]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/match.pd
pa.md (integer_indexed_store splitters): Use mem_shadd_operand.
[thirdparty/gcc.git] / gcc / match.pd
CommitLineData
3d2cf79f
RB
1/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5624e564 5 Copyright (C) 2014-2015 Free Software Foundation, Inc.
3d2cf79f
RB
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
13Software Foundation; either version 3, or (at your option) any later
14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING3. If not see
23<http://www.gnu.org/licenses/>. */
24
25
26/* Generic tree predicates we inherit. */
27(define_predicates
cc7b5acf 28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
09240451 29 integer_each_onep integer_truep
cc7b5acf 30 real_zerop real_onep real_minus_onep
f3582e54
RB
31 CONSTANT_CLASS_P
32 tree_expr_nonnegative_p)
e0ee10ed 33
f84e7fd6
RB
34/* Operator lists. */
35(define_operator_list tcc_comparison
36 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
37(define_operator_list inverted_tcc_comparison
38 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
39(define_operator_list inverted_tcc_comparison_with_nans
40 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
41
e0ee10ed
RB
42
43/* Simplifications of operations with one constant operand and
36a60e48 44 simplifications to constants or single values. */
e0ee10ed
RB
45
46(for op (plus pointer_plus minus bit_ior bit_xor)
47 (simplify
48 (op @0 integer_zerop)
49 (non_lvalue @0)))
50
a499aac5
RB
51/* 0 +p index -> (type)index */
52(simplify
53 (pointer_plus integer_zerop @1)
54 (non_lvalue (convert @1)))
55
a7f24614
RB
56/* See if ARG1 is zero and X + ARG1 reduces to X.
57 Likewise if the operands are reversed. */
58(simplify
59 (plus:c @0 real_zerop@1)
60 (if (fold_real_zero_addition_p (type, @1, 0))
61 (non_lvalue @0)))
62
63/* See if ARG1 is zero and X - ARG1 reduces to X. */
64(simplify
65 (minus @0 real_zerop@1)
66 (if (fold_real_zero_addition_p (type, @1, 1))
67 (non_lvalue @0)))
68
e0ee10ed
RB
69/* Simplify x - x.
70 This is unsafe for certain floats even in non-IEEE formats.
71 In IEEE, it is unsafe because it does wrong for NaNs.
72 Also note that operand_equal_p is always false if an operand
73 is volatile. */
74(simplify
a7f24614 75 (minus @0 @0)
1b457aa4 76 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
a7f24614 77 { build_zero_cst (type); }))
e0ee10ed
RB
78
79(simplify
a7f24614
RB
80 (mult @0 integer_zerop@1)
81 @1)
82
83/* Maybe fold x * 0 to 0. The expressions aren't the same
84 when x is NaN, since x * 0 is also NaN. Nor are they the
85 same in modes with signed zeros, since multiplying a
86 negative value by 0 gives -0, not +0. */
87(simplify
88 (mult @0 real_zerop@1)
1b457aa4 89 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (element_mode (type)))
a7f24614
RB
90 @1))
91
92/* In IEEE floating point, x*1 is not equivalent to x for snans.
93 Likewise for complex arithmetic with signed zeros. */
94(simplify
95 (mult @0 real_onep)
09240451
MG
96 (if (!HONOR_SNANS (element_mode (type))
97 && (!HONOR_SIGNED_ZEROS (element_mode (type))
a7f24614
RB
98 || !COMPLEX_FLOAT_TYPE_P (type)))
99 (non_lvalue @0)))
100
101/* Transform x * -1.0 into -x. */
102(simplify
103 (mult @0 real_minus_onep)
09240451
MG
104 (if (!HONOR_SNANS (element_mode (type))
105 && (!HONOR_SIGNED_ZEROS (element_mode (type))
a7f24614
RB
106 || !COMPLEX_FLOAT_TYPE_P (type)))
107 (negate @0)))
e0ee10ed
RB
108
109/* Make sure to preserve divisions by zero. This is the reason why
110 we don't simplify x / x to 1 or 0 / x to 0. */
111(for op (mult trunc_div ceil_div floor_div round_div exact_div)
112 (simplify
113 (op @0 integer_onep)
114 (non_lvalue @0)))
115
a7f24614
RB
116/* X / -1 is -X. */
117(for div (trunc_div ceil_div floor_div round_div exact_div)
118 (simplify
09240451
MG
119 (div @0 integer_minus_onep@1)
120 (if (!TYPE_UNSIGNED (type))
a7f24614
RB
121 (negate @0))))
122
123/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
124 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
125(simplify
126 (floor_div @0 @1)
09240451
MG
127 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
128 && TYPE_UNSIGNED (type))
a7f24614
RB
129 (trunc_div @0 @1)))
130
28093105
RB
131/* Combine two successive divisions. Note that combining ceil_div
132 and floor_div is trickier and combining round_div even more so. */
133(for div (trunc_div exact_div)
c306cfaf
RB
134 (simplify
135 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
136 (with {
137 bool overflow_p;
138 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
139 }
140 (if (!overflow_p)
141 (div @0 { wide_int_to_tree (type, mul); }))
ac19a303
RB
142 (if (overflow_p
143 && (TYPE_UNSIGNED (type)
