]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/match.pd
[RTEMS] Fix libgomp for nthreads == 1
[thirdparty/gcc.git] / gcc / match.pd
CommitLineData
3d2cf79f
RB
1/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
818ab71a 5 Copyright (C) 2014-2016 Free Software Foundation, Inc.
3d2cf79f
RB
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
13Software Foundation; either version 3, or (at your option) any later
14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING3. If not see
23<http://www.gnu.org/licenses/>. */
24
25
26/* Generic tree predicates we inherit. */
27(define_predicates
cc7b5acf 28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
53a19317 29 integer_each_onep integer_truep integer_nonzerop
cc7b5acf 30 real_zerop real_onep real_minus_onep
b0eb889b 31 zerop
f3582e54 32 CONSTANT_CLASS_P
887ab609 33 tree_expr_nonnegative_p
e36c1cfe 34 tree_expr_nonzero_p
67dbe582 35 integer_valued_real_p
53a19317
RB
36 integer_pow2p
37 HONOR_NANS)
e0ee10ed 38
f84e7fd6
RB
39/* Operator lists. */
40(define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42(define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44(define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
534bd33b
MG
46(define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
07cdc2b8
RB
48(define_operator_list simple_comparison lt le eq ne ge gt)
49(define_operator_list swapped_simple_comparison gt ge eq ne le lt)
50
b1dc4a20 51#include "cfn-operators.pd"
257aecb4 52
543a9bcd
RS
53/* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
56
57 Also define operand lists:
58
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62#define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
543a9bcd
RS
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
64 BUILT_IN_L##FN##F \
65 BUILT_IN_LL##FN##F) \
66 (define_operator_list X##FN BUILT_IN_I##FN \
67 BUILT_IN_L##FN \
68 BUILT_IN_LL##FN) \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
70 BUILT_IN_L##FN##L \
71 BUILT_IN_LL##FN##L)
72
543a9bcd
RS
73DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
f84e7fd6 77
e0ee10ed 78/* Simplifications of operations with one constant operand and
36a60e48 79 simplifications to constants or single values. */
e0ee10ed
RB
80
81(for op (plus pointer_plus minus bit_ior bit_xor)
82 (simplify
83 (op @0 integer_zerop)
84 (non_lvalue @0)))
85
a499aac5
RB
86/* 0 +p index -> (type)index */
87(simplify
88 (pointer_plus integer_zerop @1)
89 (non_lvalue (convert @1)))
90
a7f24614
RB
91/* See if ARG1 is zero and X + ARG1 reduces to X.
92 Likewise if the operands are reversed. */
93(simplify
94 (plus:c @0 real_zerop@1)
95 (if (fold_real_zero_addition_p (type, @1, 0))
96 (non_lvalue @0)))
97
98/* See if ARG1 is zero and X - ARG1 reduces to X. */
99(simplify
100 (minus @0 real_zerop@1)
101 (if (fold_real_zero_addition_p (type, @1, 1))
102 (non_lvalue @0)))
103
e0ee10ed
RB
104/* Simplify x - x.
105 This is unsafe for certain floats even in non-IEEE formats.
106 In IEEE, it is unsafe because it does wrong for NaNs.
107 Also note that operand_equal_p is always false if an operand
108 is volatile. */
109(simplify
a7f24614 110 (minus @0 @0)
1b457aa4 111 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
a7f24614 112 { build_zero_cst (type); }))
e0ee10ed
RB
113
114(simplify
a7f24614
RB
115 (mult @0 integer_zerop@1)
116 @1)
117
118/* Maybe fold x * 0 to 0. The expressions aren't the same
119 when x is NaN, since x * 0 is also NaN. Nor are they the
120 same in modes with signed zeros, since multiplying a
121 negative value by 0 gives -0, not +0. */
122(simplify
123 (mult @0 real_zerop@1)
8b5ee871 124 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
a7f24614
RB
125 @1))
126
127/* In IEEE floating point, x*1 is not equivalent to x for snans.
128 Likewise for complex arithmetic with signed zeros. */
129(simplify
130 (mult @0 real_onep)
8b5ee871
MG
131 (if (!HONOR_SNANS (type)
132 && (!HONOR_SIGNED_ZEROS (type)
a7f24614
RB
133 || !COMPLEX_FLOAT_TYPE_P (type)))
134 (non_lvalue @0)))
135
136/* Transform x * -1.0 into -x. */
137(simplify
138 (mult @0 real_minus_onep)
8b5ee871
MG
139 (if (!HONOR_SNANS (type)
140 && (!HONOR_SIGNED_ZEROS (type)
a7f24614
RB
141 || !COMPLEX_FLOAT_TYPE_P (type)))
142 (negate @0)))
e0ee10ed 143
5b7f6ed0 144/* X * 1, X / 1 -> X. */
e0ee10ed
RB
145(for op (mult trunc_div ceil_div floor_div round_div exact_div)
146 (simplify
147 (op @0 integer_onep)
148 (non_lvalue @0)))
149
5b7f6ed0
MG
150/* Preserve explicit divisions by 0: the C++ front-end wants to detect
151 undefined behavior in constexpr evaluation, and assuming that the division
152 traps enables better optimizations than these anyway. */
a7f24614 153(for div (trunc_div ceil_div floor_div round_div exact_div)
5b7f6ed0
MG
154 /* 0 / X is always zero. */
155 (simplify
156 (div integer_zerop@0 @1)
157 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
158 (if (!integer_zerop (@1))
159 @0))
da186c1f 160 /* X / -1 is -X. */
a7f24614 161 (simplify
09240451
MG
162 (div @0 integer_minus_onep@1)
163 (if (!TYPE_UNSIGNED (type))
da186c1f 164 (negate @0)))
5b7f6ed0
MG
165 /* X / X is one. */
166 (simplify
167 (div @0 @0)
168 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
169 (if (!integer_zerop (@0))
170 { build_one_cst (type); }))
da186c1f
RB
171 /* X / abs (X) is X < 0 ? -1 : 1. */
172 (simplify
d96a5585
RB
173 (div:C @0 (abs @0))
174 (if (INTEGRAL_TYPE_P (type)
da186c1f
RB
175 && TYPE_OVERFLOW_UNDEFINED (type))
176 (cond (lt @0 { build_zero_cst (type); })
177 { build_minus_one_cst (type); } { build_one_cst (type); })))
178 /* X / -X is -1. */
179 (simplify
d96a5585 180 (div:C @0 (negate @0))
da186c1f
RB
181 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
182 && TYPE_OVERFLOW_UNDEFINED (type))
183 { build_minus_one_cst (type); })))
a7f24614
RB
184
185/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
186 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
187(simplify
188 (floor_div @0 @1)
09240451
MG
189 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
190 && TYPE_UNSIGNED (type))
a7f24614
RB
191 (trunc_div @0 @1)))
192
28093105
RB
193/* Combine two successive divisions. Note that combining ceil_div
194 and floor_div is trickier and combining round_div even more so. */
195(for div (trunc_div exact_div)
c306cfaf
RB
196 (simplify
197 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
198 (with {
199 bool overflow_p;
200 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
201 }
202 (if (!overflow_p)
8fdc6c67
RB
203 (div @0 { wide_int_to_tree (type, mul); })
204 (if (TYPE_UNSIGNED (type)
205 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
206 { build_zero_cst (type); })))))
c306cfaf 207
a7f24614 208/* Optimize A / A to 1.0 if we don't care about
09240451 209 NaNs or Infinities. */
a7f24614
RB
210(simplify
211 (rdiv @0 @0)
09240451 212 (if (FLOAT_TYPE_P (type)
1b457aa4 213 && ! HONOR_NANS (type)
8b5ee871 214 && ! HONOR_INFINITIES (type))
09240451
MG
215 { build_one_cst (type); }))
216
217/* Optimize -A / A to -1.0 if we don't care about
218 NaNs or Infinities. */
219(simplify
e04d2a35 220 (rdiv:C @0 (negate @0))
09240451 221 (if (FLOAT_TYPE_P (type)
1b457aa4 222 && ! HONOR_NANS (type)
8b5ee871 223 && ! HONOR_INFINITIES (type))
09240451 224 { build_minus_one_cst (type); }))
a7f24614 225
8c6961ca
PK
226/* PR71078: x / abs(x) -> copysign (1.0, x) */
227(simplify
228 (rdiv:C (convert? @0) (convert? (abs @0)))
229 (if (SCALAR_FLOAT_TYPE_P (type)
230 && ! HONOR_NANS (type)
231 && ! HONOR_INFINITIES (type))
232 (switch
233 (if (types_match (type, float_type_node))
234 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
235 (if (types_match (type, double_type_node))
236 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
237 (if (types_match (type, long_double_type_node))
238 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
239
a7f24614
RB
240/* In IEEE floating point, x/1 is not equivalent to x for snans. */
241(simplify
242 (rdiv @0 real_onep)
8b5ee871 243 (if (!HONOR_SNANS (type))
a7f24614
RB
244 (non_lvalue @0)))
245
246/* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
247(simplify
248 (rdiv @0 real_minus_onep)
8b5ee871 249 (if (!HONOR_SNANS (type))
a7f24614
RB
250 (negate @0)))
251
5711ac88
N
252(if (flag_reciprocal_math)
253 /* Convert (A/B)/C to A/(B*C) */
254 (simplify
255 (rdiv (rdiv:s @0 @1) @2)
256 (rdiv @0 (mult @1 @2)))
257
258 /* Convert A/(B/C) to (A/B)*C */
259 (simplify
260 (rdiv @0 (rdiv:s @1 @2))
261 (mult (rdiv @0 @1) @2)))
262
263/* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
264(for div (trunc_div ceil_div floor_div round_div exact_div)
265 (simplify
266 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
267 (if (integer_pow2p (@2)
268 && tree_int_cst_sgn (@2) > 0
269 && wi::add (@2, @1) == 0
270 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
271 (rshift (convert @0) { build_int_cst (integer_type_node,
272 wi::exact_log2 (@2)); }))))
273
a7f24614
RB
274/* If ARG1 is a constant, we can convert this to a multiply by the
275 reciprocal. This does not have the same rounding properties,
276 so only do this if -freciprocal-math. We can actually
277 always safely do it if ARG1 is a power of two, but it's hard to
278 tell if it is or not in a portable manner. */
279(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
280 (simplify
281 (rdiv @0 cst@1)
282 (if (optimize)
53bc4b3a
RB
283 (if (flag_reciprocal_math
284 && !real_zerop (@1))
a7f24614 285 (with
249700b5 286 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
a7f24614 287 (if (tem)
8fdc6c67
RB
288 (mult @0 { tem; } )))
289 (if (cst != COMPLEX_CST)
290 (with { tree inverse = exact_inverse (type, @1); }
291 (if (inverse)
292 (mult @0 { inverse; } ))))))))
a7f24614 293
a7f24614 294(for mod (ceil_mod floor_mod round_mod trunc_mod)
e0ee10ed
RB
295 /* 0 % X is always zero. */
296 (simplify
a7f24614 297 (mod integer_zerop@0 @1)
e0ee10ed
RB
298 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
299 (if (!integer_zerop (@1))
300 @0))
301 /* X % 1 is always zero. */
302 (simplify
a7f24614
RB
303 (mod @0 integer_onep)
304 { build_zero_cst (type); })
305 /* X % -1 is zero. */
306 (simplify
09240451
MG
307 (mod @0 integer_minus_onep@1)
308 (if (!TYPE_UNSIGNED (type))
bc4315fb 309 { build_zero_cst (type); }))
5b7f6ed0
MG
310 /* X % X is zero. */
311 (simplify
312 (mod @0 @0)
313 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
314 (if (!integer_zerop (@0))
315 { build_zero_cst (type); }))
bc4315fb
MG
316 /* (X % Y) % Y is just X % Y. */
317 (simplify
318 (mod (mod@2 @0 @1) @1)
98e30e51
RB
319 @2)
320 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
321 (simplify
322 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
323 (if (ANY_INTEGRAL_TYPE_P (type)
324 && TYPE_OVERFLOW_UNDEFINED (type)
325 && wi::multiple_of_p (@1, @2, TYPE_SIGN (type)))
326 { build_zero_cst (type); })))
a7f24614
RB
327
328/* X % -C is the same as X % C. */
329(simplify
330 (trunc_mod @0 INTEGER_CST@1)
331 (if (TYPE_SIGN (type) == SIGNED
332 && !TREE_OVERFLOW (@1)
333 && wi::neg_p (@1)
334 && !TYPE_OVERFLOW_TRAPS (type)
335 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
336 && !sign_bit_p (@1, @1))
337 (trunc_mod @0 (negate @1))))
e0ee10ed 338
8f0c696a
RB
339/* X % -Y is the same as X % Y. */
340(simplify
341 (trunc_mod @0 (convert? (negate @1)))
a2a743a1
MP
342 (if (INTEGRAL_TYPE_P (type)
343 && !TYPE_UNSIGNED (type)
8f0c696a 344 && !TYPE_OVERFLOW_TRAPS (type)
20b8d734
JJ
345 && tree_nop_conversion_p (type, TREE_TYPE (@1))
346 /* Avoid this transformation if X might be INT_MIN or
347 Y might be -1, because we would then change valid
348 INT_MIN % -(-1) into invalid INT_MIN % -1. */
349 && (expr_not_equal_to (@0, TYPE_MIN_VALUE (type))
350 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
351 (TREE_TYPE (@1))))))
8f0c696a
RB
352 (trunc_mod @0 (convert @1))))
353
f461569a
MP
354/* X - (X / Y) * Y is the same as X % Y. */
355(simplify
2eef1fc1
RB
356 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
357 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
fba46f03 358 (convert (trunc_mod @0 @1))))
f461569a 359
8f0c696a
RB
360/* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
361 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
362 Also optimize A % (C << N) where C is a power of 2,
363 to A & ((C << N) - 1). */
364(match (power_of_two_cand @1)
365 INTEGER_CST@1)
366(match (power_of_two_cand @1)
367 (lshift INTEGER_CST@1 @2))
368(for mod (trunc_mod floor_mod)
369 (simplify
4ab1e111 370 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
8f0c696a
RB
371 (if ((TYPE_UNSIGNED (type)
372 || tree_expr_nonnegative_p (@0))
4ab1e111 373 && tree_nop_conversion_p (type, TREE_TYPE (@3))
8f0c696a 374 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
4ab1e111 375 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
8f0c696a 376
887ab609
N
377/* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
378(simplify
379 (trunc_div (mult @0 integer_pow2p@1) @1)
380 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
381 (bit_and @0 { wide_int_to_tree
382 (type, wi::mask (TYPE_PRECISION (type) - wi::exact_log2 (@1),
383 false, TYPE_PRECISION (type))); })))
384
5f8d832e
N
385/* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
386(simplify
387 (mult (trunc_div @0 integer_pow2p@1) @1)
388 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
389 (bit_and @0 (negate @1))))
390
95765f36
N
391/* Simplify (t * 2) / 2) -> t. */
392(for div (trunc_div ceil_div floor_div round_div exact_div)
393 (simplify
394 (div (mult @0 @1) @1)
395 (if (ANY_INTEGRAL_TYPE_P (type)
396 && TYPE_OVERFLOW_UNDEFINED (type))
397 @0)))
398
d202f9bd 399(for op (negate abs)
9b054b08
RS
400 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
401 (for coss (COS COSH)
402 (simplify
403 (coss (op @0))
404 (coss @0)))
405 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
406 (for pows (POW)
407 (simplify
408 (pows (op @0) REAL_CST@1)
409 (with { HOST_WIDE_INT n; }
410 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
5d3498b4 411 (pows @0 @1)))))
de3fbea3
RB
412 /* Likewise for powi. */
413 (for pows (POWI)
414 (simplify
415 (pows (op @0) INTEGER_CST@1)
416 (if (wi::bit_and (@1, 1) == 0)
417 (pows @0 @1))))
5d3498b4
RS
418 /* Strip negate and abs from both operands of hypot. */
419 (for hypots (HYPOT)
420 (simplify
421 (hypots (op @0) @1)
422 (hypots @0 @1))
423 (simplify
424 (hypots @0 (op @1))
425 (hypots @0 @1)))
426 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
427 (for copysigns (COPYSIGN)
428 (simplify
429 (copysigns (op @0) @1)
430 (copysigns @0 @1))))
431
432/* abs(x)*abs(x) -> x*x. Should be valid for all types. */
433(simplify
434 (mult (abs@1 @0) @1)
435 (mult @0 @0))
436
437/* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
438(for coss (COS COSH)
439 copysigns (COPYSIGN)
440 (simplify
441 (coss (copysigns @0 @1))
442 (coss @0)))
443
444/* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
445(for pows (POW)
446 copysigns (COPYSIGN)
447 (simplify
de3fbea3 448 (pows (copysigns @0 @2) REAL_CST@1)
5d3498b4
RS
449 (with { HOST_WIDE_INT n; }
450 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
451 (pows @0 @1)))))
de3fbea3
RB
452/* Likewise for powi. */
453(for pows (POWI)
454 copysigns (COPYSIGN)
455 (simplify
456 (pows (copysigns @0 @2) INTEGER_CST@1)
457 (if (wi::bit_and (@1, 1) == 0)
458 (pows @0 @1))))
5d3498b4
RS
459
460(for hypots (HYPOT)
461 copysigns (COPYSIGN)
462 /* hypot(copysign(x, y), z) -> hypot(x, z). */
463 (simplify
464 (hypots (copysigns @0 @1) @2)
465 (hypots @0 @2))
466 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
467 (simplify
468 (hypots @0 (copysigns @1 @2))
469 (hypots @0 @1)))
470
eeb57981
RB
471/* copysign(x, CST) -> [-]abs (x). */
472(for copysigns (COPYSIGN)
473 (simplify
474 (copysigns @0 REAL_CST@1)
475 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
476 (negate (abs @0))
477 (abs @0))))
478
5d3498b4
RS
479/* copysign(copysign(x, y), z) -> copysign(x, z). */
480(for copysigns (COPYSIGN)
481 (simplify
482 (copysigns (copysigns @0 @1) @2)
483 (copysigns @0 @2)))
484
485/* copysign(x,y)*copysign(x,y) -> x*x. */
486(for copysigns (COPYSIGN)
487 (simplify
488 (mult (copysigns@2 @0 @1) @2)
489 (mult @0 @0)))
490
491/* ccos(-x) -> ccos(x). Similarly for ccosh. */
492(for ccoss (CCOS CCOSH)
493 (simplify
494 (ccoss (negate @0))
495 (ccoss @0)))
d202f9bd 496
abcc43f5
RS
497/* cabs(-x) and cos(conj(x)) -> cabs(x). */
498(for ops (conj negate)
499 (for cabss (CABS)
500 (simplify
501 (cabss (ops @0))
502 (cabss @0))))
503
0a8f32b8
RB
504/* Fold (a * (1 << b)) into (a << b) */
505(simplify
506 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
507 (if (! FLOAT_TYPE_P (type)
9ff6fb6e 508 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
0a8f32b8
RB
509 (lshift @0 @2)))
510
511/* Fold (C1/X)*C2 into (C1*C2)/X. */
512(simplify
ff86345f
RB
513 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
514 (if (flag_associative_math
515 && single_use (@3))
0a8f32b8
RB
516 (with
517 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
518 (if (tem)
519 (rdiv { tem; } @1)))))
520
5711ac88
N
521/* Convert C1/(X*C2) into (C1/C2)/X */
522(simplify
523 (rdiv REAL_CST@0 (mult @1 REAL_CST@2))
524 (if (flag_reciprocal_math)
525 (with
526 { tree tem = const_binop (RDIV_EXPR, type, @0, @2); }
527 (if (tem)
528 (rdiv { tem; } @1)))))
529
0a8f32b8
RB
530/* Simplify ~X & X as zero. */
531(simplify
532 (bit_and:c (convert? @0) (convert? (bit_not @0)))
533 { build_zero_cst (type); })
534
89b80c42
PK
535/* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
536(simplify
537 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
538 (if (TYPE_UNSIGNED (type))
539 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
540
7aa13860
PK
541/* PR35691: Transform
542 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
543 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
