern is needed when (cmp (convert x) c) may not
2163 be simplified by comparison patterns because of multiple uses of
2164 x. It also makes sense here because simplifying across multiple
e2535011
BC
2165 referred var is always benefitial for complicated cases.
2166
2167 Case 2)
2168 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2169(for cmp (lt le gt ge eq)
b5481987 2170 (simplify
ae22bc5d 2171 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
b5481987
BC
2172 (with
2173 {
2174 tree from_type = TREE_TYPE (@1);
2175 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
ae22bc5d 2176 enum tree_code code = ERROR_MARK;
b5481987 2177
ae22bc5d
BC
2178 if (INTEGRAL_TYPE_P (from_type)
2179 && int_fits_type_p (@2, from_type)
b5481987
BC
2180 && (types_match (c1_type, from_type)
2181 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2182 && (TYPE_UNSIGNED (from_type)
2183 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2184 && (types_match (c2_type, from_type)
2185 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2186 && (TYPE_UNSIGNED (from_type)
2187 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2188 {
ae22bc5d 2189 if (cmp != EQ_EXPR)
b5481987 2190 {
e2535011
BC
2191 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2192 {
2193 /* X <= Y - 1 equals to X < Y. */
ae22bc5d 2194 if (cmp == LE_EXPR)
e2535011
BC
2195 code = LT_EXPR;
2196 /* X > Y - 1 equals to X >= Y. */
ae22bc5d 2197 if (cmp == GT_EXPR)
e2535011
BC
2198 code = GE_EXPR;
2199 }
2200 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2201 {
2202 /* X < Y + 1 equals to X <= Y. */
ae22bc5d 2203 if (cmp == LT_EXPR)
e2535011
BC
2204 code = LE_EXPR;
2205 /* X >= Y + 1 equals to X > Y. */
ae22bc5d 2206 if (cmp == GE_EXPR)
e2535011
BC
2207 code = GT_EXPR;
2208 }
ae22bc5d
BC
2209 if (code != ERROR_MARK
2210 || wi::to_widest (@2) == wi::to_widest (@3))
e2535011 2211 {
ae22bc5d 2212 if (cmp == LT_EXPR || cmp == LE_EXPR)
e2535011 2213 code = MIN_EXPR;
ae22bc5d 2214 if (cmp == GT_EXPR || cmp == GE_EXPR)
e2535011
BC
2215 code = MAX_EXPR;
2216 }
b5481987 2217 }
e2535011 2218 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
ae22bc5d
BC
2219 else if (int_fits_type_p (@3, from_type))
2220 code = EQ_EXPR;
b5481987
BC
2221 }
2222 }
2223 (if (code == MAX_EXPR)
21aaaf1e 2224 (convert (max @1 (convert @2)))
b5481987 2225 (if (code == MIN_EXPR)
21aaaf1e 2226 (convert (min @1 (convert @2)))
e2535011 2227 (if (code == EQ_EXPR)
ae22bc5d 2228 (convert (cond (eq @1 (convert @3))
21aaaf1e 2229 (convert:from_type @3) (convert:from_type @2)))))))))
b5481987 2230
714445ae
BC
2231/* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2232
2233 1) OP is PLUS or MINUS.
2234 2) CMP is LT, LE, GT or GE.
2235 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2236
2237 This pattern also handles special cases like:
2238
2239 A) Operand x is a unsigned to signed type conversion and c1 is
2240 integer zero. In this case,
2241 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2242 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2243 B) Const c1 may not equal to (C3 op' C2). In this case we also
2244 check equality for (c1+1) and (c1-1) by adjusting comparison
2245 code.
2246
2247 TODO: Though signed type is handled by this pattern, it cannot be
2248 simplified at the moment because C standard requires additional
2249 type promotion. In order to match&simplify it here, the IR needs
2250 to be cleaned up by other optimizers, i.e, VRP. */
2251(for op (plus minus)
2252 (for cmp (lt le gt ge)
2253 (simplify
2254 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2255 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2256 (if (types_match (from_type, to_type)
2257 /* Check if it is special case A). */
2258 || (TYPE_UNSIGNED (from_type)
2259 && !TYPE_UNSIGNED (to_type)
2260 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2261 && integer_zerop (@1)
2262 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2263 (with
2264 {
2265 bool overflow = false;
2266 enum tree_code code, cmp_code = cmp;
2267 wide_int real_c1, c1 = @1, c2 = @2, c3 = @3;
2268 signop sgn = TYPE_SIGN (from_type);
2269
2270 /* Handle special case A), given x of unsigned type:
2271 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2272 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2273 if (!types_match (from_type, to_type))
2274 {
2275 if (cmp_code == LT_EXPR)
2276 cmp_code = GT_EXPR;
2277 if (cmp_code == GE_EXPR)
2278 cmp_code = LE_EXPR;
2279 c1 = wi::max_value (to_type);
2280 }
2281 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
2282 compute (c3 op' c2) and check if it equals to c1 with op' being
2283 the inverted operator of op. Make sure overflow doesn't happen
2284 if it is undefined. */
2285 if (op == PLUS_EXPR)
2286 real_c1 = wi::sub (c3, c2, sgn, &overflow);
2287 else
2288 real_c1 = wi::add (c3, c2, sgn, &overflow);
2289
2290 code = cmp_code;
2291 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2292 {
2293 /* Check if c1 equals to real_c1. Boundary condition is handled
2294 by adjusting comparison operation if necessary. */
2295 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2296 && !overflow)
2297 {
2298 /* X <= Y - 1 equals to X < Y. */
2299 if (cmp_code == LE_EXPR)
2300 code = LT_EXPR;
2301 /* X > Y - 1 equals to X >= Y. */
2302 if (cmp_code == GT_EXPR)
2303 code = GE_EXPR;
2304 }
2305 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
2306 && !overflow)
2307 {
2308 /* X < Y + 1 equals to X <= Y. */
2309 if (cmp_code == LT_EXPR)
2310 code = LE_EXPR;
2311 /* X >= Y + 1 equals to X > Y. */
2312 if (cmp_code == GE_EXPR)
2313 code = GT_EXPR;
2314 }
2315 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
2316 {
2317 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
2318 code = MIN_EXPR;
2319 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
2320 code = MAX_EXPR;
2321 }
2322 }
2323 }
2324 (if (code == MAX_EXPR)
2325 (op (max @X { wide_int_to_tree (from_type, real_c1); })
2326 { wide_int_to_tree (from_type, c2); })
2327 (if (code == MIN_EXPR)
2328 (op (min @X { wide_int_to_tree (from_type, real_c1); })
2329 { wide_int_to_tree (from_type, c2); })))))))))
2330
96994de0
RB
2331(for cnd (cond vec_cond)
2332 /* A ? B : (A ? X : C) -> A ? B : C. */
2333 (simplify
2334 (cnd @0 (cnd @0 @1 @2) @3)
2335 (cnd @0 @1 @3))
2336 (simplify
2337 (cnd @0 @1 (cnd @0 @2 @3))
2338 (cnd @0 @1 @3))
24a179f8
RB
2339 /* A ? B : (!A ? C : X) -> A ? B : C. */
2340 /* ??? This matches embedded conditions open-coded because genmatch
2341 would generate matching code for conditions in separate stmts only.
2342 The following is still important to merge then and else arm cases
2343 from if-conversion. */
2344 (simplify
2345 (cnd @0 @1 (cnd @2 @3 @4))
2346 (if (COMPARISON_CLASS_P (@0)
2347 && COMPARISON_CLASS_P (@2)
2348 && invert_tree_comparison
2349 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@2)
2350 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@2, 0), 0)
2351 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@2, 1), 0))
2352 (cnd @0 @1 @3)))
2353 (simplify
2354 (cnd @0 (cnd @1 @2 @3) @4)
2355 (if (COMPARISON_CLASS_P (@0)
2356 && COMPARISON_CLASS_P (@1)
2357 && invert_tree_comparison
2358 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@1)
2359 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@1, 0), 0)
2360 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@1, 1), 0))
2361 (cnd @0 @3 @4)))
96994de0
RB
2362
2363 /* A ? B : B -> B. */
2364 (simplify
2365 (cnd @0 @1 @1)
09240451 2366 @1)
96994de0 2367
09240451
MG
2368 /* !A ? B : C -> A ? C : B. */
2369 (simplify
2370 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
2371 (cnd @0 @2 @1)))
f84e7fd6 2372
a3ca1bc5
RB
2373/* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
2374 return all -1 or all 0 results. */
f43d102e
RS
2375/* ??? We could instead convert all instances of the vec_cond to negate,
2376 but that isn't necessarily a win on its own. */
2377(simplify
a3ca1bc5 2378 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
f43d102e 2379 (if (VECTOR_TYPE_P (type)
4d8989d5 2380 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1))
f43d102e 2381 && (TYPE_MODE (TREE_TYPE (type))
4d8989d5 2382 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
a3ca1bc5 2383 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
f43d102e 2384
a3ca1bc5 2385/* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
f43d102e 2386(simplify
a3ca1bc5 2387 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
f43d102e 2388 (if (VECTOR_TYPE_P (type)
4d8989d5 2389 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1))
f43d102e 2390 && (TYPE_MODE (TREE_TYPE (type))
4d8989d5 2391 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
a3ca1bc5 2392 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
f84e7fd6 2393
2ee05f1e 2394
f84e7fd6
RB
2395/* Simplifications of comparisons. */
2396
24f1db9c
RB
2397/* See if we can reduce the magnitude of a constant involved in a
2398 comparison by changing the comparison code. This is a canonicalization
2399 formerly done by maybe_canonicalize_comparison_1. */
2400(for cmp (le gt)
2401 acmp (lt ge)
2402 (simplify
2403 (cmp @0 INTEGER_CST@1)
2404 (if (tree_int_cst_sgn (@1) == -1)
2405 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))))
2406(for cmp (ge lt)
2407 acmp (gt le)
2408 (simplify
2409 (cmp @0 INTEGER_CST@1)
2410 (if (tree_int_cst_sgn (@1) == 1)
2411 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))))
2412
2413
f84e7fd6
RB
2414/* We can simplify a logical negation of a comparison to the
2415 inverted comparison. As we cannot compute an expression
2416 operator using invert_tree_comparison we have to simulate
2417 that with expression code iteration. */
2418(for cmp (tcc_comparison)
2419 icmp (inverted_tcc_comparison)
2420 ncmp (inverted_tcc_comparison_with_nans)
2421 /* Ideally we'd like to combine the following two patterns
2422 and handle some more cases by using
2423 (logical_inverted_value (cmp @0 @1))
2424 here but for that genmatch would need to "inline" that.
