]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/match.pd
Added missing Changelog entry for testsuite.
[thirdparty/gcc.git] / gcc / match.pd
CommitLineData
3d2cf79f
RB
1/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5624e564 5 Copyright (C) 2014-2015 Free Software Foundation, Inc.
3d2cf79f
RB
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
13Software Foundation; either version 3, or (at your option) any later
14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING3. If not see
23<http://www.gnu.org/licenses/>. */
24
25
26/* Generic tree predicates we inherit. */
27(define_predicates
cc7b5acf 28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
09240451 29 integer_each_onep integer_truep
cc7b5acf 30 real_zerop real_onep real_minus_onep
f3582e54
RB
31 CONSTANT_CLASS_P
32 tree_expr_nonnegative_p)
e0ee10ed 33
f84e7fd6
RB
34/* Operator lists. */
35(define_operator_list tcc_comparison
36 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
37(define_operator_list inverted_tcc_comparison
38 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
39(define_operator_list inverted_tcc_comparison_with_nans
40 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
534bd33b
MG
41(define_operator_list swapped_tcc_comparison
42 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
07cdc2b8
RB
43(define_operator_list simple_comparison lt le eq ne ge gt)
44(define_operator_list swapped_simple_comparison gt ge eq ne le lt)
45
46(define_operator_list LOG BUILT_IN_LOGF BUILT_IN_LOG BUILT_IN_LOGL)
47(define_operator_list EXP BUILT_IN_EXPF BUILT_IN_EXP BUILT_IN_EXPL)
48(define_operator_list LOG2 BUILT_IN_LOG2F BUILT_IN_LOG2 BUILT_IN_LOG2L)
49(define_operator_list EXP2 BUILT_IN_EXP2F BUILT_IN_EXP2 BUILT_IN_EXP2L)
50(define_operator_list LOG10 BUILT_IN_LOG10F BUILT_IN_LOG10 BUILT_IN_LOG10L)
51(define_operator_list EXP10 BUILT_IN_EXP10F BUILT_IN_EXP10 BUILT_IN_EXP10L)
52(define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
53(define_operator_list POW10 BUILT_IN_POW10F BUILT_IN_POW10 BUILT_IN_POW10L)
54(define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
55(define_operator_list CBRT BUILT_IN_CBRTF BUILT_IN_CBRT BUILT_IN_CBRTL)
f84e7fd6 56
e0ee10ed
RB
57
58/* Simplifications of operations with one constant operand and
36a60e48 59 simplifications to constants or single values. */
e0ee10ed
RB
60
61(for op (plus pointer_plus minus bit_ior bit_xor)
62 (simplify
63 (op @0 integer_zerop)
64 (non_lvalue @0)))
65
a499aac5
RB
66/* 0 +p index -> (type)index */
67(simplify
68 (pointer_plus integer_zerop @1)
69 (non_lvalue (convert @1)))
70
a7f24614
RB
71/* See if ARG1 is zero and X + ARG1 reduces to X.
72 Likewise if the operands are reversed. */
73(simplify
74 (plus:c @0 real_zerop@1)
75 (if (fold_real_zero_addition_p (type, @1, 0))
76 (non_lvalue @0)))
77
78/* See if ARG1 is zero and X - ARG1 reduces to X. */
79(simplify
80 (minus @0 real_zerop@1)
81 (if (fold_real_zero_addition_p (type, @1, 1))
82 (non_lvalue @0)))
83
e0ee10ed
RB
84/* Simplify x - x.
85 This is unsafe for certain floats even in non-IEEE formats.
86 In IEEE, it is unsafe because it does wrong for NaNs.
87 Also note that operand_equal_p is always false if an operand
88 is volatile. */
89(simplify
a7f24614 90 (minus @0 @0)
1b457aa4 91 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
a7f24614 92 { build_zero_cst (type); }))
e0ee10ed
RB
93
94(simplify
a7f24614
RB
95 (mult @0 integer_zerop@1)
96 @1)
97
98/* Maybe fold x * 0 to 0. The expressions aren't the same
99 when x is NaN, since x * 0 is also NaN. Nor are they the
100 same in modes with signed zeros, since multiplying a
101 negative value by 0 gives -0, not +0. */
102(simplify
103 (mult @0 real_zerop@1)
1b457aa4 104 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (element_mode (type)))
a7f24614
RB
105 @1))
106
107/* In IEEE floating point, x*1 is not equivalent to x for snans.
108 Likewise for complex arithmetic with signed zeros. */
109(simplify
110 (mult @0 real_onep)
09240451
MG
111 (if (!HONOR_SNANS (element_mode (type))
112 && (!HONOR_SIGNED_ZEROS (element_mode (type))
a7f24614
RB
113 || !COMPLEX_FLOAT_TYPE_P (type)))
114 (non_lvalue @0)))
115
116/* Transform x * -1.0 into -x. */
117(simplify
118 (mult @0 real_minus_onep)
09240451
MG
119 (if (!HONOR_SNANS (element_mode (type))
120 && (!HONOR_SIGNED_ZEROS (element_mode (type))
a7f24614
RB
121 || !COMPLEX_FLOAT_TYPE_P (type)))
122 (negate @0)))
e0ee10ed
RB
123
124/* Make sure to preserve divisions by zero. This is the reason why
125 we don't simplify x / x to 1 or 0 / x to 0. */
126(for op (mult trunc_div ceil_div floor_div round_div exact_div)
127 (simplify
128 (op @0 integer_onep)
129 (non_lvalue @0)))
130
a7f24614
RB
131/* X / -1 is -X. */
132(for div (trunc_div ceil_div floor_div round_div exact_div)
133 (simplify
09240451
MG
134 (div @0 integer_minus_onep@1)
135 (if (!TYPE_UNSIGNED (type))
a7f24614
RB
136 (negate @0))))
137
138/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
139 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
140(simplify
141 (floor_div @0 @1)
09240451
MG
142 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
143 && TYPE_UNSIGNED (type))
a7f24614
RB
144 (trunc_div @0 @1)))
145
28093105
RB
146/* Combine two successive divisions. Note that combining ceil_div
147 and floor_div is trickier and combining round_div even more so. */
148(for div (trunc_div exact_div)
c306cfaf
RB
149 (simplify
150 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
151 (with {
152 bool overflow_p;
153 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
154 }
155 (if (!overflow_p)
156 (div @0 { wide_int_to_tree (type, mul); }))
ac19a303
RB
157 (if (overflow_p
158 && (TYPE_UNSIGNED (type)
159 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED)))
c306cfaf
RB
160 { build_zero_cst (type); }))))
161
a7f24614 162/* Optimize A / A to 1.0 if we don't care about
09240451 163 NaNs or Infinities. */
a7f24614
RB
164(simplify
165 (rdiv @0 @0)
09240451 166 (if (FLOAT_TYPE_P (type)
1b457aa4 167 && ! HONOR_NANS (type)
09240451
MG
168 && ! HONOR_INFINITIES (element_mode (type)))
169 { build_one_cst (type); }))
170
171/* Optimize -A / A to -1.0 if we don't care about
172 NaNs or Infinities. */
173(simplify
174 (rdiv:c @0 (negate @0))
175 (if (FLOAT_TYPE_P (type)
1b457aa4 176 && ! HONOR_NANS (type)
09240451
MG
177 && ! HONOR_INFINITIES (element_mode (type)))
178 { build_minus_one_cst (type); }))
a7f24614
RB
179
180/* In IEEE floating point, x/1 is not equivalent to x for snans. */
181(simplify
182 (rdiv @0 real_onep)
09240451 183 (if (!HONOR_SNANS (element_mode (type)))
a7f24614
RB
184 (non_lvalue @0)))
185
186/* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
187(simplify
188 (rdiv @0 real_minus_onep)
09240451 189 (if (!HONOR_SNANS (element_mode (type)))
a7f24614
RB
190 (negate @0)))
191
192/* If ARG1 is a constant, we can convert this to a multiply by the
193 reciprocal. This does not have the same rounding properties,
194 so only do this if -freciprocal-math. We can actually
195 always safely do it if ARG1 is a power of two, but it's hard to
196 tell if it is or not in a portable manner. */
197(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
198 (simplify
199 (rdiv @0 cst@1)
200 (if (optimize)
53bc4b3a
RB
201 (if (flag_reciprocal_math
202 && !real_zerop (@1))
a7f24614 203 (with
249700b5 204 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
a7f24614
RB
205 (if (tem)
206 (mult @0 { tem; } ))))
207 (if (cst != COMPLEX_CST)
208 (with { tree inverse = exact_inverse (type, @1); }
209 (if (inverse)
210 (mult @0 { inverse; } )))))))
211
e0ee10ed
RB
212/* Same applies to modulo operations, but fold is inconsistent here
213 and simplifies 0 % x to 0, only preserving literal 0 % 0. */
a7f24614 214(for mod (ceil_mod floor_mod round_mod trunc_mod)
e0ee10ed
RB
215 /* 0 % X is always zero. */
216 (simplify
a7f24614 217 (mod integer_zerop@0 @1)
e0ee10ed
RB
218 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
219 (if (!integer_zerop (@1))
220 @0))
221 /* X % 1 is always zero. */
222 (simplify
a7f24614
RB
223 (mod @0 integer_onep)
224 { build_zero_cst (type); })
225 /* X % -1 is zero. */
226 (simplify