544(for bitop (bit_and bit_ior)
545 cmp (eq ne)
546 (simplify
547 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
548 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
549 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
550 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
551 (cmp (bit_ior @0 (convert @1)) @2))))
552
10158317
RB
553/* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
554(simplify
a9658b11 555 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
10158317
RB
556 (minus (bit_xor @0 @1) @1))
557(simplify
558 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
559 (if (wi::bit_not (@2) == @1)
560 (minus (bit_xor @0 @1) @1)))
561
562/* Fold (A & B) - (A & ~B) into B - (A ^ B). */
563(simplify
a8e9f9a3 564 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
10158317
RB
565 (minus @1 (bit_xor @0 @1)))
566
567/* Simplify (X & ~Y) | (~X & Y) -> X ^ Y. */
568(simplify
a9658b11 569 (bit_ior (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
10158317
RB
570 (bit_xor @0 @1))
571(simplify
572 (bit_ior:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
573 (if (wi::bit_not (@2) == @1)
574 (bit_xor @0 @1)))
2066ef6a
PK
575
576/* PR53979: Transform ((a ^ b) | a) -> (a | b) */
577(simplify
578 (bit_ior:c (bit_xor:c @0 @1) @0)
579 (bit_ior @0 @1))
580
d982c5b7
MG
581/* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
582#if GIMPLE
583(simplify
584 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
585 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
586 && (get_nonzero_bits (@0) & wi::bit_not (@1)) == 0)
587 (bit_xor @0 @1)))
588#endif
10158317 589
bc4315fb
MG
590/* X % Y is smaller than Y. */
591(for cmp (lt ge)
592 (simplify
593 (cmp (trunc_mod @0 @1) @1)
594 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
595 { constant_boolean_node (cmp == LT_EXPR, type); })))
596(for cmp (gt le)
597 (simplify
598 (cmp @1 (trunc_mod @0 @1))
599 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
600 { constant_boolean_node (cmp == GT_EXPR, type); })))
601
e0ee10ed
RB
602/* x | ~0 -> ~0 */
603(simplify
ca0b7ece
RB
604 (bit_ior @0 integer_all_onesp@1)
605 @1)
606
607/* x | 0 -> x */
608(simplify
609 (bit_ior @0 integer_zerop)
610 @0)
e0ee10ed
RB
611
612/* x & 0 -> 0 */
613(simplify
ca0b7ece
RB
614 (bit_and @0 integer_zerop@1)
615 @1)
e0ee10ed 616
a4398a30 617/* ~x | x -> -1 */
8b5ee871
MG
618/* ~x ^ x -> -1 */
619/* ~x + x -> -1 */
620(for op (bit_ior bit_xor plus)
621 (simplify
622 (op:c (convert? @0) (convert? (bit_not @0)))
623 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
a4398a30 624
e0ee10ed
RB
625/* x ^ x -> 0 */
626(simplify
627 (bit_xor @0 @0)
628 { build_zero_cst (type); })
629
36a60e48
RB
630/* Canonicalize X ^ ~0 to ~X. */
631(simplify
632 (bit_xor @0 integer_all_onesp@1)
633 (bit_not @0))
634
635/* x & ~0 -> x */
636(simplify
637 (bit_and @0 integer_all_onesp)
638 (non_lvalue @0))
639
640/* x & x -> x, x | x -> x */
641(for bitop (bit_and bit_ior)
642 (simplify
643 (bitop @0 @0)
644 (non_lvalue @0)))
645
c7986356
MG
646/* x & C -> x if we know that x & ~C == 0. */
647#if GIMPLE
648(simplify
649 (bit_and SSA_NAME@0 INTEGER_CST@1)
650 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
651 && (get_nonzero_bits (@0) & wi::bit_not (@1)) == 0)
652 @0))
653#endif
654
0f770b01
RV
655/* x + (x & 1) -> (x + 1) & ~1 */
656(simplify
44fc0a51
RB
657 (plus:c @0 (bit_and:s @0 integer_onep@1))
658 (bit_and (plus @0 @1) (bit_not @1)))
0f770b01
RV
659
660/* x & ~(x & y) -> x & ~y */
661/* x | ~(x | y) -> x | ~y */
662(for bitop (bit_and bit_ior)
af563d4b 663 (simplify
44fc0a51
RB
664 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
665 (bitop @0 (bit_not @1))))
af563d4b
MG
666
667/* (x | y) & ~x -> y & ~x */
668/* (x & y) | ~x -> y | ~x */
669(for bitop (bit_and bit_ior)
670 rbitop (bit_ior bit_and)
671 (simplify
672 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
673 (bitop @1 @2)))
0f770b01 674
f13c4673
MP
675/* (x & y) ^ (x | y) -> x ^ y */
676(simplify
2d6f2dce
MP
677 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
678 (bit_xor @0 @1))
f13c4673 679
9ea65ca6
MP
680/* (x ^ y) ^ (x | y) -> x & y */
681(simplify
682 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
683 (bit_and @0 @1))
684
685/* (x & y) + (x ^ y) -> x | y */
686/* (x & y) | (x ^ y) -> x | y */
687/* (x & y) ^ (x ^ y) -> x | y */
688(for op (plus bit_ior bit_xor)
689 (simplify
690 (op:c (bit_and @0 @1) (bit_xor @0 @1))
691 (bit_ior @0 @1)))
692
693/* (x & y) + (x | y) -> x + y */
694(simplify
695 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
696 (plus @0 @1))
697
9737efaf
MP
698/* (x + y) - (x | y) -> x & y */
699(simplify
700 (minus (plus @0 @1) (bit_ior @0 @1))
701 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
702 && !TYPE_SATURATING (type))
703 (bit_and @0 @1)))
704
705/* (x + y) - (x & y) -> x | y */
706(simplify
707 (minus (plus @0 @1) (bit_and @0 @1))
708 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
709 && !TYPE_SATURATING (type))
710 (bit_ior @0 @1)))
711
9ea65ca6
MP
712/* (x | y) - (x ^ y) -> x & y */
713(simplify
714 (minus (bit_ior @0 @1) (bit_xor @0 @1))
715 (bit_and @0 @1))
716
717/* (x | y) - (x & y) -> x ^ y */
718(simplify
719 (minus (bit_ior @0 @1) (bit_and @0 @1))
720 (bit_xor @0 @1))
721
66cc6273
MP
722/* (x | y) & ~(x & y) -> x ^ y */
723(simplify
724 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
725 (bit_xor @0 @1))
726
727/* (x | y) & (~x ^ y) -> x & y */
728(simplify
729 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
730 (bit_and @0 @1))
731
5b00d921
RB
732/* ~x & ~y -> ~(x | y)
733 ~x | ~y -> ~(x & y) */
734(for op (bit_and bit_ior)
735 rop (bit_ior bit_and)
736 (simplify
737 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
ece46666
MG
738 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
739 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
5b00d921
RB
740 (bit_not (rop (convert @0) (convert @1))))))
741
14ea9f92 742/* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
5b00d921
RB
743 with a constant, and the two constants have no bits in common,
744 we should treat this as a BIT_IOR_EXPR since this may produce more
745 simplifications. */
14ea9f92
RB
746(for op (bit_xor plus)
747 (simplify
748 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
749 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
750 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
751 && tree_nop_conversion_p (type, TREE_TYPE (@2))
752 && wi::bit_and (@1, @3) == 0)
753 (bit_ior (convert @4) (convert @5)))))
5b00d921
RB
754
755/* (X | Y) ^ X -> Y & ~ X*/
756(simplify
2eef1fc1 757 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
5b00d921
RB
758 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
759 (convert (bit_and @1 (bit_not @0)))))
760
761/* Convert ~X ^ ~Y to X ^ Y. */
762(simplify
763 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
ece46666
MG
764 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
765 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
5b00d921
RB
766 (bit_xor (convert @0) (convert @1))))
767
768/* Convert ~X ^ C to X ^ ~C. */
769(simplify
770 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
c8ba6498
EB
771 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
772 (bit_xor (convert @0) (bit_not @1))))
5b00d921 773
e39dab2c
MG
774/* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
775(for opo (bit_and bit_xor)
776 opi (bit_xor bit_and)
777 (simplify
778 (opo:c (opi:c @0 @1) @1)
779 (bit_and (bit_not @0) @1)))
97e77391 780
14ea9f92
RB
781/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
782 operands are another bit-wise operation with a common input. If so,
783 distribute the bit operations to save an operation and possibly two if
784 constants are involved. For example, convert
785 (A | B) & (A | C) into A | (B & C)
786 Further simplification will occur if B and C are constants. */
e07ab2fe
MG
787(for op (bit_and bit_ior bit_xor)
788 rop (bit_ior bit_and bit_and)
14ea9f92 789 (simplify
2eef1fc1 790 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
e07ab2fe
MG
791 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
792 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
14ea9f92
RB
793 (rop (convert @0) (op (convert @1) (convert @2))))))
794
e39dab2c
MG
795/* Some simple reassociation for bit operations, also handled in reassoc. */
796/* (X & Y) & Y -> X & Y
797 (X | Y) | Y -> X | Y */
798(for op (bit_and bit_ior)
799 (simplify
2eef1fc1 800 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
e39dab2c
MG
801 @2))
802/* (X ^ Y) ^ Y -> X */
803(simplify
2eef1fc1 804 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
ece46666 805 (convert @0))
e39dab2c
MG
806/* (X & Y) & (X & Z) -> (X & Y) & Z
807 (X | Y) | (X | Z) -> (X | Y) | Z */
808(for op (bit_and bit_ior)
809 (simplify
810 (op:c (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
811 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
812 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
813 (if (single_use (@5) && single_use (@6))
814 (op @3 (convert @2))
815 (if (single_use (@3) && single_use (@4))
816 (op (convert @1) @5))))))
817/* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
818(simplify
819 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
820 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
821 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
d78789f5 822 (bit_xor (convert @1) (convert @2))))
5b00d921 823
b14a9c57
RB
824(simplify
825 (abs (abs@1 @0))
826 @1)
f3582e54
RB
827(simplify
828 (abs (negate @0))
829 (abs @0))
830(simplify
831 (abs tree_expr_nonnegative_p@0)
832 @0)
833
55cf3946
RB
834/* A few cases of fold-const.c negate_expr_p predicate. */
835(match negate_expr_p
836 INTEGER_CST
b14a9c57
RB
837 (if ((INTEGRAL_TYPE_P (type)
838 && TYPE_OVERFLOW_WRAPS (type))
839 || (!TYPE_OVERFLOW_SANITIZED (type)
55cf3946
RB
840 && may_negate_without_overflow_p (t)))))
841(match negate_expr_p
842 FIXED_CST)
843(match negate_expr_p
844 (negate @0)
845 (if (!TYPE_OVERFLOW_SANITIZED (type))))
846(match negate_expr_p
847 REAL_CST
848 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
849/* VECTOR_CST handling of non-wrapping types would recurse in unsupported
850 ways. */
851(match negate_expr_p
852 VECTOR_CST
853 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
0a8f32b8
RB
854
855/* (-A) * (-B) -> A * B */
856(simplify
857 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
858 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
859 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
860 (mult (convert @0) (convert (negate @1)))))
55cf3946
RB
861
862/* -(A + B) -> (-B) - A. */
b14a9c57 863(simplify
55cf3946
RB
864 (negate (plus:c @0 negate_expr_p@1))
865 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
866 && !HONOR_SIGNED_ZEROS (element_mode (type)))
867 (minus (negate @1) @0)))
868
869/* A - B -> A + (-B) if B is easily negatable. */
b14a9c57 870(simplify
55cf3946 871 (minus @0 negate_expr_p@1)
e4e96a4f
KT
872 (if (!FIXED_POINT_TYPE_P (type))
873 (plus @0 (negate @1))))
d4573ffe 874
5609420f
RB
875/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
876 when profitable.
877 For bitwise binary operations apply operand conversions to the
878 binary operation result instead of to the operands. This allows
879 to combine successive conversions and bitwise binary operations.
880 We combine the above two cases by using a conditional convert. */
881(for bitop (bit_and bit_ior bit_xor)
882 (simplify
883 (bitop (convert @0) (convert? @1))
884 (if (((TREE_CODE (@1) == INTEGER_CST
885 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
ad6f996c 886 && int_fits_type_p (@1, TREE_TYPE (@0)))
aea417d7 887 || types_match (@0, @1))
ad6f996c
RB
888 /* ??? This transform conflicts with fold-const.c doing
889 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
890 constants (if x has signed type, the sign bit cannot be set
891 in c). This folds extension into the BIT_AND_EXPR.
892 Restrict it to GIMPLE to avoid endless recursions. */
893 && (bitop != BIT_AND_EXPR || GIMPLE)
5609420f
RB
894 && (/* That's a good idea if the conversion widens the operand, thus
895 after hoisting the conversion the operation will be narrower. */
896 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
897 /* It's also a good idea if the conversion is to a non-integer
898 mode. */
899 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
900 /* Or if the precision of TO is not the same as the precision
901 of its mode. */
902 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
903 (convert (bitop @0 (convert @1))))))
904
b14a9c57
RB
905(for bitop (bit_and bit_ior)
906 rbitop (bit_ior bit_and)
907 /* (x | y) & x -> x */
908 /* (x & y) | x -> x */
909 (simplify
910 (bitop:c (rbitop:c @0 @1) @0)
911 @0)
912 /* (~x | y) & x -> x & y */
913 /* (~x & y) | x -> x | y */
914 (simplify
915 (bitop:c (rbitop:c (bit_not @0) @1) @0)
916 (bitop @0 @1)))
917
5609420f
RB
918/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
919(simplify
920 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
921 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
922
923/* Combine successive equal operations with constants. */
924(for bitop (bit_and bit_ior bit_xor)
925 (simplify
926 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
927 (bitop @0 (bitop @1 @2))))
928
929/* Try simple folding for X op !X, and X op X with the help
930 of the truth_valued_p and logical_inverted_value predicates. */
931(match truth_valued_p
932 @0
933 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
f84e7fd6 934(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
5609420f
RB
935 (match truth_valued_p
936 (op @0 @1)))
937(match truth_valued_p
938 (truth_not @0))
939
0a8f32b8
RB
940(match (logical_inverted_value @0)
941 (truth_not @0))
5609420f
RB
942(match (logical_inverted_value @0)
943 (bit_not truth_valued_p@0))
944(match (logical_inverted_value @0)
09240451 945 (eq @0 integer_zerop))
5609420f 946(match (logical_inverted_value @0)
09240451 947 (ne truth_valued_p@0 integer_truep))
5609420f 948(match (logical_inverted_value @0)
09240451 949 (bit_xor truth_valued_p@0 integer_truep))
5609420f
RB
950
951/* X & !X -> 0. */
952(simplify
953 (bit_and:c @0 (logical_inverted_value @0))
954 { build_zero_cst (type); })
955/* X | !X and X ^ !X -> 1, , if X is truth-valued. */
956(for op (bit_ior bit_xor)
957 (simplify
958 (op:c truth_valued_p@0 (logical_inverted_value @0))
f84e7fd6 959 { constant_boolean_node (true, type); }))
59c20dc7
RB
960/* X ==/!= !X is false/true. */
961(for op (eq ne)
962 (simplify
963 (op:c truth_valued_p@0 (logical_inverted_value @0))
964 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
5609420f 965
5609420f
RB
966/* ~~x -> x */
967(simplify
968 (bit_not (bit_not @0))
969 @0)
970
b14a9c57
RB
971/* Convert ~ (-A) to A - 1. */
972(simplify
973 (bit_not (convert? (negate @0)))
ece46666
MG
974 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
975 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
8b5ee871 976 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
b14a9c57
RB
977
978/* Convert ~ (A - 1) or ~ (A + -1) to -A. */
979(simplify
8b5ee871 980 (bit_not (convert? (minus @0 integer_each_onep)))
ece46666
MG
981 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
982 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
b14a9c57
RB
983 (convert (negate @0))))
984(simplify
985 (bit_not (convert? (plus @0 integer_all_onesp)))
ece46666
MG
986 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
987 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
b14a9c57
RB
988 (convert (negate @0))))
989
990/* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
991(simplify
992 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
993 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
994 (convert (bit_xor @0 (bit_not @1)))))
995(simplify
996 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
997 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
998 (convert (bit_xor @0 @1))))
999
f52baa7b
MP
1000/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1001(simplify
44fc0a51
RB
1002 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1003 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
f52baa7b 1004
f7b7b0aa
MP
1005/* Fold A - (A & B) into ~B & A. */
1006(simplify
2eef1fc1 1007 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
f7b7b0aa
MP
1008 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1009 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1010 (convert (bit_and (bit_not @1) @0))))
5609420f 1011
e36c1cfe
N
1012/* For integral types with undefined overflow and C != 0 fold
1013 x * C EQ/NE y * C into x EQ/NE y. */
1014(for cmp (eq ne)
1015 (simplify
1016 (cmp (mult:c @0 @1) (mult:c @2 @1))
1017 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1018 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1019 && tree_expr_nonzero_p (@1))
1020 (cmp @0 @2))))
1021
1022/* For integral types with undefined overflow and C != 0 fold
1023 x * C RELOP y * C into:
84ff66b8 1024
e36c1cfe
N
1025 x RELOP y for nonnegative C
1026 y RELOP x for negative C */
1027(for cmp (lt gt le ge)
1028 (simplify
1029 (cmp (mult:c @0 @1) (mult:c @2 @1))
1030 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1031 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1032 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1033 (cmp @0 @2)
1034 (if (TREE_CODE (@1) == INTEGER_CST
1035 && wi::neg_p (@1, TYPE_SIGN (TREE_TYPE (@1))))
1036 (cmp @2 @0))))))
84ff66b8
AV
1037
1038/* ((X inner_op C0) outer_op C1)
1039 With X being a tree where value_range has reasoned certain bits to always be
1040 zero throughout its computed value range,
1041 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1042 where zero_mask has 1's for all bits that are sure to be 0 in
1043 and 0's otherwise.
