]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/match.pd
poly_int: vect_permute_load/store_chain
[thirdparty/gcc.git] / gcc / match.pd
CommitLineData
3d2cf79f
RB
1/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
85ec4feb 5 Copyright (C) 2014-2018 Free Software Foundation, Inc.
3d2cf79f
RB
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
13Software Foundation; either version 3, or (at your option) any later
14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING3. If not see
23<http://www.gnu.org/licenses/>. */
24
25
26/* Generic tree predicates we inherit. */
27(define_predicates
cc7b5acf 28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
53a19317 29 integer_each_onep integer_truep integer_nonzerop
cc7b5acf 30 real_zerop real_onep real_minus_onep
b0eb889b 31 zerop
f3582e54 32 CONSTANT_CLASS_P
887ab609 33 tree_expr_nonnegative_p
e36c1cfe 34 tree_expr_nonzero_p
67dbe582 35 integer_valued_real_p
53a19317
RB
36 integer_pow2p
37 HONOR_NANS)
e0ee10ed 38
f84e7fd6
RB
39/* Operator lists. */
40(define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42(define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44(define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
534bd33b
MG
46(define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
07cdc2b8
RB
48(define_operator_list simple_comparison lt le eq ne ge gt)
49(define_operator_list swapped_simple_comparison gt ge eq ne le lt)
50
b1dc4a20 51#include "cfn-operators.pd"
257aecb4 52
543a9bcd
RS
53/* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
56
57 Also define operand lists:
58
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62#define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
543a9bcd
RS
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
64 BUILT_IN_L##FN##F \
65 BUILT_IN_LL##FN##F) \
66 (define_operator_list X##FN BUILT_IN_I##FN \
67 BUILT_IN_L##FN \
68 BUILT_IN_LL##FN) \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
70 BUILT_IN_L##FN##L \
71 BUILT_IN_LL##FN##L)
72
543a9bcd
RS
73DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
ed73f46f
MG
77
78/* As opposed to convert?, this still creates a single pattern, so
79 it is not a suitable replacement for convert? in all cases. */
80(match (nop_convert @0)
81 (convert @0)
82 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
83(match (nop_convert @0)
84 (view_convert @0)
85 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
86 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
87 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
88/* This one has to be last, or it shadows the others. */
89(match (nop_convert @0)
90 @0)
f84e7fd6 91
e0ee10ed 92/* Simplifications of operations with one constant operand and
36a60e48 93 simplifications to constants or single values. */
e0ee10ed
RB
94
95(for op (plus pointer_plus minus bit_ior bit_xor)
96 (simplify
97 (op @0 integer_zerop)
98 (non_lvalue @0)))
99
a499aac5
RB
100/* 0 +p index -> (type)index */
101(simplify
102 (pointer_plus integer_zerop @1)
103 (non_lvalue (convert @1)))
104
d43177ad
MG
105/* ptr - 0 -> (type)ptr */
106(simplify
107 (pointer_diff @0 integer_zerop)
108 (convert @0))
109
a7f24614
RB
110/* See if ARG1 is zero and X + ARG1 reduces to X.
111 Likewise if the operands are reversed. */
112(simplify
113 (plus:c @0 real_zerop@1)
114 (if (fold_real_zero_addition_p (type, @1, 0))
115 (non_lvalue @0)))
116
117/* See if ARG1 is zero and X - ARG1 reduces to X. */
118(simplify
119 (minus @0 real_zerop@1)
120 (if (fold_real_zero_addition_p (type, @1, 1))
121 (non_lvalue @0)))
122
e0ee10ed
RB
123/* Simplify x - x.
124 This is unsafe for certain floats even in non-IEEE formats.
125 In IEEE, it is unsafe because it does wrong for NaNs.
126 Also note that operand_equal_p is always false if an operand
127 is volatile. */
128(simplify
a7f24614 129 (minus @0 @0)
1b457aa4 130 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
a7f24614 131 { build_zero_cst (type); }))
1af4ebf5
MG
132(simplify
133 (pointer_diff @@0 @0)
134 { build_zero_cst (type); })
e0ee10ed
RB
135
136(simplify
a7f24614
RB
137 (mult @0 integer_zerop@1)
138 @1)
139
140/* Maybe fold x * 0 to 0. The expressions aren't the same
141 when x is NaN, since x * 0 is also NaN. Nor are they the
142 same in modes with signed zeros, since multiplying a
143 negative value by 0 gives -0, not +0. */
144(simplify
145 (mult @0 real_zerop@1)
8b5ee871 146 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
a7f24614
RB
147 @1))
148
149/* In IEEE floating point, x*1 is not equivalent to x for snans.
150 Likewise for complex arithmetic with signed zeros. */
151(simplify
152 (mult @0 real_onep)
8b5ee871
MG
153 (if (!HONOR_SNANS (type)
154 && (!HONOR_SIGNED_ZEROS (type)
a7f24614
RB
155 || !COMPLEX_FLOAT_TYPE_P (type)))
156 (non_lvalue @0)))
157
158/* Transform x * -1.0 into -x. */
159(simplify
160 (mult @0 real_minus_onep)
8b5ee871
MG
161 (if (!HONOR_SNANS (type)
162 && (!HONOR_SIGNED_ZEROS (type)
a7f24614
RB
163 || !COMPLEX_FLOAT_TYPE_P (type)))
164 (negate @0)))
e0ee10ed 165
8c2805bb
AP
166(for cmp (gt ge lt le)
167 outp (convert convert negate negate)
168 outn (negate negate convert convert)
169 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
170 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
171 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
172 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
173 (simplify
174 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
175 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
176 && types_match (type, TREE_TYPE (@0)))
177 (switch
178 (if (types_match (type, float_type_node))
179 (BUILT_IN_COPYSIGNF @1 (outp @0)))
180 (if (types_match (type, double_type_node))
181 (BUILT_IN_COPYSIGN @1 (outp @0)))
182 (if (types_match (type, long_double_type_node))
183 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
184 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
185 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
186 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
187 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
188 (simplify
189 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
190 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
191 && types_match (type, TREE_TYPE (@0)))
192 (switch
193 (if (types_match (type, float_type_node))
194 (BUILT_IN_COPYSIGNF @1 (outn @0)))
195 (if (types_match (type, double_type_node))
196 (BUILT_IN_COPYSIGN @1 (outn @0)))
197 (if (types_match (type, long_double_type_node))
198 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
199
200/* Transform X * copysign (1.0, X) into abs(X). */
201(simplify
c6cfa2bf 202 (mult:c @0 (COPYSIGN_ALL real_onep @0))
8c2805bb
AP
203 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
204 (abs @0)))
205
206/* Transform X * copysign (1.0, -X) into -abs(X). */
207(simplify
c6cfa2bf 208 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
8c2805bb
AP
209 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
210 (negate (abs @0))))
211
212/* Transform copysign (CST, X) into copysign (ABS(CST), X). */
213(simplify
c6cfa2bf 214 (COPYSIGN_ALL REAL_CST@0 @1)
8c2805bb 215 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
c6cfa2bf 216 (COPYSIGN_ALL (negate @0) @1)))
8c2805bb 217
5b7f6ed0 218/* X * 1, X / 1 -> X. */
e0ee10ed
RB
219(for op (mult trunc_div ceil_div floor_div round_div exact_div)
220 (simplify
221 (op @0 integer_onep)
222 (non_lvalue @0)))
223
71f82be9
JG
224/* (A / (1 << B)) -> (A >> B).
225 Only for unsigned A. For signed A, this would not preserve rounding
226 toward zero.
227 For example: (-1 / ( 1 << B)) != -1 >> B. */
228(simplify
229 (trunc_div @0 (lshift integer_onep@1 @2))
230 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
231 && (!VECTOR_TYPE_P (type)
232 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
233 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
234 (rshift @0 @2)))
235
5b7f6ed0
MG
236/* Preserve explicit divisions by 0: the C++ front-end wants to detect
237 undefined behavior in constexpr evaluation, and assuming that the division
238 traps enables better optimizations than these anyway. */
a7f24614 239(for div (trunc_div ceil_div floor_div round_div exact_div)
5b7f6ed0
MG
240 /* 0 / X is always zero. */
241 (simplify
242 (div integer_zerop@0 @1)
243 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
244 (if (!integer_zerop (@1))
245 @0))
da186c1f 246 /* X / -1 is -X. */
a7f24614 247 (simplify
09240451
MG
248 (div @0 integer_minus_onep@1)
249 (if (!TYPE_UNSIGNED (type))
da186c1f 250 (negate @0)))
5b7f6ed0
MG
251 /* X / X is one. */
252 (simplify
253 (div @0 @0)
9ebce098
JJ
254 /* But not for 0 / 0 so that we can get the proper warnings and errors.