144 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED)))
c306cfaf
RB
145 { build_zero_cst (type); }))))
146
a7f24614 147/* Optimize A / A to 1.0 if we don't care about
09240451 148 NaNs or Infinities. */
a7f24614
RB
149(simplify
150 (rdiv @0 @0)
09240451 151 (if (FLOAT_TYPE_P (type)
1b457aa4 152 && ! HONOR_NANS (type)
09240451
MG
153 && ! HONOR_INFINITIES (element_mode (type)))
154 { build_one_cst (type); }))
155
156/* Optimize -A / A to -1.0 if we don't care about
157 NaNs or Infinities. */
158(simplify
159 (rdiv:c @0 (negate @0))
160 (if (FLOAT_TYPE_P (type)
1b457aa4 161 && ! HONOR_NANS (type)
09240451
MG
162 && ! HONOR_INFINITIES (element_mode (type)))
163 { build_minus_one_cst (type); }))
a7f24614
RB
164
165/* In IEEE floating point, x/1 is not equivalent to x for snans. */
166(simplify
167 (rdiv @0 real_onep)
09240451 168 (if (!HONOR_SNANS (element_mode (type)))
a7f24614
RB
169 (non_lvalue @0)))
170
171/* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
172(simplify
173 (rdiv @0 real_minus_onep)
09240451 174 (if (!HONOR_SNANS (element_mode (type)))
a7f24614
RB
175 (negate @0)))
176
177/* If ARG1 is a constant, we can convert this to a multiply by the
178 reciprocal. This does not have the same rounding properties,
179 so only do this if -freciprocal-math. We can actually
180 always safely do it if ARG1 is a power of two, but it's hard to
181 tell if it is or not in a portable manner. */
182(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
183 (simplify
184 (rdiv @0 cst@1)
185 (if (optimize)
53bc4b3a
RB
186 (if (flag_reciprocal_math
187 && !real_zerop (@1))
a7f24614 188 (with
249700b5 189 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
a7f24614
RB
190 (if (tem)
191 (mult @0 { tem; } ))))
192 (if (cst != COMPLEX_CST)
193 (with { tree inverse = exact_inverse (type, @1); }
194 (if (inverse)
195 (mult @0 { inverse; } )))))))
196
e0ee10ed
RB
197/* Same applies to modulo operations, but fold is inconsistent here
198 and simplifies 0 % x to 0, only preserving literal 0 % 0. */
a7f24614 199(for mod (ceil_mod floor_mod round_mod trunc_mod)
e0ee10ed
RB
200 /* 0 % X is always zero. */
201 (simplify
a7f24614 202 (mod integer_zerop@0 @1)
e0ee10ed
RB
203 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
204 (if (!integer_zerop (@1))
205 @0))
206 /* X % 1 is always zero. */
207 (simplify
a7f24614
RB
208 (mod @0 integer_onep)
209 { build_zero_cst (type); })
210 /* X % -1 is zero. */
211 (simplify
09240451
MG
212 (mod @0 integer_minus_onep@1)
213 (if (!TYPE_UNSIGNED (type))
bc4315fb
MG
214 { build_zero_cst (type); }))
215 /* (X % Y) % Y is just X % Y. */
216 (simplify
217 (mod (mod@2 @0 @1) @1)
218 @2))
a7f24614
RB
219
220/* X % -C is the same as X % C. */
221(simplify
222 (trunc_mod @0 INTEGER_CST@1)
223 (if (TYPE_SIGN (type) == SIGNED
224 && !TREE_OVERFLOW (@1)
225 && wi::neg_p (@1)
226 && !TYPE_OVERFLOW_TRAPS (type)
227 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
228 && !sign_bit_p (@1, @1))
229 (trunc_mod @0 (negate @1))))
e0ee10ed 230
bc4315fb
MG
231/* X % Y is smaller than Y. */
232(for cmp (lt ge)
233 (simplify
234 (cmp (trunc_mod @0 @1) @1)
235 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
236 { constant_boolean_node (cmp == LT_EXPR, type); })))
237(for cmp (gt le)
238 (simplify
239 (cmp @1 (trunc_mod @0 @1))
240 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
241 { constant_boolean_node (cmp == GT_EXPR, type); })))
242
e0ee10ed
RB
243/* x | ~0 -> ~0 */
244(simplify
245 (bit_ior @0 integer_all_onesp@1)
246 @1)
247
248/* x & 0 -> 0 */
249(simplify
250 (bit_and @0 integer_zerop@1)
251 @1)
252
253/* x ^ x -> 0 */
254(simplify
255 (bit_xor @0 @0)
256 { build_zero_cst (type); })
257
36a60e48
RB
258/* Canonicalize X ^ ~0 to ~X. */
259(simplify
260 (bit_xor @0 integer_all_onesp@1)
261 (bit_not @0))
262
263/* x & ~0 -> x */
264(simplify
265 (bit_and @0 integer_all_onesp)
266 (non_lvalue @0))
267
268/* x & x -> x, x | x -> x */
269(for bitop (bit_and bit_ior)
270 (simplify
271 (bitop @0 @0)
272 (non_lvalue @0)))
273
0f770b01
RV
274/* x + (x & 1) -> (x + 1) & ~1 */
275(simplify
276 (plus:c @0 (bit_and@2 @0 integer_onep@1))
277 (if (TREE_CODE (@2) != SSA_NAME || has_single_use (@2))
278 (bit_and (plus @0 @1) (bit_not @1))))
279
280/* x & ~(x & y) -> x & ~y */
281/* x | ~(x | y) -> x | ~y */
282(for bitop (bit_and bit_ior)
283 (simplify
284 (bitop:c @0 (bit_not (bitop:c@2 @0 @1)))
285 (if (TREE_CODE (@2) != SSA_NAME || has_single_use (@2))
286 (bitop @0 (bit_not @1)))))
287
f3582e54
RB
288(simplify
289 (abs (negate @0))
290 (abs @0))
291(simplify
292 (abs tree_expr_nonnegative_p@0)
293 @0)
294
d4573ffe 295
5609420f
RB
296/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
297 when profitable.
