]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/match.pd
c-common.c (self_promoting_args_p): Change the return type to bool.
[thirdparty/gcc.git] / gcc / match.pd
CommitLineData
3d2cf79f
RB
1/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
cbe34bb5 5 Copyright (C) 2014-2017 Free Software Foundation, Inc.
3d2cf79f
RB
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
13Software Foundation; either version 3, or (at your option) any later
14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING3. If not see
23<http://www.gnu.org/licenses/>. */
24
25
26/* Generic tree predicates we inherit. */
27(define_predicates
cc7b5acf 28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
53a19317 29 integer_each_onep integer_truep integer_nonzerop
cc7b5acf 30 real_zerop real_onep real_minus_onep
b0eb889b 31 zerop
f3582e54 32 CONSTANT_CLASS_P
887ab609 33 tree_expr_nonnegative_p
e36c1cfe 34 tree_expr_nonzero_p
67dbe582 35 integer_valued_real_p
53a19317
RB
36 integer_pow2p
37 HONOR_NANS)
e0ee10ed 38
f84e7fd6
RB
39/* Operator lists. */
40(define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42(define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44(define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
534bd33b
MG
46(define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
07cdc2b8
RB
48(define_operator_list simple_comparison lt le eq ne ge gt)
49(define_operator_list swapped_simple_comparison gt ge eq ne le lt)
50
b1dc4a20 51#include "cfn-operators.pd"
257aecb4 52
543a9bcd
RS
53/* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
56
57 Also define operand lists:
58
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62#define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
543a9bcd
RS
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
64 BUILT_IN_L##FN##F \
65 BUILT_IN_LL##FN##F) \
66 (define_operator_list X##FN BUILT_IN_I##FN \
67 BUILT_IN_L##FN \
68 BUILT_IN_LL##FN) \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
70 BUILT_IN_L##FN##L \
71 BUILT_IN_LL##FN##L)
72
543a9bcd
RS
73DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
f84e7fd6 77
e0ee10ed 78/* Simplifications of operations with one constant operand and
36a60e48 79 simplifications to constants or single values. */
e0ee10ed
RB
80
81(for op (plus pointer_plus minus bit_ior bit_xor)
82 (simplify
83 (op @0 integer_zerop)
84 (non_lvalue @0)))
85
a499aac5
RB
86/* 0 +p index -> (type)index */
87(simplify
88 (pointer_plus integer_zerop @1)
89 (non_lvalue (convert @1)))
90
a7f24614
RB
91/* See if ARG1 is zero and X + ARG1 reduces to X.
92 Likewise if the operands are reversed. */
93(simplify
94 (plus:c @0 real_zerop@1)
95 (if (fold_real_zero_addition_p (type, @1, 0))
96 (non_lvalue @0)))
97
98/* See if ARG1 is zero and X - ARG1 reduces to X. */
99(simplify
100 (minus @0 real_zerop@1)
101 (if (fold_real_zero_addition_p (type, @1, 1))
102 (non_lvalue @0)))
103
e0ee10ed
RB
104/* Simplify x - x.
105 This is unsafe for certain floats even in non-IEEE formats.
106 In IEEE, it is unsafe because it does wrong for NaNs.
107 Also note that operand_equal_p is always false if an operand
108 is volatile. */
109(simplify
a7f24614 110 (minus @0 @0)
1b457aa4 111 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
a7f24614 112 { build_zero_cst (type); }))
e0ee10ed
RB
113
114(simplify
a7f24614
RB
115 (mult @0 integer_zerop@1)
116 @1)
117
118/* Maybe fold x * 0 to 0. The expressions aren't the same
119 when x is NaN, since x * 0 is also NaN. Nor are they the
120 same in modes with signed zeros, since multiplying a
121 negative value by 0 gives -0, not +0. */
122(simplify
123 (mult @0 real_zerop@1)
8b5ee871 124 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
a7f24614
RB
125 @1))
126
127/* In IEEE floating point, x*1 is not equivalent to x for snans.
128 Likewise for complex arithmetic with signed zeros. */
129(simplify
130 (mult @0 real_onep)
8b5ee871
MG
131 (if (!HONOR_SNANS (type)
132 && (!HONOR_SIGNED_ZEROS (type)
a7f24614
RB
133 || !COMPLEX_FLOAT_TYPE_P (type)))
134 (non_lvalue @0)))
135
136/* Transform x * -1.0 into -x. */
137(simplify
138 (mult @0 real_minus_onep)
8b5ee871
MG
139 (if (!HONOR_SNANS (type)
140 && (!HONOR_SIGNED_ZEROS (type)
a7f24614
RB
141 || !COMPLEX_FLOAT_TYPE_P (type)))
142 (negate @0)))
e0ee10ed 143
5b7f6ed0 144/* X * 1, X / 1 -> X. */
e0ee10ed
RB
145(for op (mult trunc_div ceil_div floor_div round_div exact_div)
146 (simplify
147 (op @0 integer_onep)
148 (non_lvalue @0)))
149
5b7f6ed0
MG
150/* Preserve explicit divisions by 0: the C++ front-end wants to detect
151 undefined behavior in constexpr evaluation, and assuming that the division
152 traps enables better optimizations than these anyway. */
a7f24614 153(for div (trunc_div ceil_div floor_div round_div exact_div)
5b7f6ed0
MG
154 /* 0 / X is always zero. */
155 (simplify
156 (div integer_zerop@0 @1)
157 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
158 (if (!integer_zerop (@1))
159 @0))
da186c1f 160 /* X / -1 is -X. */
a7f24614 161 (simplify
09240451
MG
162 (div @0 integer_minus_onep@1)
163 (if (!TYPE_UNSIGNED (type))
da186c1f 164 (negate @0)))
5b7f6ed0
MG
165 /* X / X is one. */
166 (simplify
167 (div @0 @0)
168 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
169 (if (!integer_zerop (@0))
170 { build_one_cst (type); }))
da186c1f
RB
171 /* X / abs (X) is X < 0 ? -1 : 1. */
172 (simplify
d96a5585
RB
173 (div:C @0 (abs @0))
174 (if (INTEGRAL_TYPE_P (type)
da186c1f
RB
175 && TYPE_OVERFLOW_UNDEFINED (type))
176 (cond (lt @0 { build_zero_cst (type); })
177 { build_minus_one_cst (type); } { build_one_cst (type); })))
178 /* X / -X is -1. */
179 (simplify
d96a5585 180 (div:C @0 (negate @0))
da186c1f
RB
181 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
182 && TYPE_OVERFLOW_UNDEFINED (type))
183 { build_minus_one_cst (type); })))
a7f24614
RB
184
185/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
186 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
187(simplify
188 (floor_div @0 @1)
09240451
MG
189 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
190 && TYPE_UNSIGNED (type))
a7f24614
RB
191 (trunc_div @0 @1)))
192
28093105
RB
193/* Combine two successive divisions. Note that combining ceil_div
194 and floor_div is trickier and combining round_div even more so. */
195(for div (trunc_div exact_div)
c306cfaf
RB
196 (simplify
197 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
198 (with {
199 bool overflow_p;
200 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
201 }
202 (if (!overflow_p)
8fdc6c67
RB
203 (div @0 { wide_int_to_tree (type, mul); })
204 (if (TYPE_UNSIGNED (type)
205 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
206 { build_zero_cst (type); })))))
c306cfaf 207
a7f24614 208/* Optimize A / A to 1.0 if we don't care about
09240451 209 NaNs or Infinities. */
a7f24614
RB
210(simplify
211 (rdiv @0 @0)
09240451 212 (if (FLOAT_TYPE_P (type)
1b457aa4 213 && ! HONOR_NANS (type)
8b5ee871 214 && ! HONOR_INFINITIES (type))
09240451
MG
215 { build_one_cst (type); }))
216
217/* Optimize -A / A to -1.0 if we don't care about
218 NaNs or Infinities. */
219(simplify
e04d2a35 220 (rdiv:C @0 (negate @0))
09240451 221 (if (FLOAT_TYPE_P (type)
1b457aa4 222 && ! HONOR_NANS (type)
8b5ee871 223 && ! HONOR_INFINITIES (type))
09240451 224 { build_minus_one_cst (type); }))
a7f24614 225
8c6961ca
PK
226/* PR71078: x / abs(x) -> copysign (1.0, x) */
227(simplify
228 (rdiv:C (convert? @0) (convert? (abs @0)))
229 (if (SCALAR_FLOAT_TYPE_P (type)
230 && ! HONOR_NANS (type)
231 && ! HONOR_INFINITIES (type))
232 (switch
233 (if (types_match (type, float_type_node))
234 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
235 (if (types_match (type, double_type_node))
236 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
237 (if (types_match (type, long_double_type_node))
238 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
239
a7f24614
RB
240/* In IEEE floating point, x/1 is not equivalent to x for snans. */
241(simplify
242 (rdiv @0 real_onep)
8b5ee871 243 (if (!HONOR_SNANS (type))
a7f24614
RB
244 (non_lvalue @0)))
245
246/* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
247(simplify
248 (rdiv @0 real_minus_onep)
8b5ee871 249 (if (!HONOR_SNANS (type))
a7f24614
RB
250 (negate @0)))
251
5711ac88
N
252(if (flag_reciprocal_math)
253 /* Convert (A/B)/C to A/(B*C) */
254 (simplify
255 (rdiv (rdiv:s @0 @1) @2)
256 (rdiv @0 (mult @1 @2)))
257
258 /* Convert A/(B/C) to (A/B)*C */
259 (simplify
260 (rdiv @0 (rdiv:s @1 @2))
261 (mult (rdiv @0 @1) @2)))
262
263/* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
264(for div (trunc_div ceil_div floor_div round_div exact_div)
265 (simplify
266 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
267 (if (integer_pow2p (@2)
268 && tree_int_cst_sgn (@2) > 0
269 && wi::add (@2, @1) == 0
270 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
271 (rshift (convert @0) { build_int_cst (integer_type_node,
272 wi::exact_log2 (@2)); }))))
273
a7f24614
RB
274/* If ARG1 is a constant, we can convert this to a multiply by the
275 reciprocal. This does not have the same rounding properties,
276 so only do this if -freciprocal-math. We can actually
277 always safely do it if ARG1 is a power of two, but it's hard to
278 tell if it is or not in a portable manner. */
279(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
280 (simplify
281 (rdiv @0 cst@1)
282 (if (optimize)
53bc4b3a
RB
283 (if (flag_reciprocal_math
284 && !real_zerop (@1))
a7f24614 285 (with
249700b5 286 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
a7f24614 287 (if (tem)
8fdc6c67
RB
288 (mult @0 { tem; } )))
289 (if (cst != COMPLEX_CST)
290 (with { tree inverse = exact_inverse (type, @1); }
291 (if (inverse)
292 (mult @0 { inverse; } ))))))))
a7f24614 293
a7f24614 294(for mod (ceil_mod floor_mod round_mod trunc_mod)
e0ee10ed
RB
295 /* 0 % X is always zero. */
296 (simplify
a7f24614 297 (mod integer_zerop@0 @1)
e0ee10ed
RB
298 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
299 (if (!integer_zerop (@1))
300 @0))
301 /* X % 1 is always zero. */
302 (simplify
a7f24614
RB
303 (mod @0 integer_onep)
304 { build_zero_cst (type); })
305 /* X % -1 is zero. */
306 (simplify
09240451
MG
307 (mod @0 integer_minus_onep@1)
308 (if (!TYPE_UNSIGNED (type))
bc4315fb 309 { build_zero_cst (type); }))
5b7f6ed0
MG
310 /* X % X is zero. */
311 (simplify
312 (mod @0 @0)
313 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
314 (if (!integer_zerop (@0))
315 { build_zero_cst (type); }))
bc4315fb
MG
316 /* (X % Y) % Y is just X % Y. */
317 (simplify
318 (mod (mod@2 @0 @1) @1)
98e30e51
RB
319 @2)
320 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
321 (simplify
322 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
323 (if (ANY_INTEGRAL_TYPE_P (type)
324 && TYPE_OVERFLOW_UNDEFINED (type)
325 && wi::multiple_of_p (@1, @2, TYPE_SIGN (type)))
326 { build_zero_cst (type); })))
a7f24614
RB
327
328/* X % -C is the same as X % C. */
329(simplify
330 (trunc_mod @0 INTEGER_CST@1)
331 (if (TYPE_SIGN (type) == SIGNED
332 && !TREE_OVERFLOW (@1)
333 && wi::neg_p (@1)
334 && !TYPE_OVERFLOW_TRAPS (type)
335 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
336 && !sign_bit_p (@1, @1))
337 (trunc_mod @0 (negate @1))))
e0ee10ed 338
8f0c696a
RB
339/* X % -Y is the same as X % Y. */
340(simplify
341 (trunc_mod @0 (convert? (negate @1)))
a2a743a1
MP
342 (if (INTEGRAL_TYPE_P (type)
343 && !TYPE_UNSIGNED (type)
8f0c696a 344 && !TYPE_OVERFLOW_TRAPS (type)
20b8d734
JJ
345 && tree_nop_conversion_p (type, TREE_TYPE (@1))
346 /* Avoid this transformation if X might be INT_MIN or
347 Y might be -1, because we would then change valid
348 INT_MIN % -(-1) into invalid INT_MIN % -1. */
349 && (expr_not_equal_to (@0, TYPE_MIN_VALUE (type))
350 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
351 (TREE_TYPE (@1))))))
8f0c696a
RB
352 (trunc_mod @0 (convert @1))))
353
f461569a
MP
354/* X - (X / Y) * Y is the same as X % Y. */
355(simplify
2eef1fc1
RB
356 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
357 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
fba46f03 358 (convert (trunc_mod @0 @1))))
f461569a 359
8f0c696a
RB
360/* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
361 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
362 Also optimize A % (C << N) where C is a power of 2,
363 to A & ((C << N) - 1). */
364(match (power_of_two_cand @1)
365 INTEGER_CST@1)
366(match (power_of_two_cand @1)
367 (lshift INTEGER_CST@1 @2))
368(for mod (trunc_mod floor_mod)
369 (simplify
4ab1e111 370 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
8f0c696a
RB
371 (if ((TYPE_UNSIGNED (type)
372 || tree_expr_nonnegative_p (@0))
4ab1e111 373 && tree_nop_conversion_p (type, TREE_TYPE (@3))
8f0c696a 374 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
4ab1e111 375 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
8f0c696a 376
887ab609
N
377/* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
378(simplify
379 (trunc_div (mult @0 integer_pow2p@1) @1)
380 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
381 (bit_and @0 { wide_int_to_tree
382 (type, wi::mask (TYPE_PRECISION (type) - wi::exact_log2 (@1),
383 false, TYPE_PRECISION (type))); })))
384
5f8d832e
N
385/* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
386(simplify
387 (mult (trunc_div @0 integer_pow2p@1) @1)
388 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
389 (bit_and @0 (negate @1))))
390
95765f36
N
391/* Simplify (t * 2) / 2) -> t. */
392(for div (trunc_div ceil_div floor_div round_div exact_div)
393 (simplify
394 (div (mult @0 @1) @1)
395 (if (ANY_INTEGRAL_TYPE_P (type)
396 && TYPE_OVERFLOW_UNDEFINED (type))
397 @0)))
398
d202f9bd 399(for op (negate abs)
9b054b08
RS
400 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
401 (for coss (COS COSH)
402 (simplify
403 (coss (op @0))
404 (coss @0)))
405 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
406 (for pows (POW)
407 (simplify
408 (pows (op @0) REAL_CST@1)
409 (with { HOST_WIDE_INT n; }
410 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
5d3498b4 411 (pows @0 @1)))))
de3fbea3
RB
412 /* Likewise for powi. */
413 (for pows (POWI)
414 (simplify
415 (pows (op @0) INTEGER_CST@1)
416 (if (wi::bit_and (@1, 1) == 0)
417 (pows @0 @1))))
5d3498b4
RS
418 /* Strip negate and abs from both operands of hypot. */
419 (for hypots (HYPOT)
420 (simplify
421 (hypots (op @0) @1)
422 (hypots @0 @1))
423 (simplify
424 (hypots @0 (op @1))
425 (hypots @0 @1)))
426 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
427 (for copysigns (COPYSIGN)
428 (simplify
429 (copysigns (op @0) @1)
430 (copysigns @0 @1))))
431
432/* abs(x)*abs(x) -> x*x. Should be valid for all types. */
433(simplify
434 (mult (abs@1 @0) @1)
435 (mult @0 @0))
436
437/* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
438(for coss (COS COSH)
439 copysigns (COPYSIGN)
440 (simplify
441 (coss (copysigns @0 @1))
442 (coss @0)))
443
444/* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
445(for pows (POW)
446 copysigns (COPYSIGN)
447 (simplify
de3fbea3 448 (pows (copysigns @0 @2) REAL_CST@1)
5d3498b4
RS
449 (with { HOST_WIDE_INT n; }
450 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
451 (pows @0 @1)))))
de3fbea3
RB
452/* Likewise for powi. */
453(for pows (POWI)
454 copysigns (COPYSIGN)
455 (simplify
456 (pows (copysigns @0 @2) INTEGER_CST@1)
457 (if (wi::bit_and (@1, 1) == 0)
458 (pows @0 @1))))
5d3498b4
RS
459
460(for hypots (HYPOT)
461 copysigns (COPYSIGN)
462 /* hypot(copysign(x, y), z) -> hypot(x, z). */
463 (simplify
464 (hypots (copysigns @0 @1) @2)
465 (hypots @0 @2))
466 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
467 (simplify
468 (hypots @0 (copysigns @1 @2))
469 (hypots @0 @1)))
470
eeb57981
RB
471/* copysign(x, CST) -> [-]abs (x). */
472(for copysigns (COPYSIGN)
473 (simplify
474 (copysigns @0 REAL_CST@1)
475 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
476 (negate (abs @0))
477 (abs @0))))
478
5d3498b4
RS
479/* copysign(copysign(x, y), z) -> copysign(x, z). */
480(for copysigns (COPYSIGN)
481 (simplify
482 (copysigns (copysigns @0 @1) @2)
483 (copysigns @0 @2)))
484
485/* copysign(x,y)*copysign(x,y) -> x*x. */
486(for copysigns (COPYSIGN)
487 (simplify
488 (mult (copysigns@2 @0 @1) @2)
489 (mult @0 @0)))
490
491/* ccos(-x) -> ccos(x). Similarly for ccosh. */
492(for ccoss (CCOS CCOSH)
493 (simplify
494 (ccoss (negate @0))
495 (ccoss @0)))
d202f9bd 496
abcc43f5
RS
497/* cabs(-x) and cos(conj(x)) -> cabs(x). */
498(for ops (conj negate)
499 (for cabss (CABS)
500 (simplify
501 (cabss (ops @0))
502 (cabss @0))))
503
0a8f32b8
RB
504/* Fold (a * (1 << b)) into (a << b) */
505(simplify
506 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
507 (if (! FLOAT_TYPE_P (type)
9ff6fb6e 508 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
0a8f32b8
RB
509 (lshift @0 @2)))
510
511/* Fold (C1/X)*C2 into (C1*C2)/X. */
512(simplify
ff86345f
RB
513 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
514 (if (flag_associative_math
515 && single_use (@3))
0a8f32b8
RB
516 (with
517 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
518 (if (tem)
519 (rdiv { tem; } @1)))))
520
5711ac88
N
521/* Convert C1/(X*C2) into (C1/C2)/X */
522(simplify
523 (rdiv REAL_CST@0 (mult @1 REAL_CST@2))
524 (if (flag_reciprocal_math)
525 (with
526 { tree tem = const_binop (RDIV_EXPR, type, @0, @2); }
527 (if (tem)
528 (rdiv { tem; } @1)))))
529
0a8f32b8
RB
530/* Simplify ~X & X as zero. */
531(simplify
532 (bit_and:c (convert? @0) (convert? (bit_not @0)))
533 { build_zero_cst (type); })
534
89b80c42
PK
535/* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
536(simplify
537 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
538 (if (TYPE_UNSIGNED (type))
539 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
540
7aa13860
PK
541/* PR35691: Transform
542 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
543 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
544(for bitop (bit_and bit_ior)
545 cmp (eq ne)
546 (simplify
547 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
548 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
549 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
550 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
551 (cmp (bit_ior @0 (convert @1)) @2))))
552
10158317
RB
553/* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
554(simplify
a9658b11 555 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
10158317
RB
556 (minus (bit_xor @0 @1) @1))
557(simplify
558 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
559 (if (wi::bit_not (@2) == @1)
560 (minus (bit_xor @0 @1) @1)))
561
562/* Fold (A & B) - (A & ~B) into B - (A ^ B). */
563(simplify
a8e9f9a3 564 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
10158317
RB
565 (minus @1 (bit_xor @0 @1)))
566
567/* Simplify (X & ~Y) | (~X & Y) -> X ^ Y. */
568(simplify
a9658b11 569 (bit_ior (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
10158317
RB
570 (bit_xor @0 @1))
571(simplify