2425 For now implement what forward_propagate_comparison did. */
2426 (simplify
2427 (bit_not (cmp @0 @1))
2428 (if (VECTOR_TYPE_P (type)
2429 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
2430 /* Comparison inversion may be impossible for trapping math,
2431 invert_tree_comparison will tell us. But we can't use
2432 a computed operator in the replacement tree thus we have
2433 to play the trick below. */
2434 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 2435 (cmp, HONOR_NANS (@0)); }
f84e7fd6 2436 (if (ic == icmp)
8fdc6c67
RB
2437 (icmp @0 @1)
2438 (if (ic == ncmp)
2439 (ncmp @0 @1))))))
f84e7fd6 2440 (simplify
09240451
MG
2441 (bit_xor (cmp @0 @1) integer_truep)
2442 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 2443 (cmp, HONOR_NANS (@0)); }
09240451 2444 (if (ic == icmp)
8fdc6c67
RB
2445 (icmp @0 @1)
2446 (if (ic == ncmp)
2447 (ncmp @0 @1))))))
e18c1d66 2448
2ee05f1e
RB
2449/* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
2450 ??? The transformation is valid for the other operators if overflow
2451 is undefined for the type, but performing it here badly interacts
2452 with the transformation in fold_cond_expr_with_comparison which
2453 attempts to synthetize ABS_EXPR. */
2454(for cmp (eq ne)
2455 (simplify
d9ba1961
RB
2456 (cmp (minus@2 @0 @1) integer_zerop)
2457 (if (single_use (@2))
2458 (cmp @0 @1))))
2ee05f1e
RB
2459
2460/* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
2461 signed arithmetic case. That form is created by the compiler
2462 often enough for folding it to be of value. One example is in
2463 computing loop trip counts after Operator Strength Reduction. */
07cdc2b8
RB
2464(for cmp (simple_comparison)
2465 scmp (swapped_simple_comparison)
2ee05f1e 2466 (simplify
bc6e9db4 2467 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
2ee05f1e
RB
2468 /* Handle unfolded multiplication by zero. */
2469 (if (integer_zerop (@1))
8fdc6c67
RB
2470 (cmp @1 @2)
2471 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
bc6e9db4
RB
2472 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2473 && single_use (@3))
8fdc6c67
RB
2474 /* If @1 is negative we swap the sense of the comparison. */
2475 (if (tree_int_cst_sgn (@1) < 0)
2476 (scmp @0 @2)
2477 (cmp @0 @2))))))
2ee05f1e
RB
2478
2479/* Simplify comparison of something with itself. For IEEE
2480 floating-point, we can only do some of these simplifications. */
287f8f17 2481(for cmp (eq ge le)
2ee05f1e
RB
2482 (simplify
2483 (cmp @0 @0)
287f8f17 2484 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
b9407883 2485 || ! HONOR_NANS (@0))
287f8f17
RB
2486 { constant_boolean_node (true, type); }
2487 (if (cmp != EQ_EXPR)
2488 (eq @0 @0)))))
2ee05f1e
RB
2489(for cmp (ne gt lt)
2490 (simplify
2491 (cmp @0 @0)
2492 (if (cmp != NE_EXPR
2493 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
b9407883 2494 || ! HONOR_NANS (@0))
2ee05f1e 2495 { constant_boolean_node (false, type); })))
b5d3d787
RB
2496(for cmp (unle unge uneq)
2497 (simplify
2498 (cmp @0 @0)
2499 { constant_boolean_node (true, type); }))
dd53d197
MG
2500(for cmp (unlt ungt)
2501 (simplify
2502 (cmp @0 @0)
2503 (unordered @0 @0)))
b5d3d787
RB
2504(simplify
2505 (ltgt @0 @0)
2506 (if (!flag_trapping_math)
2507 { constant_boolean_node (false, type); }))
2ee05f1e
RB
2508
2509/* Fold ~X op ~Y as Y op X. */
07cdc2b8 2510(for cmp (simple_comparison)
2ee05f1e 2511 (simplify
7fe996ba
RB
2512 (cmp (bit_not@2 @0) (bit_not@3 @1))
2513 (if (single_use (@2) && single_use (@3))
2514 (cmp @1 @0))))
2ee05f1e
RB
2515
2516/* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
07cdc2b8
RB
2517(for cmp (simple_comparison)
2518 scmp (swapped_simple_comparison)
2ee05f1e 2519 (simplify
7fe996ba
RB
2520 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
2521 (if (single_use (@2)
2522 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
2ee05f1e
RB
2523 (scmp @0 (bit_not @1)))))
2524
07cdc2b8
RB
2525(for cmp (simple_comparison)
2526 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
2527 (simplify
2528 (cmp (convert@2 @0) (convert? @1))
2529 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2530 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
2531 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
2532 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
2533 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
2534 (with
2535 {
2536 tree type1 = TREE_TYPE (@1);
2537 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
2538 {
2539 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
2540 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
2541 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
2542 type1 = float_type_node;
2543 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
2544 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
2545 type1 = double_type_node;
2546 }
2547 tree newtype
2548 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
2549 ? TREE_TYPE (@0) : type1);
2550 }
2551 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
2552 (cmp (convert:newtype @0) (convert:newtype @1))))))
2553
2554 (simplify
2555 (cmp @0 REAL_CST@1)
2556 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
64d3a1f0
RB
2557 (switch
2558 /* a CMP (-0) -> a CMP 0 */
2559 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
2560 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
2561 /* x != NaN is always true, other ops are always false. */
2562 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
2563 && ! HONOR_SNANS (@1))
2564 { constant_boolean_node (cmp == NE_EXPR, type); })
2565 /* Fold comparisons against infinity. */
2566 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
2567 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
2568 (with
2569 {
2570 REAL_VALUE_TYPE max;
2571 enum tree_code code = cmp;
2572 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
2573 if (neg)
2574 code = swap_tree_comparison (code);
2575 }
2576 (switch
2577 /* x > +Inf is always false, if with ignore sNANs. */
2578 (if (code == GT_EXPR
2579 && ! HONOR_SNANS (@0))
2580 { constant_boolean_node (false, type); })
2581 (if (code == LE_EXPR)
2582 /* x <= +Inf is always true, if we don't case about NaNs. */
2583 (if (! HONOR_NANS (@0))
2584 { constant_boolean_node (true, type); }
b0eb889b 2585 /* x <= +Inf is the same as x == x, i.e. !isnan(x). */
64d3a1f0
RB
2586 (eq @0 @0)))
2587 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
2588 (if (code == EQ_EXPR || code == GE_EXPR)
2589 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
2590 (if (neg)
2591 (lt @0 { build_real (TREE_TYPE (@0), max); })
2592 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
2593 /* x < +Inf is always equal to x <= DBL_MAX. */
2594 (if (code == LT_EXPR)
2595 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
2596 (if (neg)
2597 (ge @0 { build_real (TREE_TYPE (@0), max); })
2598 (le @0 { build_real (TREE_TYPE (@0), max); }))))
2599 /* x != +Inf is always equal to !(x > DBL_MAX). */
2600 (if (code == NE_EXPR)
2601 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
2602 (if (! HONOR_NANS (@0))
2603 (if (neg)
2604 (ge @0 { build_real (TREE_TYPE (@0), max); })
2605 (le @0 { build_real (TREE_TYPE (@0), max); }))
2606 (if (neg)
2607 (bit_xor (lt @0 { build_real (TREE_TYPE (@0), max); })
2608 { build_one_cst (type); })
2609 (bit_xor (gt @0 { build_real (TREE_TYPE (@0), max); })
2610 { build_one_cst (type); }))))))))))
07cdc2b8
RB
2611
2612 /* If this is a comparison of a real constant with a PLUS_EXPR
2613 or a MINUS_EXPR of a real constant, we can convert it into a
2614 comparison with a revised real constant as long as no overflow
2615 occurs when unsafe_math_optimizations are enabled. */
2616 (if (flag_unsafe_math_optimizations)
2617 (for op (plus minus)
2618 (simplify
2619 (cmp (op @0 REAL_CST@1) REAL_CST@2)
2620 (with
2621 {
2622 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
2623 TREE_TYPE (@1), @2, @1);
2624 }
f980c9a2 2625 (if (tem && !TREE_OVERFLOW (tem))
07cdc2b8
RB
2626 (cmp @0 { tem; }))))))
2627
2628 /* Likewise, we can simplify a comparison of a real constant with
2629 a MINUS_EXPR whose first operand is also a real constant, i.e.