1044 if (inner_op == '^') C0 &= ~C1;
1045 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1046 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1047*/
1048(for inner_op (bit_ior bit_xor)
1049 outer_op (bit_xor bit_ior)
1050(simplify
1051 (outer_op
1052 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1053 (with
1054 {
1055 bool fail = false;
1056 wide_int zero_mask_not;
1057 wide_int C0;
1058 wide_int cst_emit;
1059
1060 if (TREE_CODE (@2) == SSA_NAME)
1061 zero_mask_not = get_nonzero_bits (@2);
1062 else
1063 fail = true;
1064
1065 if (inner_op == BIT_XOR_EXPR)
1066 {
1067 C0 = wi::bit_and_not (@0, @1);
1068 cst_emit = wi::bit_or (C0, @1);
1069 }
1070 else
1071 {
1072 C0 = @0;
1073 cst_emit = wi::bit_xor (@0, @1);
1074 }
1075 }
1076 (if (!fail && wi::bit_and (C0, zero_mask_not) == 0)
1077 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1078 (if (!fail && wi::bit_and (@1, zero_mask_not) == 0)
1079 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1080
a499aac5
RB
1081/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1082(simplify
44fc0a51
RB
1083 (pointer_plus (pointer_plus:s @0 @1) @3)
1084 (pointer_plus @0 (plus @1 @3)))
a499aac5
RB
1085
1086/* Pattern match
1087 tem1 = (long) ptr1;
1088 tem2 = (long) ptr2;
1089 tem3 = tem2 - tem1;
1090 tem4 = (unsigned long) tem3;
1091 tem5 = ptr1 + tem4;
1092 and produce
1093 tem5 = ptr2; */
1094(simplify
1095 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1096 /* Conditionally look through a sign-changing conversion. */
1097 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1098 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1099 || (GENERIC && type == TREE_TYPE (@1))))
1100 @1))
1101
1102/* Pattern match
1103 tem = (sizetype) ptr;
1104 tem = tem & algn;
1105 tem = -tem;
1106 ... = ptr p+ tem;
1107 and produce the simpler and easier to analyze with respect to alignment
1108 ... = ptr & ~algn; */
1109(simplify
1110 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1111 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
1112 (bit_and @0 { algn; })))
1113
99e943a2
RB
1114/* Try folding difference of addresses. */
1115(simplify
1116 (minus (convert ADDR_EXPR@0) (convert @1))
1117 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1118 (with { HOST_WIDE_INT diff; }
1119 (if (ptr_difference_const (@0, @1, &diff))
1120 { build_int_cst_type (type, diff); }))))
1121(simplify
1122 (minus (convert @0) (convert ADDR_EXPR@1))
1123 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1124 (with { HOST_WIDE_INT diff; }
1125 (if (ptr_difference_const (@0, @1, &diff))
1126 { build_int_cst_type (type, diff); }))))
1127
bab73f11
RB
1128/* If arg0 is derived from the address of an object or function, we may
1129 be able to fold this expression using the object or function's
1130 alignment. */
1131(simplify
1132 (bit_and (convert? @0) INTEGER_CST@1)
1133 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1134 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1135 (with
1136 {
1137 unsigned int align;
1138 unsigned HOST_WIDE_INT bitpos;
1139 get_pointer_alignment_1 (@0, &align, &bitpos);
1140 }
1141 (if (wi::ltu_p (@1, align / BITS_PER_UNIT))
1142 { wide_int_to_tree (type, wi::bit_and (@1, bitpos / BITS_PER_UNIT)); }))))
99e943a2 1143
a499aac5 1144
cc7b5acf
RB
1145/* We can't reassociate at all for saturating types. */
1146(if (!TYPE_SATURATING (type))
1147
1148 /* Contract negates. */
1149 /* A + (-B) -> A - B */
1150 (simplify
1151 (plus:c (convert1? @0) (convert2? (negate @1)))
1152 /* Apply STRIP_NOPS on @0 and the negate. */
1153 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1154 && tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1155 && !TYPE_OVERFLOW_SANITIZED (type))
cc7b5acf
RB
1156 (minus (convert @0) (convert @1))))
1157 /* A - (-B) -> A + B */
1158 (simplify
1159 (minus (convert1? @0) (convert2? (negate @1)))
1160 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
2f68e8bc 1161 && tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1162 && !TYPE_OVERFLOW_SANITIZED (type))
cc7b5acf
RB
1163 (plus (convert @0) (convert @1))))
1164 /* -(-A) -> A */
1165 (simplify
1166 (negate (convert? (negate @1)))
1167 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1168 && !TYPE_OVERFLOW_SANITIZED (type))
a0f12cf8 1169 (convert @1)))
cc7b5acf 1170
7318e44f
RB
1171 /* We can't reassociate floating-point unless -fassociative-math
1172 or fixed-point plus or minus because of saturation to +-Inf. */
1173 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1174 && !FIXED_POINT_TYPE_P (type))
cc7b5acf
RB
1175
1176 /* Match patterns that allow contracting a plus-minus pair
1177 irrespective of overflow issues. */
1178 /* (A +- B) - A -> +- B */
1179 /* (A +- B) -+ B -> A */
1180 /* A - (A +- B) -> -+ B */
1181 /* A +- (B -+ A) -> +- B */
1182 (simplify
1183 (minus (plus:c @0 @1) @0)
1184 @1)
1185 (simplify
1186 (minus (minus @0 @1) @0)
1187 (negate @1))
1188 (simplify
1189 (plus:c (minus @0 @1) @1)
1190 @0)
1191 (simplify
1192 (minus @0 (plus:c @0 @1))
1193 (negate @1))
1194 (simplify
1195 (minus @0 (minus @0 @1))
1196 @1)
1197
b302f2e0 1198 /* (A +- CST1) +- CST2 -> A + CST3 */
cc7b5acf
RB
1199 (for outer_op (plus minus)
1200 (for inner_op (plus minus)
1201 (simplify
1202 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1203 /* If the constant operation overflows we cannot do the transform
1204 as we would introduce undefined overflow, for example
1205 with (a - 1) + INT_MIN. */
23f27839 1206 (with { tree cst = const_binop (outer_op == inner_op
cc7b5acf
RB
1207 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
1208 (if (cst && !TREE_OVERFLOW (cst))
1209 (inner_op @0 { cst; } ))))))
1210
b302f2e0 1211 /* (CST1 - A) +- CST2 -> CST3 - A */
cc7b5acf
RB
1212 (for outer_op (plus minus)
1213 (simplify
1214 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
23f27839 1215 (with { tree cst = const_binop (outer_op, type, @1, @2); }
cc7b5acf
RB
1216 (if (cst && !TREE_OVERFLOW (cst))
1217 (minus { cst; } @0)))))
1218
b302f2e0
RB
1219 /* CST1 - (CST2 - A) -> CST3 + A */
1220 (simplify
1221 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1222 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1223 (if (cst && !TREE_OVERFLOW (cst))
1224 (plus { cst; } @0))))
1225
cc7b5acf
RB
1226 /* ~A + A -> -1 */
1227 (simplify
1228 (plus:c (bit_not @0) @0)
1229 (if (!TYPE_OVERFLOW_TRAPS (type))
1230 { build_all_ones_cst (type); }))
1231
1232 /* ~A + 1 -> -A */
1233 (simplify
e19740ae
RB
1234 (plus (convert? (bit_not @0)) integer_each_onep)
1235 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1236 (negate (convert @0))))
1237
1238 /* -A - 1 -> ~A */
1239 (simplify
1240 (minus (convert? (negate @0)) integer_each_onep)
1241 (if (!TYPE_OVERFLOW_TRAPS (type)
1242 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1243 (bit_not (convert @0))))
1244
1245 /* -1 - A -> ~A */
1246 (simplify
1247 (minus integer_all_onesp @0)
bc4315fb 1248 (bit_not @0))
cc7b5acf
RB
1249
1250 /* (T)(P + A) - (T)P -> (T) A */
1251 (for add (plus pointer_plus)
1252 (simplify
2eef1fc1 1253 (minus (convert (add @@0 @1))
cc7b5acf 1254 (convert @0))
09240451 1255 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
cc7b5acf
RB
1256 /* For integer types, if A has a smaller type
1257 than T the result depends on the possible
1258 overflow in P + A.
1259 E.g. T=size_t, A=(unsigned)429497295, P>0.
1260 However, if an overflow in P + A would cause
1261 undefined behavior, we can assume that there
1262 is no overflow. */
1263 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1264 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1265 /* For pointer types, if the conversion of A to the
1266 final type requires a sign- or zero-extension,
1267 then we have to punt - it is not defined which
1268 one is correct. */
1269 || (POINTER_TYPE_P (TREE_TYPE (@0))
1270 && TREE_CODE (@1) == INTEGER_CST
1271 && tree_int_cst_sign_bit (@1) == 0))
a8fc2579
RB
1272 (convert @1))))
1273
1274 /* (T)P - (T)(P + A) -> -(T) A */
1275 (for add (plus pointer_plus)
1276 (simplify
1277 (minus (convert @0)
2eef1fc1 1278 (convert (add @@0 @1)))
a8fc2579
RB
1279 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1280 /* For integer types, if A has a smaller type
1281 than T the result depends on the possible
1282 overflow in P + A.
1283 E.g. T=size_t, A=(unsigned)429497295, P>0.
1284 However, if an overflow in P + A would cause
1285 undefined behavior, we can assume that there
1286 is no overflow. */
1287 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1288 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1289 /* For pointer types, if the conversion of A to the
1290 final type requires a sign- or zero-extension,
1291 then we have to punt - it is not defined which
1292 one is correct. */
1293 || (POINTER_TYPE_P (TREE_TYPE (@0))
1294 && TREE_CODE (@1) == INTEGER_CST
1295 && tree_int_cst_sign_bit (@1) == 0))
1296 (negate (convert @1)))))
1297
1298 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
1299 (for add (plus pointer_plus)
1300 (simplify
2eef1fc1 1301 (minus (convert (add @@0 @1))
a8fc2579
RB
1302 (convert (add @0 @2)))
1303 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1304 /* For integer types, if A has a smaller type
1305 than T the result depends on the possible
1306 overflow in P + A.
1307 E.g. T=size_t, A=(unsigned)429497295, P>0.
1308 However, if an overflow in P + A would cause
1309 undefined behavior, we can assume that there
1310 is no overflow. */
1311 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1312 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1313 /* For pointer types, if the conversion of A to the
1314 final type requires a sign- or zero-extension,
1315 then we have to punt - it is not defined which
1316 one is correct. */
1317 || (POINTER_TYPE_P (TREE_TYPE (@0))
1318 && TREE_CODE (@1) == INTEGER_CST
1319 && tree_int_cst_sign_bit (@1) == 0
1320 && TREE_CODE (@2) == INTEGER_CST
1321 && tree_int_cst_sign_bit (@2) == 0))
1322 (minus (convert @1) (convert @2)))))))
cc7b5acf
RB
1323
1324
0122e8e5 1325/* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
a7f24614 1326
0122e8e5 1327(for minmax (min max FMIN FMAX)
a7f24614
RB
1328 (simplify
1329 (minmax @0 @0)
1330 @0))
4a334cba
RS
1331/* min(max(x,y),y) -> y. */
1332(simplify
1333 (min:c (max:c @0 @1) @1)
1334 @1)
1335/* max(min(x,y),y) -> y. */
1336(simplify
1337 (max:c (min:c @0 @1) @1)
1338 @1)
d657e995
RB
1339/* max(a,-a) -> abs(a). */
1340(simplify
1341 (max:c @0 (negate @0))
1342 (if (TREE_CODE (type) != COMPLEX_TYPE
1343 && (! ANY_INTEGRAL_TYPE_P (type)
1344 || TYPE_OVERFLOW_UNDEFINED (type)))
1345 (abs @0)))
54f84ca9
RB
1346/* min(a,-a) -> -abs(a). */
1347(simplify
1348 (min:c @0 (negate @0))
1349 (if (TREE_CODE (type) != COMPLEX_TYPE
1350 && (! ANY_INTEGRAL_TYPE_P (type)
1351 || TYPE_OVERFLOW_UNDEFINED (type)))
1352 (negate (abs @0))))
a7f24614
RB
1353(simplify
1354 (min @0 @1)
2c2870a1
MG
1355 (switch
1356 (if (INTEGRAL_TYPE_P (type)
1357 && TYPE_MIN_VALUE (type)
1358 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
1359 @1)
1360 (if (INTEGRAL_TYPE_P (type)
1361 && TYPE_MAX_VALUE (type)
1362 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
1363 @0)))
a7f24614
RB
1364(simplify
1365 (max @0 @1)
2c2870a1
MG
1366 (switch
1367 (if (INTEGRAL_TYPE_P (type)
1368 && TYPE_MAX_VALUE (type)
1369 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
1370 @1)
1371 (if (INTEGRAL_TYPE_P (type)
1372 && TYPE_MIN_VALUE (type)
1373 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
1374 @0)))
ad6e4ba8
BC
1375
1376/* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
1377 and the outer convert demotes the expression back to x's type. */
1378(for minmax (min max)
1379 (simplify
1380 (convert (minmax@0 (convert @1) INTEGER_CST@2))
1381 (if (types_match (@1, type) && int_fits_type_p (@2, type)
1382 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
1383 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
1384 (minmax @1 (convert @2)))))
1385
0122e8e5
RS
1386(for minmax (FMIN FMAX)
1387 /* If either argument is NaN, return the other one. Avoid the
1388 transformation if we get (and honor) a signalling NaN. */
1389 (simplify
1390 (minmax:c @0 REAL_CST@1)
1391 (if (real_isnan (TREE_REAL_CST_PTR (@1))
1392 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
1393 @0)))
1394/* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
1395 functions to return the numeric arg if the other one is NaN.