255 And not for _Fract types where we can't build 1. */
256 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
5b7f6ed0 257 { build_one_cst (type); }))
da186c1f
RB
258 /* X / abs (X) is X < 0 ? -1 : 1. */
259 (simplify
d96a5585
RB
260 (div:C @0 (abs @0))
261 (if (INTEGRAL_TYPE_P (type)
da186c1f
RB
262 && TYPE_OVERFLOW_UNDEFINED (type))
263 (cond (lt @0 { build_zero_cst (type); })
264 { build_minus_one_cst (type); } { build_one_cst (type); })))
265 /* X / -X is -1. */
266 (simplify
d96a5585 267 (div:C @0 (negate @0))
da186c1f
RB
268 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
269 && TYPE_OVERFLOW_UNDEFINED (type))
270 { build_minus_one_cst (type); })))
a7f24614
RB
271
272/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
273 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
274(simplify
275 (floor_div @0 @1)
09240451
MG
276 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
277 && TYPE_UNSIGNED (type))
a7f24614
RB
278 (trunc_div @0 @1)))
279
28093105
RB
280/* Combine two successive divisions. Note that combining ceil_div
281 and floor_div is trickier and combining round_div even more so. */
282(for div (trunc_div exact_div)
c306cfaf
RB
283 (simplify
284 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
285 (with {
286 bool overflow_p;
8e6cdc90
RS
287 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
288 TYPE_SIGN (type), &overflow_p);
c306cfaf
RB
289 }
290 (if (!overflow_p)
8fdc6c67
RB
291 (div @0 { wide_int_to_tree (type, mul); })
292 (if (TYPE_UNSIGNED (type)
293 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
294 { build_zero_cst (type); })))))
c306cfaf 295
288fe52e
AM
296/* Combine successive multiplications. Similar to above, but handling
297 overflow is different. */
298(simplify
299 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
300 (with {
301 bool overflow_p;
8e6cdc90
RS
302 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
303 TYPE_SIGN (type), &overflow_p);
288fe52e
AM
304 }
305 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
306 otherwise undefined overflow implies that @0 must be zero. */
307 (if (!overflow_p || TYPE_OVERFLOW_WRAPS (type))
308 (mult @0 { wide_int_to_tree (type, mul); }))))
309
a7f24614 310/* Optimize A / A to 1.0 if we don't care about
09240451 311 NaNs or Infinities. */
a7f24614
RB
312(simplify
313 (rdiv @0 @0)
09240451 314 (if (FLOAT_TYPE_P (type)
1b457aa4 315 && ! HONOR_NANS (type)
8b5ee871 316 && ! HONOR_INFINITIES (type))
09240451
MG
317 { build_one_cst (type); }))
318
319/* Optimize -A / A to -1.0 if we don't care about
320 NaNs or Infinities. */
321(simplify
e04d2a35 322 (rdiv:C @0 (negate @0))
09240451 323 (if (FLOAT_TYPE_P (type)
1b457aa4 324 && ! HONOR_NANS (type)
8b5ee871 325 && ! HONOR_INFINITIES (type))
09240451 326 { build_minus_one_cst (type); }))
a7f24614 327
8c6961ca
PK
328/* PR71078: x / abs(x) -> copysign (1.0, x) */
329(simplify
330 (rdiv:C (convert? @0) (convert? (abs @0)))
331 (if (SCALAR_FLOAT_TYPE_P (type)
332 && ! HONOR_NANS (type)
333 && ! HONOR_INFINITIES (type))
334 (switch
335 (if (types_match (type, float_type_node))
336 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
337 (if (types_match (type, double_type_node))
338 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
339 (if (types_match (type, long_double_type_node))
340 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
341
a7f24614
RB
342/* In IEEE floating point, x/1 is not equivalent to x for snans. */
343(simplify
344 (rdiv @0 real_onep)
8b5ee871 345 (if (!HONOR_SNANS (type))
a7f24614
RB
346 (non_lvalue @0)))
347
348/* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
349(simplify
350 (rdiv @0 real_minus_onep)
8b5ee871 351 (if (!HONOR_SNANS (type))
a7f24614
RB
352 (negate @0)))
353
5711ac88 354(if (flag_reciprocal_math)
81825e28 355 /* Convert (A/B)/C to A/(B*C). */
5711ac88
N
356 (simplify
357 (rdiv (rdiv:s @0 @1) @2)
81825e28
WD
358 (rdiv @0 (mult @1 @2)))
359
360 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
361 (simplify
362 (rdiv @0 (mult:s @1 REAL_CST@2))
363 (with
364 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
365 (if (tem)
366 (rdiv (mult @0 { tem; } ) @1))))
5711ac88
N
367
368 /* Convert A/(B/C) to (A/B)*C */
369 (simplify
370 (rdiv @0 (rdiv:s @1 @2))
371 (mult (rdiv @0 @1) @2)))
372
6a435314
WD
373/* Simplify x / (- y) to -x / y. */
374(simplify
375 (rdiv @0 (negate @1))
376 (rdiv (negate @0) @1))
377
5711ac88
N
378/* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
379(for div (trunc_div ceil_div floor_div round_div exact_div)
380 (simplify
381 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
382 (if (integer_pow2p (@2)
383 && tree_int_cst_sgn (@2) > 0
a1488398 384 && tree_nop_conversion_p (type, TREE_TYPE (@0))
8e6cdc90
RS
385 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
386 (rshift (convert @0)
387 { build_int_cst (integer_type_node,
388 wi::exact_log2 (wi::to_wide (@2))); }))))
5711ac88 389
a7f24614
RB
390/* If ARG1 is a constant, we can convert this to a multiply by the
391 reciprocal. This does not have the same rounding properties,
392 so only do this if -freciprocal-math. We can actually
393 always safely do it if ARG1 is a power of two, but it's hard to
394 tell if it is or not in a portable manner. */
395(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
396 (simplify
397 (rdiv @0 cst@1)
398 (if (optimize)
53bc4b3a
RB
399 (if (flag_reciprocal_math
400 && !real_zerop (@1))
a7f24614 401 (with
249700b5 402 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
a7f24614 403 (if (tem)
8fdc6c67
RB
404 (mult @0 { tem; } )))
405 (if (cst != COMPLEX_CST)
406 (with { tree inverse = exact_inverse (type, @1); }
407 (if (inverse)
408 (mult @0 { inverse; } ))))))))
a7f24614 409
a7f24614 410(for mod (ceil_mod floor_mod round_mod trunc_mod)
e0ee10ed
RB
411 /* 0 % X is always zero. */
412 (simplify
a7f24614 413 (mod integer_zerop@0 @1)
e0ee10ed
RB
414 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
415 (if (!integer_zerop (@1))
416 @0))
417 /* X % 1 is always zero. */
418 (simplify
a7f24614
RB
419 (mod @0 integer_onep)
420 { build_zero_cst (type); })
421 /* X % -1 is zero. */
422 (simplify
09240451
MG
423 (mod @0 integer_minus_onep@1)
424 (if (!TYPE_UNSIGNED (type))
bc4315fb 425 { build_zero_cst (type); }))
5b7f6ed0
MG
426 /* X % X is zero. */
427 (simplify
428 (mod @0 @0)
429 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
430 (if (!integer_zerop (@0))
431 { build_zero_cst (type); }))
bc4315fb
MG
432 /* (X % Y) % Y is just X % Y. */
433 (simplify
434 (mod (mod@2 @0 @1) @1)
98e30e51
RB
435 @2)
436 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
437 (simplify
438 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
439 (if (ANY_INTEGRAL_TYPE_P (type)
440 && TYPE_OVERFLOW_UNDEFINED (type)
8e6cdc90
RS
441 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
442 TYPE_SIGN (type)))
98e30e51 443 { build_zero_cst (type); })))
a7f24614
RB
444
445/* X % -C is the same as X % C. */
446(simplify
447 (trunc_mod @0 INTEGER_CST@1)
448 (if (TYPE_SIGN (type) == SIGNED
449 && !TREE_OVERFLOW (@1)
8e6cdc90 450 && wi::neg_p (wi::to_wide (@1))
a7f24614
RB
451 && !TYPE_OVERFLOW_TRAPS (type)
452 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
453 && !sign_bit_p (@1, @1))
454 (trunc_mod @0 (negate @1))))
e0ee10ed 455
8f0c696a
RB
456/* X % -Y is the same as X % Y. */
457(simplify
458 (trunc_mod @0 (convert? (negate @1)))
a2a743a1
MP
459 (if (INTEGRAL_TYPE_P (type)
460 && !TYPE_UNSIGNED (type)
8f0c696a 461 && !TYPE_OVERFLOW_TRAPS (type)
20b8d734
JJ
462 && tree_nop_conversion_p (type, TREE_TYPE (@1))
463 /* Avoid this transformation if X might be INT_MIN or
464 Y might be -1, because we would then change valid
465 INT_MIN % -(-1) into invalid INT_MIN % -1. */
8e6cdc90 466 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
20b8d734
JJ
467 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
468 (TREE_TYPE (@1))))))
8f0c696a
RB
469 (trunc_mod @0 (convert @1))))
470
f461569a
MP
471/* X - (X / Y) * Y is the same as X % Y. */
472(simplify
2eef1fc1
RB
473 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
474 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
fba46f03 475 (convert (trunc_mod @0 @1))))
f461569a 476
8f0c696a
RB
477/* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
478 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
479 Also optimize A % (C << N) where C is a power of 2,
480 to A & ((C << N) - 1). */
481(match (power_of_two_cand @1)
482 INTEGER_CST@1)
483(match (power_of_two_cand @1)
484 (lshift INTEGER_CST@1 @2))
485(for mod (trunc_mod floor_mod)
486 (simplify
4ab1e111 487 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
8f0c696a
RB
488 (if ((TYPE_UNSIGNED (type)
489 || tree_expr_nonnegative_p (@0))
4ab1e111 490 && tree_nop_conversion_p (type, TREE_TYPE (@3))
8f0c696a 491 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
4ab1e111 492 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
8f0c696a 493
887ab609
N
494/* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
495(simplify
496 (trunc_div (mult @0 integer_pow2p@1) @1)
497 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
498 (bit_and @0 { wide_int_to_tree
8e6cdc90
RS
499 (type, wi::mask (TYPE_PRECISION (type)
500 - wi::exact_log2 (wi::to_wide (@1)),
887ab609
N
501 false, TYPE_PRECISION (type))); })))