2630 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
2631 floating-point types only if -fassociative-math is set. */
2632 (if (flag_associative_math)
2633 (simplify
0409237b 2634 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
07cdc2b8 2635 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
f980c9a2 2636 (if (tem && !TREE_OVERFLOW (tem))
07cdc2b8
RB
2637 (cmp { tem; } @1)))))
2638
2639 /* Fold comparisons against built-in math functions. */
2640 (if (flag_unsafe_math_optimizations
2641 && ! flag_errno_math)
2642 (for sq (SQRT)
2643 (simplify
2644 (cmp (sq @0) REAL_CST@1)
64d3a1f0
RB
2645 (switch
2646 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2647 (switch
2648 /* sqrt(x) < y is always false, if y is negative. */
2649 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
8fdc6c67 2650 { constant_boolean_node (false, type); })
64d3a1f0
RB
2651 /* sqrt(x) > y is always true, if y is negative and we
2652 don't care about NaNs, i.e. negative values of x. */
2653 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
2654 { constant_boolean_node (true, type); })
2655 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
2656 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
c53233c6
RS
2657 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
2658 (switch
2659 /* sqrt(x) < 0 is always false. */
2660 (if (cmp == LT_EXPR)
2661 { constant_boolean_node (false, type); })
2662 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
2663 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
2664 { constant_boolean_node (true, type); })
2665 /* sqrt(x) <= 0 -> x == 0. */
2666 (if (cmp == LE_EXPR)
2667 (eq @0 @1))
2668 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
2669 == or !=. In the last case:
2670
2671 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
2672
2673 if x is negative or NaN. Due to -funsafe-math-optimizations,
2674 the results for other x follow from natural arithmetic. */
2675 (cmp @0 @1)))
64d3a1f0
RB
2676 (if (cmp == GT_EXPR || cmp == GE_EXPR)
2677 (with
2678 {
2679 REAL_VALUE_TYPE c2;
5c88ea94
RS
2680 real_arithmetic (&c2, MULT_EXPR,
2681 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
64d3a1f0
RB
2682 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
2683 }
2684 (if (REAL_VALUE_ISINF (c2))
2685 /* sqrt(x) > y is x == +Inf, when y is very large. */
2686 (if (HONOR_INFINITIES (@0))
2687 (eq @0 { build_real (TREE_TYPE (@0), c2); })
2688 { constant_boolean_node (false, type); })
2689 /* sqrt(x) > c is the same as x > c*c. */
2690 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
2691 (if (cmp == LT_EXPR || cmp == LE_EXPR)
2692 (with
2693 {
2694 REAL_VALUE_TYPE c2;
5c88ea94
RS
2695 real_arithmetic (&c2, MULT_EXPR,
2696 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
64d3a1f0
RB
2697 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
2698 }
2699 (if (REAL_VALUE_ISINF (c2))
2700 (switch
2701 /* sqrt(x) < y is always true, when y is a very large
2702 value and we don't care about NaNs or Infinities. */
2703 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
2704 { constant_boolean_node (true, type); })
2705 /* sqrt(x) < y is x != +Inf when y is very large and we
2706 don't care about NaNs. */
2707 (if (! HONOR_NANS (@0))
2708 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
2709 /* sqrt(x) < y is x >= 0 when y is very large and we
2710 don't care about Infinities. */
2711 (if (! HONOR_INFINITIES (@0))
2712 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
2713 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
2714 (if (GENERIC)
2715 (truth_andif
2716 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
2717 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
2718 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
2719 (if (! HONOR_NANS (@0))
2720 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
2721 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
2722 (if (GENERIC)
2723 (truth_andif
2724 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
0ca2e7f7
PK
2725 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
2726 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
2727 (simplify
2728 (cmp (sq @0) (sq @1))
2729 (if (! HONOR_NANS (@0))
2730 (cmp @0 @1))))))
2ee05f1e 2731
40fd269a
MG
2732/* Fold A /[ex] B CMP C to A CMP B * C. */
2733(for cmp (eq ne)
2734 (simplify
2735 (cmp (exact_div @0 @1) INTEGER_CST@2)
2736 (if (!integer_zerop (@1))
2737 (if (wi::eq_p (@2, 0))
2738 (cmp @0 @2)
2739 (if (TREE_CODE (@1) == INTEGER_CST)
2740 (with
2741 {
2742 bool ovf;
2743 wide_int prod = wi::mul (@2, @1, TYPE_SIGN (TREE_TYPE (@1)), &ovf);
2744 }
2745 (if (ovf)
2746 { constant_boolean_node (cmp == NE_EXPR, type); }
2747 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
2748(for cmp (lt le gt ge)
2749 (simplify
2750 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
2751 (if (wi::gt_p (@1, 0, TYPE_SIGN (TREE_TYPE (@1))))
2752 (with
2753 {
2754 bool ovf;
2755 wide_int prod = wi::mul (@2, @1, TYPE_SIGN (TREE_TYPE (@1)), &ovf);
2756 }
2757 (if (ovf)
2758 { constant_boolean_node (wi::lt_p (@2, 0, TYPE_SIGN (TREE_TYPE (@2)))
2759 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
2760 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
2761
cfdc4f33
MG
2762/* Unordered tests if either argument is a NaN. */
2763(simplify
2764 (bit_ior (unordered @0 @0) (unordered @1 @1))
aea417d7 2765 (if (types_match (@0, @1))
cfdc4f33 2766 (unordered @0 @1)))
257b01ba
MG
2767(simplify
2768 (bit_and (ordered @0 @0) (ordered @1 @1))
2769 (if (types_match (@0, @1))
2770 (ordered @0 @1)))
cfdc4f33
MG
2771(simplify
2772 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
2773 @2)
257b01ba
MG
2774(simplify
2775 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
2776 @2)
e18c1d66 2777
90c6f26c
RB
2778/* Simple range test simplifications. */
2779/* A < B || A >= B -> true. */
5d30c58d
RB
2780(for test1 (lt le le le ne ge)
2781 test2 (ge gt ge ne eq ne)
90c6f26c
RB
2782 (simplify
2783 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
2784 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2785 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
2786 { constant_boolean_node (true, type); })))
2787/* A < B && A >= B -> false. */
2788(for test1 (lt lt lt le ne eq)
2789 test2 (ge gt eq gt eq gt)
2790 (simplify
2791 (bit_and:c (test1 @0 @1) (test2 @0 @1))
2792 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2793 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
2794 { constant_boolean_node (false, type); })))
2795
9ebc3467
YG
2796/* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
2797 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
2798
2799 Note that comparisons
2800 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
2801 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
2802 will be canonicalized to above so there's no need to
2803 consider them here.
