]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/match.pd
Add gcc_assert about stack alignment (PR sanitizer/82517).
[thirdparty/gcc.git] / gcc / match.pd
CommitLineData
3d2cf79f
RB
1/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
85ec4feb 5 Copyright (C) 2014-2018 Free Software Foundation, Inc.
3d2cf79f
RB
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
13Software Foundation; either version 3, or (at your option) any later
14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING3. If not see
23<http://www.gnu.org/licenses/>. */
24
25
26/* Generic tree predicates we inherit. */
27(define_predicates
cc7b5acf 28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
53a19317 29 integer_each_onep integer_truep integer_nonzerop
cc7b5acf 30 real_zerop real_onep real_minus_onep
b0eb889b 31 zerop
f3582e54 32 CONSTANT_CLASS_P
887ab609 33 tree_expr_nonnegative_p
e36c1cfe 34 tree_expr_nonzero_p
67dbe582 35 integer_valued_real_p
53a19317
RB
36 integer_pow2p
37 HONOR_NANS)
e0ee10ed 38
f84e7fd6
RB
39/* Operator lists. */
40(define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42(define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44(define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
534bd33b
MG
46(define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
07cdc2b8
RB
48(define_operator_list simple_comparison lt le eq ne ge gt)
49(define_operator_list swapped_simple_comparison gt ge eq ne le lt)
50
b1dc4a20 51#include "cfn-operators.pd"
257aecb4 52
543a9bcd
RS
53/* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
56
57 Also define operand lists:
58
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62#define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
543a9bcd
RS
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
64 BUILT_IN_L##FN##F \
65 BUILT_IN_LL##FN##F) \
66 (define_operator_list X##FN BUILT_IN_I##FN \
67 BUILT_IN_L##FN \
68 BUILT_IN_LL##FN) \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
70 BUILT_IN_L##FN##L \
71 BUILT_IN_LL##FN##L)
72
543a9bcd
RS
73DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
ed73f46f
MG
77
78/* As opposed to convert?, this still creates a single pattern, so
79 it is not a suitable replacement for convert? in all cases. */
80(match (nop_convert @0)
81 (convert @0)
82 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
83(match (nop_convert @0)
84 (view_convert @0)
85 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
928686b1
RS
86 && known_eq (TYPE_VECTOR_SUBPARTS (type),
87 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
ed73f46f
MG
88 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
89/* This one has to be last, or it shadows the others. */
90(match (nop_convert @0)
91 @0)
f84e7fd6 92
e0ee10ed 93/* Simplifications of operations with one constant operand and
36a60e48 94 simplifications to constants or single values. */
e0ee10ed
RB
95
96(for op (plus pointer_plus minus bit_ior bit_xor)
97 (simplify
98 (op @0 integer_zerop)
99 (non_lvalue @0)))
100
a499aac5
RB
101/* 0 +p index -> (type)index */
102(simplify
103 (pointer_plus integer_zerop @1)
104 (non_lvalue (convert @1)))
105
d43177ad
MG
106/* ptr - 0 -> (type)ptr */
107(simplify
108 (pointer_diff @0 integer_zerop)
109 (convert @0))
110
a7f24614
RB
111/* See if ARG1 is zero and X + ARG1 reduces to X.
112 Likewise if the operands are reversed. */
113(simplify
114 (plus:c @0 real_zerop@1)
115 (if (fold_real_zero_addition_p (type, @1, 0))
116 (non_lvalue @0)))
117
118/* See if ARG1 is zero and X - ARG1 reduces to X. */
119(simplify
120 (minus @0 real_zerop@1)
121 (if (fold_real_zero_addition_p (type, @1, 1))
122 (non_lvalue @0)))
123
e0ee10ed
RB
124/* Simplify x - x.
125 This is unsafe for certain floats even in non-IEEE formats.
126 In IEEE, it is unsafe because it does wrong for NaNs.
127 Also note that operand_equal_p is always false if an operand
128 is volatile. */
129(simplify
a7f24614 130 (minus @0 @0)
1b457aa4 131 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
a7f24614 132 { build_zero_cst (type); }))
1af4ebf5
MG
133(simplify
134 (pointer_diff @@0 @0)
135 { build_zero_cst (type); })
e0ee10ed
RB
136
137(simplify
a7f24614
RB
138 (mult @0 integer_zerop@1)
139 @1)
140
141/* Maybe fold x * 0 to 0. The expressions aren't the same
142 when x is NaN, since x * 0 is also NaN. Nor are they the
143 same in modes with signed zeros, since multiplying a
144 negative value by 0 gives -0, not +0. */
145(simplify
146 (mult @0 real_zerop@1)
8b5ee871 147 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
a7f24614
RB
148 @1))
149
150/* In IEEE floating point, x*1 is not equivalent to x for snans.
151 Likewise for complex arithmetic with signed zeros. */
152(simplify
153 (mult @0 real_onep)
8b5ee871
MG
154 (if (!HONOR_SNANS (type)
155 && (!HONOR_SIGNED_ZEROS (type)
a7f24614
RB
156 || !COMPLEX_FLOAT_TYPE_P (type)))
157 (non_lvalue @0)))
158
159/* Transform x * -1.0 into -x. */
160(simplify
161 (mult @0 real_minus_onep)
8b5ee871
MG
162 (if (!HONOR_SNANS (type)
163 && (!HONOR_SIGNED_ZEROS (type)
a7f24614
RB
164 || !COMPLEX_FLOAT_TYPE_P (type)))
165 (negate @0)))
e0ee10ed 166
8c2805bb
AP
167(for cmp (gt ge lt le)
168 outp (convert convert negate negate)
169 outn (negate negate convert convert)
170 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
171 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
172 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
173 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
174 (simplify
175 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
176 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
177 && types_match (type, TREE_TYPE (@0)))
178 (switch
179 (if (types_match (type, float_type_node))
180 (BUILT_IN_COPYSIGNF @1 (outp @0)))
181 (if (types_match (type, double_type_node))
182 (BUILT_IN_COPYSIGN @1 (outp @0)))
183 (if (types_match (type, long_double_type_node))
184 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
185 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
186 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
187 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
188 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
189 (simplify
190 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
191 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
192 && types_match (type, TREE_TYPE (@0)))
193 (switch
194 (if (types_match (type, float_type_node))
195 (BUILT_IN_COPYSIGNF @1 (outn @0)))
196 (if (types_match (type, double_type_node))
197 (BUILT_IN_COPYSIGN @1 (outn @0)))
198 (if (types_match (type, long_double_type_node))
199 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
200
201/* Transform X * copysign (1.0, X) into abs(X). */
202(simplify
c6cfa2bf 203 (mult:c @0 (COPYSIGN_ALL real_onep @0))
8c2805bb
AP
204 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
205 (abs @0)))
206
207/* Transform X * copysign (1.0, -X) into -abs(X). */
208(simplify
c6cfa2bf 209 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
8c2805bb
AP
210 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
211 (negate (abs @0))))
212
213/* Transform copysign (CST, X) into copysign (ABS(CST), X). */
214(simplify
c6cfa2bf 215 (COPYSIGN_ALL REAL_CST@0 @1)
8c2805bb 216 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
c6cfa2bf 217 (COPYSIGN_ALL (negate @0) @1)))
8c2805bb 218
5b7f6ed0 219/* X * 1, X / 1 -> X. */
e0ee10ed
RB
220(for op (mult trunc_div ceil_div floor_div round_div exact_div)
221 (simplify
222 (op @0 integer_onep)
223 (non_lvalue @0)))
224
71f82be9
JG
225/* (A / (1 << B)) -> (A >> B).
226 Only for unsigned A. For signed A, this would not preserve rounding
227 toward zero.
228 For example: (-1 / ( 1 << B)) != -1 >> B. */
229(simplify
230 (trunc_div @0 (lshift integer_onep@1 @2))
231 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
232 && (!VECTOR_TYPE_P (type)
233 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
234 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
235 (rshift @0 @2)))
236
5b7f6ed0
MG
237/* Preserve explicit divisions by 0: the C++ front-end wants to detect
238 undefined behavior in constexpr evaluation, and assuming that the division
239 traps enables better optimizations than these anyway. */
a7f24614 240(for div (trunc_div ceil_div floor_div round_div exact_div)
5b7f6ed0
MG
241 /* 0 / X is always zero. */
242 (simplify
243 (div integer_zerop@0 @1)
244 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
245 (if (!integer_zerop (@1))
246 @0))
da186c1f 247 /* X / -1 is -X. */
a7f24614 248 (simplify
09240451
MG
249 (div @0 integer_minus_onep@1)
250 (if (!TYPE_UNSIGNED (type))
da186c1f 251 (negate @0)))
5b7f6ed0
MG
252 /* X / X is one. */
253 (simplify
254 (div @0 @0)
9ebce098
JJ
255 /* But not for 0 / 0 so that we can get the proper warnings and errors.
256 And not for _Fract types where we can't build 1. */
257 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
5b7f6ed0 258 { build_one_cst (type); }))
da186c1f
RB
259 /* X / abs (X) is X < 0 ? -1 : 1. */
260 (simplify
d96a5585
RB
261 (div:C @0 (abs @0))
262 (if (INTEGRAL_TYPE_P (type)
da186c1f
RB
263 && TYPE_OVERFLOW_UNDEFINED (type))
264 (cond (lt @0 { build_zero_cst (type); })
265 { build_minus_one_cst (type); } { build_one_cst (type); })))
266 /* X / -X is -1. */
267 (simplify
d96a5585 268 (div:C @0 (negate @0))
da186c1f
RB
269 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
270 && TYPE_OVERFLOW_UNDEFINED (type))
271 { build_minus_one_cst (type); })))
a7f24614
RB
272
273/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
274 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
275(simplify
276 (floor_div @0 @1)
09240451
MG
277 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
278 && TYPE_UNSIGNED (type))
a7f24614
RB
279 (trunc_div @0 @1)))
280
28093105
RB
281/* Combine two successive divisions. Note that combining ceil_div
282 and floor_div is trickier and combining round_div even more so. */
283(for div (trunc_div exact_div)
c306cfaf
RB
284 (simplify
285 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
286 (with {
287 bool overflow_p;
8e6cdc90
RS
288 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
289 TYPE_SIGN (type), &overflow_p);
c306cfaf
RB
290 }
291 (if (!overflow_p)
8fdc6c67
RB
292 (div @0 { wide_int_to_tree (type, mul); })
293 (if (TYPE_UNSIGNED (type)
294 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
295 { build_zero_cst (type); })))))
c306cfaf 296
288fe52e
AM
297/* Combine successive multiplications. Similar to above, but handling
298 overflow is different. */
299(simplify
300 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
301 (with {
302 bool overflow_p;
8e6cdc90
RS
303 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
304 TYPE_SIGN (type), &overflow_p);
288fe52e
AM
305 }
306 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
307 otherwise undefined overflow implies that @0 must be zero. */
308 (if (!overflow_p || TYPE_OVERFLOW_WRAPS (type))
309 (mult @0 { wide_int_to_tree (type, mul); }))))
310
a7f24614 311/* Optimize A / A to 1.0 if we don't care about
09240451 312 NaNs or Infinities. */
a7f24614
RB
313(simplify
314 (rdiv @0 @0)
09240451 315 (if (FLOAT_TYPE_P (type)
1b457aa4 316 && ! HONOR_NANS (type)
8b5ee871 317 && ! HONOR_INFINITIES (type))
09240451
MG
318 { build_one_cst (type); }))
319
320/* Optimize -A / A to -1.0 if we don't care about
321 NaNs or Infinities. */
322(simplify
e04d2a35 323 (rdiv:C @0 (negate @0))
09240451 324 (if (FLOAT_TYPE_P (type)
1b457aa4 325 && ! HONOR_NANS (type)
8b5ee871 326 && ! HONOR_INFINITIES (type))
09240451 327 { build_minus_one_cst (type); }))
a7f24614 328
8c6961ca
PK
329/* PR71078: x / abs(x) -> copysign (1.0, x) */
330(simplify
331 (rdiv:C (convert? @0) (convert? (abs @0)))
332 (if (SCALAR_FLOAT_TYPE_P (type)
333 && ! HONOR_NANS (type)
334 && ! HONOR_INFINITIES (type))
335 (switch
336 (if (types_match (type, float_type_node))
337 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
338 (if (types_match (type, double_type_node))
339 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
340 (if (types_match (type, long_double_type_node))
341 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
342
a7f24614
RB
343/* In IEEE floating point, x/1 is not equivalent to x for snans. */
344(simplify
345 (rdiv @0 real_onep)
8b5ee871 346 (if (!HONOR_SNANS (type))
a7f24614
RB
347 (non_lvalue @0)))
348
349/* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
350(simplify
351 (rdiv @0 real_minus_onep)
8b5ee871 352 (if (!HONOR_SNANS (type))
a7f24614
RB
353 (negate @0)))
354
5711ac88 355(if (flag_reciprocal_math)
81825e28 356 /* Convert (A/B)/C to A/(B*C). */
5711ac88
N
357 (simplify
358 (rdiv (rdiv:s @0 @1) @2)
81825e28
WD
359 (rdiv @0 (mult @1 @2)))
360
361 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
362 (simplify
363 (rdiv @0 (mult:s @1 REAL_CST@2))
364 (with
365 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
366 (if (tem)
367 (rdiv (mult @0 { tem; } ) @1))))
5711ac88
N
368
369 /* Convert A/(B/C) to (A/B)*C */
370 (simplify
371 (rdiv @0 (rdiv:s @1 @2))
372 (mult (rdiv @0 @1) @2)))
373
6a435314
WD
374/* Simplify x / (- y) to -x / y. */
375(simplify
376 (rdiv @0 (negate @1))
377 (rdiv (negate @0) @1))
378
5711ac88
N
379/* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
380(for div (trunc_div ceil_div floor_div round_div exact_div)
381 (simplify
382 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
383 (if (integer_pow2p (@2)
384 && tree_int_cst_sgn (@2) > 0
a1488398 385 && tree_nop_conversion_p (type, TREE_TYPE (@0))
8e6cdc90
RS
386 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
387 (rshift (convert @0)
388 { build_int_cst (integer_type_node,
389 wi::exact_log2 (wi::to_wide (@2))); }))))
5711ac88 390
a7f24614
RB
391/* If ARG1 is a constant, we can convert this to a multiply by the
392 reciprocal. This does not have the same rounding properties,
393 so only do this if -freciprocal-math. We can actually
394 always safely do it if ARG1 is a power of two, but it's hard to
395 tell if it is or not in a portable manner. */
396(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
397 (simplify
398 (rdiv @0 cst@1)
399 (if (optimize)
53bc4b3a
RB
400 (if (flag_reciprocal_math
401 && !real_zerop (@1))
a7f24614 402 (with
249700b5 403 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
a7f24614 404 (if (tem)
8fdc6c67
RB
405 (mult @0 { tem; } )))
406 (if (cst != COMPLEX_CST)
407 (with { tree inverse = exact_inverse (type, @1); }
408 (if (inverse)
409 (mult @0 { inverse; } ))))))))
a7f24614 410
a7f24614 411(for mod (ceil_mod floor_mod round_mod trunc_mod)
e0ee10ed
RB
412 /* 0 % X is always zero. */
413 (simplify
a7f24614 414 (mod integer_zerop@0 @1)
e0ee10ed
RB
415 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
416 (if (!integer_zerop (@1))
417 @0))
418 /* X % 1 is always zero. */
419 (simplify
a7f24614
RB
420 (mod @0 integer_onep)
421 { build_zero_cst (type); })
422 /* X % -1 is zero. */
423 (simplify
09240451
MG
424 (mod @0 integer_minus_onep@1)
425 (if (!TYPE_UNSIGNED (type))
bc4315fb 426 { build_zero_cst (type); }))
5b7f6ed0
MG
427 /* X % X is zero. */
428 (simplify
429 (mod @0 @0)
430 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
431 (if (!integer_zerop (@0))
432 { build_zero_cst (type); }))
bc4315fb
MG
433 /* (X % Y) % Y is just X % Y. */
434 (simplify
435 (mod (mod@2 @0 @1) @1)
98e30e51
RB
436 @2)
437 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
438 (simplify
439 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
440 (if (ANY_INTEGRAL_TYPE_P (type)
441 && TYPE_OVERFLOW_UNDEFINED (type)
8e6cdc90
RS
442 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
443 TYPE_SIGN (type)))
98e30e51 444 { build_zero_cst (type); })))
a7f24614
RB
445
446/* X % -C is the same as X % C. */
447(simplify
448 (trunc_mod @0 INTEGER_CST@1)
449 (if (TYPE_SIGN (type) == SIGNED
450 && !TREE_OVERFLOW (@1)
8e6cdc90 451 && wi::neg_p (wi::to_wide (@1))
a7f24614
RB
452 && !TYPE_OVERFLOW_TRAPS (type)
453 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
454 && !sign_bit_p (@1, @1))
455 (trunc_mod @0 (negate @1))))
e0ee10ed 456
8f0c696a
RB
457/* X % -Y is the same as X % Y. */
458(simplify
459 (trunc_mod @0 (convert? (negate @1)))
a2a743a1
MP
460 (if (INTEGRAL_TYPE_P (type)
461 && !TYPE_UNSIGNED (type)
8f0c696a 462 && !TYPE_OVERFLOW_TRAPS (type)
20b8d734
JJ
463 && tree_nop_conversion_p (type, TREE_TYPE (@1))
464 /* Avoid this transformation if X might be INT_MIN or
465 Y might be -1, because we would then change valid
466 INT_MIN % -(-1) into invalid INT_MIN % -1. */
8e6cdc90 467 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
20b8d734
JJ
468 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
469 (TREE_TYPE (@1))))))
8f0c696a
RB
470 (trunc_mod @0 (convert @1))))
471
f461569a
MP
472/* X - (X / Y) * Y is the same as X % Y. */
473(simplify
2eef1fc1
RB
474 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
475 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
fba46f03 476 (convert (trunc_mod @0 @1))))
f461569a 477
8f0c696a
RB
478/* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
479 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
480 Also optimize A % (C << N) where C is a power of 2,
481 to A & ((C << N) - 1). */
482(match (power_of_two_cand @1)
483 INTEGER_CST@1)
484(match (power_of_two_cand @1)
485 (lshift INTEGER_CST@1 @2))
486(for mod (trunc_mod floor_mod)
487 (simplify
4ab1e111 488 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
8f0c696a
RB
489 (if ((TYPE_UNSIGNED (type)
490 || tree_expr_nonnegative_p (@0))
4ab1e111 491 && tree_nop_conversion_p (type, TREE_TYPE (@3))
8f0c696a 492 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
4ab1e111 493 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
8f0c696a 494
887ab609
N
495/* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
496(simplify
497 (trunc_div (mult @0 integer_pow2p@1) @1)
498 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
499 (bit_and @0 { wide_int_to_tree
8e6cdc90
RS
500 (type, wi::mask (TYPE_PRECISION (type)
501 - wi::exact_log2 (wi::to_wide (@1)),
887ab609
N
502 false, TYPE_PRECISION (type))); })))
503
5f8d832e
N
504/* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
505(simplify
506 (mult (trunc_div @0 integer_pow2p@1) @1)
507 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
508 (bit_and @0 (negate @1))))
509
95765f36
N
510/* Simplify (t * 2) / 2) -> t. */
511(for div (trunc_div ceil_div floor_div round_div exact_div)
512 (simplify
55d84e61 513 (div (mult:c @0 @1) @1)
95765f36
N
514 (if (ANY_INTEGRAL_TYPE_P (type)
515 && TYPE_OVERFLOW_UNDEFINED (type))
516 @0)))
517
d202f9bd 518(for op (negate abs)
9b054b08
RS
519 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
520 (for coss (COS COSH)
521 (simplify
522 (coss (op @0))
523 (coss @0)))
524 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
525 (for pows (POW)
526 (simplify
527 (pows (op @0) REAL_CST@1)
528 (with { HOST_WIDE_INT n; }
529 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
5d3498b4 530 (pows @0 @1)))))
de3fbea3
RB
531 /* Likewise for powi. */
532 (for pows (POWI)
533 (simplify
534 (pows (op @0) INTEGER_CST@1)
8e6cdc90 535 (if ((wi::to_wide (@1) & 1) == 0)
de3fbea3 536 (pows @0 @1))))
5d3498b4
RS
537 /* Strip negate and abs from both operands of hypot. */
538 (for hypots (HYPOT)
539 (simplify
540 (hypots (op @0) @1)
541 (hypots @0 @1))
542 (simplify
543 (hypots @0 (op @1))
544 (hypots @0 @1)))
545 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
c6cfa2bf 546 (for copysigns (COPYSIGN_ALL)
5d3498b4
RS
547 (simplify
548 (copysigns (op @0) @1)
549 (copysigns @0 @1))))
550
551/* abs(x)*abs(x) -> x*x. Should be valid for all types. */
552(simplify
553 (mult (abs@1 @0) @1)
554 (mult @0 @0))