09240451
MG
227 (mod @0 integer_minus_onep@1)
228 (if (!TYPE_UNSIGNED (type))
bc4315fb
MG
229 { build_zero_cst (type); }))
230 /* (X % Y) % Y is just X % Y. */
231 (simplify
232 (mod (mod@2 @0 @1) @1)
233 @2))
a7f24614
RB
234
235/* X % -C is the same as X % C. */
236(simplify
237 (trunc_mod @0 INTEGER_CST@1)
238 (if (TYPE_SIGN (type) == SIGNED
239 && !TREE_OVERFLOW (@1)
240 && wi::neg_p (@1)
241 && !TYPE_OVERFLOW_TRAPS (type)
242 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
243 && !sign_bit_p (@1, @1))
244 (trunc_mod @0 (negate @1))))
e0ee10ed 245
8f0c696a
RB
246/* X % -Y is the same as X % Y. */
247(simplify
248 (trunc_mod @0 (convert? (negate @1)))
249 (if (!TYPE_UNSIGNED (type)
250 && !TYPE_OVERFLOW_TRAPS (type)
251 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
252 (trunc_mod @0 (convert @1))))
253
f461569a
MP
254/* X - (X / Y) * Y is the same as X % Y. */
255(simplify
d3bc1d1b 256 (minus (convert1? @0) (convert2? (mult (trunc_div @0 @1) @1)))
f461569a 257 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
d3bc1d1b 258 (trunc_mod (convert @0) (convert @1))))
f461569a 259
8f0c696a
RB
260/* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
261 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
262 Also optimize A % (C << N) where C is a power of 2,
263 to A & ((C << N) - 1). */
264(match (power_of_two_cand @1)
265 INTEGER_CST@1)
266(match (power_of_two_cand @1)
267 (lshift INTEGER_CST@1 @2))
268(for mod (trunc_mod floor_mod)
269 (simplify
4ab1e111 270 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
8f0c696a
RB
271 (if ((TYPE_UNSIGNED (type)
272 || tree_expr_nonnegative_p (@0))
4ab1e111 273 && tree_nop_conversion_p (type, TREE_TYPE (@3))
8f0c696a 274 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
4ab1e111 275 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
8f0c696a 276
bc4315fb
MG
277/* X % Y is smaller than Y. */
278(for cmp (lt ge)
279 (simplify
280 (cmp (trunc_mod @0 @1) @1)
281 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
282 { constant_boolean_node (cmp == LT_EXPR, type); })))
283(for cmp (gt le)
284 (simplify
285 (cmp @1 (trunc_mod @0 @1))
286 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
287 { constant_boolean_node (cmp == GT_EXPR, type); })))
288
e0ee10ed
RB
289/* x | ~0 -> ~0 */
290(simplify
291 (bit_ior @0 integer_all_onesp@1)
292 @1)
293
294/* x & 0 -> 0 */
295(simplify
296 (bit_and @0 integer_zerop@1)
297 @1)
298
a4398a30
MP
299/* ~x | x -> -1 */
300(simplify
301 (bit_ior:c (convert? @0) (convert? (bit_not @0)))
3db55b2b 302 (convert { build_all_ones_cst (TREE_TYPE (@0)); }))
a4398a30 303
e0ee10ed
RB
304/* x ^ x -> 0 */
305(simplify
306 (bit_xor @0 @0)
307 { build_zero_cst (type); })
308
36a60e48
RB
309/* Canonicalize X ^ ~0 to ~X. */
310(simplify
311 (bit_xor @0 integer_all_onesp@1)
312 (bit_not @0))
313
97e77391
RB
314/* ~X ^ X is -1. */
315(simplify
316 (bit_xor:c (bit_not @0) @0)
317 { build_all_ones_cst (type); })
318
36a60e48
RB
319/* x & ~0 -> x */
320(simplify
321 (bit_and @0 integer_all_onesp)
322 (non_lvalue @0))
323
324/* x & x -> x, x | x -> x */
325(for bitop (bit_and bit_ior)
326 (simplify
327 (bitop @0 @0)
328 (non_lvalue @0)))
329
0f770b01
RV
330/* x + (x & 1) -> (x + 1) & ~1 */
331(simplify
332 (plus:c @0 (bit_and@2 @0 integer_onep@1))
6e28e516 333 (if (single_use (@2))
0f770b01
RV
334 (bit_and (plus @0 @1) (bit_not @1))))
335
336/* x & ~(x & y) -> x & ~y */
337/* x | ~(x | y) -> x | ~y */
338(for bitop (bit_and bit_ior)
af563d4b
MG
339 (simplify
340 (bitop:c @0 (bit_not (bitop:c@2 @0 @1)))
6e28e516 341 (if (single_use (@2))
af563d4b
MG
342 (bitop @0 (bit_not @1)))))
343
344/* (x | y) & ~x -> y & ~x */
345/* (x & y) | ~x -> y | ~x */
346(for bitop (bit_and bit_ior)
347 rbitop (bit_ior bit_and)
348 (simplify
349 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
350 (bitop @1 @2)))
0f770b01 351
f13c4673
MP
352/* (x & y) ^ (x | y) -> x ^ y */
353(simplify
2d6f2dce
MP
354 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
355 (bit_xor @0 @1))
f13c4673 356
9ea65ca6
MP
357/* (x ^ y) ^ (x | y) -> x & y */
358(simplify
359 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
360 (bit_and @0 @1))
361
362/* (x & y) + (x ^ y) -> x | y */
363/* (x & y) | (x ^ y) -> x | y */
364/* (x & y) ^ (x ^ y) -> x | y */
365(for op (plus bit_ior bit_xor)
366 (simplify
367 (op:c (bit_and @0 @1) (bit_xor @0 @1))
368 (bit_ior @0 @1)))
369
370/* (x & y) + (x | y) -> x + y */
371(simplify
372 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
373 (plus @0 @1))
374
9737efaf
MP
375/* (x + y) - (x | y) -> x & y */
376(simplify
377 (minus (plus @0 @1) (bit_ior @0 @1))
378 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
379 && !TYPE_SATURATING (type))
380 (bit_and @0 @1)))
381
382/* (x + y) - (x & y) -> x | y */
383(simplify
384 (minus (plus @0 @1) (bit_and @0 @1))
385 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
386 && !TYPE_SATURATING (type))
387 (bit_ior @0 @1)))
388
9ea65ca6
MP
389/* (x | y) - (x ^ y) -> x & y */
390(simplify
391 (minus (bit_ior @0 @1) (bit_xor @0 @1))
392 (bit_and @0 @1))
393
394/* (x | y) - (x & y) -> x ^ y */
395(simplify
396 (minus (bit_ior @0 @1) (bit_and @0 @1))
397 (bit_xor @0 @1))
398
66cc6273
MP
399/* (x | y) & ~(x & y) -> x ^ y */
400(simplify
401 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
402 (bit_xor @0 @1))
403
404/* (x | y) & (~x ^ y) -> x & y */
405(simplify
406 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
407 (bit_and @0 @1))
408
5b00d921
RB
409/* ~x & ~y -> ~(x | y)
410 ~x | ~y -> ~(x & y) */
411(for op (bit_and bit_ior)
412 rop (bit_ior bit_and)
413 (simplify
414 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
415 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
416 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
417 (bit_not (rop (convert @0) (convert @1))))))
418
419/* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
420 with a constant, and the two constants have no bits in common,
421 we should treat this as a BIT_IOR_EXPR since this may produce more
422 simplifications. */
423(simplify
424 (bit_xor (convert1? (bit_and@4 @0 INTEGER_CST@1))
425 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
426 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
427 && tree_nop_conversion_p (type, TREE_TYPE (@2))
428 && wi::bit_and (@1, @3) == 0)
429 (bit_ior (convert @4) (convert @5))))
430
431/* (X | Y) ^ X -> Y & ~ X*/
432(simplify
433 (bit_xor:c (convert? (bit_ior:c @0 @1)) (convert? @0))
434 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
435 (convert (bit_and @1 (bit_not @0)))))
436
437/* Convert ~X ^ ~Y to X ^ Y. */
438(simplify
439 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
440 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
441 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
442 (bit_xor (convert @0) (convert @1))))
443
444/* Convert ~X ^ C to X ^ ~C. */
445(simplify
446 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
c8ba6498
EB
447 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
448 (bit_xor (convert @0) (bit_not @1))))
5b00d921 449
97e77391
RB
450/* Fold (X & Y) ^ Y as ~X & Y. */
451(simplify
452 (bit_xor:c (bit_and:c @0 @1) @1)
453 (bit_and (bit_not @0) @1))
454
5b00d921 455
b14a9c57
RB
456(simplify
457 (abs (abs@1 @0))
458 @1)
f3582e54
RB
459(simplify
460 (abs (negate @0))
461 (abs @0))
462(simplify
463 (abs tree_expr_nonnegative_p@0)
464 @0)
465
b14a9c57
RB
466/* A - B -> A + (-B) if B is easily negatable. This just covers
467 very few cases of "easily negatable", effectively inlining negate_expr_p. */
468(simplify
469 (minus @0 INTEGER_CST@1)
470 (if ((INTEGRAL_TYPE_P (type)
471 && TYPE_OVERFLOW_WRAPS (type))
472 || (!TYPE_OVERFLOW_SANITIZED (type)
473 && may_negate_without_overflow_p (@1)))
474 (plus @0 (negate @1))))
475(simplify
476 (minus @0 REAL_CST@1)
477 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
478 (plus @0 (negate @1))))
479(simplify
480 (minus @0 VECTOR_CST@1)
481 (if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
482 (plus @0 (negate @1))))
483
d4573ffe 484
5609420f
RB
485/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
486 when profitable.