2804 */
2805
2806(for cmp (le gt)
2807 eqcmp (eq ne)
2808 (simplify
2809 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
2810 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2811 (with
2812 {
2813 tree ty = TREE_TYPE (@0);
2814 unsigned prec = TYPE_PRECISION (ty);
2815 wide_int mask = wi::to_wide (@2, prec);
2816 wide_int rhs = wi::to_wide (@3, prec);
2817 signop sgn = TYPE_SIGN (ty);
2818 }
2819 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
2820 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
2821 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
2822 { build_zero_cst (ty); }))))))
2823
534bd33b
MG
2824/* -A CMP -B -> B CMP A. */
2825(for cmp (tcc_comparison)
2826 scmp (swapped_tcc_comparison)
2827 (simplify
2828 (cmp (negate @0) (negate @1))
2829 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2830 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2831 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2832 (scmp @0 @1)))
2833 (simplify
2834 (cmp (negate @0) CONSTANT_CLASS_P@1)
2835 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2836 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2837 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
23f27839 2838 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
534bd33b
MG
2839 (if (tem && !TREE_OVERFLOW (tem))
2840 (scmp @0 { tem; }))))))
2841
b0eb889b
MG
2842/* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
2843(for op (eq ne)
2844 (simplify
2845 (op (abs @0) zerop@1)
2846 (op @0 @1)))
2847
79d4f7c6
RB
2848/* From fold_sign_changed_comparison and fold_widened_comparison. */
2849(for cmp (simple_comparison)
2850 (simplify
2851 (cmp (convert@0 @00) (convert?@1 @10))
452ec2a5 2852 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
79d4f7c6
RB
2853 /* Disable this optimization if we're casting a function pointer
2854 type on targets that require function pointer canonicalization. */
2855 && !(targetm.have_canonicalize_funcptr_for_compare ()
2856 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
2fde61e3
RB
2857 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
2858 && single_use (@0))
79d4f7c6
RB
2859 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
2860 && (TREE_CODE (@10) == INTEGER_CST
2861 || (@1 != @10 && types_match (TREE_TYPE (@10), TREE_TYPE (@00))))
2862 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
2863 || cmp == NE_EXPR
2864 || cmp == EQ_EXPR)
2865 && (POINTER_TYPE_P (TREE_TYPE (@00)) == POINTER_TYPE_P (TREE_TYPE (@0))))
2866 /* ??? The special-casing of INTEGER_CST conversion was in the original
2867 code and here to avoid a spurious overflow flag on the resulting
2868 constant which fold_convert produces. */
2869 (if (TREE_CODE (@1) == INTEGER_CST)
2870 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
2871 TREE_OVERFLOW (@1)); })
2872 (cmp @00 (convert @1)))
2873
2874 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
2875 /* If possible, express the comparison in the shorter mode. */
2876 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
7fd82d52
PP
2877 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
2878 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
2879 && TYPE_UNSIGNED (TREE_TYPE (@00))))
79d4f7c6
RB
2880 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
2881 || ((TYPE_PRECISION (TREE_TYPE (@00))
2882 >= TYPE_PRECISION (TREE_TYPE (@10)))
2883 && (TYPE_UNSIGNED (TREE_TYPE (@00))
2884 == TYPE_UNSIGNED (TREE_TYPE (@10))))
2885 || (TREE_CODE (@10) == INTEGER_CST
f6c15759 2886 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
79d4f7c6
RB
2887 && int_fits_type_p (@10, TREE_TYPE (@00)))))
2888 (cmp @00 (convert @10))
2889 (if (TREE_CODE (@10) == INTEGER_CST
f6c15759 2890 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
79d4f7c6
RB
2891 && !int_fits_type_p (@10, TREE_TYPE (@00)))
2892 (with
2893 {
2894 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
2895 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
2896 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
2897 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
2898 }
2899 (if (above || below)
2900 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
2901 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
2902 (if (cmp == LT_EXPR || cmp == LE_EXPR)
2903 { constant_boolean_node (above ? true : false, type); }
2904 (if (cmp == GT_EXPR || cmp == GE_EXPR)
2905 { constant_boolean_node (above ? false : true, type); }))))))))))))
66e1cacf 2906
96a111a3
RB
2907(for cmp (eq ne)
2908 /* A local variable can never be pointed to by
2909 the default SSA name of an incoming parameter.
2910 SSA names are canonicalized to 2nd place. */
2911 (simplify
2912 (cmp addr@0 SSA_NAME@1)
2913 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
2914 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
2915 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
2916 (if (TREE_CODE (base) == VAR_DECL
2917 && auto_var_in_fn_p (base, current_function_decl))
2918 (if (cmp == NE_EXPR)
2919 { constant_boolean_node (true, type); }
2920 { constant_boolean_node (false, type); }))))))
2921
66e1cacf
RB
2922/* Equality compare simplifications from fold_binary */
2923(for cmp (eq ne)
2924
2925 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
2926 Similarly for NE_EXPR. */
2927 (simplify
2928 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
2929 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
2930 && wi::bit_and_not (@1, @2) != 0)
2931 { constant_boolean_node (cmp == NE_EXPR, type); }))
2932
2933 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
2934 (simplify
2935 (cmp (bit_xor @0 @1) integer_zerop)
2936 (cmp @0 @1))
2937
2938 /* (X ^ Y) == Y becomes X == 0.
2939 Likewise (X ^ Y) == X becomes Y == 0. */
2940 (simplify
99e943a2 2941 (cmp:c (bit_xor:c @0 @1) @0)
66e1cacf
RB
2942 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
2943
2944 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
2945 (simplify
2946 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
2947 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
d057c866 2948 (cmp @0 (bit_xor @1 (convert @2)))))
d057c866
RB
2949
2950 (simplify
2951 (cmp (convert? addr@0) integer_zerop)
2952 (if (tree_single_nonzero_warnv_p (@0, NULL))
2953 { constant_boolean_node (cmp == NE_EXPR, type); })))
2954
b0eb889b
MG
2955/* If we have (A & C) == C where C is a power of 2, convert this into
2956 (A & C) != 0. Similarly for NE_EXPR. */
2957(for cmp (eq ne)
2958 icmp (ne eq)
2959 (simplify
2960 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
2961 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
2962
519e0faa
PB
2963/* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
2964 convert this into a shift followed by ANDing with D. */
2965(simplify
2966 (cond
2967 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
2968 integer_pow2p@2 integer_zerop)
2969 (with {
2970 int shift = wi::exact_log2 (@2) - wi::exact_log2 (@1);
2971 }
2972 (if (shift > 0)
2973 (bit_and
2974 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
2975 (bit_and
2976 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); })) @2))))
2977
b0eb889b
MG
2978/* If we have (A & C) != 0 where C is the sign bit of A, convert
2979 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
2980(for cmp (eq ne)
2981 ncmp (ge lt)
2982 (simplify
2983 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
2984 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2985 && (TYPE_PRECISION (TREE_TYPE (@0))
2986 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
2987 && element_precision (@2) >= element_precision (@0)
2988 && wi::only_sign_bit_p (@1, element_precision (@0)))
2989 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
2990 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
2991
519e0faa 2992/* If we have A < 0 ? C : 0 where C is a power of 2, convert
c0140e3c 2993 this into a right shift or sign extension followed by ANDing with C. */
519e0faa
PB
2994(simplify
2995 (cond
2996 (lt @0 integer_zerop)
2997 integer_pow2p@1 integer_zerop)
c0140e3c
JJ
2998 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
2999 (with {
519e0faa 3000 int shift = element_precision (@0) - wi::exact_log2 (@1) - 1;
c0140e3c
JJ
3001 }
3002 (if (shift >= 0)
3003 (bit_and
3004 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3005 @1)
3006 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3007 sign extension followed by AND with C will achieve the effect. */
3008 (bit_and (convert @0) @1)))))
519e0faa 3009
68aba1f6
RB
3010/* When the addresses are not directly of decls compare base and offset.
3011 This implements some remaining parts of fold_comparison address
3012 comparisons but still no complete part of it. Still it is good
3013 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3014(for cmp (simple_comparison)
3015 (simplify
f501d5cd 3016 (cmp (convert1?@2 addr@0) (convert2? addr@1))
68aba1f6
RB
3017 (with
3018 {
3019 HOST_WIDE_INT off0, off1;
3020 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3021 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3022 if (base0 && TREE_CODE (base0) == MEM_REF)
3023 {
3024 off0 += mem_ref_offset (base0).to_short_addr ();
3025 base0 = TREE_OPERAND (base0, 0);
3026 }
3027 if (base1 && TREE_CODE (base1) == MEM_REF)
3028 {
3029 off1 += mem_ref_offset (base1).to_short_addr ();
3030 base1 = TREE_OPERAND (base1, 0);
3031 }
3032 }
da571fda
RB
3033 (if (base0 && base1)
3034 (with
3035 {
aad88aed 3036 int equal = 2;
70f40fea
JJ
3037 /* Punt in GENERIC on variables with value expressions;
3038 the value expressions might point to fields/elements
3039 of other vars etc. */
3040 if (GENERIC
3041 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3042 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3043 ;
3044 else if (decl_in_symtab_p (base0)
3045 && decl_in_symtab_p (base1))
da571fda
RB
3046 equal = symtab_node::get_create (base0)
3047 ->equal_address_to (symtab_node::get_create (base1));
c3bea076
RB
3048 else if ((DECL_P (base0)
3049 || TREE_CODE (base0) == SSA_NAME
3050 || TREE_CODE (base0) == STRING_CST)
3051 && (DECL_P (base1)
3052 || TREE_CODE (base1) == SSA_NAME
3053 || TREE_CODE (base1) == STRING_CST))
aad88aed 3054 equal = (base0 == base1);
da571fda
RB
3055 }
3056 (if (equal == 1
3057 && (cmp == EQ_EXPR || cmp == NE_EXPR
3058 /* If the offsets are equal we can ignore overflow. */
3059 || off0 == off1
3060 || POINTER_TYPE_OVERFLOW_UNDEFINED
c3bea076 3061 /* Or if we compare using pointers to decls or strings. */
da571fda 3062 || (POINTER_TYPE_P (TREE_TYPE (@2))
c3bea076 3063 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
da571fda
RB
3064 (switch
3065 (if (cmp == EQ_EXPR)
3066 { constant_boolean_node (off0 == off1, type); })
3067 (if (cmp == NE_EXPR)
3068 { constant_boolean_node (off0 != off1, type); })
3069 (if (cmp == LT_EXPR)
3070 { constant_boolean_node (off0 < off1, type); })
3071 (if (cmp == LE_EXPR)
3072 { constant_boolean_node (off0 <= off1, type); })
3073 (if (cmp == GE_EXPR)
3074 { constant_boolean_node (off0 >= off1, type); })
3075 (if (cmp == GT_EXPR)
3076 { constant_boolean_node (off0 > off1, type); }))
3077 (if (equal == 0
3078 && DECL_P (base0) && DECL_P (base1)
3079 /* If we compare this as integers require equal offset. */
3080 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
3081 || off0 == off1))
3082 (switch
3083 (if (cmp == EQ_EXPR)
3084 { constant_boolean_node (false, type); })
3085 (if (cmp == NE_EXPR)
3086 { constant_boolean_node (true, type); })))))))))
66e1cacf 3087
98998245
RB
3088/* Simplify pointer equality compares using PTA. */
3089(for neeq (ne eq)
3090 (simplify
3091 (neeq @0 @1)
3092 (if (POINTER_TYPE_P (TREE_TYPE (@0))
3093 && ptrs_compare_unequal (@0, @1))
3094 { neeq == EQ_EXPR ? boolean_false_node : boolean_true_node; })))
3095
8f63caf6 3096/* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
467719fb
PK
3097 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3098 Disable the transform if either operand is pointer to function.