1396 MIN and MAX don't honor that, so only transform if -ffinite-math-only
1397 is set. C99 doesn't require -0.0 to be handled, so we don't have to
1398 worry about it either. */
1399(if (flag_finite_math_only)
1400 (simplify
1401 (FMIN @0 @1)
1402 (min @0 @1))
1403 (simplify
1404 (FMAX @0 @1)
1405 (max @0 @1)))
ce0e66ff
MG
1406/* min (-A, -B) -> -max (A, B) */
1407(for minmax (min max FMIN FMAX)
1408 maxmin (max min FMAX FMIN)
1409 (simplify
1410 (minmax (negate:s@2 @0) (negate:s@3 @1))
1411 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1412 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1413 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1414 (negate (maxmin @0 @1)))))
1415/* MIN (~X, ~Y) -> ~MAX (X, Y)
1416 MAX (~X, ~Y) -> ~MIN (X, Y) */
1417(for minmax (min max)
1418 maxmin (max min)
1419 (simplify
1420 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
1421 (bit_not (maxmin @0 @1))))
a7f24614 1422
b4817bd6
MG
1423/* MIN (X, Y) == X -> X <= Y */
1424(for minmax (min min max max)
1425 cmp (eq ne eq ne )
1426 out (le gt ge lt )
1427 (simplify
1428 (cmp:c (minmax:c @0 @1) @0)
1429 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
1430 (out @0 @1))))
1431/* MIN (X, 5) == 0 -> X == 0
1432 MIN (X, 5) == 7 -> false */
1433(for cmp (eq ne)
1434 (simplify
1435 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
1436 (if (wi::lt_p (@1, @2, TYPE_SIGN (TREE_TYPE (@0))))
1437 { constant_boolean_node (cmp == NE_EXPR, type); }
1438 (if (wi::gt_p (@1, @2, TYPE_SIGN (TREE_TYPE (@0))))
1439 (cmp @0 @2)))))
1440(for cmp (eq ne)
1441 (simplify
1442 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
1443 (if (wi::gt_p (@1, @2, TYPE_SIGN (TREE_TYPE (@0))))
1444 { constant_boolean_node (cmp == NE_EXPR, type); }
1445 (if (wi::lt_p (@1, @2, TYPE_SIGN (TREE_TYPE (@0))))
1446 (cmp @0 @2)))))
1447/* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
1448(for minmax (min min max max min min max max )
1449 cmp (lt le gt ge gt ge lt le )
1450 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
1451 (simplify
1452 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
1453 (comb (cmp @0 @2) (cmp @1 @2))))
1454
a7f24614
RB
1455/* Simplifications of shift and rotates. */
1456
1457(for rotate (lrotate rrotate)
1458 (simplify
1459 (rotate integer_all_onesp@0 @1)
1460 @0))
1461
1462/* Optimize -1 >> x for arithmetic right shifts. */
1463(simplify
1464 (rshift integer_all_onesp@0 @1)
1465 (if (!TYPE_UNSIGNED (type)
1466 && tree_expr_nonnegative_p (@1))
1467 @0))
1468
12085390
N
1469/* Optimize (x >> c) << c into x & (-1<<c). */
1470(simplify
1471 (lshift (rshift @0 INTEGER_CST@1) @1)
1472 (if (wi::ltu_p (@1, element_precision (type)))
1473 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
1474
1475/* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
1476 types. */
1477(simplify
1478 (rshift (lshift @0 INTEGER_CST@1) @1)
1479 (if (TYPE_UNSIGNED (type)
1480 && (wi::ltu_p (@1, element_precision (type))))
1481 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
1482
a7f24614
RB
1483(for shiftrotate (lrotate rrotate lshift rshift)
1484 (simplify
1485 (shiftrotate @0 integer_zerop)
1486 (non_lvalue @0))
1487 (simplify
1488 (shiftrotate integer_zerop@0 @1)
1489 @0)
1490 /* Prefer vector1 << scalar to vector1 << vector2
1491 if vector2 is uniform. */
1492 (for vec (VECTOR_CST CONSTRUCTOR)
1493 (simplify
1494 (shiftrotate @0 vec@1)
1495 (with { tree tem = uniform_vector_p (@1); }
1496 (if (tem)
1497 (shiftrotate @0 { tem; }))))))
1498
1499/* Rewrite an LROTATE_EXPR by a constant into an
1500 RROTATE_EXPR by a new constant. */
1501(simplify
1502 (lrotate @0 INTEGER_CST@1)
23f27839 1503 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
a7f24614
RB
1504 build_int_cst (TREE_TYPE (@1),
1505 element_precision (type)), @1); }))
1506
14ea9f92
RB
1507/* Turn (a OP c1) OP c2 into a OP (c1+c2). */
1508(for op (lrotate rrotate rshift lshift)
1509 (simplify
1510 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
1511 (with { unsigned int prec = element_precision (type); }
1512 (if (wi::ge_p (@1, 0, TYPE_SIGN (TREE_TYPE (@1)))
1513 && wi::lt_p (@1, prec, TYPE_SIGN (TREE_TYPE (@1)))
1514 && wi::ge_p (@2, 0, TYPE_SIGN (TREE_TYPE (@2)))
1515 && wi::lt_p (@2, prec, TYPE_SIGN (TREE_TYPE (@2))))
1516 (with { unsigned int low = wi::add (@1, @2).to_uhwi (); }
1517 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
1518 being well defined. */
1519 (if (low >= prec)
1520 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
8fdc6c67 1521 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
50301115 1522 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
8fdc6c67
RB
1523 { build_zero_cst (type); }
1524 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
1525 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
14ea9f92
RB
1526
1527
01ada710
MP
1528/* ((1 << A) & 1) != 0 -> A == 0
1529 ((1 << A) & 1) == 0 -> A != 0 */
1530(for cmp (ne eq)
1531 icmp (eq ne)
1532 (simplify
1533 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
1534 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
cc7b5acf 1535
f2e609c3
MP
1536/* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
1537 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
1538 if CST2 != 0. */
1539(for cmp (ne eq)
1540 (simplify
1541 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
1542 (with { int cand = wi::ctz (@2) - wi::ctz (@0); }
1543 (if (cand < 0
1544 || (!integer_zerop (@2)
1545 && wi::ne_p (wi::lshift (@0, cand), @2)))
8fdc6c67
RB
1546 { constant_boolean_node (cmp == NE_EXPR, type); }
1547 (if (!integer_zerop (@2)
1548 && wi::eq_p (wi::lshift (@0, cand), @2))
1549 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
f2e609c3 1550
1ffbaa3f
RB
1551/* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
1552 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
1553 if the new mask might be further optimized. */
1554(for shift (lshift rshift)
1555 (simplify
44fc0a51
RB
1556 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
1557 INTEGER_CST@2)
1ffbaa3f
RB
1558 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
1559 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
1560 && tree_fits_uhwi_p (@1)
1561 && tree_to_uhwi (@1) > 0
1562 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
1563 (with
1564 {
1565 unsigned int shiftc = tree_to_uhwi (@1);
1566 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
1567 unsigned HOST_WIDE_INT newmask, zerobits = 0;
1568 tree shift_type = TREE_TYPE (@3);
1569 unsigned int prec;
1570
1571 if (shift == LSHIFT_EXPR)
fecfbfa4 1572 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
1ffbaa3f
RB
1573 else if (shift == RSHIFT_EXPR
1574 && (TYPE_PRECISION (shift_type)
1575 == GET_MODE_PRECISION (TYPE_MODE (shift_type))))
1576 {
1577 prec = TYPE_PRECISION (TREE_TYPE (@3));
1578 tree arg00 = @0;
1579 /* See if more bits can be proven as zero because of
1580 zero extension. */
1581 if (@3 != @0
1582 && TYPE_UNSIGNED (TREE_TYPE (@0)))
1583 {
1584 tree inner_type = TREE_TYPE (@0);
1585 if ((TYPE_PRECISION (inner_type)
1586 == GET_MODE_PRECISION (TYPE_MODE (inner_type)))
1587 && TYPE_PRECISION (inner_type) < prec)
1588 {
1589 prec = TYPE_PRECISION (inner_type);
1590 /* See if we can shorten the right shift. */
1591 if (shiftc < prec)
1592 shift_type = inner_type;
1593 /* Otherwise X >> C1 is all zeros, so we'll optimize
1594 it into (X, 0) later on by making sure zerobits
1595 is all ones. */
1596 }
1597 }
dd4786fe 1598 zerobits = HOST_WIDE_INT_M1U;
1ffbaa3f
RB
1599 if (shiftc < prec)
1600 {
1601 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
1602 zerobits <<= prec - shiftc;
1603 }
1604 /* For arithmetic shift if sign bit could be set, zerobits
1605 can contain actually sign bits, so no transformation is
1606 possible, unless MASK masks them all away. In that
1607 case the shift needs to be converted into logical shift. */
1608 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
1609 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
1610 {
1611 if ((mask & zerobits) == 0)
1612 shift_type = unsigned_type_for (TREE_TYPE (@3));
1613 else
1614 zerobits = 0;
1615 }
1616 }
1617 }
1618 /* ((X << 16) & 0xff00) is (X, 0). */
1619 (if ((mask & zerobits) == mask)
8fdc6c67
RB
1620 { build_int_cst (type, 0); }
1621 (with { newmask = mask | zerobits; }
1622 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
1623 (with
1624 {
1625 /* Only do the transformation if NEWMASK is some integer
1626 mode's mask. */
1627 for (prec = BITS_PER_UNIT;
1628 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
fecfbfa4 1629 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
8fdc6c67
RB
1630 break;
1631 }
1632 (if (prec < HOST_BITS_PER_WIDE_INT
dd4786fe 1633 || newmask == HOST_WIDE_INT_M1U)
8fdc6c67
RB
1634 (with
1635 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
1636 (if (!tree_int_cst_equal (newmaskt, @2))
1637 (if (shift_type != TREE_TYPE (@3))
1638 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
1639 (bit_and @4 { newmaskt; })))))))))))))
1ffbaa3f 1640
84ff66b8
AV
1641/* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
1642 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
98e30e51 1643(for shift (lshift rshift)
84ff66b8
AV
1644 (for bit_op (bit_and bit_xor bit_ior)
1645 (simplify
1646 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
1647 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1648 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
1649 (bit_op (shift (convert @0) @1) { mask; }))))))
98e30e51 1650
ad1d92ab
MM
1651/* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
1652(simplify
1653 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
1654 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
ece46666
MG
1655 && (element_precision (TREE_TYPE (@0))
1656 <= element_precision (TREE_TYPE (@1))
1657 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
ad1d92ab
MM
1658 (with
1659 { tree shift_type = TREE_TYPE (@0); }
1660 (convert (rshift (convert:shift_type @1) @2)))))
1661
1662/* ~(~X >>r Y) -> X >>r Y
1663 ~(~X <<r Y) -> X <<r Y */
1664(for rotate (lrotate rrotate)
1665 (simplify
1666 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
ece46666
MG
1667 (if ((element_precision (TREE_TYPE (@0))
1668 <= element_precision (TREE_TYPE (@1))
1669 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
1670 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
1671 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
ad1d92ab
MM
1672 (with
1673 { tree rotate_type = TREE_TYPE (@0); }
1674 (convert (rotate (convert:rotate_type @1) @2))))))
98e30e51 1675
d4573ffe
RB
1676/* Simplifications of conversions. */
1677
1678/* Basic strip-useless-type-conversions / strip_nops. */
f3582e54 1679(for cvt (convert view_convert float fix_trunc)
d4573ffe
RB
1680 (simplify
1681 (cvt @0)
1682 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
1683 || (GENERIC && type == TREE_TYPE (@0)))
1684 @0)))
1685
1686/* Contract view-conversions. */
1687(simplify
1688 (view_convert (view_convert @0))
1689 (view_convert @0))
1690
1691/* For integral conversions with the same precision or pointer
1692 conversions use a NOP_EXPR instead. */
1693(simplify
1694 (view_convert @0)
1695 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
1696 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1697 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
1698 (convert @0)))
1699
1700/* Strip inner integral conversions that do not change precision or size. */
1701(simplify
1702 (view_convert (convert@0 @1))
1703 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1704 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
1705 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1706 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
1707 (view_convert @1)))
1708
1709/* Re-association barriers around constants and other re-association
1710 barriers can be removed. */
1711(simplify
1712 (paren CONSTANT_CLASS_P@0)
1713 @0)
1714(simplify
1715 (paren (paren@1 @0))
1716 @1)
1e51d0a2
RB
1717
1718/* Handle cases of two conversions in a row. */
1719(for ocvt (convert float fix_trunc)
1720 (for icvt (convert float)
1721 (simplify
1722 (ocvt (icvt@1 @0))
1723 (with
1724 {
1725 tree inside_type = TREE_TYPE (@0);
1726 tree inter_type = TREE_TYPE (@1);
1727 int inside_int = INTEGRAL_TYPE_P (inside_type);
1728 int inside_ptr = POINTER_TYPE_P (inside_type);
1729 int inside_float = FLOAT_TYPE_P (inside_type);
09240451 1730 int inside_vec = VECTOR_TYPE_P (inside_type);
1e51d0a2
RB
1731 unsigned int inside_prec = TYPE_PRECISION (inside_type);
1732 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
1733 int inter_int = INTEGRAL_TYPE_P (inter_type);
1734 int inter_ptr = POINTER_TYPE_P (inter_type);
1735 int inter_float = FLOAT_TYPE_P (inter_type);
09240451 1736 int inter_vec = VECTOR_TYPE_P (inter_type);
1e51d0a2
RB
1737 unsigned int inter_prec = TYPE_PRECISION (inter_type);
1738 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
1739 int final_int = INTEGRAL_TYPE_P (type);
1740 int final_ptr = POINTER_TYPE_P (type);
1741 int final_float = FLOAT_TYPE_P (type);
09240451 1742 int final_vec = VECTOR_TYPE_P (type);
1e51d0a2
RB
1743 unsigned int final_prec = TYPE_PRECISION (type);
1744 int final_unsignedp = TYPE_UNSIGNED (type);
1745 }
64d3a1f0
RB
1746 (switch
1747 /* In addition to the cases of two conversions in a row
1748 handled below, if we are converting something to its own
1749 type via an object of identical or wider precision, neither
1750 conversion is needed. */
1751 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
1752 || (GENERIC
1753 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
1754 && (((inter_int || inter_ptr) && final_int)
1755 || (inter_float && final_float))
1756 && inter_prec >= final_prec)
1757 (ocvt @0))
1758
1759 /* Likewise, if the intermediate and initial types are either both
1760 float or both integer, we don't need the middle conversion if the
1761 former is wider than the latter and doesn't change the signedness
1762 (for integers). Avoid this if the final type is a pointer since
36088299 1763 then we sometimes need the middle conversion. */
64d3a1f0
RB
1764 (if (((inter_int && inside_int) || (inter_float && inside_float))
1765 && (final_int || final_float)
1766 && inter_prec >= inside_prec
36088299 1767 && (inter_float || inter_unsignedp == inside_unsignedp))
64d3a1f0
RB
1768 (ocvt @0))
1769
1770 /* If we have a sign-extension of a zero-extended value, we can
1771 replace that by a single zero-extension. Likewise if the
1772 final conversion does not change precision we can drop the
1773 intermediate conversion. */
1774 (if (inside_int && inter_int && final_int
1775 && ((inside_prec < inter_prec && inter_prec < final_prec
1776 && inside_unsignedp && !inter_unsignedp)
1777 || final_prec == inter_prec))
1778 (ocvt @0))
1779
1780 /* Two conversions in a row are not needed unless:
1e51d0a2
RB
1781 - some conversion is floating-point (overstrict for now), or
1782 - some conversion is a vector (overstrict for now), or
1783 - the intermediate type is narrower than both initial and
1784 final, or
1785 - the intermediate type and innermost type differ in signedness,
1786 and the outermost type is wider than the intermediate, or
1787 - the initial type is a pointer type and the precisions of the
1788 intermediate and final types differ, or
1789 - the final type is a pointer type and the precisions of the
1790 initial and intermediate types differ. */
64d3a1f0
RB
1791 (if (! inside_float && ! inter_float && ! final_float
1792 && ! inside_vec && ! inter_vec && ! final_vec
1793 && (inter_prec >= inside_prec || inter_prec >= final_prec)
1794 && ! (inside_int && inter_int
1795 && inter_unsignedp != inside_unsignedp
1796 && inter_prec < final_prec)
1797 && ((inter_unsignedp && inter_prec > inside_prec)
1798 == (final_unsignedp && final_prec > inter_prec))
1799 && ! (inside_ptr && inter_prec != final_prec)
36088299 1800 && ! (final_ptr && inside_prec != inter_prec))
64d3a1f0
RB
1801 (ocvt @0))
1802
1803 /* A truncation to an unsigned type (a zero-extension) should be
1804 canonicalized as bitwise and of a mask. */
1d510e04
JJ
1805 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
1806 && final_int && inter_int && inside_int
64d3a1f0
RB
1807 && final_prec == inside_prec
1808 && final_prec > inter_prec
1809 && inter_unsignedp)
1810 (convert (bit_and @0 { wide_int_to_tree
1811 (inside_type,
1812 wi::mask (inter_prec, false,
1813 TYPE_PRECISION (inside_type))); })))
1814
1815 /* If we are converting an integer to a floating-point that can
1816 represent it exactly and back to an integer, we can skip the
1817 floating-point conversion. */
1818 (if (GIMPLE /* PR66211 */
1819 && inside_int && inter_float && final_int &&
1820 (unsigned) significand_size (TYPE_MODE (inter_type))
1821 >= inside_prec - !inside_unsignedp)
1822 (convert @0)))))))
ea2042ba
RB
1823
1824/* If we have a narrowing conversion to an integral type that is fed by a
1825 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
1826 masks off bits outside the final type (and nothing else). */
1827(simplify
1828 (convert (bit_and @0 INTEGER_CST@1))
1829 (if (INTEGRAL_TYPE_P (type)
1830 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1831 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
1832 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
1833 TYPE_PRECISION (type)), 0))
1834 (convert @0)))
a25454ea
RB
1835
1836
1837/* (X /[ex] A) * A -> X. */
1838(simplify
2eef1fc1
RB
1839 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
1840 (convert @0))
eaeba53a 1841
a7f24614
RB
1842/* Canonicalization of binary operations. */
1843
1844/* Convert X + -C into X - C. */
1845(simplify
1846 (plus @0 REAL_CST@1)
1847 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
23f27839 1848 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
a7f24614
RB
1849 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
1850 (minus @0 { tem; })))))
1851
6b6aa8d3 1852/* Convert x+x into x*2. */
a7f24614
RB
1853(simplify
1854 (plus @0 @0)
1855 (if (SCALAR_FLOAT_TYPE_P (type))
6b6aa8d3
MG
1856 (mult @0 { build_real (type, dconst2); })
1857 (if (INTEGRAL_TYPE_P (type))
1858 (mult @0 { build_int_cst (type, 2); }))))
a7f24614
RB
1859
1860(simplify
1861 (minus integer_zerop @1)
1862 (negate @1))
1863
1864/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
1865 ARG0 is zero and X + ARG0 reduces to X, since that would mean
1866 (-ARG1 + ARG0) reduces to -ARG1. */
1867(simplify
1868 (minus real_zerop@0 @1)
1869 (if (fold_real_zero_addition_p (type, @0, 0))
1870 (negate @1)))
1871
1872/* Transform x * -1 into -x. */
1873(simplify
1874 (mult @0 integer_minus_onep)
1875 (negate @0))
eaeba53a 1876
96285749
RS
1877/* True if we can easily extract the real and imaginary parts of a complex
1878 number. */
1879(match compositional_complex
1880 (convert? (complex @0 @1)))
1881
eaeba53a
RB
1882/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
1883(simplify
1884 (complex (realpart @0) (imagpart @0))
1885 @0)
1886(simplify
1887 (realpart (complex @0 @1))
1888 @0)
1889(simplify
1890 (imagpart (complex @0 @1))
1891 @1)
83633539 1892
77c028c5
MG
1893/* Sometimes we only care about half of a complex expression. */
1894(simplify
1895 (realpart (convert?:s (conj:s @0)))
1896 (convert (realpart @0)))
1897(simplify
1898 (imagpart (convert?:s (conj:s @0)))
1899 (convert (negate (imagpart @0))))
1900(for part (realpart imagpart)
1901 (for op (plus minus)
1902 (simplify
1903 (part (convert?:s@2 (op:s @0 @1)))
1904 (convert (op (part @0) (part @1))))))
1905(simplify
1906 (realpart (convert?:s (CEXPI:s @0)))
1907 (convert (COS @0)))
1908(simplify
1909 (imagpart (convert?:s (CEXPI:s @0)))
1910 (convert (SIN @0)))
1911
1912/* conj(conj(x)) -> x */
1913(simplify
1914 (conj (convert? (conj @0)))
1915 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
1916 (convert @0)))
1917
1918/* conj({x,y}) -> {x,-y} */
1919(simplify
1920 (conj (convert?:s (complex:s @0 @1)))
1921 (with { tree itype = TREE_TYPE (type); }
1922 (complex (convert:itype @0) (negate (convert:itype @1)))))
83633539
RB
1923
1924/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
1925(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
1926 (simplify
1927 (bswap (bswap @0))
1928 @0)
1929 (simplify
1930 (bswap (bit_not (bswap @0)))
1931 (bit_not @0))
1932 (for bitop (bit_xor bit_ior bit_and)
1933 (simplify
1934 (bswap (bitop:c (bswap @0) @1))
1935 (bitop @0 (bswap @1)))))
96994de0
RB
1936
1937
1938/* Combine COND_EXPRs and VEC_COND_EXPRs. */
1939
1940/* Simplify constant conditions.