487 For bitwise binary operations apply operand conversions to the
488 binary operation result instead of to the operands. This allows
489 to combine successive conversions and bitwise binary operations.
490 We combine the above two cases by using a conditional convert. */
491(for bitop (bit_and bit_ior bit_xor)
492 (simplify
493 (bitop (convert @0) (convert? @1))
494 (if (((TREE_CODE (@1) == INTEGER_CST
495 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
ad6f996c 496 && int_fits_type_p (@1, TREE_TYPE (@0)))
aea417d7 497 || types_match (@0, @1))
ad6f996c
RB
498 /* ??? This transform conflicts with fold-const.c doing
499 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
500 constants (if x has signed type, the sign bit cannot be set
501 in c). This folds extension into the BIT_AND_EXPR.
502 Restrict it to GIMPLE to avoid endless recursions. */
503 && (bitop != BIT_AND_EXPR || GIMPLE)
5609420f
RB
504 && (/* That's a good idea if the conversion widens the operand, thus
505 after hoisting the conversion the operation will be narrower. */
506 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
507 /* It's also a good idea if the conversion is to a non-integer
508 mode. */
509 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
510 /* Or if the precision of TO is not the same as the precision
511 of its mode. */
512 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
513 (convert (bitop @0 (convert @1))))))
514
b14a9c57
RB
515(for bitop (bit_and bit_ior)
516 rbitop (bit_ior bit_and)
517 /* (x | y) & x -> x */
518 /* (x & y) | x -> x */
519 (simplify
520 (bitop:c (rbitop:c @0 @1) @0)
521 @0)
522 /* (~x | y) & x -> x & y */
523 /* (~x & y) | x -> x | y */
524 (simplify
525 (bitop:c (rbitop:c (bit_not @0) @1) @0)
526 (bitop @0 @1)))
527
5609420f
RB
528/* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
529(for bitop (bit_and bit_ior bit_xor)
530 (simplify
531 (bitop (bit_and:c @0 @1) (bit_and @2 @1))
532 (bit_and (bitop @0 @2) @1)))
533
534/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
535(simplify
536 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
537 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
538
539/* Combine successive equal operations with constants. */
540(for bitop (bit_and bit_ior bit_xor)
541 (simplify
542 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
543 (bitop @0 (bitop @1 @2))))
544
545/* Try simple folding for X op !X, and X op X with the help
546 of the truth_valued_p and logical_inverted_value predicates. */
547(match truth_valued_p
548 @0
549 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
f84e7fd6 550(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
5609420f
RB
551 (match truth_valued_p
552 (op @0 @1)))
553(match truth_valued_p
554 (truth_not @0))
555
556(match (logical_inverted_value @0)
557 (bit_not truth_valued_p@0))
558(match (logical_inverted_value @0)
09240451 559 (eq @0 integer_zerop))
5609420f 560(match (logical_inverted_value @0)
09240451 561 (ne truth_valued_p@0 integer_truep))
5609420f 562(match (logical_inverted_value @0)
09240451 563 (bit_xor truth_valued_p@0 integer_truep))
5609420f
RB
564
565/* X & !X -> 0. */
566(simplify
567 (bit_and:c @0 (logical_inverted_value @0))
568 { build_zero_cst (type); })
569/* X | !X and X ^ !X -> 1, , if X is truth-valued. */
570(for op (bit_ior bit_xor)
571 (simplify
572 (op:c truth_valued_p@0 (logical_inverted_value @0))
f84e7fd6 573 { constant_boolean_node (true, type); }))
5609420f 574
5609420f
RB
575/* If arg1 and arg2 are booleans (or any single bit type)
576 then try to simplify:
577
578 (~X & Y) -> X < Y
579 (X & ~Y) -> Y < X
580 (~X | Y) -> X <= Y
581 (X | ~Y) -> Y <= X
582
583 But only do this if our result feeds into a comparison as
584 this transformation is not always a win, particularly on
585 targets with and-not instructions.
586 -> simplify_bitwise_binary_boolean */
587(simplify
588 (ne (bit_and:c (bit_not @0) @1) integer_zerop)
589 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
590 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
591 (lt @0 @1)))
592(simplify
593 (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
594 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
595 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
596 (le @0 @1)))
597
5609420f
RB
598/* ~~x -> x */
599(simplify
600 (bit_not (bit_not @0))
601 @0)
602
b14a9c57
RB
603/* Convert ~ (-A) to A - 1. */
604(simplify
605 (bit_not (convert? (negate @0)))
606 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
607 (convert (minus @0 { build_one_cst (TREE_TYPE (@0)); }))))
608
609/* Convert ~ (A - 1) or ~ (A + -1) to -A. */
610(simplify
611 (bit_not (convert? (minus @0 integer_onep)))
612 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
613 (convert (negate @0))))
614(simplify
615 (bit_not (convert? (plus @0 integer_all_onesp)))
616 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
617 (convert (negate @0))))
618
619/* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
620(simplify
621 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
622 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
623 (convert (bit_xor @0 (bit_not @1)))))
624(simplify
625 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
626 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
627 (convert (bit_xor @0 @1))))
628
f52baa7b
MP
629/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
630(simplify
631 (bit_ior:c (bit_and:c@3 @0 (bit_not @2)) (bit_and:c@4 @1 @2))
6e28e516 632 (if (single_use (@3) && single_use (@4))
f52baa7b
MP
633 (bit_xor (bit_and (bit_xor @0 @1) @2) @0)))
634
5609420f 635
a499aac5
RB
636/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
637(simplify
e6121733 638 (pointer_plus (pointer_plus@2 @0 @1) @3)
7318e44f
RB
639 (if (single_use (@2)
640 || (TREE_CODE (@1) == INTEGER_CST && TREE_CODE (@3) == INTEGER_CST))
e6121733 641 (pointer_plus @0 (plus @1 @3))))
a499aac5
RB
642
643/* Pattern match
644 tem1 = (long) ptr1;
645 tem2 = (long) ptr2;
646 tem3 = tem2 - tem1;
647 tem4 = (unsigned long) tem3;
648 tem5 = ptr1 + tem4;
649 and produce
650 tem5 = ptr2; */
651(simplify
652 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
653 /* Conditionally look through a sign-changing conversion. */
654 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
655 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
656 || (GENERIC && type == TREE_TYPE (@1))))
657 @1))
658
659/* Pattern match
660 tem = (sizetype) ptr;
661 tem = tem & algn;
662 tem = -tem;
663 ... = ptr p+ tem;
664 and produce the simpler and easier to analyze with respect to alignment
665 ... = ptr & ~algn; */
666(simplify
667 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
668 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
669 (bit_and @0 { algn; })))
670
99e943a2
RB
671/* Try folding difference of addresses. */
672(simplify
673 (minus (convert ADDR_EXPR@0) (convert @1))
674 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
675 (with { HOST_WIDE_INT diff; }
676 (if (ptr_difference_const (@0, @1, &diff))
677 { build_int_cst_type (type, diff); }))))
678(simplify
679 (minus (convert @0) (convert ADDR_EXPR@1))
680 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
681 (with { HOST_WIDE_INT diff; }
682 (if (ptr_difference_const (@0, @1, &diff))
683 { build_int_cst_type (type, diff); }))))
684
bab73f11
RB
685/* If arg0 is derived from the address of an object or function, we may