572 (bit_ior:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
573 (if (wi::bit_not (@2) == @1)
574 (bit_xor @0 @1)))
2066ef6a
PK
575
576/* PR53979: Transform ((a ^ b) | a) -> (a | b) */
577(simplify
578 (bit_ior:c (bit_xor:c @0 @1) @0)
579 (bit_ior @0 @1))
580
d982c5b7
MG
581/* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
582#if GIMPLE
583(simplify
584 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
585 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
586 && (get_nonzero_bits (@0) & wi::bit_not (@1)) == 0)
587 (bit_xor @0 @1)))
588#endif
10158317 589
bc4315fb
MG
590/* X % Y is smaller than Y. */
591(for cmp (lt ge)
592 (simplify
593 (cmp (trunc_mod @0 @1) @1)
594 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
595 { constant_boolean_node (cmp == LT_EXPR, type); })))
596(for cmp (gt le)
597 (simplify
598 (cmp @1 (trunc_mod @0 @1))
599 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
600 { constant_boolean_node (cmp == GT_EXPR, type); })))
601
e0ee10ed
RB
602/* x | ~0 -> ~0 */
603(simplify
ca0b7ece
RB
604 (bit_ior @0 integer_all_onesp@1)
605 @1)
606
607/* x | 0 -> x */
608(simplify
609 (bit_ior @0 integer_zerop)
610 @0)
e0ee10ed
RB
611
612/* x & 0 -> 0 */
613(simplify
ca0b7ece
RB
614 (bit_and @0 integer_zerop@1)
615 @1)
e0ee10ed 616
a4398a30 617/* ~x | x -> -1 */
8b5ee871
MG
618/* ~x ^ x -> -1 */
619/* ~x + x -> -1 */
620(for op (bit_ior bit_xor plus)
621 (simplify
622 (op:c (convert? @0) (convert? (bit_not @0)))
623 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
a4398a30 624
e0ee10ed
RB
625/* x ^ x -> 0 */
626(simplify
627 (bit_xor @0 @0)
628 { build_zero_cst (type); })
629
36a60e48
RB
630/* Canonicalize X ^ ~0 to ~X. */
631(simplify
632 (bit_xor @0 integer_all_onesp@1)
633 (bit_not @0))
634
635/* x & ~0 -> x */
636(simplify
637 (bit_and @0 integer_all_onesp)
638 (non_lvalue @0))
639
640/* x & x -> x, x | x -> x */
641(for bitop (bit_and bit_ior)
642 (simplify
643 (bitop @0 @0)
644 (non_lvalue @0)))
645
c7986356
MG
646/* x & C -> x if we know that x & ~C == 0. */
647#if GIMPLE
648(simplify
649 (bit_and SSA_NAME@0 INTEGER_CST@1)
650 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
651 && (get_nonzero_bits (@0) & wi::bit_not (@1)) == 0)
652 @0))
653#endif
654
0f770b01
RV
655/* x + (x & 1) -> (x + 1) & ~1 */
656(simplify
44fc0a51
RB
657 (plus:c @0 (bit_and:s @0 integer_onep@1))
658 (bit_and (plus @0 @1) (bit_not @1)))
0f770b01
RV
659
660/* x & ~(x & y) -> x & ~y */
661/* x | ~(x | y) -> x | ~y */
662(for bitop (bit_and bit_ior)
af563d4b 663 (simplify
44fc0a51
RB
664 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
665 (bitop @0 (bit_not @1))))
af563d4b
MG
666
667/* (x | y) & ~x -> y & ~x */
668/* (x & y) | ~x -> y | ~x */
669(for bitop (bit_and bit_ior)
670 rbitop (bit_ior bit_and)
671 (simplify
672 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
673 (bitop @1 @2)))
0f770b01 674
f13c4673
MP
675/* (x & y) ^ (x | y) -> x ^ y */
676(simplify
2d6f2dce
MP
677 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
678 (bit_xor @0 @1))
f13c4673 679
9ea65ca6
MP
680/* (x ^ y) ^ (x | y) -> x & y */
681(simplify
682 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
683 (bit_and @0 @1))
684
685/* (x & y) + (x ^ y) -> x | y */
686/* (x & y) | (x ^ y) -> x | y */
687/* (x & y) ^ (x ^ y) -> x | y */
688(for op (plus bit_ior bit_xor)
689 (simplify
690 (op:c (bit_and @0 @1) (bit_xor @0 @1))
691 (bit_ior @0 @1)))
692
693/* (x & y) + (x | y) -> x + y */
694(simplify
695 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
696 (plus @0 @1))
697
9737efaf
MP
698/* (x + y) - (x | y) -> x & y */
699(simplify
700 (minus (plus @0 @1) (bit_ior @0 @1))
701 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
702 && !TYPE_SATURATING (type))
703 (bit_and @0 @1)))
704
705/* (x + y) - (x & y) -> x | y */
706(simplify
707 (minus (plus @0 @1) (bit_and @0 @1))
708 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
709 && !TYPE_SATURATING (type))
710 (bit_ior @0 @1)))
711
9ea65ca6
MP
712/* (x | y) - (x ^ y) -> x & y */
713(simplify
714 (minus (bit_ior @0 @1) (bit_xor @0 @1))
715 (bit_and @0 @1))
716
717/* (x | y) - (x & y) -> x ^ y */
718(simplify
719 (minus (bit_ior @0 @1) (bit_and @0 @1))
720 (bit_xor @0 @1))
721
66cc6273
MP
722/* (x | y) & ~(x & y) -> x ^ y */
723(simplify
724 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
725 (bit_xor @0 @1))
726
727/* (x | y) & (~x ^ y) -> x & y */
728(simplify
729 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
730 (bit_and @0 @1))
731
5b00d921
RB
732/* ~x & ~y -> ~(x | y)
733 ~x | ~y -> ~(x & y) */
734(for op (bit_and bit_ior)
735 rop (bit_ior bit_and)
736 (simplify
737 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
ece46666
MG
738 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
739 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
5b00d921
RB
740 (bit_not (rop (convert @0) (convert @1))))))
741
14ea9f92 742/* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
5b00d921
RB
743 with a constant, and the two constants have no bits in common,
744 we should treat this as a BIT_IOR_EXPR since this may produce more
745 simplifications. */
14ea9f92
RB
746(for op (bit_xor plus)
747 (simplify
748 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
749 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
750 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
751 && tree_nop_conversion_p (type, TREE_TYPE (@2))
752 && wi::bit_and (@1, @3) == 0)
753 (bit_ior (convert @4) (convert @5)))))
5b00d921
RB
754
755/* (X | Y) ^ X -> Y & ~ X*/
756(simplify
2eef1fc1 757 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
5b00d921
RB
758 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
759 (convert (bit_and @1 (bit_not @0)))))
760
761/* Convert ~X ^ ~Y to X ^ Y. */
762(simplify
763 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
ece46666
MG
764 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
765 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
5b00d921
RB
766 (bit_xor (convert @0) (convert @1))))
767
768/* Convert ~X ^ C to X ^ ~C. */
769(simplify
770 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
c8ba6498
EB
771 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
772 (bit_xor (convert @0) (bit_not @1))))
5b00d921 773
e39dab2c
MG
774/* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
775(for opo (bit_and bit_xor)
776 opi (bit_xor bit_and)
777 (simplify
778 (opo:c (opi:c @0 @1) @1)
779 (bit_and (bit_not @0) @1)))
97e77391 780
14ea9f92
RB
781/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
782 operands are another bit-wise operation with a common input. If so,
783 distribute the bit operations to save an operation and possibly two if
784 constants are involved. For example, convert
785 (A | B) & (A | C) into A | (B & C)
786 Further simplification will occur if B and C are constants. */
e07ab2fe
MG
787(for op (bit_and bit_ior bit_xor)
788 rop (bit_ior bit_and bit_and)
14ea9f92 789 (simplify
2eef1fc1 790 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
e07ab2fe
MG
791 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
792 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
14ea9f92
RB
793 (rop (convert @0) (op (convert @1) (convert @2))))))
794
e39dab2c
MG
795/* Some simple reassociation for bit operations, also handled in reassoc. */
796/* (X & Y) & Y -> X & Y
797 (X | Y) | Y -> X | Y */
798(for op (bit_and bit_ior)
799 (simplify
2eef1fc1 800 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
e39dab2c
MG
801 @2))
802/* (X ^ Y) ^ Y -> X */
803(simplify
2eef1fc1 804 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
ece46666 805 (convert @0))
e39dab2c
MG
806/* (X & Y) & (X & Z) -> (X & Y) & Z
807 (X | Y) | (X | Z) -> (X | Y) | Z */
808(for op (bit_and bit_ior)
809 (simplify
810 (op:c (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
811 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
812 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
813 (if (single_use (@5) && single_use (@6))
814 (op @3 (convert @2))
815 (if (single_use (@3) && single_use (@4))
816 (op (convert @1) @5))))))
817/* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
818(simplify
819 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
820 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
821 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
d78789f5 822 (bit_xor (convert @1) (convert @2))))
5b00d921 823
b14a9c57
RB
824(simplify
825 (abs (abs@1 @0))
826 @1)
f3582e54
RB
827(simplify
828 (abs (negate @0))
829 (abs @0))
830(simplify
831 (abs tree_expr_nonnegative_p@0)
832 @0)
833
55cf3946
RB
834/* A few cases of fold-const.c negate_expr_p predicate. */
835(match negate_expr_p
836 INTEGER_CST
b14a9c57
RB
837 (if ((INTEGRAL_TYPE_P (type)
838 && TYPE_OVERFLOW_WRAPS (type))
839 || (!TYPE_OVERFLOW_SANITIZED (type)
55cf3946
RB
840 && may_negate_without_overflow_p (t)))))
841(match negate_expr_p
842 FIXED_CST)
843(match negate_expr_p
844 (negate @0)
845 (if (!TYPE_OVERFLOW_SANITIZED (type))))
846(match negate_expr_p
847 REAL_CST
848 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
849/* VECTOR_CST handling of non-wrapping types would recurse in unsupported
850 ways. */
851(match negate_expr_p
852 VECTOR_CST
853 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
0a8f32b8
RB
854
855/* (-A) * (-B) -> A * B */
856(simplify
857 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
858 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
859 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
860 (mult (convert @0) (convert (negate @1)))))
55cf3946
RB
861
862/* -(A + B) -> (-B) - A. */
b14a9c57 863(simplify
55cf3946
RB
864 (negate (plus:c @0 negate_expr_p@1))
865 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
866 && !HONOR_SIGNED_ZEROS (element_mode (type)))
867 (minus (negate @1) @0)))
868
869/* A - B -> A + (-B) if B is easily negatable. */
b14a9c57 870(simplify
55cf3946 871 (minus @0 negate_expr_p@1)
e4e96a4f
KT
872 (if (!FIXED_POINT_TYPE_P (type))
873 (plus @0 (negate @1))))
d4573ffe 874
5609420f
RB
875/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
876 when profitable.
877 For bitwise binary operations apply operand conversions to the
878 binary operation result instead of to the operands. This allows
879 to combine successive conversions and bitwise binary operations.
880 We combine the above two cases by using a conditional convert. */
881(for bitop (bit_and bit_ior bit_xor)
882 (simplify
883 (bitop (convert @0) (convert? @1))
884 (if (((TREE_CODE (@1) == INTEGER_CST
885 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
ad6f996c 886 && int_fits_type_p (@1, TREE_TYPE (@0)))
aea417d7 887 || types_match (@0, @1))
ad6f996c
RB
888 /* ??? This transform conflicts with fold-const.c doing
889 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
890 constants (if x has signed type, the sign bit cannot be set
891 in c). This folds extension into the BIT_AND_EXPR.
892 Restrict it to GIMPLE to avoid endless recursions. */
893 && (bitop != BIT_AND_EXPR || GIMPLE)
5609420f
RB
894 && (/* That's a good idea if the conversion widens the operand, thus
895 after hoisting the conversion the operation will be narrower. */
896 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
897 /* It's also a good idea if the conversion is to a non-integer
898 mode. */
899 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
900 /* Or if the precision of TO is not the same as the precision
901 of its mode. */
902 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
903 (convert (bitop @0 (convert @1))))))
904
b14a9c57
RB
905(for bitop (bit_and bit_ior)
906 rbitop (bit_ior bit_and)
907 /* (x | y) & x -> x */
908 /* (x & y) | x -> x */
909 (simplify
910 (bitop:c (rbitop:c @0 @1) @0)
911 @0)
912 /* (~x | y) & x -> x & y */
913 /* (~x & y) | x -> x | y */
914 (simplify
915 (bitop:c (rbitop:c (bit_not @0) @1) @0)
916 (bitop @0 @1)))
917
5609420f
RB
918/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
919(simplify
920 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
921 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
922
923/* Combine successive equal operations with constants. */
924(for bitop (bit_and bit_ior bit_xor)
925 (simplify
926 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
927 (bitop @0 (bitop @1 @2))))
928
929/* Try simple folding for X op !X, and X op X with the help
930 of the truth_valued_p and logical_inverted_value predicates. */
931(match truth_valued_p
932 @0
933 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
f84e7fd6 934(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
5609420f
RB
935 (match truth_valued_p
936 (op @0 @1)))
937(match truth_valued_p
938 (truth_not @0))
939
0a8f32b8
RB
940(match (logical_inverted_value @0)
941 (truth_not @0))
5609420f
RB
942(match (logical_inverted_value @0)
943 (bit_not truth_valued_p@0))
944(match (logical_inverted_value @0)
09240451 945 (eq @0 integer_zerop))
5609420f 946(match (logical_inverted_value @0)
09240451 947 (ne truth_valued_p@0 integer_truep))
5609420f 948(match (logical_inverted_value @0)
09240451 949 (bit_xor truth_valued_p@0 integer_truep))
5609420f
RB
950
951/* X & !X -> 0. */
952(simplify
953 (bit_and:c @0 (logical_inverted_value @0))
954 { build_zero_cst (type); })
955/* X | !X and X ^ !X -> 1, , if X is truth-valued. */
956(for op (bit_ior bit_xor)
957 (simplify
958 (op:c truth_valued_p@0 (logical_inverted_value @0))
f84e7fd6 959 { constant_boolean_node (true, type); }))
59c20dc7
RB
960/* X ==/!= !X is false/true. */
961(for op (eq ne)
962 (simplify
963 (op:c truth_valued_p@0 (logical_inverted_value @0))
964 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
5609420f 965
5609420f
RB
966/* ~~x -> x */
967(simplify
968 (bit_not (bit_not @0))
969 @0)
970
b14a9c57
RB
971/* Convert ~ (-A) to A - 1. */
972(simplify
973 (bit_not (convert? (negate @0)))
ece46666
MG
974 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
975 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
8b5ee871 976 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
b14a9c57
RB
977
978/* Convert ~ (A - 1) or ~ (A + -1) to -A. */
979(simplify
8b5ee871 980 (bit_not (convert? (minus @0 integer_each_onep)))
ece46666
MG
981 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
982 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
b14a9c57
RB
983 (convert (negate @0))))
984(simplify
985 (bit_not (convert? (plus @0 integer_all_onesp)))
ece46666
MG
986 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
987 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
b14a9c57
RB
988 (convert (negate @0))))
989
990/* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
991(simplify
992 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
993 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
994 (convert (bit_xor @0 (bit_not @1)))))
995(simplify
996 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
997 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
998 (convert (bit_xor @0 @1))))
999
f52baa7b
MP
1000/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1001(simplify
44fc0a51
RB
1002 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1003 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
f52baa7b 1004
f7b7b0aa
MP
1005/* Fold A - (A & B) into ~B & A. */
1006(simplify
2eef1fc1 1007 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
f7b7b0aa
MP
1008 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1009 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1010 (convert (bit_and (bit_not @1) @0))))
5609420f 1011
e36c1cfe
N
1012/* For integral types with undefined overflow and C != 0 fold
1013 x * C EQ/NE y * C into x EQ/NE y. */
1014(for cmp (eq ne)
1015 (simplify
1016 (cmp (mult:c @0 @1) (mult:c @2 @1))
1017 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1018 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1019 && tree_expr_nonzero_p (@1))
1020 (cmp @0 @2))))
1021
1022/* For integral types with undefined overflow and C != 0 fold
1023 x * C RELOP y * C into:
84ff66b8 1024
e36c1cfe
N
1025 x RELOP y for nonnegative C
1026 y RELOP x for negative C */
1027(for cmp (lt gt le ge)
1028 (simplify
1029 (cmp (mult:c @0 @1) (mult:c @2 @1))
1030 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1031 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1032 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1033 (cmp @0 @2)
1034 (if (TREE_CODE (@1) == INTEGER_CST
1035 && wi::neg_p (@1, TYPE_SIGN (TREE_TYPE (@1))))
1036 (cmp @2 @0))))))
84ff66b8 1037
a8492d5e
MG
1038/* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1039(for cmp (simple_comparison)
1040 (simplify
1041 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
1042 (if (wi::gt_p(@2, 0, TYPE_SIGN (TREE_TYPE (@2))))
1043 (cmp @0 @1))))
1044
d35256b6
MG
1045/* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1046(for op (lt le ge gt)
1047 (simplify
1048 (op (plus:c @0 @2) (plus:c @1 @2))
1049 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1050 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1051 (op @0 @1))))
1052/* For equality and subtraction, this is also true with wrapping overflow. */
1053(for op (eq ne minus)
1054 (simplify
1055 (op (plus:c @0 @2) (plus:c @1 @2))
1056 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1057 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1058 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1059 (op @0 @1))))
1060
1061/* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1062(for op (lt le ge gt)
1063 (simplify
1064 (op (minus @0 @2) (minus @1 @2))
1065 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1066 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1067 (op @0 @1))))
1068/* For equality and subtraction, this is also true with wrapping overflow. */
1069(for op (eq ne minus)
1070 (simplify
1071 (op (minus @0 @2) (minus @1 @2))
1072 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1073 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1074 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1075 (op @0 @1))))
1076
1077/* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1078(for op (lt le ge gt)
1079 (simplify
1080 (op (minus @2 @0) (minus @2 @1))
1081 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1082 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1083 (op @1 @0))))
1084/* For equality and subtraction, this is also true with wrapping overflow. */
1085(for op (eq ne minus)
1086 (simplify
1087 (op (minus @2 @0) (minus @2 @1))
1088 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1089 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1090 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1091 (op @1 @0))))
1092
84ff66b8
AV
1093/* ((X inner_op C0) outer_op C1)
1094 With X being a tree where value_range has reasoned certain bits to always be
1095 zero throughout its computed value range,
1096 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1097 where zero_mask has 1's for all bits that are sure to be 0 in
1098 and 0's otherwise.