1941 Only optimize constant conditions when the selected branch
1942 has the same type as the COND_EXPR. This avoids optimizing
1943 away "c ? x : throw", where the throw has a void type.
1944 Note that we cannot throw away the fold-const.c variant nor
1945 this one as we depend on doing this transform before possibly
1946 A ? B : B -> B triggers and the fold-const.c one can optimize
1947 0 ? A : B to B even if A has side-effects. Something
1948 genmatch cannot handle. */
1949(simplify
1950 (cond INTEGER_CST@0 @1 @2)
8fdc6c67
RB
1951 (if (integer_zerop (@0))
1952 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
1953 @2)
1954 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
1955 @1)))
96994de0
RB
1956(simplify
1957 (vec_cond VECTOR_CST@0 @1 @2)
1958 (if (integer_all_onesp (@0))
8fdc6c67
RB
1959 @1
1960 (if (integer_zerop (@0))
1961 @2)))
96994de0 1962
b5481987
BC
1963/* Simplification moved from fold_cond_expr_with_comparison. It may also
1964 be extended. */
e2535011
BC
1965/* This pattern implements two kinds simplification:
1966
1967 Case 1)
1968 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
b5481987
BC
1969 1) Conversions are type widening from smaller type.
1970 2) Const c1 equals to c2 after canonicalizing comparison.
1971 3) Comparison has tree code LT, LE, GT or GE.
1972 This specific pattern is needed when (cmp (convert x) c) may not
1973 be simplified by comparison patterns because of multiple uses of
1974 x. It also makes sense here because simplifying across multiple
e2535011
BC
1975 referred var is always benefitial for complicated cases.
1976
1977 Case 2)
1978 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
1979(for cmp (lt le gt ge eq)
b5481987 1980 (simplify
ae22bc5d 1981 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
b5481987
BC
1982 (with
1983 {
1984 tree from_type = TREE_TYPE (@1);
1985 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
ae22bc5d 1986 enum tree_code code = ERROR_MARK;
b5481987 1987
ae22bc5d
BC
1988 if (INTEGRAL_TYPE_P (from_type)
1989 && int_fits_type_p (@2, from_type)
b5481987
BC
1990 && (types_match (c1_type, from_type)
1991 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
1992 && (TYPE_UNSIGNED (from_type)
1993 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
1994 && (types_match (c2_type, from_type)
1995 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
1996 && (TYPE_UNSIGNED (from_type)
1997 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
1998 {
ae22bc5d 1999 if (cmp != EQ_EXPR)
b5481987 2000 {
e2535011
BC
2001 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2002 {
2003 /* X <= Y - 1 equals to X < Y. */
ae22bc5d 2004 if (cmp == LE_EXPR)
e2535011
BC
2005 code = LT_EXPR;
2006 /* X > Y - 1 equals to X >= Y. */
ae22bc5d 2007 if (cmp == GT_EXPR)
e2535011
BC
2008 code = GE_EXPR;
2009 }
2010 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2011 {
2012 /* X < Y + 1 equals to X <= Y. */
ae22bc5d 2013 if (cmp == LT_EXPR)
e2535011
BC
2014 code = LE_EXPR;
2015 /* X >= Y + 1 equals to X > Y. */
ae22bc5d 2016 if (cmp == GE_EXPR)
e2535011
BC
2017 code = GT_EXPR;
2018 }
ae22bc5d
BC
2019 if (code != ERROR_MARK
2020 || wi::to_widest (@2) == wi::to_widest (@3))
e2535011 2021 {
ae22bc5d 2022 if (cmp == LT_EXPR || cmp == LE_EXPR)
e2535011 2023 code = MIN_EXPR;
ae22bc5d 2024 if (cmp == GT_EXPR || cmp == GE_EXPR)
e2535011
BC
2025 code = MAX_EXPR;
2026 }
b5481987 2027 }
e2535011 2028 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
ae22bc5d
BC
2029 else if (int_fits_type_p (@3, from_type))
2030 code = EQ_EXPR;
b5481987
BC
2031 }
2032 }
2033 (if (code == MAX_EXPR)
21aaaf1e 2034 (convert (max @1 (convert @2)))
b5481987 2035 (if (code == MIN_EXPR)
21aaaf1e 2036 (convert (min @1 (convert @2)))
e2535011 2037 (if (code == EQ_EXPR)
ae22bc5d 2038 (convert (cond (eq @1 (convert @3))
21aaaf1e 2039 (convert:from_type @3) (convert:from_type @2)))))))))
b5481987 2040
96994de0
RB
2041(for cnd (cond vec_cond)
2042 /* A ? B : (A ? X : C) -> A ? B : C. */
2043 (simplify
2044 (cnd @0 (cnd @0 @1 @2) @3)
2045 (cnd @0 @1 @3))
2046 (simplify
2047 (cnd @0 @1 (cnd @0 @2 @3))
2048 (cnd @0 @1 @3))
24a179f8
RB
2049 /* A ? B : (!A ? C : X) -> A ? B : C. */
2050 /* ??? This matches embedded conditions open-coded because genmatch
2051 would generate matching code for conditions in separate stmts only.
2052 The following is still important to merge then and else arm cases
2053 from if-conversion. */
2054 (simplify
2055 (cnd @0 @1 (cnd @2 @3 @4))
2056 (if (COMPARISON_CLASS_P (@0)
2057 && COMPARISON_CLASS_P (@2)
2058 && invert_tree_comparison
2059 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@2)
2060 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@2, 0), 0)
2061 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@2, 1), 0))
2062 (cnd @0 @1 @3)))
2063 (simplify
2064 (cnd @0 (cnd @1 @2 @3) @4)
2065 (if (COMPARISON_CLASS_P (@0)
2066 && COMPARISON_CLASS_P (@1)
2067 && invert_tree_comparison
2068 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@1)
2069 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@1, 0), 0)
2070 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@1, 1), 0))
2071 (cnd @0 @3 @4)))
96994de0
RB
2072
2073 /* A ? B : B -> B. */
2074 (simplify
2075 (cnd @0 @1 @1)
09240451 2076 @1)
96994de0 2077
09240451
MG
2078 /* !A ? B : C -> A ? C : B. */
2079 (simplify
2080 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
2081 (cnd @0 @2 @1)))
f84e7fd6 2082
a3ca1bc5
RB
2083/* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
2084 return all -1 or all 0 results. */
f43d102e
RS
2085/* ??? We could instead convert all instances of the vec_cond to negate,
2086 but that isn't necessarily a win on its own. */
2087(simplify
a3ca1bc5 2088 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
f43d102e 2089 (if (VECTOR_TYPE_P (type)
4d8989d5 2090 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1))
f43d102e 2091 && (TYPE_MODE (TREE_TYPE (type))
4d8989d5 2092 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
a3ca1bc5 2093 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
f43d102e 2094
a3ca1bc5 2095/* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
f43d102e 2096(simplify
a3ca1bc5 2097 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
f43d102e 2098 (if (VECTOR_TYPE_P (type)
4d8989d5 2099 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1))
f43d102e 2100 && (TYPE_MODE (TREE_TYPE (type))
4d8989d5 2101 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
a3ca1bc5 2102 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
f84e7fd6 2103
2ee05f1e 2104
f84e7fd6
RB
2105/* Simplifications of comparisons. */
2106
24f1db9c
RB
2107/* See if we can reduce the magnitude of a constant involved in a
2108 comparison by changing the comparison code. This is a canonicalization
2109 formerly done by maybe_canonicalize_comparison_1. */
2110(for cmp (le gt)
2111 acmp (lt ge)
2112 (simplify
2113 (cmp @0 INTEGER_CST@1)
2114 (if (tree_int_cst_sgn (@1) == -1)
2115 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))))
2116(for cmp (ge lt)
2117 acmp (gt le)
2118 (simplify
2119 (cmp @0 INTEGER_CST@1)
2120 (if (tree_int_cst_sgn (@1) == 1)
2121 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))))
2122
2123
f84e7fd6
RB
2124/* We can simplify a logical negation of a comparison to the
2125 inverted comparison. As we cannot compute an expression
2126 operator using invert_tree_comparison we have to simulate
2127 that with expression code iteration. */
2128(for cmp (tcc_comparison)
2129 icmp (inverted_tcc_comparison)
2130 ncmp (inverted_tcc_comparison_with_nans)
2131 /* Ideally we'd like to combine the following two patterns
2132 and handle some more cases by using
2133 (logical_inverted_value (cmp @0 @1))
2134 here but for that genmatch would need to "inline" that.
2135 For now implement what forward_propagate_comparison did. */
2136 (simplify
2137 (bit_not (cmp @0 @1))
2138 (if (VECTOR_TYPE_P (type)
2139 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
2140 /* Comparison inversion may be impossible for trapping math,
2141 invert_tree_comparison will tell us. But we can't use
2142 a computed operator in the replacement tree thus we have
2143 to play the trick below. */
2144 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 2145 (cmp, HONOR_NANS (@0)); }
f84e7fd6 2146 (if (ic == icmp)
8fdc6c67
RB
2147 (icmp @0 @1)
2148 (if (ic == ncmp)
2149 (ncmp @0 @1))))))
f84e7fd6 2150 (simplify
09240451
MG
2151 (bit_xor (cmp @0 @1) integer_truep)
2152 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 2153 (cmp, HONOR_NANS (@0)); }
09240451 2154 (if (ic == icmp)
8fdc6c67
RB
2155 (icmp @0 @1)
2156 (if (ic == ncmp)
2157 (ncmp @0 @1))))))
e18c1d66 2158
2ee05f1e
RB
2159/* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
2160 ??? The transformation is valid for the other operators if overflow
2161 is undefined for the type, but performing it here badly interacts
2162 with the transformation in fold_cond_expr_with_comparison which
2163 attempts to synthetize ABS_EXPR. */
2164(for cmp (eq ne)
2165 (simplify
d9ba1961
RB
2166 (cmp (minus@2 @0 @1) integer_zerop)
2167 (if (single_use (@2))
2168 (cmp @0 @1))))
2ee05f1e
RB
2169
2170/* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
2171 signed arithmetic case. That form is created by the compiler
2172 often enough for folding it to be of value. One example is in
2173 computing loop trip counts after Operator Strength Reduction. */
07cdc2b8
RB
2174(for cmp (simple_comparison)
2175 scmp (swapped_simple_comparison)
2ee05f1e 2176 (simplify
bc6e9db4 2177 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
2ee05f1e
RB
2178 /* Handle unfolded multiplication by zero. */
2179 (if (integer_zerop (@1))
8fdc6c67
RB
2180 (cmp @1 @2)
2181 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
bc6e9db4
RB
2182 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2183 && single_use (@3))
8fdc6c67
RB
2184 /* If @1 is negative we swap the sense of the comparison. */
2185 (if (tree_int_cst_sgn (@1) < 0)
2186 (scmp @0 @2)
2187 (cmp @0 @2))))))
2ee05f1e
RB
2188
2189/* Simplify comparison of something with itself. For IEEE
2190 floating-point, we can only do some of these simplifications. */
287f8f17 2191(for cmp (eq ge le)
2ee05f1e
RB
2192 (simplify
2193 (cmp @0 @0)
287f8f17 2194 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
b9407883 2195 || ! HONOR_NANS (@0))
287f8f17
RB
2196 { constant_boolean_node (true, type); }
2197 (if (cmp != EQ_EXPR)
2198 (eq @0 @0)))))
2ee05f1e
RB
2199(for cmp (ne gt lt)
2200 (simplify
2201 (cmp @0 @0)
2202 (if (cmp != NE_EXPR
2203 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
b9407883 2204 || ! HONOR_NANS (@0))
2ee05f1e 2205 { constant_boolean_node (false, type); })))
b5d3d787
RB
2206(for cmp (unle unge uneq)
2207 (simplify
2208 (cmp @0 @0)
2209 { constant_boolean_node (true, type); }))
dd53d197
MG
2210(for cmp (unlt ungt)
2211 (simplify
2212 (cmp @0 @0)
2213 (unordered @0 @0)))
b5d3d787
RB
2214(simplify
2215 (ltgt @0 @0)
2216 (if (!flag_trapping_math)
2217 { constant_boolean_node (false, type); }))
2ee05f1e
RB
2218
2219/* Fold ~X op ~Y as Y op X. */
07cdc2b8 2220(for cmp (simple_comparison)
2ee05f1e 2221 (simplify
7fe996ba
RB
2222 (cmp (bit_not@2 @0) (bit_not@3 @1))
2223 (if (single_use (@2) && single_use (@3))
2224 (cmp @1 @0))))
2ee05f1e
RB
2225
2226/* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
07cdc2b8
RB
2227(for cmp (simple_comparison)
2228 scmp (swapped_simple_comparison)
2ee05f1e 2229 (simplify
7fe996ba
RB
2230 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
2231 (if (single_use (@2)
2232 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
2ee05f1e
RB
2233 (scmp @0 (bit_not @1)))))
2234
07cdc2b8
RB
2235(for cmp (simple_comparison)
2236 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
2237 (simplify
2238 (cmp (convert@2 @0) (convert? @1))
2239 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2240 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
2241 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
2242 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
2243 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
2244 (with
2245 {
2246 tree type1 = TREE_TYPE (@1);
2247 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
2248 {
2249 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
2250 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
2251 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
2252 type1 = float_type_node;
2253 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
2254 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
2255 type1 = double_type_node;
2256 }
2257 tree newtype
2258 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
2259 ? TREE_TYPE (@0) : type1);
2260 }
2261 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
2262 (cmp (convert:newtype @0) (convert:newtype @1))))))
2263
2264 (simplify
2265 (cmp @0 REAL_CST@1)
2266 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
64d3a1f0
RB
2267 (switch
2268 /* a CMP (-0) -> a CMP 0 */
2269 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
2270 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
2271 /* x != NaN is always true, other ops are always false. */
2272 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
2273 && ! HONOR_SNANS (@1))
2274 { constant_boolean_node (cmp == NE_EXPR, type); })
2275 /* Fold comparisons against infinity. */
2276 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
2277 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
2278 (with
2279 {
2280 REAL_VALUE_TYPE max;
2281 enum tree_code code = cmp;
2282 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
2283 if (neg)
2284 code = swap_tree_comparison (code);
2285 }
2286 (switch
2287 /* x > +Inf is always false, if with ignore sNANs. */
2288 (if (code == GT_EXPR
2289 && ! HONOR_SNANS (@0))
2290 { constant_boolean_node (false, type); })
2291 (if (code == LE_EXPR)
2292 /* x <= +Inf is always true, if we don't case about NaNs. */
2293 (if (! HONOR_NANS (@0))
2294 { constant_boolean_node (true, type); }
b0eb889b 2295 /* x <= +Inf is the same as x == x, i.e. !isnan(x). */
64d3a1f0
RB
2296 (eq @0 @0)))
2297 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
2298 (if (code == EQ_EXPR || code == GE_EXPR)
2299 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
2300 (if (neg)
2301 (lt @0 { build_real (TREE_TYPE (@0), max); })
2302 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
2303 /* x < +Inf is always equal to x <= DBL_MAX. */
2304 (if (code == LT_EXPR)
2305 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
2306 (if (neg)
2307 (ge @0 { build_real (TREE_TYPE (@0), max); })
2308 (le @0 { build_real (TREE_TYPE (@0), max); }))))
2309 /* x != +Inf is always equal to !(x > DBL_MAX). */
2310 (if (code == NE_EXPR)
2311 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
2312 (if (! HONOR_NANS (@0))
2313 (if (neg)
2314 (ge @0 { build_real (TREE_TYPE (@0), max); })
2315 (le @0 { build_real (TREE_TYPE (@0), max); }))
2316 (if (neg)
2317 (bit_xor (lt @0 { build_real (TREE_TYPE (@0), max); })
2318 { build_one_cst (type); })
2319 (bit_xor (gt @0 { build_real (TREE_TYPE (@0), max); })
2320 { build_one_cst (type); }))))))))))
07cdc2b8
RB
2321
2322 /* If this is a comparison of a real constant with a PLUS_EXPR
2323 or a MINUS_EXPR of a real constant, we can convert it into a
2324 comparison with a revised real constant as long as no overflow
2325 occurs when unsafe_math_optimizations are enabled. */
2326 (if (flag_unsafe_math_optimizations)
2327 (for op (plus minus)
2328 (simplify
2329 (cmp (op @0 REAL_CST@1) REAL_CST@2)
2330 (with
2331 {
2332 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
2333 TREE_TYPE (@1), @2, @1);
2334 }
f980c9a2 2335 (if (tem && !TREE_OVERFLOW (tem))
07cdc2b8
RB
2336 (cmp @0 { tem; }))))))
2337
2338 /* Likewise, we can simplify a comparison of a real constant with
2339 a MINUS_EXPR whose first operand is also a real constant, i.e.