298 For bitwise binary operations apply operand conversions to the
299 binary operation result instead of to the operands. This allows
300 to combine successive conversions and bitwise binary operations.
301 We combine the above two cases by using a conditional convert. */
302(for bitop (bit_and bit_ior bit_xor)
303 (simplify
304 (bitop (convert @0) (convert? @1))
305 (if (((TREE_CODE (@1) == INTEGER_CST
306 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
ad6f996c 307 && int_fits_type_p (@1, TREE_TYPE (@0)))
aea417d7 308 || types_match (@0, @1))
ad6f996c
RB
309 /* ??? This transform conflicts with fold-const.c doing
310 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
311 constants (if x has signed type, the sign bit cannot be set
312 in c). This folds extension into the BIT_AND_EXPR.
313 Restrict it to GIMPLE to avoid endless recursions. */
314 && (bitop != BIT_AND_EXPR || GIMPLE)
5609420f
RB
315 && (/* That's a good idea if the conversion widens the operand, thus
316 after hoisting the conversion the operation will be narrower. */
317 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
318 /* It's also a good idea if the conversion is to a non-integer
319 mode. */
320 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
321 /* Or if the precision of TO is not the same as the precision
322 of its mode. */
323 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
324 (convert (bitop @0 (convert @1))))))
325
326/* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
327(for bitop (bit_and bit_ior bit_xor)
328 (simplify
329 (bitop (bit_and:c @0 @1) (bit_and @2 @1))
330 (bit_and (bitop @0 @2) @1)))
331
332/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
333(simplify
334 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
335 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
336
337/* Combine successive equal operations with constants. */
338(for bitop (bit_and bit_ior bit_xor)
339 (simplify
340 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
341 (bitop @0 (bitop @1 @2))))
342
343/* Try simple folding for X op !X, and X op X with the help
344 of the truth_valued_p and logical_inverted_value predicates. */
345(match truth_valued_p
346 @0
347 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
f84e7fd6 348(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
5609420f
RB
349 (match truth_valued_p
350 (op @0 @1)))
351(match truth_valued_p
352 (truth_not @0))
353
354(match (logical_inverted_value @0)
355 (bit_not truth_valued_p@0))
356(match (logical_inverted_value @0)
09240451 357 (eq @0 integer_zerop))
5609420f 358(match (logical_inverted_value @0)
09240451 359 (ne truth_valued_p@0 integer_truep))
5609420f 360(match (logical_inverted_value @0)
09240451 361 (bit_xor truth_valued_p@0 integer_truep))
5609420f
RB
362
363/* X & !X -> 0. */
364(simplify
365 (bit_and:c @0 (logical_inverted_value @0))
366 { build_zero_cst (type); })
367/* X | !X and X ^ !X -> 1, , if X is truth-valued. */
368(for op (bit_ior bit_xor)
369 (simplify
370 (op:c truth_valued_p@0 (logical_inverted_value @0))
f84e7fd6 371 { constant_boolean_node (true, type); }))
5609420f
RB
372
373(for bitop (bit_and bit_ior)
374 rbitop (bit_ior bit_and)
375 /* (x | y) & x -> x */
376 /* (x & y) | x -> x */
377 (simplify
378 (bitop:c (rbitop:c @0 @1) @0)
379 @0)
380 /* (~x | y) & x -> x & y */
381 /* (~x & y) | x -> x | y */
382 (simplify
383 (bitop:c (rbitop:c (bit_not @0) @1) @0)
384 (bitop @0 @1)))
385
386/* If arg1 and arg2 are booleans (or any single bit type)
387 then try to simplify:
388
389 (~X & Y) -> X < Y
390 (X & ~Y) -> Y < X
391 (~X | Y) -> X <= Y
392 (X | ~Y) -> Y <= X
393
394 But only do this if our result feeds into a comparison as
395 this transformation is not always a win, particularly on
396 targets with and-not instructions.