686 be able to fold this expression using the object or function's
687 alignment. */
688(simplify
689 (bit_and (convert? @0) INTEGER_CST@1)
690 (if (POINTER_TYPE_P (TREE_TYPE (@0))
691 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
692 (with
693 {
694 unsigned int align;
695 unsigned HOST_WIDE_INT bitpos;
696 get_pointer_alignment_1 (@0, &align, &bitpos);
697 }
698 (if (wi::ltu_p (@1, align / BITS_PER_UNIT))
699 { wide_int_to_tree (type, wi::bit_and (@1, bitpos / BITS_PER_UNIT)); }))))
99e943a2 700
a499aac5 701
cc7b5acf
RB
702/* We can't reassociate at all for saturating types. */
703(if (!TYPE_SATURATING (type))
704
705 /* Contract negates. */
706 /* A + (-B) -> A - B */
707 (simplify
708 (plus:c (convert1? @0) (convert2? (negate @1)))
709 /* Apply STRIP_NOPS on @0 and the negate. */
710 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
711 && tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 712 && !TYPE_OVERFLOW_SANITIZED (type))
cc7b5acf
RB
713 (minus (convert @0) (convert @1))))
714 /* A - (-B) -> A + B */
715 (simplify
716 (minus (convert1? @0) (convert2? (negate @1)))
717 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
2f68e8bc 718 && tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 719 && !TYPE_OVERFLOW_SANITIZED (type))
cc7b5acf
RB
720 (plus (convert @0) (convert @1))))
721 /* -(-A) -> A */
722 (simplify
723 (negate (convert? (negate @1)))
724 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 725 && !TYPE_OVERFLOW_SANITIZED (type))
a0f12cf8 726 (convert @1)))
cc7b5acf 727
7318e44f
RB
728 /* We can't reassociate floating-point unless -fassociative-math
729 or fixed-point plus or minus because of saturation to +-Inf. */
730 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
731 && !FIXED_POINT_TYPE_P (type))
cc7b5acf
RB
732
733 /* Match patterns that allow contracting a plus-minus pair
734 irrespective of overflow issues. */
735 /* (A +- B) - A -> +- B */
736 /* (A +- B) -+ B -> A */
737 /* A - (A +- B) -> -+ B */
738 /* A +- (B -+ A) -> +- B */
739 (simplify
740 (minus (plus:c @0 @1) @0)
741 @1)
742 (simplify
743 (minus (minus @0 @1) @0)
744 (negate @1))
745 (simplify
746 (plus:c (minus @0 @1) @1)
747 @0)
748 (simplify
749 (minus @0 (plus:c @0 @1))
750 (negate @1))
751 (simplify
752 (minus @0 (minus @0 @1))
753 @1)
754
755 /* (A +- CST) +- CST -> A + CST */
756 (for outer_op (plus minus)
757 (for inner_op (plus minus)
758 (simplify
759 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
760 /* If the constant operation overflows we cannot do the transform
761 as we would introduce undefined overflow, for example
762 with (a - 1) + INT_MIN. */
763 (with { tree cst = fold_binary (outer_op == inner_op
764 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
765 (if (cst && !TREE_OVERFLOW (cst))
766 (inner_op @0 { cst; } ))))))
767
768 /* (CST - A) +- CST -> CST - A */
769 (for outer_op (plus minus)
770 (simplify
771 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
772 (with { tree cst = fold_binary (outer_op, type, @1, @2); }
773 (if (cst && !TREE_OVERFLOW (cst))
774 (minus { cst; } @0)))))
775
776 /* ~A + A -> -1 */
777 (simplify
778 (plus:c (bit_not @0) @0)
779 (if (!TYPE_OVERFLOW_TRAPS (type))
780 { build_all_ones_cst (type); }))
781
782 /* ~A + 1 -> -A */
783 (simplify
e19740ae
RB
784 (plus (convert? (bit_not @0)) integer_each_onep)
785 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
786 (negate (convert @0))))
787
788 /* -A - 1 -> ~A */
789 (simplify
790 (minus (convert? (negate @0)) integer_each_onep)
791 (if (!TYPE_OVERFLOW_TRAPS (type)
792 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
793 (bit_not (convert @0))))
794
795 /* -1 - A -> ~A */
796 (simplify
797 (minus integer_all_onesp @0)
bc4315fb 798 (bit_not @0))
cc7b5acf
RB
799
800 /* (T)(P + A) - (T)P -> (T) A */
801 (for add (plus pointer_plus)
802 (simplify
803 (minus (convert (add @0 @1))
804 (convert @0))
09240451 805 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
cc7b5acf
RB
806 /* For integer types, if A has a smaller type
807 than T the result depends on the possible
808 overflow in P + A.
809 E.g. T=size_t, A=(unsigned)429497295, P>0.
810 However, if an overflow in P + A would cause
811 undefined behavior, we can assume that there
812 is no overflow. */
813 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
814 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
815 /* For pointer types, if the conversion of A to the
816 final type requires a sign- or zero-extension,
817 then we have to punt - it is not defined which
818 one is correct. */
819 || (POINTER_TYPE_P (TREE_TYPE (@0))
820 && TREE_CODE (@1) == INTEGER_CST
821 && tree_int_cst_sign_bit (@1) == 0))
822 (convert @1))))))
823
824
a7f24614
RB
825/* Simplifications of MIN_EXPR and MAX_EXPR. */
826
827(for minmax (min max)
828 (simplify
829 (minmax @0 @0)
830 @0))
831(simplify
832 (min @0 @1)
833 (if (INTEGRAL_TYPE_P (type)
834 && TYPE_MIN_VALUE (type)
835 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
836 @1))
837(simplify
838 (max @0 @1)
839 (if (INTEGRAL_TYPE_P (type)
840 && TYPE_MAX_VALUE (type)
841 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
842 @1))
843
844
845/* Simplifications of shift and rotates. */
846
847(for rotate (lrotate rrotate)
848 (simplify
849 (rotate integer_all_onesp@0 @1)
850 @0))
851
852/* Optimize -1 >> x for arithmetic right shifts. */
853(simplify
854 (rshift integer_all_onesp@0 @1)
855 (if (!TYPE_UNSIGNED (type)
856 && tree_expr_nonnegative_p (@1))
857 @0))
858
859(for shiftrotate (lrotate rrotate lshift rshift)
860 (simplify
861 (shiftrotate @0 integer_zerop)
862 (non_lvalue @0))
863 (simplify
864 (shiftrotate integer_zerop@0 @1)
865 @0)
866 /* Prefer vector1 << scalar to vector1 << vector2
867 if vector2 is uniform. */
868 (for vec (VECTOR_CST CONSTRUCTOR)
869 (simplify
870 (shiftrotate @0 vec@1)
871 (with { tree tem = uniform_vector_p (@1); }
872 (if (tem)
873 (shiftrotate @0 { tem; }))))))
874
875/* Rewrite an LROTATE_EXPR by a constant into an
876 RROTATE_EXPR by a new constant. */
877(simplify
878 (lrotate @0 INTEGER_CST@1)
879 (rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
880 build_int_cst (TREE_TYPE (@1),
881 element_precision (type)), @1); }))
882
01ada710
MP
883/* ((1 << A) & 1) != 0 -> A == 0
884 ((1 << A) & 1) == 0 -> A != 0 */
885(for cmp (ne eq)
886 icmp (eq ne)
887 (simplify
888 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
889 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
cc7b5acf 890
f2e609c3
MP
891/* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
892 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
893 if CST2 != 0. */
894(for cmp (ne eq)
895 (simplify
896 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
897 (with { int cand = wi::ctz (@2) - wi::ctz (@0); }
898 (if (cand < 0
899 || (!integer_zerop (@2)
900 && wi::ne_p (wi::lshift (@0, cand), @2)))
901 { constant_boolean_node (cmp == NE_EXPR, type); })
902 (if (!integer_zerop (@2)
903 && wi::eq_p (wi::lshift (@0, cand), @2))
904 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); })))))
905
1ffbaa3f
RB
906/* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
907 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
908 if the new mask might be further optimized. */
909(for shift (lshift rshift)
910 (simplify
911 (bit_and (convert?@4 (shift@5 (convert1?@3 @0) INTEGER_CST@1)) INTEGER_CST@2)