555
556/* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
557(for coss (COS COSH)
558 copysigns (COPYSIGN)
559 (simplify
560 (coss (copysigns @0 @1))
561 (coss @0)))
562
563/* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
564(for pows (POW)
565 copysigns (COPYSIGN)
566 (simplify
de3fbea3 567 (pows (copysigns @0 @2) REAL_CST@1)
5d3498b4
RS
568 (with { HOST_WIDE_INT n; }
569 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
570 (pows @0 @1)))))
de3fbea3
RB
571/* Likewise for powi. */
572(for pows (POWI)
573 copysigns (COPYSIGN)
574 (simplify
575 (pows (copysigns @0 @2) INTEGER_CST@1)
8e6cdc90 576 (if ((wi::to_wide (@1) & 1) == 0)
de3fbea3 577 (pows @0 @1))))
5d3498b4
RS
578
579(for hypots (HYPOT)
580 copysigns (COPYSIGN)
581 /* hypot(copysign(x, y), z) -> hypot(x, z). */
582 (simplify
583 (hypots (copysigns @0 @1) @2)
584 (hypots @0 @2))
585 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
586 (simplify
587 (hypots @0 (copysigns @1 @2))
588 (hypots @0 @1)))
589
eeb57981 590/* copysign(x, CST) -> [-]abs (x). */
c6cfa2bf 591(for copysigns (COPYSIGN_ALL)
eeb57981
RB
592 (simplify
593 (copysigns @0 REAL_CST@1)
594 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
595 (negate (abs @0))
596 (abs @0))))
597
5d3498b4 598/* copysign(copysign(x, y), z) -> copysign(x, z). */
c6cfa2bf 599(for copysigns (COPYSIGN_ALL)
5d3498b4
RS
600 (simplify
601 (copysigns (copysigns @0 @1) @2)
602 (copysigns @0 @2)))
603
604/* copysign(x,y)*copysign(x,y) -> x*x. */
c6cfa2bf 605(for copysigns (COPYSIGN_ALL)
5d3498b4
RS
606 (simplify
607 (mult (copysigns@2 @0 @1) @2)
608 (mult @0 @0)))
609
610/* ccos(-x) -> ccos(x). Similarly for ccosh. */
611(for ccoss (CCOS CCOSH)
612 (simplify
613 (ccoss (negate @0))
614 (ccoss @0)))
d202f9bd 615
abcc43f5
RS
616/* cabs(-x) and cos(conj(x)) -> cabs(x). */
617(for ops (conj negate)
618 (for cabss (CABS)
619 (simplify
620 (cabss (ops @0))
621 (cabss @0))))
622
0a8f32b8
RB
623/* Fold (a * (1 << b)) into (a << b) */
624(simplify
625 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
626 (if (! FLOAT_TYPE_P (type)
9ff6fb6e 627 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
0a8f32b8
RB
628 (lshift @0 @2)))
629
4349b15f
SD
630/* Fold (1 << (C - x)) where C = precision(type) - 1
631 into ((1 << C) >> x). */
632(simplify
633 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
634 (if (INTEGRAL_TYPE_P (type)
56ccfbd6 635 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
4349b15f
SD
636 && single_use (@1))
637 (if (TYPE_UNSIGNED (type))
638 (rshift (lshift @0 @2) @3)
639 (with
640 { tree utype = unsigned_type_for (type); }
641 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
642
0a8f32b8
RB
643/* Fold (C1/X)*C2 into (C1*C2)/X. */
644(simplify
ff86345f
RB
645 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
646 (if (flag_associative_math
647 && single_use (@3))
0a8f32b8
RB
648 (with
649 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
650 (if (tem)
651 (rdiv { tem; } @1)))))
652
653/* Simplify ~X & X as zero. */
654(simplify
655 (bit_and:c (convert? @0) (convert? (bit_not @0)))
656 { build_zero_cst (type); })
657
89b80c42
PK
658/* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
659(simplify
660 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
661 (if (TYPE_UNSIGNED (type))
662 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
663
7aa13860
PK
664(for bitop (bit_and bit_ior)
665 cmp (eq ne)
a93952d2
JJ
666 /* PR35691: Transform
667 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
668 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
7aa13860
PK
669 (simplify
670 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
671 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
a93952d2
JJ
672 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
673 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
674 (cmp (bit_ior @0 (convert @1)) @2)))
675 /* Transform:
676 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
677 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
678 (simplify
679 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
680 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
681 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
682 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
683 (cmp (bit_and @0 (convert @1)) @2))))
7aa13860 684
10158317
RB
685/* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
686(simplify
a9658b11 687 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
10158317
RB
688 (minus (bit_xor @0 @1) @1))
689(simplify
690 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
8e6cdc90 691 (if (~wi::to_wide (@2) == wi::to_wide (@1))
10158317
RB
692 (minus (bit_xor @0 @1) @1)))
693
694/* Fold (A & B) - (A & ~B) into B - (A ^ B). */
695(simplify
a8e9f9a3 696 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
10158317
RB
697 (minus @1 (bit_xor @0 @1)))
698
42bd89ce
MG
699/* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
700(for op (bit_ior bit_xor plus)
701 (simplify
702 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
703 (bit_xor @0 @1))
704 (simplify
705 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
8e6cdc90 706 (if (~wi::to_wide (@2) == wi::to_wide (@1))
42bd89ce 707 (bit_xor @0 @1))))
2066ef6a
PK
708
709/* PR53979: Transform ((a ^ b) | a) -> (a | b) */
710(simplify
711 (bit_ior:c (bit_xor:c @0 @1) @0)
712 (bit_ior @0 @1))
713
e268a77b
MG
714/* (a & ~b) | (a ^ b) --> a ^ b */
715(simplify
716 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
717 @2)
718
719/* (a & ~b) ^ ~a --> ~(a & b) */
720(simplify
721 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
722 (bit_not (bit_and @0 @1)))
723
724/* (a | b) & ~(a ^ b) --> a & b */
725(simplify
726 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
727 (bit_and @0 @1))
728
729/* a | ~(a ^ b) --> a | ~b */
730(simplify
731 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
732 (bit_ior @0 (bit_not @1)))
733
734/* (a | b) | (a &^ b) --> a | b */
735(for op (bit_and bit_xor)
736 (simplify
737 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
738 @2))
739
740/* (a & b) | ~(a ^ b) --> ~(a ^ b) */
741(simplify
742 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
743 @2)
744
745/* ~(~a & b) --> a | ~b */
746(simplify
747 (bit_not (bit_and:cs (bit_not @0) @1))
748 (bit_ior @0 (bit_not @1)))
749
d982c5b7
MG
750/* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
751#if GIMPLE
752(simplify
753 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
754 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
8e6cdc90 755 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
d982c5b7
MG
756 (bit_xor @0 @1)))
757#endif
10158317 758
bc4315fb
MG
759/* X % Y is smaller than Y. */
760(for cmp (lt ge)
761 (simplify
762 (cmp (trunc_mod @0 @1) @1)
763 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
764 { constant_boolean_node (cmp == LT_EXPR, type); })))
765(for cmp (gt le)
766 (simplify
767 (cmp @1 (trunc_mod @0 @1))
768 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
769 { constant_boolean_node (cmp == GT_EXPR, type); })))
770
e0ee10ed
RB
771/* x | ~0 -> ~0 */
772(simplify
ca0b7ece
RB
773 (bit_ior @0 integer_all_onesp@1)
774 @1)
775
776/* x | 0 -> x */
777(simplify
778 (bit_ior @0 integer_zerop)
779 @0)
e0ee10ed
RB
780
781/* x & 0 -> 0 */
782(simplify
ca0b7ece
RB
783 (bit_and @0 integer_zerop@1)
784 @1)
e0ee10ed 785
a4398a30 786/* ~x | x -> -1 */
8b5ee871
MG
787/* ~x ^ x -> -1 */
788/* ~x + x -> -1 */
789(for op (bit_ior bit_xor plus)
790 (simplify
791 (op:c (convert? @0) (convert? (bit_not @0)))
792 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
a4398a30 793
e0ee10ed
RB
794/* x ^ x -> 0 */
795(simplify
796 (bit_xor @0 @0)
797 { build_zero_cst (type); })
798
36a60e48
RB
799/* Canonicalize X ^ ~0 to ~X. */
800(simplify
801 (bit_xor @0 integer_all_onesp@1)
802 (bit_not @0))
803
804/* x & ~0 -> x */
805(simplify
806 (bit_and @0 integer_all_onesp)
807 (non_lvalue @0))
808
809/* x & x -> x, x | x -> x */
810(for bitop (bit_and bit_ior)
811 (simplify
812 (bitop @0 @0)
813 (non_lvalue @0)))
814
c7986356
MG
815/* x & C -> x if we know that x & ~C == 0. */
816#if GIMPLE
817(simplify
818 (bit_and SSA_NAME@0 INTEGER_CST@1)
819 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
8e6cdc90 820 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
c7986356
MG
821 @0))
822#endif
823
0f770b01
RV
824/* x + (x & 1) -> (x + 1) & ~1 */
825(simplify
44fc0a51
RB
826 (plus:c @0 (bit_and:s @0 integer_onep@1))
827 (bit_and (plus @0 @1) (bit_not @1)))
0f770b01
RV
828
829/* x & ~(x & y) -> x & ~y */
830/* x | ~(x | y) -> x | ~y */
831(for bitop (bit_and bit_ior)
af563d4b 832 (simplify
44fc0a51
RB
833 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
834 (bitop @0 (bit_not @1))))
af563d4b
MG
835
836/* (x | y) & ~x -> y & ~x */
837/* (x & y) | ~x -> y | ~x */
838(for bitop (bit_and bit_ior)
839 rbitop (bit_ior bit_and)
840 (simplify
841 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
842 (bitop @1 @2)))
0f770b01 843
f13c4673
MP
844/* (x & y) ^ (x | y) -> x ^ y */
845(simplify
2d6f2dce
MP
846 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
847 (bit_xor @0 @1))
f13c4673 848
9ea65ca6
MP
849/* (x ^ y) ^ (x | y) -> x & y */
850(simplify
851 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
852 (bit_and @0 @1))
853
854/* (x & y) + (x ^ y) -> x | y */
855/* (x & y) | (x ^ y) -> x | y */
856/* (x & y) ^ (x ^ y) -> x | y */
857(for op (plus bit_ior bit_xor)
858 (simplify
859 (op:c (bit_and @0 @1) (bit_xor @0 @1))
860 (bit_ior @0 @1)))
861
862/* (x & y) + (x | y) -> x + y */
863(simplify
864 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
865 (plus @0 @1))
866
9737efaf
MP
867/* (x + y) - (x | y) -> x & y */
868(simplify
869 (minus (plus @0 @1) (bit_ior @0 @1))
870 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
871 && !TYPE_SATURATING (type))
872 (bit_and @0 @1)))
873
874/* (x + y) - (x & y) -> x | y */
875(simplify
876 (minus (plus @0 @1) (bit_and @0 @1))
877 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
878 && !TYPE_SATURATING (type))
879 (bit_ior @0 @1)))
880
9ea65ca6
MP
881/* (x | y) - (x ^ y) -> x & y */
882(simplify
883 (minus (bit_ior @0 @1) (bit_xor @0 @1))
884 (bit_and @0 @1))
885
886/* (x | y) - (x & y) -> x ^ y */
887(simplify
888 (minus (bit_ior @0 @1) (bit_and @0 @1))
889 (bit_xor @0 @1))
890
66cc6273
MP
891/* (x | y) & ~(x & y) -> x ^ y */
892(simplify
893 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
894 (bit_xor @0 @1))
895
896/* (x | y) & (~x ^ y) -> x & y */
897(simplify
898 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
899 (bit_and @0 @1))
900
5b00d921
RB
901/* ~x & ~y -> ~(x | y)
902 ~x | ~y -> ~(x & y) */
903(for op (bit_and bit_ior)
904 rop (bit_ior bit_and)
905 (simplify
906 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
ece46666
MG
907 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
908 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
5b00d921
RB
909 (bit_not (rop (convert @0) (convert @1))))))
910
14ea9f92 911/* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
5b00d921
RB
912 with a constant, and the two constants have no bits in common,
913 we should treat this as a BIT_IOR_EXPR since this may produce more
914 simplifications. */
14ea9f92
RB
915(for op (bit_xor plus)
916 (simplify
917 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
918 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
919 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
920 && tree_nop_conversion_p (type, TREE_TYPE (@2))
8e6cdc90 921 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
14ea9f92 922 (bit_ior (convert @4) (convert @5)))))
5b00d921
RB
923
924/* (X | Y) ^ X -> Y & ~ X*/
925(simplify
2eef1fc1 926 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
5b00d921
RB
927 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
928 (convert (bit_and @1 (bit_not @0)))))
929
930/* Convert ~X ^ ~Y to X ^ Y. */
931(simplify
932 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
ece46666
MG
933 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
934 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
5b00d921
RB
935 (bit_xor (convert @0) (convert @1))))
936
937/* Convert ~X ^ C to X ^ ~C. */
938(simplify
939 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
c8ba6498
EB
940 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
941 (bit_xor (convert @0) (bit_not @1))))
5b00d921 942
e39dab2c
MG
943/* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
944(for opo (bit_and bit_xor)
945 opi (bit_xor bit_and)
946 (simplify
947 (opo:c (opi:c @0 @1) @1)
948 (bit_and (bit_not @0) @1)))
97e77391 949
14ea9f92
RB
950/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
951 operands are another bit-wise operation with a common input. If so,
952 distribute the bit operations to save an operation and possibly two if
953 constants are involved. For example, convert
954 (A | B) & (A | C) into A | (B & C)
955 Further simplification will occur if B and C are constants. */
e07ab2fe
MG
956(for op (bit_and bit_ior bit_xor)
957 rop (bit_ior bit_and bit_and)
14ea9f92 958 (simplify
2eef1fc1 959 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
e07ab2fe
MG
960 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
961 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
14ea9f92
RB
962 (rop (convert @0) (op (convert @1) (convert @2))))))
963
e39dab2c
MG
964/* Some simple reassociation for bit operations, also handled in reassoc. */
965/* (X & Y) & Y -> X & Y
966 (X | Y) | Y -> X | Y */
967(for op (bit_and bit_ior)
968 (simplify
2eef1fc1 969 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
e39dab2c
MG
970 @2))
971/* (X ^ Y) ^ Y -> X */
972(simplify
2eef1fc1 973 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
ece46666 974 (convert @0))
e39dab2c
MG
975/* (X & Y) & (X & Z) -> (X & Y) & Z
976 (X | Y) | (X | Z) -> (X | Y) | Z */
977(for op (bit_and bit_ior)
978 (simplify
6c35e5b0 979 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
e39dab2c
MG
980 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
981 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
982 (if (single_use (@5) && single_use (@6))
983 (op @3 (convert @2))
984 (if (single_use (@3) && single_use (@4))
985 (op (convert @1) @5))))))
986/* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
987(simplify
988 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
989 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
990 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
d78789f5 991 (bit_xor (convert @1) (convert @2))))
5b00d921 992
b14a9c57
RB
993(simplify
994 (abs (abs@1 @0))
995 @1)
f3582e54
RB
996(simplify
997 (abs (negate @0))
998 (abs @0))
999(simplify
1000 (abs tree_expr_nonnegative_p@0)
1001 @0)
1002
55cf3946
RB
1003/* A few cases of fold-const.c negate_expr_p predicate. */
1004(match negate_expr_p
1005 INTEGER_CST
b14a9c57 1006 (if ((INTEGRAL_TYPE_P (type)
56a6d474 1007 && TYPE_UNSIGNED (type))
b14a9c57 1008 || (!TYPE_OVERFLOW_SANITIZED (type)
55cf3946
RB
1009 && may_negate_without_overflow_p (t)))))
1010(match negate_expr_p
1011 FIXED_CST)
1012(match negate_expr_p
1013 (negate @0)
1014 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1015(match negate_expr_p
1016 REAL_CST
1017 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1018/* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1019 ways. */
1020(match negate_expr_p
1021 VECTOR_CST
1022 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
81bd903a
MG
1023(match negate_expr_p
1024 (minus @0 @1)
1025 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1026 || (FLOAT_TYPE_P (type)
1027 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1028 && !HONOR_SIGNED_ZEROS (type)))))
0a8f32b8
RB
1029
1030/* (-A) * (-B) -> A * B */
1031(simplify
1032 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1033 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1034 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1035 (mult (convert @0) (convert (negate @1)))))
55cf3946
RB
1036
1037/* -(A + B) -> (-B) - A. */
b14a9c57 1038(simplify
55cf3946
RB
1039 (negate (plus:c @0 negate_expr_p@1))
1040 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1041 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1042 (minus (negate @1) @0)))
1043
81bd903a
MG
1044/* -(A - B) -> B - A. */
1045(simplify
1046 (negate (minus @0 @1))
1047 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1048 || (FLOAT_TYPE_P (type)
1049 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1050 && !HONOR_SIGNED_ZEROS (type)))
1051 (minus @1 @0)))
1af4ebf5
MG
1052(simplify
1053 (negate (pointer_diff @0 @1))
1054 (if (TYPE_OVERFLOW_UNDEFINED (type))
1055 (pointer_diff @1 @0)))
81bd903a 1056
55cf3946 1057/* A - B -> A + (-B) if B is easily negatable. */
b14a9c57 1058(simplify
55cf3946 1059 (minus @0 negate_expr_p@1)
e4e96a4f
KT
1060 (if (!FIXED_POINT_TYPE_P (type))
1061 (plus @0 (negate @1))))
d4573ffe 1062
5609420f
RB
1063/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1064 when profitable.
1065 For bitwise binary operations apply operand conversions to the
1066 binary operation result instead of to the operands. This allows
1067 to combine successive conversions and bitwise binary operations.
1068 We combine the above two cases by using a conditional convert. */
1069(for bitop (bit_and bit_ior bit_xor)
1070 (simplify
1071 (bitop (convert @0) (convert? @1))
1072 (if (((TREE_CODE (@1) == INTEGER_CST
1073 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
ad6f996c 1074 && int_fits_type_p (@1, TREE_TYPE (@0)))
aea417d7 1075 || types_match (@0, @1))
ad6f996c
RB
1076 /* ??? This transform conflicts with fold-const.c doing
1077 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1078 constants (if x has signed type, the sign bit cannot be set
1079 in c). This folds extension into the BIT_AND_EXPR.
1080 Restrict it to GIMPLE to avoid endless recursions. */
1081 && (bitop != BIT_AND_EXPR || GIMPLE)
5609420f
RB
1082 && (/* That's a good idea if the conversion widens the operand, thus
1083 after hoisting the conversion the operation will be narrower. */
1084 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1085 /* It's also a good idea if the conversion is to a non-integer
1086 mode. */
1087 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1088 /* Or if the precision of TO is not the same as the precision
1089 of its mode. */
2be65d9e 1090 || !type_has_mode_precision_p (type)))
5609420f
RB
1091 (convert (bitop @0 (convert @1))))))
1092
b14a9c57
RB
1093(for bitop (bit_and bit_ior)
1094 rbitop (bit_ior bit_and)
1095 /* (x | y) & x -> x */
1096 /* (x & y) | x -> x */
1097 (simplify
1098 (bitop:c (rbitop:c @0 @1) @0)
1099 @0)
1100 /* (~x | y) & x -> x & y */
1101 /* (~x & y) | x -> x | y */
1102 (simplify
1103 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1104 (bitop @0 @1)))
1105
5609420f
RB
1106/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1107(simplify
1108 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1109 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1110
1111/* Combine successive equal operations with constants. */
1112(for bitop (bit_and bit_ior bit_xor)
1113 (simplify
1114 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
fba05d9e
RS
1115 (if (!CONSTANT_CLASS_P (@0))
1116 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1117 folded to a constant. */
1118 (bitop @0 (bitop @1 @2))
1119 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1120 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1121 the values involved are such that the operation can't be decided at
1122 compile time. Try folding one of @0 or @1 with @2 to see whether
1123 that combination can be decided at compile time.