2340 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
2341 floating-point types only if -fassociative-math is set. */
2342 (if (flag_associative_math)
2343 (simplify
0409237b 2344 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
07cdc2b8 2345 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
f980c9a2 2346 (if (tem && !TREE_OVERFLOW (tem))
07cdc2b8
RB
2347 (cmp { tem; } @1)))))
2348
2349 /* Fold comparisons against built-in math functions. */
2350 (if (flag_unsafe_math_optimizations
2351 && ! flag_errno_math)
2352 (for sq (SQRT)
2353 (simplify
2354 (cmp (sq @0) REAL_CST@1)
64d3a1f0
RB
2355 (switch
2356 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2357 (switch
2358 /* sqrt(x) < y is always false, if y is negative. */
2359 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
8fdc6c67 2360 { constant_boolean_node (false, type); })
64d3a1f0
RB
2361 /* sqrt(x) > y is always true, if y is negative and we
2362 don't care about NaNs, i.e. negative values of x. */
2363 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
2364 { constant_boolean_node (true, type); })
2365 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
2366 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
c53233c6
RS
2367 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
2368 (switch
2369 /* sqrt(x) < 0 is always false. */
2370 (if (cmp == LT_EXPR)
2371 { constant_boolean_node (false, type); })
2372 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
2373 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
2374 { constant_boolean_node (true, type); })
2375 /* sqrt(x) <= 0 -> x == 0. */
2376 (if (cmp == LE_EXPR)
2377 (eq @0 @1))
2378 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
2379 == or !=. In the last case:
2380
2381 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
2382
2383 if x is negative or NaN. Due to -funsafe-math-optimizations,
2384 the results for other x follow from natural arithmetic. */
2385 (cmp @0 @1)))
64d3a1f0
RB
2386 (if (cmp == GT_EXPR || cmp == GE_EXPR)
2387 (with
2388 {
2389 REAL_VALUE_TYPE c2;
5c88ea94
RS
2390 real_arithmetic (&c2, MULT_EXPR,
2391 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
64d3a1f0
RB
2392 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
2393 }
2394 (if (REAL_VALUE_ISINF (c2))
2395 /* sqrt(x) > y is x == +Inf, when y is very large. */
2396 (if (HONOR_INFINITIES (@0))
2397 (eq @0 { build_real (TREE_TYPE (@0), c2); })
2398 { constant_boolean_node (false, type); })
2399 /* sqrt(x) > c is the same as x > c*c. */
2400 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
2401 (if (cmp == LT_EXPR || cmp == LE_EXPR)
2402 (with
2403 {
2404 REAL_VALUE_TYPE c2;
5c88ea94
RS
2405 real_arithmetic (&c2, MULT_EXPR,
2406 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
64d3a1f0
RB
2407 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
2408 }
2409 (if (REAL_VALUE_ISINF (c2))
2410 (switch
2411 /* sqrt(x) < y is always true, when y is a very large
2412 value and we don't care about NaNs or Infinities. */
2413 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
2414 { constant_boolean_node (true, type); })
2415 /* sqrt(x) < y is x != +Inf when y is very large and we
2416 don't care about NaNs. */
2417 (if (! HONOR_NANS (@0))
2418 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
2419 /* sqrt(x) < y is x >= 0 when y is very large and we
2420 don't care about Infinities. */
2421 (if (! HONOR_INFINITIES (@0))
2422 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
2423 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
2424 (if (GENERIC)
2425 (truth_andif
2426 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
2427 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
2428 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
2429 (if (! HONOR_NANS (@0))
2430 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
2431 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
2432 (if (GENERIC)
2433 (truth_andif
2434 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
2435 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))))))))))
2ee05f1e 2436
40fd269a
MG
2437/* Fold A /[ex] B CMP C to A CMP B * C. */
2438(for cmp (eq ne)
2439 (simplify
2440 (cmp (exact_div @0 @1) INTEGER_CST@2)
2441 (if (!integer_zerop (@1))
2442 (if (wi::eq_p (@2, 0))
2443 (cmp @0 @2)
2444 (if (TREE_CODE (@1) == INTEGER_CST)
2445 (with
2446 {
2447 bool ovf;
2448 wide_int prod = wi::mul (@2, @1, TYPE_SIGN (TREE_TYPE (@1)), &ovf);
2449 }
2450 (if (ovf)
2451 { constant_boolean_node (cmp == NE_EXPR, type); }
2452 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
2453(for cmp (lt le gt ge)
2454 (simplify
2455 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
2456 (if (wi::gt_p (@1, 0, TYPE_SIGN (TREE_TYPE (@1))))
2457 (with
2458 {
2459 bool ovf;
2460 wide_int prod = wi::mul (@2, @1, TYPE_SIGN (TREE_TYPE (@1)), &ovf);
2461 }
2462 (if (ovf)
2463 { constant_boolean_node (wi::lt_p (@2, 0, TYPE_SIGN (TREE_TYPE (@2)))
2464 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
2465 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
2466
cfdc4f33
MG
2467/* Unordered tests if either argument is a NaN. */
2468(simplify
2469 (bit_ior (unordered @0 @0) (unordered @1 @1))
aea417d7 2470 (if (types_match (@0, @1))
cfdc4f33 2471 (unordered @0 @1)))
257b01ba
MG
2472(simplify
2473 (bit_and (ordered @0 @0) (ordered @1 @1))
2474 (if (types_match (@0, @1))
2475 (ordered @0 @1)))
cfdc4f33
MG
2476(simplify
2477 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
2478 @2)
257b01ba
MG
2479(simplify
2480 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
2481 @2)
e18c1d66 2482
90c6f26c
RB
2483/* Simple range test simplifications. */
2484/* A < B || A >= B -> true. */
5d30c58d
RB
2485(for test1 (lt le le le ne ge)
2486 test2 (ge gt ge ne eq ne)
90c6f26c
RB
2487 (simplify
2488 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
2489 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2490 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
2491 { constant_boolean_node (true, type); })))
2492/* A < B && A >= B -> false. */
2493(for test1 (lt lt lt le ne eq)
2494 test2 (ge gt eq gt eq gt)
2495 (simplify
2496 (bit_and:c (test1 @0 @1) (test2 @0 @1))
2497 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2498 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
2499 { constant_boolean_node (false, type); })))
2500
534bd33b
MG
2501/* -A CMP -B -> B CMP A. */
2502(for cmp (tcc_comparison)
2503 scmp (swapped_tcc_comparison)
2504 (simplify
2505 (cmp (negate @0) (negate @1))
2506 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2507 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2508 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2509 (scmp @0 @1)))
2510 (simplify
2511 (cmp (negate @0) CONSTANT_CLASS_P@1)
2512 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2513 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2514 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
23f27839 2515 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
534bd33b
MG
2516 (if (tem && !TREE_OVERFLOW (tem))
2517 (scmp @0 { tem; }))))))
2518
b0eb889b
MG
2519/* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
2520(for op (eq ne)
2521 (simplify
2522 (op (abs @0) zerop@1)
2523 (op @0 @1)))
2524
79d4f7c6
RB
2525/* From fold_sign_changed_comparison and fold_widened_comparison. */
2526(for cmp (simple_comparison)
2527 (simplify
2528 (cmp (convert@0 @00) (convert?@1 @10))
452ec2a5 2529 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
79d4f7c6
RB
2530 /* Disable this optimization if we're casting a function pointer
2531 type on targets that require function pointer canonicalization. */
2532 && !(targetm.have_canonicalize_funcptr_for_compare ()
2533 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
2fde61e3
RB
2534 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
2535 && single_use (@0))
79d4f7c6
RB
2536 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
2537 && (TREE_CODE (@10) == INTEGER_CST
2538 || (@1 != @10 && types_match (TREE_TYPE (@10), TREE_TYPE (@00))))
2539 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
2540 || cmp == NE_EXPR
2541 || cmp == EQ_EXPR)
2542 && (POINTER_TYPE_P (TREE_TYPE (@00)) == POINTER_TYPE_P (TREE_TYPE (@0))))
2543 /* ??? The special-casing of INTEGER_CST conversion was in the original
2544 code and here to avoid a spurious overflow flag on the resulting
2545 constant which fold_convert produces. */
2546 (if (TREE_CODE (@1) == INTEGER_CST)
2547 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
2548 TREE_OVERFLOW (@1)); })
2549 (cmp @00 (convert @1)))
2550
2551 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
2552 /* If possible, express the comparison in the shorter mode. */
2553 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
7fd82d52
PP
2554 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
2555 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
2556 && TYPE_UNSIGNED (TREE_TYPE (@00))))
79d4f7c6
RB
2557 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
2558 || ((TYPE_PRECISION (TREE_TYPE (@00))
2559 >= TYPE_PRECISION (TREE_TYPE (@10)))
2560 && (TYPE_UNSIGNED (TREE_TYPE (@00))
2561 == TYPE_UNSIGNED (TREE_TYPE (@10))))
2562 || (TREE_CODE (@10) == INTEGER_CST
f6c15759 2563 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
79d4f7c6
RB
2564 && int_fits_type_p (@10, TREE_TYPE (@00)))))
2565 (cmp @00 (convert @10))
2566 (if (TREE_CODE (@10) == INTEGER_CST
f6c15759 2567 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
79d4f7c6
RB
2568 && !int_fits_type_p (@10, TREE_TYPE (@00)))
2569 (with
2570 {
2571 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
2572 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
2573 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
2574 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
2575 }
2576 (if (above || below)
2577 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
2578 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
2579 (if (cmp == LT_EXPR || cmp == LE_EXPR)
2580 { constant_boolean_node (above ? true : false, type); }
2581 (if (cmp == GT_EXPR || cmp == GE_EXPR)
2582 { constant_boolean_node (above ? false : true, type); }))))))))))))
66e1cacf 2583
96a111a3
RB
2584(for cmp (eq ne)
2585 /* A local variable can never be pointed to by
2586 the default SSA name of an incoming parameter.
2587 SSA names are canonicalized to 2nd place. */
2588 (simplify
2589 (cmp addr@0 SSA_NAME@1)
2590 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
2591 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
2592 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
2593 (if (TREE_CODE (base) == VAR_DECL
2594 && auto_var_in_fn_p (base, current_function_decl))
2595 (if (cmp == NE_EXPR)
2596 { constant_boolean_node (true, type); }
2597 { constant_boolean_node (false, type); }))))))
2598
66e1cacf
RB
2599/* Equality compare simplifications from fold_binary */
2600(for cmp (eq ne)
2601
2602 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
2603 Similarly for NE_EXPR. */
2604 (simplify
2605 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
2606 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
2607 && wi::bit_and_not (@1, @2) != 0)
2608 { constant_boolean_node (cmp == NE_EXPR, type); }))
2609
2610 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
2611 (simplify
2612 (cmp (bit_xor @0 @1) integer_zerop)
2613 (cmp @0 @1))
2614
2615 /* (X ^ Y) == Y becomes X == 0.
2616 Likewise (X ^ Y) == X becomes Y == 0. */
2617 (simplify
99e943a2 2618 (cmp:c (bit_xor:c @0 @1) @0)
66e1cacf
RB
2619 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
2620
2621 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
2622 (simplify
2623 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
2624 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
d057c866 2625 (cmp @0 (bit_xor @1 (convert @2)))))
d057c866
RB
2626
2627 (simplify
2628 (cmp (convert? addr@0) integer_zerop)
2629 (if (tree_single_nonzero_warnv_p (@0, NULL))
2630 { constant_boolean_node (cmp == NE_EXPR, type); })))
2631
b0eb889b
MG
2632/* If we have (A & C) == C where C is a power of 2, convert this into
2633 (A & C) != 0. Similarly for NE_EXPR. */
2634(for cmp (eq ne)
2635 icmp (ne eq)
2636 (simplify
2637 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
2638 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
2639
2640/* If we have (A & C) != 0 where C is the sign bit of A, convert
2641 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
2642(for cmp (eq ne)
2643 ncmp (ge lt)
2644 (simplify
2645 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
2646 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2647 && (TYPE_PRECISION (TREE_TYPE (@0))
2648 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
2649 && element_precision (@2) >= element_precision (@0)
2650 && wi::only_sign_bit_p (@1, element_precision (@0)))
2651 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
2652 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
2653
68aba1f6
RB
2654/* When the addresses are not directly of decls compare base and offset.
2655 This implements some remaining parts of fold_comparison address
2656 comparisons but still no complete part of it. Still it is good
2657 enough to make fold_stmt not regress when not dispatching to fold_binary. */
2658(for cmp (simple_comparison)
2659 (simplify
f501d5cd 2660 (cmp (convert1?@2 addr@0) (convert2? addr@1))
68aba1f6
RB
2661 (with
2662 {
2663 HOST_WIDE_INT off0, off1;
2664 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
2665 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
2666 if (base0 && TREE_CODE (base0) == MEM_REF)
2667 {
2668 off0 += mem_ref_offset (base0).to_short_addr ();
2669 base0 = TREE_OPERAND (base0, 0);
2670 }
2671 if (base1 && TREE_CODE (base1) == MEM_REF)
2672 {
2673 off1 += mem_ref_offset (base1).to_short_addr ();
2674 base1 = TREE_OPERAND (base1, 0);
2675 }
2676 }
da571fda
RB
2677 (if (base0 && base1)
2678 (with
2679 {
aad88aed 2680 int equal = 2;
70f40fea
JJ
2681 /* Punt in GENERIC on variables with value expressions;
2682 the value expressions might point to fields/elements
2683 of other vars etc. */
2684 if (GENERIC
2685 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
2686 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
2687 ;
2688 else if (decl_in_symtab_p (base0)
2689 && decl_in_symtab_p (base1))
da571fda
RB
2690 equal = symtab_node::get_create (base0)
2691 ->equal_address_to (symtab_node::get_create (base1));
c3bea076
RB
2692 else if ((DECL_P (base0)
2693 || TREE_CODE (base0) == SSA_NAME
2694 || TREE_CODE (base0) == STRING_CST)
2695 && (DECL_P (base1)
2696 || TREE_CODE (base1) == SSA_NAME
2697 || TREE_CODE (base1) == STRING_CST))
aad88aed 2698 equal = (base0 == base1);
da571fda
RB
2699 }
2700 (if (equal == 1
2701 && (cmp == EQ_EXPR || cmp == NE_EXPR
2702 /* If the offsets are equal we can ignore overflow. */
2703 || off0 == off1
2704 || POINTER_TYPE_OVERFLOW_UNDEFINED
c3bea076 2705 /* Or if we compare using pointers to decls or strings. */
da571fda 2706 || (POINTER_TYPE_P (TREE_TYPE (@2))
c3bea076 2707 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
da571fda
RB
2708 (switch
2709 (if (cmp == EQ_EXPR)
2710 { constant_boolean_node (off0 == off1, type); })
2711 (if (cmp == NE_EXPR)
2712 { constant_boolean_node (off0 != off1, type); })
2713 (if (cmp == LT_EXPR)
2714 { constant_boolean_node (off0 < off1, type); })
2715 (if (cmp == LE_EXPR)
2716 { constant_boolean_node (off0 <= off1, type); })
2717 (if (cmp == GE_EXPR)
2718 { constant_boolean_node (off0 >= off1, type); })
2719 (if (cmp == GT_EXPR)
2720 { constant_boolean_node (off0 > off1, type); }))
2721 (if (equal == 0
2722 && DECL_P (base0) && DECL_P (base1)
2723 /* If we compare this as integers require equal offset. */
2724 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
2725 || off0 == off1))
2726 (switch
2727 (if (cmp == EQ_EXPR)
2728 { constant_boolean_node (false, type); })
2729 (if (cmp == NE_EXPR)
2730 { constant_boolean_node (true, type); })))))))))
66e1cacf 2731
98998245
RB
2732/* Simplify pointer equality compares using PTA. */
2733(for neeq (ne eq)
2734 (simplify
2735 (neeq @0 @1)
2736 (if (POINTER_TYPE_P (TREE_TYPE (@0))
2737 && ptrs_compare_unequal (@0, @1))
2738 { neeq == EQ_EXPR ? boolean_false_node : boolean_true_node; })))