3099 This broke pr22051-2.c for arm where function pointer
3100 canonicalizaion is not wanted. */
1c0a8806 3101
8f63caf6
RB
3102(for cmp (ne eq)
3103 (simplify
3104 (cmp (convert @0) INTEGER_CST@1)
467719fb
PK
3105 (if ((POINTER_TYPE_P (TREE_TYPE (@0)) && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3106 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3107 || (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && POINTER_TYPE_P (TREE_TYPE (@1))
3108 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
8f63caf6
RB
3109 (cmp @0 (convert @1)))))
3110
21aacde4
RB
3111/* Non-equality compare simplifications from fold_binary */
3112(for cmp (lt gt le ge)
3113 /* Comparisons with the highest or lowest possible integer of
3114 the specified precision will have known values. */
3115 (simplify
3116 (cmp (convert?@2 @0) INTEGER_CST@1)
3117 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3118 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3119 (with
3120 {
3121 tree arg1_type = TREE_TYPE (@1);
3122 unsigned int prec = TYPE_PRECISION (arg1_type);
3123 wide_int max = wi::max_value (arg1_type);
3124 wide_int signed_max = wi::max_value (prec, SIGNED);
3125 wide_int min = wi::min_value (arg1_type);
3126 }
3127 (switch
3128 (if (wi::eq_p (@1, max))
3129 (switch
3130 (if (cmp == GT_EXPR)
3131 { constant_boolean_node (false, type); })
3132 (if (cmp == GE_EXPR)
3133 (eq @2 @1))
3134 (if (cmp == LE_EXPR)
3135 { constant_boolean_node (true, type); })
3136 (if (cmp == LT_EXPR)
3137 (ne @2 @1))))
21aacde4
RB
3138 (if (wi::eq_p (@1, min))
3139 (switch
3140 (if (cmp == LT_EXPR)
3141 { constant_boolean_node (false, type); })
3142 (if (cmp == LE_EXPR)
3143 (eq @2 @1))
3144 (if (cmp == GE_EXPR)
3145 { constant_boolean_node (true, type); })
3146 (if (cmp == GT_EXPR)
3147 (ne @2 @1))))
9bc22d19
RB
3148 (if (wi::eq_p (@1, max - 1))
3149 (switch
3150 (if (cmp == GT_EXPR)
3151 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))
3152 (if (cmp == LE_EXPR)
3153 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))))
21aacde4
RB
3154 (if (wi::eq_p (@1, min + 1))
3155 (switch
3156 (if (cmp == GE_EXPR)
3157 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))
3158 (if (cmp == LT_EXPR)
3159 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))))
3160 (if (wi::eq_p (@1, signed_max)
3161 && TYPE_UNSIGNED (arg1_type)
3162 /* We will flip the signedness of the comparison operator
3163 associated with the mode of @1, so the sign bit is
3164 specified by this mode. Check that @1 is the signed
3165 max associated with this sign bit. */
3166 && prec == GET_MODE_PRECISION (TYPE_MODE (arg1_type))
3167 /* signed_type does not work on pointer types. */
3168 && INTEGRAL_TYPE_P (arg1_type))
3169 /* The following case also applies to X < signed_max+1
3170 and X >= signed_max+1 because previous transformations. */
3171 (if (cmp == LE_EXPR || cmp == GT_EXPR)
3172 (with { tree st = signed_type_for (arg1_type); }
3173 (if (cmp == LE_EXPR)
3174 (ge (convert:st @0) { build_zero_cst (st); })
3175 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
3176
b5d3d787
RB
3177(for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
3178 /* If the second operand is NaN, the result is constant. */
3179 (simplify
3180 (cmp @0 REAL_CST@1)
3181 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3182 && (cmp != LTGT_EXPR || ! flag_trapping_math))
50301115 3183 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
b5d3d787 3184 ? false : true, type); })))
21aacde4 3185
55cf3946
RB
3186/* bool_var != 0 becomes bool_var. */
3187(simplify
b5d3d787 3188 (ne @0 integer_zerop)
55cf3946
RB
3189 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3190 && types_match (type, TREE_TYPE (@0)))
3191 (non_lvalue @0)))
3192/* bool_var == 1 becomes bool_var. */
3193(simplify
b5d3d787 3194 (eq @0 integer_onep)
55cf3946
RB
3195 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3196 && types_match (type, TREE_TYPE (@0)))
3197 (non_lvalue @0)))
b5d3d787
RB
3198/* Do not handle
3199 bool_var == 0 becomes !bool_var or
3200 bool_var != 1 becomes !bool_var
3201 here because that only is good in assignment context as long
3202 as we require a tcc_comparison in GIMPLE_CONDs where we'd
3203 replace if (x == 0) with tem = ~x; if (tem != 0) which is
3204 clearly less optimal and which we'll transform again in forwprop. */
55cf3946 3205
ca1206be
MG
3206/* When one argument is a constant, overflow detection can be simplified.
3207 Currently restricted to single use so as not to interfere too much with
3208 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
3209 A + CST CMP A -> A CMP' CST' */
3210(for cmp (lt le ge gt)
3211 out (gt gt le le)
3212 (simplify
a8e9f9a3 3213 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
ca1206be
MG
3214 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3215 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
3216 && wi::ne_p (@1, 0)
3217 && single_use (@2))
3218 (out @0 { wide_int_to_tree (TREE_TYPE (@0), wi::max_value
3219 (TYPE_PRECISION (TREE_TYPE (@0)), UNSIGNED) - @1); }))))
3220
3563f78f
MG
3221/* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
3222 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
3223 expects the long form, so we restrict the transformation for now. */
3224(for cmp (gt le)
3225 (simplify
a8e9f9a3 3226 (cmp:c (minus@2 @0 @1) @0)
3563f78f
MG
3227 (if (single_use (@2)
3228 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3229 && TYPE_UNSIGNED (TREE_TYPE (@0))
3230 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3231 (cmp @1 @0))))
3563f78f
MG
3232
3233/* Testing for overflow is unnecessary if we already know the result. */
3563f78f
MG
3234/* A - B > A */
3235(for cmp (gt le)
3236 out (ne eq)
3237 (simplify
a8e9f9a3 3238 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3563f78f
MG
3239 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3240 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3241 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3242/* A + B < A */
3243(for cmp (lt ge)
3244 out (ne eq)
3245 (simplify
a8e9f9a3 3246 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3563f78f
MG
3247 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3248 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3249 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3250
603aeb87 3251/* For unsigned operands, -1 / B < A checks whether A * B would overflow.
0557293f 3252 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
0557293f
AM
3253(for cmp (lt ge)
3254 out (ne eq)
3255 (simplify
603aeb87 3256 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
0557293f
AM
3257 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
3258 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
3259 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
55cf3946 3260
53f3cd25
RS
3261/* Simplification of math builtins. These rules must all be optimizations
3262 as well as IL simplifications. If there is a possibility that the new
3263 form could be a pessimization, the rule should go in the canonicalization
3264 section that follows this one.