1099 if (inner_op == '^') C0 &= ~C1;
1100 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1101 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1102*/
1103(for inner_op (bit_ior bit_xor)
1104 outer_op (bit_xor bit_ior)
1105(simplify
1106 (outer_op
1107 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1108 (with
1109 {
1110 bool fail = false;
1111 wide_int zero_mask_not;
1112 wide_int C0;
1113 wide_int cst_emit;
1114
1115 if (TREE_CODE (@2) == SSA_NAME)
1116 zero_mask_not = get_nonzero_bits (@2);
1117 else
1118 fail = true;
1119
1120 if (inner_op == BIT_XOR_EXPR)
1121 {
1122 C0 = wi::bit_and_not (@0, @1);
1123 cst_emit = wi::bit_or (C0, @1);
1124 }
1125 else
1126 {
1127 C0 = @0;
1128 cst_emit = wi::bit_xor (@0, @1);
1129 }
1130 }
1131 (if (!fail && wi::bit_and (C0, zero_mask_not) == 0)
1132 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1133 (if (!fail && wi::bit_and (@1, zero_mask_not) == 0)
1134 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1135
a499aac5
RB
1136/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1137(simplify
44fc0a51
RB
1138 (pointer_plus (pointer_plus:s @0 @1) @3)
1139 (pointer_plus @0 (plus @1 @3)))
a499aac5
RB
1140
1141/* Pattern match
1142 tem1 = (long) ptr1;
1143 tem2 = (long) ptr2;
1144 tem3 = tem2 - tem1;
1145 tem4 = (unsigned long) tem3;
1146 tem5 = ptr1 + tem4;
1147 and produce
1148 tem5 = ptr2; */
1149(simplify
1150 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1151 /* Conditionally look through a sign-changing conversion. */
1152 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1153 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1154 || (GENERIC && type == TREE_TYPE (@1))))
1155 @1))
1156
1157/* Pattern match
1158 tem = (sizetype) ptr;
1159 tem = tem & algn;
1160 tem = -tem;
1161 ... = ptr p+ tem;
1162 and produce the simpler and easier to analyze with respect to alignment
1163 ... = ptr & ~algn; */
1164(simplify
1165 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1166 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
1167 (bit_and @0 { algn; })))
1168
99e943a2
RB
1169/* Try folding difference of addresses. */
1170(simplify
1171 (minus (convert ADDR_EXPR@0) (convert @1))
1172 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1173 (with { HOST_WIDE_INT diff; }
1174 (if (ptr_difference_const (@0, @1, &diff))
1175 { build_int_cst_type (type, diff); }))))
1176(simplify
1177 (minus (convert @0) (convert ADDR_EXPR@1))
1178 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1179 (with { HOST_WIDE_INT diff; }
1180 (if (ptr_difference_const (@0, @1, &diff))
1181 { build_int_cst_type (type, diff); }))))
1182
bab73f11
RB
1183/* If arg0 is derived from the address of an object or function, we may
1184 be able to fold this expression using the object or function's
1185 alignment. */
1186(simplify
1187 (bit_and (convert? @0) INTEGER_CST@1)
1188 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1189 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1190 (with
1191 {
1192 unsigned int align;
1193 unsigned HOST_WIDE_INT bitpos;
1194 get_pointer_alignment_1 (@0, &align, &bitpos);
1195 }
1196 (if (wi::ltu_p (@1, align / BITS_PER_UNIT))
1197 { wide_int_to_tree (type, wi::bit_and (@1, bitpos / BITS_PER_UNIT)); }))))
99e943a2 1198
a499aac5 1199
cc7b5acf
RB
1200/* We can't reassociate at all for saturating types. */
1201(if (!TYPE_SATURATING (type))
1202
1203 /* Contract negates. */
1204 /* A + (-B) -> A - B */
1205 (simplify
248179b5
RB
1206 (plus:c @0 (convert? (negate @1)))
1207 /* Apply STRIP_NOPS on the negate. */
1208 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1209 && !TYPE_OVERFLOW_SANITIZED (type))
248179b5
RB
1210 (with
1211 {
1212 tree t1 = type;
1213 if (INTEGRAL_TYPE_P (type)
1214 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1215 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1216 }
1217 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
cc7b5acf
RB
1218 /* A - (-B) -> A + B */
1219 (simplify
248179b5
RB
1220 (minus @0 (convert? (negate @1)))
1221 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1222 && !TYPE_OVERFLOW_SANITIZED (type))
248179b5
RB
1223 (with
1224 {
1225 tree t1 = type;
1226 if (INTEGRAL_TYPE_P (type)
1227 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1228 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1229 }
1230 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
cc7b5acf
RB
1231 /* -(-A) -> A */
1232 (simplify
1233 (negate (convert? (negate @1)))
1234 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1235 && !TYPE_OVERFLOW_SANITIZED (type))
a0f12cf8 1236 (convert @1)))
cc7b5acf 1237
7318e44f
RB
1238 /* We can't reassociate floating-point unless -fassociative-math
1239 or fixed-point plus or minus because of saturation to +-Inf. */
1240 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1241 && !FIXED_POINT_TYPE_P (type))
cc7b5acf
RB
1242
1243 /* Match patterns that allow contracting a plus-minus pair
1244 irrespective of overflow issues. */
1245 /* (A +- B) - A -> +- B */
1246 /* (A +- B) -+ B -> A */
1247 /* A - (A +- B) -> -+ B */
1248 /* A +- (B -+ A) -> +- B */
1249 (simplify
1250 (minus (plus:c @0 @1) @0)
1251 @1)
1252 (simplify
1253 (minus (minus @0 @1) @0)
1254 (negate @1))
1255 (simplify
1256 (plus:c (minus @0 @1) @1)
1257 @0)
1258 (simplify
1259 (minus @0 (plus:c @0 @1))
1260 (negate @1))
1261 (simplify
1262 (minus @0 (minus @0 @1))
1263 @1)
1264
b302f2e0 1265 /* (A +- CST1) +- CST2 -> A + CST3 */
cc7b5acf
RB
1266 (for outer_op (plus minus)
1267 (for inner_op (plus minus)
1268 (simplify
1269 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1270 /* If the constant operation overflows we cannot do the transform
1271 as we would introduce undefined overflow, for example
1272 with (a - 1) + INT_MIN. */
23f27839 1273 (with { tree cst = const_binop (outer_op == inner_op
cc7b5acf
RB
1274 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
1275 (if (cst && !TREE_OVERFLOW (cst))
1276 (inner_op @0 { cst; } ))))))
1277
b302f2e0 1278 /* (CST1 - A) +- CST2 -> CST3 - A */
cc7b5acf
RB
1279 (for outer_op (plus minus)
1280 (simplify
1281 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
23f27839 1282 (with { tree cst = const_binop (outer_op, type, @1, @2); }
cc7b5acf
RB
1283 (if (cst && !TREE_OVERFLOW (cst))
1284 (minus { cst; } @0)))))
1285
b302f2e0
RB
1286 /* CST1 - (CST2 - A) -> CST3 + A */
1287 (simplify
1288 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1289 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1290 (if (cst && !TREE_OVERFLOW (cst))
1291 (plus { cst; } @0))))
1292
cc7b5acf
RB
1293 /* ~A + A -> -1 */
1294 (simplify
1295 (plus:c (bit_not @0) @0)
1296 (if (!TYPE_OVERFLOW_TRAPS (type))
1297 { build_all_ones_cst (type); }))
1298
1299 /* ~A + 1 -> -A */
1300 (simplify
e19740ae
RB
1301 (plus (convert? (bit_not @0)) integer_each_onep)
1302 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1303 (negate (convert @0))))
1304
1305 /* -A - 1 -> ~A */
1306 (simplify
1307 (minus (convert? (negate @0)) integer_each_onep)
1308 (if (!TYPE_OVERFLOW_TRAPS (type)
1309 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1310 (bit_not (convert @0))))
1311
1312 /* -1 - A -> ~A */
1313 (simplify
1314 (minus integer_all_onesp @0)
bc4315fb 1315 (bit_not @0))
cc7b5acf
RB
1316
1317 /* (T)(P + A) - (T)P -> (T) A */
1318 (for add (plus pointer_plus)
1319 (simplify
2eef1fc1 1320 (minus (convert (add @@0 @1))
cc7b5acf 1321 (convert @0))
09240451 1322 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
cc7b5acf
RB
1323 /* For integer types, if A has a smaller type
1324 than T the result depends on the possible
1325 overflow in P + A.
1326 E.g. T=size_t, A=(unsigned)429497295, P>0.
1327 However, if an overflow in P + A would cause
1328 undefined behavior, we can assume that there
1329 is no overflow. */
1330 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1331 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1332 /* For pointer types, if the conversion of A to the
1333 final type requires a sign- or zero-extension,
1334 then we have to punt - it is not defined which
1335 one is correct. */
1336 || (POINTER_TYPE_P (TREE_TYPE (@0))
1337 && TREE_CODE (@1) == INTEGER_CST
1338 && tree_int_cst_sign_bit (@1) == 0))
a8fc2579
RB
1339 (convert @1))))
1340
1341 /* (T)P - (T)(P + A) -> -(T) A */
1342 (for add (plus pointer_plus)
1343 (simplify
1344 (minus (convert @0)
2eef1fc1 1345 (convert (add @@0 @1)))
a8fc2579
RB
1346 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1347 /* For integer types, if A has a smaller type
1348 than T the result depends on the possible
1349 overflow in P + A.
1350 E.g. T=size_t, A=(unsigned)429497295, P>0.
1351 However, if an overflow in P + A would cause
1352 undefined behavior, we can assume that there
1353 is no overflow. */
1354 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1355 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1356 /* For pointer types, if the conversion of A to the
1357 final type requires a sign- or zero-extension,
1358 then we have to punt - it is not defined which
1359 one is correct. */
1360 || (POINTER_TYPE_P (TREE_TYPE (@0))
1361 && TREE_CODE (@1) == INTEGER_CST
1362 && tree_int_cst_sign_bit (@1) == 0))
1363 (negate (convert @1)))))
1364
1365 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
1366 (for add (plus pointer_plus)
1367 (simplify
2eef1fc1 1368 (minus (convert (add @@0 @1))
a8fc2579
RB
1369 (convert (add @0 @2)))
1370 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1371 /* For integer types, if A has a smaller type
1372 than T the result depends on the possible
1373 overflow in P + A.
1374 E.g. T=size_t, A=(unsigned)429497295, P>0.
1375 However, if an overflow in P + A would cause
1376 undefined behavior, we can assume that there
1377 is no overflow. */
1378 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1379 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1380 /* For pointer types, if the conversion of A to the
1381 final type requires a sign- or zero-extension,
1382 then we have to punt - it is not defined which
1383 one is correct. */
1384 || (POINTER_TYPE_P (TREE_TYPE (@0))
1385 && TREE_CODE (@1) == INTEGER_CST
1386 && tree_int_cst_sign_bit (@1) == 0
1387 && TREE_CODE (@2) == INTEGER_CST
1388 && tree_int_cst_sign_bit (@2) == 0))
1389 (minus (convert @1) (convert @2)))))))
cc7b5acf
RB
1390
1391
0122e8e5 1392/* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
a7f24614 1393
0122e8e5 1394(for minmax (min max FMIN FMAX)
a7f24614
RB
1395 (simplify
1396 (minmax @0 @0)
1397 @0))
4a334cba
RS
1398/* min(max(x,y),y) -> y. */
1399(simplify
1400 (min:c (max:c @0 @1) @1)
1401 @1)
1402/* max(min(x,y),y) -> y. */
1403(simplify
1404 (max:c (min:c @0 @1) @1)
1405 @1)
d657e995
RB
1406/* max(a,-a) -> abs(a). */
1407(simplify
1408 (max:c @0 (negate @0))
1409 (if (TREE_CODE (type) != COMPLEX_TYPE
1410 && (! ANY_INTEGRAL_TYPE_P (type)
1411 || TYPE_OVERFLOW_UNDEFINED (type)))
1412 (abs @0)))
54f84ca9
RB
1413/* min(a,-a) -> -abs(a). */
1414(simplify
1415 (min:c @0 (negate @0))
1416 (if (TREE_CODE (type) != COMPLEX_TYPE
1417 && (! ANY_INTEGRAL_TYPE_P (type)
1418 || TYPE_OVERFLOW_UNDEFINED (type)))
1419 (negate (abs @0))))
a7f24614
RB
1420(simplify
1421 (min @0 @1)
2c2870a1
MG
1422 (switch
1423 (if (INTEGRAL_TYPE_P (type)
1424 && TYPE_MIN_VALUE (type)
1425 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
1426 @1)
1427 (if (INTEGRAL_TYPE_P (type)
1428 && TYPE_MAX_VALUE (type)
1429 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
1430 @0)))
a7f24614
RB
1431(simplify
1432 (max @0 @1)
2c2870a1
MG
1433 (switch
1434 (if (INTEGRAL_TYPE_P (type)
1435 && TYPE_MAX_VALUE (type)
1436 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
1437 @1)
1438 (if (INTEGRAL_TYPE_P (type)
1439 && TYPE_MIN_VALUE (type)
1440 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
1441 @0)))
ad6e4ba8 1442
182f37c9
N
1443/* max (a, a + CST) -> a + CST where CST is positive. */
1444/* max (a, a + CST) -> a where CST is negative. */
1445(simplify
1446 (max:c @0 (plus@2 @0 INTEGER_CST@1))
1447 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1448 (if (tree_int_cst_sgn (@1) > 0)
1449 @2
1450 @0)))
1451
1452/* min (a, a + CST) -> a where CST is positive. */
1453/* min (a, a + CST) -> a + CST where CST is negative. */
1454(simplify
1455 (min:c @0 (plus@2 @0 INTEGER_CST@1))
1456 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1457 (if (tree_int_cst_sgn (@1) > 0)
1458 @0
1459 @2)))
1460
ad6e4ba8
BC
1461/* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
1462 and the outer convert demotes the expression back to x's type. */
1463(for minmax (min max)
1464 (simplify
1465 (convert (minmax@0 (convert @1) INTEGER_CST@2))
ebf41734
BC
1466 (if (INTEGRAL_TYPE_P (type)
1467 && types_match (@1, type) && int_fits_type_p (@2, type)
ad6e4ba8
BC
1468 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
1469 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
1470 (minmax @1 (convert @2)))))
1471
0122e8e5
RS
1472(for minmax (FMIN FMAX)
1473 /* If either argument is NaN, return the other one. Avoid the
1474 transformation if we get (and honor) a signalling NaN. */
1475 (simplify
1476 (minmax:c @0 REAL_CST@1)
1477 (if (real_isnan (TREE_REAL_CST_PTR (@1))
1478 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
1479 @0)))
1480/* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
1481 functions to return the numeric arg if the other one is NaN.