1124
1125 Keep the existing form if both folds fail, to avoid endless
1126 oscillation. */
1127 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1128 (if (cst1)
1129 (bitop @1 { cst1; })
1130 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1131 (if (cst2)
1132 (bitop @0 { cst2; }))))))))
5609420f
RB
1133
1134/* Try simple folding for X op !X, and X op X with the help
1135 of the truth_valued_p and logical_inverted_value predicates. */
1136(match truth_valued_p
1137 @0
1138 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
f84e7fd6 1139(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
5609420f
RB
1140 (match truth_valued_p
1141 (op @0 @1)))
1142(match truth_valued_p
1143 (truth_not @0))
1144
0a8f32b8
RB
1145(match (logical_inverted_value @0)
1146 (truth_not @0))
5609420f
RB
1147(match (logical_inverted_value @0)
1148 (bit_not truth_valued_p@0))
1149(match (logical_inverted_value @0)
09240451 1150 (eq @0 integer_zerop))
5609420f 1151(match (logical_inverted_value @0)
09240451 1152 (ne truth_valued_p@0 integer_truep))
5609420f 1153(match (logical_inverted_value @0)
09240451 1154 (bit_xor truth_valued_p@0 integer_truep))
5609420f
RB
1155
1156/* X & !X -> 0. */
1157(simplify
1158 (bit_and:c @0 (logical_inverted_value @0))
1159 { build_zero_cst (type); })
1160/* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1161(for op (bit_ior bit_xor)
1162 (simplify
1163 (op:c truth_valued_p@0 (logical_inverted_value @0))
f84e7fd6 1164 { constant_boolean_node (true, type); }))
59c20dc7
RB
1165/* X ==/!= !X is false/true. */
1166(for op (eq ne)
1167 (simplify
1168 (op:c truth_valued_p@0 (logical_inverted_value @0))
1169 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
5609420f 1170
5609420f
RB
1171/* ~~x -> x */
1172(simplify
1173 (bit_not (bit_not @0))
1174 @0)
1175
b14a9c57
RB
1176/* Convert ~ (-A) to A - 1. */
1177(simplify
1178 (bit_not (convert? (negate @0)))
ece46666
MG
1179 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1180 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
8b5ee871 1181 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
b14a9c57 1182
81bd903a
MG
1183/* Convert - (~A) to A + 1. */
1184(simplify
1185 (negate (nop_convert (bit_not @0)))
1186 (plus (view_convert @0) { build_each_one_cst (type); }))
1187
b14a9c57
RB
1188/* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1189(simplify
8b5ee871 1190 (bit_not (convert? (minus @0 integer_each_onep)))
ece46666
MG
1191 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1192 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
b14a9c57
RB
1193 (convert (negate @0))))
1194(simplify
1195 (bit_not (convert? (plus @0 integer_all_onesp)))
ece46666
MG
1196 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1197 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
b14a9c57
RB
1198 (convert (negate @0))))
1199
1200/* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1201(simplify
1202 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1203 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1204 (convert (bit_xor @0 (bit_not @1)))))
1205(simplify
1206 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1207 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1208 (convert (bit_xor @0 @1))))
1209
e268a77b
MG
1210/* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1211(simplify
1212 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1213 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1214 (bit_not (bit_xor (view_convert @0) @1))))
1215
f52baa7b
MP
1216/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1217(simplify
44fc0a51
RB
1218 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1219 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
f52baa7b 1220
f7b7b0aa
MP
1221/* Fold A - (A & B) into ~B & A. */
1222(simplify
2eef1fc1 1223 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
f7b7b0aa
MP
1224 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1225 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1226 (convert (bit_and (bit_not @1) @0))))
5609420f 1227
2071f8f9
N
1228/* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1229(for cmp (gt lt ge le)
1230(simplify
1231 (mult (convert (cmp @0 @1)) @2)
1232 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1233
e36c1cfe
N
1234/* For integral types with undefined overflow and C != 0 fold
1235 x * C EQ/NE y * C into x EQ/NE y. */
1236(for cmp (eq ne)
1237 (simplify
1238 (cmp (mult:c @0 @1) (mult:c @2 @1))
1239 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1240 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1241 && tree_expr_nonzero_p (@1))
1242 (cmp @0 @2))))
1243
42bd89ce
MG
1244/* For integral types with wrapping overflow and C odd fold
1245 x * C EQ/NE y * C into x EQ/NE y. */
1246(for cmp (eq ne)
1247 (simplify
1248 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1249 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1250 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1251 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1252 (cmp @0 @2))))
1253
e36c1cfe
N
1254/* For integral types with undefined overflow and C != 0 fold
1255 x * C RELOP y * C into:
84ff66b8 1256
e36c1cfe
N
1257 x RELOP y for nonnegative C
1258 y RELOP x for negative C */
1259(for cmp (lt gt le ge)
1260 (simplify
1261 (cmp (mult:c @0 @1) (mult:c @2 @1))
1262 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1263 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1264 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1265 (cmp @0 @2)
1266 (if (TREE_CODE (@1) == INTEGER_CST
8e6cdc90 1267 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
e36c1cfe 1268 (cmp @2 @0))))))
84ff66b8 1269
564e405c
JJ
1270/* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1271(for cmp (le gt)
1272 icmp (gt le)
1273 (simplify
1274 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1275 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1276 && TYPE_UNSIGNED (TREE_TYPE (@0))
1277 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
8e6cdc90
RS
1278 && (wi::to_wide (@2)
1279 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
564e405c
JJ
1280 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1281 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1282
a8492d5e
MG
1283/* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1284(for cmp (simple_comparison)
1285 (simplify
1286 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
8e6cdc90 1287 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
a8492d5e
MG
1288 (cmp @0 @1))))
1289
8d1628eb
JJ
1290/* X / C1 op C2 into a simple range test. */
1291(for cmp (simple_comparison)
1292 (simplify
1293 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1294 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1295 && integer_nonzerop (@1)
1296 && !TREE_OVERFLOW (@1)
1297 && !TREE_OVERFLOW (@2))
1298 (with { tree lo, hi; bool neg_overflow;
1299 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1300 &neg_overflow); }
1301 (switch
1302 (if (code == LT_EXPR || code == GE_EXPR)
1303 (if (TREE_OVERFLOW (lo))
1304 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1305 (if (code == LT_EXPR)
1306 (lt @0 { lo; })
1307 (ge @0 { lo; }))))
1308 (if (code == LE_EXPR || code == GT_EXPR)
1309 (if (TREE_OVERFLOW (hi))
1310 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1311 (if (code == LE_EXPR)
1312 (le @0 { hi; })
1313 (gt @0 { hi; }))))
1314 (if (!lo && !hi)
1315 { build_int_cst (type, code == NE_EXPR); })
1316 (if (code == EQ_EXPR && !hi)
1317 (ge @0 { lo; }))
1318 (if (code == EQ_EXPR && !lo)
1319 (le @0 { hi; }))
1320 (if (code == NE_EXPR && !hi)
1321 (lt @0 { lo; }))
1322 (if (code == NE_EXPR && !lo)
1323 (gt @0 { hi; }))
1324 (if (GENERIC)
1325 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1326 lo, hi); })
1327 (with
1328 {
1329 tree etype = range_check_type (TREE_TYPE (@0));
1330 if (etype)
1331 {
1332 if (! TYPE_UNSIGNED (etype))
1333 etype = unsigned_type_for (etype);
1334 hi = fold_convert (etype, hi);
1335 lo = fold_convert (etype, lo);
1336 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1337 }
1338 }
1339 (if (etype && hi && !TREE_OVERFLOW (hi))
1340 (if (code == EQ_EXPR)
1341 (le (minus (convert:etype @0) { lo; }) { hi; })
1342 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1343
d35256b6
MG
1344/* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1345(for op (lt le ge gt)
1346 (simplify
1347 (op (plus:c @0 @2) (plus:c @1 @2))
1348 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1349 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1350 (op @0 @1))))
1351/* For equality and subtraction, this is also true with wrapping overflow. */
1352(for op (eq ne minus)
1353 (simplify
1354 (op (plus:c @0 @2) (plus:c @1 @2))
1355 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1356 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1357 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1358 (op @0 @1))))
1359
1360/* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1361(for op (lt le ge gt)
1362 (simplify
1363 (op (minus @0 @2) (minus @1 @2))
1364 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1365 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1366 (op @0 @1))))
1367/* For equality and subtraction, this is also true with wrapping overflow. */
1368(for op (eq ne minus)
1369 (simplify
1370 (op (minus @0 @2) (minus @1 @2))
1371 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1372 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1373 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1374 (op @0 @1))))
1af4ebf5
MG
1375/* And for pointers... */
1376(for op (simple_comparison)
1377 (simplify
1378 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1379 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1380 (op @0 @1))))
1381(simplify
1382 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1383 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1384 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1385 (pointer_diff @0 @1)))
d35256b6
MG
1386
1387/* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1388(for op (lt le ge gt)
1389 (simplify
1390 (op (minus @2 @0) (minus @2 @1))
1391 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1392 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1393 (op @1 @0))))
1394/* For equality and subtraction, this is also true with wrapping overflow. */
1395(for op (eq ne minus)
1396 (simplify
1397 (op (minus @2 @0) (minus @2 @1))
1398 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1399 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1400 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1401 (op @1 @0))))
1af4ebf5
MG
1402/* And for pointers... */
1403(for op (simple_comparison)
1404 (simplify
1405 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1406 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1407 (op @1 @0))))
1408(simplify
1409 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1410 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1411 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1412 (pointer_diff @1 @0)))
d35256b6 1413
6358a676
MG
1414/* X + Y < Y is the same as X < 0 when there is no overflow. */
1415(for op (lt le gt ge)
1416 (simplify
1417 (op:c (plus:c@2 @0 @1) @1)
1418 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1419 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1420 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1421 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1422/* For equality, this is also true with wrapping overflow. */
1423(for op (eq ne)
1424 (simplify
1425 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1426 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1427 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1428 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1429 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1430 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1431 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1432 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1433 (simplify
1434 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1435 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1436 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1437 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1438 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1439
1440/* X - Y < X is the same as Y > 0 when there is no overflow.
1441 For equality, this is also true with wrapping overflow. */
1442(for op (simple_comparison)
1443 (simplify
1444 (op:c @0 (minus@2 @0 @1))
1445 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1446 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1447 || ((op == EQ_EXPR || op == NE_EXPR)
1448 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1449 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1450 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1451
1d6fadee
PK
1452/* Transform:
1453 * (X / Y) == 0 -> X < Y if X, Y are unsigned.
1454 * (X / Y) != 0 -> X >= Y, if X, Y are unsigned.
1455 */
1456(for cmp (eq ne)
1457 ocmp (lt ge)
1458 (simplify
1459 (cmp (trunc_div @0 @1) integer_zerop)
1460 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1461 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1462 (ocmp @0 @1))))
1463
8b656ca7
MG
1464/* X == C - X can never be true if C is odd. */
1465(for cmp (eq ne)
1466 (simplify
1467 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1468 (if (TREE_INT_CST_LOW (@1) & 1)
1469 { constant_boolean_node (cmp == NE_EXPR, type); })))
1470
10bc8017
MG
1471/* Arguments on which one can call get_nonzero_bits to get the bits
1472 possibly set. */
1473(match with_possible_nonzero_bits
1474 INTEGER_CST@0)
1475(match with_possible_nonzero_bits
1476 SSA_NAME@0
1477 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1478/* Slightly extended version, do not make it recursive to keep it cheap. */
1479(match (with_possible_nonzero_bits2 @0)
1480 with_possible_nonzero_bits@0)
1481(match (with_possible_nonzero_bits2 @0)
1482 (bit_and:c with_possible_nonzero_bits@0 @2))
1483
1484/* Same for bits that are known to be set, but we do not have
1485 an equivalent to get_nonzero_bits yet. */
1486(match (with_certain_nonzero_bits2 @0)
1487 INTEGER_CST@0)
1488(match (with_certain_nonzero_bits2 @0)
1489 (bit_ior @1 INTEGER_CST@0))
1490
1491/* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1492(for cmp (eq ne)
1493 (simplify
1494 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
8e6cdc90 1495 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
10bc8017
MG
1496 { constant_boolean_node (cmp == NE_EXPR, type); })))
1497
84ff66b8
AV
1498/* ((X inner_op C0) outer_op C1)
1499 With X being a tree where value_range has reasoned certain bits to always be
1500 zero throughout its computed value range,
1501 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1502 where zero_mask has 1's for all bits that are sure to be 0 in
1503 and 0's otherwise.
1504 if (inner_op == '^') C0 &= ~C1;
1505 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1506 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1507*/
1508(for inner_op (bit_ior bit_xor)
1509 outer_op (bit_xor bit_ior)
1510(simplify
1511 (outer_op
1512 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1513 (with
1514 {
1515 bool fail = false;
1516 wide_int zero_mask_not;
1517 wide_int C0;
1518 wide_int cst_emit;
1519
1520 if (TREE_CODE (@2) == SSA_NAME)
1521 zero_mask_not = get_nonzero_bits (@2);
1522 else
1523 fail = true;
1524
1525 if (inner_op == BIT_XOR_EXPR)
1526 {
8e6cdc90
RS
1527 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1528 cst_emit = C0 | wi::to_wide (@1);
84ff66b8
AV
1529 }
1530 else
1531 {
8e6cdc90
RS
1532 C0 = wi::to_wide (@0);
1533 cst_emit = C0 ^ wi::to_wide (@1);
84ff66b8
AV
1534 }
1535 }
8e6cdc90 1536 (if (!fail && (C0 & zero_mask_not) == 0)
84ff66b8 1537 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
8e6cdc90 1538 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
84ff66b8
AV
1539 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1540
a499aac5
RB
1541/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1542(simplify
44fc0a51
RB
1543 (pointer_plus (pointer_plus:s @0 @1) @3)
1544 (pointer_plus @0 (plus @1 @3)))
a499aac5
RB
1545
1546/* Pattern match
1547 tem1 = (long) ptr1;
1548 tem2 = (long) ptr2;
1549 tem3 = tem2 - tem1;
1550 tem4 = (unsigned long) tem3;
1551 tem5 = ptr1 + tem4;
1552 and produce
1553 tem5 = ptr2; */
1554(simplify
1555 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1556 /* Conditionally look through a sign-changing conversion. */
1557 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1558 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1559 || (GENERIC && type == TREE_TYPE (@1))))
1560 @1))
1af4ebf5
MG
1561(simplify
1562 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1563 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1564 (convert @1)))
a499aac5
RB
1565
1566/* Pattern match
1567 tem = (sizetype) ptr;
1568 tem = tem & algn;
1569 tem = -tem;
1570 ... = ptr p+ tem;
1571 and produce the simpler and easier to analyze with respect to alignment
1572 ... = ptr & ~algn; */
1573(simplify
1574 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
8e6cdc90 1575 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
a499aac5
RB
1576 (bit_and @0 { algn; })))
1577
99e943a2
RB
1578/* Try folding difference of addresses. */
1579(simplify
1580 (minus (convert ADDR_EXPR@0) (convert @1))
1581 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
f37fac2b 1582 (with { poly_int64 diff; }
99e943a2
RB
1583 (if (ptr_difference_const (@0, @1, &diff))
1584 { build_int_cst_type (type, diff); }))))
1585(simplify
1586 (minus (convert @0) (convert ADDR_EXPR@1))
1587 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
f37fac2b 1588 (with { poly_int64 diff; }
99e943a2
RB
1589 (if (ptr_difference_const (@0, @1, &diff))
1590 { build_int_cst_type (type, diff); }))))
1af4ebf5
MG
1591(simplify
1592 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert?@3 @1))
1593 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1594 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
f37fac2b 1595 (with { poly_int64 diff; }
1af4ebf5
MG
1596 (if (ptr_difference_const (@0, @1, &diff))
1597 { build_int_cst_type (type, diff); }))))
1598(simplify
1599 (pointer_diff (convert?@2 @0) (convert?@3 ADDR_EXPR@1))
1600 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1601 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
f37fac2b 1602 (with { poly_int64 diff; }
1af4ebf5
MG
1603 (if (ptr_difference_const (@0, @1, &diff))
1604 { build_int_cst_type (type, diff); }))))
99e943a2 1605
bab73f11
RB
1606/* If arg0 is derived from the address of an object or function, we may
1607 be able to fold this expression using the object or function's
1608 alignment. */
1609(simplify
1610 (bit_and (convert? @0) INTEGER_CST@1)
1611 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1612 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1613 (with
1614 {
1615 unsigned int align;
1616 unsigned HOST_WIDE_INT bitpos;
1617 get_pointer_alignment_1 (@0, &align, &bitpos);
1618 }
8e6cdc90
RS
1619 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1620 { wide_int_to_tree (type, (wi::to_wide (@1)
1621 & (bitpos / BITS_PER_UNIT))); }))))
99e943a2 1622
a499aac5 1623
cc7b5acf
RB
1624/* We can't reassociate at all for saturating types. */
1625(if (!TYPE_SATURATING (type))
1626
1627 /* Contract negates. */
1628 /* A + (-B) -> A - B */
1629 (simplify
248179b5
RB
1630 (plus:c @0 (convert? (negate @1)))
1631 /* Apply STRIP_NOPS on the negate. */
1632 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1633 && !TYPE_OVERFLOW_SANITIZED (type))
248179b5
RB
1634 (with
1635 {
1636 tree t1 = type;
1637 if (INTEGRAL_TYPE_P (type)
1638 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1639 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1640 }
1641 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
cc7b5acf
RB
1642 /* A - (-B) -> A + B */
1643 (simplify
248179b5
RB
1644 (minus @0 (convert? (negate @1)))
1645 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1646 && !TYPE_OVERFLOW_SANITIZED (type))
248179b5
RB
1647 (with
1648 {
1649 tree t1 = type;
1650 if (INTEGRAL_TYPE_P (type)
1651 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1652 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1653 }
1654 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
63626547
MG
1655 /* -(T)(-A) -> (T)A
1656 Sign-extension is ok except for INT_MIN, which thankfully cannot
1657 happen without overflow. */
1658 (simplify
1659 (negate (convert (negate @1)))
1660 (if (INTEGRAL_TYPE_P (type)
1661 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1662 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1663 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1664 && !TYPE_OVERFLOW_SANITIZED (type)
1665 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
a0f12cf8 1666 (convert @1)))
63626547
MG
1667 (simplify
1668 (negate (convert negate_expr_p@1))
1669 (if (SCALAR_FLOAT_TYPE_P (type)
1670 && ((DECIMAL_FLOAT_TYPE_P (type)
1671 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1672 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1673 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1674 (convert (negate @1))))
1675 (simplify
1676 (negate (nop_convert (negate @1)))
1677 (if (!TYPE_OVERFLOW_SANITIZED (type)
1678 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1679 (view_convert @1)))
cc7b5acf 1680
7318e44f
RB
1681 /* We can't reassociate floating-point unless -fassociative-math
1682 or fixed-point plus or minus because of saturation to +-Inf. */
1683 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1684 && !FIXED_POINT_TYPE_P (type))
cc7b5acf
RB
1685
1686 /* Match patterns that allow contracting a plus-minus pair
1687 irrespective of overflow issues. */
1688 /* (A +- B) - A -> +- B */
1689 /* (A +- B) -+ B -> A */
1690 /* A - (A +- B) -> -+ B */
1691 /* A +- (B -+ A) -> +- B */
1692 (simplify
1693 (minus (plus:c @0 @1) @0)
1694 @1)
1695 (simplify
1696 (minus (minus @0 @1) @0)
1697 (negate @1))
1698 (simplify
1699 (plus:c (minus @0 @1) @1)
1700 @0)
1701 (simplify
1702 (minus @0 (plus:c @0 @1))
1703 (negate @1))
1704 (simplify
1705 (minus @0 (minus @0 @1))
1706 @1)
1e7df2e6
MG
1707 /* (A +- B) + (C - A) -> C +- B */
1708 /* (A + B) - (A - C) -> B + C */
1709 /* More cases are handled with comparisons. */
1710 (simplify
1711 (plus:c (plus:c @0 @1) (minus @2 @0))
1712 (plus @2 @1))
1713 (simplify
1714 (plus:c (minus @0 @1) (minus @2 @0))
1715 (minus @2 @1))
1af4ebf5
MG
1716 (simplify
1717 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1718 (if (TYPE_OVERFLOW_UNDEFINED (type)
1719 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1720 (pointer_diff @2 @1)))
1e7df2e6
MG
1721 (simplify
1722 (minus (plus:c @0 @1) (minus @0 @2))
1723 (plus @1 @2))
cc7b5acf 1724
ed73f46f
MG
1725 /* (A +- CST1) +- CST2 -> A + CST3
1726 Use view_convert because it is safe for vectors and equivalent for
1727 scalars. */
cc7b5acf
RB
1728 (for outer_op (plus minus)
1729 (for inner_op (plus minus)
ed73f46f 1730 neg_inner_op (minus plus)
cc7b5acf 1731 (simplify
ed73f46f
MG
1732 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1733 CONSTANT_CLASS_P@2)
1734 /* If one of the types wraps, use that one. */
1735 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1736 (if (outer_op == PLUS_EXPR)
1737 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1738 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1))))
1739 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1740 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1741 (if (outer_op == PLUS_EXPR)
1742 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1743 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1744 /* If the constant operation overflows we cannot do the transform
1745 directly as we would introduce undefined overflow, for example
1746 with (a - 1) + INT_MIN. */
1747 (if (types_match (type, @0))
1748 (with { tree cst = const_binop (outer_op == inner_op
1749 ? PLUS_EXPR : MINUS_EXPR,
1750 type, @1, @2); }
1751 (if (cst && !TREE_OVERFLOW (cst))
1752 (inner_op @0 { cst; } )
1753 /* X+INT_MAX+1 is X-INT_MIN. */
1754 (if (INTEGRAL_TYPE_P (type) && cst
8e6cdc90
RS
1755 && wi::to_wide (cst) == wi::min_value (type))
1756 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
ed73f46f
MG
1757 /* Last resort, use some unsigned type. */
1758 (with { tree utype = unsigned_type_for (type); }
1759 (view_convert (inner_op
1760 (view_convert:utype @0)
1761 (view_convert:utype
1762 { drop_tree_overflow (cst); })))))))))))))
cc7b5acf 1763
b302f2e0 1764 /* (CST1 - A) +- CST2 -> CST3 - A */
cc7b5acf
RB
1765 (for outer_op (plus minus)
1766 (simplify
1767 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
23f27839 1768 (with { tree cst = const_binop (outer_op, type, @1, @2); }
cc7b5acf
RB
1769 (if (cst && !TREE_OVERFLOW (cst))
1770 (minus { cst; } @0)))))
1771
b302f2e0
RB
1772 /* CST1 - (CST2 - A) -> CST3 + A */
1773 (simplify
1774 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1775 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1776 (if (cst && !TREE_OVERFLOW (cst))
1777 (plus { cst; } @0))))
1778
cc7b5acf
RB
1779 /* ~A + A -> -1 */
1780 (simplify
1781 (plus:c (bit_not @0) @0)
1782 (if (!TYPE_OVERFLOW_TRAPS (type))
1783 { build_all_ones_cst (type); }))
1784
1785 /* ~A + 1 -> -A */
1786 (simplify
e19740ae
RB
1787 (plus (convert? (bit_not @0)) integer_each_onep)
1788 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1789 (negate (convert @0))))
1790
1791 /* -A - 1 -> ~A */
1792 (simplify
1793 (minus (convert? (negate @0)) integer_each_onep)
1794 (if (!TYPE_OVERFLOW_TRAPS (type)
1795 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1796 (bit_not (convert @0))))
1797
1798 /* -1 - A -> ~A */
1799 (simplify
1800 (minus integer_all_onesp @0)
bc4315fb 1801 (bit_not @0))
cc7b5acf
RB
1802
1803 /* (T)(P + A) - (T)P -> (T) A */
d7f44d4d 1804 (simplify
a72610d4
JJ
1805 (minus (convert (plus:c @@0 @1))
1806 (convert? @0))
d7f44d4d
JJ
1807 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1808 /* For integer types, if A has a smaller type
1809 than T the result depends on the possible
1810 overflow in P + A.