2739
8f63caf6 2740/* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
467719fb
PK
2741 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
2742 Disable the transform if either operand is pointer to function.
2743 This broke pr22051-2.c for arm where function pointer
2744 canonicalizaion is not wanted. */
1c0a8806 2745
8f63caf6
RB
2746(for cmp (ne eq)
2747 (simplify
2748 (cmp (convert @0) INTEGER_CST@1)
467719fb
PK
2749 (if ((POINTER_TYPE_P (TREE_TYPE (@0)) && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
2750 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2751 || (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && POINTER_TYPE_P (TREE_TYPE (@1))
2752 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
8f63caf6
RB
2753 (cmp @0 (convert @1)))))
2754
21aacde4
RB
2755/* Non-equality compare simplifications from fold_binary */
2756(for cmp (lt gt le ge)
2757 /* Comparisons with the highest or lowest possible integer of
2758 the specified precision will have known values. */
2759 (simplify
2760 (cmp (convert?@2 @0) INTEGER_CST@1)
2761 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2762 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
2763 (with
2764 {
2765 tree arg1_type = TREE_TYPE (@1);
2766 unsigned int prec = TYPE_PRECISION (arg1_type);
2767 wide_int max = wi::max_value (arg1_type);
2768 wide_int signed_max = wi::max_value (prec, SIGNED);
2769 wide_int min = wi::min_value (arg1_type);
2770 }
2771 (switch
2772 (if (wi::eq_p (@1, max))
2773 (switch
2774 (if (cmp == GT_EXPR)
2775 { constant_boolean_node (false, type); })
2776 (if (cmp == GE_EXPR)
2777 (eq @2 @1))
2778 (if (cmp == LE_EXPR)
2779 { constant_boolean_node (true, type); })
2780 (if (cmp == LT_EXPR)
2781 (ne @2 @1))))
21aacde4
RB
2782 (if (wi::eq_p (@1, min))
2783 (switch
2784 (if (cmp == LT_EXPR)
2785 { constant_boolean_node (false, type); })
2786 (if (cmp == LE_EXPR)
2787 (eq @2 @1))
2788 (if (cmp == GE_EXPR)
2789 { constant_boolean_node (true, type); })
2790 (if (cmp == GT_EXPR)
2791 (ne @2 @1))))
9bc22d19
RB
2792 (if (wi::eq_p (@1, max - 1))
2793 (switch
2794 (if (cmp == GT_EXPR)
2795 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))
2796 (if (cmp == LE_EXPR)
2797 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))))
21aacde4
RB
2798 (if (wi::eq_p (@1, min + 1))
2799 (switch
2800 (if (cmp == GE_EXPR)
2801 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))
2802 (if (cmp == LT_EXPR)
2803 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))))
2804 (if (wi::eq_p (@1, signed_max)
2805 && TYPE_UNSIGNED (arg1_type)
2806 /* We will flip the signedness of the comparison operator
2807 associated with the mode of @1, so the sign bit is
2808 specified by this mode. Check that @1 is the signed
2809 max associated with this sign bit. */
2810 && prec == GET_MODE_PRECISION (TYPE_MODE (arg1_type))
2811 /* signed_type does not work on pointer types. */
2812 && INTEGRAL_TYPE_P (arg1_type))
2813 /* The following case also applies to X < signed_max+1
2814 and X >= signed_max+1 because previous transformations. */
2815 (if (cmp == LE_EXPR || cmp == GT_EXPR)
2816 (with { tree st = signed_type_for (arg1_type); }
2817 (if (cmp == LE_EXPR)
2818 (ge (convert:st @0) { build_zero_cst (st); })
2819 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
2820
b5d3d787
RB
2821(for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
2822 /* If the second operand is NaN, the result is constant. */
2823 (simplify
2824 (cmp @0 REAL_CST@1)
2825 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
2826 && (cmp != LTGT_EXPR || ! flag_trapping_math))
50301115 2827 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
b5d3d787 2828 ? false : true, type); })))
21aacde4 2829
55cf3946
RB
2830/* bool_var != 0 becomes bool_var. */
2831(simplify
b5d3d787 2832 (ne @0 integer_zerop)
55cf3946
RB
2833 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
2834 && types_match (type, TREE_TYPE (@0)))
2835 (non_lvalue @0)))
2836/* bool_var == 1 becomes bool_var. */
2837(simplify
b5d3d787 2838 (eq @0 integer_onep)
55cf3946
RB
2839 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
2840 && types_match (type, TREE_TYPE (@0)))
2841 (non_lvalue @0)))
b5d3d787
RB
2842/* Do not handle
2843 bool_var == 0 becomes !bool_var or
2844 bool_var != 1 becomes !bool_var
2845 here because that only is good in assignment context as long
2846 as we require a tcc_comparison in GIMPLE_CONDs where we'd
2847 replace if (x == 0) with tem = ~x; if (tem != 0) which is
2848 clearly less optimal and which we'll transform again in forwprop. */
55cf3946 2849
ca1206be
MG
2850/* When one argument is a constant, overflow detection can be simplified.
2851 Currently restricted to single use so as not to interfere too much with
2852 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
2853 A + CST CMP A -> A CMP' CST' */
2854(for cmp (lt le ge gt)
2855 out (gt gt le le)
2856 (simplify
a8e9f9a3 2857 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
ca1206be
MG
2858 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
2859 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
2860 && wi::ne_p (@1, 0)
2861 && single_use (@2))
2862 (out @0 { wide_int_to_tree (TREE_TYPE (@0), wi::max_value
2863 (TYPE_PRECISION (TREE_TYPE (@0)), UNSIGNED) - @1); }))))
2864
3563f78f
MG
2865/* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
2866 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
2867 expects the long form, so we restrict the transformation for now. */
2868(for cmp (gt le)
2869 (simplify
a8e9f9a3 2870 (cmp:c (minus@2 @0 @1) @0)
3563f78f
MG
2871 (if (single_use (@2)
2872 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2873 && TYPE_UNSIGNED (TREE_TYPE (@0))
2874 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2875 (cmp @1 @0))))
3563f78f
MG
2876
2877/* Testing for overflow is unnecessary if we already know the result. */
3563f78f
MG
2878/* A - B > A */
2879(for cmp (gt le)
2880 out (ne eq)
2881 (simplify
a8e9f9a3 2882 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3563f78f
MG
2883 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
2884 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
2885 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
2886/* A + B < A */
2887(for cmp (lt ge)
2888 out (ne eq)
2889 (simplify
a8e9f9a3 2890 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3563f78f
MG
2891 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
2892 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
2893 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
2894
603aeb87 2895/* For unsigned operands, -1 / B < A checks whether A * B would overflow.
0557293f 2896 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
0557293f
AM
2897(for cmp (lt ge)
2898 out (ne eq)
2899 (simplify
603aeb87 2900 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
0557293f
AM
2901 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
2902 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
2903 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
55cf3946 2904
53f3cd25
RS
2905/* Simplification of math builtins. These rules must all be optimizations
2906 as well as IL simplifications. If there is a possibility that the new
2907 form could be a pessimization, the rule should go in the canonicalization
2908 section that follows this one.
e18c1d66 2909
53f3cd25
RS
2910 Rules can generally go in this section if they satisfy one of
2911 the following:
2912
2913 - the rule describes an identity
2914
2915 - the rule replaces calls with something as simple as addition or
2916 multiplication
2917
2918 - the rule contains unary calls only and simplifies the surrounding
2919 arithmetic. (The idea here is to exclude non-unary calls in which
2920 one operand is constant and in which the call is known to be cheap
2921 when the operand has that value.) */
52c6378a 2922
53f3cd25 2923(if (flag_unsafe_math_optimizations)
52c6378a
N
2924 /* Simplify sqrt(x) * sqrt(x) -> x. */
2925 (simplify
2926 (mult (SQRT@1 @0) @1)
2927 (if (!HONOR_SNANS (type))
2928 @0))
2929
35401640
N
2930 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
2931 (for root (SQRT CBRT)
2932 (simplify
2933 (mult (root:s @0) (root:s @1))
2934 (root (mult @0 @1))))
2935
35401640
N
2936 /* Simplify expN(x) * expN(y) -> expN(x+y). */
2937 (for exps (EXP EXP2 EXP10 POW10)
2938 (simplify
2939 (mult (exps:s @0) (exps:s @1))
2940 (exps (plus @0 @1))))
2941
52c6378a 2942 /* Simplify a/root(b/c) into a*root(c/b). */
35401640
N
2943 (for root (SQRT CBRT)
2944 (simplify
2945 (rdiv @0 (root:s (rdiv:s @1 @2)))
2946 (mult @0 (root (rdiv @2 @1)))))
2947
2948 /* Simplify x/expN(y) into x*expN(-y). */
2949 (for exps (EXP EXP2 EXP10 POW10)
2950 (simplify
2951 (rdiv @0 (exps:s @1))
2952 (mult @0 (exps (negate @1)))))
52c6378a 2953
eee7b6c4
RB
2954 (for logs (LOG LOG2 LOG10 LOG10)
2955 exps (EXP EXP2 EXP10 POW10)
8acda9b2 2956 /* logN(expN(x)) -> x. */
e18c1d66
RB
2957 (simplify
2958 (logs (exps @0))
8acda9b2
RS
2959 @0)
2960 /* expN(logN(x)) -> x. */
2961 (simplify
2962 (exps (logs @0))
2963 @0))
53f3cd25 2964
e18c1d66
RB
2965 /* Optimize logN(func()) for various exponential functions. We
2966 want to determine the value "x" and the power "exponent" in
2967 order to transform logN(x**exponent) into exponent*logN(x). */
eee7b6c4
RB
2968 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
2969 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
e18c1d66
RB
2970 (simplify
2971 (logs (exps @0))
c9e926ce
RS
2972 (if (SCALAR_FLOAT_TYPE_P (type))
2973 (with {
2974 tree x;
2975 switch (exps)
2976 {
2977 CASE_CFN_EXP:
2978 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
2979 x = build_real_truncate (type, dconst_e ());
2980 break;
2981 CASE_CFN_EXP2:
2982 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
2983 x = build_real (type, dconst2);
2984 break;
2985 CASE_CFN_EXP10:
2986 CASE_CFN_POW10:
2987 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
2988 {
2989 REAL_VALUE_TYPE dconst10;
2990 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
2991 x = build_real (type, dconst10);
2992 }
2993 break;
2994 default:
2995 gcc_unreachable ();
2996 }
2997 }
2998 (mult (logs { x; }) @0)))))
53f3cd25 2999
e18c1d66
RB
3000 (for logs (LOG LOG
3001 LOG2 LOG2
3002 LOG10 LOG10)
3003 exps (SQRT CBRT)
3004 (simplify
3005 (logs (exps @0))
c9e926ce
RS
3006 (if (SCALAR_FLOAT_TYPE_P (type))
3007 (with {
3008 tree x;
3009 switch (exps)
3010 {
3011 CASE_CFN_SQRT:
3012 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
3013 x = build_real (type, dconsthalf);
3014 break;
3015 CASE_CFN_CBRT:
3016 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
3017 x = build_real_truncate (type, dconst_third ());
3018 break;
3019 default:
3020 gcc_unreachable ();
3021 }
3022 }
3023 (mult { x; } (logs @0))))))
53f3cd25
RS
3024
3025 /* logN(pow(x,exponent)) -> exponent*logN(x). */
e18c1d66
RB
3026 (for logs (LOG LOG2 LOG10)
3027 pows (POW)
3028 (simplify
3029 (logs (pows @0 @1))
53f3cd25
RS
3030 (mult @1 (logs @0))))
3031
3032 (for sqrts (SQRT)
3033 cbrts (CBRT)
b4838d77 3034 pows (POW)
53f3cd25
RS
3035 exps (EXP EXP2 EXP10 POW10)
3036 /* sqrt(expN(x)) -> expN(x*0.5). */
3037 (simplify
3038 (sqrts (exps @0))
3039 (exps (mult @0 { build_real (type, dconsthalf); })))
3040 /* cbrt(expN(x)) -> expN(x/3). */
3041 (simplify
3042 (cbrts (exps @0))
b4838d77
RS
3043 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
3044 /* pow(expN(x), y) -> expN(x*y). */
3045 (simplify
3046 (pows (exps @0) @1)
3047 (exps (mult @0 @1))))
cfed37a0
RS
3048
3049 /* tan(atan(x)) -> x. */
3050 (for tans (TAN)
3051 atans (ATAN)
3052 (simplify
3053 (tans (atans @0))
3054 @0)))
53f3cd25 3055
abcc43f5
RS
3056/* cabs(x+0i) or cabs(0+xi) -> abs(x). */
3057(simplify
e04d2a35 3058 (CABS (complex:C @0 real_zerop@1))
abcc43f5
RS
3059 (abs @0))
3060
67dbe582
RS
3061/* trunc(trunc(x)) -> trunc(x), etc. */
3062(for fns (TRUNC FLOOR CEIL ROUND NEARBYINT RINT)
3063 (simplify
3064 (fns (fns @0))
3065 (fns @0)))
3066/* f(x) -> x if x is integer valued and f does nothing for such values. */
afeb246c 3067(for fns (TRUNC FLOOR CEIL ROUND NEARBYINT RINT)
67dbe582
RS
3068 (simplify
3069 (fns integer_valued_real_p@0)
3070 @0))
67dbe582 3071
4d7836c4
RS
3072/* hypot(x,0) and hypot(0,x) -> abs(x). */
3073(simplify
c9e926ce 3074 (HYPOT:c @0 real_zerop@1)
4d7836c4
RS
3075 (abs @0))
3076
b4838d77
RS
3077/* pow(1,x) -> 1. */
3078(simplify
3079 (POW real_onep@0 @1)
3080 @0)
3081
461e4145
RS
3082(simplify
3083 /* copysign(x,x) -> x. */
3084 (COPYSIGN @0 @0)
3085 @0)
3086
3087(simplify
3088 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
3089 (COPYSIGN @0 tree_expr_nonnegative_p@1)
3090 (abs @0))
3091
86c0733f
RS
3092(for scale (LDEXP SCALBN SCALBLN)
3093 /* ldexp(0, x) -> 0. */
3094 (simplify
3095 (scale real_zerop@0 @1)
3096 @0)
3097 /* ldexp(x, 0) -> x. */
3098 (simplify
3099 (scale @0 integer_zerop@1)
3100 @0)
3101 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
3102 (simplify
3103 (scale REAL_CST@0 @1)
3104 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
3105 @0)))
3106
53f3cd25
RS
3107/* Canonicalization of sequences of math builtins. These rules represent
3108 IL simplifications but are not necessarily optimizations.
3109
3110 The sincos pass is responsible for picking "optimal" implementations
3111 of math builtins, which may be more complicated and can sometimes go
3112 the other way, e.g. converting pow into a sequence of sqrts.