502
5f8d832e
N
503/* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
504(simplify
505 (mult (trunc_div @0 integer_pow2p@1) @1)
506 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
507 (bit_and @0 (negate @1))))
508
95765f36
N
509/* Simplify (t * 2) / 2) -> t. */
510(for div (trunc_div ceil_div floor_div round_div exact_div)
511 (simplify
512 (div (mult @0 @1) @1)
513 (if (ANY_INTEGRAL_TYPE_P (type)
514 && TYPE_OVERFLOW_UNDEFINED (type))
515 @0)))
516
d202f9bd 517(for op (negate abs)
9b054b08
RS
518 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
519 (for coss (COS COSH)
520 (simplify
521 (coss (op @0))
522 (coss @0)))
523 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
524 (for pows (POW)
525 (simplify
526 (pows (op @0) REAL_CST@1)
527 (with { HOST_WIDE_INT n; }
528 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
5d3498b4 529 (pows @0 @1)))))
de3fbea3
RB
530 /* Likewise for powi. */
531 (for pows (POWI)
532 (simplify
533 (pows (op @0) INTEGER_CST@1)
8e6cdc90 534 (if ((wi::to_wide (@1) & 1) == 0)
de3fbea3 535 (pows @0 @1))))
5d3498b4
RS
536 /* Strip negate and abs from both operands of hypot. */
537 (for hypots (HYPOT)
538 (simplify
539 (hypots (op @0) @1)
540 (hypots @0 @1))
541 (simplify
542 (hypots @0 (op @1))
543 (hypots @0 @1)))
544 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
c6cfa2bf 545 (for copysigns (COPYSIGN_ALL)
5d3498b4
RS
546 (simplify
547 (copysigns (op @0) @1)
548 (copysigns @0 @1))))
549
550/* abs(x)*abs(x) -> x*x. Should be valid for all types. */
551(simplify
552 (mult (abs@1 @0) @1)
553 (mult @0 @0))
554
555/* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
556(for coss (COS COSH)
557 copysigns (COPYSIGN)
558 (simplify
559 (coss (copysigns @0 @1))
560 (coss @0)))
561
562/* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
563(for pows (POW)
564 copysigns (COPYSIGN)
565 (simplify
de3fbea3 566 (pows (copysigns @0 @2) REAL_CST@1)
5d3498b4
RS
567 (with { HOST_WIDE_INT n; }
568 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
569 (pows @0 @1)))))
de3fbea3
RB
570/* Likewise for powi. */
571(for pows (POWI)
572 copysigns (COPYSIGN)
573 (simplify
574 (pows (copysigns @0 @2) INTEGER_CST@1)
8e6cdc90 575 (if ((wi::to_wide (@1) & 1) == 0)
de3fbea3 576 (pows @0 @1))))
5d3498b4
RS
577
578(for hypots (HYPOT)
579 copysigns (COPYSIGN)
580 /* hypot(copysign(x, y), z) -> hypot(x, z). */
581 (simplify
582 (hypots (copysigns @0 @1) @2)
583 (hypots @0 @2))
584 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
585 (simplify
586 (hypots @0 (copysigns @1 @2))
587 (hypots @0 @1)))
588
eeb57981 589/* copysign(x, CST) -> [-]abs (x). */
c6cfa2bf 590(for copysigns (COPYSIGN_ALL)
eeb57981
RB
591 (simplify
592 (copysigns @0 REAL_CST@1)
593 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
594 (negate (abs @0))
595 (abs @0))))
596
5d3498b4 597/* copysign(copysign(x, y), z) -> copysign(x, z). */
c6cfa2bf 598(for copysigns (COPYSIGN_ALL)
5d3498b4
RS
599 (simplify
600 (copysigns (copysigns @0 @1) @2)
601 (copysigns @0 @2)))
602
603/* copysign(x,y)*copysign(x,y) -> x*x. */
c6cfa2bf 604(for copysigns (COPYSIGN_ALL)
5d3498b4
RS
605 (simplify
606 (mult (copysigns@2 @0 @1) @2)
607 (mult @0 @0)))
608
609/* ccos(-x) -> ccos(x). Similarly for ccosh. */
610(for ccoss (CCOS CCOSH)
611 (simplify
612 (ccoss (negate @0))
613 (ccoss @0)))
d202f9bd 614
abcc43f5
RS
615/* cabs(-x) and cos(conj(x)) -> cabs(x). */
616(for ops (conj negate)
617 (for cabss (CABS)
618 (simplify
619 (cabss (ops @0))
620 (cabss @0))))
621
0a8f32b8
RB
622/* Fold (a * (1 << b)) into (a << b) */
623(simplify
624 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
625 (if (! FLOAT_TYPE_P (type)
9ff6fb6e 626 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
0a8f32b8
RB
627 (lshift @0 @2)))
628
4349b15f
SD
629/* Fold (1 << (C - x)) where C = precision(type) - 1
630 into ((1 << C) >> x). */
631(simplify
632 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
633 (if (INTEGRAL_TYPE_P (type)
56ccfbd6 634 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
4349b15f
SD
635 && single_use (@1))
636 (if (TYPE_UNSIGNED (type))
637 (rshift (lshift @0 @2) @3)
638 (with
639 { tree utype = unsigned_type_for (type); }
640 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
641
0a8f32b8
RB
642/* Fold (C1/X)*C2 into (C1*C2)/X. */
643(simplify
ff86345f
RB
644 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
645 (if (flag_associative_math
646 && single_use (@3))
0a8f32b8
RB
647 (with
648 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
649 (if (tem)
650 (rdiv { tem; } @1)))))
651
652/* Simplify ~X & X as zero. */
653(simplify
654 (bit_and:c (convert? @0) (convert? (bit_not @0)))
655 { build_zero_cst (type); })
656
89b80c42
PK
657/* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
658(simplify
659 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
660 (if (TYPE_UNSIGNED (type))
661 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
662
7aa13860
PK
663(for bitop (bit_and bit_ior)
664 cmp (eq ne)
a93952d2
JJ
665 /* PR35691: Transform
666 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
667 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
7aa13860
PK
668 (simplify
669 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
670 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
a93952d2
JJ
671 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
672 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
673 (cmp (bit_ior @0 (convert @1)) @2)))
674 /* Transform:
675 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
676 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
677 (simplify
678 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
679 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
680 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
681 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
682 (cmp (bit_and @0 (convert @1)) @2))))
7aa13860 683
10158317
RB
684/* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
685(simplify
a9658b11 686 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
10158317
RB
687 (minus (bit_xor @0 @1) @1))
688(simplify
689 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
8e6cdc90 690 (if (~wi::to_wide (@2) == wi::to_wide (@1))
10158317
RB
691 (minus (bit_xor @0 @1) @1)))
692
693/* Fold (A & B) - (A & ~B) into B - (A ^ B). */
694(simplify
a8e9f9a3 695 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
10158317
RB
696 (minus @1 (bit_xor @0 @1)))
697
42bd89ce
MG
698/* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
699(for op (bit_ior bit_xor plus)
700 (simplify
701 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
702 (bit_xor @0 @1))
703 (simplify
704 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
8e6cdc90 705 (if (~wi::to_wide (@2) == wi::to_wide (@1))
42bd89ce 706 (bit_xor @0 @1))))
2066ef6a
PK
707
708/* PR53979: Transform ((a ^ b) | a) -> (a | b) */
709(simplify
710 (bit_ior:c (bit_xor:c @0 @1) @0)
711 (bit_ior @0 @1))
712
e268a77b
MG
713/* (a & ~b) | (a ^ b) --> a ^ b */
714(simplify
715 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
716 @2)
717
718/* (a & ~b) ^ ~a --> ~(a & b) */
719(simplify
720 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
721 (bit_not (bit_and @0 @1)))
722
723/* (a | b) & ~(a ^ b) --> a & b */
724(simplify
725 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
726 (bit_and @0 @1))
727
728/* a | ~(a ^ b) --> a | ~b */
729(simplify
730 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
731 (bit_ior @0 (bit_not @1)))
732
733/* (a | b) | (a &^ b) --> a | b */
734(for op (bit_and bit_xor)
735 (simplify
736 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
737 @2))
738
739/* (a & b) | ~(a ^ b) --> ~(a ^ b) */
740(simplify
741 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
742 @2)
743
744/* ~(~a & b) --> a | ~b */
745(simplify
746 (bit_not (bit_and:cs (bit_not @0) @1))
747 (bit_ior @0 (bit_not @1)))
748
d982c5b7
MG
749/* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
750#if GIMPLE
751(simplify
752 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
753 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
8e6cdc90 754 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
d982c5b7
MG
755 (bit_xor @0 @1)))
756#endif
10158317 757
bc4315fb
MG
758/* X % Y is smaller than Y. */
759(for cmp (lt ge)
760 (simplify
761 (cmp (trunc_mod @0 @1) @1)
762 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
763 { constant_boolean_node (cmp == LT_EXPR, type); })))
764(for cmp (gt le)
765 (simplify
766 (cmp @1 (trunc_mod @0 @1))
767 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
768 { constant_boolean_node (cmp == GT_EXPR, type); })))
769
e0ee10ed
RB
770/* x | ~0 -> ~0 */
771(simplify
ca0b7ece
RB
772 (bit_ior @0 integer_all_onesp@1)
773 @1)
774
775/* x | 0 -> x */
776(simplify
777 (bit_ior @0 integer_zerop)
778 @0)
e0ee10ed
RB
779
780/* x & 0 -> 0 */
781(simplify
ca0b7ece
RB
782 (bit_and @0 integer_zerop@1)
783 @1)
e0ee10ed 784
a4398a30 785/* ~x | x -> -1 */
8b5ee871
MG
786/* ~x ^ x -> -1 */
787/* ~x + x -> -1 */
788(for op (bit_ior bit_xor plus)
789 (simplify
790 (op:c (convert? @0) (convert? (bit_not @0)))
791 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
a4398a30 792
e0ee10ed
RB
793/* x ^ x -> 0 */
794(simplify
795 (bit_xor @0 @0)