1811 E.g. T=size_t, A=(unsigned)429497295, P>0.
1812 However, if an overflow in P + A would cause
1813 undefined behavior, we can assume that there
1814 is no overflow. */
a72610d4
JJ
1815 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1816 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
d7f44d4d
JJ
1817 (convert @1)))
1818 (simplify
1819 (minus (convert (pointer_plus @@0 @1))
1820 (convert @0))
1821 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1822 /* For pointer types, if the conversion of A to the
1823 final type requires a sign- or zero-extension,
1824 then we have to punt - it is not defined which
1825 one is correct. */
1826 || (POINTER_TYPE_P (TREE_TYPE (@0))
1827 && TREE_CODE (@1) == INTEGER_CST
1828 && tree_int_cst_sign_bit (@1) == 0))
1829 (convert @1)))
1af4ebf5
MG
1830 (simplify
1831 (pointer_diff (pointer_plus @@0 @1) @0)
1832 /* The second argument of pointer_plus must be interpreted as signed, and
1833 thus sign-extended if necessary. */
1834 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1835 (convert (convert:stype @1))))
a8fc2579
RB
1836
1837 /* (T)P - (T)(P + A) -> -(T) A */
d7f44d4d 1838 (simplify
a72610d4
JJ
1839 (minus (convert? @0)
1840 (convert (plus:c @@0 @1)))
d7f44d4d
JJ
1841 (if (INTEGRAL_TYPE_P (type)
1842 && TYPE_OVERFLOW_UNDEFINED (type)
1843 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1844 (with { tree utype = unsigned_type_for (type); }
1845 (convert (negate (convert:utype @1))))
a8fc2579
RB
1846 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1847 /* For integer types, if A has a smaller type
1848 than T the result depends on the possible
1849 overflow in P + A.
1850 E.g. T=size_t, A=(unsigned)429497295, P>0.
1851 However, if an overflow in P + A would cause
1852 undefined behavior, we can assume that there
1853 is no overflow. */
a72610d4
JJ
1854 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1855 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
d7f44d4d
JJ
1856 (negate (convert @1)))))
1857 (simplify
1858 (minus (convert @0)
1859 (convert (pointer_plus @@0 @1)))
1860 (if (INTEGRAL_TYPE_P (type)
1861 && TYPE_OVERFLOW_UNDEFINED (type)
1862 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1863 (with { tree utype = unsigned_type_for (type); }
1864 (convert (negate (convert:utype @1))))
1865 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
a8fc2579
RB
1866 /* For pointer types, if the conversion of A to the
1867 final type requires a sign- or zero-extension,
1868 then we have to punt - it is not defined which
1869 one is correct. */
1870 || (POINTER_TYPE_P (TREE_TYPE (@0))
1871 && TREE_CODE (@1) == INTEGER_CST
1872 && tree_int_cst_sign_bit (@1) == 0))
1873 (negate (convert @1)))))
1af4ebf5
MG
1874 (simplify
1875 (pointer_diff @0 (pointer_plus @@0 @1))
1876 /* The second argument of pointer_plus must be interpreted as signed, and
1877 thus sign-extended if necessary. */
1878 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1879 (negate (convert (convert:stype @1)))))
a8fc2579
RB
1880
1881 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
d7f44d4d 1882 (simplify
a72610d4 1883 (minus (convert (plus:c @@0 @1))
d7f44d4d
JJ
1884 (convert (plus:c @0 @2)))
1885 (if (INTEGRAL_TYPE_P (type)
1886 && TYPE_OVERFLOW_UNDEFINED (type)
a72610d4
JJ
1887 && element_precision (type) <= element_precision (TREE_TYPE (@1))
1888 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
d7f44d4d
JJ
1889 (with { tree utype = unsigned_type_for (type); }
1890 (convert (minus (convert:utype @1) (convert:utype @2))))
a72610d4
JJ
1891 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
1892 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
1893 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
1894 /* For integer types, if A has a smaller type
1895 than T the result depends on the possible
1896 overflow in P + A.
1897 E.g. T=size_t, A=(unsigned)429497295, P>0.
1898 However, if an overflow in P + A would cause
1899 undefined behavior, we can assume that there
1900 is no overflow. */
1901 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1902 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1903 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
1904 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
d7f44d4d
JJ
1905 (minus (convert @1) (convert @2)))))
1906 (simplify
1907 (minus (convert (pointer_plus @@0 @1))
1908 (convert (pointer_plus @0 @2)))
1909 (if (INTEGRAL_TYPE_P (type)
1910 && TYPE_OVERFLOW_UNDEFINED (type)
1911 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1912 (with { tree utype = unsigned_type_for (type); }
1913 (convert (minus (convert:utype @1) (convert:utype @2))))
1914 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
a8fc2579
RB
1915 /* For pointer types, if the conversion of A to the
1916 final type requires a sign- or zero-extension,
1917 then we have to punt - it is not defined which
1918 one is correct. */
1919 || (POINTER_TYPE_P (TREE_TYPE (@0))
1920 && TREE_CODE (@1) == INTEGER_CST
1921 && tree_int_cst_sign_bit (@1) == 0
1922 && TREE_CODE (@2) == INTEGER_CST
1923 && tree_int_cst_sign_bit (@2) == 0))
d7f44d4d 1924 (minus (convert @1) (convert @2)))))
1af4ebf5
MG
1925 (simplify
1926 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
1927 /* The second argument of pointer_plus must be interpreted as signed, and
1928 thus sign-extended if necessary. */
1929 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
d7f44d4d 1930 (minus (convert (convert:stype @1)) (convert (convert:stype @2)))))))
cc7b5acf
RB
1931
1932
0122e8e5 1933/* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
a7f24614 1934
c6cfa2bf 1935(for minmax (min max FMIN_ALL FMAX_ALL)
a7f24614
RB
1936 (simplify
1937 (minmax @0 @0)
1938 @0))
4a334cba
RS
1939/* min(max(x,y),y) -> y. */
1940(simplify
1941 (min:c (max:c @0 @1) @1)
1942 @1)
1943/* max(min(x,y),y) -> y. */
1944(simplify
1945 (max:c (min:c @0 @1) @1)
1946 @1)
d657e995
RB
1947/* max(a,-a) -> abs(a). */
1948(simplify
1949 (max:c @0 (negate @0))
1950 (if (TREE_CODE (type) != COMPLEX_TYPE
1951 && (! ANY_INTEGRAL_TYPE_P (type)
1952 || TYPE_OVERFLOW_UNDEFINED (type)))
1953 (abs @0)))
54f84ca9
RB
1954/* min(a,-a) -> -abs(a). */
1955(simplify
1956 (min:c @0 (negate @0))
1957 (if (TREE_CODE (type) != COMPLEX_TYPE
1958 && (! ANY_INTEGRAL_TYPE_P (type)
1959 || TYPE_OVERFLOW_UNDEFINED (type)))
1960 (negate (abs @0))))
a7f24614
RB
1961(simplify
1962 (min @0 @1)
2c2870a1
MG
1963 (switch
1964 (if (INTEGRAL_TYPE_P (type)
1965 && TYPE_MIN_VALUE (type)
1966 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
1967 @1)
1968 (if (INTEGRAL_TYPE_P (type)
1969 && TYPE_MAX_VALUE (type)
1970 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
1971 @0)))
a7f24614
RB
1972(simplify
1973 (max @0 @1)
2c2870a1
MG
1974 (switch
1975 (if (INTEGRAL_TYPE_P (type)
1976 && TYPE_MAX_VALUE (type)
1977 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
1978 @1)
1979 (if (INTEGRAL_TYPE_P (type)
1980 && TYPE_MIN_VALUE (type)
1981 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
1982 @0)))
ad6e4ba8 1983
182f37c9
N
1984/* max (a, a + CST) -> a + CST where CST is positive. */
1985/* max (a, a + CST) -> a where CST is negative. */
1986(simplify
1987 (max:c @0 (plus@2 @0 INTEGER_CST@1))
1988 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1989 (if (tree_int_cst_sgn (@1) > 0)
1990 @2
1991 @0)))
1992
1993/* min (a, a + CST) -> a where CST is positive. */
1994/* min (a, a + CST) -> a + CST where CST is negative. */
1995(simplify
1996 (min:c @0 (plus@2 @0 INTEGER_CST@1))
1997 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1998 (if (tree_int_cst_sgn (@1) > 0)
1999 @0
2000 @2)))
2001
ad6e4ba8
BC
2002/* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2003 and the outer convert demotes the expression back to x's type. */
2004(for minmax (min max)
2005 (simplify
2006 (convert (minmax@0 (convert @1) INTEGER_CST@2))
ebf41734
BC
2007 (if (INTEGRAL_TYPE_P (type)
2008 && types_match (@1, type) && int_fits_type_p (@2, type)
ad6e4ba8
BC
2009 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2010 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2011 (minmax @1 (convert @2)))))
2012
c6cfa2bf 2013(for minmax (FMIN_ALL FMAX_ALL)
0122e8e5
RS
2014 /* If either argument is NaN, return the other one. Avoid the
2015 transformation if we get (and honor) a signalling NaN. */
2016 (simplify
2017 (minmax:c @0 REAL_CST@1)
2018 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2019 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2020 @0)))
2021/* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2022 functions to return the numeric arg if the other one is NaN.
2023 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2024 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2025 worry about it either. */
2026(if (flag_finite_math_only)
2027 (simplify
c6cfa2bf 2028 (FMIN_ALL @0 @1)
0122e8e5 2029 (min @0 @1))
4119b2eb 2030 (simplify
c6cfa2bf 2031 (FMAX_ALL @0 @1)
0122e8e5 2032 (max @0 @1)))
ce0e66ff 2033/* min (-A, -B) -> -max (A, B) */
c6cfa2bf
MM
2034(for minmax (min max FMIN_ALL FMAX_ALL)
2035 maxmin (max min FMAX_ALL FMIN_ALL)
ce0e66ff
MG
2036 (simplify
2037 (minmax (negate:s@2 @0) (negate:s@3 @1))
2038 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2039 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2040 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2041 (negate (maxmin @0 @1)))))
2042/* MIN (~X, ~Y) -> ~MAX (X, Y)
2043 MAX (~X, ~Y) -> ~MIN (X, Y) */
2044(for minmax (min max)
2045 maxmin (max min)
2046 (simplify
2047 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2048 (bit_not (maxmin @0 @1))))
a7f24614 2049
b4817bd6
MG
2050/* MIN (X, Y) == X -> X <= Y */
2051(for minmax (min min max max)
2052 cmp (eq ne eq ne )
2053 out (le gt ge lt )
2054 (simplify
2055 (cmp:c (minmax:c @0 @1) @0)
2056 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2057 (out @0 @1))))
2058/* MIN (X, 5) == 0 -> X == 0
2059 MIN (X, 5) == 7 -> false */
2060(for cmp (eq ne)
2061 (simplify
2062 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
8e6cdc90
RS
2063 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2064 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6 2065 { constant_boolean_node (cmp == NE_EXPR, type); }
8e6cdc90
RS
2066 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2067 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6
MG
2068 (cmp @0 @2)))))
2069(for cmp (eq ne)
2070 (simplify
2071 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
8e6cdc90
RS
2072 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2073 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6 2074 { constant_boolean_node (cmp == NE_EXPR, type); }
8e6cdc90
RS
2075 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2076 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6
MG
2077 (cmp @0 @2)))))
2078/* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2079(for minmax (min min max max min min max max )
2080 cmp (lt le gt ge gt ge lt le )
2081 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2082 (simplify
2083 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2084 (comb (cmp @0 @2) (cmp @1 @2))))
2085
a7f24614
RB
2086/* Simplifications of shift and rotates. */
2087
2088(for rotate (lrotate rrotate)
2089 (simplify
2090 (rotate integer_all_onesp@0 @1)
2091 @0))
2092
2093/* Optimize -1 >> x for arithmetic right shifts. */
2094(simplify
2095 (rshift integer_all_onesp@0 @1)
2096 (if (!TYPE_UNSIGNED (type)
2097 && tree_expr_nonnegative_p (@1))
2098 @0))
2099
12085390
N
2100/* Optimize (x >> c) << c into x & (-1<<c). */
2101(simplify
2102 (lshift (rshift @0 INTEGER_CST@1) @1)
8e6cdc90 2103 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
12085390
N
2104 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2105
2106/* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2107 types. */
2108(simplify
2109 (rshift (lshift @0 INTEGER_CST@1) @1)
2110 (if (TYPE_UNSIGNED (type)
8e6cdc90 2111 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
12085390
N
2112 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2113
a7f24614
RB
2114(for shiftrotate (lrotate rrotate lshift rshift)
2115 (simplify
2116 (shiftrotate @0 integer_zerop)
2117 (non_lvalue @0))
2118 (simplify
2119 (shiftrotate integer_zerop@0 @1)
2120 @0)
2121 /* Prefer vector1 << scalar to vector1 << vector2
2122 if vector2 is uniform. */
2123 (for vec (VECTOR_CST CONSTRUCTOR)
2124 (simplify
2125 (shiftrotate @0 vec@1)
2126 (with { tree tem = uniform_vector_p (@1); }
2127 (if (tem)
2128 (shiftrotate @0 { tem; }))))))
2129
165ba2e9
JJ
2130/* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2131 Y is 0. Similarly for X >> Y. */
2132#if GIMPLE
2133(for shift (lshift rshift)
2134 (simplify
2135 (shift @0 SSA_NAME@1)
2136 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2137 (with {
2138 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2139 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2140 }
2141 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2142 @0)))))
2143#endif
2144
a7f24614
RB
2145/* Rewrite an LROTATE_EXPR by a constant into an
2146 RROTATE_EXPR by a new constant. */
2147(simplify
2148 (lrotate @0 INTEGER_CST@1)
23f27839 2149 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
a7f24614
RB
2150 build_int_cst (TREE_TYPE (@1),
2151 element_precision (type)), @1); }))
2152
14ea9f92
RB
2153/* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2154(for op (lrotate rrotate rshift lshift)
2155 (simplify
2156 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2157 (with { unsigned int prec = element_precision (type); }
8e6cdc90
RS
2158 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2159 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2160 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2161 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
a1488398
RS
2162 (with { unsigned int low = (tree_to_uhwi (@1)
2163 + tree_to_uhwi (@2)); }
14ea9f92
RB
2164 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2165 being well defined. */
2166 (if (low >= prec)
2167 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
8fdc6c67 2168 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
50301115 2169 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
8fdc6c67
RB
2170 { build_zero_cst (type); }
2171 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2172 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
14ea9f92
RB
2173
2174
01ada710
MP
2175/* ((1 << A) & 1) != 0 -> A == 0
2176 ((1 << A) & 1) == 0 -> A != 0 */
2177(for cmp (ne eq)
2178 icmp (eq ne)
2179 (simplify
2180 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2181 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
cc7b5acf 2182
f2e609c3
MP
2183/* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2184 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2185 if CST2 != 0. */
2186(for cmp (ne eq)
2187 (simplify
2188 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
8e6cdc90 2189 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
f2e609c3
MP
2190 (if (cand < 0
2191 || (!integer_zerop (@2)
8e6cdc90 2192 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
8fdc6c67
RB
2193 { constant_boolean_node (cmp == NE_EXPR, type); }
2194 (if (!integer_zerop (@2)
8e6cdc90 2195 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
8fdc6c67 2196 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
f2e609c3 2197
1ffbaa3f
RB
2198/* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2199 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2200 if the new mask might be further optimized. */
2201(for shift (lshift rshift)
2202 (simplify
44fc0a51
RB
2203 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2204 INTEGER_CST@2)
1ffbaa3f
RB
2205 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2206 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2207 && tree_fits_uhwi_p (@1)
2208 && tree_to_uhwi (@1) > 0
2209 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2210 (with
2211 {
2212 unsigned int shiftc = tree_to_uhwi (@1);
2213 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2214 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2215 tree shift_type = TREE_TYPE (@3);
2216 unsigned int prec;
2217
2218 if (shift == LSHIFT_EXPR)
fecfbfa4 2219 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
1ffbaa3f 2220 else if (shift == RSHIFT_EXPR
2be65d9e 2221 && type_has_mode_precision_p (shift_type))
1ffbaa3f
RB
2222 {
2223 prec = TYPE_PRECISION (TREE_TYPE (@3));
2224 tree arg00 = @0;
2225 /* See if more bits can be proven as zero because of
2226 zero extension. */
2227 if (@3 != @0
2228 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2229 {
2230 tree inner_type = TREE_TYPE (@0);
2be65d9e 2231 if (type_has_mode_precision_p (inner_type)
1ffbaa3f
RB
2232 && TYPE_PRECISION (inner_type) < prec)
2233 {
2234 prec = TYPE_PRECISION (inner_type);
2235 /* See if we can shorten the right shift. */
2236 if (shiftc < prec)
2237 shift_type = inner_type;
2238 /* Otherwise X >> C1 is all zeros, so we'll optimize
2239 it into (X, 0) later on by making sure zerobits
2240 is all ones. */
2241 }
2242 }
dd4786fe 2243 zerobits = HOST_WIDE_INT_M1U;
1ffbaa3f
RB
2244 if (shiftc < prec)
2245 {
2246 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2247 zerobits <<= prec - shiftc;
2248 }
2249 /* For arithmetic shift if sign bit could be set, zerobits
2250 can contain actually sign bits, so no transformation is
2251 possible, unless MASK masks them all away. In that
2252 case the shift needs to be converted into logical shift. */
2253 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2254 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2255 {
2256 if ((mask & zerobits) == 0)
2257 shift_type = unsigned_type_for (TREE_TYPE (@3));
2258 else
2259 zerobits = 0;
2260 }
2261 }
2262 }
2263 /* ((X << 16) & 0xff00) is (X, 0). */
2264 (if ((mask & zerobits) == mask)
8fdc6c67
RB
2265 { build_int_cst (type, 0); }
2266 (with { newmask = mask | zerobits; }
2267 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2268 (with
2269 {
2270 /* Only do the transformation if NEWMASK is some integer
2271 mode's mask. */
2272 for (prec = BITS_PER_UNIT;
2273 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
fecfbfa4 2274 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
8fdc6c67
RB
2275 break;
2276 }
2277 (if (prec < HOST_BITS_PER_WIDE_INT
dd4786fe 2278 || newmask == HOST_WIDE_INT_M1U)
8fdc6c67
RB
2279 (with
2280 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2281 (if (!tree_int_cst_equal (newmaskt, @2))
2282 (if (shift_type != TREE_TYPE (@3))
2283 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2284 (bit_and @4 { newmaskt; })))))))))))))
1ffbaa3f 2285
84ff66b8
AV
2286/* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2287 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
98e30e51 2288(for shift (lshift rshift)
84ff66b8
AV
2289 (for bit_op (bit_and bit_xor bit_ior)
2290 (simplify
2291 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2292 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2293 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2294 (bit_op (shift (convert @0) @1) { mask; }))))))
98e30e51 2295
ad1d92ab
MM
2296/* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2297(simplify
2298 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2299 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
ece46666
MG
2300 && (element_precision (TREE_TYPE (@0))
2301 <= element_precision (TREE_TYPE (@1))
2302 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
ad1d92ab
MM
2303 (with
2304 { tree shift_type = TREE_TYPE (@0); }
2305 (convert (rshift (convert:shift_type @1) @2)))))
2306
2307/* ~(~X >>r Y) -> X >>r Y
2308 ~(~X <<r Y) -> X <<r Y */
2309(for rotate (lrotate rrotate)
2310 (simplify
2311 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
ece46666
MG
2312 (if ((element_precision (TREE_TYPE (@0))
2313 <= element_precision (TREE_TYPE (@1))
2314 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2315 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2316 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
ad1d92ab
MM
2317 (with
2318 { tree rotate_type = TREE_TYPE (@0); }
2319 (convert (rotate (convert:rotate_type @1) @2))))))
98e30e51 2320
d4573ffe
RB
2321/* Simplifications of conversions. */
2322
2323/* Basic strip-useless-type-conversions / strip_nops. */
f3582e54 2324(for cvt (convert view_convert float fix_trunc)
d4573ffe
RB
2325 (simplify
2326 (cvt @0)
2327 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2328 || (GENERIC && type == TREE_TYPE (@0)))
2329 @0)))
2330
2331/* Contract view-conversions. */
2332(simplify
2333 (view_convert (view_convert @0))
2334 (view_convert @0))
2335
2336/* For integral conversions with the same precision or pointer
2337 conversions use a NOP_EXPR instead. */
2338(simplify
2339 (view_convert @0)
2340 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2341 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2342 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2343 (convert @0)))
2344
bce8ef71
MG
2345/* Strip inner integral conversions that do not change precision or size, or
2346 zero-extend while keeping the same size (for bool-to-char). */
d4573ffe
RB
2347(simplify
2348 (view_convert (convert@0 @1))