397 -> simplify_bitwise_binary_boolean */
398(simplify
399 (ne (bit_and:c (bit_not @0) @1) integer_zerop)
400 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
401 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
402 (lt @0 @1)))
403(simplify
404 (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
405 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
406 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
407 (le @0 @1)))
408
5609420f
RB
409/* ~~x -> x */
410(simplify
411 (bit_not (bit_not @0))
412 @0)
413
f52baa7b
MP
414/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
415(simplify
416 (bit_ior:c (bit_and:c@3 @0 (bit_not @2)) (bit_and:c@4 @1 @2))
417 (if ((TREE_CODE (@3) != SSA_NAME || has_single_use (@3))
418 && (TREE_CODE (@4) != SSA_NAME || has_single_use (@4)))
419 (bit_xor (bit_and (bit_xor @0 @1) @2) @0)))
420
5609420f 421
a499aac5
RB
422/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
423(simplify
e6121733
RB
424 (pointer_plus (pointer_plus@2 @0 @1) @3)
425 (if (TREE_CODE (@2) != SSA_NAME || has_single_use (@2))
426 (pointer_plus @0 (plus @1 @3))))
a499aac5
RB
427
428/* Pattern match
429 tem1 = (long) ptr1;
430 tem2 = (long) ptr2;
431 tem3 = tem2 - tem1;
432 tem4 = (unsigned long) tem3;
433 tem5 = ptr1 + tem4;
434 and produce
435 tem5 = ptr2; */
436(simplify
437 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
438 /* Conditionally look through a sign-changing conversion. */
439 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
440 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
441 || (GENERIC && type == TREE_TYPE (@1))))
442 @1))
443
444/* Pattern match
445 tem = (sizetype) ptr;
446 tem = tem & algn;
447 tem = -tem;
448 ... = ptr p+ tem;
449 and produce the simpler and easier to analyze with respect to alignment
450 ... = ptr & ~algn; */
451(simplify
452 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
453 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
454 (bit_and @0 { algn; })))
455
456
cc7b5acf
RB
457/* We can't reassociate at all for saturating types. */
458(if (!TYPE_SATURATING (type))
459
460 /* Contract negates. */
461 /* A + (-B) -> A - B */
462 (simplify
463 (plus:c (convert1? @0) (convert2? (negate @1)))
464 /* Apply STRIP_NOPS on @0 and the negate. */
465 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
466 && tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 467 && !TYPE_OVERFLOW_SANITIZED (type))
cc7b5acf
RB
468 (minus (convert @0) (convert @1))))
469 /* A - (-B) -> A + B */
470 (simplify
471 (minus (convert1? @0) (convert2? (negate @1)))
472 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
2f68e8bc 473 && tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 474 && !TYPE_OVERFLOW_SANITIZED (type))
cc7b5acf
RB
475 (plus (convert @0) (convert @1))))
476 /* -(-A) -> A */
477 (simplify
478 (negate (convert? (negate @1)))
479 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 480 && !TYPE_OVERFLOW_SANITIZED (type))
a0f12cf8 481 (convert @1)))
cc7b5acf
RB
482
483 /* We can't reassociate floating-point or fixed-point plus or minus
484 because of saturation to +-Inf. */
485 (if (!FLOAT_TYPE_P (type) && !FIXED_POINT_TYPE_P (type))
486
487 /* Match patterns that allow contracting a plus-minus pair
488 irrespective of overflow issues. */
489 /* (A +- B) - A -> +- B */
490 /* (A +- B) -+ B -> A */
491 /* A - (A +- B) -> -+ B */
492 /* A +- (B -+ A) -> +- B */
493 (simplify
494 (minus (plus:c @0 @1) @0)
495 @1)
496 (simplify
497 (minus (minus @0 @1) @0)
498 (negate @1))
499 (simplify
500 (plus:c (minus @0 @1) @1)
501 @0)
502 (simplify
503 (minus @0 (plus:c @0 @1))
504 (negate @1))
505 (simplify
506 (minus @0 (minus @0 @1))
507 @1)
508
509 /* (A +- CST) +- CST -> A + CST */
510 (for outer_op (plus minus)
511 (for inner_op (plus minus)
512 (simplify
513 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
514 /* If the constant operation overflows we cannot do the transform
515 as we would introduce undefined overflow, for example
516 with (a - 1) + INT_MIN. */
517 (with { tree cst = fold_binary (outer_op == inner_op
518 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
519 (if (cst && !TREE_OVERFLOW (cst))
520 (inner_op @0 { cst; } ))))))
521
522 /* (CST - A) +- CST -> CST - A */
523 (for outer_op (plus minus)
524 (simplify
525 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
526 (with { tree cst = fold_binary (outer_op, type, @1, @2); }
527 (if (cst && !TREE_OVERFLOW (cst))
528 (minus { cst; } @0)))))
529
530 /* ~A + A -> -1 */
531 (simplify
532 (plus:c (bit_not @0) @0)
533 (if (!TYPE_OVERFLOW_TRAPS (type))
534 { build_all_ones_cst (type); }))
535
536 /* ~A + 1 -> -A */
537 (simplify
e19740ae
RB
538 (plus (convert? (bit_not @0)) integer_each_onep)
539 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
540 (negate (convert @0))))
541
542 /* -A - 1 -> ~A */
543 (simplify
544 (minus (convert? (negate @0)) integer_each_onep)
545 (if (!TYPE_OVERFLOW_TRAPS (type)
546 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
547 (bit_not (convert @0))))
548
549 /* -1 - A -> ~A */
550 (simplify
551 (minus integer_all_onesp @0)
bc4315fb 552 (bit_not @0))
cc7b5acf
RB
553
554 /* (T)(P + A) - (T)P -> (T) A */
555 (for add (plus pointer_plus)
556 (simplify
557 (minus (convert (add @0 @1))
558 (convert @0))
09240451 559 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
cc7b5acf
RB
560 /* For integer types, if A has a smaller type
561 than T the result depends on the possible
562 overflow in P + A.