1482 MIN and MAX don't honor that, so only transform if -ffinite-math-only
1483 is set. C99 doesn't require -0.0 to be handled, so we don't have to
1484 worry about it either. */
1485(if (flag_finite_math_only)
1486 (simplify
1487 (FMIN @0 @1)
1488 (min @0 @1))
1489 (simplify
1490 (FMAX @0 @1)
1491 (max @0 @1)))
ce0e66ff
MG
1492/* min (-A, -B) -> -max (A, B) */
1493(for minmax (min max FMIN FMAX)
1494 maxmin (max min FMAX FMIN)
1495 (simplify
1496 (minmax (negate:s@2 @0) (negate:s@3 @1))
1497 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1498 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1499 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1500 (negate (maxmin @0 @1)))))
1501/* MIN (~X, ~Y) -> ~MAX (X, Y)
1502 MAX (~X, ~Y) -> ~MIN (X, Y) */
1503(for minmax (min max)
1504 maxmin (max min)
1505 (simplify
1506 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
1507 (bit_not (maxmin @0 @1))))
a7f24614 1508
b4817bd6
MG
1509/* MIN (X, Y) == X -> X <= Y */
1510(for minmax (min min max max)
1511 cmp (eq ne eq ne )
1512 out (le gt ge lt )
1513 (simplify
1514 (cmp:c (minmax:c @0 @1) @0)
1515 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
1516 (out @0 @1))))
1517/* MIN (X, 5) == 0 -> X == 0
1518 MIN (X, 5) == 7 -> false */
1519(for cmp (eq ne)
1520 (simplify
1521 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
1522 (if (wi::lt_p (@1, @2, TYPE_SIGN (TREE_TYPE (@0))))
1523 { constant_boolean_node (cmp == NE_EXPR, type); }
1524 (if (wi::gt_p (@1, @2, TYPE_SIGN (TREE_TYPE (@0))))
1525 (cmp @0 @2)))))
1526(for cmp (eq ne)
1527 (simplify
1528 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
1529 (if (wi::gt_p (@1, @2, TYPE_SIGN (TREE_TYPE (@0))))
1530 { constant_boolean_node (cmp == NE_EXPR, type); }
1531 (if (wi::lt_p (@1, @2, TYPE_SIGN (TREE_TYPE (@0))))
1532 (cmp @0 @2)))))
1533/* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
1534(for minmax (min min max max min min max max )
1535 cmp (lt le gt ge gt ge lt le )
1536 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
1537 (simplify
1538 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
1539 (comb (cmp @0 @2) (cmp @1 @2))))
1540
a7f24614
RB
1541/* Simplifications of shift and rotates. */
1542
1543(for rotate (lrotate rrotate)
1544 (simplify
1545 (rotate integer_all_onesp@0 @1)
1546 @0))
1547
1548/* Optimize -1 >> x for arithmetic right shifts. */
1549(simplify
1550 (rshift integer_all_onesp@0 @1)
1551 (if (!TYPE_UNSIGNED (type)
1552 && tree_expr_nonnegative_p (@1))
1553 @0))
1554
12085390
N
1555/* Optimize (x >> c) << c into x & (-1<<c). */
1556(simplify
1557 (lshift (rshift @0 INTEGER_CST@1) @1)
1558 (if (wi::ltu_p (@1, element_precision (type)))
1559 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
1560
1561/* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
1562 types. */
1563(simplify
1564 (rshift (lshift @0 INTEGER_CST@1) @1)
1565 (if (TYPE_UNSIGNED (type)
1566 && (wi::ltu_p (@1, element_precision (type))))
1567 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
1568
a7f24614
RB
1569(for shiftrotate (lrotate rrotate lshift rshift)
1570 (simplify
1571 (shiftrotate @0 integer_zerop)
1572 (non_lvalue @0))
1573 (simplify
1574 (shiftrotate integer_zerop@0 @1)
1575 @0)
1576 /* Prefer vector1 << scalar to vector1 << vector2
1577 if vector2 is uniform. */
1578 (for vec (VECTOR_CST CONSTRUCTOR)
1579 (simplify
1580 (shiftrotate @0 vec@1)
1581 (with { tree tem = uniform_vector_p (@1); }
1582 (if (tem)
1583 (shiftrotate @0 { tem; }))))))
1584
165ba2e9
JJ
1585/* Simplify X << Y where Y's low width bits are 0 to X, as only valid
1586 Y is 0. Similarly for X >> Y. */
1587#if GIMPLE
1588(for shift (lshift rshift)
1589 (simplify
1590 (shift @0 SSA_NAME@1)
1591 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
1592 (with {
1593 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
1594 int prec = TYPE_PRECISION (TREE_TYPE (@1));
1595 }
1596 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
1597 @0)))))
1598#endif
1599
a7f24614
RB
1600/* Rewrite an LROTATE_EXPR by a constant into an
1601 RROTATE_EXPR by a new constant. */
1602(simplify
1603 (lrotate @0 INTEGER_CST@1)
23f27839 1604 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
a7f24614
RB
1605 build_int_cst (TREE_TYPE (@1),
1606 element_precision (type)), @1); }))
1607
14ea9f92
RB
1608/* Turn (a OP c1) OP c2 into a OP (c1+c2). */
1609(for op (lrotate rrotate rshift lshift)
1610 (simplify
1611 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
1612 (with { unsigned int prec = element_precision (type); }
1613 (if (wi::ge_p (@1, 0, TYPE_SIGN (TREE_TYPE (@1)))
1614 && wi::lt_p (@1, prec, TYPE_SIGN (TREE_TYPE (@1)))
1615 && wi::ge_p (@2, 0, TYPE_SIGN (TREE_TYPE (@2)))
1616 && wi::lt_p (@2, prec, TYPE_SIGN (TREE_TYPE (@2))))
1617 (with { unsigned int low = wi::add (@1, @2).to_uhwi (); }
1618 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
1619 being well defined. */
1620 (if (low >= prec)
1621 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
8fdc6c67 1622 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
50301115 1623 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
8fdc6c67
RB
1624 { build_zero_cst (type); }
1625 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
1626 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
14ea9f92
RB
1627
1628
01ada710
MP
1629/* ((1 << A) & 1) != 0 -> A == 0
1630 ((1 << A) & 1) == 0 -> A != 0 */
1631(for cmp (ne eq)
1632 icmp (eq ne)
1633 (simplify
1634 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
1635 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
cc7b5acf 1636
f2e609c3
MP
1637/* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
1638 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
1639 if CST2 != 0. */
1640(for cmp (ne eq)
1641 (simplify
1642 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
1643 (with { int cand = wi::ctz (@2) - wi::ctz (@0); }
1644 (if (cand < 0
1645 || (!integer_zerop (@2)
1646 && wi::ne_p (wi::lshift (@0, cand), @2)))
8fdc6c67
RB
1647 { constant_boolean_node (cmp == NE_EXPR, type); }
1648 (if (!integer_zerop (@2)
1649 && wi::eq_p (wi::lshift (@0, cand), @2))
1650 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
f2e609c3 1651
1ffbaa3f
RB
1652/* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
1653 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
1654 if the new mask might be further optimized. */
1655(for shift (lshift rshift)
1656 (simplify
44fc0a51
RB
1657 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
1658 INTEGER_CST@2)
1ffbaa3f
RB
1659 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
1660 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
1661 && tree_fits_uhwi_p (@1)
1662 && tree_to_uhwi (@1) > 0
1663 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
1664 (with
1665 {
1666 unsigned int shiftc = tree_to_uhwi (@1);
1667 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
1668 unsigned HOST_WIDE_INT newmask, zerobits = 0;
1669 tree shift_type = TREE_TYPE (@3);
1670 unsigned int prec;
1671
1672 if (shift == LSHIFT_EXPR)
fecfbfa4 1673 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
1ffbaa3f
RB
1674 else if (shift == RSHIFT_EXPR
1675 && (TYPE_PRECISION (shift_type)
1676 == GET_MODE_PRECISION (TYPE_MODE (shift_type))))
1677 {
1678 prec = TYPE_PRECISION (TREE_TYPE (@3));
1679 tree arg00 = @0;
1680 /* See if more bits can be proven as zero because of
1681 zero extension. */
1682 if (@3 != @0
1683 && TYPE_UNSIGNED (TREE_TYPE (@0)))
1684 {
1685 tree inner_type = TREE_TYPE (@0);
1686 if ((TYPE_PRECISION (inner_type)
1687 == GET_MODE_PRECISION (TYPE_MODE (inner_type)))
1688 && TYPE_PRECISION (inner_type) < prec)
1689 {
1690 prec = TYPE_PRECISION (inner_type);
1691 /* See if we can shorten the right shift. */
1692 if (shiftc < prec)
1693 shift_type = inner_type;
1694 /* Otherwise X >> C1 is all zeros, so we'll optimize
1695 it into (X, 0) later on by making sure zerobits
1696 is all ones. */
1697 }
1698 }
dd4786fe 1699 zerobits = HOST_WIDE_INT_M1U;
1ffbaa3f
RB
1700 if (shiftc < prec)
1701 {
1702 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
1703 zerobits <<= prec - shiftc;
1704 }
1705 /* For arithmetic shift if sign bit could be set, zerobits
1706 can contain actually sign bits, so no transformation is
1707 possible, unless MASK masks them all away. In that
1708 case the shift needs to be converted into logical shift. */
1709 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
1710 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
1711 {
1712 if ((mask & zerobits) == 0)
1713 shift_type = unsigned_type_for (TREE_TYPE (@3));
1714 else
1715 zerobits = 0;
1716 }
1717 }
1718 }
1719 /* ((X << 16) & 0xff00) is (X, 0). */
1720 (if ((mask & zerobits) == mask)
8fdc6c67
RB
1721 { build_int_cst (type, 0); }
1722 (with { newmask = mask | zerobits; }
1723 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
1724 (with
1725 {
1726 /* Only do the transformation if NEWMASK is some integer
1727 mode's mask. */
1728 for (prec = BITS_PER_UNIT;
1729 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
fecfbfa4 1730 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
8fdc6c67
RB
1731 break;
1732 }
1733 (if (prec < HOST_BITS_PER_WIDE_INT
dd4786fe 1734 || newmask == HOST_WIDE_INT_M1U)
8fdc6c67
RB
1735 (with
1736 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
1737 (if (!tree_int_cst_equal (newmaskt, @2))
1738 (if (shift_type != TREE_TYPE (@3))
1739 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
1740 (bit_and @4 { newmaskt; })))))))))))))
1ffbaa3f 1741
84ff66b8
AV
1742/* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
1743 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
98e30e51 1744(for shift (lshift rshift)
84ff66b8
AV
1745 (for bit_op (bit_and bit_xor bit_ior)
1746 (simplify
1747 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
1748 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1749 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
1750 (bit_op (shift (convert @0) @1) { mask; }))))))
98e30e51 1751
ad1d92ab
MM
1752/* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
1753(simplify
1754 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
1755 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
ece46666
MG
1756 && (element_precision (TREE_TYPE (@0))
1757 <= element_precision (TREE_TYPE (@1))
1758 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
ad1d92ab
MM
1759 (with
1760 { tree shift_type = TREE_TYPE (@0); }
1761 (convert (rshift (convert:shift_type @1) @2)))))
1762
1763/* ~(~X >>r Y) -> X >>r Y
1764 ~(~X <<r Y) -> X <<r Y */
1765(for rotate (lrotate rrotate)
1766 (simplify
1767 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
ece46666
MG
1768 (if ((element_precision (TREE_TYPE (@0))
1769 <= element_precision (TREE_TYPE (@1))
1770 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
1771 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
1772 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
ad1d92ab
MM
1773 (with
1774 { tree rotate_type = TREE_TYPE (@0); }
1775 (convert (rotate (convert:rotate_type @1) @2))))))
98e30e51 1776
d4573ffe
RB
1777/* Simplifications of conversions. */
1778
1779/* Basic strip-useless-type-conversions / strip_nops. */
f3582e54 1780(for cvt (convert view_convert float fix_trunc)
d4573ffe
RB
1781 (simplify
1782 (cvt @0)
1783 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
1784 || (GENERIC && type == TREE_TYPE (@0)))
1785 @0)))
1786
1787/* Contract view-conversions. */
1788(simplify
1789 (view_convert (view_convert @0))
1790 (view_convert @0))
1791
1792/* For integral conversions with the same precision or pointer
1793 conversions use a NOP_EXPR instead. */
1794(simplify
1795 (view_convert @0)
1796 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
1797 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1798 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
1799 (convert @0)))
1800
1801/* Strip inner integral conversions that do not change precision or size. */
1802(simplify
1803 (view_convert (convert@0 @1))
1804 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1805 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
1806 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1807 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
1808 (view_convert @1)))
1809
1810/* Re-association barriers around constants and other re-association
1811 barriers can be removed. */
1812(simplify
1813 (paren CONSTANT_CLASS_P@0)
1814 @0)
1815(simplify
1816 (paren (paren@1 @0))
1817 @1)
1e51d0a2
RB
1818
1819/* Handle cases of two conversions in a row. */
1820(for ocvt (convert float fix_trunc)
1821 (for icvt (convert float)
1822 (simplify
1823 (ocvt (icvt@1 @0))
1824 (with
1825 {
1826 tree inside_type = TREE_TYPE (@0);
1827 tree inter_type = TREE_TYPE (@1);
1828 int inside_int = INTEGRAL_TYPE_P (inside_type);
1829 int inside_ptr = POINTER_TYPE_P (inside_type);
1830 int inside_float = FLOAT_TYPE_P (inside_type);
09240451 1831 int inside_vec = VECTOR_TYPE_P (inside_type);
1e51d0a2
RB
1832 unsigned int inside_prec = TYPE_PRECISION (inside_type);
1833 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
1834 int inter_int = INTEGRAL_TYPE_P (inter_type);
1835 int inter_ptr = POINTER_TYPE_P (inter_type);
1836 int inter_float = FLOAT_TYPE_P (inter_type);
09240451 1837 int inter_vec = VECTOR_TYPE_P (inter_type);
1e51d0a2
RB
1838 unsigned int inter_prec = TYPE_PRECISION (inter_type);
1839 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
1840 int final_int = INTEGRAL_TYPE_P (type);
1841 int final_ptr = POINTER_TYPE_P (type);
1842 int final_float = FLOAT_TYPE_P (type);
09240451 1843 int final_vec = VECTOR_TYPE_P (type);
1e51d0a2
RB
1844 unsigned int final_prec = TYPE_PRECISION (type);
1845 int final_unsignedp = TYPE_UNSIGNED (type);
1846 }
64d3a1f0
RB
1847 (switch
1848 /* In addition to the cases of two conversions in a row
1849 handled below, if we are converting something to its own
1850 type via an object of identical or wider precision, neither
1851 conversion is needed. */
1852 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
1853 || (GENERIC
1854 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
1855 && (((inter_int || inter_ptr) && final_int)
1856 || (inter_float && final_float))
1857 && inter_prec >= final_prec)
1858 (ocvt @0))
1859
1860 /* Likewise, if the intermediate and initial types are either both
1861 float or both integer, we don't need the middle conversion if the
1862 former is wider than the latter and doesn't change the signedness
1863 (for integers). Avoid this if the final type is a pointer since
36088299 1864 then we sometimes need the middle conversion. */
64d3a1f0
RB
1865 (if (((inter_int && inside_int) || (inter_float && inside_float))
1866 && (final_int || final_float)
1867 && inter_prec >= inside_prec
36088299 1868 && (inter_float || inter_unsignedp == inside_unsignedp))
64d3a1f0
RB
1869 (ocvt @0))
1870
1871 /* If we have a sign-extension of a zero-extended value, we can
1872 replace that by a single zero-extension. Likewise if the
1873 final conversion does not change precision we can drop the
1874 intermediate conversion. */
1875 (if (inside_int && inter_int && final_int
1876 && ((inside_prec < inter_prec && inter_prec < final_prec
1877 && inside_unsignedp && !inter_unsignedp)
1878 || final_prec == inter_prec))
1879 (ocvt @0))
1880
1881 /* Two conversions in a row are not needed unless:
1e51d0a2
RB
1882 - some conversion is floating-point (overstrict for now), or
1883 - some conversion is a vector (overstrict for now), or
1884 - the intermediate type is narrower than both initial and
1885 final, or
1886 - the intermediate type and innermost type differ in signedness,
1887 and the outermost type is wider than the intermediate, or
1888 - the initial type is a pointer type and the precisions of the
1889 intermediate and final types differ, or
1890 - the final type is a pointer type and the precisions of the
1891 initial and intermediate types differ. */
64d3a1f0
RB
1892 (if (! inside_float && ! inter_float && ! final_float
1893 && ! inside_vec && ! inter_vec && ! final_vec
1894 && (inter_prec >= inside_prec || inter_prec >= final_prec)
1895 && ! (inside_int && inter_int
1896 && inter_unsignedp != inside_unsignedp
1897 && inter_prec < final_prec)
1898 && ((inter_unsignedp && inter_prec > inside_prec)
1899 == (final_unsignedp && final_prec > inter_prec))
1900 && ! (inside_ptr && inter_prec != final_prec)
36088299 1901 && ! (final_ptr && inside_prec != inter_prec))
64d3a1f0
RB
1902 (ocvt @0))
1903
1904 /* A truncation to an unsigned type (a zero-extension) should be
1905 canonicalized as bitwise and of a mask. */
1d510e04
JJ
1906 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
1907 && final_int && inter_int && inside_int
64d3a1f0
RB
1908 && final_prec == inside_prec
1909 && final_prec > inter_prec
1910 && inter_unsignedp)
1911 (convert (bit_and @0 { wide_int_to_tree
1912 (inside_type,
1913 wi::mask (inter_prec, false,
1914 TYPE_PRECISION (inside_type))); })))
1915
1916 /* If we are converting an integer to a floating-point that can
1917 represent it exactly and back to an integer, we can skip the
1918 floating-point conversion. */
1919 (if (GIMPLE /* PR66211 */
1920 && inside_int && inter_float && final_int &&
1921 (unsigned) significand_size (TYPE_MODE (inter_type))
1922 >= inside_prec - !inside_unsignedp)
1923 (convert @0)))))))
ea2042ba
RB
1924
1925/* If we have a narrowing conversion to an integral type that is fed by a
1926 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
1927 masks off bits outside the final type (and nothing else). */
1928(simplify
1929 (convert (bit_and @0 INTEGER_CST@1))
1930 (if (INTEGRAL_TYPE_P (type)
1931 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1932 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
1933 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
1934 TYPE_PRECISION (type)), 0))
1935 (convert @0)))
a25454ea
RB
1936
1937
1938/* (X /[ex] A) * A -> X. */
1939(simplify
2eef1fc1
RB
1940 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
1941 (convert @0))
eaeba53a 1942
a7f24614
RB
1943/* Canonicalization of binary operations. */
1944
1945/* Convert X + -C into X - C. */
1946(simplify
1947 (plus @0 REAL_CST@1)
1948 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
23f27839 1949 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
a7f24614
RB
1950 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
1951 (minus @0 { tem; })))))
1952
6b6aa8d3 1953/* Convert x+x into x*2. */
a7f24614
RB
1954(simplify
1955 (plus @0 @0)
1956 (if (SCALAR_FLOAT_TYPE_P (type))
6b6aa8d3
MG
1957 (mult @0 { build_real (type, dconst2); })
1958 (if (INTEGRAL_TYPE_P (type))
1959 (mult @0 { build_int_cst (type, 2); }))))
a7f24614
RB
1960
1961(simplify
1962 (minus integer_zerop @1)
1963 (negate @1))
1964
1965/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
1966 ARG0 is zero and X + ARG0 reduces to X, since that would mean
1967 (-ARG1 + ARG0) reduces to -ARG1. */
1968(simplify
1969 (minus real_zerop@0 @1)
1970 (if (fold_real_zero_addition_p (type, @0, 0))
1971 (negate @1)))
1972
1973/* Transform x * -1 into -x. */
1974(simplify
1975 (mult @0 integer_minus_onep)
1976 (negate @0))
eaeba53a 1977
96285749
RS
1978/* True if we can easily extract the real and imaginary parts of a complex
1979 number. */
1980(match compositional_complex
1981 (convert? (complex @0 @1)))
1982
eaeba53a
RB
1983/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
1984(simplify
1985 (complex (realpart @0) (imagpart @0))
1986 @0)
1987(simplify
1988 (realpart (complex @0 @1))
1989 @0)
1990(simplify
1991 (imagpart (complex @0 @1))
1992 @1)
83633539 1993
77c028c5
MG
1994/* Sometimes we only care about half of a complex expression. */
1995(simplify
1996 (realpart (convert?:s (conj:s @0)))
1997 (convert (realpart @0)))
1998(simplify
1999 (imagpart (convert?:s (conj:s @0)))
2000 (convert (negate (imagpart @0))))
2001(for part (realpart imagpart)
2002 (for op (plus minus)
2003 (simplify
2004 (part (convert?:s@2 (op:s @0 @1)))
2005 (convert (op (part @0) (part @1))))))
2006(simplify
2007 (realpart (convert?:s (CEXPI:s @0)))
2008 (convert (COS @0)))
2009(simplify
2010 (imagpart (convert?:s (CEXPI:s @0)))
2011 (convert (SIN @0)))
2012
2013/* conj(conj(x)) -> x */
2014(simplify
2015 (conj (convert? (conj @0)))
2016 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2017 (convert @0)))
2018
2019/* conj({x,y}) -> {x,-y} */
2020(simplify
2021 (conj (convert?:s (complex:s @0 @1)))
2022 (with { tree itype = TREE_TYPE (type); }
2023 (complex (convert:itype @0) (negate (convert:itype @1)))))
83633539
RB
2024
2025/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2026(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2027 (simplify
2028 (bswap (bswap @0))
2029 @0)
2030 (simplify
2031 (bswap (bit_not (bswap @0)))
2032 (bit_not @0))
2033 (for bitop (bit_xor bit_ior bit_and)
2034 (simplify
2035 (bswap (bitop:c (bswap @0) @1))
2036 (bitop @0 (bswap @1)))))
96994de0
RB
2037
2038
2039/* Combine COND_EXPRs and VEC_COND_EXPRs. */
2040
2041/* Simplify constant conditions.