796 { build_zero_cst (type); })
797
36a60e48
RB
798/* Canonicalize X ^ ~0 to ~X. */
799(simplify
800 (bit_xor @0 integer_all_onesp@1)
801 (bit_not @0))
802
803/* x & ~0 -> x */
804(simplify
805 (bit_and @0 integer_all_onesp)
806 (non_lvalue @0))
807
808/* x & x -> x, x | x -> x */
809(for bitop (bit_and bit_ior)
810 (simplify
811 (bitop @0 @0)
812 (non_lvalue @0)))
813
c7986356
MG
814/* x & C -> x if we know that x & ~C == 0. */
815#if GIMPLE
816(simplify
817 (bit_and SSA_NAME@0 INTEGER_CST@1)
818 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
8e6cdc90 819 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
c7986356
MG
820 @0))
821#endif
822
0f770b01
RV
823/* x + (x & 1) -> (x + 1) & ~1 */
824(simplify
44fc0a51
RB
825 (plus:c @0 (bit_and:s @0 integer_onep@1))
826 (bit_and (plus @0 @1) (bit_not @1)))
0f770b01
RV
827
828/* x & ~(x & y) -> x & ~y */
829/* x | ~(x | y) -> x | ~y */
830(for bitop (bit_and bit_ior)
af563d4b 831 (simplify
44fc0a51
RB
832 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
833 (bitop @0 (bit_not @1))))
af563d4b
MG
834
835/* (x | y) & ~x -> y & ~x */
836/* (x & y) | ~x -> y | ~x */
837(for bitop (bit_and bit_ior)
838 rbitop (bit_ior bit_and)
839 (simplify
840 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
841 (bitop @1 @2)))
0f770b01 842
f13c4673
MP
843/* (x & y) ^ (x | y) -> x ^ y */
844(simplify
2d6f2dce
MP
845 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
846 (bit_xor @0 @1))
f13c4673 847
9ea65ca6
MP
848/* (x ^ y) ^ (x | y) -> x & y */
849(simplify
850 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
851 (bit_and @0 @1))
852
853/* (x & y) + (x ^ y) -> x | y */
854/* (x & y) | (x ^ y) -> x | y */
855/* (x & y) ^ (x ^ y) -> x | y */
856(for op (plus bit_ior bit_xor)
857 (simplify
858 (op:c (bit_and @0 @1) (bit_xor @0 @1))
859 (bit_ior @0 @1)))
860
861/* (x & y) + (x | y) -> x + y */
862(simplify
863 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
864 (plus @0 @1))
865
9737efaf
MP
866/* (x + y) - (x | y) -> x & y */
867(simplify
868 (minus (plus @0 @1) (bit_ior @0 @1))
869 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
870 && !TYPE_SATURATING (type))
871 (bit_and @0 @1)))
872
873/* (x + y) - (x & y) -> x | y */
874(simplify
875 (minus (plus @0 @1) (bit_and @0 @1))
876 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
877 && !TYPE_SATURATING (type))
878 (bit_ior @0 @1)))
879
9ea65ca6
MP
880/* (x | y) - (x ^ y) -> x & y */
881(simplify
882 (minus (bit_ior @0 @1) (bit_xor @0 @1))
883 (bit_and @0 @1))
884
885/* (x | y) - (x & y) -> x ^ y */
886(simplify
887 (minus (bit_ior @0 @1) (bit_and @0 @1))
888 (bit_xor @0 @1))
889
66cc6273
MP
890/* (x | y) & ~(x & y) -> x ^ y */
891(simplify
892 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
893 (bit_xor @0 @1))
894
895/* (x | y) & (~x ^ y) -> x & y */
896(simplify
897 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
898 (bit_and @0 @1))
899
5b00d921
RB
900/* ~x & ~y -> ~(x | y)
901 ~x | ~y -> ~(x & y) */
902(for op (bit_and bit_ior)
903 rop (bit_ior bit_and)
904 (simplify
905 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
ece46666
MG
906 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
907 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
5b00d921
RB
908 (bit_not (rop (convert @0) (convert @1))))))
909
14ea9f92 910/* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
5b00d921
RB
911 with a constant, and the two constants have no bits in common,
912 we should treat this as a BIT_IOR_EXPR since this may produce more
913 simplifications. */
14ea9f92
RB
914(for op (bit_xor plus)
915 (simplify
916 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
917 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
918 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
919 && tree_nop_conversion_p (type, TREE_TYPE (@2))
8e6cdc90 920 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
14ea9f92 921 (bit_ior (convert @4) (convert @5)))))
5b00d921
RB
922
923/* (X | Y) ^ X -> Y & ~ X*/
924(simplify
2eef1fc1 925 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
5b00d921
RB
926 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
927 (convert (bit_and @1 (bit_not @0)))))
928
929/* Convert ~X ^ ~Y to X ^ Y. */
930(simplify
931 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
ece46666
MG
932 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
933 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
5b00d921
RB
934 (bit_xor (convert @0) (convert @1))))
935
936/* Convert ~X ^ C to X ^ ~C. */
937(simplify
938 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
c8ba6498
EB
939 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
940 (bit_xor (convert @0) (bit_not @1))))
5b00d921 941
e39dab2c
MG
942/* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
943(for opo (bit_and bit_xor)
944 opi (bit_xor bit_and)
945 (simplify
946 (opo:c (opi:c @0 @1) @1)
947 (bit_and (bit_not @0) @1)))
97e77391 948
14ea9f92
RB
949/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
950 operands are another bit-wise operation with a common input. If so,
951 distribute the bit operations to save an operation and possibly two if
952 constants are involved. For example, convert
953 (A | B) & (A | C) into A | (B & C)
954 Further simplification will occur if B and C are constants. */
e07ab2fe
MG
955(for op (bit_and bit_ior bit_xor)
956 rop (bit_ior bit_and bit_and)
14ea9f92 957 (simplify
2eef1fc1 958 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
e07ab2fe
MG
959 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
960 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
14ea9f92
RB
961 (rop (convert @0) (op (convert @1) (convert @2))))))
962
e39dab2c
MG
963/* Some simple reassociation for bit operations, also handled in reassoc. */
964/* (X & Y) & Y -> X & Y
965 (X | Y) | Y -> X | Y */
966(for op (bit_and bit_ior)
967 (simplify
2eef1fc1 968 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
e39dab2c
MG
969 @2))
970/* (X ^ Y) ^ Y -> X */
971(simplify
2eef1fc1 972 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
ece46666 973 (convert @0))
e39dab2c
MG
974/* (X & Y) & (X & Z) -> (X & Y) & Z
975 (X | Y) | (X | Z) -> (X | Y) | Z */
976(for op (bit_and bit_ior)
977 (simplify
6c35e5b0 978 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
e39dab2c
MG
979 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
980 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
981 (if (single_use (@5) && single_use (@6))
982 (op @3 (convert @2))
983 (if (single_use (@3) && single_use (@4))
984 (op (convert @1) @5))))))
985/* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
986(simplify
987 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
988 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
989 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
d78789f5 990 (bit_xor (convert @1) (convert @2))))
5b00d921 991
b14a9c57
RB
992(simplify
993 (abs (abs@1 @0))
994 @1)
f3582e54
RB
995(simplify
996 (abs (negate @0))
997 (abs @0))
998(simplify
999 (abs tree_expr_nonnegative_p@0)
1000 @0)
1001
55cf3946
RB
1002/* A few cases of fold-const.c negate_expr_p predicate. */
1003(match negate_expr_p
1004 INTEGER_CST
b14a9c57 1005 (if ((INTEGRAL_TYPE_P (type)
56a6d474 1006 && TYPE_UNSIGNED (type))
b14a9c57 1007 || (!TYPE_OVERFLOW_SANITIZED (type)
55cf3946
RB
1008 && may_negate_without_overflow_p (t)))))
1009(match negate_expr_p
1010 FIXED_CST)
1011(match negate_expr_p
1012 (negate @0)
1013 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1014(match negate_expr_p
1015 REAL_CST
1016 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1017/* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1018 ways. */
1019(match negate_expr_p
1020 VECTOR_CST
1021 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
81bd903a
MG
1022(match negate_expr_p
1023 (minus @0 @1)
1024 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1025 || (FLOAT_TYPE_P (type)
1026 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1027 && !HONOR_SIGNED_ZEROS (type)))))
0a8f32b8
RB
1028
1029/* (-A) * (-B) -> A * B */
1030(simplify
1031 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1032 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1033 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1034 (mult (convert @0) (convert (negate @1)))))
55cf3946
RB
1035
1036/* -(A + B) -> (-B) - A. */
b14a9c57 1037(simplify
55cf3946
RB
1038 (negate (plus:c @0 negate_expr_p@1))
1039 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1040 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1041 (minus (negate @1) @0)))
1042
81bd903a
MG
1043/* -(A - B) -> B - A. */
1044(simplify
1045 (negate (minus @0 @1))
1046 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1047 || (FLOAT_TYPE_P (type)
1048 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1049 && !HONOR_SIGNED_ZEROS (type)))
1050 (minus @1 @0)))
1af4ebf5
MG
1051(simplify
1052 (negate (pointer_diff @0 @1))
1053 (if (TYPE_OVERFLOW_UNDEFINED (type))
1054 (pointer_diff @1 @0)))
81bd903a 1055
55cf3946 1056/* A - B -> A + (-B) if B is easily negatable. */
b14a9c57 1057(simplify
55cf3946 1058 (minus @0 negate_expr_p@1)
e4e96a4f
KT
1059 (if (!FIXED_POINT_TYPE_P (type))
1060 (plus @0 (negate @1))))
d4573ffe 1061
5609420f
RB
1062/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1063 when profitable.