2349 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2350 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
bce8ef71
MG
2351 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2352 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2353 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2354 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
d4573ffe
RB
2355 (view_convert @1)))
2356
2357/* Re-association barriers around constants and other re-association
2358 barriers can be removed. */
2359(simplify
2360 (paren CONSTANT_CLASS_P@0)
2361 @0)
2362(simplify
2363 (paren (paren@1 @0))
2364 @1)
1e51d0a2
RB
2365
2366/* Handle cases of two conversions in a row. */
2367(for ocvt (convert float fix_trunc)
2368 (for icvt (convert float)
2369 (simplify
2370 (ocvt (icvt@1 @0))
2371 (with
2372 {
2373 tree inside_type = TREE_TYPE (@0);
2374 tree inter_type = TREE_TYPE (@1);
2375 int inside_int = INTEGRAL_TYPE_P (inside_type);
2376 int inside_ptr = POINTER_TYPE_P (inside_type);
2377 int inside_float = FLOAT_TYPE_P (inside_type);
09240451 2378 int inside_vec = VECTOR_TYPE_P (inside_type);
1e51d0a2
RB
2379 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2380 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2381 int inter_int = INTEGRAL_TYPE_P (inter_type);
2382 int inter_ptr = POINTER_TYPE_P (inter_type);
2383 int inter_float = FLOAT_TYPE_P (inter_type);
09240451 2384 int inter_vec = VECTOR_TYPE_P (inter_type);
1e51d0a2
RB
2385 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2386 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2387 int final_int = INTEGRAL_TYPE_P (type);
2388 int final_ptr = POINTER_TYPE_P (type);
2389 int final_float = FLOAT_TYPE_P (type);
09240451 2390 int final_vec = VECTOR_TYPE_P (type);
1e51d0a2
RB
2391 unsigned int final_prec = TYPE_PRECISION (type);
2392 int final_unsignedp = TYPE_UNSIGNED (type);
2393 }
64d3a1f0
RB
2394 (switch
2395 /* In addition to the cases of two conversions in a row
2396 handled below, if we are converting something to its own
2397 type via an object of identical or wider precision, neither
2398 conversion is needed. */
2399 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2400 || (GENERIC
2401 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2402 && (((inter_int || inter_ptr) && final_int)
2403 || (inter_float && final_float))
2404 && inter_prec >= final_prec)
2405 (ocvt @0))
2406
2407 /* Likewise, if the intermediate and initial types are either both
2408 float or both integer, we don't need the middle conversion if the
2409 former is wider than the latter and doesn't change the signedness
2410 (for integers). Avoid this if the final type is a pointer since
36088299 2411 then we sometimes need the middle conversion. */
64d3a1f0
RB
2412 (if (((inter_int && inside_int) || (inter_float && inside_float))
2413 && (final_int || final_float)
2414 && inter_prec >= inside_prec
36088299 2415 && (inter_float || inter_unsignedp == inside_unsignedp))
64d3a1f0
RB
2416 (ocvt @0))
2417
2418 /* If we have a sign-extension of a zero-extended value, we can
2419 replace that by a single zero-extension. Likewise if the
2420 final conversion does not change precision we can drop the
2421 intermediate conversion. */
2422 (if (inside_int && inter_int && final_int
2423 && ((inside_prec < inter_prec && inter_prec < final_prec
2424 && inside_unsignedp && !inter_unsignedp)
2425 || final_prec == inter_prec))
2426 (ocvt @0))
2427
2428 /* Two conversions in a row are not needed unless:
1e51d0a2
RB
2429 - some conversion is floating-point (overstrict for now), or
2430 - some conversion is a vector (overstrict for now), or
2431 - the intermediate type is narrower than both initial and
2432 final, or
2433 - the intermediate type and innermost type differ in signedness,
2434 and the outermost type is wider than the intermediate, or
2435 - the initial type is a pointer type and the precisions of the
2436 intermediate and final types differ, or
2437 - the final type is a pointer type and the precisions of the
2438 initial and intermediate types differ. */
64d3a1f0
RB
2439 (if (! inside_float && ! inter_float && ! final_float
2440 && ! inside_vec && ! inter_vec && ! final_vec
2441 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2442 && ! (inside_int && inter_int
2443 && inter_unsignedp != inside_unsignedp
2444 && inter_prec < final_prec)
2445 && ((inter_unsignedp && inter_prec > inside_prec)
2446 == (final_unsignedp && final_prec > inter_prec))
2447 && ! (inside_ptr && inter_prec != final_prec)
36088299 2448 && ! (final_ptr && inside_prec != inter_prec))
64d3a1f0
RB
2449 (ocvt @0))
2450
2451 /* A truncation to an unsigned type (a zero-extension) should be
2452 canonicalized as bitwise and of a mask. */
1d510e04
JJ
2453 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2454 && final_int && inter_int && inside_int
64d3a1f0
RB
2455 && final_prec == inside_prec
2456 && final_prec > inter_prec
2457 && inter_unsignedp)
2458 (convert (bit_and @0 { wide_int_to_tree
2459 (inside_type,
2460 wi::mask (inter_prec, false,
2461 TYPE_PRECISION (inside_type))); })))
2462
2463 /* If we are converting an integer to a floating-point that can
2464 represent it exactly and back to an integer, we can skip the
2465 floating-point conversion. */
2466 (if (GIMPLE /* PR66211 */
2467 && inside_int && inter_float && final_int &&
2468 (unsigned) significand_size (TYPE_MODE (inter_type))
2469 >= inside_prec - !inside_unsignedp)
2470 (convert @0)))))))
ea2042ba
RB
2471
2472/* If we have a narrowing conversion to an integral type that is fed by a
2473 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2474 masks off bits outside the final type (and nothing else). */
2475(simplify
2476 (convert (bit_and @0 INTEGER_CST@1))
2477 (if (INTEGRAL_TYPE_P (type)
2478 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2479 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2480 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2481 TYPE_PRECISION (type)), 0))
2482 (convert @0)))
a25454ea
RB
2483
2484
2485/* (X /[ex] A) * A -> X. */
2486(simplify
2eef1fc1
RB
2487 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2488 (convert @0))
eaeba53a 2489
a7f24614
RB
2490/* Canonicalization of binary operations. */
2491
2492/* Convert X + -C into X - C. */
2493(simplify
2494 (plus @0 REAL_CST@1)
2495 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
23f27839 2496 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
a7f24614
RB
2497 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2498 (minus @0 { tem; })))))
2499
6b6aa8d3 2500/* Convert x+x into x*2. */
a7f24614
RB
2501(simplify
2502 (plus @0 @0)
2503 (if (SCALAR_FLOAT_TYPE_P (type))
6b6aa8d3
MG
2504 (mult @0 { build_real (type, dconst2); })
2505 (if (INTEGRAL_TYPE_P (type))
2506 (mult @0 { build_int_cst (type, 2); }))))
a7f24614 2507
406520e2 2508/* 0 - X -> -X. */
a7f24614
RB
2509(simplify
2510 (minus integer_zerop @1)
2511 (negate @1))
406520e2
MG
2512(simplify
2513 (pointer_diff integer_zerop @1)
2514 (negate (convert @1)))
a7f24614
RB
2515
2516/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2517 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2518 (-ARG1 + ARG0) reduces to -ARG1. */
2519(simplify
2520 (minus real_zerop@0 @1)
2521 (if (fold_real_zero_addition_p (type, @0, 0))
2522 (negate @1)))
2523
2524/* Transform x * -1 into -x. */
2525(simplify
2526 (mult @0 integer_minus_onep)
2527 (negate @0))
eaeba53a 2528
b771c609
AM
2529/* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2530 signed overflow for CST != 0 && CST != -1. */
2531(simplify
2532 (mult:c (mult:s @0 INTEGER_CST@1) @2)
2533 (if (TREE_CODE (@2) != INTEGER_CST
2534 && !integer_zerop (@1) && !integer_minus_onep (@1))
2535 (mult (mult @0 @2) @1)))
2536
96285749
RS
2537/* True if we can easily extract the real and imaginary parts of a complex
2538 number. */
2539(match compositional_complex
2540 (convert? (complex @0 @1)))
2541
eaeba53a
RB
2542/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2543(simplify
2544 (complex (realpart @0) (imagpart @0))
2545 @0)
2546(simplify
2547 (realpart (complex @0 @1))
2548 @0)
2549(simplify
2550 (imagpart (complex @0 @1))
2551 @1)
83633539 2552
77c028c5
MG
2553/* Sometimes we only care about half of a complex expression. */
2554(simplify
2555 (realpart (convert?:s (conj:s @0)))
2556 (convert (realpart @0)))
2557(simplify
2558 (imagpart (convert?:s (conj:s @0)))
2559 (convert (negate (imagpart @0))))
2560(for part (realpart imagpart)
2561 (for op (plus minus)
2562 (simplify
2563 (part (convert?:s@2 (op:s @0 @1)))
2564 (convert (op (part @0) (part @1))))))
2565(simplify
2566 (realpart (convert?:s (CEXPI:s @0)))
2567 (convert (COS @0)))
2568(simplify
2569 (imagpart (convert?:s (CEXPI:s @0)))
2570 (convert (SIN @0)))
2571
2572/* conj(conj(x)) -> x */
2573(simplify
2574 (conj (convert? (conj @0)))
2575 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2576 (convert @0)))
2577
2578/* conj({x,y}) -> {x,-y} */
2579(simplify
2580 (conj (convert?:s (complex:s @0 @1)))
2581 (with { tree itype = TREE_TYPE (type); }
2582 (complex (convert:itype @0) (negate (convert:itype @1)))))
83633539
RB
2583
2584/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2585(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2586 (simplify
2587 (bswap (bswap @0))
2588 @0)
2589 (simplify
2590 (bswap (bit_not (bswap @0)))
2591 (bit_not @0))
2592 (for bitop (bit_xor bit_ior bit_and)
2593 (simplify
2594 (bswap (bitop:c (bswap @0) @1))
2595 (bitop @0 (bswap @1)))))
96994de0
RB
2596
2597
2598/* Combine COND_EXPRs and VEC_COND_EXPRs. */
2599
2600/* Simplify constant conditions.
2601 Only optimize constant conditions when the selected branch
2602 has the same type as the COND_EXPR. This avoids optimizing
2603 away "c ? x : throw", where the throw has a void type.
2604 Note that we cannot throw away the fold-const.c variant nor
2605 this one as we depend on doing this transform before possibly
2606 A ? B : B -> B triggers and the fold-const.c one can optimize
2607 0 ? A : B to B even if A has side-effects. Something
2608 genmatch cannot handle. */
2609(simplify
2610 (cond INTEGER_CST@0 @1 @2)
8fdc6c67
RB
2611 (if (integer_zerop (@0))
2612 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2613 @2)
2614 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2615 @1)))
96994de0
RB
2616(simplify
2617 (vec_cond VECTOR_CST@0 @1 @2)
2618 (if (integer_all_onesp (@0))
8fdc6c67
RB
2619 @1
2620 (if (integer_zerop (@0))
2621 @2)))
96994de0 2622
b5481987
BC
2623/* Simplification moved from fold_cond_expr_with_comparison. It may also
2624 be extended. */
e2535011
BC
2625/* This pattern implements two kinds simplification:
2626
2627 Case 1)
2628 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
b5481987
BC
2629 1) Conversions are type widening from smaller type.
2630 2) Const c1 equals to c2 after canonicalizing comparison.
2631 3) Comparison has tree code LT, LE, GT or GE.
2632 This specific pattern is needed when (cmp (convert x) c) may not
2633 be simplified by comparison patterns because of multiple uses of
2634 x. It also makes sense here because simplifying across multiple
e2535011
BC
2635 referred var is always benefitial for complicated cases.
2636
2637 Case 2)
2638 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2639(for cmp (lt le gt ge eq)
b5481987 2640 (simplify
ae22bc5d 2641 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
b5481987
BC
2642 (with
2643 {
2644 tree from_type = TREE_TYPE (@1);
2645 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
ae22bc5d 2646 enum tree_code code = ERROR_MARK;
b5481987 2647
ae22bc5d
BC
2648 if (INTEGRAL_TYPE_P (from_type)
2649 && int_fits_type_p (@2, from_type)
b5481987
BC
2650 && (types_match (c1_type, from_type)
2651 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2652 && (TYPE_UNSIGNED (from_type)
2653 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2654 && (types_match (c2_type, from_type)
2655 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2656 && (TYPE_UNSIGNED (from_type)
2657 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2658 {
ae22bc5d 2659 if (cmp != EQ_EXPR)
b5481987 2660 {
e2535011
BC
2661 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2662 {
2663 /* X <= Y - 1 equals to X < Y. */
ae22bc5d 2664 if (cmp == LE_EXPR)
e2535011
BC
2665 code = LT_EXPR;
2666 /* X > Y - 1 equals to X >= Y. */
ae22bc5d 2667 if (cmp == GT_EXPR)
e2535011
BC
2668 code = GE_EXPR;
2669 }
2670 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2671 {
2672 /* X < Y + 1 equals to X <= Y. */
ae22bc5d 2673 if (cmp == LT_EXPR)
e2535011
BC
2674 code = LE_EXPR;
2675 /* X >= Y + 1 equals to X > Y. */
ae22bc5d 2676 if (cmp == GE_EXPR)
e2535011
BC
2677 code = GT_EXPR;
2678 }
ae22bc5d
BC
2679 if (code != ERROR_MARK
2680 || wi::to_widest (@2) == wi::to_widest (@3))
e2535011 2681 {
ae22bc5d 2682 if (cmp == LT_EXPR || cmp == LE_EXPR)
e2535011 2683 code = MIN_EXPR;
ae22bc5d 2684 if (cmp == GT_EXPR || cmp == GE_EXPR)
e2535011
BC
2685 code = MAX_EXPR;
2686 }
b5481987 2687 }
e2535011 2688 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
ae22bc5d
BC
2689 else if (int_fits_type_p (@3, from_type))
2690 code = EQ_EXPR;
b5481987
BC
2691 }
2692 }
2693 (if (code == MAX_EXPR)
21aaaf1e 2694 (convert (max @1 (convert @2)))
b5481987 2695 (if (code == MIN_EXPR)
21aaaf1e 2696 (convert (min @1 (convert @2)))
e2535011 2697 (if (code == EQ_EXPR)
ae22bc5d 2698 (convert (cond (eq @1 (convert @3))
21aaaf1e 2699 (convert:from_type @3) (convert:from_type @2)))))))))
b5481987 2700
714445ae
BC
2701/* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2702
2703 1) OP is PLUS or MINUS.
2704 2) CMP is LT, LE, GT or GE.
2705 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2706
2707 This pattern also handles special cases like:
2708
2709 A) Operand x is a unsigned to signed type conversion and c1 is
2710 integer zero. In this case,
2711 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2712 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2713 B) Const c1 may not equal to (C3 op' C2). In this case we also
2714 check equality for (c1+1) and (c1-1) by adjusting comparison
2715 code.
2716
2717 TODO: Though signed type is handled by this pattern, it cannot be
2718 simplified at the moment because C standard requires additional
2719 type promotion. In order to match&simplify it here, the IR needs
2720 to be cleaned up by other optimizers, i.e, VRP. */
2721(for op (plus minus)
2722 (for cmp (lt le gt ge)
2723 (simplify
2724 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2725 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2726 (if (types_match (from_type, to_type)
2727 /* Check if it is special case A). */
2728 || (TYPE_UNSIGNED (from_type)
2729 && !TYPE_UNSIGNED (to_type)
2730 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2731 && integer_zerop (@1)
2732 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2733 (with
2734 {
2735 bool overflow = false;
2736 enum tree_code code, cmp_code = cmp;
8e6cdc90
RS
2737 wide_int real_c1;
2738 wide_int c1 = wi::to_wide (@1);
2739 wide_int c2 = wi::to_wide (@2);
2740 wide_int c3 = wi::to_wide (@3);
714445ae
BC
2741 signop sgn = TYPE_SIGN (from_type);
2742
2743 /* Handle special case A), given x of unsigned type:
2744 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2745 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2746 if (!types_match (from_type, to_type))
2747 {
2748 if (cmp_code == LT_EXPR)
2749 cmp_code = GT_EXPR;
2750 if (cmp_code == GE_EXPR)
2751 cmp_code = LE_EXPR;
2752 c1 = wi::max_value (to_type);
2753 }
2754 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
2755 compute (c3 op' c2) and check if it equals to c1 with op' being
2756 the inverted operator of op. Make sure overflow doesn't happen
2757 if it is undefined. */
2758 if (op == PLUS_EXPR)
2759 real_c1 = wi::sub (c3, c2, sgn, &overflow);
2760 else
2761 real_c1 = wi::add (c3, c2, sgn, &overflow);
2762
2763 code = cmp_code;
2764 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2765 {
2766 /* Check if c1 equals to real_c1. Boundary condition is handled
2767 by adjusting comparison operation if necessary. */
2768 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2769 && !overflow)
2770 {
2771 /* X <= Y - 1 equals to X < Y. */
2772 if (cmp_code == LE_EXPR)
2773 code = LT_EXPR;
2774 /* X > Y - 1 equals to X >= Y. */
2775 if (cmp_code == GT_EXPR)
2776 code = GE_EXPR;
2777 }
2778 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
2779 && !overflow)
2780 {
2781 /* X < Y + 1 equals to X <= Y. */
2782 if (cmp_code == LT_EXPR)
2783 code = LE_EXPR;
2784 /* X >= Y + 1 equals to X > Y. */
2785 if (cmp_code == GE_EXPR)
2786 code = GT_EXPR;
2787 }
2788 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
2789 {
2790 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
2791 code = MIN_EXPR;
2792 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
2793 code = MAX_EXPR;
2794 }
2795 }
2796 }
2797 (if (code == MAX_EXPR)
2798 (op (max @X { wide_int_to_tree (from_type, real_c1); })
2799 { wide_int_to_tree (from_type, c2); })
2800 (if (code == MIN_EXPR)
2801 (op (min @X { wide_int_to_tree (from_type, real_c1); })
2802 { wide_int_to_tree (from_type, c2); })))))))))
2803
96994de0
RB
2804(for cnd (cond vec_cond)
2805 /* A ? B : (A ? X : C) -> A ? B : C. */
2806 (simplify
2807 (cnd @0 (cnd @0 @1 @2) @3)
2808 (cnd @0 @1 @3))
2809 (simplify
2810 (cnd @0 @1 (cnd @0 @2 @3))
2811 (cnd @0 @1 @3))
24a179f8
RB
2812 /* A ? B : (!A ? C : X) -> A ? B : C. */
2813 /* ??? This matches embedded conditions open-coded because genmatch
2814 would generate matching code for conditions in separate stmts only.
2815 The following is still important to merge then and else arm cases
2816 from if-conversion. */
2817 (simplify
2818 (cnd @0 @1 (cnd @2 @3 @4))
2819 (if (COMPARISON_CLASS_P (@0)
2820 && COMPARISON_CLASS_P (@2)
2821 && invert_tree_comparison
2822 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@2)
2823 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@2, 0), 0)
2824 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@2, 1), 0))
2825 (cnd @0 @1 @3)))
2826 (simplify
2827 (cnd @0 (cnd @1 @2 @3) @4)
2828 (if (COMPARISON_CLASS_P (@0)
2829 && COMPARISON_CLASS_P (@1)
2830 && invert_tree_comparison
2831 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@1)
2832 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@1, 0), 0)
2833 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@1, 1), 0))
2834 (cnd @0 @3 @4)))
96994de0
RB
2835
2836 /* A ? B : B -> B. */
2837 (simplify
2838 (cnd @0 @1 @1)
09240451 2839 @1)
96994de0 2840
09240451
MG
2841 /* !A ? B : C -> A ? C : B. */
2842 (simplify
2843 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
2844 (cnd @0 @2 @1)))
f84e7fd6 2845
a3ca1bc5
RB
2846/* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
2847 return all -1 or all 0 results. */
f43d102e
RS
2848/* ??? We could instead convert all instances of the vec_cond to negate,
2849 but that isn't necessarily a win on its own. */
2850(simplify
a3ca1bc5 2851 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
f43d102e 2852 (if (VECTOR_TYPE_P (type)
928686b1
RS
2853 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2854 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
f43d102e 2855 && (TYPE_MODE (TREE_TYPE (type))
4d8989d5 2856 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
a3ca1bc5 2857 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
f43d102e 2858
a3ca1bc5 2859/* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
f43d102e 2860(simplify
a3ca1bc5 2861 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
f43d102e 2862 (if (VECTOR_TYPE_P (type)
928686b1
RS
2863 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2864 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
f43d102e 2865 && (TYPE_MODE (TREE_TYPE (type))
4d8989d5 2866 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
a3ca1bc5 2867 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
f84e7fd6 2868
2ee05f1e 2869
f84e7fd6
RB
2870/* Simplifications of comparisons. */
2871
24f1db9c
RB
2872/* See if we can reduce the magnitude of a constant involved in a
2873 comparison by changing the comparison code. This is a canonicalization
2874 formerly done by maybe_canonicalize_comparison_1. */
2875(for cmp (le gt)
2876 acmp (lt ge)
2877 (simplify
2878 (cmp @0 INTEGER_CST@1)
2879 (if (tree_int_cst_sgn (@1) == -1)
8e6cdc90 2880 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
24f1db9c
RB
2881(for cmp (ge lt)
2882 acmp (gt le)
2883 (simplify
2884 (cmp @0 INTEGER_CST@1)
2885 (if (tree_int_cst_sgn (@1) == 1)
8e6cdc90 2886 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
24f1db9c
RB
2887
2888
f84e7fd6
RB
2889/* We can simplify a logical negation of a comparison to the
2890 inverted comparison. As we cannot compute an expression
2891 operator using invert_tree_comparison we have to simulate
2892 that with expression code iteration. */
2893(for cmp (tcc_comparison)
2894 icmp (inverted_tcc_comparison)
2895 ncmp (inverted_tcc_comparison_with_nans)
2896 /* Ideally we'd like to combine the following two patterns
2897 and handle some more cases by using
2898 (logical_inverted_value (cmp @0 @1))
2899 here but for that genmatch would need to "inline" that.