563 E.g. T=size_t, A=(unsigned)429497295, P>0.
564 However, if an overflow in P + A would cause
565 undefined behavior, we can assume that there
566 is no overflow. */
567 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
568 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
569 /* For pointer types, if the conversion of A to the
570 final type requires a sign- or zero-extension,
571 then we have to punt - it is not defined which
572 one is correct. */
573 || (POINTER_TYPE_P (TREE_TYPE (@0))
574 && TREE_CODE (@1) == INTEGER_CST
575 && tree_int_cst_sign_bit (@1) == 0))
576 (convert @1))))))
577
578
a7f24614
RB
579/* Simplifications of MIN_EXPR and MAX_EXPR. */
580
581(for minmax (min max)
582 (simplify
583 (minmax @0 @0)
584 @0))
585(simplify
586 (min @0 @1)
587 (if (INTEGRAL_TYPE_P (type)
588 && TYPE_MIN_VALUE (type)
589 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
590 @1))
591(simplify
592 (max @0 @1)
593 (if (INTEGRAL_TYPE_P (type)
594 && TYPE_MAX_VALUE (type)
595 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
596 @1))
597
598
599/* Simplifications of shift and rotates. */
600
601(for rotate (lrotate rrotate)
602 (simplify
603 (rotate integer_all_onesp@0 @1)
604 @0))
605
606/* Optimize -1 >> x for arithmetic right shifts. */
607(simplify
608 (rshift integer_all_onesp@0 @1)
609 (if (!TYPE_UNSIGNED (type)
610 && tree_expr_nonnegative_p (@1))
611 @0))
612
613(for shiftrotate (lrotate rrotate lshift rshift)
614 (simplify
615 (shiftrotate @0 integer_zerop)
616 (non_lvalue @0))
617 (simplify
618 (shiftrotate integer_zerop@0 @1)
619 @0)
620 /* Prefer vector1 << scalar to vector1 << vector2
621 if vector2 is uniform. */
622 (for vec (VECTOR_CST CONSTRUCTOR)
623 (simplify
624 (shiftrotate @0 vec@1)
625 (with { tree tem = uniform_vector_p (@1); }
626 (if (tem)
627 (shiftrotate @0 { tem; }))))))
628
629/* Rewrite an LROTATE_EXPR by a constant into an
630 RROTATE_EXPR by a new constant. */
631(simplify
632 (lrotate @0 INTEGER_CST@1)
633 (rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
634 build_int_cst (TREE_TYPE (@1),
635 element_precision (type)), @1); }))
636
01ada710
MP
637/* ((1 << A) & 1) != 0 -> A == 0
638 ((1 << A) & 1) == 0 -> A != 0 */
639(for cmp (ne eq)
640 icmp (eq ne)
641 (simplify
642 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
643 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
cc7b5acf 644
d4573ffe
RB
645/* Simplifications of conversions. */
646
647/* Basic strip-useless-type-conversions / strip_nops. */
f3582e54 648(for cvt (convert view_convert float fix_trunc)
d4573ffe
RB
649 (simplify
650 (cvt @0)
651 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
652 || (GENERIC && type == TREE_TYPE (@0)))
653 @0)))
654
655/* Contract view-conversions. */
656(simplify
657 (view_convert (view_convert @0))
658 (view_convert @0))
659
660/* For integral conversions with the same precision or pointer
661 conversions use a NOP_EXPR instead. */
662(simplify
663 (view_convert @0)
664 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
665 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
666 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
667 (convert @0)))
668
669/* Strip inner integral conversions that do not change precision or size. */
670(simplify
671 (view_convert (convert@0 @1))
672 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
673 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
674 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
675 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
676 (view_convert @1)))
677
678/* Re-association barriers around constants and other re-association
679 barriers can be removed. */
680(simplify
681 (paren CONSTANT_CLASS_P@0)
682 @0)
683(simplify
684 (paren (paren@1 @0))
685 @1)
1e51d0a2
RB
686
687/* Handle cases of two conversions in a row. */
688(for ocvt (convert float fix_trunc)
689 (for icvt (convert float)
690 (simplify
691 (ocvt (icvt@1 @0))
692 (with
693 {
694 tree inside_type = TREE_TYPE (@0);
695 tree inter_type = TREE_TYPE (@1);
696 int inside_int = INTEGRAL_TYPE_P (inside_type);
697 int inside_ptr = POINTER_TYPE_P (inside_type);
698 int inside_float = FLOAT_TYPE_P (inside_type);
09240451 699 int inside_vec = VECTOR_TYPE_P (inside_type);
1e51d0a2
RB
700 unsigned int inside_prec = TYPE_PRECISION (inside_type);
701 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
702 int inter_int = INTEGRAL_TYPE_P (inter_type);
703 int inter_ptr = POINTER_TYPE_P (inter_type);
704 int inter_float = FLOAT_TYPE_P (inter_type);
09240451 705 int inter_vec = VECTOR_TYPE_P (inter_type);
1e51d0a2
RB
706 unsigned int inter_prec = TYPE_PRECISION (inter_type);
707 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
708 int final_int = INTEGRAL_TYPE_P (type);
709 int final_ptr = POINTER_TYPE_P (type);
710 int final_float = FLOAT_TYPE_P (type);
09240451 711 int final_vec = VECTOR_TYPE_P (type);
1e51d0a2
RB
712 unsigned int final_prec = TYPE_PRECISION (type);
713 int final_unsignedp = TYPE_UNSIGNED (type);
714 }
715 /* In addition to the cases of two conversions in a row
716 handled below, if we are converting something to its own
717 type via an object of identical or wider precision, neither
718 conversion is needed. */
719 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
720 || (GENERIC
721 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
722 && (((inter_int || inter_ptr) && final_int)
723 || (inter_float && final_float))
724 && inter_prec >= final_prec)
725 (ocvt @0))
726
727 /* Likewise, if the intermediate and initial types are either both