1064 For bitwise binary operations apply operand conversions to the
1065 binary operation result instead of to the operands. This allows
1066 to combine successive conversions and bitwise binary operations.
1067 We combine the above two cases by using a conditional convert. */
1068(for bitop (bit_and bit_ior bit_xor)
1069 (simplify
1070 (bitop (convert @0) (convert? @1))
1071 (if (((TREE_CODE (@1) == INTEGER_CST
1072 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
ad6f996c 1073 && int_fits_type_p (@1, TREE_TYPE (@0)))
aea417d7 1074 || types_match (@0, @1))
ad6f996c
RB
1075 /* ??? This transform conflicts with fold-const.c doing
1076 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1077 constants (if x has signed type, the sign bit cannot be set
1078 in c). This folds extension into the BIT_AND_EXPR.
1079 Restrict it to GIMPLE to avoid endless recursions. */
1080 && (bitop != BIT_AND_EXPR || GIMPLE)
5609420f
RB
1081 && (/* That's a good idea if the conversion widens the operand, thus
1082 after hoisting the conversion the operation will be narrower. */
1083 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1084 /* It's also a good idea if the conversion is to a non-integer
1085 mode. */
1086 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1087 /* Or if the precision of TO is not the same as the precision
1088 of its mode. */
2be65d9e 1089 || !type_has_mode_precision_p (type)))
5609420f
RB
1090 (convert (bitop @0 (convert @1))))))
1091
b14a9c57
RB
1092(for bitop (bit_and bit_ior)
1093 rbitop (bit_ior bit_and)
1094 /* (x | y) & x -> x */
1095 /* (x & y) | x -> x */
1096 (simplify
1097 (bitop:c (rbitop:c @0 @1) @0)
1098 @0)
1099 /* (~x | y) & x -> x & y */
1100 /* (~x & y) | x -> x | y */
1101 (simplify
1102 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1103 (bitop @0 @1)))
1104
5609420f
RB
1105/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1106(simplify
1107 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1108 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1109
1110/* Combine successive equal operations with constants. */
1111(for bitop (bit_and bit_ior bit_xor)
1112 (simplify
1113 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
fba05d9e
RS
1114 (if (!CONSTANT_CLASS_P (@0))
1115 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1116 folded to a constant. */
1117 (bitop @0 (bitop @1 @2))
1118 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1119 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1120 the values involved are such that the operation can't be decided at
1121 compile time. Try folding one of @0 or @1 with @2 to see whether
1122 that combination can be decided at compile time.
1123
1124 Keep the existing form if both folds fail, to avoid endless
1125 oscillation. */
1126 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1127 (if (cst1)
1128 (bitop @1 { cst1; })
1129 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1130 (if (cst2)
1131 (bitop @0 { cst2; }))))))))
5609420f
RB
1132
1133/* Try simple folding for X op !X, and X op X with the help
1134 of the truth_valued_p and logical_inverted_value predicates. */
1135(match truth_valued_p
1136 @0
1137 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
f84e7fd6 1138(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
5609420f
RB
1139 (match truth_valued_p
1140 (op @0 @1)))
1141(match truth_valued_p
1142 (truth_not @0))
1143
0a8f32b8
RB
1144(match (logical_inverted_value @0)
1145 (truth_not @0))
5609420f
RB
1146(match (logical_inverted_value @0)
1147 (bit_not truth_valued_p@0))
1148(match (logical_inverted_value @0)
09240451 1149 (eq @0 integer_zerop))
5609420f 1150(match (logical_inverted_value @0)
09240451 1151 (ne truth_valued_p@0 integer_truep))
5609420f 1152(match (logical_inverted_value @0)
09240451 1153 (bit_xor truth_valued_p@0 integer_truep))
5609420f
RB
1154
1155/* X & !X -> 0. */
1156(simplify
1157 (bit_and:c @0 (logical_inverted_value @0))
1158 { build_zero_cst (type); })
1159/* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1160(for op (bit_ior bit_xor)
1161 (simplify
1162 (op:c truth_valued_p@0 (logical_inverted_value @0))
f84e7fd6 1163 { constant_boolean_node (true, type); }))
59c20dc7
RB
1164/* X ==/!= !X is false/true. */
1165(for op (eq ne)
1166 (simplify
1167 (op:c truth_valued_p@0 (logical_inverted_value @0))
1168 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
5609420f 1169
5609420f
RB
1170/* ~~x -> x */
1171(simplify
1172 (bit_not (bit_not @0))
1173 @0)
1174
b14a9c57
RB
1175/* Convert ~ (-A) to A - 1. */
1176(simplify
1177 (bit_not (convert? (negate @0)))
ece46666
MG
1178 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1179 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
8b5ee871 1180 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
b14a9c57 1181
81bd903a
MG
1182/* Convert - (~A) to A + 1. */
1183(simplify
1184 (negate (nop_convert (bit_not @0)))
1185 (plus (view_convert @0) { build_each_one_cst (type); }))
1186
b14a9c57
RB
1187/* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1188(simplify
8b5ee871 1189 (bit_not (convert? (minus @0 integer_each_onep)))
ece46666
MG
1190 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1191 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
b14a9c57
RB
1192 (convert (negate @0))))
1193(simplify
1194 (bit_not (convert? (plus @0 integer_all_onesp)))
ece46666
MG
1195 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1196 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
b14a9c57
RB
1197 (convert (negate @0))))
1198
1199/* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1200(simplify
1201 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1202 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1203 (convert (bit_xor @0 (bit_not @1)))))
1204(simplify
1205 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1206 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1207 (convert (bit_xor @0 @1))))
1208
e268a77b
MG
1209/* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1210(simplify
1211 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1212 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1213 (bit_not (bit_xor (view_convert @0) @1))))
1214
f52baa7b
MP
1215/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1216(simplify
44fc0a51
RB
1217 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1218 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
f52baa7b 1219
f7b7b0aa
MP
1220/* Fold A - (A & B) into ~B & A. */
1221(simplify
2eef1fc1 1222 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
f7b7b0aa
MP
1223 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1224 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1225 (convert (bit_and (bit_not @1) @0))))
5609420f 1226
2071f8f9
N
1227/* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1228(for cmp (gt lt ge le)
1229(simplify
1230 (mult (convert (cmp @0 @1)) @2)
1231 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1232
e36c1cfe
N
1233/* For integral types with undefined overflow and C != 0 fold
1234 x * C EQ/NE y * C into x EQ/NE y. */
1235(for cmp (eq ne)
1236 (simplify
1237 (cmp (mult:c @0 @1) (mult:c @2 @1))
1238 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1239 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1240 && tree_expr_nonzero_p (@1))
1241 (cmp @0 @2))))
1242
42bd89ce
MG
1243/* For integral types with wrapping overflow and C odd fold
1244 x * C EQ/NE y * C into x EQ/NE y. */
1245(for cmp (eq ne)
1246 (simplify
1247 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1248 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1249 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1250 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1251 (cmp @0 @2))))
1252
e36c1cfe
N
1253/* For integral types with undefined overflow and C != 0 fold
1254 x * C RELOP y * C into:
84ff66b8 1255
e36c1cfe
N
1256 x RELOP y for nonnegative C
1257 y RELOP x for negative C */
1258(for cmp (lt gt le ge)
1259 (simplify
1260 (cmp (mult:c @0 @1) (mult:c @2 @1))
1261 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1262 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1263 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1264 (cmp @0 @2)
1265 (if (TREE_CODE (@1) == INTEGER_CST
8e6cdc90 1266 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
e36c1cfe 1267 (cmp @2 @0))))))
84ff66b8 1268
564e405c
JJ
1269/* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1270(for cmp (le gt)
1271 icmp (gt le)
1272 (simplify
1273 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1274 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1275 && TYPE_UNSIGNED (TREE_TYPE (@0))
1276 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
8e6cdc90
RS
1277 && (wi::to_wide (@2)
1278 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
564e405c
JJ