2042 Only optimize constant conditions when the selected branch
2043 has the same type as the COND_EXPR. This avoids optimizing
2044 away "c ? x : throw", where the throw has a void type.
2045 Note that we cannot throw away the fold-const.c variant nor
2046 this one as we depend on doing this transform before possibly
2047 A ? B : B -> B triggers and the fold-const.c one can optimize
2048 0 ? A : B to B even if A has side-effects. Something
2049 genmatch cannot handle. */
2050(simplify
2051 (cond INTEGER_CST@0 @1 @2)
8fdc6c67
RB
2052 (if (integer_zerop (@0))
2053 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2054 @2)
2055 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2056 @1)))
96994de0
RB
2057(simplify
2058 (vec_cond VECTOR_CST@0 @1 @2)
2059 (if (integer_all_onesp (@0))
8fdc6c67
RB
2060 @1
2061 (if (integer_zerop (@0))
2062 @2)))
96994de0 2063
b5481987
BC
2064/* Simplification moved from fold_cond_expr_with_comparison. It may also
2065 be extended. */
e2535011
BC
2066/* This pattern implements two kinds simplification:
2067
2068 Case 1)
2069 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
b5481987
BC
2070 1) Conversions are type widening from smaller type.
2071 2) Const c1 equals to c2 after canonicalizing comparison.
2072 3) Comparison has tree code LT, LE, GT or GE.
2073 This specific pattern is needed when (cmp (convert x) c) may not
2074 be simplified by comparison patterns because of multiple uses of
2075 x. It also makes sense here because simplifying across multiple
e2535011
BC
2076 referred var is always benefitial for complicated cases.
2077
2078 Case 2)
2079 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2080(for cmp (lt le gt ge eq)
b5481987 2081 (simplify
ae22bc5d 2082 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
b5481987
BC
2083 (with
2084 {
2085 tree from_type = TREE_TYPE (@1);
2086 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
ae22bc5d 2087 enum tree_code code = ERROR_MARK;
b5481987 2088
ae22bc5d
BC
2089 if (INTEGRAL_TYPE_P (from_type)
2090 && int_fits_type_p (@2, from_type)
b5481987
BC
2091 && (types_match (c1_type, from_type)
2092 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2093 && (TYPE_UNSIGNED (from_type)
2094 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2095 && (types_match (c2_type, from_type)
2096 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2097 && (TYPE_UNSIGNED (from_type)
2098 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2099 {
ae22bc5d 2100 if (cmp != EQ_EXPR)
b5481987 2101 {
e2535011
BC
2102 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2103 {
2104 /* X <= Y - 1 equals to X < Y. */
ae22bc5d 2105 if (cmp == LE_EXPR)
e2535011
BC
2106 code = LT_EXPR;
2107 /* X > Y - 1 equals to X >= Y. */
ae22bc5d 2108 if (cmp == GT_EXPR)
e2535011
BC
2109 code = GE_EXPR;
2110 }
2111 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2112 {
2113 /* X < Y + 1 equals to X <= Y. */
ae22bc5d 2114 if (cmp == LT_EXPR)
e2535011
BC
2115 code = LE_EXPR;
2116 /* X >= Y + 1 equals to X > Y. */
ae22bc5d 2117 if (cmp == GE_EXPR)
e2535011
BC
2118 code = GT_EXPR;
2119 }
ae22bc5d
BC
2120 if (code != ERROR_MARK
2121 || wi::to_widest (@2) == wi::to_widest (@3))
e2535011 2122 {
ae22bc5d 2123 if (cmp == LT_EXPR || cmp == LE_EXPR)
e2535011 2124 code = MIN_EXPR;
ae22bc5d 2125 if (cmp == GT_EXPR || cmp == GE_EXPR)
e2535011
BC
2126 code = MAX_EXPR;
2127 }
b5481987 2128 }
e2535011 2129 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
ae22bc5d
BC
2130 else if (int_fits_type_p (@3, from_type))
2131 code = EQ_EXPR;
b5481987
BC
2132 }
2133 }
2134 (if (code == MAX_EXPR)
21aaaf1e 2135 (convert (max @1 (convert @2)))
b5481987 2136 (if (code == MIN_EXPR)
21aaaf1e 2137 (convert (min @1 (convert @2)))
e2535011 2138 (if (code == EQ_EXPR)
ae22bc5d 2139 (convert (cond (eq @1 (convert @3))
21aaaf1e 2140 (convert:from_type @3) (convert:from_type @2)))))))))
b5481987 2141
714445ae
BC
2142/* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2143
2144 1) OP is PLUS or MINUS.
2145 2) CMP is LT, LE, GT or GE.
2146 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2147
2148 This pattern also handles special cases like:
2149
2150 A) Operand x is a unsigned to signed type conversion and c1 is
2151 integer zero. In this case,
2152 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2153 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2154 B) Const c1 may not equal to (C3 op' C2). In this case we also
2155 check equality for (c1+1) and (c1-1) by adjusting comparison
2156 code.
2157
2158 TODO: Though signed type is handled by this pattern, it cannot be
2159 simplified at the moment because C standard requires additional
2160 type promotion. In order to match&simplify it here, the IR needs
2161 to be cleaned up by other optimizers, i.e, VRP. */
2162(for op (plus minus)
2163 (for cmp (lt le gt ge)
2164 (simplify
2165 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2166 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2167 (if (types_match (from_type, to_type)
2168 /* Check if it is special case A). */
2169 || (TYPE_UNSIGNED (from_type)
2170 && !TYPE_UNSIGNED (to_type)
2171 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2172 && integer_zerop (@1)
2173 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2174 (with
2175 {
2176 bool overflow = false;
2177 enum tree_code code, cmp_code = cmp;
2178 wide_int real_c1, c1 = @1, c2 = @2, c3 = @3;
2179 signop sgn = TYPE_SIGN (from_type);
2180
2181 /* Handle special case A), given x of unsigned type:
2182 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2183 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2184 if (!types_match (from_type, to_type))
2185 {
2186 if (cmp_code == LT_EXPR)
2187 cmp_code = GT_EXPR;
2188 if (cmp_code == GE_EXPR)
2189 cmp_code = LE_EXPR;
2190 c1 = wi::max_value (to_type);
2191 }
2192 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
2193 compute (c3 op' c2) and check if it equals to c1 with op' being
2194 the inverted operator of op. Make sure overflow doesn't happen
2195 if it is undefined. */
2196 if (op == PLUS_EXPR)
2197 real_c1 = wi::sub (c3, c2, sgn, &overflow);
2198 else
2199 real_c1 = wi::add (c3, c2, sgn, &overflow);
2200
2201 code = cmp_code;
2202 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2203 {
2204 /* Check if c1 equals to real_c1. Boundary condition is handled
2205 by adjusting comparison operation if necessary. */
2206 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2207 && !overflow)
2208 {
2209 /* X <= Y - 1 equals to X < Y. */
2210 if (cmp_code == LE_EXPR)
2211 code = LT_EXPR;
2212 /* X > Y - 1 equals to X >= Y. */
2213 if (cmp_code == GT_EXPR)
2214 code = GE_EXPR;
2215 }
2216 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
2217 && !overflow)
2218 {
2219 /* X < Y + 1 equals to X <= Y. */
2220 if (cmp_code == LT_EXPR)
2221 code = LE_EXPR;
2222 /* X >= Y + 1 equals to X > Y. */
2223 if (cmp_code == GE_EXPR)
2224 code = GT_EXPR;
2225 }
2226 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
2227 {
2228 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
2229 code = MIN_EXPR;
2230 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
2231 code = MAX_EXPR;
2232 }
2233 }
2234 }
2235 (if (code == MAX_EXPR)
2236 (op (max @X { wide_int_to_tree (from_type, real_c1); })
2237 { wide_int_to_tree (from_type, c2); })
2238 (if (code == MIN_EXPR)
2239 (op (min @X { wide_int_to_tree (from_type, real_c1); })
2240 { wide_int_to_tree (from_type, c2); })))))))))
2241
96994de0
RB
2242(for cnd (cond vec_cond)
2243 /* A ? B : (A ? X : C) -> A ? B : C. */
2244 (simplify
2245 (cnd @0 (cnd @0 @1 @2) @3)
2246 (cnd @0 @1 @3))
2247 (simplify
2248 (cnd @0 @1 (cnd @0 @2 @3))
2249 (cnd @0 @1 @3))
24a179f8
RB
2250 /* A ? B : (!A ? C : X) -> A ? B : C. */
2251 /* ??? This matches embedded conditions open-coded because genmatch
2252 would generate matching code for conditions in separate stmts only.
2253 The following is still important to merge then and else arm cases
2254 from if-conversion. */
2255 (simplify
2256 (cnd @0 @1 (cnd @2 @3 @4))
2257 (if (COMPARISON_CLASS_P (@0)
2258 && COMPARISON_CLASS_P (@2)
2259 && invert_tree_comparison
2260 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@2)
2261 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@2, 0), 0)
2262 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@2, 1), 0))
2263 (cnd @0 @1 @3)))
2264 (simplify
2265 (cnd @0 (cnd @1 @2 @3) @4)
2266 (if (COMPARISON_CLASS_P (@0)
2267 && COMPARISON_CLASS_P (@1)
2268 && invert_tree_comparison
2269 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@1)
2270 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@1, 0), 0)
2271 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@1, 1), 0))
2272 (cnd @0 @3 @4)))
96994de0
RB
2273
2274 /* A ? B : B -> B. */
2275 (simplify
2276 (cnd @0 @1 @1)
09240451 2277 @1)
96994de0 2278
09240451
MG
2279 /* !A ? B : C -> A ? C : B. */
2280 (simplify
2281 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
2282 (cnd @0 @2 @1)))
f84e7fd6 2283
a3ca1bc5
RB
2284/* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
2285 return all -1 or all 0 results. */
f43d102e
RS
2286/* ??? We could instead convert all instances of the vec_cond to negate,
2287 but that isn't necessarily a win on its own. */
2288(simplify
a3ca1bc5 2289 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
f43d102e 2290 (if (VECTOR_TYPE_P (type)
4d8989d5 2291 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1))
f43d102e 2292 && (TYPE_MODE (TREE_TYPE (type))
4d8989d5 2293 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
a3ca1bc5 2294 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
f43d102e 2295
a3ca1bc5 2296/* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
f43d102e 2297(simplify
a3ca1bc5 2298 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
f43d102e 2299 (if (VECTOR_TYPE_P (type)
4d8989d5 2300 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1))
f43d102e 2301 && (TYPE_MODE (TREE_TYPE (type))
4d8989d5 2302 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
a3ca1bc5 2303 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
f84e7fd6 2304
2ee05f1e 2305
f84e7fd6
RB
2306/* Simplifications of comparisons. */
2307
24f1db9c
RB
2308/* See if we can reduce the magnitude of a constant involved in a
2309 comparison by changing the comparison code. This is a canonicalization
2310 formerly done by maybe_canonicalize_comparison_1. */
2311(for cmp (le gt)
2312 acmp (lt ge)
2313 (simplify
2314 (cmp @0 INTEGER_CST@1)
2315 (if (tree_int_cst_sgn (@1) == -1)
2316 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))))
2317(for cmp (ge lt)
2318 acmp (gt le)
2319 (simplify
2320 (cmp @0 INTEGER_CST@1)
2321 (if (tree_int_cst_sgn (@1) == 1)
2322 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))))
2323
2324
f84e7fd6
RB
2325/* We can simplify a logical negation of a comparison to the
2326 inverted comparison. As we cannot compute an expression
2327 operator using invert_tree_comparison we have to simulate
2328 that with expression code iteration. */
2329(for cmp (tcc_comparison)
2330 icmp (inverted_tcc_comparison)
2331 ncmp (inverted_tcc_comparison_with_nans)
2332 /* Ideally we'd like to combine the following two patterns
2333 and handle some more cases by using
2334 (logical_inverted_value (cmp @0 @1))
2335 here but for that genmatch would need to "inline" that.
2336 For now implement what forward_propagate_comparison did. */
2337 (simplify
2338 (bit_not (cmp @0 @1))
2339 (if (VECTOR_TYPE_P (type)
2340 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
2341 /* Comparison inversion may be impossible for trapping math,
2342 invert_tree_comparison will tell us. But we can't use
2343 a computed operator in the replacement tree thus we have
2344 to play the trick below. */
2345 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 2346 (cmp, HONOR_NANS (@0)); }
f84e7fd6 2347 (if (ic == icmp)
8fdc6c67
RB
2348 (icmp @0 @1)
2349 (if (ic == ncmp)
2350 (ncmp @0 @1))))))
f84e7fd6 2351 (simplify
09240451
MG
2352 (bit_xor (cmp @0 @1) integer_truep)
2353 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 2354 (cmp, HONOR_NANS (@0)); }
09240451 2355 (if (ic == icmp)
8fdc6c67
RB
2356 (icmp @0 @1)
2357 (if (ic == ncmp)
2358 (ncmp @0 @1))))))
e18c1d66 2359
2ee05f1e
RB
2360/* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
2361 ??? The transformation is valid for the other operators if overflow
2362 is undefined for the type, but performing it here badly interacts
2363 with the transformation in fold_cond_expr_with_comparison which
2364 attempts to synthetize ABS_EXPR. */
2365(for cmp (eq ne)
2366 (simplify
d9ba1961
RB
2367 (cmp (minus@2 @0 @1) integer_zerop)
2368 (if (single_use (@2))
2369 (cmp @0 @1))))
2ee05f1e
RB
2370
2371/* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
2372 signed arithmetic case. That form is created by the compiler
2373 often enough for folding it to be of value. One example is in
2374 computing loop trip counts after Operator Strength Reduction. */
07cdc2b8
RB
2375(for cmp (simple_comparison)
2376 scmp (swapped_simple_comparison)
2ee05f1e 2377 (simplify
bc6e9db4 2378 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
2ee05f1e
RB
2379 /* Handle unfolded multiplication by zero. */
2380 (if (integer_zerop (@1))
8fdc6c67
RB
2381 (cmp @1 @2)
2382 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
bc6e9db4
RB
2383 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2384 && single_use (@3))
8fdc6c67
RB
2385 /* If @1 is negative we swap the sense of the comparison. */
2386 (if (tree_int_cst_sgn (@1) < 0)
2387 (scmp @0 @2)
2388 (cmp @0 @2))))))
2ee05f1e
RB
2389
2390/* Simplify comparison of something with itself. For IEEE
2391 floating-point, we can only do some of these simplifications. */
287f8f17 2392(for cmp (eq ge le)
2ee05f1e
RB
2393 (simplify
2394 (cmp @0 @0)
287f8f17 2395 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
b9407883 2396 || ! HONOR_NANS (@0))
287f8f17
RB
2397 { constant_boolean_node (true, type); }
2398 (if (cmp != EQ_EXPR)
2399 (eq @0 @0)))))
2ee05f1e
RB
2400(for cmp (ne gt lt)
2401 (simplify
2402 (cmp @0 @0)
2403 (if (cmp != NE_EXPR
2404 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
b9407883 2405 || ! HONOR_NANS (@0))
2ee05f1e 2406 { constant_boolean_node (false, type); })))
b5d3d787
RB
2407(for cmp (unle unge uneq)
2408 (simplify
2409 (cmp @0 @0)
2410 { constant_boolean_node (true, type); }))
dd53d197
MG
2411(for cmp (unlt ungt)
2412 (simplify
2413 (cmp @0 @0)
2414 (unordered @0 @0)))
b5d3d787
RB
2415(simplify
2416 (ltgt @0 @0)
2417 (if (!flag_trapping_math)
2418 { constant_boolean_node (false, type); }))
2ee05f1e
RB
2419
2420/* Fold ~X op ~Y as Y op X. */
07cdc2b8 2421(for cmp (simple_comparison)
2ee05f1e 2422 (simplify
7fe996ba
RB
2423 (cmp (bit_not@2 @0) (bit_not@3 @1))
2424 (if (single_use (@2) && single_use (@3))
2425 (cmp @1 @0))))
2ee05f1e
RB
2426
2427/* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
07cdc2b8
RB
2428(for cmp (simple_comparison)
2429 scmp (swapped_simple_comparison)
2ee05f1e 2430 (simplify
7fe996ba
RB
2431 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
2432 (if (single_use (@2)
2433 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
2ee05f1e
RB
2434 (scmp @0 (bit_not @1)))))
2435
07cdc2b8
RB
2436(for cmp (simple_comparison)
2437 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
2438 (simplify
2439 (cmp (convert@2 @0) (convert? @1))
2440 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2441 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
2442 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
2443 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
2444 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
2445 (with
2446 {
2447 tree type1 = TREE_TYPE (@1);
2448 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
2449 {
2450 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
2451 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
2452 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
2453 type1 = float_type_node;
2454 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
2455 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
2456 type1 = double_type_node;
2457 }
2458 tree newtype
2459 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
2460 ? TREE_TYPE (@0) : type1);
2461 }
2462 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
2463 (cmp (convert:newtype @0) (convert:newtype @1))))))
2464
2465 (simplify
2466 (cmp @0 REAL_CST@1)
2467 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
64d3a1f0
RB
2468 (switch
2469 /* a CMP (-0) -> a CMP 0 */
2470 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
2471 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
2472 /* x != NaN is always true, other ops are always false. */
2473 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
2474 && ! HONOR_SNANS (@1))
2475 { constant_boolean_node (cmp == NE_EXPR, type); })
2476 /* Fold comparisons against infinity. */
2477 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
2478 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
2479 (with
2480 {
2481 REAL_VALUE_TYPE max;
2482 enum tree_code code = cmp;
2483 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
2484 if (neg)
2485 code = swap_tree_comparison (code);
2486 }
2487 (switch
2488 /* x > +Inf is always false, if with ignore sNANs. */
2489 (if (code == GT_EXPR
2490 && ! HONOR_SNANS (@0))
2491 { constant_boolean_node (false, type); })
2492 (if (code == LE_EXPR)
2493 /* x <= +Inf is always true, if we don't case about NaNs. */
2494 (if (! HONOR_NANS (@0))
2495 { constant_boolean_node (true, type); }
b0eb889b 2496 /* x <= +Inf is the same as x == x, i.e. !isnan(x). */
64d3a1f0
RB
2497 (eq @0 @0)))
2498 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
2499 (if (code == EQ_EXPR || code == GE_EXPR)
2500 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
2501 (if (neg)
2502 (lt @0 { build_real (TREE_TYPE (@0), max); })
2503 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
2504 /* x < +Inf is always equal to x <= DBL_MAX. */
2505 (if (code == LT_EXPR)
2506 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
2507 (if (neg)
2508 (ge @0 { build_real (TREE_TYPE (@0), max); })
2509 (le @0 { build_real (TREE_TYPE (@0), max); }))))
2510 /* x != +Inf is always equal to !(x > DBL_MAX). */
2511 (if (code == NE_EXPR)
2512 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
2513 (if (! HONOR_NANS (@0))
2514 (if (neg)
2515 (ge @0 { build_real (TREE_TYPE (@0), max); })
2516 (le @0 { build_real (TREE_TYPE (@0), max); }))
2517 (if (neg)
2518 (bit_xor (lt @0 { build_real (TREE_TYPE (@0), max); })
2519 { build_one_cst (type); })
2520 (bit_xor (gt @0 { build_real (TREE_TYPE (@0), max); })
2521 { build_one_cst (type); }))))))))))
07cdc2b8
RB
2522
2523 /* If this is a comparison of a real constant with a PLUS_EXPR
2524 or a MINUS_EXPR of a real constant, we can convert it into a
2525 comparison with a revised real constant as long as no overflow
2526 occurs when unsafe_math_optimizations are enabled. */
2527 (if (flag_unsafe_math_optimizations)
2528 (for op (plus minus)
2529 (simplify
2530 (cmp (op @0 REAL_CST@1) REAL_CST@2)
2531 (with
2532 {
2533 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
2534 TREE_TYPE (@1), @2, @1);
2535 }
f980c9a2 2536 (if (tem && !TREE_OVERFLOW (tem))
07cdc2b8
RB
2537 (cmp @0 { tem; }))))))
2538
2539 /* Likewise, we can simplify a comparison of a real constant with
2540 a MINUS_EXPR whose first operand is also a real constant, i.e.