2900 For now implement what forward_propagate_comparison did. */
2901 (simplify
2902 (bit_not (cmp @0 @1))
2903 (if (VECTOR_TYPE_P (type)
2904 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
2905 /* Comparison inversion may be impossible for trapping math,
2906 invert_tree_comparison will tell us. But we can't use
2907 a computed operator in the replacement tree thus we have
2908 to play the trick below. */
2909 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 2910 (cmp, HONOR_NANS (@0)); }
f84e7fd6 2911 (if (ic == icmp)
8fdc6c67
RB
2912 (icmp @0 @1)
2913 (if (ic == ncmp)
2914 (ncmp @0 @1))))))
f84e7fd6 2915 (simplify
09240451
MG
2916 (bit_xor (cmp @0 @1) integer_truep)
2917 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 2918 (cmp, HONOR_NANS (@0)); }
09240451 2919 (if (ic == icmp)
8fdc6c67
RB
2920 (icmp @0 @1)
2921 (if (ic == ncmp)
2922 (ncmp @0 @1))))))
e18c1d66 2923
2ee05f1e
RB
2924/* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
2925 ??? The transformation is valid for the other operators if overflow
2926 is undefined for the type, but performing it here badly interacts
2927 with the transformation in fold_cond_expr_with_comparison which
2928 attempts to synthetize ABS_EXPR. */
2929(for cmp (eq ne)
1af4ebf5
MG
2930 (for sub (minus pointer_diff)
2931 (simplify
2932 (cmp (sub@2 @0 @1) integer_zerop)
2933 (if (single_use (@2))
2934 (cmp @0 @1)))))
2ee05f1e
RB
2935
2936/* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
2937 signed arithmetic case. That form is created by the compiler
2938 often enough for folding it to be of value. One example is in
2939 computing loop trip counts after Operator Strength Reduction. */
07cdc2b8
RB
2940(for cmp (simple_comparison)
2941 scmp (swapped_simple_comparison)
2ee05f1e 2942 (simplify
bc6e9db4 2943 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
2ee05f1e
RB
2944 /* Handle unfolded multiplication by zero. */
2945 (if (integer_zerop (@1))
8fdc6c67
RB
2946 (cmp @1 @2)
2947 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
bc6e9db4
RB
2948 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2949 && single_use (@3))
8fdc6c67
RB
2950 /* If @1 is negative we swap the sense of the comparison. */
2951 (if (tree_int_cst_sgn (@1) < 0)
2952 (scmp @0 @2)
2953 (cmp @0 @2))))))
2ee05f1e
RB
2954
2955/* Simplify comparison of something with itself. For IEEE
2956 floating-point, we can only do some of these simplifications. */
287f8f17 2957(for cmp (eq ge le)
2ee05f1e
RB
2958 (simplify
2959 (cmp @0 @0)
287f8f17 2960 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
b9407883 2961 || ! HONOR_NANS (@0))
287f8f17
RB
2962 { constant_boolean_node (true, type); }
2963 (if (cmp != EQ_EXPR)
2964 (eq @0 @0)))))
2ee05f1e
RB
2965(for cmp (ne gt lt)
2966 (simplify
2967 (cmp @0 @0)
2968 (if (cmp != NE_EXPR
2969 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
b9407883 2970 || ! HONOR_NANS (@0))
2ee05f1e 2971 { constant_boolean_node (false, type); })))
b5d3d787
RB
2972(for cmp (unle unge uneq)
2973 (simplify
2974 (cmp @0 @0)
2975 { constant_boolean_node (true, type); }))
dd53d197
MG
2976(for cmp (unlt ungt)
2977 (simplify
2978 (cmp @0 @0)
2979 (unordered @0 @0)))
b5d3d787
RB
2980(simplify
2981 (ltgt @0 @0)
2982 (if (!flag_trapping_math)
2983 { constant_boolean_node (false, type); }))
2ee05f1e
RB
2984
2985/* Fold ~X op ~Y as Y op X. */
07cdc2b8 2986(for cmp (simple_comparison)
2ee05f1e 2987 (simplify
7fe996ba
RB
2988 (cmp (bit_not@2 @0) (bit_not@3 @1))
2989 (if (single_use (@2) && single_use (@3))
2990 (cmp @1 @0))))
2ee05f1e
RB
2991
2992/* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
07cdc2b8
RB
2993(for cmp (simple_comparison)
2994 scmp (swapped_simple_comparison)
2ee05f1e 2995 (simplify
7fe996ba
RB
2996 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
2997 (if (single_use (@2)
2998 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
2ee05f1e
RB
2999 (scmp @0 (bit_not @1)))))
3000
07cdc2b8
RB
3001(for cmp (simple_comparison)
3002 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3003 (simplify
3004 (cmp (convert@2 @0) (convert? @1))
3005 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3006 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3007 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3008 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3009 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3010 (with
3011 {
3012 tree type1 = TREE_TYPE (@1);
3013 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3014 {
3015 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3016 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3017 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3018 type1 = float_type_node;
3019 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3020 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3021 type1 = double_type_node;
3022 }
3023 tree newtype
3024 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3025 ? TREE_TYPE (@0) : type1);
3026 }
3027 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3028 (cmp (convert:newtype @0) (convert:newtype @1))))))
3029
3030 (simplify
3031 (cmp @0 REAL_CST@1)
3032 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
64d3a1f0
RB
3033 (switch
3034 /* a CMP (-0) -> a CMP 0 */
3035 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3036 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3037 /* x != NaN is always true, other ops are always false. */
3038 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3039 && ! HONOR_SNANS (@1))
3040 { constant_boolean_node (cmp == NE_EXPR, type); })
3041 /* Fold comparisons against infinity. */
3042 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3043 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3044 (with
3045 {
3046 REAL_VALUE_TYPE max;
3047 enum tree_code code = cmp;
3048 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3049 if (neg)
3050 code = swap_tree_comparison (code);
3051 }
3052 (switch
3053 /* x > +Inf is always false, if with ignore sNANs. */
3054 (if (code == GT_EXPR
3055 && ! HONOR_SNANS (@0))
3056 { constant_boolean_node (false, type); })
3057 (if (code == LE_EXPR)
3058 /* x <= +Inf is always true, if we don't case about NaNs. */
3059 (if (! HONOR_NANS (@0))
3060 { constant_boolean_node (true, type); }
b0eb889b 3061 /* x <= +Inf is the same as x == x, i.e. !isnan(x). */
64d3a1f0
RB
3062 (eq @0 @0)))
3063 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
3064 (if (code == EQ_EXPR || code == GE_EXPR)
3065 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3066 (if (neg)
3067 (lt @0 { build_real (TREE_TYPE (@0), max); })
3068 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3069 /* x < +Inf is always equal to x <= DBL_MAX. */
3070 (if (code == LT_EXPR)
3071 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3072 (if (neg)
3073 (ge @0 { build_real (TREE_TYPE (@0), max); })
3074 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3075 /* x != +Inf is always equal to !(x > DBL_MAX). */
3076 (if (code == NE_EXPR)
3077 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3078 (if (! HONOR_NANS (@0))
3079 (if (neg)
3080 (ge @0 { build_real (TREE_TYPE (@0), max); })
3081 (le @0 { build_real (TREE_TYPE (@0), max); }))
3082 (if (neg)
3083 (bit_xor (lt @0 { build_real (TREE_TYPE (@0), max); })
3084 { build_one_cst (type); })
3085 (bit_xor (gt @0 { build_real (TREE_TYPE (@0), max); })
3086 { build_one_cst (type); }))))))))))
07cdc2b8
RB
3087
3088 /* If this is a comparison of a real constant with a PLUS_EXPR
3089 or a MINUS_EXPR of a real constant, we can convert it into a
3090 comparison with a revised real constant as long as no overflow
3091 occurs when unsafe_math_optimizations are enabled. */
3092 (if (flag_unsafe_math_optimizations)
3093 (for op (plus minus)
3094 (simplify
3095 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3096 (with
3097 {
3098 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3099 TREE_TYPE (@1), @2, @1);
3100 }
f980c9a2 3101 (if (tem && !TREE_OVERFLOW (tem))
07cdc2b8
RB
3102 (cmp @0 { tem; }))))))
3103
3104 /* Likewise, we can simplify a comparison of a real constant with
3105 a MINUS_EXPR whose first operand is also a real constant, i.e.
3106 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3107 floating-point types only if -fassociative-math is set. */
3108 (if (flag_associative_math)
3109 (simplify
0409237b 3110 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
07cdc2b8 3111 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
f980c9a2 3112 (if (tem && !TREE_OVERFLOW (tem))
07cdc2b8
RB
3113 (cmp { tem; } @1)))))
3114
3115 /* Fold comparisons against built-in math functions. */
3116 (if (flag_unsafe_math_optimizations
3117 && ! flag_errno_math)
3118 (for sq (SQRT)
3119 (simplify
3120 (cmp (sq @0) REAL_CST@1)
64d3a1f0
RB
3121 (switch
3122 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3123 (switch
3124 /* sqrt(x) < y is always false, if y is negative. */
3125 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
8fdc6c67 3126 { constant_boolean_node (false, type); })
64d3a1f0
RB
3127 /* sqrt(x) > y is always true, if y is negative and we
3128 don't care about NaNs, i.e. negative values of x. */
3129 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3130 { constant_boolean_node (true, type); })
3131 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3132 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
c53233c6
RS
3133 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3134 (switch
3135 /* sqrt(x) < 0 is always false. */
3136 (if (cmp == LT_EXPR)
3137 { constant_boolean_node (false, type); })
3138 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3139 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3140 { constant_boolean_node (true, type); })
3141 /* sqrt(x) <= 0 -> x == 0. */
3142 (if (cmp == LE_EXPR)
3143 (eq @0 @1))
3144 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3145 == or !=. In the last case:
3146
3147 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3148
3149 if x is negative or NaN. Due to -funsafe-math-optimizations,
3150 the results for other x follow from natural arithmetic. */
3151 (cmp @0 @1)))
64d3a1f0
RB
3152 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3153 (with
3154 {
3155 REAL_VALUE_TYPE c2;
5c88ea94
RS
3156 real_arithmetic (&c2, MULT_EXPR,
3157 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
64d3a1f0
RB
3158 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3159 }
3160 (if (REAL_VALUE_ISINF (c2))
3161 /* sqrt(x) > y is x == +Inf, when y is very large. */
3162 (if (HONOR_INFINITIES (@0))
3163 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3164 { constant_boolean_node (false, type); })
3165 /* sqrt(x) > c is the same as x > c*c. */
3166 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3167 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3168 (with
3169 {
3170 REAL_VALUE_TYPE c2;
5c88ea94
RS
3171 real_arithmetic (&c2, MULT_EXPR,
3172 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
64d3a1f0
RB
3173 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3174 }
3175 (if (REAL_VALUE_ISINF (c2))
3176 (switch
3177 /* sqrt(x) < y is always true, when y is a very large
3178 value and we don't care about NaNs or Infinities. */
3179 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3180 { constant_boolean_node (true, type); })
3181 /* sqrt(x) < y is x != +Inf when y is very large and we
3182 don't care about NaNs. */
3183 (if (! HONOR_NANS (@0))
3184 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3185 /* sqrt(x) < y is x >= 0 when y is very large and we
3186 don't care about Infinities. */
3187 (if (! HONOR_INFINITIES (@0))
3188 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3189 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3190 (if (GENERIC)
3191 (truth_andif
3192 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3193 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3194 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3195 (if (! HONOR_NANS (@0))
3196 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3197 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3198 (if (GENERIC)
3199 (truth_andif
3200 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
0ca2e7f7
PK
3201 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3202 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3203 (simplify
3204 (cmp (sq @0) (sq @1))
3205 (if (! HONOR_NANS (@0))
3206 (cmp @0 @1))))))
2ee05f1e 3207
c779bea5
YG
3208/* Optimize various special cases of (FTYPE) N CMP CST. */
3209(for cmp (lt le eq ne ge gt)
3210 icmp (le le eq ne ge ge)
3211 (simplify
3212 (cmp (float @0) REAL_CST@1)
3213 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3214 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3215 (with
3216 {
3217 tree itype = TREE_TYPE (@0);
3218 signop isign = TYPE_SIGN (itype);
3219 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3220 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3221 /* Be careful to preserve any potential exceptions due to
3222 NaNs. qNaNs are ok in == or != context.
3223 TODO: relax under -fno-trapping-math or
3224 -fno-signaling-nans. */
3225 bool exception_p
3226 = real_isnan (cst) && (cst->signalling
c651dca2 3227 || (cmp != EQ_EXPR && cmp != NE_EXPR));
c779bea5
YG
3228 /* INT?_MIN is power-of-two so it takes
3229 only one mantissa bit. */
3230 bool signed_p = isign == SIGNED;
3231 bool itype_fits_ftype_p
3232 = TYPE_PRECISION (itype) - signed_p <= significand_size (fmt);
3233 }
3234 /* TODO: allow non-fitting itype and SNaNs when
3235 -fno-trapping-math. */
3236 (if (itype_fits_ftype_p && ! exception_p)
3237 (with
3238 {
3239 REAL_VALUE_TYPE imin, imax;
3240 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3241 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3242
3243 REAL_VALUE_TYPE icst;
3244 if (cmp == GT_EXPR || cmp == GE_EXPR)
3245 real_ceil (&icst, fmt, cst);
3246 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3247 real_floor (&icst, fmt, cst);
3248 else
3249 real_trunc (&icst, fmt, cst);
3250
b09bf97b 3251 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
c779bea5
YG
3252
3253 bool overflow_p = false;
3254 wide_int icst_val
3255 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3256 }
3257 (switch
3258 /* Optimize cases when CST is outside of ITYPE's range. */
3259 (if (real_compare (LT_EXPR, cst, &imin))
3260 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3261 type); })
3262 (if (real_compare (GT_EXPR, cst, &imax))
3263 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3264 type); })
3265 /* Remove cast if CST is an integer representable by ITYPE. */
3266 (if (cst_int_p)
3267 (cmp @0 { gcc_assert (!overflow_p);
3268 wide_int_to_tree (itype, icst_val); })
3269 )
3270 /* When CST is fractional, optimize
3271 (FTYPE) N == CST -> 0
3272 (FTYPE) N != CST -> 1. */
3273 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3274 { constant_boolean_node (cmp == NE_EXPR, type); })
3275 /* Otherwise replace with sensible integer constant. */
3276 (with
3277 {
3278 gcc_checking_assert (!overflow_p);
3279 }
3280 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3281
40fd269a
MG
3282/* Fold A /[ex] B CMP C to A CMP B * C. */
3283(for cmp (eq ne)
3284 (simplify
3285 (cmp (exact_div @0 @1) INTEGER_CST@2)
3286 (if (!integer_zerop (@1))
8e6cdc90 3287 (if (wi::to_wide (@2) == 0)
40fd269a
MG
3288 (cmp @0 @2)
3289 (if (TREE_CODE (@1) == INTEGER_CST)
3290 (with
3291 {
3292 bool ovf;
8e6cdc90
RS
3293 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3294 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
40fd269a
MG
3295 }
3296 (if (ovf)
3297 { constant_boolean_node (cmp == NE_EXPR, type); }
3298 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3299(for cmp (lt le gt ge)
3300 (simplify
3301 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
8e6cdc90 3302 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
40fd269a
MG
3303 (with
3304 {
3305 bool ovf;
8e6cdc90
RS
3306 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3307 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
40fd269a
MG
3308 }
3309 (if (ovf)
8e6cdc90
RS
3310 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3311 TYPE_SIGN (TREE_TYPE (@2)))
40fd269a
MG
3312 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3313 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3314
cfdc4f33
MG
3315/* Unordered tests if either argument is a NaN. */
3316(simplify
3317 (bit_ior (unordered @0 @0) (unordered @1 @1))
aea417d7 3318 (if (types_match (@0, @1))
cfdc4f33 3319 (unordered @0 @1)))
257b01ba
MG
3320(simplify
3321 (bit_and (ordered @0 @0) (ordered @1 @1))
3322 (if (types_match (@0, @1))
3323 (ordered @0 @1)))
cfdc4f33
MG
3324(simplify
3325 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3326 @2)
257b01ba
MG
3327(simplify
3328 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3329 @2)
e18c1d66 3330
90c6f26c
RB
3331/* Simple range test simplifications. */
3332/* A < B || A >= B -> true. */
5d30c58d
RB
3333(for test1 (lt le le le ne ge)
3334 test2 (ge gt ge ne eq ne)
90c6f26c
RB
3335 (simplify
3336 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3337 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3338 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3339 { constant_boolean_node (true, type); })))
3340/* A < B && A >= B -> false. */
3341(for test1 (lt lt lt le ne eq)
3342 test2 (ge gt eq gt eq gt)
3343 (simplify
3344 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3345 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3346 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3347 { constant_boolean_node (false, type); })))
3348
9ebc3467
YG
3349/* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3350 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3351
3352 Note that comparisons
3353 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3354 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3355 will be canonicalized to above so there's no need to
3356 consider them here.
3357 */
3358
3359(for cmp (le gt)
3360 eqcmp (eq ne)
3361 (simplify
3362 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3363 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3364 (with
3365 {
3366 tree ty = TREE_TYPE (@0);
3367 unsigned prec = TYPE_PRECISION (ty);
3368 wide_int mask = wi::to_wide (@2, prec);
3369 wide_int rhs = wi::to_wide (@3, prec);
3370 signop sgn = TYPE_SIGN (ty);
3371 }
3372 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3373 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3374 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3375 { build_zero_cst (ty); }))))))
3376
534bd33b
MG
3377/* -A CMP -B -> B CMP A. */
3378(for cmp (tcc_comparison)
3379 scmp (swapped_tcc_comparison)
3380 (simplify
3381 (cmp (negate @0) (negate @1))
3382 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3383 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3384 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3385 (scmp @0 @1)))
3386 (simplify
3387 (cmp (negate @0) CONSTANT_CLASS_P@1)
3388 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3389 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3390 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
23f27839 3391 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
534bd33b
MG
3392 (if (tem && !TREE_OVERFLOW (tem))
3393 (scmp @0 { tem; }))))))
3394
b0eb889b
MG
3395/* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3396(for op (eq ne)
3397 (simplify
3398 (op (abs @0) zerop@1)
3399 (op @0 @1)))
3400
6358a676
MG
3401/* From fold_sign_changed_comparison and fold_widened_comparison.
3402 FIXME: the lack of symmetry is disturbing. */
79d4f7c6
RB
3403(for cmp (simple_comparison)
3404 (simplify
3405 (cmp (convert@0 @00) (convert?@1 @10))
452ec2a5 3406 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
79d4f7c6
RB
3407 /* Disable this optimization if we're casting a function pointer
3408 type on targets that require function pointer canonicalization. */
3409 && !(targetm.have_canonicalize_funcptr_for_compare ()
3410 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
2fde61e3
RB
3411 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
3412 && single_use (@0))
79d4f7c6
RB
3413 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3414 && (TREE_CODE (@10) == INTEGER_CST
6358a676 3415 || @1 != @10)
79d4f7c6
RB
3416 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3417 || cmp == NE_EXPR
3418 || cmp == EQ_EXPR)
6358a676 3419 && !POINTER_TYPE_P (TREE_TYPE (@00)))
79d4f7c6
RB
3420 /* ??? The special-casing of INTEGER_CST conversion was in the original
3421 code and here to avoid a spurious overflow flag on the resulting
3422 constant which fold_convert produces. */
3423 (if (TREE_CODE (@1) == INTEGER_CST)
3424 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3425 TREE_OVERFLOW (@1)); })
3426 (cmp @00 (convert @1)))
3427
3428 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3429 /* If possible, express the comparison in the shorter mode. */
3430 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
7fd82d52
PP
3431 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3432 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3433 && TYPE_UNSIGNED (TREE_TYPE (@00))))
79d4f7c6
RB
3434 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3435 || ((TYPE_PRECISION (TREE_TYPE (@00))
3436 >= TYPE_PRECISION (TREE_TYPE (@10)))
3437 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3438 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3439 || (TREE_CODE (@10) == INTEGER_CST
f6c15759 3440 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
79d4f7c6
RB
3441 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3442 (cmp @00 (convert @10))
3443 (if (TREE_CODE (@10) == INTEGER_CST
f6c15759 3444 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
79d4f7c6
RB
3445 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3446 (with
3447 {
3448 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3449 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3450 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3451 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3452 }
3453 (if (above || below)
3454 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3455 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3456 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3457 { constant_boolean_node (above ? true : false, type); }
3458 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3459 { constant_boolean_node (above ? false : true, type); }))))))))))))
66e1cacf 3460
96a111a3
RB
3461(for cmp (eq ne)
3462 /* A local variable can never be pointed to by
3463 the default SSA name of an incoming parameter.