1279 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1280 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1281
a8492d5e
MG
1282/* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1283(for cmp (simple_comparison)
1284 (simplify
1285 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
8e6cdc90 1286 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
a8492d5e
MG
1287 (cmp @0 @1))))
1288
8d1628eb
JJ
1289/* X / C1 op C2 into a simple range test. */
1290(for cmp (simple_comparison)
1291 (simplify
1292 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1293 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1294 && integer_nonzerop (@1)
1295 && !TREE_OVERFLOW (@1)
1296 && !TREE_OVERFLOW (@2))
1297 (with { tree lo, hi; bool neg_overflow;
1298 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1299 &neg_overflow); }
1300 (switch
1301 (if (code == LT_EXPR || code == GE_EXPR)
1302 (if (TREE_OVERFLOW (lo))
1303 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1304 (if (code == LT_EXPR)
1305 (lt @0 { lo; })
1306 (ge @0 { lo; }))))
1307 (if (code == LE_EXPR || code == GT_EXPR)
1308 (if (TREE_OVERFLOW (hi))
1309 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1310 (if (code == LE_EXPR)
1311 (le @0 { hi; })
1312 (gt @0 { hi; }))))
1313 (if (!lo && !hi)
1314 { build_int_cst (type, code == NE_EXPR); })
1315 (if (code == EQ_EXPR && !hi)
1316 (ge @0 { lo; }))
1317 (if (code == EQ_EXPR && !lo)
1318 (le @0 { hi; }))
1319 (if (code == NE_EXPR && !hi)
1320 (lt @0 { lo; }))
1321 (if (code == NE_EXPR && !lo)
1322 (gt @0 { hi; }))
1323 (if (GENERIC)
1324 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1325 lo, hi); })
1326 (with
1327 {
1328 tree etype = range_check_type (TREE_TYPE (@0));
1329 if (etype)
1330 {
1331 if (! TYPE_UNSIGNED (etype))
1332 etype = unsigned_type_for (etype);
1333 hi = fold_convert (etype, hi);
1334 lo = fold_convert (etype, lo);
1335 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1336 }
1337 }
1338 (if (etype && hi && !TREE_OVERFLOW (hi))
1339 (if (code == EQ_EXPR)
1340 (le (minus (convert:etype @0) { lo; }) { hi; })
1341 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1342
d35256b6
MG
1343/* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1344(for op (lt le ge gt)
1345 (simplify
1346 (op (plus:c @0 @2) (plus:c @1 @2))
1347 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1348 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1349 (op @0 @1))))
1350/* For equality and subtraction, this is also true with wrapping overflow. */
1351(for op (eq ne minus)
1352 (simplify
1353 (op (plus:c @0 @2) (plus:c @1 @2))
1354 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1355 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1356 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1357 (op @0 @1))))
1358
1359/* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1360(for op (lt le ge gt)
1361 (simplify
1362 (op (minus @0 @2) (minus @1 @2))
1363 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1364 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1365 (op @0 @1))))
1366/* For equality and subtraction, this is also true with wrapping overflow. */
1367(for op (eq ne minus)
1368 (simplify
1369 (op (minus @0 @2) (minus @1 @2))
1370 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1371 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1372 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1373 (op @0 @1))))
1af4ebf5
MG
1374/* And for pointers... */
1375(for op (simple_comparison)
1376 (simplify
1377 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1378 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1379 (op @0 @1))))
1380(simplify
1381 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1382 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1383 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1384 (pointer_diff @0 @1)))
d35256b6
MG
1385
1386/* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1387(for op (lt le ge gt)
1388 (simplify
1389 (op (minus @2 @0) (minus @2 @1))
1390 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1391 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1392 (op @1 @0))))
1393/* For equality and subtraction, this is also true with wrapping overflow. */
1394(for op (eq ne minus)
1395 (simplify
1396 (op (minus @2 @0) (minus @2 @1))
1397 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1398 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1399 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1400 (op @1 @0))))
1af4ebf5
MG
1401/* And for pointers... */
1402(for op (simple_comparison)
1403 (simplify
1404 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1405 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1406 (op @1 @0))))
1407(simplify
1408 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1409 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1410 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1411 (pointer_diff @1 @0)))
d35256b6 1412
6358a676
MG
1413/* X + Y < Y is the same as X < 0 when there is no overflow. */
1414(for op (lt le gt ge)
1415 (simplify
1416 (op:c (plus:c@2 @0 @1) @1)
1417 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1418 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1419 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1420 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1421/* For equality, this is also true with wrapping overflow. */
1422(for op (eq ne)
1423 (simplify
1424 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1425 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1426 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1427 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1428 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1429 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1430 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1431 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1432 (simplify
1433 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1434 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1435 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1436 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1437 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1438
1439/* X - Y < X is the same as Y > 0 when there is no overflow.
1440 For equality, this is also true with wrapping overflow. */
1441(for op (simple_comparison)
1442 (simplify
1443 (op:c @0 (minus@2 @0 @1))
1444 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1445 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1446 || ((op == EQ_EXPR || op == NE_EXPR)
1447 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1448 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1449 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1450
1d6fadee
PK
1451/* Transform:
1452 * (X / Y) == 0 -> X < Y if X, Y are unsigned.
1453 * (X / Y) != 0 -> X >= Y, if X, Y are unsigned.
1454 */
1455(for cmp (eq ne)
1456 ocmp (lt ge)
1457 (simplify
1458 (cmp (trunc_div @0 @1) integer_zerop)
1459 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1460 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1461 (ocmp @0 @1))))
1462
8b656ca7
MG
1463/* X == C - X can never be true if C is odd. */
1464(for cmp (eq ne)
1465 (simplify
1466 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1467 (if (TREE_INT_CST_LOW (@1) & 1)
1468 { constant_boolean_node (cmp == NE_EXPR, type); })))
1469
10bc8017
MG
1470/* Arguments on which one can call get_nonzero_bits to get the bits
1471 possibly set. */
1472(match with_possible_nonzero_bits
1473 INTEGER_CST@0)
1474(match with_possible_nonzero_bits
1475 SSA_NAME@0
1476 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1477/* Slightly extended version, do not make it recursive to keep it cheap. */
1478(match (with_possible_nonzero_bits2 @0)
1479 with_possible_nonzero_bits@0)
1480(match (with_possible_nonzero_bits2 @0)
1481 (bit_and:c with_possible_nonzero_bits@0 @2))
1482
1483/* Same for bits that are known to be set, but we do not have
1484 an equivalent to get_nonzero_bits yet. */
1485(match (with_certain_nonzero_bits2 @0)
1486 INTEGER_CST@0)
1487(match (with_certain_nonzero_bits2 @0)
1488 (bit_ior @1 INTEGER_CST@0))
1489
1490/* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1491(for cmp (eq ne)
1492 (simplify
1493 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
8e6cdc90 1494 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
10bc8017
MG
1495 { constant_boolean_node (cmp == NE_EXPR, type); })))
1496
84ff66b8
AV
1497/* ((X inner_op C0) outer_op C1)
1498 With X being a tree where value_range has reasoned certain bits to always be
1499 zero throughout its computed value range,
1500 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1501 where zero_mask has 1's for all bits that are sure to be 0 in
1502 and 0's otherwise.