728 float or both integer, we don't need the middle conversion if the
729 former is wider than the latter and doesn't change the signedness
730 (for integers). Avoid this if the final type is a pointer since
731 then we sometimes need the middle conversion. Likewise if the
732 final type has a precision not equal to the size of its mode. */
d51a6714
JJ
733 (if (((inter_int && inside_int) || (inter_float && inside_float))
734 && (final_int || final_float)
1e51d0a2 735 && inter_prec >= inside_prec
d51a6714
JJ
736 && (inter_float || inter_unsignedp == inside_unsignedp)
737 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
738 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1e51d0a2
RB
739 (ocvt @0))
740
741 /* If we have a sign-extension of a zero-extended value, we can
742 replace that by a single zero-extension. Likewise if the
743 final conversion does not change precision we can drop the
744 intermediate conversion. */
745 (if (inside_int && inter_int && final_int
746 && ((inside_prec < inter_prec && inter_prec < final_prec
747 && inside_unsignedp && !inter_unsignedp)
748 || final_prec == inter_prec))
749 (ocvt @0))
750
751 /* Two conversions in a row are not needed unless:
752 - some conversion is floating-point (overstrict for now), or
753 - some conversion is a vector (overstrict for now), or
754 - the intermediate type is narrower than both initial and
755 final, or
756 - the intermediate type and innermost type differ in signedness,
757 and the outermost type is wider than the intermediate, or
758 - the initial type is a pointer type and the precisions of the
759 intermediate and final types differ, or
760 - the final type is a pointer type and the precisions of the
761 initial and intermediate types differ. */
762 (if (! inside_float && ! inter_float && ! final_float
763 && ! inside_vec && ! inter_vec && ! final_vec
764 && (inter_prec >= inside_prec || inter_prec >= final_prec)
765 && ! (inside_int && inter_int
766 && inter_unsignedp != inside_unsignedp
767 && inter_prec < final_prec)
768 && ((inter_unsignedp && inter_prec > inside_prec)
769 == (final_unsignedp && final_prec > inter_prec))
770 && ! (inside_ptr && inter_prec != final_prec)
771 && ! (final_ptr && inside_prec != inter_prec)
772 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
773 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1f00c1b9
RB
774 (ocvt @0))
775
776 /* A truncation to an unsigned type (a zero-extension) should be
777 canonicalized as bitwise and of a mask. */
778 (if (final_int && inter_int && inside_int
779 && final_prec == inside_prec
780 && final_prec > inter_prec
781 && inter_unsignedp)
782 (convert (bit_and @0 { wide_int_to_tree
783 (inside_type,
784 wi::mask (inter_prec, false,
785 TYPE_PRECISION (inside_type))); })))
786
787 /* If we are converting an integer to a floating-point that can
788 represent it exactly and back to an integer, we can skip the
789 floating-point conversion. */
5ba3ae6d
RB
790 (if (GIMPLE /* PR66211 */
791 && inside_int && inter_float && final_int &&
1f00c1b9
RB
792 (unsigned) significand_size (TYPE_MODE (inter_type))
793 >= inside_prec - !inside_unsignedp)
794 (convert @0))))))
ea2042ba
RB
795
796/* If we have a narrowing conversion to an integral type that is fed by a
797 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
798 masks off bits outside the final type (and nothing else). */
799(simplify
800 (convert (bit_and @0 INTEGER_CST@1))
801 (if (INTEGRAL_TYPE_P (type)
802 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
803 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
804 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
805 TYPE_PRECISION (type)), 0))
806 (convert @0)))
a25454ea
RB
807
808
809/* (X /[ex] A) * A -> X. */
810(simplify
811 (mult (convert? (exact_div @0 @1)) @1)
812 /* Look through a sign-changing conversion. */
813 (if (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
814 (convert @0)))
eaeba53a 815
a7f24614
RB
816/* Canonicalization of binary operations. */
817
818/* Convert X + -C into X - C. */
819(simplify
820 (plus @0 REAL_CST@1)
821 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
822 (with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
823 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
824 (minus @0 { tem; })))))
825
826/* Convert x+x into x*2.0. */
827(simplify
828 (plus @0 @0)
829 (if (SCALAR_FLOAT_TYPE_P (type))
830 (mult @0 { build_real (type, dconst2); })))
831
832(simplify
833 (minus integer_zerop @1)
834 (negate @1))
835
836/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
837 ARG0 is zero and X + ARG0 reduces to X, since that would mean
838 (-ARG1 + ARG0) reduces to -ARG1. */
839(simplify
840 (minus real_zerop@0 @1)
841 (if (fold_real_zero_addition_p (type, @0, 0))
842 (negate @1)))
843
844/* Transform x * -1 into -x. */
845(simplify
846 (mult @0 integer_minus_onep)
847 (negate @0))
eaeba53a
RB
848
849/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
850(simplify
851 (complex (realpart @0) (imagpart @0))
852 @0)
853(simplify
854 (realpart (complex @0 @1))
855 @0)
856(simplify
857 (imagpart (complex @0 @1))
858 @1)
83633539
RB
859
860
861/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
862(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
863 (simplify
864 (bswap (bswap @0))
865 @0)
866 (simplify
867 (bswap (bit_not (bswap @0)))
868 (bit_not @0))
869 (for bitop (bit_xor bit_ior bit_and)
870 (simplify
871 (bswap (bitop:c (bswap @0) @1))
872 (bitop @0 (bswap @1)))))
96994de0
RB
873
874
875/* Combine COND_EXPRs and VEC_COND_EXPRs. */
876
877/* Simplify constant conditions.