3464 SSA names are canonicalized to 2nd place. */
3465 (simplify
3466 (cmp addr@0 SSA_NAME@1)
3467 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3468 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3469 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3470 (if (TREE_CODE (base) == VAR_DECL
3471 && auto_var_in_fn_p (base, current_function_decl))
3472 (if (cmp == NE_EXPR)
3473 { constant_boolean_node (true, type); }
3474 { constant_boolean_node (false, type); }))))))
3475
66e1cacf
RB
3476/* Equality compare simplifications from fold_binary */
3477(for cmp (eq ne)
3478
3479 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3480 Similarly for NE_EXPR. */
3481 (simplify
3482 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3483 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
8e6cdc90 3484 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
66e1cacf
RB
3485 { constant_boolean_node (cmp == NE_EXPR, type); }))
3486
3487 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3488 (simplify
3489 (cmp (bit_xor @0 @1) integer_zerop)
3490 (cmp @0 @1))
3491
3492 /* (X ^ Y) == Y becomes X == 0.
3493 Likewise (X ^ Y) == X becomes Y == 0. */
3494 (simplify
99e943a2 3495 (cmp:c (bit_xor:c @0 @1) @0)
66e1cacf
RB
3496 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3497
3498 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3499 (simplify
3500 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3501 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
d057c866 3502 (cmp @0 (bit_xor @1 (convert @2)))))
d057c866
RB
3503
3504 (simplify
3505 (cmp (convert? addr@0) integer_zerop)
3506 (if (tree_single_nonzero_warnv_p (@0, NULL))
3507 { constant_boolean_node (cmp == NE_EXPR, type); })))
3508
b0eb889b
MG
3509/* If we have (A & C) == C where C is a power of 2, convert this into
3510 (A & C) != 0. Similarly for NE_EXPR. */
3511(for cmp (eq ne)
3512 icmp (ne eq)
3513 (simplify
3514 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3515 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3516
519e0faa
PB
3517/* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3518 convert this into a shift followed by ANDing with D. */
3519(simplify
3520 (cond
3521 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
3522 integer_pow2p@2 integer_zerop)
3523 (with {
8e6cdc90
RS
3524 int shift = (wi::exact_log2 (wi::to_wide (@2))
3525 - wi::exact_log2 (wi::to_wide (@1)));
519e0faa
PB
3526 }
3527 (if (shift > 0)
3528 (bit_and
3529 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3530 (bit_and
3531 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); })) @2))))
3532
b0eb889b
MG
3533/* If we have (A & C) != 0 where C is the sign bit of A, convert
3534 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3535(for cmp (eq ne)
3536 ncmp (ge lt)
3537 (simplify
3538 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3539 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2be65d9e 3540 && type_has_mode_precision_p (TREE_TYPE (@0))
b0eb889b 3541 && element_precision (@2) >= element_precision (@0)
8e6cdc90 3542 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
b0eb889b
MG
3543 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3544 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3545
519e0faa 3546/* If we have A < 0 ? C : 0 where C is a power of 2, convert
c0140e3c 3547 this into a right shift or sign extension followed by ANDing with C. */
519e0faa
PB
3548(simplify
3549 (cond
3550 (lt @0 integer_zerop)
3551 integer_pow2p@1 integer_zerop)
c0140e3c
JJ
3552 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
3553 (with {
8e6cdc90 3554 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
c0140e3c
JJ
3555 }
3556 (if (shift >= 0)
3557 (bit_and
3558 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3559 @1)
3560 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3561 sign extension followed by AND with C will achieve the effect. */
3562 (bit_and (convert @0) @1)))))
519e0faa 3563
68aba1f6
RB
3564/* When the addresses are not directly of decls compare base and offset.
3565 This implements some remaining parts of fold_comparison address
3566 comparisons but still no complete part of it. Still it is good
3567 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3568(for cmp (simple_comparison)
3569 (simplify
f501d5cd 3570 (cmp (convert1?@2 addr@0) (convert2? addr@1))
68aba1f6
RB
3571 (with
3572 {
a90c8804 3573 poly_int64 off0, off1;
68aba1f6
RB
3574 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3575 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3576 if (base0 && TREE_CODE (base0) == MEM_REF)
3577 {
aca52e6f 3578 off0 += mem_ref_offset (base0).force_shwi ();
68aba1f6
RB
3579 base0 = TREE_OPERAND (base0, 0);
3580 }
3581 if (base1 && TREE_CODE (base1) == MEM_REF)
3582 {
aca52e6f 3583 off1 += mem_ref_offset (base1).force_shwi ();
68aba1f6
RB
3584 base1 = TREE_OPERAND (base1, 0);
3585 }
3586 }
da571fda
RB
3587 (if (base0 && base1)
3588 (with
3589 {
aad88aed 3590 int equal = 2;
70f40fea
JJ
3591 /* Punt in GENERIC on variables with value expressions;
3592 the value expressions might point to fields/elements
3593 of other vars etc. */
3594 if (GENERIC
3595 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3596 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3597 ;
3598 else if (decl_in_symtab_p (base0)
3599 && decl_in_symtab_p (base1))
da571fda
RB
3600 equal = symtab_node::get_create (base0)
3601 ->equal_address_to (symtab_node::get_create (base1));
c3bea076
RB
3602 else if ((DECL_P (base0)
3603 || TREE_CODE (base0) == SSA_NAME
3604 || TREE_CODE (base0) == STRING_CST)
3605 && (DECL_P (base1)
3606 || TREE_CODE (base1) == SSA_NAME
3607 || TREE_CODE (base1) == STRING_CST))
aad88aed 3608 equal = (base0 == base1);
da571fda 3609 }
5e19d437 3610 (if (equal == 1)
da571fda 3611 (switch
a90c8804
RS
3612 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3613 { constant_boolean_node (known_eq (off0, off1), type); })
3614 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3615 { constant_boolean_node (known_ne (off0, off1), type); })
3616 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
3617 { constant_boolean_node (known_lt (off0, off1), type); })
3618 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
3619 { constant_boolean_node (known_le (off0, off1), type); })
3620 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
3621 { constant_boolean_node (known_ge (off0, off1), type); })
3622 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
3623 { constant_boolean_node (known_gt (off0, off1), type); }))
da571fda
RB
3624 (if (equal == 0
3625 && DECL_P (base0) && DECL_P (base1)
3626 /* If we compare this as integers require equal offset. */
3627 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
a90c8804 3628 || known_eq (off0, off1)))
da571fda
RB
3629 (switch
3630 (if (cmp == EQ_EXPR)
3631 { constant_boolean_node (false, type); })
3632 (if (cmp == NE_EXPR)
3633 { constant_boolean_node (true, type); })))))))))
66e1cacf 3634
98998245
RB
3635/* Simplify pointer equality compares using PTA. */
3636(for neeq (ne eq)
3637 (simplify
3638 (neeq @0 @1)
3639 (if (POINTER_TYPE_P (TREE_TYPE (@0))
3640 && ptrs_compare_unequal (@0, @1))
3641 { neeq == EQ_EXPR ? boolean_false_node : boolean_true_node; })))
3642
8f63caf6 3643/* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
467719fb
PK
3644 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3645 Disable the transform if either operand is pointer to function.
3646 This broke pr22051-2.c for arm where function pointer
3647 canonicalizaion is not wanted. */
1c0a8806 3648
8f63caf6
RB
3649(for cmp (ne eq)
3650 (simplify
3651 (cmp (convert @0) INTEGER_CST@1)
467719fb
PK
3652 (if ((POINTER_TYPE_P (TREE_TYPE (@0)) && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3653 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3654 || (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && POINTER_TYPE_P (TREE_TYPE (@1))
3655 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
8f63caf6
RB
3656 (cmp @0 (convert @1)))))
3657
21aacde4
RB
3658/* Non-equality compare simplifications from fold_binary */
3659(for cmp (lt gt le ge)
3660 /* Comparisons with the highest or lowest possible integer of
3661 the specified precision will have known values. */
3662 (simplify
3663 (cmp (convert?@2 @0) INTEGER_CST@1)
3664 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3665 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3666 (with
3667 {
3668 tree arg1_type = TREE_TYPE (@1);
3669 unsigned int prec = TYPE_PRECISION (arg1_type);
3670 wide_int max = wi::max_value (arg1_type);
3671 wide_int signed_max = wi::max_value (prec, SIGNED);
3672 wide_int min = wi::min_value (arg1_type);
3673 }
3674 (switch
8e6cdc90 3675 (if (wi::to_wide (@1) == max)
21aacde4
RB
3676 (switch
3677 (if (cmp == GT_EXPR)
3678 { constant_boolean_node (false, type); })
3679 (if (cmp == GE_EXPR)
3680 (eq @2 @1))
3681 (if (cmp == LE_EXPR)
3682 { constant_boolean_node (true, type); })
3683 (if (cmp == LT_EXPR)
3684 (ne @2 @1))))
8e6cdc90 3685 (if (wi::to_wide (@1) == min)
21aacde4
RB
3686 (switch
3687 (if (cmp == LT_EXPR)
3688 { constant_boolean_node (false, type); })
3689 (if (cmp == LE_EXPR)
3690 (eq @2 @1))
3691 (if (cmp == GE_EXPR)
3692 { constant_boolean_node (true, type); })
3693 (if (cmp == GT_EXPR)
3694 (ne @2 @1))))
8e6cdc90 3695 (if (wi::to_wide (@1) == max - 1)
9bc22d19
RB
3696 (switch
3697 (if (cmp == GT_EXPR)
8e6cdc90 3698 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))
9bc22d19 3699 (if (cmp == LE_EXPR)
8e6cdc90
RS
3700 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3701 (if (wi::to_wide (@1) == min + 1)
21aacde4
RB
3702 (switch
3703 (if (cmp == GE_EXPR)
8e6cdc90 3704 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))
21aacde4 3705 (if (cmp == LT_EXPR)
8e6cdc90
RS
3706 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3707 (if (wi::to_wide (@1) == signed_max
21aacde4
RB
3708 && TYPE_UNSIGNED (arg1_type)
3709 /* We will flip the signedness of the comparison operator
3710 associated with the mode of @1, so the sign bit is
3711 specified by this mode. Check that @1 is the signed
3712 max associated with this sign bit. */
7a504f33 3713 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
21aacde4
RB
3714 /* signed_type does not work on pointer types. */
3715 && INTEGRAL_TYPE_P (arg1_type))
3716 /* The following case also applies to X < signed_max+1
3717 and X >= signed_max+1 because previous transformations. */
3718 (if (cmp == LE_EXPR || cmp == GT_EXPR)
3719 (with { tree st = signed_type_for (arg1_type); }
3720 (if (cmp == LE_EXPR)
3721 (ge (convert:st @0) { build_zero_cst (st); })
3722 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
3723
b5d3d787
RB
3724(for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
3725 /* If the second operand is NaN, the result is constant. */
3726 (simplify
3727 (cmp @0 REAL_CST@1)
3728 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3729 && (cmp != LTGT_EXPR || ! flag_trapping_math))
50301115 3730 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
b5d3d787 3731 ? false : true, type); })))
21aacde4 3732
55cf3946
RB
3733/* bool_var != 0 becomes bool_var. */
3734(simplify
b5d3d787 3735 (ne @0 integer_zerop)
55cf3946
RB
3736 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3737 && types_match (type, TREE_TYPE (@0)))
3738 (non_lvalue @0)))
3739/* bool_var == 1 becomes bool_var. */
3740(simplify
b5d3d787 3741 (eq @0 integer_onep)
55cf3946
RB
3742 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3743 && types_match (type, TREE_TYPE (@0)))
3744 (non_lvalue @0)))
b5d3d787
RB
3745/* Do not handle
3746 bool_var == 0 becomes !bool_var or
3747 bool_var != 1 becomes !bool_var
3748 here because that only is good in assignment context as long
3749 as we require a tcc_comparison in GIMPLE_CONDs where we'd
3750 replace if (x == 0) with tem = ~x; if (tem != 0) which is
3751 clearly less optimal and which we'll transform again in forwprop. */
55cf3946 3752
ca1206be
MG
3753/* When one argument is a constant, overflow detection can be simplified.
3754 Currently restricted to single use so as not to interfere too much with
3755 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
3756 A + CST CMP A -> A CMP' CST' */
3757(for cmp (lt le ge gt)
3758 out (gt gt le le)
3759 (simplify
a8e9f9a3 3760 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
ca1206be
MG
3761 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3762 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
8e6cdc90 3763 && wi::to_wide (@1) != 0
ca1206be 3764 && single_use (@2))
8e6cdc90
RS
3765 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
3766 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
3767 wi::max_value (prec, UNSIGNED)
3768 - wi::to_wide (@1)); })))))
ca1206be 3769
3563f78f
MG
3770/* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
3771 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
3772 expects the long form, so we restrict the transformation for now. */
3773(for cmp (gt le)
3774 (simplify
a8e9f9a3 3775 (cmp:c (minus@2 @0 @1) @0)
3563f78f
MG
3776 (if (single_use (@2)
3777 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3778 && TYPE_UNSIGNED (TREE_TYPE (@0))
3779 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3780 (cmp @1 @0))))
3563f78f
MG
3781
3782/* Testing for overflow is unnecessary if we already know the result. */
3563f78f
MG
3783/* A - B > A */
3784(for cmp (gt le)
3785 out (ne eq)
3786 (simplify
a8e9f9a3 3787 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3563f78f
MG
3788 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3789 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3790 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3791/* A + B < A */
3792(for cmp (lt ge)
3793 out (ne eq)
3794 (simplify
a8e9f9a3 3795 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3563f78f
MG
3796 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3797 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3798 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3799
603aeb87 3800/* For unsigned operands, -1 / B < A checks whether A * B would overflow.
0557293f 3801 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
0557293f
AM
3802(for cmp (lt ge)
3803 out (ne eq)
3804 (simplify
603aeb87 3805 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
0557293f
AM
3806 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
3807 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
3808 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
55cf3946 3809
53f3cd25
RS
3810/* Simplification of math builtins. These rules must all be optimizations
3811 as well as IL simplifications. If there is a possibility that the new
3812 form could be a pessimization, the rule should go in the canonicalization
3813 section that follows this one.
e18c1d66 3814
53f3cd25
RS
3815 Rules can generally go in this section if they satisfy one of
3816 the following:
3817
3818 - the rule describes an identity
3819
3820 - the rule replaces calls with something as simple as addition or
3821 multiplication
3822
3823 - the rule contains unary calls only and simplifies the surrounding
3824 arithmetic. (The idea here is to exclude non-unary calls in which
3825 one operand is constant and in which the call is known to be cheap
3826 when the operand has that value.) */
52c6378a 3827
53f3cd25 3828(if (flag_unsafe_math_optimizations)
52c6378a
N
3829 /* Simplify sqrt(x) * sqrt(x) -> x. */
3830 (simplify
c6cfa2bf 3831 (mult (SQRT_ALL@1 @0) @1)
52c6378a
N
3832 (if (!HONOR_SNANS (type))
3833 @0))
3834
ed17cb57
JW
3835 (for op (plus minus)
3836 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
3837 (simplify
3838 (op (rdiv @0 @1)
3839 (rdiv @2 @1))
3840 (rdiv (op @0 @2) @1)))
3841
35401640
N
3842 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
3843 (for root (SQRT CBRT)
3844 (simplify
3845 (mult (root:s @0) (root:s @1))
3846 (root (mult @0 @1))))
3847
35401640
N
3848 /* Simplify expN(x) * expN(y) -> expN(x+y). */
3849 (for exps (EXP EXP2 EXP10 POW10)
3850 (simplify
3851 (mult (exps:s @0) (exps:s @1))
3852 (exps (plus @0 @1))))
3853
52c6378a 3854 /* Simplify a/root(b/c) into a*root(c/b). */
35401640
N
3855 (for root (SQRT CBRT)
3856 (simplify
3857 (rdiv @0 (root:s (rdiv:s @1 @2)))
3858 (mult @0 (root (rdiv @2 @1)))))
3859
3860 /* Simplify x/expN(y) into x*expN(-y). */
3861 (for exps (EXP EXP2 EXP10 POW10)
3862 (simplify
3863 (rdiv @0 (exps:s @1))
3864 (mult @0 (exps (negate @1)))))
52c6378a 3865
eee7b6c4
RB
3866 (for logs (LOG LOG2 LOG10 LOG10)
3867 exps (EXP EXP2 EXP10 POW10)
8acda9b2 3868 /* logN(expN(x)) -> x. */
e18c1d66
RB
3869 (simplify
3870 (logs (exps @0))
8acda9b2
RS
3871 @0)
3872 /* expN(logN(x)) -> x. */
3873 (simplify
3874 (exps (logs @0))
3875 @0))
53f3cd25 3876
e18c1d66
RB
3877 /* Optimize logN(func()) for various exponential functions. We
3878 want to determine the value "x" and the power "exponent" in
3879 order to transform logN(x**exponent) into exponent*logN(x). */
eee7b6c4
RB
3880 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
3881 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
e18c1d66
RB
3882 (simplify
3883 (logs (exps @0))
c9e926ce
RS
3884 (if (SCALAR_FLOAT_TYPE_P (type))
3885 (with {
3886 tree x;
3887 switch (exps)
3888 {
3889 CASE_CFN_EXP:
3890 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
3891 x = build_real_truncate (type, dconst_e ());
3892 break;
3893 CASE_CFN_EXP2:
3894 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
3895 x = build_real (type, dconst2);
3896 break;
3897 CASE_CFN_EXP10:
3898 CASE_CFN_POW10:
3899 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
3900 {
3901 REAL_VALUE_TYPE dconst10;
3902 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
3903 x = build_real (type, dconst10);
3904 }
3905 break;
3906 default:
3907 gcc_unreachable ();
3908 }
3909 }
3910 (mult (logs { x; }) @0)))))
53f3cd25 3911
e18c1d66
RB
3912 (for logs (LOG LOG
3913 LOG2 LOG2
3914 LOG10 LOG10)
3915 exps (SQRT CBRT)
3916 (simplify
3917 (logs (exps @0))
c9e926ce
RS
3918 (if (SCALAR_FLOAT_TYPE_P (type))
3919 (with {
3920 tree x;
3921 switch (exps)
3922 {
3923 CASE_CFN_SQRT:
3924 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
3925 x = build_real (type, dconsthalf);
3926 break;
3927 CASE_CFN_CBRT:
3928 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
3929 x = build_real_truncate (type, dconst_third ());
3930 break;
3931 default:
3932 gcc_unreachable ();
3933 }
3934 }
3935 (mult { x; } (logs @0))))))
53f3cd25
RS
3936
3937 /* logN(pow(x,exponent)) -> exponent*logN(x). */
e18c1d66
RB
3938 (for logs (LOG LOG2 LOG10)
3939 pows (POW)
3940 (simplify
3941 (logs (pows @0 @1))
53f3cd25
RS
3942 (mult @1 (logs @0))))
3943
e83fe013
WD
3944 /* pow(C,x) -> exp(log(C)*x) if C > 0. */
3945 (for pows (POW)
3946 exps (EXP)
3947 logs (LOG)
3948 (simplify
3949 (pows REAL_CST@0 @1)
3950 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
3951 && real_isfinite (TREE_REAL_CST_PTR (@0)))
3952 (exps (mult (logs @0) @1)))))
3953
53f3cd25
RS
3954 (for sqrts (SQRT)
3955 cbrts (CBRT)
b4838d77 3956 pows (POW)
53f3cd25
RS
3957 exps (EXP EXP2 EXP10 POW10)
3958 /* sqrt(expN(x)) -> expN(x*0.5). */
3959 (simplify
3960 (sqrts (exps @0))
3961 (exps (mult @0 { build_real (type, dconsthalf); })))
3962 /* cbrt(expN(x)) -> expN(x/3). */
3963 (simplify
3964 (cbrts (exps @0))
b4838d77
RS
3965 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
3966 /* pow(expN(x), y) -> expN(x*y). */
3967 (simplify
3968 (pows (exps @0) @1)
3969 (exps (mult @0 @1))))
cfed37a0
RS
3970
3971 /* tan(atan(x)) -> x. */
3972 (for tans (TAN)
3973 atans (ATAN)
3974 (simplify
3975 (tans (atans @0))
3976 @0)))
53f3cd25 3977
abcc43f5
RS
3978/* cabs(x+0i) or cabs(0+xi) -> abs(x). */
3979(simplify
e04d2a35 3980 (CABS (complex:C @0 real_zerop@1))
abcc43f5
RS
3981 (abs @0))
3982
67dbe582 3983/* trunc(trunc(x)) -> trunc(x), etc. */
c6cfa2bf 3984(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
67dbe582
RS
3985 (simplify
3986 (fns (fns @0))
3987 (fns @0)))
3988/* f(x) -> x if x is integer valued and f does nothing for such values. */
c6cfa2bf 3989(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
67dbe582
RS
3990 (simplify
3991 (fns integer_valued_real_p@0)
3992 @0))
67dbe582 3993
4d7836c4
RS
3994/* hypot(x,0) and hypot(0,x) -> abs(x). */
3995(simplify
c9e926ce 3996 (HYPOT:c @0 real_zerop@1)
4d7836c4
RS
3997 (abs @0))
3998
b4838d77
RS
3999/* pow(1,x) -> 1. */
4000(simplify
4001 (POW real_onep@0 @1)
4002 @0)
4003
461e4145
RS
4004(simplify
4005 /* copysign(x,x) -> x. */
c6cfa2bf 4006 (COPYSIGN_ALL @0 @0)
461e4145
RS
4007 @0)
4008
4009(simplify
4010 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
c6cfa2bf 4011 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
461e4145
RS
4012 (abs @0))
4013
86c0733f
RS
4014(for scale (LDEXP SCALBN SCALBLN)
4015 /* ldexp(0, x) -> 0. */
4016 (simplify
4017 (scale real_zerop@0 @1)
4018 @0)
4019 /* ldexp(x, 0) -> x. */
4020 (simplify
4021 (scale @0 integer_zerop@1)
4022 @0)
4023 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4024 (simplify
4025 (scale REAL_CST@0 @1)
4026 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4027 @0)))
4028
53f3cd25
RS
4029/* Canonicalization of sequences of math builtins. These rules represent
4030 IL simplifications but are not necessarily optimizations.
4031
4032 The sincos pass is responsible for picking "optimal" implementations
4033 of math builtins, which may be more complicated and can sometimes go
4034 the other way, e.g. converting pow into a sequence of sqrts.