e18c1d66 3265
53f3cd25
RS
3266 Rules can generally go in this section if they satisfy one of
3267 the following:
3268
3269 - the rule describes an identity
3270
3271 - the rule replaces calls with something as simple as addition or
3272 multiplication
3273
3274 - the rule contains unary calls only and simplifies the surrounding
3275 arithmetic. (The idea here is to exclude non-unary calls in which
3276 one operand is constant and in which the call is known to be cheap
3277 when the operand has that value.) */
52c6378a 3278
53f3cd25 3279(if (flag_unsafe_math_optimizations)
52c6378a
N
3280 /* Simplify sqrt(x) * sqrt(x) -> x. */
3281 (simplify
3282 (mult (SQRT@1 @0) @1)
3283 (if (!HONOR_SNANS (type))
3284 @0))
3285
35401640
N
3286 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
3287 (for root (SQRT CBRT)
3288 (simplify
3289 (mult (root:s @0) (root:s @1))
3290 (root (mult @0 @1))))
3291
35401640
N
3292 /* Simplify expN(x) * expN(y) -> expN(x+y). */
3293 (for exps (EXP EXP2 EXP10 POW10)
3294 (simplify
3295 (mult (exps:s @0) (exps:s @1))
3296 (exps (plus @0 @1))))
3297
52c6378a 3298 /* Simplify a/root(b/c) into a*root(c/b). */
35401640
N
3299 (for root (SQRT CBRT)
3300 (simplify
3301 (rdiv @0 (root:s (rdiv:s @1 @2)))
3302 (mult @0 (root (rdiv @2 @1)))))
3303
3304 /* Simplify x/expN(y) into x*expN(-y). */
3305 (for exps (EXP EXP2 EXP10 POW10)
3306 (simplify
3307 (rdiv @0 (exps:s @1))
3308 (mult @0 (exps (negate @1)))))
52c6378a 3309
eee7b6c4
RB
3310 (for logs (LOG LOG2 LOG10 LOG10)
3311 exps (EXP EXP2 EXP10 POW10)
8acda9b2 3312 /* logN(expN(x)) -> x. */
e18c1d66
RB
3313 (simplify
3314 (logs (exps @0))
8acda9b2
RS
3315 @0)
3316 /* expN(logN(x)) -> x. */
3317 (simplify
3318 (exps (logs @0))
3319 @0))
53f3cd25 3320
e18c1d66
RB
3321 /* Optimize logN(func()) for various exponential functions. We
3322 want to determine the value "x" and the power "exponent" in
3323 order to transform logN(x**exponent) into exponent*logN(x). */
eee7b6c4
RB
3324 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
3325 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
e18c1d66
RB
3326 (simplify
3327 (logs (exps @0))
c9e926ce
RS
3328 (if (SCALAR_FLOAT_TYPE_P (type))
3329 (with {
3330 tree x;
3331 switch (exps)
3332 {
3333 CASE_CFN_EXP:
3334 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
3335 x = build_real_truncate (type, dconst_e ());
3336 break;
3337 CASE_CFN_EXP2:
3338 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
3339 x = build_real (type, dconst2);
3340 break;
3341 CASE_CFN_EXP10:
3342 CASE_CFN_POW10:
3343 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
3344 {
3345 REAL_VALUE_TYPE dconst10;
3346 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
3347 x = build_real (type, dconst10);
3348 }
3349 break;
3350 default:
3351 gcc_unreachable ();
3352 }
3353 }
3354 (mult (logs { x; }) @0)))))
53f3cd25 3355
e18c1d66
RB
3356 (for logs (LOG LOG
3357 LOG2 LOG2
3358 LOG10 LOG10)
3359 exps (SQRT CBRT)
3360 (simplify
3361 (logs (exps @0))
c9e926ce
RS
3362 (if (SCALAR_FLOAT_TYPE_P (type))
3363 (with {
3364 tree x;
3365 switch (exps)
3366 {
3367 CASE_CFN_SQRT:
3368 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
3369 x = build_real (type, dconsthalf);
3370 break;
3371 CASE_CFN_CBRT:
3372 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
3373 x = build_real_truncate (type, dconst_third ());
3374 break;
3375 default:
3376 gcc_unreachable ();
3377 }
3378 }
3379 (mult { x; } (logs @0))))))
53f3cd25
RS
3380
3381 /* logN(pow(x,exponent)) -> exponent*logN(x). */
e18c1d66
RB
3382 (for logs (LOG LOG2 LOG10)
3383 pows (POW)
3384 (simplify
3385 (logs (pows @0 @1))
53f3cd25
RS
3386 (mult @1 (logs @0))))
3387
3388 (for sqrts (SQRT)
3389 cbrts (CBRT)
b4838d77 3390 pows (POW)
53f3cd25
RS
3391 exps (EXP EXP2 EXP10 POW10)
3392 /* sqrt(expN(x)) -> expN(x*0.5). */
3393 (simplify
3394 (sqrts (exps @0))
3395 (exps (mult @0 { build_real (type, dconsthalf); })))
3396 /* cbrt(expN(x)) -> expN(x/3). */
3397 (simplify
3398 (cbrts (exps @0))
b4838d77
RS
3399 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
3400 /* pow(expN(x), y) -> expN(x*y). */
3401 (simplify
3402 (pows (exps @0) @1)
3403 (exps (mult @0 @1))))
cfed37a0
RS
3404
3405 /* tan(atan(x)) -> x. */
3406 (for tans (TAN)
3407 atans (ATAN)
3408 (simplify
3409 (tans (atans @0))
3410 @0)))
53f3cd25 3411
abcc43f5
RS
3412/* cabs(x+0i) or cabs(0+xi) -> abs(x). */
3413(simplify
e04d2a35 3414 (CABS (complex:C @0 real_zerop@1))
abcc43f5
RS
3415 (abs @0))
3416
67dbe582
RS
3417/* trunc(trunc(x)) -> trunc(x), etc. */
3418(for fns (TRUNC FLOOR CEIL ROUND NEARBYINT RINT)
3419 (simplify
3420 (fns (fns @0))
3421 (fns @0)))
3422/* f(x) -> x if x is integer valued and f does nothing for such values. */
afeb246c 3423(for fns (TRUNC FLOOR CEIL ROUND NEARBYINT RINT)
67dbe582
RS
3424 (simplify
3425 (fns integer_valued_real_p@0)
3426 @0))
67dbe582 3427
4d7836c4
RS
3428/* hypot(x,0) and hypot(0,x) -> abs(x). */
3429(simplify
c9e926ce 3430 (HYPOT:c @0 real_zerop@1)
4d7836c4
RS
3431 (abs @0))
3432
b4838d77
RS
3433/* pow(1,x) -> 1. */
3434(simplify
3435 (POW real_onep@0 @1)
3436 @0)
3437
461e4145
RS
3438(simplify
3439 /* copysign(x,x) -> x. */
3440 (COPYSIGN @0 @0)
3441 @0)
3442
3443(simplify
3444 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
3445 (COPYSIGN @0 tree_expr_nonnegative_p@1)
3446 (abs @0))
3447
86c0733f
RS
3448(for scale (LDEXP SCALBN SCALBLN)
3449 /* ldexp(0, x) -> 0. */
3450 (simplify
3451 (scale real_zerop@0 @1)
3452 @0)
3453 /* ldexp(x, 0) -> x. */
3454 (simplify
3455 (scale @0 integer_zerop@1)
3456 @0)
3457 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
3458 (simplify
3459 (scale REAL_CST@0 @1)
3460 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
3461 @0)))
3462
53f3cd25
RS
3463/* Canonicalization of sequences of math builtins. These rules represent
3464 IL simplifications but are not necessarily optimizations.
3465
3466 The sincos pass is responsible for picking "optimal" implementations
3467 of math builtins, which may be more complicated and can sometimes go
3468 the other way, e.g. converting pow into a sequence of sqrts.