912 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
913 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
914 && tree_fits_uhwi_p (@1)
915 && tree_to_uhwi (@1) > 0
916 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
917 (with
918 {
919 unsigned int shiftc = tree_to_uhwi (@1);
920 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
921 unsigned HOST_WIDE_INT newmask, zerobits = 0;
922 tree shift_type = TREE_TYPE (@3);
923 unsigned int prec;
924
925 if (shift == LSHIFT_EXPR)
926 zerobits = ((((unsigned HOST_WIDE_INT) 1) << shiftc) - 1);
927 else if (shift == RSHIFT_EXPR
928 && (TYPE_PRECISION (shift_type)
929 == GET_MODE_PRECISION (TYPE_MODE (shift_type))))
930 {
931 prec = TYPE_PRECISION (TREE_TYPE (@3));
932 tree arg00 = @0;
933 /* See if more bits can be proven as zero because of
934 zero extension. */
935 if (@3 != @0
936 && TYPE_UNSIGNED (TREE_TYPE (@0)))
937 {
938 tree inner_type = TREE_TYPE (@0);
939 if ((TYPE_PRECISION (inner_type)
940 == GET_MODE_PRECISION (TYPE_MODE (inner_type)))
941 && TYPE_PRECISION (inner_type) < prec)
942 {
943 prec = TYPE_PRECISION (inner_type);
944 /* See if we can shorten the right shift. */
945 if (shiftc < prec)
946 shift_type = inner_type;
947 /* Otherwise X >> C1 is all zeros, so we'll optimize
948 it into (X, 0) later on by making sure zerobits
949 is all ones. */
950 }
951 }
952 zerobits = ~(unsigned HOST_WIDE_INT) 0;
953 if (shiftc < prec)
954 {
955 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
956 zerobits <<= prec - shiftc;
957 }
958 /* For arithmetic shift if sign bit could be set, zerobits
959 can contain actually sign bits, so no transformation is
960 possible, unless MASK masks them all away. In that
961 case the shift needs to be converted into logical shift. */
962 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
963 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
964 {
965 if ((mask & zerobits) == 0)
966 shift_type = unsigned_type_for (TREE_TYPE (@3));
967 else
968 zerobits = 0;
969 }
970 }
971 }
972 /* ((X << 16) & 0xff00) is (X, 0). */
973 (if ((mask & zerobits) == mask)
974 { build_int_cst (type, 0); })
975 (with { newmask = mask | zerobits; }
976 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
977 (with
978 {
979 /* Only do the transformation if NEWMASK is some integer
980 mode's mask. */
981 for (prec = BITS_PER_UNIT;
982 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
983 if (newmask == (((unsigned HOST_WIDE_INT) 1) << prec) - 1)
984 break;
985 }
986 (if (prec < HOST_BITS_PER_WIDE_INT
987 || newmask == ~(unsigned HOST_WIDE_INT) 0)
988 (with
989 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
990 (if (!tree_int_cst_equal (newmaskt, @2))
991 (if (shift_type != TREE_TYPE (@3)
992 && single_use (@4) && single_use (@5))
993 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; }))
994 (if (shift_type == TREE_TYPE (@3))
995 (bit_and @4 { newmaskt; }))))))))))))
996
d4573ffe
RB
997/* Simplifications of conversions. */
998
999/* Basic strip-useless-type-conversions / strip_nops. */
f3582e54 1000(for cvt (convert view_convert float fix_trunc)
d4573ffe
RB
1001 (simplify
1002 (cvt @0)
1003 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
1004 || (GENERIC && type == TREE_TYPE (@0)))
1005 @0)))
1006
1007/* Contract view-conversions. */
1008(simplify
1009 (view_convert (view_convert @0))
1010 (view_convert @0))
1011
1012/* For integral conversions with the same precision or pointer
1013 conversions use a NOP_EXPR instead. */
1014(simplify
1015 (view_convert @0)
1016 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
1017 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1018 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
1019 (convert @0)))
1020
1021/* Strip inner integral conversions that do not change precision or size. */
1022(simplify
1023 (view_convert (convert@0 @1))
1024 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1025 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
1026 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1027 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
1028 (view_convert @1)))
1029
1030/* Re-association barriers around constants and other re-association
1031 barriers can be removed. */
1032(simplify
1033 (paren CONSTANT_CLASS_P@0)
1034 @0)
1035(simplify
1036 (paren (paren@1 @0))
1037 @1)
1e51d0a2
RB
1038
1039/* Handle cases of two conversions in a row. */
1040(for ocvt (convert float fix_trunc)
1041 (for icvt (convert float)
1042 (simplify
1043 (ocvt (icvt@1 @0))
1044 (with
1045 {
1046 tree inside_type = TREE_TYPE (@0);
1047 tree inter_type = TREE_TYPE (@1);
1048 int inside_int = INTEGRAL_TYPE_P (inside_type);
1049 int inside_ptr = POINTER_TYPE_P (inside_type);
1050 int inside_float = FLOAT_TYPE_P (inside_type);
09240451 1051 int inside_vec = VECTOR_TYPE_P (inside_type);
1e51d0a2
RB
1052 unsigned int inside_prec = TYPE_PRECISION (inside_type);
1053 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
1054 int inter_int = INTEGRAL_TYPE_P (inter_type);
1055 int inter_ptr = POINTER_TYPE_P (inter_type);
1056 int inter_float = FLOAT_TYPE_P (inter_type);
09240451 1057 int inter_vec = VECTOR_TYPE_P (inter_type);
1e51d0a2
RB
1058 unsigned int inter_prec = TYPE_PRECISION (inter_type);
1059 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
1060 int final_int = INTEGRAL_TYPE_P (type);
1061 int final_ptr = POINTER_TYPE_P (type);
1062 int final_float = FLOAT_TYPE_P (type);
09240451 1063 int final_vec = VECTOR_TYPE_P (type);
1e51d0a2
RB
1064 unsigned int final_prec = TYPE_PRECISION (type);
1065 int final_unsignedp = TYPE_UNSIGNED (type);
1066 }
1067 /* In addition to the cases of two conversions in a row
1068 handled below, if we are converting something to its own
1069 type via an object of identical or wider precision, neither
1070 conversion is needed. */
1071 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
1072 || (GENERIC
1073 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
1074 && (((inter_int || inter_ptr) && final_int)
1075 || (inter_float && final_float))
1076 && inter_prec >= final_prec)
1077 (ocvt @0))
1078
1079 /* Likewise, if the intermediate and initial types are either both
1080 float or both integer, we don't need the middle conversion if the
1081 former is wider than the latter and doesn't change the signedness
1082 (for integers). Avoid this if the final type is a pointer since
1083 then we sometimes need the middle conversion. Likewise if the
1084 final type has a precision not equal to the size of its mode. */
d51a6714
JJ
1085 (if (((inter_int && inside_int) || (inter_float && inside_float))
1086 && (final_int || final_float)
1e51d0a2 1087 && inter_prec >= inside_prec
d51a6714
JJ
1088 && (inter_float || inter_unsignedp == inside_unsignedp)
1089 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
1090 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1e51d0a2
RB
1091 (ocvt @0))
1092
1093 /* If we have a sign-extension of a zero-extended value, we can
1094 replace that by a single zero-extension. Likewise if the
1095 final conversion does not change precision we can drop the
1096 intermediate conversion. */
1097 (if (inside_int && inter_int && final_int
1098 && ((inside_prec < inter_prec && inter_prec < final_prec
1099 && inside_unsignedp && !inter_unsignedp)
1100 || final_prec == inter_prec))
1101 (ocvt @0))
1102
1103 /* Two conversions in a row are not needed unless:
1104 - some conversion is floating-point (overstrict for now), or
1105 - some conversion is a vector (overstrict for now), or
1106 - the intermediate type is narrower than both initial and
1107 final, or
1108 - the intermediate type and innermost type differ in signedness,
1109 and the outermost type is wider than the intermediate, or
1110 - the initial type is a pointer type and the precisions of the
1111 intermediate and final types differ, or
1112 - the final type is a pointer type and the precisions of the
1113 initial and intermediate types differ. */
1114 (if (! inside_float && ! inter_float && ! final_float
1115 && ! inside_vec && ! inter_vec && ! final_vec
1116 && (inter_prec >= inside_prec || inter_prec >= final_prec)
1117 && ! (inside_int && inter_int
1118 && inter_unsignedp != inside_unsignedp
1119 && inter_prec < final_prec)
1120 && ((inter_unsignedp && inter_prec > inside_prec)
1121 == (final_unsignedp && final_prec > inter_prec))
1122 && ! (inside_ptr && inter_prec != final_prec)
1123 && ! (final_ptr && inside_prec != inter_prec)
1124 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
1125 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1f00c1b9
RB
1126 (ocvt @0))
1127
1128 /* A truncation to an unsigned type (a zero-extension) should be
1129 canonicalized as bitwise and of a mask. */
1130 (if (final_int && inter_int && inside_int
1131 && final_prec == inside_prec
1132 && final_prec > inter_prec
1133 && inter_unsignedp)
1134 (convert (bit_and @0 { wide_int_to_tree
1135 (inside_type,
1136 wi::mask (inter_prec, false,
1137 TYPE_PRECISION (inside_type))); })))
1138
1139 /* If we are converting an integer to a floating-point that can
1140 represent it exactly and back to an integer, we can skip the
1141 floating-point conversion. */
5ba3ae6d
RB
1142 (if (GIMPLE /* PR66211 */
1143 && inside_int && inter_float && final_int &&
1f00c1b9
RB
1144 (unsigned) significand_size (TYPE_MODE (inter_type))
1145 >= inside_prec - !inside_unsignedp)
1146 (convert @0))))))
ea2042ba
RB
1147
1148/* If we have a narrowing conversion to an integral type that is fed by a
1149 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
1150 masks off bits outside the final type (and nothing else). */
1151(simplify
1152 (convert (bit_and @0 INTEGER_CST@1))
1153 (if (INTEGRAL_TYPE_P (type)
1154 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1155 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
1156 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
1157 TYPE_PRECISION (type)), 0))
1158 (convert @0)))
a25454ea
RB
1159
1160
1161/* (X /[ex] A) * A -> X. */
1162(simplify
1163 (mult (convert? (exact_div @0 @1)) @1)
1164 /* Look through a sign-changing conversion. */
257b01ba 1165 (convert @0))
eaeba53a 1166
a7f24614
RB
1167/* Canonicalization of binary operations. */
1168
1169/* Convert X + -C into X - C. */
1170(simplify
1171 (plus @0 REAL_CST@1)
1172 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1173 (with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
1174 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
1175 (minus @0 { tem; })))))
1176
1177/* Convert x+x into x*2.0. */
1178(simplify
1179 (plus @0 @0)
1180 (if (SCALAR_FLOAT_TYPE_P (type))
1181 (mult @0 { build_real (type, dconst2); })))
1182
1183(simplify
1184 (minus integer_zerop @1)
1185 (negate @1))
1186
1187/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
1188 ARG0 is zero and X + ARG0 reduces to X, since that would mean
1189 (-ARG1 + ARG0) reduces to -ARG1. */
1190(simplify
1191 (minus real_zerop@0 @1)
1192 (if (fold_real_zero_addition_p (type, @0, 0))
1193 (negate @1)))
1194
1195/* Transform x * -1 into -x. */
1196(simplify
1197 (mult @0 integer_minus_onep)
1198 (negate @0))
eaeba53a
RB
1199
1200/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
1201(simplify
1202 (complex (realpart @0) (imagpart @0))
1203 @0)
1204(simplify
1205 (realpart (complex @0 @1))
1206 @0)
1207(simplify
1208 (imagpart (complex @0 @1))
1209 @1)
83633539
RB
1210
1211
1212/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
1213(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
1214 (simplify
1215 (bswap (bswap @0))
1216 @0)
1217 (simplify
1218 (bswap (bit_not (bswap @0)))
1219 (bit_not @0))
1220 (for bitop (bit_xor bit_ior bit_and)
1221 (simplify
1222 (bswap (bitop:c (bswap @0) @1))
1223 (bitop @0 (bswap @1)))))
96994de0
RB
1224
1225
1226/* Combine COND_EXPRs and VEC_COND_EXPRs. */
1227
1228/* Simplify constant conditions.
1229 Only optimize constant conditions when the selected branch
1230 has the same type as the COND_EXPR. This avoids optimizing
1231 away "c ? x : throw", where the throw has a void type.
1232 Note that we cannot throw away the fold-const.c variant nor
1233 this one as we depend on doing this transform before possibly
1234 A ? B : B -> B triggers and the fold-const.c one can optimize
1235 0 ? A : B to B even if A has side-effects. Something
1236 genmatch cannot handle. */
1237(simplify
1238 (cond INTEGER_CST@0 @1 @2)
1239 (if (integer_zerop (@0)
1240 && (!VOID_TYPE_P (TREE_TYPE (@2))
1241 || VOID_TYPE_P (type)))
1242 @2)
1243 (if (!integer_zerop (@0)
1244 && (!VOID_TYPE_P (TREE_TYPE (@1))
1245 || VOID_TYPE_P (type)))
1246 @1))
1247(simplify
1248 (vec_cond VECTOR_CST@0 @1 @2)
1249 (if (integer_all_onesp (@0))
1250 @1)
1251 (if (integer_zerop (@0))
1252 @2))
1253
1254(for cnd (cond vec_cond)
1255 /* A ? B : (A ? X : C) -> A ? B : C. */
1256 (simplify
1257 (cnd @0 (cnd @0 @1 @2) @3)
1258 (cnd @0 @1 @3))
1259 (simplify
1260 (cnd @0 @1 (cnd @0 @2 @3))
1261 (cnd @0 @1 @3))
1262
1263 /* A ? B : B -> B. */
1264 (simplify
1265 (cnd @0 @1 @1)
09240451 1266 @1)
96994de0 1267
09240451
MG
1268 /* !A ? B : C -> A ? C : B. */
1269 (simplify
1270 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
1271 (cnd @0 @2 @1)))
f84e7fd6 1272
f43d102e
RS
1273/* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C), since vector comparisons
1274 return all-1 or all-0 results. */
1275/* ??? We could instead convert all instances of the vec_cond to negate,
1276 but that isn't necessarily a win on its own. */
1277(simplify
1278 (plus:c @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1279 (if (VECTOR_TYPE_P (type)
1280 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1281 && (TYPE_MODE (TREE_TYPE (type))
1282 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1283 (minus @3 (view_convert @0))))
1284
1285/* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C). */
1286(simplify
1287 (minus @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1288 (if (VECTOR_TYPE_P (type)
1289 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1290 && (TYPE_MODE (TREE_TYPE (type))
1291 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1292 (plus @3 (view_convert @0))))
f84e7fd6 1293
2ee05f1e 1294
f84e7fd6
RB
1295/* Simplifications of comparisons. */
1296
1297/* We can simplify a logical negation of a comparison to the
1298 inverted comparison. As we cannot compute an expression
1299 operator using invert_tree_comparison we have to simulate
1300 that with expression code iteration. */
1301(for cmp (tcc_comparison)
1302 icmp (inverted_tcc_comparison)
1303 ncmp (inverted_tcc_comparison_with_nans)
1304 /* Ideally we'd like to combine the following two patterns
1305 and handle some more cases by using
1306 (logical_inverted_value (cmp @0 @1))
1307 here but for that genmatch would need to "inline" that.