4035 We only want to do these canonicalizations before the pass has run. */
4036
4037(if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4038 /* Simplify tan(x) * cos(x) -> sin(x). */
4039 (simplify
4040 (mult:c (TAN:s @0) (COS:s @0))
4041 (SIN @0))
4042
4043 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4044 (simplify
de3fbea3 4045 (mult:c @0 (POW:s @0 REAL_CST@1))
53f3cd25
RS
4046 (if (!TREE_OVERFLOW (@1))
4047 (POW @0 (plus @1 { build_one_cst (type); }))))
4048
4049 /* Simplify sin(x) / cos(x) -> tan(x). */
4050 (simplify
4051 (rdiv (SIN:s @0) (COS:s @0))
4052 (TAN @0))
4053
4054 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4055 (simplify
4056 (rdiv (COS:s @0) (SIN:s @0))
4057 (rdiv { build_one_cst (type); } (TAN @0)))
4058
4059 /* Simplify sin(x) / tan(x) -> cos(x). */
4060 (simplify
4061 (rdiv (SIN:s @0) (TAN:s @0))
4062 (if (! HONOR_NANS (@0)
4063 && ! HONOR_INFINITIES (@0))
c9e926ce 4064 (COS @0)))
53f3cd25
RS
4065
4066 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4067 (simplify
4068 (rdiv (TAN:s @0) (SIN:s @0))
4069 (if (! HONOR_NANS (@0)
4070 && ! HONOR_INFINITIES (@0))
4071 (rdiv { build_one_cst (type); } (COS @0))))
4072
4073 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4074 (simplify
4075 (mult (POW:s @0 @1) (POW:s @0 @2))
4076 (POW @0 (plus @1 @2)))
4077
4078 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4079 (simplify
4080 (mult (POW:s @0 @1) (POW:s @2 @1))
4081 (POW (mult @0 @2) @1))
4082
de3fbea3
RB
4083 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4084 (simplify
4085 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4086 (POWI (mult @0 @2) @1))
4087
53f3cd25
RS
4088 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4089 (simplify
4090 (rdiv (POW:s @0 REAL_CST@1) @0)
4091 (if (!TREE_OVERFLOW (@1))
4092 (POW @0 (minus @1 { build_one_cst (type); }))))
4093
4094 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4095 (simplify
4096 (rdiv @0 (POW:s @1 @2))
4097 (mult @0 (POW @1 (negate @2))))
4098
4099 (for sqrts (SQRT)
4100 cbrts (CBRT)
4101 pows (POW)
4102 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4103 (simplify
4104 (sqrts (sqrts @0))
4105 (pows @0 { build_real (type, dconst_quarter ()); }))
4106 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4107 (simplify
4108 (sqrts (cbrts @0))
4109 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4110 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4111 (simplify
4112 (cbrts (sqrts @0))
4113 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4114 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4115 (simplify
4116 (cbrts (cbrts tree_expr_nonnegative_p@0))
4117 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4118 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4119 (simplify
4120 (sqrts (pows @0 @1))
4121 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4122 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4123 (simplify
4124 (cbrts (pows tree_expr_nonnegative_p@0 @1))
b4838d77
RS
4125 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4126 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4127 (simplify
4128 (pows (sqrts @0) @1)
4129 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4130 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4131 (simplify
4132 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4133 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4134 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4135 (simplify
4136 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4137 (pows @0 (mult @1 @2))))
abcc43f5
RS
4138
4139 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4140 (simplify
4141 (CABS (complex @0 @0))
96285749
RS
4142 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4143
4d7836c4
RS
4144 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4145 (simplify
4146 (HYPOT @0 @0)
4147 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4148
96285749
RS
4149 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4150 (for cexps (CEXP)
4151 exps (EXP)
4152 cexpis (CEXPI)
4153 (simplify
4154 (cexps compositional_complex@0)
4155 (if (targetm.libc_has_function (function_c99_math_complex))
4156 (complex
4157 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4158 (mult @1 (imagpart @2)))))))
e18c1d66 4159
67dbe582
RS
4160(if (canonicalize_math_p ())
4161 /* floor(x) -> trunc(x) if x is nonnegative. */
c6cfa2bf
MM
4162 (for floors (FLOOR_ALL)
4163 truncs (TRUNC_ALL)
67dbe582
RS
4164 (simplify
4165 (floors tree_expr_nonnegative_p@0)
4166 (truncs @0))))
4167
4168(match double_value_p
4169 @0
4170 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4171(for froms (BUILT_IN_TRUNCL
4172 BUILT_IN_FLOORL
4173 BUILT_IN_CEILL
4174 BUILT_IN_ROUNDL
4175 BUILT_IN_NEARBYINTL
4176 BUILT_IN_RINTL)
4177 tos (BUILT_IN_TRUNC
4178 BUILT_IN_FLOOR
4179 BUILT_IN_CEIL
4180 BUILT_IN_ROUND
4181 BUILT_IN_NEARBYINT
4182 BUILT_IN_RINT)
4183 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4184 (if (optimize && canonicalize_math_p ())
4185 (simplify
4186 (froms (convert double_value_p@0))
4187 (convert (tos @0)))))
4188
4189(match float_value_p
4190 @0
4191 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4192(for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4193 BUILT_IN_FLOORL BUILT_IN_FLOOR
4194 BUILT_IN_CEILL BUILT_IN_CEIL
4195 BUILT_IN_ROUNDL BUILT_IN_ROUND
4196 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4197 BUILT_IN_RINTL BUILT_IN_RINT)
4198 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4199 BUILT_IN_FLOORF BUILT_IN_FLOORF
4200 BUILT_IN_CEILF BUILT_IN_CEILF
4201 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4202 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4203 BUILT_IN_RINTF BUILT_IN_RINTF)
4204 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4205 if x is a float. */
5dac7dbd
JDA
4206 (if (optimize && canonicalize_math_p ()
4207 && targetm.libc_has_function (function_c99_misc))
67dbe582
RS
4208 (simplify
4209 (froms (convert float_value_p@0))
4210 (convert (tos @0)))))
4211
543a9bcd
RS
4212(for froms (XFLOORL XCEILL XROUNDL XRINTL)
4213 tos (XFLOOR XCEIL XROUND XRINT)
4214 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4215 (if (optimize && canonicalize_math_p ())
4216 (simplify
4217 (froms (convert double_value_p@0))
4218 (tos @0))))
4219
4220(for froms (XFLOORL XCEILL XROUNDL XRINTL
4221 XFLOOR XCEIL XROUND XRINT)
4222 tos (XFLOORF XCEILF XROUNDF XRINTF)
4223 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4224 if x is a float. */
4225 (if (optimize && canonicalize_math_p ())
4226 (simplify
4227 (froms (convert float_value_p@0))
4228 (tos @0))))
4229
4230(if (canonicalize_math_p ())
4231 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4232 (for floors (IFLOOR LFLOOR LLFLOOR)
4233 (simplify
4234 (floors tree_expr_nonnegative_p@0)
4235 (fix_trunc @0))))
4236
4237(if (canonicalize_math_p ())
4238 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4239 (for fns (IFLOOR LFLOOR LLFLOOR
4240 ICEIL LCEIL LLCEIL
4241 IROUND LROUND LLROUND)
4242 (simplify
4243 (fns integer_valued_real_p@0)
4244 (fix_trunc @0)))
4245 (if (!flag_errno_math)
4246 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4247 (for rints (IRINT LRINT LLRINT)
4248 (simplify
4249 (rints integer_valued_real_p@0)
4250 (fix_trunc @0)))))
4251
4252(if (canonicalize_math_p ())
4253 (for ifn (IFLOOR ICEIL IROUND IRINT)
4254 lfn (LFLOOR LCEIL LROUND LRINT)
4255 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4256 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4257 sizeof (int) == sizeof (long). */
4258 (if (TYPE_PRECISION (integer_type_node)
4259 == TYPE_PRECISION (long_integer_type_node))
4260 (simplify
4261 (ifn @0)
4262 (lfn:long_integer_type_node @0)))
4263 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4264 sizeof (long long) == sizeof (long). */
4265 (if (TYPE_PRECISION (long_long_integer_type_node)
4266 == TYPE_PRECISION (long_integer_type_node))
4267 (simplify
4268 (llfn @0)
4269 (lfn:long_integer_type_node @0)))))
4270
92c52eab
RS
4271/* cproj(x) -> x if we're ignoring infinities. */
4272(simplify
4273 (CPROJ @0)
4274 (if (!HONOR_INFINITIES (type))
4275 @0))
4276
4534c203
RB
4277/* If the real part is inf and the imag part is known to be
4278 nonnegative, return (inf + 0i). */
4279(simplify
4280 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4281 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
92c52eab
RS
4282 { build_complex_inf (type, false); }))
4283
4534c203
RB
4284/* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4285(simplify
4286 (CPROJ (complex @0 REAL_CST@1))
4287 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
92c52eab 4288 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4534c203 4289
b4838d77
RS
4290(for pows (POW)
4291 sqrts (SQRT)
4292 cbrts (CBRT)
4293 (simplify
4294 (pows @0 REAL_CST@1)
4295 (with {
4296 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4297 REAL_VALUE_TYPE tmp;
4298 }
4299 (switch
4300 /* pow(x,0) -> 1. */
4301 (if (real_equal (value, &dconst0))
4302 { build_real (type, dconst1); })
4303 /* pow(x,1) -> x. */
4304 (if (real_equal (value, &dconst1))
4305 @0)
4306 /* pow(x,-1) -> 1/x. */
4307 (if (real_equal (value, &dconstm1))
4308 (rdiv { build_real (type, dconst1); } @0))
4309 /* pow(x,0.5) -> sqrt(x). */
4310 (if (flag_unsafe_math_optimizations
4311 && canonicalize_math_p ()
4312 && real_equal (value, &dconsthalf))
4313 (sqrts @0))
4314 /* pow(x,1/3) -> cbrt(x). */
4315 (if (flag_unsafe_math_optimizations
4316 && canonicalize_math_p ()
4317 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4318 real_equal (value, &tmp)))
4319 (cbrts @0))))))
4534c203 4320
5ddc84ca
RS
4321/* powi(1,x) -> 1. */
4322(simplify
4323 (POWI real_onep@0 @1)
4324 @0)
4325
4326(simplify
4327 (POWI @0 INTEGER_CST@1)
4328 (switch
4329 /* powi(x,0) -> 1. */
8e6cdc90 4330 (if (wi::to_wide (@1) == 0)
5ddc84ca
RS
4331 { build_real (type, dconst1); })
4332 /* powi(x,1) -> x. */
8e6cdc90 4333 (if (wi::to_wide (@1) == 1)
5ddc84ca
RS
4334 @0)
4335 /* powi(x,-1) -> 1/x. */
8e6cdc90 4336 (if (wi::to_wide (@1) == -1)
5ddc84ca
RS
4337 (rdiv { build_real (type, dconst1); } @0))))
4338
be144838
JL
4339/* Narrowing of arithmetic and logical operations.
4340
4341 These are conceptually similar to the transformations performed for
4342 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4343 term we want to move all that code out of the front-ends into here. */
4344
4345/* If we have a narrowing conversion of an arithmetic operation where
4346 both operands are widening conversions from the same type as the outer
4347 narrowing conversion. Then convert the innermost operands to a suitable
9c582551 4348 unsigned type (to avoid introducing undefined behavior), perform the
be144838
JL
4349 operation and convert the result to the desired type. */
4350(for op (plus minus)
4351 (simplify
93f90bec 4352 (convert (op:s (convert@2 @0) (convert?@3 @1)))
be144838
JL
4353 (if (INTEGRAL_TYPE_P (type)
4354 /* We check for type compatibility between @0 and @1 below,
4355 so there's no need to check that @1/@3 are integral types. */
4356 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4357 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4358 /* The precision of the type of each operand must match the
4359 precision of the mode of each operand, similarly for the
4360 result. */
2be65d9e
RS
4361 && type_has_mode_precision_p (TREE_TYPE (@0))
4362 && type_has_mode_precision_p (TREE_TYPE (@1))
4363 && type_has_mode_precision_p (type)
be144838
JL
4364 /* The inner conversion must be a widening conversion. */
4365 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
93f90bec
BC
4366 && types_match (@0, type)
4367 && (types_match (@0, @1)
4368 /* Or the second operand is const integer or converted const
4369 integer from valueize. */
4370 || TREE_CODE (@1) == INTEGER_CST))
be144838 4371 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
93f90bec 4372 (op @0 (convert @1))
8fdc6c67 4373 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
93f90bec
BC
4374 (convert (op (convert:utype @0)
4375 (convert:utype @1))))))))
48451e8f
JL
4376
4377/* This is another case of narrowing, specifically when there's an outer
4378 BIT_AND_EXPR which masks off bits outside the type of the innermost
4379 operands. Like the previous case we have to convert the operands
9c582551 4380 to unsigned types to avoid introducing undefined behavior for the
48451e8f
JL
4381 arithmetic operation. */
4382(for op (minus plus)
8fdc6c67
RB
4383 (simplify
4384 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4385 (if (INTEGRAL_TYPE_P (type)
4386 /* We check for type compatibility between @0 and @1 below,
4387 so there's no need to check that @1/@3 are integral types. */
4388 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4389 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4390 /* The precision of the type of each operand must match the
4391 precision of the mode of each operand, similarly for the
4392 result. */
2be65d9e
RS
4393 && type_has_mode_precision_p (TREE_TYPE (@0))
4394 && type_has_mode_precision_p (TREE_TYPE (@1))
4395 && type_has_mode_precision_p (type)
8fdc6c67
RB
4396 /* The inner conversion must be a widening conversion. */
4397 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4398 && types_match (@0, @1)
4399 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4400 <= TYPE_PRECISION (TREE_TYPE (@0)))
8e6cdc90
RS
4401 && (wi::to_wide (@4)
4402 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4403 true, TYPE_PRECISION (type))) == 0)
8fdc6c67
RB
4404 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4405 (with { tree ntype = TREE_TYPE (@0); }
4406 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4407 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4408 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4409 (convert:utype @4))))))))
4f7a5692
MC
4410
4411/* Transform (@0 < @1 and @0 < @2) to use min,
4412 (@0 > @1 and @0 > @2) to use max */
4413(for op (lt le gt ge)
4414 ext (min min max max)
4415 (simplify
4618c453
RB
4416 (bit_and (op:cs @0 @1) (op:cs @0 @2))
4417 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4418 && TREE_CODE (@0) != INTEGER_CST)
4f7a5692
MC
4419 (op @0 (ext @1 @2)))))
4420
7317ef4a
RS
4421(simplify
4422 /* signbit(x) -> 0 if x is nonnegative. */
4423 (SIGNBIT tree_expr_nonnegative_p@0)
4424 { integer_zero_node; })
4425
4426(simplify
4427 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4428 (SIGNBIT @0)
4429 (if (!HONOR_SIGNED_ZEROS (@0))
4430 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
a8b85ce9
MG
4431
4432/* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4433(for cmp (eq ne)
4434 (for op (plus minus)
4435 rop (minus plus)
4436 (simplify
4437 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4438 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4439 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4440 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4441 && !TYPE_SATURATING (TREE_TYPE (@0)))
4442 (with { tree res = int_const_binop (rop, @2, @1); }
75473a91
RB
4443 (if (TREE_OVERFLOW (res)
4444 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
a8b85ce9
MG
4445 { constant_boolean_node (cmp == NE_EXPR, type); }
4446 (if (single_use (@3))
11c1e63c
JJ
4447 (cmp @0 { TREE_OVERFLOW (res)
4448 ? drop_tree_overflow (res) : res; }))))))))
a8b85ce9
MG
4449(for cmp (lt le gt ge)
4450 (for op (plus minus)
4451 rop (minus plus)
4452 (simplify
4453 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4454 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4455 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4456 (with { tree res = int_const_binop (rop, @2, @1); }
4457 (if (TREE_OVERFLOW (res))
4458 {
4459 fold_overflow_warning (("assuming signed overflow does not occur "
4460 "when simplifying conditional to constant"),
4461 WARN_STRICT_OVERFLOW_CONDITIONAL);
4462 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4463 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
8e6cdc90
RS
4464 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4465 TYPE_SIGN (TREE_TYPE (@1)))
a8b85ce9
MG
4466 != (op == MINUS_EXPR);
4467 constant_boolean_node (less == ovf_high, type);
4468 }
4469 (if (single_use (@3))
4470 (with
4471 {
4472 fold_overflow_warning (("assuming signed overflow does not occur "
4473 "when changing X +- C1 cmp C2 to "
4474 "X cmp C2 -+ C1"),
4475 WARN_STRICT_OVERFLOW_COMPARISON);
4476 }
4477 (cmp @0 { res; })))))))))
d3e40b76
RB
4478
4479/* Canonicalizations of BIT_FIELD_REFs. */
4480
4481(simplify
4482 (BIT_FIELD_REF @0 @1 @2)
4483 (switch
4484 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
4485 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4486 (switch
4487 (if (integer_zerop (@2))
4488 (view_convert (realpart @0)))
4489 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4490 (view_convert (imagpart @0)))))
4491 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4492 && INTEGRAL_TYPE_P (type)
171f6f05
RB
4493 /* On GIMPLE this should only apply to register arguments. */
4494 && (! GIMPLE || is_gimple_reg (@0))
d3e40b76
RB
4495 /* A bit-field-ref that referenced the full argument can be stripped. */
4496 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
4497 && integer_zerop (@2))
4498 /* Low-parts can be reduced to integral conversions.
4499 ??? The following doesn't work for PDP endian. */
4500 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
4501 /* Don't even think about BITS_BIG_ENDIAN. */
4502 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
4503 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
4504 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
4505 ? (TYPE_PRECISION (TREE_TYPE (@0))
4506 - TYPE_PRECISION (type))
4507 : 0)) == 0)))
4508 (convert @0))))
4509
4510/* Simplify vector extracts. */
4511
4512(simplify
4513 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
4514 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
4515 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
4516 || (VECTOR_TYPE_P (type)
4517 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
4518 (with
4519 {
4520 tree ctor = (TREE_CODE (@0) == SSA_NAME
4521 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
4522 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
4523 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
4524 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
4525 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
4526 }
4527 (if (n != 0
4528 && (idx % width) == 0
4529 && (n % width) == 0
928686b1
RS
4530 && known_le ((idx + n) / width,
4531 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
d3e40b76
RB
4532 (with
4533 {
4534 idx = idx / width;
4535 n = n / width;
4536 /* Constructor elements can be subvectors. */
d34457c1 4537 poly_uint64 k = 1;
d3e40b76
RB
4538 if (CONSTRUCTOR_NELTS (ctor) != 0)
4539 {
4540 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
4541 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
4542 k = TYPE_VECTOR_SUBPARTS (cons_elem);
4543 }
d34457c1 4544 unsigned HOST_WIDE_INT elt, count, const_k;
d3e40b76
RB
4545 }
4546 (switch
4547 /* We keep an exact subset of the constructor elements. */
d34457c1 4548 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
d3e40b76
RB
4549 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4550 { build_constructor (type, NULL); }
d34457c1
RS
4551 (if (count == 1)
4552 (if (elt < CONSTRUCTOR_NELTS (ctor))
4553 { CONSTRUCTOR_ELT (ctor, elt)->value; }
4554 { build_zero_cst (type); })
d3e40b76 4555 {
d34457c1
RS
4556 vec<constructor_elt, va_gc> *vals;
4557 vec_alloc (vals, count);
4558 for (unsigned i = 0;
4559 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
4560 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
4561 CONSTRUCTOR_ELT (ctor, elt + i)->value);
4562 build_constructor (type, vals);
4563 })))
d3e40b76 4564 /* The bitfield references a single constructor element. */
d34457c1
RS
4565 (if (k.is_constant (&const_k)
4566 && idx + n <= (idx / const_k + 1) * const_k)
d3e40b76 4567 (switch
d34457c1 4568 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
d3e40b76 4569 { build_zero_cst (type); })
d34457c1
RS
4570 (if (n == const_k)
4571 { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; })
4572 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
4573 @1 { bitsize_int ((idx % const_k) * width); })))))))))
92e29a5e
RB
4574
4575/* Simplify a bit extraction from a bit insertion for the cases with
4576 the inserted element fully covering the extraction or the insertion
4577 not touching the extraction. */
4578(simplify
4579 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
4580 (with
4581 {
4582 unsigned HOST_WIDE_INT isize;
4583 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4584 isize = TYPE_PRECISION (TREE_TYPE (@1));
4585 else
4586 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
4587 }
4588 (switch
8e6cdc90
RS
4589 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
4590 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
4591 wi::to_wide (@ipos) + isize))
92e29a5e 4592 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
8e6cdc90
RS
4593 wi::to_wide (@rpos)
4594 - wi::to_wide (@ipos)); }))
4595 (if (wi::geu_p (wi::to_wide (@ipos),
4596 wi::to_wide (@rpos) + wi::to_wide (@rsize))
4597 || wi::geu_p (wi::to_wide (@rpos),
4598 wi::to_wide (@ipos) + isize))
92e29a5e 4599 (BIT_FIELD_REF @0 @rsize @rpos)))))