3469 We only want to do these canonicalizations before the pass has run. */
3470
3471(if (flag_unsafe_math_optimizations && canonicalize_math_p ())
3472 /* Simplify tan(x) * cos(x) -> sin(x). */
3473 (simplify
3474 (mult:c (TAN:s @0) (COS:s @0))
3475 (SIN @0))
3476
3477 /* Simplify x * pow(x,c) -> pow(x,c+1). */
3478 (simplify
de3fbea3 3479 (mult:c @0 (POW:s @0 REAL_CST@1))
53f3cd25
RS
3480 (if (!TREE_OVERFLOW (@1))
3481 (POW @0 (plus @1 { build_one_cst (type); }))))
3482
3483 /* Simplify sin(x) / cos(x) -> tan(x). */
3484 (simplify
3485 (rdiv (SIN:s @0) (COS:s @0))
3486 (TAN @0))
3487
3488 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
3489 (simplify
3490 (rdiv (COS:s @0) (SIN:s @0))
3491 (rdiv { build_one_cst (type); } (TAN @0)))
3492
3493 /* Simplify sin(x) / tan(x) -> cos(x). */
3494 (simplify
3495 (rdiv (SIN:s @0) (TAN:s @0))
3496 (if (! HONOR_NANS (@0)
3497 && ! HONOR_INFINITIES (@0))
c9e926ce 3498 (COS @0)))
53f3cd25
RS
3499
3500 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
3501 (simplify
3502 (rdiv (TAN:s @0) (SIN:s @0))
3503 (if (! HONOR_NANS (@0)
3504 && ! HONOR_INFINITIES (@0))
3505 (rdiv { build_one_cst (type); } (COS @0))))
3506
3507 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
3508 (simplify
3509 (mult (POW:s @0 @1) (POW:s @0 @2))
3510 (POW @0 (plus @1 @2)))
3511
3512 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
3513 (simplify
3514 (mult (POW:s @0 @1) (POW:s @2 @1))
3515 (POW (mult @0 @2) @1))
3516
de3fbea3
RB
3517 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
3518 (simplify
3519 (mult (POWI:s @0 @1) (POWI:s @2 @1))
3520 (POWI (mult @0 @2) @1))
3521
53f3cd25
RS
3522 /* Simplify pow(x,c) / x -> pow(x,c-1). */
3523 (simplify
3524 (rdiv (POW:s @0 REAL_CST@1) @0)
3525 (if (!TREE_OVERFLOW (@1))
3526 (POW @0 (minus @1 { build_one_cst (type); }))))
3527
3528 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
3529 (simplify
3530 (rdiv @0 (POW:s @1 @2))
3531 (mult @0 (POW @1 (negate @2))))
3532
3533 (for sqrts (SQRT)
3534 cbrts (CBRT)
3535 pows (POW)
3536 /* sqrt(sqrt(x)) -> pow(x,1/4). */
3537 (simplify
3538 (sqrts (sqrts @0))
3539 (pows @0 { build_real (type, dconst_quarter ()); }))
3540 /* sqrt(cbrt(x)) -> pow(x,1/6). */
3541 (simplify
3542 (sqrts (cbrts @0))
3543 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
3544 /* cbrt(sqrt(x)) -> pow(x,1/6). */
3545 (simplify
3546 (cbrts (sqrts @0))
3547 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
3548 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
3549 (simplify
3550 (cbrts (cbrts tree_expr_nonnegative_p@0))
3551 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
3552 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
3553 (simplify
3554 (sqrts (pows @0 @1))
3555 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
3556 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
3557 (simplify
3558 (cbrts (pows tree_expr_nonnegative_p@0 @1))
b4838d77
RS
3559 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
3560 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
3561 (simplify
3562 (pows (sqrts @0) @1)
3563 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
3564 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
3565 (simplify
3566 (pows (cbrts tree_expr_nonnegative_p@0) @1)
3567 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
3568 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
3569 (simplify
3570 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
3571 (pows @0 (mult @1 @2))))
abcc43f5
RS
3572
3573 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
3574 (simplify
3575 (CABS (complex @0 @0))
96285749
RS
3576 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
3577
4d7836c4
RS
3578 /* hypot(x,x) -> fabs(x)*sqrt(2). */
3579 (simplify
3580 (HYPOT @0 @0)
3581 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
3582
96285749
RS
3583 /* cexp(x+yi) -> exp(x)*cexpi(y). */
3584 (for cexps (CEXP)
3585 exps (EXP)
3586 cexpis (CEXPI)
3587 (simplify
3588 (cexps compositional_complex@0)
3589 (if (targetm.libc_has_function (function_c99_math_complex))
3590 (complex
3591 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
3592 (mult @1 (imagpart @2)))))))
e18c1d66 3593
67dbe582
RS
3594(if (canonicalize_math_p ())
3595 /* floor(x) -> trunc(x) if x is nonnegative. */
3596 (for floors (FLOOR)
3597 truncs (TRUNC)
3598 (simplify
3599 (floors tree_expr_nonnegative_p@0)
3600 (truncs @0))))
3601
3602(match double_value_p
3603 @0
3604 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
3605(for froms (BUILT_IN_TRUNCL
3606 BUILT_IN_FLOORL
3607 BUILT_IN_CEILL
3608 BUILT_IN_ROUNDL
3609 BUILT_IN_NEARBYINTL
3610 BUILT_IN_RINTL)
3611 tos (BUILT_IN_TRUNC
3612 BUILT_IN_FLOOR
3613 BUILT_IN_CEIL
3614 BUILT_IN_ROUND
3615 BUILT_IN_NEARBYINT
3616 BUILT_IN_RINT)
3617 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
3618 (if (optimize && canonicalize_math_p ())
3619 (simplify
3620 (froms (convert double_value_p@0))
3621 (convert (tos @0)))))
3622
3623(match float_value_p
3624 @0
3625 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
3626(for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
3627 BUILT_IN_FLOORL BUILT_IN_FLOOR
3628 BUILT_IN_CEILL BUILT_IN_CEIL
3629 BUILT_IN_ROUNDL BUILT_IN_ROUND
3630 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
3631 BUILT_IN_RINTL BUILT_IN_RINT)
3632 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
3633 BUILT_IN_FLOORF BUILT_IN_FLOORF
3634 BUILT_IN_CEILF BUILT_IN_CEILF
3635 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
3636 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
3637 BUILT_IN_RINTF BUILT_IN_RINTF)
3638 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
3639 if x is a float. */
5dac7dbd
JDA
3640 (if (optimize && canonicalize_math_p ()
3641 && targetm.libc_has_function (function_c99_misc))
67dbe582
RS
3642 (simplify
3643 (froms (convert float_value_p@0))
3644 (convert (tos @0)))))
3645
543a9bcd
RS
3646(for froms (XFLOORL XCEILL XROUNDL XRINTL)
3647 tos (XFLOOR XCEIL XROUND XRINT)
3648 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
3649 (if (optimize && canonicalize_math_p ())
3650 (simplify
3651 (froms (convert double_value_p@0))
3652 (tos @0))))
3653
3654(for froms (XFLOORL XCEILL XROUNDL XRINTL
3655 XFLOOR XCEIL XROUND XRINT)
3656 tos (XFLOORF XCEILF XROUNDF XRINTF)
3657 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
3658 if x is a float. */
3659 (if (optimize && canonicalize_math_p ())
3660 (simplify
3661 (froms (convert float_value_p@0))
3662 (tos @0))))
3663
3664(if (canonicalize_math_p ())
3665 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
3666 (for floors (IFLOOR LFLOOR LLFLOOR)
3667 (simplify
3668 (floors tree_expr_nonnegative_p@0)
3669 (fix_trunc @0))))
3670
3671(if (canonicalize_math_p ())
3672 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
3673 (for fns (IFLOOR LFLOOR LLFLOOR
3674 ICEIL LCEIL LLCEIL
3675 IROUND LROUND LLROUND)
3676 (simplify
3677 (fns integer_valued_real_p@0)
3678 (fix_trunc @0)))
3679 (if (!flag_errno_math)
3680 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
3681 (for rints (IRINT LRINT LLRINT)
3682 (simplify
3683 (rints integer_valued_real_p@0)
3684 (fix_trunc @0)))))
3685
3686(if (canonicalize_math_p ())
3687 (for ifn (IFLOOR ICEIL IROUND IRINT)
3688 lfn (LFLOOR LCEIL LROUND LRINT)
3689 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
3690 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
3691 sizeof (int) == sizeof (long). */
3692 (if (TYPE_PRECISION (integer_type_node)
3693 == TYPE_PRECISION (long_integer_type_node))
3694 (simplify
3695 (ifn @0)
3696 (lfn:long_integer_type_node @0)))
3697 /* Canonicalize llround (x) to lround (x) on LP64 targets where
3698 sizeof (long long) == sizeof (long). */
3699 (if (TYPE_PRECISION (long_long_integer_type_node)
3700 == TYPE_PRECISION (long_integer_type_node))
3701 (simplify
3702 (llfn @0)
3703 (lfn:long_integer_type_node @0)))))
3704
92c52eab
RS
3705/* cproj(x) -> x if we're ignoring infinities. */
3706(simplify
3707 (CPROJ @0)
3708 (if (!HONOR_INFINITIES (type))
3709 @0))
3710
4534c203
RB
3711/* If the real part is inf and the imag part is known to be
3712 nonnegative, return (inf + 0i). */
3713(simplify
3714 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
3715 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
92c52eab
RS
3716 { build_complex_inf (type, false); }))
3717
4534c203
RB
3718/* If the imag part is inf, return (inf+I*copysign(0,imag)). */
3719(simplify
3720 (CPROJ (complex @0 REAL_CST@1))
3721 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
92c52eab 3722 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4534c203 3723
b4838d77
RS
3724(for pows (POW)
3725 sqrts (SQRT)
3726 cbrts (CBRT)
3727 (simplify
3728 (pows @0 REAL_CST@1)
3729 (with {
3730 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
3731 REAL_VALUE_TYPE tmp;
3732 }
3733 (switch
3734 /* pow(x,0) -> 1. */
3735 (if (real_equal (value, &dconst0))
3736 { build_real (type, dconst1); })
3737 /* pow(x,1) -> x. */
3738 (if (real_equal (value, &dconst1))
3739 @0)
3740 /* pow(x,-1) -> 1/x. */
3741 (if (real_equal (value, &dconstm1))
3742 (rdiv { build_real (type, dconst1); } @0))
3743 /* pow(x,0.5) -> sqrt(x). */
3744 (if (flag_unsafe_math_optimizations
3745 && canonicalize_math_p ()
3746 && real_equal (value, &dconsthalf))
3747 (sqrts @0))
3748 /* pow(x,1/3) -> cbrt(x). */
3749 (if (flag_unsafe_math_optimizations
3750 && canonicalize_math_p ()
3751 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
3752 real_equal (value, &tmp)))
3753 (cbrts @0))))))
4534c203 3754
5ddc84ca
RS
3755/* powi(1,x) -> 1. */
3756(simplify
3757 (POWI real_onep@0 @1)
3758 @0)
3759
3760(simplify
3761 (POWI @0 INTEGER_CST@1)
3762 (switch
3763 /* powi(x,0) -> 1. */
3764 (if (wi::eq_p (@1, 0))
3765 { build_real (type, dconst1); })
3766 /* powi(x,1) -> x. */
3767 (if (wi::eq_p (@1, 1))
3768 @0)
3769 /* powi(x,-1) -> 1/x. */
3770 (if (wi::eq_p (@1, -1))
3771 (rdiv { build_real (type, dconst1); } @0))))
3772
be144838
JL
3773/* Narrowing of arithmetic and logical operations.