1308 For now implement what forward_propagate_comparison did. */
1309 (simplify
1310 (bit_not (cmp @0 @1))
1311 (if (VECTOR_TYPE_P (type)
1312 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
1313 /* Comparison inversion may be impossible for trapping math,
1314 invert_tree_comparison will tell us. But we can't use
1315 a computed operator in the replacement tree thus we have
1316 to play the trick below. */
1317 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 1318 (cmp, HONOR_NANS (@0)); }
f84e7fd6
RB
1319 (if (ic == icmp)
1320 (icmp @0 @1))
1321 (if (ic == ncmp)
1322 (ncmp @0 @1)))))
1323 (simplify
09240451
MG
1324 (bit_xor (cmp @0 @1) integer_truep)
1325 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 1326 (cmp, HONOR_NANS (@0)); }
09240451
MG
1327 (if (ic == icmp)
1328 (icmp @0 @1))
1329 (if (ic == ncmp)
1330 (ncmp @0 @1)))))
e18c1d66 1331
2ee05f1e
RB
1332/* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
1333 ??? The transformation is valid for the other operators if overflow
1334 is undefined for the type, but performing it here badly interacts
1335 with the transformation in fold_cond_expr_with_comparison which
1336 attempts to synthetize ABS_EXPR. */
1337(for cmp (eq ne)
1338 (simplify
1339 (cmp (minus @0 @1) integer_zerop)
1340 (cmp @0 @1)))
1341
1342/* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
1343 signed arithmetic case. That form is created by the compiler
1344 often enough for folding it to be of value. One example is in
1345 computing loop trip counts after Operator Strength Reduction. */
07cdc2b8
RB
1346(for cmp (simple_comparison)
1347 scmp (swapped_simple_comparison)
2ee05f1e
RB
1348 (simplify
1349 (cmp (mult @0 INTEGER_CST@1) integer_zerop@2)
1350 /* Handle unfolded multiplication by zero. */
1351 (if (integer_zerop (@1))
1352 (cmp @1 @2))
1353 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1354 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1355 /* If @1 is negative we swap the sense of the comparison. */
1356 (if (tree_int_cst_sgn (@1) < 0)
1357 (scmp @0 @2))
1358 (cmp @0 @2))))
1359
1360/* Simplify comparison of something with itself. For IEEE
1361 floating-point, we can only do some of these simplifications. */
1362(simplify
1363 (eq @0 @0)
1364 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
1365 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (@0))))
1366 { constant_boolean_node (true, type); }))
1367(for cmp (ge le)
1368 (simplify
1369 (cmp @0 @0)
1370 (eq @0 @0)))
1371(for cmp (ne gt lt)
1372 (simplify
1373 (cmp @0 @0)
1374 (if (cmp != NE_EXPR
1375 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
1376 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (@0))))
1377 { constant_boolean_node (false, type); })))
1378
1379/* Fold ~X op ~Y as Y op X. */
07cdc2b8 1380(for cmp (simple_comparison)
2ee05f1e
RB
1381 (simplify
1382 (cmp (bit_not @0) (bit_not @1))
1383 (cmp @1 @0)))
1384
1385/* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
07cdc2b8
RB
1386(for cmp (simple_comparison)
1387 scmp (swapped_simple_comparison)
2ee05f1e
RB
1388 (simplify
1389 (cmp (bit_not @0) CONSTANT_CLASS_P@1)
1390 (if (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST)
1391 (scmp @0 (bit_not @1)))))
1392
07cdc2b8
RB
1393(for cmp (simple_comparison)
1394 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
1395 (simplify
1396 (cmp (convert@2 @0) (convert? @1))
1397 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1398 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
1399 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
1400 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
1401 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
1402 (with
1403 {
1404 tree type1 = TREE_TYPE (@1);
1405 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
1406 {
1407 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
1408 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
1409 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
1410 type1 = float_type_node;
1411 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
1412 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
1413 type1 = double_type_node;
1414 }
1415 tree newtype
1416 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
1417 ? TREE_TYPE (@0) : type1);
1418 }
1419 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
1420 (cmp (convert:newtype @0) (convert:newtype @1))))))
1421
1422 (simplify
1423 (cmp @0 REAL_CST@1)
1424 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
1425 /* a CMP (-0) -> a CMP 0 */
1426 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
1427 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
1428 /* x != NaN is always true, other ops are always false. */
1429 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
1430 && ! HONOR_SNANS (@1))
1431 { constant_boolean_node (cmp == NE_EXPR, type); })
1432 /* Fold comparisons against infinity. */
1433 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
1434 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
1435 (with
1436 {
1437 REAL_VALUE_TYPE max;
1438 enum tree_code code = cmp;
1439 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
1440 if (neg)
1441 code = swap_tree_comparison (code);
1442 }
1443 /* x > +Inf is always false, if with ignore sNANs. */
1444 (if (code == GT_EXPR
1445 && ! HONOR_SNANS (@0))
1446 { constant_boolean_node (false, type); })
1447 (if (code == LE_EXPR)
1448 /* x <= +Inf is always true, if we don't case about NaNs. */
1449 (if (! HONOR_NANS (@0))
1450 { constant_boolean_node (true, type); })
1451 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
1452 (eq @0 @0))
1453 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
1454 (if (code == EQ_EXPR || code == GE_EXPR)
1455 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1456 (if (neg)
1457 (lt @0 { build_real (TREE_TYPE (@0), max); }))
1458 (gt @0 { build_real (TREE_TYPE (@0), max); })))
1459 /* x < +Inf is always equal to x <= DBL_MAX. */
1460 (if (code == LT_EXPR)
1461 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1462 (if (neg)
1463 (ge @0 { build_real (TREE_TYPE (@0), max); }))
1464 (le @0 { build_real (TREE_TYPE (@0), max); })))
1465 /* x != +Inf is always equal to !(x > DBL_MAX). */
1466 (if (code == NE_EXPR)
1467 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1468 (if (! HONOR_NANS (@0))
1469 (if (neg)
1470 (ge @0 { build_real (TREE_TYPE (@0), max); }))
1471 (le @0 { build_real (TREE_TYPE (@0), max); }))
1472 (if (neg)
1473 (bit_xor (lt @0 { build_real (TREE_TYPE (@0), max); })
1474 { build_one_cst (type); }))
1475 (bit_xor (gt @0 { build_real (TREE_TYPE (@0), max); })
1476 { build_one_cst (type); }))))))
1477
1478 /* If this is a comparison of a real constant with a PLUS_EXPR
1479 or a MINUS_EXPR of a real constant, we can convert it into a
1480 comparison with a revised real constant as long as no overflow
1481 occurs when unsafe_math_optimizations are enabled. */
1482 (if (flag_unsafe_math_optimizations)
1483 (for op (plus minus)
1484 (simplify
1485 (cmp (op @0 REAL_CST@1) REAL_CST@2)
1486 (with
1487 {
1488 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
1489 TREE_TYPE (@1), @2, @1);
1490 }
1491 (if (!TREE_OVERFLOW (tem))
1492 (cmp @0 { tem; }))))))
1493
1494 /* Likewise, we can simplify a comparison of a real constant with
1495 a MINUS_EXPR whose first operand is also a real constant, i.e.
1496 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
1497 floating-point types only if -fassociative-math is set. */
1498 (if (flag_associative_math)
1499 (simplify
1500 (cmp (minus REAL_CST@0 @1) @2)
1501 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
1502 (if (!TREE_OVERFLOW (tem))
1503 (cmp { tem; } @1)))))
1504
1505 /* Fold comparisons against built-in math functions. */
1506 (if (flag_unsafe_math_optimizations
1507 && ! flag_errno_math)
1508 (for sq (SQRT)
1509 (simplify
1510 (cmp (sq @0) REAL_CST@1)
1511 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1512 /* sqrt(x) < y is always false, if y is negative. */
1513 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
1514 { constant_boolean_node (false, type); })
1515 /* sqrt(x) > y is always true, if y is negative and we
1516 don't care about NaNs, i.e. negative values of x. */
1517 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
1518 { constant_boolean_node (true, type); })
1519 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
1520 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
1521 (if (cmp == GT_EXPR || cmp == GE_EXPR)
1522 (with
1523 {
1524 REAL_VALUE_TYPE c2;
1525 REAL_ARITHMETIC (c2, MULT_EXPR, TREE_REAL_CST (@1), TREE_REAL_CST (@1));
1526 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
1527 }
1528 (if (REAL_VALUE_ISINF (c2))
1529 /* sqrt(x) > y is x == +Inf, when y is very large. */
1530 (if (HONOR_INFINITIES (@0))
1531 (eq @0 { build_real (TREE_TYPE (@0), c2); }))
1532 { constant_boolean_node (false, type); })
1533 /* sqrt(x) > c is the same as x > c*c. */
1534 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))
1535 (if (cmp == LT_EXPR || cmp == LE_EXPR)
1536 (with
1537 {
1538 REAL_VALUE_TYPE c2;
1539 REAL_ARITHMETIC (c2, MULT_EXPR, TREE_REAL_CST (@1), TREE_REAL_CST (@1));
1540 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
1541 }
1542 (if (REAL_VALUE_ISINF (c2))
1543 /* sqrt(x) < y is always true, when y is a very large
1544 value and we don't care about NaNs or Infinities. */
1545 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
1546 { constant_boolean_node (true, type); })
1547 /* sqrt(x) < y is x != +Inf when y is very large and we
1548 don't care about NaNs. */
1549 (if (! HONOR_NANS (@0))
1550 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
1551 /* sqrt(x) < y is x >= 0 when y is very large and we
1552 don't care about Infinities. */
1553 (if (! HONOR_INFINITIES (@0))
1554 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
1555 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
1556 (if (GENERIC)
1557 (truth_andif
1558 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
1559 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
1560 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
1561 (if (! REAL_VALUE_ISINF (c2)
1562 && ! HONOR_NANS (@0))
1563 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))
1564 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
1565 (if (! REAL_VALUE_ISINF (c2)
1566 && GENERIC)
1567 (truth_andif
1568 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
1569 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
2ee05f1e 1570
cfdc4f33
MG
1571/* Unordered tests if either argument is a NaN. */
1572(simplify
1573 (bit_ior (unordered @0 @0) (unordered @1 @1))
aea417d7 1574 (if (types_match (@0, @1))
cfdc4f33 1575 (unordered @0 @1)))
257b01ba
MG
1576(simplify
1577 (bit_and (ordered @0 @0) (ordered @1 @1))
1578 (if (types_match (@0, @1))
1579 (ordered @0 @1)))
cfdc4f33
MG
1580(simplify
1581 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
1582 @2)
257b01ba
MG
1583(simplify
1584 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
1585 @2)
e18c1d66 1586
534bd33b
MG
1587/* -A CMP -B -> B CMP A. */
1588(for cmp (tcc_comparison)
1589 scmp (swapped_tcc_comparison)
1590 (simplify
1591 (cmp (negate @0) (negate @1))
1592 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1593 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1594 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1595 (scmp @0 @1)))
1596 (simplify
1597 (cmp (negate @0) CONSTANT_CLASS_P@1)
1598 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1599 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1600 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1601 (with { tree tem = fold_unary (NEGATE_EXPR, TREE_TYPE (@0), @1); }
1602 (if (tem && !TREE_OVERFLOW (tem))
1603 (scmp @0 { tem; }))))))
1604
66e1cacf
RB
1605
1606/* Equality compare simplifications from fold_binary */
1607(for cmp (eq ne)
1608
1609 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
1610 Similarly for NE_EXPR. */
1611 (simplify
1612 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
1613 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1614 && wi::bit_and_not (@1, @2) != 0)
1615 { constant_boolean_node (cmp == NE_EXPR, type); }))
1616
1617 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
1618 (simplify
1619 (cmp (bit_xor @0 @1) integer_zerop)
1620 (cmp @0 @1))
1621
1622 /* (X ^ Y) == Y becomes X == 0.