1503 if (inner_op == '^') C0 &= ~C1;
1504 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1505 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1506*/
1507(for inner_op (bit_ior bit_xor)
1508 outer_op (bit_xor bit_ior)
1509(simplify
1510 (outer_op
1511 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1512 (with
1513 {
1514 bool fail = false;
1515 wide_int zero_mask_not;
1516 wide_int C0;
1517 wide_int cst_emit;
1518
1519 if (TREE_CODE (@2) == SSA_NAME)
1520 zero_mask_not = get_nonzero_bits (@2);
1521 else
1522 fail = true;
1523
1524 if (inner_op == BIT_XOR_EXPR)
1525 {
8e6cdc90
RS
1526 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1527 cst_emit = C0 | wi::to_wide (@1);
84ff66b8
AV
1528 }
1529 else
1530 {
8e6cdc90
RS
1531 C0 = wi::to_wide (@0);
1532 cst_emit = C0 ^ wi::to_wide (@1);
84ff66b8
AV
1533 }
1534 }
8e6cdc90 1535 (if (!fail && (C0 & zero_mask_not) == 0)
84ff66b8 1536 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
8e6cdc90 1537 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
84ff66b8
AV
1538 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1539
a499aac5
RB
1540/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1541(simplify
44fc0a51
RB
1542 (pointer_plus (pointer_plus:s @0 @1) @3)
1543 (pointer_plus @0 (plus @1 @3)))
a499aac5
RB
1544
1545/* Pattern match
1546 tem1 = (long) ptr1;
1547 tem2 = (long) ptr2;
1548 tem3 = tem2 - tem1;
1549 tem4 = (unsigned long) tem3;
1550 tem5 = ptr1 + tem4;
1551 and produce
1552 tem5 = ptr2; */
1553(simplify
1554 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1555 /* Conditionally look through a sign-changing conversion. */
1556 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1557 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1558 || (GENERIC && type == TREE_TYPE (@1))))
1559 @1))
1af4ebf5
MG
1560(simplify
1561 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1562 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1563 (convert @1)))
a499aac5
RB
1564
1565/* Pattern match
1566 tem = (sizetype) ptr;
1567 tem = tem & algn;
1568 tem = -tem;
1569 ... = ptr p+ tem;
1570 and produce the simpler and easier to analyze with respect to alignment
1571 ... = ptr & ~algn; */
1572(simplify
1573 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
8e6cdc90 1574 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
a499aac5
RB
1575 (bit_and @0 { algn; })))
1576
99e943a2
RB
1577/* Try folding difference of addresses. */
1578(simplify
1579 (minus (convert ADDR_EXPR@0) (convert @1))
1580 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
f37fac2b 1581 (with { poly_int64 diff; }
99e943a2
RB
1582 (if (ptr_difference_const (@0, @1, &diff))
1583 { build_int_cst_type (type, diff); }))))
1584(simplify
1585 (minus (convert @0) (convert ADDR_EXPR@1))
1586 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
f37fac2b 1587 (with { poly_int64 diff; }
99e943a2
RB
1588 (if (ptr_difference_const (@0, @1, &diff))
1589 { build_int_cst_type (type, diff); }))))
1af4ebf5
MG
1590(simplify
1591 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert?@3 @1))
1592 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1593 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
f37fac2b 1594 (with { poly_int64 diff; }
1af4ebf5
MG
1595 (if (ptr_difference_const (@0, @1, &diff))
1596 { build_int_cst_type (type, diff); }))))
1597(simplify
1598 (pointer_diff (convert?@2 @0) (convert?@3 ADDR_EXPR@1))
1599 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1600 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
f37fac2b 1601 (with { poly_int64 diff; }
1af4ebf5
MG
1602 (if (ptr_difference_const (@0, @1, &diff))
1603 { build_int_cst_type (type, diff); }))))
99e943a2 1604
bab73f11
RB
1605/* If arg0 is derived from the address of an object or function, we may
1606 be able to fold this expression using the object or function's
1607 alignment. */
1608(simplify
1609 (bit_and (convert? @0) INTEGER_CST@1)
1610 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1611 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1612 (with
1613 {
1614 unsigned int align;
1615 unsigned HOST_WIDE_INT bitpos;
1616 get_pointer_alignment_1 (@0, &align, &bitpos);
1617 }
8e6cdc90
RS
1618 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1619 { wide_int_to_tree (type, (wi::to_wide (@1)
1620 & (bitpos / BITS_PER_UNIT))); }))))
99e943a2 1621
a499aac5 1622
cc7b5acf
RB
1623/* We can't reassociate at all for saturating types. */
1624(if (!TYPE_SATURATING (type))
1625
1626 /* Contract negates. */
1627 /* A + (-B) -> A - B */
1628 (simplify
248179b5
RB
1629 (plus:c @0 (convert? (negate @1)))
1630 /* Apply STRIP_NOPS on the negate. */
1631 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1632 && !TYPE_OVERFLOW_SANITIZED (type))
248179b5
RB
1633 (with
1634 {
1635 tree t1 = type;
1636 if (INTEGRAL_TYPE_P (type)
1637 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1638 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1639 }
1640 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
cc7b5acf
RB
1641 /* A - (-B) -> A + B */
1642 (simplify
248179b5
RB
1643 (minus @0 (convert? (negate @1)))
1644 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1645 && !TYPE_OVERFLOW_SANITIZED (type))
248179b5
RB
1646 (with
1647 {
1648 tree t1 = type;
1649 if (INTEGRAL_TYPE_P (type)
1650 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1651 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1652 }
1653 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
63626547
MG
1654 /* -(T)(-A) -> (T)A
1655 Sign-extension is ok except for INT_MIN, which thankfully cannot
1656 happen without overflow. */
1657 (simplify
1658 (negate (convert (negate @1)))
1659 (if (INTEGRAL_TYPE_P (type)
1660 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1661 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1662 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1663 && !TYPE_OVERFLOW_SANITIZED (type)
1664 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
a0f12cf8 1665 (convert @1)))
63626547
MG
1666 (simplify
1667 (negate (convert negate_expr_p@1))
1668 (if (SCALAR_FLOAT_TYPE_P (type)
1669 && ((DECIMAL_FLOAT_TYPE_P (type)
1670 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1671 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1672 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1673 (convert (negate @1))))
1674 (simplify
1675 (negate (nop_convert (negate @1)))
1676 (if (!TYPE_OVERFLOW_SANITIZED (type)
1677 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1678 (view_convert @1)))
cc7b5acf 1679
7318e44f
RB
1680 /* We can't reassociate floating-point unless -fassociative-math
1681 or fixed-point plus or minus because of saturation to +-Inf. */
1682 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1683 && !FIXED_POINT_TYPE_P (type))
cc7b5acf
RB
1684
1685 /* Match patterns that allow contracting a plus-minus pair
1686 irrespective of overflow issues. */
1687 /* (A +- B) - A -> +- B */
1688 /* (A +- B) -+ B -> A */
1689 /* A - (A +- B) -> -+ B */
1690 /* A +- (B -+ A) -> +- B */
1691 (simplify
1692 (minus (plus:c @0 @1) @0)
1693 @1)
1694 (simplify
1695 (minus (minus @0 @1) @0)
1696 (negate @1))
1697 (simplify
1698 (plus:c (minus @0 @1) @1)
1699 @0)
1700 (simplify
1701 (minus @0 (plus:c @0 @1))
1702 (negate @1))
1703 (simplify
1704 (minus @0 (minus @0 @1))
1705 @1)
1e7df2e6
MG
1706 /* (A +- B) + (C - A) -> C +- B */
1707 /* (A + B) - (A - C) -> B + C */
1708 /* More cases are handled with comparisons. */
1709 (simplify
1710 (plus:c (plus:c @0 @1) (minus @2 @0))
1711 (plus @2 @1))
1712 (simplify
1713 (plus:c (minus @0 @1) (minus @2 @0))
1714 (minus @2 @1))
1af4ebf5
MG
1715 (simplify
1716 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1717 (if (TYPE_OVERFLOW_UNDEFINED (type)
1718 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1719 (pointer_diff @2 @1)))
1e7df2e6
MG
1720 (simplify
1721 (minus (plus:c @0 @1) (minus @0 @2))
1722 (plus @1 @2))
cc7b5acf 1723
ed73f46f
MG
1724 /* (A +- CST1) +- CST2 -> A + CST3
1725 Use view_convert because it is safe for vectors and equivalent for
1726 scalars. */
cc7b5acf
RB
1727 (for outer_op (plus minus)
1728 (for inner_op (plus minus)
ed73f46f 1729 neg_inner_op (minus plus)
cc7b5acf 1730 (simplify
ed73f46f
MG
1731 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1732 CONSTANT_CLASS_P@2)
1733 /* If one of the types wraps, use that one. */
1734 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1735 (if (outer_op == PLUS_EXPR)
1736 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1737 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1))))
1738 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1739 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1740 (if (outer_op == PLUS_EXPR)
1741 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1742 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1743 /* If the constant operation overflows we cannot do the transform
1744 directly as we would introduce undefined overflow, for example
1745 with (a - 1) + INT_MIN. */
1746 (if (types_match (type, @0))
1747 (with { tree cst = const_binop (outer_op == inner_op
1748 ? PLUS_EXPR : MINUS_EXPR,
1749 type, @1, @2); }
1750 (if (cst && !TREE_OVERFLOW (cst))
1751 (inner_op @0 { cst; } )
1752 /* X+INT_MAX+1 is X-INT_MIN. */
1753 (if (INTEGRAL_TYPE_P (type) && cst
8e6cdc90
RS
1754 && wi::to_wide (cst) == wi::min_value (type))
1755 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
ed73f46f
MG
1756 /* Last resort, use some unsigned type. */
1757 (with { tree utype = unsigned_type_for (type); }
1758 (view_convert (inner_op
1759 (view_convert:utype @0)
1760 (view_convert:utype
1761 { drop_tree_overflow (cst); })))))))))))))
cc7b5acf 1762
b302f2e0 1763 /* (CST1 - A) +- CST2 -> CST3 - A */
cc7b5acf
RB
1764 (for outer_op (plus minus)
1765 (simplify
1766 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
23f27839 1767 (with { tree cst = const_binop (outer_op, type, @1, @2); }
cc7b5acf
RB
1768 (if (cst && !TREE_OVERFLOW (cst))
1769 (minus { cst; } @0)))))
1770
b302f2e0
RB
1771 /* CST1 - (CST2 - A) -> CST3 + A */
1772 (simplify
1773 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1774 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1775 (if (cst && !TREE_OVERFLOW (cst))
1776 (plus { cst; } @0))))
1777
cc7b5acf
RB
1778 /* ~A + A -> -1 */
1779 (simplify
1780 (plus:c (bit_not @0) @0)
1781 (if (!TYPE_OVERFLOW_TRAPS (type))
1782 { build_all_ones_cst (type); }))
1783
1784 /* ~A + 1 -> -A */
1785 (simplify
e19740ae
RB
1786 (plus (convert? (bit_not @0)) integer_each_onep)
1787 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1788 (negate (convert @0))))
1789
1790 /* -A - 1 -> ~A */
1791 (simplify
1792 (minus (convert? (negate @0)) integer_each_onep)
1793 (if (!TYPE_OVERFLOW_TRAPS (type)
1794 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1795 (bit_not (convert @0))))
1796
1797 /* -1 - A -> ~A */
1798 (simplify
1799 (minus integer_all_onesp @0)
bc4315fb 1800 (bit_not @0))
cc7b5acf
RB
1801
1802 /* (T)(P + A) - (T)P -> (T) A */
d7f44d4d 1803 (simplify
a72610d4
JJ
1804 (minus (convert (plus:c @@0 @1))
1805 (convert? @0))
d7f44d4d
JJ
1806 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1807 /* For integer types, if A has a smaller type
1808 than T the result depends on the possible
1809 overflow in P + A.