3774
3775 These are conceptually similar to the transformations performed for
3776 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
3777 term we want to move all that code out of the front-ends into here. */
3778
3779/* If we have a narrowing conversion of an arithmetic operation where
3780 both operands are widening conversions from the same type as the outer
3781 narrowing conversion. Then convert the innermost operands to a suitable
9c582551 3782 unsigned type (to avoid introducing undefined behavior), perform the
be144838
JL
3783 operation and convert the result to the desired type. */
3784(for op (plus minus)
3785 (simplify
93f90bec 3786 (convert (op:s (convert@2 @0) (convert?@3 @1)))
be144838
JL
3787 (if (INTEGRAL_TYPE_P (type)
3788 /* We check for type compatibility between @0 and @1 below,
3789 so there's no need to check that @1/@3 are integral types. */
3790 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3791 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3792 /* The precision of the type of each operand must match the
3793 precision of the mode of each operand, similarly for the
3794 result. */
3795 && (TYPE_PRECISION (TREE_TYPE (@0))
3796 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
3797 && (TYPE_PRECISION (TREE_TYPE (@1))
3798 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
3799 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
3800 /* The inner conversion must be a widening conversion. */
3801 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
93f90bec
BC
3802 && types_match (@0, type)
3803 && (types_match (@0, @1)
3804 /* Or the second operand is const integer or converted const
3805 integer from valueize. */
3806 || TREE_CODE (@1) == INTEGER_CST))
be144838 3807 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
93f90bec 3808 (op @0 (convert @1))
8fdc6c67 3809 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
93f90bec
BC
3810 (convert (op (convert:utype @0)
3811 (convert:utype @1))))))))
48451e8f
JL
3812
3813/* This is another case of narrowing, specifically when there's an outer
3814 BIT_AND_EXPR which masks off bits outside the type of the innermost
3815 operands. Like the previous case we have to convert the operands
9c582551 3816 to unsigned types to avoid introducing undefined behavior for the
48451e8f
JL
3817 arithmetic operation. */
3818(for op (minus plus)
8fdc6c67
RB
3819 (simplify
3820 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
3821 (if (INTEGRAL_TYPE_P (type)
3822 /* We check for type compatibility between @0 and @1 below,
3823 so there's no need to check that @1/@3 are integral types. */
3824 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3825 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3826 /* The precision of the type of each operand must match the
3827 precision of the mode of each operand, similarly for the
3828 result. */
3829 && (TYPE_PRECISION (TREE_TYPE (@0))
3830 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
3831 && (TYPE_PRECISION (TREE_TYPE (@1))
3832 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
3833 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
3834 /* The inner conversion must be a widening conversion. */
3835 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
3836 && types_match (@0, @1)
3837 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
3838 <= TYPE_PRECISION (TREE_TYPE (@0)))
0a8c1e23
JL
3839 && (wi::bit_and (@4, wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
3840 true, TYPE_PRECISION (type))) == 0))
8fdc6c67
RB
3841 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3842 (with { tree ntype = TREE_TYPE (@0); }
3843 (convert (bit_and (op @0 @1) (convert:ntype @4))))
3844 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
3845 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
3846 (convert:utype @4))))))))
4f7a5692
MC
3847
3848/* Transform (@0 < @1 and @0 < @2) to use min,
3849 (@0 > @1 and @0 > @2) to use max */
3850(for op (lt le gt ge)
3851 ext (min min max max)
3852 (simplify
4618c453
RB
3853 (bit_and (op:cs @0 @1) (op:cs @0 @2))
3854 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3855 && TREE_CODE (@0) != INTEGER_CST)
4f7a5692
MC
3856 (op @0 (ext @1 @2)))))
3857
7317ef4a
RS
3858(simplify
3859 /* signbit(x) -> 0 if x is nonnegative. */
3860 (SIGNBIT tree_expr_nonnegative_p@0)
3861 { integer_zero_node; })
3862
3863(simplify
3864 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
3865 (SIGNBIT @0)
3866 (if (!HONOR_SIGNED_ZEROS (@0))
3867 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
a8b85ce9
MG
3868
3869/* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
3870(for cmp (eq ne)
3871 (for op (plus minus)
3872 rop (minus plus)
3873 (simplify
3874 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
3875 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
3876 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
3877 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
3878 && !TYPE_SATURATING (TREE_TYPE (@0)))
3879 (with { tree res = int_const_binop (rop, @2, @1); }
75473a91
RB
3880 (if (TREE_OVERFLOW (res)
3881 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
a8b85ce9
MG
3882 { constant_boolean_node (cmp == NE_EXPR, type); }
3883 (if (single_use (@3))
3884 (cmp @0 { res; }))))))))
3885(for cmp (lt le gt ge)
3886 (for op (plus minus)
3887 rop (minus plus)
3888 (simplify
3889 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
3890 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
3891 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3892 (with { tree res = int_const_binop (rop, @2, @1); }
3893 (if (TREE_OVERFLOW (res))
3894 {
3895 fold_overflow_warning (("assuming signed overflow does not occur "
3896 "when simplifying conditional to constant"),
3897 WARN_STRICT_OVERFLOW_CONDITIONAL);
3898 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
3899 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
3900 bool ovf_high = wi::lt_p (@1, 0, TYPE_SIGN (TREE_TYPE (@1)))
3901 != (op == MINUS_EXPR);
3902 constant_boolean_node (less == ovf_high, type);
3903 }
3904 (if (single_use (@3))
3905 (with
3906 {
3907 fold_overflow_warning (("assuming signed overflow does not occur "
3908 "when changing X +- C1 cmp C2 to "
3909 "X cmp C2 -+ C1"),
3910 WARN_STRICT_OVERFLOW_COMPARISON);
3911 }
3912 (cmp @0 { res; })))))))))
d3e40b76
RB
3913
3914/* Canonicalizations of BIT_FIELD_REFs. */
3915
3916(simplify
3917 (BIT_FIELD_REF @0 @1 @2)
3918 (switch
3919 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
3920 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
3921 (switch
3922 (if (integer_zerop (@2))
3923 (view_convert (realpart @0)))
3924 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
3925 (view_convert (imagpart @0)))))
3926 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3927 && INTEGRAL_TYPE_P (type)
171f6f05
RB
3928 /* On GIMPLE this should only apply to register arguments. */
3929 && (! GIMPLE || is_gimple_reg (@0))
d3e40b76
RB
3930 /* A bit-field-ref that referenced the full argument can be stripped. */
3931 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
3932 && integer_zerop (@2))
3933 /* Low-parts can be reduced to integral conversions.
3934 ??? The following doesn't work for PDP endian. */
3935 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
3936 /* Don't even think about BITS_BIG_ENDIAN. */
3937 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
3938 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
3939 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
3940 ? (TYPE_PRECISION (TREE_TYPE (@0))
3941 - TYPE_PRECISION (type))
3942 : 0)) == 0)))
3943 (convert @0))))
3944
3945/* Simplify vector extracts. */
3946
3947(simplify
3948 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
3949 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
3950 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
3951 || (VECTOR_TYPE_P (type)
3952 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
3953 (with
3954 {
3955 tree ctor = (TREE_CODE (@0) == SSA_NAME
3956 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
3957 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
3958 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
3959 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
3960 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
3961 }
3962 (if (n != 0
3963 && (idx % width) == 0
3964 && (n % width) == 0
3965 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor)))
3966 (with
3967 {
3968 idx = idx / width;
3969 n = n / width;
3970 /* Constructor elements can be subvectors. */
3971 unsigned HOST_WIDE_INT k = 1;
3972 if (CONSTRUCTOR_NELTS (ctor) != 0)
3973 {
3974 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
3975 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
3976 k = TYPE_VECTOR_SUBPARTS (cons_elem);
3977 }
3978 }
3979 (switch
3980 /* We keep an exact subset of the constructor elements. */
3981 (if ((idx % k) == 0 && (n % k) == 0)
3982 (if (CONSTRUCTOR_NELTS (ctor) == 0)
3983 { build_constructor (type, NULL); }
3984 (with
3985 {
3986 idx /= k;
3987 n /= k;
3988 }
3989 (if (n == 1)
3990 (if (idx < CONSTRUCTOR_NELTS (ctor))
3991 { CONSTRUCTOR_ELT (ctor, idx)->value; }
3992 { build_zero_cst (type); })
3993 {
3994 vec<constructor_elt, va_gc> *vals;
3995 vec_alloc (vals, n);
3996 for (unsigned i = 0;
3997 i < n && idx + i < CONSTRUCTOR_NELTS (ctor); ++i)
3998 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
3999 CONSTRUCTOR_ELT (ctor, idx + i)->value);
4000 build_constructor (type, vals);
4001 }))))
4002 /* The bitfield references a single constructor element. */
4003 (if (idx + n <= (idx / k + 1) * k)
4004 (switch
4005 (if (CONSTRUCTOR_NELTS (ctor) <= idx / k)
4006 { build_zero_cst (type); })
4007 (if (n == k)
4008 { CONSTRUCTOR_ELT (ctor, idx / k)->value; })
4009 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / k)->value; }
4010 @1 { bitsize_int ((idx % k) * width); })))))))))