1623 Likewise (X ^ Y) == X becomes Y == 0. */
1624 (simplify
99e943a2 1625 (cmp:c (bit_xor:c @0 @1) @0)
66e1cacf
RB
1626 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
1627
1628 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
1629 (simplify
1630 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
1631 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
1632 (cmp @0 (bit_xor @1 (convert @2))))))
1633
e18c1d66
RB
1634/* Simplification of math builtins. */
1635
e18c1d66
RB
1636/* fold_builtin_logarithm */
1637(if (flag_unsafe_math_optimizations)
1638 /* Special case, optimize logN(expN(x)) = x. */
1639 (for logs (LOG LOG2 LOG10)
1640 exps (EXP EXP2 EXP10)
1641 (simplify
1642 (logs (exps @0))
1643 @0))
1644 /* Optimize logN(func()) for various exponential functions. We
1645 want to determine the value "x" and the power "exponent" in
1646 order to transform logN(x**exponent) into exponent*logN(x). */
1647 (for logs (LOG LOG LOG LOG
1648 LOG2 LOG2 LOG2 LOG2
1649 LOG10 LOG10 LOG10 LOG10)
1650 exps (EXP EXP2 EXP10 POW10)
1651 (simplify
1652 (logs (exps @0))
1653 (with {
1654 tree x;
1655 switch (exps)
1656 {
1657 CASE_FLT_FN (BUILT_IN_EXP):
1658 /* Prepare to do logN(exp(exponent) -> exponent*logN(e). */
1659 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1660 dconst_e ()));
1661 break;
1662 CASE_FLT_FN (BUILT_IN_EXP2):
1663 /* Prepare to do logN(exp2(exponent) -> exponent*logN(2). */
1664 x = build_real (type, dconst2);
1665 break;
1666 CASE_FLT_FN (BUILT_IN_EXP10):
1667 CASE_FLT_FN (BUILT_IN_POW10):
1668 /* Prepare to do logN(exp10(exponent) -> exponent*logN(10). */
1669 {
1670 REAL_VALUE_TYPE dconst10;
1671 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
1672 x = build_real (type, dconst10);
1673 }
1674 break;
1675 }
1676 }
1677 (mult (logs { x; }) @0))))
1678 (for logs (LOG LOG
1679 LOG2 LOG2
1680 LOG10 LOG10)
1681 exps (SQRT CBRT)
1682 (simplify
1683 (logs (exps @0))
1684 (with {
1685 tree x;
1686 switch (exps)
1687 {
1688 CASE_FLT_FN (BUILT_IN_SQRT):
1689 /* Prepare to do logN(sqrt(x) -> 0.5*logN(x). */
1690 x = build_real (type, dconsthalf);
1691 break;
1692 CASE_FLT_FN (BUILT_IN_CBRT):
1693 /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x). */
1694 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1695 dconst_third ()));
1696 break;
1697 }
1698 }
1699 (mult { x; } (logs @0)))))
1700 /* logN(pow(x,exponent) -> exponent*logN(x). */
1701 (for logs (LOG LOG2 LOG10)
1702 pows (POW)
1703 (simplify
1704 (logs (pows @0 @1))
1705 (mult @1 (logs @0)))))
1706
be144838
JL
1707/* Narrowing of arithmetic and logical operations.
1708
1709 These are conceptually similar to the transformations performed for
1710 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
1711 term we want to move all that code out of the front-ends into here. */
1712
1713/* If we have a narrowing conversion of an arithmetic operation where
1714 both operands are widening conversions from the same type as the outer
1715 narrowing conversion. Then convert the innermost operands to a suitable
1716 unsigned type (to avoid introducing undefined behaviour), perform the
1717 operation and convert the result to the desired type. */
1718(for op (plus minus)
1719 (simplify
48451e8f 1720 (convert (op@4 (convert@2 @0) (convert@3 @1)))
be144838
JL
1721 (if (INTEGRAL_TYPE_P (type)
1722 /* We check for type compatibility between @0 and @1 below,
1723 so there's no need to check that @1/@3 are integral types. */
1724 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1725 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1726 /* The precision of the type of each operand must match the
1727 precision of the mode of each operand, similarly for the
1728 result. */
1729 && (TYPE_PRECISION (TREE_TYPE (@0))
1730 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1731 && (TYPE_PRECISION (TREE_TYPE (@1))
1732 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1733 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1734 /* The inner conversion must be a widening conversion. */
1735 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
aea417d7
MG
1736 && types_match (@0, @1)
1737 && types_match (@0, type)
48451e8f 1738 && single_use (@4))
be144838
JL
1739 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1740 (convert (op @0 @1)))
1741 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1742 (convert (op (convert:utype @0) (convert:utype @1)))))))
48451e8f
JL
1743
1744/* This is another case of narrowing, specifically when there's an outer
1745 BIT_AND_EXPR which masks off bits outside the type of the innermost
1746 operands. Like the previous case we have to convert the operands
1747 to unsigned types to avoid introducing undefined behaviour for the
1748 arithmetic operation. */
1749(for op (minus plus)
1750 (simplify
1751 (bit_and (op@5 (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
1752 (if (INTEGRAL_TYPE_P (type)
1753 /* We check for type compatibility between @0 and @1 below,
1754 so there's no need to check that @1/@3 are integral types. */
1755 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1756 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1757 /* The precision of the type of each operand must match the
1758 precision of the mode of each operand, similarly for the
1759 result. */
1760 && (TYPE_PRECISION (TREE_TYPE (@0))
1761 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1762 && (TYPE_PRECISION (TREE_TYPE (@1))
1763 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1764 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1765 /* The inner conversion must be a widening conversion. */
1766 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
aea417d7 1767 && types_match (@0, @1)
a60c51fe 1768 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
48451e8f 1769 <= TYPE_PRECISION (TREE_TYPE (@0)))
a60c51fe
JJ
1770 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1771 || tree_int_cst_sgn (@4) >= 0)
48451e8f
JL
1772 && single_use (@5))
1773 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1774 (with { tree ntype = TREE_TYPE (@0); }
1775 (convert (bit_and (op @0 @1) (convert:ntype @4)))))
1776 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1777 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
1778 (convert:utype @4)))))))
1779