878 Only optimize constant conditions when the selected branch
879 has the same type as the COND_EXPR. This avoids optimizing
880 away "c ? x : throw", where the throw has a void type.
881 Note that we cannot throw away the fold-const.c variant nor
882 this one as we depend on doing this transform before possibly
883 A ? B : B -> B triggers and the fold-const.c one can optimize
884 0 ? A : B to B even if A has side-effects. Something
885 genmatch cannot handle. */
886(simplify
887 (cond INTEGER_CST@0 @1 @2)
888 (if (integer_zerop (@0)
889 && (!VOID_TYPE_P (TREE_TYPE (@2))
890 || VOID_TYPE_P (type)))
891 @2)
892 (if (!integer_zerop (@0)
893 && (!VOID_TYPE_P (TREE_TYPE (@1))
894 || VOID_TYPE_P (type)))
895 @1))
896(simplify
897 (vec_cond VECTOR_CST@0 @1 @2)
898 (if (integer_all_onesp (@0))
899 @1)
900 (if (integer_zerop (@0))
901 @2))
902
903(for cnd (cond vec_cond)
904 /* A ? B : (A ? X : C) -> A ? B : C. */
905 (simplify
906 (cnd @0 (cnd @0 @1 @2) @3)
907 (cnd @0 @1 @3))
908 (simplify
909 (cnd @0 @1 (cnd @0 @2 @3))
910 (cnd @0 @1 @3))
911
912 /* A ? B : B -> B. */
913 (simplify
914 (cnd @0 @1 @1)
09240451 915 @1)
96994de0 916
09240451
MG
917 /* !A ? B : C -> A ? C : B. */
918 (simplify
919 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
920 (cnd @0 @2 @1)))
f84e7fd6
RB
921
922
923/* Simplifications of comparisons. */
924
925/* We can simplify a logical negation of a comparison to the
926 inverted comparison. As we cannot compute an expression
927 operator using invert_tree_comparison we have to simulate
928 that with expression code iteration. */
929(for cmp (tcc_comparison)
930 icmp (inverted_tcc_comparison)
931 ncmp (inverted_tcc_comparison_with_nans)
932 /* Ideally we'd like to combine the following two patterns
933 and handle some more cases by using
934 (logical_inverted_value (cmp @0 @1))
935 here but for that genmatch would need to "inline" that.
936 For now implement what forward_propagate_comparison did. */
937 (simplify
938 (bit_not (cmp @0 @1))
939 (if (VECTOR_TYPE_P (type)
940 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
941 /* Comparison inversion may be impossible for trapping math,
942 invert_tree_comparison will tell us. But we can't use
943 a computed operator in the replacement tree thus we have
944 to play the trick below. */
945 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 946 (cmp, HONOR_NANS (@0)); }
f84e7fd6
RB
947 (if (ic == icmp)
948 (icmp @0 @1))
949 (if (ic == ncmp)
950 (ncmp @0 @1)))))
951 (simplify
09240451
MG
952 (bit_xor (cmp @0 @1) integer_truep)
953 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 954 (cmp, HONOR_NANS (@0)); }
09240451
MG
955 (if (ic == icmp)
956 (icmp @0 @1))
957 (if (ic == ncmp)
958 (ncmp @0 @1)))))
e18c1d66 959
cfdc4f33
MG
960/* Unordered tests if either argument is a NaN. */
961(simplify
962 (bit_ior (unordered @0 @0) (unordered @1 @1))
aea417d7 963 (if (types_match (@0, @1))
cfdc4f33
MG
964 (unordered @0 @1)))
965(simplify
966 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
967 @2)
e18c1d66
RB
968
969/* Simplification of math builtins. */
970
971(define_operator_list LOG BUILT_IN_LOGF BUILT_IN_LOG BUILT_IN_LOGL)
972(define_operator_list EXP BUILT_IN_EXPF BUILT_IN_EXP BUILT_IN_EXPL)
973(define_operator_list LOG2 BUILT_IN_LOG2F BUILT_IN_LOG2 BUILT_IN_LOG2L)
974(define_operator_list EXP2 BUILT_IN_EXP2F BUILT_IN_EXP2 BUILT_IN_EXP2L)
975(define_operator_list LOG10 BUILT_IN_LOG10F BUILT_IN_LOG10 BUILT_IN_LOG10L)
976(define_operator_list EXP10 BUILT_IN_EXP10F BUILT_IN_EXP10 BUILT_IN_EXP10L)
977(define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
978(define_operator_list POW10 BUILT_IN_POW10F BUILT_IN_POW10 BUILT_IN_POW10L)
979(define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
980(define_operator_list CBRT BUILT_IN_CBRTF BUILT_IN_CBRT BUILT_IN_CBRTL)
981
982
983/* fold_builtin_logarithm */
984(if (flag_unsafe_math_optimizations)
985 /* Special case, optimize logN(expN(x)) = x. */
986 (for logs (LOG LOG2 LOG10)
987 exps (EXP EXP2 EXP10)
988 (simplify
989 (logs (exps @0))
990 @0))
991 /* Optimize logN(func()) for various exponential functions. We
992 want to determine the value "x" and the power "exponent" in
993 order to transform logN(x**exponent) into exponent*logN(x). */
994 (for logs (LOG LOG LOG LOG
995 LOG2 LOG2 LOG2 LOG2
996 LOG10 LOG10 LOG10 LOG10)
997 exps (EXP EXP2 EXP10 POW10)
998 (simplify
999 (logs (exps @0))
1000 (with {
1001 tree x;
1002 switch (exps)
1003 {
1004 CASE_FLT_FN (BUILT_IN_EXP):
1005 /* Prepare to do logN(exp(exponent) -> exponent*logN(e). */
1006 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1007 dconst_e ()));
1008 break;
1009 CASE_FLT_FN (BUILT_IN_EXP2):
1010 /* Prepare to do logN(exp2(exponent) -> exponent*logN(2). */
1011 x = build_real (type, dconst2);
1012 break;