2541 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
2542 floating-point types only if -fassociative-math is set. */
2543 (if (flag_associative_math)
2544 (simplify
0409237b 2545 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
07cdc2b8 2546 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
f980c9a2 2547 (if (tem && !TREE_OVERFLOW (tem))
07cdc2b8
RB
2548 (cmp { tem; } @1)))))
2549
2550 /* Fold comparisons against built-in math functions. */
2551 (if (flag_unsafe_math_optimizations
2552 && ! flag_errno_math)
2553 (for sq (SQRT)
2554 (simplify
2555 (cmp (sq @0) REAL_CST@1)
64d3a1f0
RB
2556 (switch
2557 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2558 (switch
2559 /* sqrt(x) < y is always false, if y is negative. */
2560 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
8fdc6c67 2561 { constant_boolean_node (false, type); })
64d3a1f0
RB
2562 /* sqrt(x) > y is always true, if y is negative and we
2563 don't care about NaNs, i.e. negative values of x. */
2564 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
2565 { constant_boolean_node (true, type); })
2566 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
2567 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
c53233c6
RS
2568 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
2569 (switch
2570 /* sqrt(x) < 0 is always false. */
2571 (if (cmp == LT_EXPR)
2572 { constant_boolean_node (false, type); })
2573 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
2574 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
2575 { constant_boolean_node (true, type); })
2576 /* sqrt(x) <= 0 -> x == 0. */
2577 (if (cmp == LE_EXPR)
2578 (eq @0 @1))
2579 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
2580 == or !=. In the last case:
2581
2582 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
2583
2584 if x is negative or NaN. Due to -funsafe-math-optimizations,
2585 the results for other x follow from natural arithmetic. */
2586 (cmp @0 @1)))
64d3a1f0
RB
2587 (if (cmp == GT_EXPR || cmp == GE_EXPR)
2588 (with
2589 {
2590 REAL_VALUE_TYPE c2;
5c88ea94
RS
2591 real_arithmetic (&c2, MULT_EXPR,
2592 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
64d3a1f0
RB
2593 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
2594 }
2595 (if (REAL_VALUE_ISINF (c2))
2596 /* sqrt(x) > y is x == +Inf, when y is very large. */
2597 (if (HONOR_INFINITIES (@0))
2598 (eq @0 { build_real (TREE_TYPE (@0), c2); })
2599 { constant_boolean_node (false, type); })
2600 /* sqrt(x) > c is the same as x > c*c. */
2601 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
2602 (if (cmp == LT_EXPR || cmp == LE_EXPR)
2603 (with
2604 {
2605 REAL_VALUE_TYPE c2;
5c88ea94
RS
2606 real_arithmetic (&c2, MULT_EXPR,
2607 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
64d3a1f0
RB
2608 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
2609 }
2610 (if (REAL_VALUE_ISINF (c2))
2611 (switch
2612 /* sqrt(x) < y is always true, when y is a very large
2613 value and we don't care about NaNs or Infinities. */
2614 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
2615 { constant_boolean_node (true, type); })
2616 /* sqrt(x) < y is x != +Inf when y is very large and we
2617 don't care about NaNs. */
2618 (if (! HONOR_NANS (@0))
2619 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
2620 /* sqrt(x) < y is x >= 0 when y is very large and we
2621 don't care about Infinities. */
2622 (if (! HONOR_INFINITIES (@0))
2623 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
2624 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
2625 (if (GENERIC)
2626 (truth_andif
2627 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
2628 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
2629 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
2630 (if (! HONOR_NANS (@0))
2631 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
2632 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
2633 (if (GENERIC)
2634 (truth_andif
2635 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
0ca2e7f7
PK
2636 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
2637 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
2638 (simplify
2639 (cmp (sq @0) (sq @1))
2640 (if (! HONOR_NANS (@0))
2641 (cmp @0 @1))))))
2ee05f1e 2642
40fd269a
MG
2643/* Fold A /[ex] B CMP C to A CMP B * C. */
2644(for cmp (eq ne)
2645 (simplify
2646 (cmp (exact_div @0 @1) INTEGER_CST@2)
2647 (if (!integer_zerop (@1))
2648 (if (wi::eq_p (@2, 0))
2649 (cmp @0 @2)
2650 (if (TREE_CODE (@1) == INTEGER_CST)
2651 (with
2652 {
2653 bool ovf;
2654 wide_int prod = wi::mul (@2, @1, TYPE_SIGN (TREE_TYPE (@1)), &ovf);
2655 }
2656 (if (ovf)
2657 { constant_boolean_node (cmp == NE_EXPR, type); }
2658 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
2659(for cmp (lt le gt ge)
2660 (simplify
2661 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
2662 (if (wi::gt_p (@1, 0, TYPE_SIGN (TREE_TYPE (@1))))
2663 (with
2664 {
2665 bool ovf;
2666 wide_int prod = wi::mul (@2, @1, TYPE_SIGN (TREE_TYPE (@1)), &ovf);
2667 }
2668 (if (ovf)
2669 { constant_boolean_node (wi::lt_p (@2, 0, TYPE_SIGN (TREE_TYPE (@2)))
2670 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
2671 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
2672
cfdc4f33
MG
2673/* Unordered tests if either argument is a NaN. */
2674(simplify
2675 (bit_ior (unordered @0 @0) (unordered @1 @1))
aea417d7 2676 (if (types_match (@0, @1))
cfdc4f33 2677 (unordered @0 @1)))
257b01ba
MG
2678(simplify
2679 (bit_and (ordered @0 @0) (ordered @1 @1))
2680 (if (types_match (@0, @1))
2681 (ordered @0 @1)))
cfdc4f33
MG
2682(simplify
2683 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
2684 @2)
257b01ba
MG
2685(simplify
2686 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
2687 @2)
e18c1d66 2688
90c6f26c
RB
2689/* Simple range test simplifications. */
2690/* A < B || A >= B -> true. */
5d30c58d
RB
2691(for test1 (lt le le le ne ge)
2692 test2 (ge gt ge ne eq ne)
90c6f26c
RB
2693 (simplify
2694 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
2695 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2696 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
2697 { constant_boolean_node (true, type); })))
2698/* A < B && A >= B -> false. */
2699(for test1 (lt lt lt le ne eq)
2700 test2 (ge gt eq gt eq gt)
2701 (simplify
2702 (bit_and:c (test1 @0 @1) (test2 @0 @1))
2703 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2704 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
2705 { constant_boolean_node (false, type); })))
2706
534bd33b
MG
2707/* -A CMP -B -> B CMP A. */
2708(for cmp (tcc_comparison)
2709 scmp (swapped_tcc_comparison)
2710 (simplify
2711 (cmp (negate @0) (negate @1))
2712 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2713 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2714 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2715 (scmp @0 @1)))
2716 (simplify
2717 (cmp (negate @0) CONSTANT_CLASS_P@1)
2718 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2719 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2720 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
23f27839 2721 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
534bd33b
MG
2722 (if (tem && !TREE_OVERFLOW (tem))
2723 (scmp @0 { tem; }))))))
2724
b0eb889b
MG
2725/* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
2726(for op (eq ne)
2727 (simplify
2728 (op (abs @0) zerop@1)
2729 (op @0 @1)))
2730
79d4f7c6
RB
2731/* From fold_sign_changed_comparison and fold_widened_comparison. */
2732(for cmp (simple_comparison)
2733 (simplify
2734 (cmp (convert@0 @00) (convert?@1 @10))
452ec2a5 2735 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
79d4f7c6
RB
2736 /* Disable this optimization if we're casting a function pointer
2737 type on targets that require function pointer canonicalization. */
2738 && !(targetm.have_canonicalize_funcptr_for_compare ()
2739 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
2fde61e3
RB
2740 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
2741 && single_use (@0))
79d4f7c6
RB
2742 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
2743 && (TREE_CODE (@10) == INTEGER_CST
2744 || (@1 != @10 && types_match (TREE_TYPE (@10), TREE_TYPE (@00))))
2745 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
2746 || cmp == NE_EXPR
2747 || cmp == EQ_EXPR)
2748 && (POINTER_TYPE_P (TREE_TYPE (@00)) == POINTER_TYPE_P (TREE_TYPE (@0))))
2749 /* ??? The special-casing of INTEGER_CST conversion was in the original
2750 code and here to avoid a spurious overflow flag on the resulting
2751 constant which fold_convert produces. */
2752 (if (TREE_CODE (@1) == INTEGER_CST)
2753 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
2754 TREE_OVERFLOW (@1)); })
2755 (cmp @00 (convert @1)))
2756
2757 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
2758 /* If possible, express the comparison in the shorter mode. */
2759 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
7fd82d52
PP
2760 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
2761 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
2762 && TYPE_UNSIGNED (TREE_TYPE (@00))))
79d4f7c6
RB
2763 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
2764 || ((TYPE_PRECISION (TREE_TYPE (@00))
2765 >= TYPE_PRECISION (TREE_TYPE (@10)))
2766 && (TYPE_UNSIGNED (TREE_TYPE (@00))
2767 == TYPE_UNSIGNED (TREE_TYPE (@10))))
2768 || (TREE_CODE (@10) == INTEGER_CST
f6c15759 2769 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
79d4f7c6
RB
2770 && int_fits_type_p (@10, TREE_TYPE (@00)))))
2771 (cmp @00 (convert @10))
2772 (if (TREE_CODE (@10) == INTEGER_CST
f6c15759 2773 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
79d4f7c6
RB
2774 && !int_fits_type_p (@10, TREE_TYPE (@00)))
2775 (with
2776 {
2777 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
2778 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
2779 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
2780 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
2781 }
2782 (if (above || below)
2783 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
2784 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
2785 (if (cmp == LT_EXPR || cmp == LE_EXPR)
2786 { constant_boolean_node (above ? true : false, type); }
2787 (if (cmp == GT_EXPR || cmp == GE_EXPR)
2788 { constant_boolean_node (above ? false : true, type); }))))))))))))
66e1cacf 2789
96a111a3
RB
2790(for cmp (eq ne)
2791 /* A local variable can never be pointed to by
2792 the default SSA name of an incoming parameter.
2793 SSA names are canonicalized to 2nd place. */
2794 (simplify
2795 (cmp addr@0 SSA_NAME@1)
2796 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
2797 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
2798 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
2799 (if (TREE_CODE (base) == VAR_DECL
2800 && auto_var_in_fn_p (base, current_function_decl))
2801 (if (cmp == NE_EXPR)
2802 { constant_boolean_node (true, type); }
2803 { constant_boolean_node (false, type); }))))))
2804
66e1cacf
RB
2805/* Equality compare simplifications from fold_binary */
2806(for cmp (eq ne)
2807
2808 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
2809 Similarly for NE_EXPR. */
2810 (simplify
2811 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
2812 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
2813 && wi::bit_and_not (@1, @2) != 0)
2814 { constant_boolean_node (cmp == NE_EXPR, type); }))
2815
2816 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
2817 (simplify
2818 (cmp (bit_xor @0 @1) integer_zerop)
2819 (cmp @0 @1))
2820
2821 /* (X ^ Y) == Y becomes X == 0.
2822 Likewise (X ^ Y) == X becomes Y == 0. */
2823 (simplify
99e943a2 2824 (cmp:c (bit_xor:c @0 @1) @0)
66e1cacf
RB
2825 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
2826
2827 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
2828 (simplify
2829 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
2830 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
d057c866 2831 (cmp @0 (bit_xor @1 (convert @2)))))
d057c866
RB
2832
2833 (simplify
2834 (cmp (convert? addr@0) integer_zerop)
2835 (if (tree_single_nonzero_warnv_p (@0, NULL))
2836 { constant_boolean_node (cmp == NE_EXPR, type); })))
2837
b0eb889b
MG
2838/* If we have (A & C) == C where C is a power of 2, convert this into
2839 (A & C) != 0. Similarly for NE_EXPR. */
2840(for cmp (eq ne)
2841 icmp (ne eq)
2842 (simplify
2843 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
2844 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
2845
519e0faa
PB
2846/* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
2847 convert this into a shift followed by ANDing with D. */
2848(simplify
2849 (cond
2850 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
2851 integer_pow2p@2 integer_zerop)
2852 (with {
2853 int shift = wi::exact_log2 (@2) - wi::exact_log2 (@1);
2854 }
2855 (if (shift > 0)
2856 (bit_and
2857 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
2858 (bit_and
2859 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); })) @2))))
2860
b0eb889b
MG
2861/* If we have (A & C) != 0 where C is the sign bit of A, convert
2862 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
2863(for cmp (eq ne)
2864 ncmp (ge lt)
2865 (simplify
2866 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
2867 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2868 && (TYPE_PRECISION (TREE_TYPE (@0))
2869 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
2870 && element_precision (@2) >= element_precision (@0)
2871 && wi::only_sign_bit_p (@1, element_precision (@0)))
2872 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
2873 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
2874
519e0faa 2875/* If we have A < 0 ? C : 0 where C is a power of 2, convert
c0140e3c 2876 this into a right shift or sign extension followed by ANDing with C. */
519e0faa
PB
2877(simplify
2878 (cond
2879 (lt @0 integer_zerop)
2880 integer_pow2p@1 integer_zerop)
c0140e3c
JJ
2881 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
2882 (with {
519e0faa 2883 int shift = element_precision (@0) - wi::exact_log2 (@1) - 1;
c0140e3c
JJ
2884 }
2885 (if (shift >= 0)
2886 (bit_and
2887 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
2888 @1)
2889 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
2890 sign extension followed by AND with C will achieve the effect. */
2891 (bit_and (convert @0) @1)))))
519e0faa 2892
68aba1f6
RB
2893/* When the addresses are not directly of decls compare base and offset.