3113 We only want to do these canonicalizations before the pass has run. */
3114
3115(if (flag_unsafe_math_optimizations && canonicalize_math_p ())
3116 /* Simplify tan(x) * cos(x) -> sin(x). */
3117 (simplify
3118 (mult:c (TAN:s @0) (COS:s @0))
3119 (SIN @0))
3120
3121 /* Simplify x * pow(x,c) -> pow(x,c+1). */
3122 (simplify
de3fbea3 3123 (mult:c @0 (POW:s @0 REAL_CST@1))
53f3cd25
RS
3124 (if (!TREE_OVERFLOW (@1))
3125 (POW @0 (plus @1 { build_one_cst (type); }))))
3126
3127 /* Simplify sin(x) / cos(x) -> tan(x). */
3128 (simplify
3129 (rdiv (SIN:s @0) (COS:s @0))
3130 (TAN @0))
3131
3132 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
3133 (simplify
3134 (rdiv (COS:s @0) (SIN:s @0))
3135 (rdiv { build_one_cst (type); } (TAN @0)))
3136
3137 /* Simplify sin(x) / tan(x) -> cos(x). */
3138 (simplify
3139 (rdiv (SIN:s @0) (TAN:s @0))
3140 (if (! HONOR_NANS (@0)
3141 && ! HONOR_INFINITIES (@0))
c9e926ce 3142 (COS @0)))
53f3cd25
RS
3143
3144 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
3145 (simplify
3146 (rdiv (TAN:s @0) (SIN:s @0))
3147 (if (! HONOR_NANS (@0)
3148 && ! HONOR_INFINITIES (@0))
3149 (rdiv { build_one_cst (type); } (COS @0))))
3150
3151 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
3152 (simplify
3153 (mult (POW:s @0 @1) (POW:s @0 @2))
3154 (POW @0 (plus @1 @2)))
3155
3156 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
3157 (simplify
3158 (mult (POW:s @0 @1) (POW:s @2 @1))
3159 (POW (mult @0 @2) @1))
3160
de3fbea3
RB
3161 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
3162 (simplify
3163 (mult (POWI:s @0 @1) (POWI:s @2 @1))
3164 (POWI (mult @0 @2) @1))
3165
53f3cd25
RS
3166 /* Simplify pow(x,c) / x -> pow(x,c-1). */
3167 (simplify
3168 (rdiv (POW:s @0 REAL_CST@1) @0)
3169 (if (!TREE_OVERFLOW (@1))
3170 (POW @0 (minus @1 { build_one_cst (type); }))))
3171
3172 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
3173 (simplify
3174 (rdiv @0 (POW:s @1 @2))
3175 (mult @0 (POW @1 (negate @2))))
3176
3177 (for sqrts (SQRT)
3178 cbrts (CBRT)
3179 pows (POW)
3180 /* sqrt(sqrt(x)) -> pow(x,1/4). */
3181 (simplify
3182 (sqrts (sqrts @0))
3183 (pows @0 { build_real (type, dconst_quarter ()); }))
3184 /* sqrt(cbrt(x)) -> pow(x,1/6). */
3185 (simplify
3186 (sqrts (cbrts @0))
3187 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
3188 /* cbrt(sqrt(x)) -> pow(x,1/6). */
3189 (simplify
3190 (cbrts (sqrts @0))
3191 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
3192 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
3193 (simplify
3194 (cbrts (cbrts tree_expr_nonnegative_p@0))
3195 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
3196 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
3197 (simplify
3198 (sqrts (pows @0 @1))
3199 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
3200 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
3201 (simplify
3202 (cbrts (pows tree_expr_nonnegative_p@0 @1))
b4838d77
RS
3203 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
3204 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
3205 (simplify
3206 (pows (sqrts @0) @1)
3207 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
3208 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
3209 (simplify
3210 (pows (cbrts tree_expr_nonnegative_p@0) @1)
3211 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
3212 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
3213 (simplify
3214 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
3215 (pows @0 (mult @1 @2))))
abcc43f5
RS
3216
3217 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
3218 (simplify
3219 (CABS (complex @0 @0))
96285749
RS
3220 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
3221
4d7836c4
RS
3222 /* hypot(x,x) -> fabs(x)*sqrt(2). */
3223 (simplify
3224 (HYPOT @0 @0)
3225 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
3226
96285749
RS
3227 /* cexp(x+yi) -> exp(x)*cexpi(y). */
3228 (for cexps (CEXP)
3229 exps (EXP)
3230 cexpis (CEXPI)
3231 (simplify
3232 (cexps compositional_complex@0)
3233 (if (targetm.libc_has_function (function_c99_math_complex))
3234 (complex
3235 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
3236 (mult @1 (imagpart @2)))))))
e18c1d66 3237
67dbe582
RS
3238(if (canonicalize_math_p ())
3239 /* floor(x) -> trunc(x) if x is nonnegative. */
3240 (for floors (FLOOR)
3241 truncs (TRUNC)
3242 (simplify
3243 (floors tree_expr_nonnegative_p@0)
3244 (truncs @0))))
3245
3246(match double_value_p
3247 @0
3248 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
3249(for froms (BUILT_IN_TRUNCL
3250 BUILT_IN_FLOORL
3251 BUILT_IN_CEILL
3252 BUILT_IN_ROUNDL
3253 BUILT_IN_NEARBYINTL
3254 BUILT_IN_RINTL)
3255 tos (BUILT_IN_TRUNC
3256 BUILT_IN_FLOOR
3257 BUILT_IN_CEIL
3258 BUILT_IN_ROUND
3259 BUILT_IN_NEARBYINT
3260 BUILT_IN_RINT)
3261 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
3262 (if (optimize && canonicalize_math_p ())
3263 (simplify
3264 (froms (convert double_value_p@0))
3265 (convert (tos @0)))))
3266
3267(match float_value_p
3268 @0
3269 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
3270(for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
3271 BUILT_IN_FLOORL BUILT_IN_FLOOR
3272 BUILT_IN_CEILL BUILT_IN_CEIL
3273 BUILT_IN_ROUNDL BUILT_IN_ROUND
3274 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
3275 BUILT_IN_RINTL BUILT_IN_RINT)
3276 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
3277 BUILT_IN_FLOORF BUILT_IN_FLOORF
3278 BUILT_IN_CEILF BUILT_IN_CEILF
3279 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
3280 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
3281 BUILT_IN_RINTF BUILT_IN_RINTF)
3282 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
3283 if x is a float. */
5dac7dbd
JDA
3284 (if (optimize && canonicalize_math_p ()
3285 && targetm.libc_has_function (function_c99_misc))
67dbe582
RS
3286 (simplify
3287 (froms (convert float_value_p@0))
3288 (convert (tos @0)))))
3289
543a9bcd
RS
3290(for froms (XFLOORL XCEILL XROUNDL XRINTL)
3291 tos (XFLOOR XCEIL XROUND XRINT)
3292 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
3293 (if (optimize && canonicalize_math_p ())
3294 (simplify
3295 (froms (convert double_value_p@0))
3296 (tos @0))))
3297
3298(for froms (XFLOORL XCEILL XROUNDL XRINTL
3299 XFLOOR XCEIL XROUND XRINT)
3300 tos (XFLOORF XCEILF XROUNDF XRINTF)
3301 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
3302 if x is a float. */
3303 (if (optimize && canonicalize_math_p ())
3304 (simplify
3305 (froms (convert float_value_p@0))
3306 (tos @0))))
3307
3308(if (canonicalize_math_p ())
3309 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
3310 (for floors (IFLOOR LFLOOR LLFLOOR)
3311 (simplify
3312 (floors tree_expr_nonnegative_p@0)
3313 (fix_trunc @0))))
3314
3315(if (canonicalize_math_p ())
3316 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
3317 (for fns (IFLOOR LFLOOR LLFLOOR
3318 ICEIL LCEIL LLCEIL
3319 IROUND LROUND LLROUND)
3320 (simplify
3321 (fns integer_valued_real_p@0)
3322 (fix_trunc @0)))
3323 (if (!flag_errno_math)
3324 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
3325 (for rints (IRINT LRINT LLRINT)
3326 (simplify
3327 (rints integer_valued_real_p@0)
3328 (fix_trunc @0)))))
3329
3330(if (canonicalize_math_p ())
3331 (for ifn (IFLOOR ICEIL IROUND IRINT)
3332 lfn (LFLOOR LCEIL LROUND LRINT)
3333 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
3334 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
3335 sizeof (int) == sizeof (long). */
3336 (if (TYPE_PRECISION (integer_type_node)
3337 == TYPE_PRECISION (long_integer_type_node))
3338 (simplify
3339 (ifn @0)
3340 (lfn:long_integer_type_node @0)))
3341 /* Canonicalize llround (x) to lround (x) on LP64 targets where
3342 sizeof (long long) == sizeof (long). */
3343 (if (TYPE_PRECISION (long_long_integer_type_node)
3344 == TYPE_PRECISION (long_integer_type_node))
3345 (simplify
3346 (llfn @0)
3347 (lfn:long_integer_type_node @0)))))
3348
92c52eab
RS
3349/* cproj(x) -> x if we're ignoring infinities. */
3350(simplify
3351 (CPROJ @0)
3352 (if (!HONOR_INFINITIES (type))
3353 @0))
3354
4534c203
RB
3355/* If the real part is inf and the imag part is known to be
3356 nonnegative, return (inf + 0i). */
3357(simplify
3358 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
3359 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
92c52eab
RS
3360 { build_complex_inf (type, false); }))
3361
4534c203
RB
3362/* If the imag part is inf, return (inf+I*copysign(0,imag)). */
3363(simplify
3364 (CPROJ (complex @0 REAL_CST@1))
3365 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
92c52eab 3366 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4534c203 3367
b4838d77
RS
3368(for pows (POW)
3369 sqrts (SQRT)
3370 cbrts (CBRT)
3371 (simplify
3372 (pows @0 REAL_CST@1)
3373 (with {
3374 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
3375 REAL_VALUE_TYPE tmp;
3376 }
3377 (switch
3378 /* pow(x,0) -> 1. */
3379 (if (real_equal (value, &dconst0))
3380 { build_real (type, dconst1); })
3381 /* pow(x,1) -> x. */
3382 (if (real_equal (value, &dconst1))
3383 @0)
3384 /* pow(x,-1) -> 1/x. */
3385 (if (real_equal (value, &dconstm1))
3386 (rdiv { build_real (type, dconst1); } @0))
3387 /* pow(x,0.5) -> sqrt(x). */
3388 (if (flag_unsafe_math_optimizations
3389 && canonicalize_math_p ()
3390 && real_equal (value, &dconsthalf))
3391 (sqrts @0))
3392 /* pow(x,1/3) -> cbrt(x). */
3393 (if (flag_unsafe_math_optimizations
3394 && canonicalize_math_p ()
3395 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
3396 real_equal (value, &tmp)))
3397 (cbrts @0))))))
4534c203 3398
5ddc84ca
RS
3399/* powi(1,x) -> 1. */
3400(simplify
3401 (POWI real_onep@0 @1)
3402 @0)
3403
3404(simplify
3405 (POWI @0 INTEGER_CST@1)
3406 (switch
3407 /* powi(x,0) -> 1. */
3408 (if (wi::eq_p (@1, 0))
3409 { build_real (type, dconst1); })
3410 /* powi(x,1) -> x. */
3411 (if (wi::eq_p (@1, 1))
3412 @0)
3413 /* powi(x,-1) -> 1/x. */
3414 (if (wi::eq_p (@1, -1))
3415 (rdiv { build_real (type, dconst1); } @0))))
3416
be144838
JL
3417/* Narrowing of arithmetic and logical operations.
3418
3419 These are conceptually similar to the transformations performed for
3420 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
3421 term we want to move all that code out of the front-ends into here. */
3422
3423/* If we have a narrowing conversion of an arithmetic operation where
3424 both operands are widening conversions from the same type as the outer
3425 narrowing conversion. Then convert the innermost operands to a suitable
9c582551 3426 unsigned type (to avoid introducing undefined behavior), perform the
be144838
JL
3427 operation and convert the result to the desired type. */
3428(for op (plus minus)
3429 (simplify
93f90bec 3430 (convert (op:s (convert@2 @0) (convert?@3 @1)))
be144838
JL
3431 (if (INTEGRAL_TYPE_P (type)
3432 /* We check for type compatibility between @0 and @1 below,
3433 so there's no need to check that @1/@3 are integral types. */
3434 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3435 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3436 /* The precision of the type of each operand must match the
3437 precision of the mode of each operand, similarly for the
3438 result. */
3439 && (TYPE_PRECISION (TREE_TYPE (@0))
3440 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
3441 && (TYPE_PRECISION (TREE_TYPE (@1))
3442 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
3443 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
3444 /* The inner conversion must be a widening conversion. */
3445 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
93f90bec
BC
3446 && types_match (@0, type)
3447 && (types_match (@0, @1)
3448 /* Or the second operand is const integer or converted const
3449 integer from valueize. */
3450 || TREE_CODE (@1) == INTEGER_CST))
be144838 3451 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
93f90bec 3452 (op @0 (convert @1))
8fdc6c67 3453 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
93f90bec
BC
3454 (convert (op (convert:utype @0)
3455 (convert:utype @1))))))))
48451e8f
JL
3456
3457/* This is another case of narrowing, specifically when there's an outer
3458 BIT_AND_EXPR which masks off bits outside the type of the innermost
3459 operands. Like the previous case we have to convert the operands
9c582551 3460 to unsigned types to avoid introducing undefined behavior for the
48451e8f
JL
3461 arithmetic operation. */
3462(for op (minus plus)
8fdc6c67
RB
3463 (simplify
3464 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
3465 (if (INTEGRAL_TYPE_P (type)
3466 /* We check for type compatibility between @0 and @1 below,
3467 so there's no need to check that @1/@3 are integral types. */
3468 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3469 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3470 /* The precision of the type of each operand must match the
3471 precision of the mode of each operand, similarly for the
3472 result. */
3473 && (TYPE_PRECISION (TREE_TYPE (@0))
3474 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
3475 && (TYPE_PRECISION (TREE_TYPE (@1))
3476 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
3477 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
3478 /* The inner conversion must be a widening conversion. */
3479 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
3480 && types_match (@0, @1)
3481 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
3482 <= TYPE_PRECISION (TREE_TYPE (@0)))
0a8c1e23
JL
3483 && (wi::bit_and (@4, wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
3484 true, TYPE_PRECISION (type))) == 0))
8fdc6c67
RB
3485 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3486 (with { tree ntype = TREE_TYPE (@0); }
3487 (convert (bit_and (op @0 @1) (convert:ntype @4))))
3488 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
3489 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
3490 (convert:utype @4))))))))
4f7a5692
MC
3491
3492/* Transform (@0 < @1 and @0 < @2) to use min,
3493 (@0 > @1 and @0 > @2) to use max */
3494(for op (lt le gt ge)
3495 ext (min min max max)
3496 (simplify
4618c453
RB
3497 (bit_and (op:cs @0 @1) (op:cs @0 @2))
3498 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3499 && TREE_CODE (@0) != INTEGER_CST)
4f7a5692
MC
3500 (op @0 (ext @1 @2)))))
3501
7317ef4a
RS
3502(simplify
3503 /* signbit(x) -> 0 if x is nonnegative. */
3504 (SIGNBIT tree_expr_nonnegative_p@0)
3505 { integer_zero_node; })
3506
3507(simplify
3508 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
3509 (SIGNBIT @0)
3510 (if (!HONOR_SIGNED_ZEROS (@0))
3511 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
a8b85ce9
MG
3512
3513/* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
3514(for cmp (eq ne)
3515 (for op (plus minus)
3516 rop (minus plus)
3517 (simplify
3518 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
3519 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
3520 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
3521 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
3522 && !TYPE_SATURATING (TREE_TYPE (@0)))
3523 (with { tree res = int_const_binop (rop, @2, @1); }
3524 (if (TREE_OVERFLOW (res))
3525 { constant_boolean_node (cmp == NE_EXPR, type); }
3526 (if (single_use (@3))
3527 (cmp @0 { res; }))))))))
3528(for cmp (lt le gt ge)
3529 (for op (plus minus)
3530 rop (minus plus)
3531 (simplify
3532 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
3533 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
3534 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3535 (with { tree res = int_const_binop (rop, @2, @1); }
3536 (if (TREE_OVERFLOW (res))
3537 {
3538 fold_overflow_warning (("assuming signed overflow does not occur "
3539 "when simplifying conditional to constant"),
3540 WARN_STRICT_OVERFLOW_CONDITIONAL);
3541 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
3542 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
3543 bool ovf_high = wi::lt_p (@1, 0, TYPE_SIGN (TREE_TYPE (@1)))
3544 != (op == MINUS_EXPR);
3545 constant_boolean_node (less == ovf_high, type);
3546 }
3547 (if (single_use (@3))
3548 (with
3549 {
3550 fold_overflow_warning (("assuming signed overflow does not occur "
3551 "when changing X +- C1 cmp C2 to "
3552 "X cmp C2 -+ C1"),
3553 WARN_STRICT_OVERFLOW_COMPARISON);
3554 }
3555 (cmp @0 { res; })))))))))
d3e40b76
RB
3556
3557/* Canonicalizations of BIT_FIELD_REFs. */
3558
3559(simplify
3560 (BIT_FIELD_REF @0 @1 @2)
3561 (switch
3562 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
3563 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
3564 (switch
3565 (if (integer_zerop (@2))
3566 (view_convert (realpart @0)))
3567 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
3568 (view_convert (imagpart @0)))))
3569 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3570 && INTEGRAL_TYPE_P (type)
171f6f05
RB
3571 /* On GIMPLE this should only apply to register arguments. */
3572 && (! GIMPLE || is_gimple_reg (@0))
d3e40b76
RB
3573 /* A bit-field-ref that referenced the full argument can be stripped. */
3574 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
3575 && integer_zerop (@2))
3576 /* Low-parts can be reduced to integral conversions.
3577 ??? The following doesn't work for PDP endian. */
3578 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
3579 /* Don't even think about BITS_BIG_ENDIAN. */
3580 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
3581 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
3582 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
3583 ? (TYPE_PRECISION (TREE_TYPE (@0))
3584 - TYPE_PRECISION (type))
3585 : 0)) == 0)))
3586 (convert @0))))
3587
3588/* Simplify vector extracts. */
3589
3590(simplify
3591 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
3592 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
3593 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
3594 || (VECTOR_TYPE_P (type)
3595 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
3596 (with
3597 {
3598 tree ctor = (TREE_CODE (@0) == SSA_NAME
3599 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
3600 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
3601 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
3602 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
3603 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
3604 }
3605 (if (n != 0
3606 && (idx % width) == 0
3607 && (n % width) == 0
3608 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor)))
3609 (with
3610 {
3611 idx = idx / width;
3612 n = n / width;
3613 /* Constructor elements can be subvectors. */
3614 unsigned HOST_WIDE_INT k = 1;
3615 if (CONSTRUCTOR_NELTS (ctor) != 0)
3616 {
3617 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
3618 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
3619 k = TYPE_VECTOR_SUBPARTS (cons_elem);
3620 }
3621 }
3622 (switch
3623 /* We keep an exact subset of the constructor elements. */
3624 (if ((idx % k) == 0 && (n % k) == 0)
3625 (if (CONSTRUCTOR_NELTS (ctor) == 0)
3626 { build_constructor (type, NULL); }
3627 (with
3628 {
3629 idx /= k;
3630 n /= k;
3631 }
3632 (if (n == 1)
3633 (if (idx < CONSTRUCTOR_NELTS (ctor))
3634 { CONSTRUCTOR_ELT (ctor, idx)->value; }
3635 { build_zero_cst (type); })
3636 {
3637 vec<constructor_elt, va_gc> *vals;
3638 vec_alloc (vals, n);
3639 for (unsigned i = 0;
3640 i < n && idx + i < CONSTRUCTOR_NELTS (ctor); ++i)
3641 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
3642 CONSTRUCTOR_ELT (ctor, idx + i)->value);
3643 build_constructor (type, vals);
3644 }))))
3645 /* The bitfield references a single constructor element. */
3646 (if (idx + n <= (idx / k + 1) * k)
3647 (switch
3648 (if (CONSTRUCTOR_NELTS (ctor) <= idx / k)
3649 { build_zero_cst (type); })
3650 (if (n == k)
3651 { CONSTRUCTOR_ELT (ctor, idx / k)->value; })
3652 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / k)->value; }
3653 @1 { bitsize_int ((idx % k) * width); })))))))))