1013 CASE_FLT_FN (BUILT_IN_EXP10):
1014 CASE_FLT_FN (BUILT_IN_POW10):
1015 /* Prepare to do logN(exp10(exponent) -> exponent*logN(10). */
1016 {
1017 REAL_VALUE_TYPE dconst10;
1018 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
1019 x = build_real (type, dconst10);
1020 }
1021 break;
1022 }
1023 }
1024 (mult (logs { x; }) @0))))
1025 (for logs (LOG LOG
1026 LOG2 LOG2
1027 LOG10 LOG10)
1028 exps (SQRT CBRT)
1029 (simplify
1030 (logs (exps @0))
1031 (with {
1032 tree x;
1033 switch (exps)
1034 {
1035 CASE_FLT_FN (BUILT_IN_SQRT):
1036 /* Prepare to do logN(sqrt(x) -> 0.5*logN(x). */
1037 x = build_real (type, dconsthalf);
1038 break;
1039 CASE_FLT_FN (BUILT_IN_CBRT):
1040 /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x). */
1041 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1042 dconst_third ()));
1043 break;
1044 }
1045 }
1046 (mult { x; } (logs @0)))))
1047 /* logN(pow(x,exponent) -> exponent*logN(x). */
1048 (for logs (LOG LOG2 LOG10)
1049 pows (POW)
1050 (simplify
1051 (logs (pows @0 @1))
1052 (mult @1 (logs @0)))))
1053
be144838
JL
1054/* Narrowing of arithmetic and logical operations.
1055
1056 These are conceptually similar to the transformations performed for
1057 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
1058 term we want to move all that code out of the front-ends into here. */
1059
1060/* If we have a narrowing conversion of an arithmetic operation where
1061 both operands are widening conversions from the same type as the outer
1062 narrowing conversion. Then convert the innermost operands to a suitable
1063 unsigned type (to avoid introducing undefined behaviour), perform the
1064 operation and convert the result to the desired type. */
1065(for op (plus minus)
1066 (simplify
48451e8f 1067 (convert (op@4 (convert@2 @0) (convert@3 @1)))
be144838
JL
1068 (if (INTEGRAL_TYPE_P (type)
1069 /* We check for type compatibility between @0 and @1 below,
1070 so there's no need to check that @1/@3 are integral types. */
1071 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1072 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1073 /* The precision of the type of each operand must match the
1074 precision of the mode of each operand, similarly for the
1075 result. */
1076 && (TYPE_PRECISION (TREE_TYPE (@0))
1077 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1078 && (TYPE_PRECISION (TREE_TYPE (@1))
1079 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1080 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1081 /* The inner conversion must be a widening conversion. */
1082 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
aea417d7
MG
1083 && types_match (@0, @1)
1084 && types_match (@0, type)
48451e8f 1085 && single_use (@4))
be144838
JL
1086 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1087 (convert (op @0 @1)))
1088 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1089 (convert (op (convert:utype @0) (convert:utype @1)))))))
48451e8f
JL
1090
1091/* This is another case of narrowing, specifically when there's an outer
1092 BIT_AND_EXPR which masks off bits outside the type of the innermost
1093 operands. Like the previous case we have to convert the operands
1094 to unsigned types to avoid introducing undefined behaviour for the
1095 arithmetic operation. */
1096(for op (minus plus)
1097 (simplify
1098 (bit_and (op@5 (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
1099 (if (INTEGRAL_TYPE_P (type)
1100 /* We check for type compatibility between @0 and @1 below,
1101 so there's no need to check that @1/@3 are integral types. */
1102 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1103 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1104 /* The precision of the type of each operand must match the
1105 precision of the mode of each operand, similarly for the
1106 result. */
1107 && (TYPE_PRECISION (TREE_TYPE (@0))
1108 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1109 && (TYPE_PRECISION (TREE_TYPE (@1))
1110 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1111 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1112 /* The inner conversion must be a widening conversion. */
1113 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
aea417d7 1114 && types_match (@0, @1)
a60c51fe 1115 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
48451e8f 1116 <= TYPE_PRECISION (TREE_TYPE (@0)))
a60c51fe
JJ
1117 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1118 || tree_int_cst_sgn (@4) >= 0)
48451e8f
JL
1119 && single_use (@5))
1120 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1121 (with { tree ntype = TREE_TYPE (@0); }
1122 (convert (bit_and (op @0 @1) (convert:ntype @4)))))
1123 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1124 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
1125 (convert:utype @4)))))))
1126