2894 This implements some remaining parts of fold_comparison address
2895 comparisons but still no complete part of it. Still it is good
2896 enough to make fold_stmt not regress when not dispatching to fold_binary. */
2897(for cmp (simple_comparison)
2898 (simplify
f501d5cd 2899 (cmp (convert1?@2 addr@0) (convert2? addr@1))
68aba1f6
RB
2900 (with
2901 {
2902 HOST_WIDE_INT off0, off1;
2903 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
2904 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
2905 if (base0 && TREE_CODE (base0) == MEM_REF)
2906 {
2907 off0 += mem_ref_offset (base0).to_short_addr ();
2908 base0 = TREE_OPERAND (base0, 0);
2909 }
2910 if (base1 && TREE_CODE (base1) == MEM_REF)
2911 {
2912 off1 += mem_ref_offset (base1).to_short_addr ();
2913 base1 = TREE_OPERAND (base1, 0);
2914 }
2915 }
da571fda
RB
2916 (if (base0 && base1)
2917 (with
2918 {
aad88aed 2919 int equal = 2;
70f40fea
JJ
2920 /* Punt in GENERIC on variables with value expressions;
2921 the value expressions might point to fields/elements
2922 of other vars etc. */
2923 if (GENERIC
2924 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
2925 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
2926 ;
2927 else if (decl_in_symtab_p (base0)
2928 && decl_in_symtab_p (base1))
da571fda
RB
2929 equal = symtab_node::get_create (base0)
2930 ->equal_address_to (symtab_node::get_create (base1));
c3bea076
RB
2931 else if ((DECL_P (base0)
2932 || TREE_CODE (base0) == SSA_NAME
2933 || TREE_CODE (base0) == STRING_CST)
2934 && (DECL_P (base1)
2935 || TREE_CODE (base1) == SSA_NAME
2936 || TREE_CODE (base1) == STRING_CST))
aad88aed 2937 equal = (base0 == base1);
da571fda
RB
2938 }
2939 (if (equal == 1
2940 && (cmp == EQ_EXPR || cmp == NE_EXPR
2941 /* If the offsets are equal we can ignore overflow. */
2942 || off0 == off1
2943 || POINTER_TYPE_OVERFLOW_UNDEFINED
c3bea076 2944 /* Or if we compare using pointers to decls or strings. */
da571fda 2945 || (POINTER_TYPE_P (TREE_TYPE (@2))
c3bea076 2946 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
da571fda
RB
2947 (switch
2948 (if (cmp == EQ_EXPR)
2949 { constant_boolean_node (off0 == off1, type); })
2950 (if (cmp == NE_EXPR)
2951 { constant_boolean_node (off0 != off1, type); })
2952 (if (cmp == LT_EXPR)
2953 { constant_boolean_node (off0 < off1, type); })
2954 (if (cmp == LE_EXPR)
2955 { constant_boolean_node (off0 <= off1, type); })
2956 (if (cmp == GE_EXPR)
2957 { constant_boolean_node (off0 >= off1, type); })
2958 (if (cmp == GT_EXPR)
2959 { constant_boolean_node (off0 > off1, type); }))
2960 (if (equal == 0
2961 && DECL_P (base0) && DECL_P (base1)
2962 /* If we compare this as integers require equal offset. */
2963 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
2964 || off0 == off1))
2965 (switch
2966 (if (cmp == EQ_EXPR)
2967 { constant_boolean_node (false, type); })
2968 (if (cmp == NE_EXPR)
2969 { constant_boolean_node (true, type); })))))))))
66e1cacf 2970
98998245
RB
2971/* Simplify pointer equality compares using PTA. */
2972(for neeq (ne eq)
2973 (simplify
2974 (neeq @0 @1)
2975 (if (POINTER_TYPE_P (TREE_TYPE (@0))
2976 && ptrs_compare_unequal (@0, @1))
2977 { neeq == EQ_EXPR ? boolean_false_node : boolean_true_node; })))
2978
8f63caf6 2979/* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
467719fb
PK
2980 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
2981 Disable the transform if either operand is pointer to function.
2982 This broke pr22051-2.c for arm where function pointer
2983 canonicalizaion is not wanted. */
1c0a8806 2984
8f63caf6
RB
2985(for cmp (ne eq)
2986 (simplify
2987 (cmp (convert @0) INTEGER_CST@1)
467719fb
PK
2988 (if ((POINTER_TYPE_P (TREE_TYPE (@0)) && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
2989 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2990 || (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && POINTER_TYPE_P (TREE_TYPE (@1))
2991 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
8f63caf6
RB
2992 (cmp @0 (convert @1)))))
2993
21aacde4
RB
2994/* Non-equality compare simplifications from fold_binary */
2995(for cmp (lt gt le ge)
2996 /* Comparisons with the highest or lowest possible integer of
2997 the specified precision will have known values. */
2998 (simplify
2999 (cmp (convert?@2 @0) INTEGER_CST@1)
3000 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3001 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3002 (with
3003 {
3004 tree arg1_type = TREE_TYPE (@1);
3005 unsigned int prec = TYPE_PRECISION (arg1_type);
3006 wide_int max = wi::max_value (arg1_type);
3007 wide_int signed_max = wi::max_value (prec, SIGNED);
3008 wide_int min = wi::min_value (arg1_type);
3009 }
3010 (switch
3011 (if (wi::eq_p (@1, max))
3012 (switch
3013 (if (cmp == GT_EXPR)
3014 { constant_boolean_node (false, type); })
3015 (if (cmp == GE_EXPR)
3016 (eq @2 @1))
3017 (if (cmp == LE_EXPR)
3018 { constant_boolean_node (true, type); })
3019 (if (cmp == LT_EXPR)
3020 (ne @2 @1))))
21aacde4
RB
3021 (if (wi::eq_p (@1, min))
3022 (switch
3023 (if (cmp == LT_EXPR)
3024 { constant_boolean_node (false, type); })
3025 (if (cmp == LE_EXPR)
3026 (eq @2 @1))
3027 (if (cmp == GE_EXPR)
3028 { constant_boolean_node (true, type); })
3029 (if (cmp == GT_EXPR)
3030 (ne @2 @1))))
9bc22d19
RB
3031 (if (wi::eq_p (@1, max - 1))
3032 (switch
3033 (if (cmp == GT_EXPR)
3034 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))
3035 (if (cmp == LE_EXPR)
3036 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))))
21aacde4
RB
3037 (if (wi::eq_p (@1, min + 1))
3038 (switch
3039 (if (cmp == GE_EXPR)
3040 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))
3041 (if (cmp == LT_EXPR)
3042 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))))
3043 (if (wi::eq_p (@1, signed_max)
3044 && TYPE_UNSIGNED (arg1_type)
3045 /* We will flip the signedness of the comparison operator
3046 associated with the mode of @1, so the sign bit is
3047 specified by this mode. Check that @1 is the signed
3048 max associated with this sign bit. */
3049 && prec == GET_MODE_PRECISION (TYPE_MODE (arg1_type))
3050 /* signed_type does not work on pointer types. */
3051 && INTEGRAL_TYPE_P (arg1_type))
3052 /* The following case also applies to X < signed_max+1
3053 and X >= signed_max+1 because previous transformations. */
3054 (if (cmp == LE_EXPR || cmp == GT_EXPR)
3055 (with { tree st = signed_type_for (arg1_type); }
3056 (if (cmp == LE_EXPR)
3057 (ge (convert:st @0) { build_zero_cst (st); })
3058 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
3059
b5d3d787
RB
3060(for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
3061 /* If the second operand is NaN, the result is constant. */
3062 (simplify
3063 (cmp @0 REAL_CST@1)
3064 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3065 && (cmp != LTGT_EXPR || ! flag_trapping_math))
50301115 3066 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
b5d3d787 3067 ? false : true, type); })))
21aacde4 3068
55cf3946
RB
3069/* bool_var != 0 becomes bool_var. */
3070(simplify
b5d3d787 3071 (ne @0 integer_zerop)
55cf3946
RB
3072 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3073 && types_match (type, TREE_TYPE (@0)))
3074 (non_lvalue @0)))
3075/* bool_var == 1 becomes bool_var. */
3076(simplify
b5d3d787 3077 (eq @0 integer_onep)
55cf3946
RB
3078 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3079 && types_match (type, TREE_TYPE (@0)))
3080 (non_lvalue @0)))
b5d3d787
RB
3081/* Do not handle
3082 bool_var == 0 becomes !bool_var or
3083 bool_var != 1 becomes !bool_var
3084 here because that only is good in assignment context as long
3085 as we require a tcc_comparison in GIMPLE_CONDs where we'd
3086 replace if (x == 0) with tem = ~x; if (tem != 0) which is
3087 clearly less optimal and which we'll transform again in forwprop. */
55cf3946 3088
ca1206be
MG
3089/* When one argument is a constant, overflow detection can be simplified.
3090 Currently restricted to single use so as not to interfere too much with
3091 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
3092 A + CST CMP A -> A CMP' CST' */
3093(for cmp (lt le ge gt)
3094 out (gt gt le le)
3095 (simplify
a8e9f9a3 3096 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
ca1206be
MG
3097 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3098 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
3099 && wi::ne_p (@1, 0)
3100 && single_use (@2))
3101 (out @0 { wide_int_to_tree (TREE_TYPE (@0), wi::max_value
3102 (TYPE_PRECISION (TREE_TYPE (@0)), UNSIGNED) - @1); }))))
3103
3563f78f
MG
3104/* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
3105 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
3106 expects the long form, so we restrict the transformation for now. */
3107(for cmp (gt le)
3108 (simplify
a8e9f9a3 3109 (cmp:c (minus@2 @0 @1) @0)
3563f78f
MG
3110 (if (single_use (@2)
3111 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3112 && TYPE_UNSIGNED (TREE_TYPE (@0))
3113 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3114 (cmp @1 @0))))
3563f78f
MG
3115
3116/* Testing for overflow is unnecessary if we already know the result. */
3563f78f
MG
3117/* A - B > A */
3118(for cmp (gt le)
3119 out (ne eq)
3120 (simplify
a8e9f9a3 3121 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3563f78f
MG
3122 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3123 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3124 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3125/* A + B < A */
3126(for cmp (lt ge)
3127 out (ne eq)
3128 (simplify
a8e9f9a3 3129 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3563f78f
MG
3130 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3131 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3132 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3133
603aeb87 3134/* For unsigned operands, -1 / B < A checks whether A * B would overflow.
0557293f 3135 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
0557293f
AM
3136(for cmp (lt ge)
3137 out (ne eq)
3138 (simplify
603aeb87 3139 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
0557293f
AM
3140 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
3141 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
3142 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
55cf3946 3143
53f3cd25
RS
3144/* Simplification of math builtins. These rules must all be optimizations
3145 as well as IL simplifications. If there is a possibility that the new
3146 form could be a pessimization, the rule should go in the canonicalization
3147 section that follows this one.
e18c1d66 3148
53f3cd25
RS
3149 Rules can generally go in this section if they satisfy one of
3150 the following:
3151
3152 - the rule describes an identity
3153
3154 - the rule replaces calls with something as simple as addition or
3155 multiplication
3156
3157 - the rule contains unary calls only and simplifies the surrounding
3158 arithmetic. (The idea here is to exclude non-unary calls in which
3159 one operand is constant and in which the call is known to be cheap
3160 when the operand has that value.) */
52c6378a 3161
53f3cd25 3162(if (flag_unsafe_math_optimizations)
52c6378a
N
3163 /* Simplify sqrt(x) * sqrt(x) -> x. */
3164 (simplify
3165 (mult (SQRT@1 @0) @1)
3166 (if (!HONOR_SNANS (type))
3167 @0))
3168
35401640
N
3169 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
3170 (for root (SQRT CBRT)
3171 (simplify
3172 (mult (root:s @0) (root:s @1))
3173 (root (mult @0 @1))))
3174
35401640
N
3175 /* Simplify expN(x) * expN(y) -> expN(x+y). */
3176 (for exps (EXP EXP2 EXP10 POW10)
3177 (simplify
3178 (mult (exps:s @0) (exps:s @1))
3179 (exps (plus @0 @1))))
3180
52c6378a 3181 /* Simplify a/root(b/c) into a*root(c/b). */
35401640
N
3182 (for root (SQRT CBRT)
3183 (simplify
3184 (rdiv @0 (root:s (rdiv:s @1 @2)))
3185 (mult @0 (root (rdiv @2 @1)))))
3186
3187 /* Simplify x/expN(y) into x*expN(-y). */
3188 (for exps (EXP EXP2 EXP10 POW10)
3189 (simplify
3190 (rdiv @0 (exps:s @1))
3191 (mult @0 (exps (negate @1)))))
52c6378a 3192
eee7b6c4
RB
3193 (for logs (LOG LOG2 LOG10 LOG10)
3194 exps (EXP EXP2 EXP10 POW10)
8acda9b2 3195 /* logN(expN(x)) -> x. */
e18c1d66
RB
3196 (simplify
3197 (logs (exps @0))
8acda9b2
RS
3198 @0)
3199 /* expN(logN(x)) -> x. */
3200 (simplify
3201 (exps (logs @0))
3202 @0))
53f3cd25 3203
e18c1d66
RB
3204 /* Optimize logN(func()) for various exponential functions. We
3205 want to determine the value "x" and the power "exponent" in
3206 order to transform logN(x**exponent) into exponent*logN(x). */
eee7b6c4
RB
3207 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
3208 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
e18c1d66
RB
3209 (simplify
3210 (logs (exps @0))
c9e926ce
RS
3211 (if (SCALAR_FLOAT_TYPE_P (type))
3212 (with {
3213 tree x;
3214 switch (exps)
3215 {
3216 CASE_CFN_EXP:
3217 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
3218 x = build_real_truncate (type, dconst_e ());
3219 break;
3220 CASE_CFN_EXP2:
3221 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
3222 x = build_real (type, dconst2);
3223 break;
3224 CASE_CFN_EXP10:
3225 CASE_CFN_POW10:
3226 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
3227 {
3228 REAL_VALUE_TYPE dconst10;
3229 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
3230 x = build_real (type, dconst10);
3231 }
3232 break;
3233 default:
3234 gcc_unreachable ();
3235 }
3236 }
3237 (mult (logs { x; }) @0)))))
53f3cd25 3238
e18c1d66
RB
3239 (for logs (LOG LOG
3240 LOG2 LOG2
3241 LOG10 LOG10)
3242 exps (SQRT CBRT)
3243 (simplify
3244 (logs (exps @0))
c9e926ce
RS
3245 (if (SCALAR_FLOAT_TYPE_P (type))
3246 (with {
3247 tree x;
3248 switch (exps)
3249 {
3250 CASE_CFN_SQRT:
3251 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
3252 x = build_real (type, dconsthalf);
3253 break;
3254 CASE_CFN_CBRT:
3255 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
3256 x = build_real_truncate (type, dconst_third ());
3257 break;
3258 default:
3259 gcc_unreachable ();
3260 }
3261 }
3262 (mult { x; } (logs @0))))))
53f3cd25
RS
3263
3264 /* logN(pow(x,exponent)) -> exponent*logN(x). */
e18c1d66
RB
3265 (for logs (LOG LOG2 LOG10)
3266 pows (POW)
3267 (simplify
3268 (logs (pows @0 @1))
53f3cd25
RS
3269 (mult @1 (logs @0))))
3270
3271 (for sqrts (SQRT)
3272 cbrts (CBRT)
b4838d77 3273 pows (POW)
53f3cd25
RS
3274 exps (EXP EXP2 EXP10 POW10)
3275 /* sqrt(expN(x)) -> expN(x*0.5). */
3276 (simplify
3277 (sqrts (exps @0))
3278 (exps (mult @0 { build_real (type, dconsthalf); })))
3279 /* cbrt(expN(x)) -> expN(x/3). */
3280 (simplify
3281 (cbrts (exps @0))
b4838d77
RS
3282 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
3283 /* pow(expN(x), y) -> expN(x*y). */
3284 (simplify
3285 (pows (exps @0) @1)
3286 (exps (mult @0 @1))))
cfed37a0
RS
3287
3288 /* tan(atan(x)) -> x. */
3289 (for tans (TAN)
3290 atans (ATAN)
3291 (simplify
3292 (tans (atans @0))
3293 @0)))
53f3cd25 3294
abcc43f5
RS
3295/* cabs(x+0i) or cabs(0+xi) -> abs(x). */
3296(simplify
e04d2a35 3297 (CABS (complex:C @0 real_zerop@1))
abcc43f5
RS
3298 (abs @0))
3299
67dbe582
RS
3300/* trunc(trunc(x)) -> trunc(x), etc. */
3301(for fns (TRUNC FLOOR CEIL ROUND NEARBYINT RINT)
3302 (simplify
3303 (fns (fns @0))
3304 (fns @0)))
3305/* f(x) -> x if x is integer valued and f does nothing for such values. */
afeb246c 3306(for fns (TRUNC FLOOR CEIL ROUND NEARBYINT RINT)
67dbe582
RS
3307 (simplify
3308 (fns integer_valued_real_p@0)
3309 @0))
67dbe582 3310
4d7836c4
RS
3311/* hypot(x,0) and hypot(0,x) -> abs(x). */
3312(simplify
c9e926ce 3313 (HYPOT:c @0 real_zerop@1)
4d7836c4
RS
3314 (abs @0))
3315
b4838d77
RS
3316/* pow(1,x) -> 1. */
3317(simplify
3318 (POW real_onep@0 @1)
3319 @0)
3320
461e4145
RS
3321(simplify
3322 /* copysign(x,x) -> x. */
3323 (COPYSIGN @0 @0)
3324 @0)
3325
3326(simplify
3327 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
3328 (COPYSIGN @0 tree_expr_nonnegative_p@1)
3329 (abs @0))
3330
86c0733f
RS
3331(for scale (LDEXP SCALBN SCALBLN)
3332 /* ldexp(0, x) -> 0. */
3333 (simplify
3334 (scale real_zerop@0 @1)
3335 @0)
3336 /* ldexp(x, 0) -> x. */
3337 (simplify
3338 (scale @0 integer_zerop@1)
3339 @0)
3340 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
3341 (simplify
3342 (scale REAL_CST@0 @1)
3343 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
3344 @0)))
3345
53f3cd25
RS
3346/* Canonicalization of sequences of math builtins. These rules represent
3347 IL simplifications but are not necessarily optimizations.
3348
3349 The sincos pass is responsible for picking "optimal" implementations
3350 of math builtins, which may be more complicated and can sometimes go
3351 the other way, e.g. converting pow into a sequence of sqrts.
3352 We only want to do these canonicalizations before the pass has run. */
3353
3354(if (flag_unsafe_math_optimizations && canonicalize_math_p ())
3355 /* Simplify tan(x) * cos(x) -> sin(x). */
3356 (simplify
3357 (mult:c (TAN:s @0) (COS:s @0))
3358 (SIN @0))
3359
3360 /* Simplify x * pow(x,c) -> pow(x,c+1). */
3361 (simplify
de3fbea3 3362 (mult:c @0 (POW:s @0 REAL_CST@1))
53f3cd25
RS
3363 (if (!TREE_OVERFLOW (@1))
3364 (POW @0 (plus @1 { build_one_cst (type); }))))
3365
3366 /* Simplify sin(x) / cos(x) -> tan(x). */
3367 (simplify
3368 (rdiv (SIN:s @0) (COS:s @0))
3369 (TAN @0))
3370
3371 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
3372 (simplify
3373 (rdiv (COS:s @0) (SIN:s @0))
3374 (rdiv { build_one_cst (type); } (TAN @0)))
3375
3376 /* Simplify sin(x) / tan(x) -> cos(x). */
3377 (simplify
3378 (rdiv (SIN:s @0) (TAN:s @0))
3379 (if (! HONOR_NANS (@0)
3380 && ! HONOR_INFINITIES (@0))
c9e926ce 3381 (COS @0)))
53f3cd25
RS
3382
3383 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
3384 (simplify
3385 (rdiv (TAN:s @0) (SIN:s @0))
3386 (if (! HONOR_NANS (@0)
3387 && ! HONOR_INFINITIES (@0))
3388 (rdiv { build_one_cst (type); } (COS @0))))
3389
3390 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
3391 (simplify
3392 (mult (POW:s @0 @1) (POW:s @0 @2))
3393 (POW @0 (plus @1 @2)))
3394
3395 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
3396 (simplify
3397 (mult (POW:s @0 @1) (POW:s @2 @1))
3398 (POW (mult @0 @2) @1))
3399
de3fbea3
RB
3400 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
3401 (simplify
3402 (mult (POWI:s @0 @1) (POWI:s @2 @1))
3403 (POWI (mult @0 @2) @1))
3404
53f3cd25
RS
3405 /* Simplify pow(x,c) / x -> pow(x,c-1). */
3406 (simplify
3407 (rdiv (POW:s @0 REAL_CST@1) @0)
3408 (if (!TREE_OVERFLOW (@1))
3409 (POW @0 (minus @1 { build_one_cst (type); }))))
3410
3411 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
3412 (simplify
3413 (rdiv @0 (POW:s @1 @2))
3414 (mult @0 (POW @1 (negate @2))))
3415
3416 (for sqrts (SQRT)
3417 cbrts (CBRT)
3418 pows (POW)
3419 /* sqrt(sqrt(x)) -> pow(x,1/4). */
3420 (simplify
3421 (sqrts (sqrts @0))
3422 (pows @0 { build_real (type, dconst_quarter ()); }))
3423 /* sqrt(cbrt(x)) -> pow(x,1/6). */
3424 (simplify
3425 (sqrts (cbrts @0))
3426 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
3427 /* cbrt(sqrt(x)) -> pow(x,1/6). */
3428 (simplify
3429 (cbrts (sqrts @0))
3430 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
3431 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
3432 (simplify
3433 (cbrts (cbrts tree_expr_nonnegative_p@0))
3434 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
3435 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
3436 (simplify
3437 (sqrts (pows @0 @1))
3438 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
3439 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
3440 (simplify
3441 (cbrts (pows tree_expr_nonnegative_p@0 @1))
b4838d77
RS
3442 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
3443 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
3444 (simplify
3445 (pows (sqrts @0) @1)
3446 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
3447 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
3448 (simplify
3449 (pows (cbrts tree_expr_nonnegative_p@0) @1)
3450 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
3451 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
3452 (simplify
3453 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
3454 (pows @0 (mult @1 @2))))
abcc43f5
RS
3455
3456 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
3457 (simplify
3458 (CABS (complex @0 @0))
96285749
RS
3459 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
3460
4d7836c4
RS
3461 /* hypot(x,x) -> fabs(x)*sqrt(2). */
3462 (simplify
3463 (HYPOT @0 @0)
3464 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
3465
96285749
RS
3466 /* cexp(x+yi) -> exp(x)*cexpi(y). */
3467 (for cexps (CEXP)
3468 exps (EXP)
3469 cexpis (CEXPI)
3470 (simplify
3471 (cexps compositional_complex@0)
3472 (if (targetm.libc_has_function (function_c99_math_complex))
3473 (complex
3474 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
3475 (mult @1 (imagpart @2)))))))
e18c1d66 3476
67dbe582
RS
3477(if (canonicalize_math_p ())
3478 /* floor(x) -> trunc(x) if x is nonnegative. */
3479 (for floors (FLOOR)
3480 truncs (TRUNC)
3481 (simplify
3482 (floors tree_expr_nonnegative_p@0)
3483 (truncs @0))))
3484
3485(match double_value_p
3486 @0
3487 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
3488(for froms (BUILT_IN_TRUNCL
3489 BUILT_IN_FLOORL
3490 BUILT_IN_CEILL
3491 BUILT_IN_ROUNDL
3492 BUILT_IN_NEARBYINTL
3493 BUILT_IN_RINTL)
3494 tos (BUILT_IN_TRUNC
3495 BUILT_IN_FLOOR
3496 BUILT_IN_CEIL
3497 BUILT_IN_ROUND
3498 BUILT_IN_NEARBYINT
3499 BUILT_IN_RINT)
3500 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
3501 (if (optimize && canonicalize_math_p ())
3502 (simplify
3503 (froms (convert double_value_p@0))
3504 (convert (tos @0)))))
3505
3506(match float_value_p
3507 @0
3508 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
3509(for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
3510 BUILT_IN_FLOORL BUILT_IN_FLOOR
3511 BUILT_IN_CEILL BUILT_IN_CEIL
3512 BUILT_IN_ROUNDL BUILT_IN_ROUND
3513 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
3514 BUILT_IN_RINTL BUILT_IN_RINT)
3515 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
3516 BUILT_IN_FLOORF BUILT_IN_FLOORF
3517 BUILT_IN_CEILF BUILT_IN_CEILF
3518 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
3519 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
3520 BUILT_IN_RINTF BUILT_IN_RINTF)
3521 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
3522 if x is a float. */
5dac7dbd
JDA
3523 (if (optimize && canonicalize_math_p ()
3524 && targetm.libc_has_function (function_c99_misc))
67dbe582
RS
3525 (simplify
3526 (froms (convert float_value_p@0))
3527 (convert (tos @0)))))
3528
543a9bcd
RS
3529(for froms (XFLOORL XCEILL XROUNDL XRINTL)
3530 tos (XFLOOR XCEIL XROUND XRINT)
3531 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
3532 (if (optimize && canonicalize_math_p ())
3533 (simplify
3534 (froms (convert double_value_p@0))
3535 (tos @0))))
3536
3537(for froms (XFLOORL XCEILL XROUNDL XRINTL
3538 XFLOOR XCEIL XROUND XRINT)
3539 tos (XFLOORF XCEILF XROUNDF XRINTF)
3540 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
3541 if x is a float. */
3542 (if (optimize && canonicalize_math_p ())
3543 (simplify
3544 (froms (convert float_value_p@0))
3545 (tos @0))))
3546
3547(if (canonicalize_math_p ())
3548 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
3549 (for floors (IFLOOR LFLOOR LLFLOOR)
3550 (simplify
3551 (floors tree_expr_nonnegative_p@0)
3552 (fix_trunc @0))))
3553
3554(if (canonicalize_math_p ())
3555 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
3556 (for fns (IFLOOR LFLOOR LLFLOOR
3557 ICEIL LCEIL LLCEIL
3558 IROUND LROUND LLROUND)
3559 (simplify
3560 (fns integer_valued_real_p@0)
3561 (fix_trunc @0)))
3562 (if (!flag_errno_math)
3563 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
3564 (for rints (IRINT LRINT LLRINT)
3565 (simplify
3566 (rints integer_valued_real_p@0)
3567 (fix_trunc @0)))))
3568
3569(if (canonicalize_math_p ())
3570 (for ifn (IFLOOR ICEIL IROUND IRINT)
3571 lfn (LFLOOR LCEIL LROUND LRINT)
3572 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
3573 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
3574 sizeof (int) == sizeof (long). */
3575 (if (TYPE_PRECISION (integer_type_node)
3576 == TYPE_PRECISION (long_integer_type_node))
3577 (simplify
3578 (ifn @0)
3579 (lfn:long_integer_type_node @0)))
3580 /* Canonicalize llround (x) to lround (x) on LP64 targets where
3581 sizeof (long long) == sizeof (long). */
3582 (if (TYPE_PRECISION (long_long_integer_type_node)
3583 == TYPE_PRECISION (long_integer_type_node))
3584 (simplify
3585 (llfn @0)
3586 (lfn:long_integer_type_node @0)))))
3587
92c52eab
RS
3588/* cproj(x) -> x if we're ignoring infinities. */
3589(simplify
3590 (CPROJ @0)
3591 (if (!HONOR_INFINITIES (type))
3592 @0))
3593
4534c203
RB
3594/* If the real part is inf and the imag part is known to be
3595 nonnegative, return (inf + 0i). */
3596(simplify
3597 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
3598 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
92c52eab
RS
3599 { build_complex_inf (type, false); }))
3600
4534c203
RB
3601/* If the imag part is inf, return (inf+I*copysign(0,imag)). */
3602(simplify
3603 (CPROJ (complex @0 REAL_CST@1))
3604 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
92c52eab 3605 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4534c203 3606
b4838d77
RS
3607(for pows (POW)
3608 sqrts (SQRT)
3609 cbrts (CBRT)
3610 (simplify
3611 (pows @0 REAL_CST@1)
3612 (with {
3613 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
3614 REAL_VALUE_TYPE tmp;
3615 }
3616 (switch
3617 /* pow(x,0) -> 1. */
3618 (if (real_equal (value, &dconst0))
3619 { build_real (type, dconst1); })
3620 /* pow(x,1) -> x. */
3621 (if (real_equal (value, &dconst1))
3622 @0)
3623 /* pow(x,-1) -> 1/x. */
3624 (if (real_equal (value, &dconstm1))
3625 (rdiv { build_real (type, dconst1); } @0))
3626 /* pow(x,0.5) -> sqrt(x). */
3627 (if (flag_unsafe_math_optimizations
3628 && canonicalize_math_p ()
3629 && real_equal (value, &dconsthalf))
3630 (sqrts @0))
3631 /* pow(x,1/3) -> cbrt(x). */
3632 (if (flag_unsafe_math_optimizations
3633 && canonicalize_math_p ()
3634 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
3635 real_equal (value, &tmp)))
3636 (cbrts @0))))))
4534c203 3637
5ddc84ca
RS
3638/* powi(1,x) -> 1. */
3639(simplify
3640 (POWI real_onep@0 @1)
3641 @0)
3642
3643(simplify
3644 (POWI @0 INTEGER_CST@1)
3645 (switch
3646 /* powi(x,0) -> 1. */
3647 (if (wi::eq_p (@1, 0))
3648 { build_real (type, dconst1); })
3649 /* powi(x,1) -> x. */
3650 (if (wi::eq_p (@1, 1))
3651 @0)
3652 /* powi(x,-1) -> 1/x. */
3653 (if (wi::eq_p (@1, -1))
3654 (rdiv { build_real (type, dconst1); } @0))))
3655
be144838
JL
3656/* Narrowing of arithmetic and logical operations.
3657
3658 These are conceptually similar to the transformations performed for
3659 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
3660 term we want to move all that code out of the front-ends into here. */
3661
3662/* If we have a narrowing conversion of an arithmetic operation where
3663 both operands are widening conversions from the same type as the outer
3664 narrowing conversion. Then convert the innermost operands to a suitable
9c582551 3665 unsigned type (to avoid introducing undefined behavior), perform the
be144838
JL
3666 operation and convert the result to the desired type. */
3667(for op (plus minus)
3668 (simplify
93f90bec 3669 (convert (op:s (convert@2 @0) (convert?@3 @1)))
be144838
JL
3670 (if (INTEGRAL_TYPE_P (type)
3671 /* We check for type compatibility between @0 and @1 below,
3672 so there's no need to check that @1/@3 are integral types. */
3673 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3674 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3675 /* The precision of the type of each operand must match the
3676 precision of the mode of each operand, similarly for the
3677 result. */
3678 && (TYPE_PRECISION (TREE_TYPE (@0))
3679 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
3680 && (TYPE_PRECISION (TREE_TYPE (@1))
3681 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
3682 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
3683 /* The inner conversion must be a widening conversion. */
3684 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
93f90bec
BC
3685 && types_match (@0, type)
3686 && (types_match (@0, @1)
3687 /* Or the second operand is const integer or converted const
3688 integer from valueize. */
3689 || TREE_CODE (@1) == INTEGER_CST))
be144838 3690 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
93f90bec 3691 (op @0 (convert @1))
8fdc6c67 3692 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
93f90bec
BC
3693 (convert (op (convert:utype @0)
3694 (convert:utype @1))))))))
48451e8f
JL
3695
3696/* This is another case of narrowing, specifically when there's an outer
3697 BIT_AND_EXPR which masks off bits outside the type of the innermost
3698 operands. Like the previous case we have to convert the operands
9c582551 3699 to unsigned types to avoid introducing undefined behavior for the
48451e8f
JL
3700 arithmetic operation. */
3701(for op (minus plus)
8fdc6c67
RB
3702 (simplify
3703 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
3704 (if (INTEGRAL_TYPE_P (type)
3705 /* We check for type compatibility between @0 and @1 below,
3706 so there's no need to check that @1/@3 are integral types. */
3707 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3708 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3709 /* The precision of the type of each operand must match the
3710 precision of the mode of each operand, similarly for the
3711 result. */
3712 && (TYPE_PRECISION (TREE_TYPE (@0))
3713 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
3714 && (TYPE_PRECISION (TREE_TYPE (@1))
3715 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
3716 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
3717 /* The inner conversion must be a widening conversion. */
3718 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
3719 && types_match (@0, @1)
3720 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
3721 <= TYPE_PRECISION (TREE_TYPE (@0)))
0a8c1e23
JL
3722 && (wi::bit_and (@4, wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
3723 true, TYPE_PRECISION (type))) == 0))
8fdc6c67
RB
3724 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3725 (with { tree ntype = TREE_TYPE (@0); }
3726 (convert (bit_and (op @0 @1) (convert:ntype @4))))
3727 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
3728 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
3729 (convert:utype @4))))))))
4f7a5692
MC
3730
3731/* Transform (@0 < @1 and @0 < @2) to use min,
3732 (@0 > @1 and @0 > @2) to use max */
3733(for op (lt le gt ge)
3734 ext (min min max max)
3735 (simplify
4618c453
RB
3736 (bit_and (op:cs @0 @1) (op:cs @0 @2))
3737 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3738 && TREE_CODE (@0) != INTEGER_CST)
4f7a5692
MC
3739 (op @0 (ext @1 @2)))))
3740
7317ef4a
RS
3741(simplify
3742 /* signbit(x) -> 0 if x is nonnegative. */
3743 (SIGNBIT tree_expr_nonnegative_p@0)
3744 { integer_zero_node; })
3745
3746(simplify
3747 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
3748 (SIGNBIT @0)
3749 (if (!HONOR_SIGNED_ZEROS (@0))
3750 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
a8b85ce9
MG
3751
3752/* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
3753(for cmp (eq ne)
3754 (for op (plus minus)
3755 rop (minus plus)
3756 (simplify
3757 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
3758 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
3759 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
3760 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
3761 && !TYPE_SATURATING (TREE_TYPE (@0)))
3762 (with { tree res = int_const_binop (rop, @2, @1); }
75473a91
RB
3763 (if (TREE_OVERFLOW (res)
3764 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
a8b85ce9
MG
3765 { constant_boolean_node (cmp == NE_EXPR, type); }
3766 (if (single_use (@3))
3767 (cmp @0 { res; }))))))))
3768(for cmp (lt le gt ge)
3769 (for op (plus minus)
3770 rop (minus plus)
3771 (simplify
3772 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
3773 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
3774 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3775 (with { tree res = int_const_binop (rop, @2, @1); }
3776 (if (TREE_OVERFLOW (res))
3777 {
3778 fold_overflow_warning (("assuming signed overflow does not occur "
3779 "when simplifying conditional to constant"),
3780 WARN_STRICT_OVERFLOW_CONDITIONAL);
3781 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
3782 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
3783 bool ovf_high = wi::lt_p (@1, 0, TYPE_SIGN (TREE_TYPE (@1)))
3784 != (op == MINUS_EXPR);
3785 constant_boolean_node (less == ovf_high, type);
3786 }
3787 (if (single_use (@3))
3788 (with
3789 {
3790 fold_overflow_warning (("assuming signed overflow does not occur "
3791 "when changing X +- C1 cmp C2 to "
3792 "X cmp C2 -+ C1"),
3793 WARN_STRICT_OVERFLOW_COMPARISON);
3794 }
3795 (cmp @0 { res; })))))))))
d3e40b76
RB
3796
3797/* Canonicalizations of BIT_FIELD_REFs. */
3798
3799(simplify
3800 (BIT_FIELD_REF @0 @1 @2)
3801 (switch
3802 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
3803 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
3804 (switch
3805 (if (integer_zerop (@2))
3806 (view_convert (realpart @0)))
3807 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
3808 (view_convert (imagpart @0)))))
3809 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3810 && INTEGRAL_TYPE_P (type)
171f6f05
RB
3811 /* On GIMPLE this should only apply to register arguments. */
3812 && (! GIMPLE || is_gimple_reg (@0))
d3e40b76
RB
3813 /* A bit-field-ref that referenced the full argument can be stripped. */
3814 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
3815 && integer_zerop (@2))
3816 /* Low-parts can be reduced to integral conversions.
3817 ??? The following doesn't work for PDP endian. */
3818 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
3819 /* Don't even think about BITS_BIG_ENDIAN. */
3820 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
3821 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
3822 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
3823 ? (TYPE_PRECISION (TREE_TYPE (@0))
3824 - TYPE_PRECISION (type))
3825 : 0)) == 0)))
3826 (convert @0))))
3827
3828/* Simplify vector extracts. */
3829
3830(simplify
3831 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
3832 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
3833 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
3834 || (VECTOR_TYPE_P (type)
3835 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
3836 (with
3837 {
3838 tree ctor = (TREE_CODE (@0) == SSA_NAME
3839 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
3840 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
3841 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
3842 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
3843 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
3844 }
3845 (if (n != 0
3846 && (idx % width) == 0
3847 && (n % width) == 0
3848 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor)))
3849 (with
3850 {
3851 idx = idx / width;
3852 n = n / width;
3853 /* Constructor elements can be subvectors. */
3854 unsigned HOST_WIDE_INT k = 1;
3855 if (CONSTRUCTOR_NELTS (ctor) != 0)
3856 {
3857 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
3858 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
3859 k = TYPE_VECTOR_SUBPARTS (cons_elem);
3860 }
3861 }
3862 (switch
3863 /* We keep an exact subset of the constructor elements. */
3864 (if ((idx % k) == 0 && (n % k) == 0)
3865 (if (CONSTRUCTOR_NELTS (ctor) == 0)
3866 { build_constructor (type, NULL); }
3867 (with
3868 {
3869 idx /= k;
3870 n /= k;
3871 }
3872 (if (n == 1)
3873 (if (idx < CONSTRUCTOR_NELTS (ctor))
3874 { CONSTRUCTOR_ELT (ctor, idx)->value; }
3875 { build_zero_cst (type); })
3876 {
3877 vec<constructor_elt, va_gc> *vals;
3878 vec_alloc (vals, n);
3879 for (unsigned i = 0;
3880 i < n && idx + i < CONSTRUCTOR_NELTS (ctor); ++i)
3881 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
3882 CONSTRUCTOR_ELT (ctor, idx + i)->value);
3883 build_constructor (type, vals);
3884 }))))
3885 /* The bitfield references a single constructor element. */
3886 (if (idx + n <= (idx / k + 1) * k)
3887 (switch
3888 (if (CONSTRUCTOR_NELTS (ctor) <= idx / k)
3889 { build_zero_cst (type); })
3890 (if (n == k)
3891 { CONSTRUCTOR_ELT (ctor, idx / k)->value; })
3892 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / k)->value; }
3893 @1 { bitsize_int ((idx % k) * width); })))))))))