1810 E.g. T=size_t, A=(unsigned)429497295, P>0.
1811 However, if an overflow in P + A would cause
1812 undefined behavior, we can assume that there
1813 is no overflow. */
a72610d4
JJ
1814 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1815 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
d7f44d4d
JJ
1816 (convert @1)))
1817 (simplify
1818 (minus (convert (pointer_plus @@0 @1))
1819 (convert @0))
1820 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1821 /* For pointer types, if the conversion of A to the
1822 final type requires a sign- or zero-extension,
1823 then we have to punt - it is not defined which
1824 one is correct. */
1825 || (POINTER_TYPE_P (TREE_TYPE (@0))
1826 && TREE_CODE (@1) == INTEGER_CST
1827 && tree_int_cst_sign_bit (@1) == 0))
1828 (convert @1)))
1af4ebf5
MG
1829 (simplify
1830 (pointer_diff (pointer_plus @@0 @1) @0)
1831 /* The second argument of pointer_plus must be interpreted as signed, and
1832 thus sign-extended if necessary. */
1833 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1834 (convert (convert:stype @1))))
a8fc2579
RB
1835
1836 /* (T)P - (T)(P + A) -> -(T) A */
d7f44d4d 1837 (simplify
a72610d4
JJ
1838 (minus (convert? @0)
1839 (convert (plus:c @@0 @1)))
d7f44d4d
JJ
1840 (if (INTEGRAL_TYPE_P (type)
1841 && TYPE_OVERFLOW_UNDEFINED (type)
1842 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1843 (with { tree utype = unsigned_type_for (type); }
1844 (convert (negate (convert:utype @1))))
a8fc2579
RB
1845 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1846 /* For integer types, if A has a smaller type
1847 than T the result depends on the possible
1848 overflow in P + A.
1849 E.g. T=size_t, A=(unsigned)429497295, P>0.
1850 However, if an overflow in P + A would cause
1851 undefined behavior, we can assume that there
1852 is no overflow. */
a72610d4
JJ
1853 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1854 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
d7f44d4d
JJ
1855 (negate (convert @1)))))
1856 (simplify
1857 (minus (convert @0)
1858 (convert (pointer_plus @@0 @1)))
1859 (if (INTEGRAL_TYPE_P (type)
1860 && TYPE_OVERFLOW_UNDEFINED (type)
1861 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1862 (with { tree utype = unsigned_type_for (type); }
1863 (convert (negate (convert:utype @1))))
1864 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
a8fc2579
RB
1865 /* For pointer types, if the conversion of A to the
1866 final type requires a sign- or zero-extension,
1867 then we have to punt - it is not defined which
1868 one is correct. */
1869 || (POINTER_TYPE_P (TREE_TYPE (@0))
1870 && TREE_CODE (@1) == INTEGER_CST
1871 && tree_int_cst_sign_bit (@1) == 0))
1872 (negate (convert @1)))))
1af4ebf5
MG
1873 (simplify
1874 (pointer_diff @0 (pointer_plus @@0 @1))
1875 /* The second argument of pointer_plus must be interpreted as signed, and
1876 thus sign-extended if necessary. */
1877 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1878 (negate (convert (convert:stype @1)))))
a8fc2579
RB
1879
1880 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
d7f44d4d 1881 (simplify
a72610d4 1882 (minus (convert (plus:c @@0 @1))
d7f44d4d
JJ
1883 (convert (plus:c @0 @2)))
1884 (if (INTEGRAL_TYPE_P (type)
1885 && TYPE_OVERFLOW_UNDEFINED (type)
a72610d4
JJ
1886 && element_precision (type) <= element_precision (TREE_TYPE (@1))
1887 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
d7f44d4d
JJ
1888 (with { tree utype = unsigned_type_for (type); }
1889 (convert (minus (convert:utype @1) (convert:utype @2))))
a72610d4
JJ
1890 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
1891 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
1892 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
1893 /* For integer types, if A has a smaller type
1894 than T the result depends on the possible
1895 overflow in P + A.
1896 E.g. T=size_t, A=(unsigned)429497295, P>0.
1897 However, if an overflow in P + A would cause
1898 undefined behavior, we can assume that there
1899 is no overflow. */
1900 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1901 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1902 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
1903 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
d7f44d4d
JJ
1904 (minus (convert @1) (convert @2)))))
1905 (simplify
1906 (minus (convert (pointer_plus @@0 @1))
1907 (convert (pointer_plus @0 @2)))
1908 (if (INTEGRAL_TYPE_P (type)
1909 && TYPE_OVERFLOW_UNDEFINED (type)
1910 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1911 (with { tree utype = unsigned_type_for (type); }
1912 (convert (minus (convert:utype @1) (convert:utype @2))))
1913 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
a8fc2579
RB
1914 /* For pointer types, if the conversion of A to the
1915 final type requires a sign- or zero-extension,
1916 then we have to punt - it is not defined which
1917 one is correct. */
1918 || (POINTER_TYPE_P (TREE_TYPE (@0))
1919 && TREE_CODE (@1) == INTEGER_CST
1920 && tree_int_cst_sign_bit (@1) == 0
1921 && TREE_CODE (@2) == INTEGER_CST
1922 && tree_int_cst_sign_bit (@2) == 0))
d7f44d4d 1923 (minus (convert @1) (convert @2)))))
1af4ebf5
MG
1924 (simplify
1925 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
1926 /* The second argument of pointer_plus must be interpreted as signed, and
1927 thus sign-extended if necessary. */
1928 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
d7f44d4d 1929 (minus (convert (convert:stype @1)) (convert (convert:stype @2)))))))
cc7b5acf
RB
1930
1931
0122e8e5 1932/* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
a7f24614 1933
c6cfa2bf 1934(for minmax (min max FMIN_ALL FMAX_ALL)
a7f24614
RB
1935 (simplify
1936 (minmax @0 @0)
1937 @0))
4a334cba
RS
1938/* min(max(x,y),y) -> y. */
1939(simplify
1940 (min:c (max:c @0 @1) @1)
1941 @1)
1942/* max(min(x,y),y) -> y. */
1943(simplify
1944 (max:c (min:c @0 @1) @1)
1945 @1)
d657e995
RB
1946/* max(a,-a) -> abs(a). */
1947(simplify
1948 (max:c @0 (negate @0))
1949 (if (TREE_CODE (type) != COMPLEX_TYPE
1950 && (! ANY_INTEGRAL_TYPE_P (type)
1951 || TYPE_OVERFLOW_UNDEFINED (type)))
1952 (abs @0)))
54f84ca9
RB
1953/* min(a,-a) -> -abs(a). */
1954(simplify
1955 (min:c @0 (negate @0))
1956 (if (TREE_CODE (type) != COMPLEX_TYPE
1957 && (! ANY_INTEGRAL_TYPE_P (type)
1958 || TYPE_OVERFLOW_UNDEFINED (type)))
1959 (negate (abs @0))))
a7f24614
RB
1960(simplify
1961 (min @0 @1)
2c2870a1
MG
1962 (switch
1963 (if (INTEGRAL_TYPE_P (type)
1964 && TYPE_MIN_VALUE (type)
1965 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
1966 @1)
1967 (if (INTEGRAL_TYPE_P (type)
1968 && TYPE_MAX_VALUE (type)
1969 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
1970 @0)))
a7f24614
RB
1971(simplify
1972 (max @0 @1)
2c2870a1
MG
1973 (switch
1974 (if (INTEGRAL_TYPE_P (type)
1975 && TYPE_MAX_VALUE (type)
1976 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
1977 @1)
1978 (if (INTEGRAL_TYPE_P (type)
1979 && TYPE_MIN_VALUE (type)
1980 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
1981 @0)))
ad6e4ba8 1982
182f37c9
N
1983/* max (a, a + CST) -> a + CST where CST is positive. */
1984/* max (a, a + CST) -> a where CST is negative. */
1985(simplify
1986 (max:c @0 (plus@2 @0 INTEGER_CST@1))
1987 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1988 (if (tree_int_cst_sgn (@1) > 0)
1989 @2
1990 @0)))
1991
1992/* min (a, a + CST) -> a where CST is positive. */
1993/* min (a, a + CST) -> a + CST where CST is negative. */
1994(simplify
1995 (min:c @0 (plus@2 @0 INTEGER_CST@1))
1996 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1997 (if (tree_int_cst_sgn (@1) > 0)
1998 @0
1999 @2)))
2000
ad6e4ba8
BC
2001/* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2002 and the outer convert demotes the expression back to x's type. */
2003(for minmax (min max)
2004 (simplify
2005 (convert (minmax@0 (convert @1) INTEGER_CST@2))
ebf41734
BC
2006 (if (INTEGRAL_TYPE_P (type)
2007 && types_match (@1, type) && int_fits_type_p (@2, type)
ad6e4ba8
BC
2008 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2009 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2010 (minmax @1 (convert @2)))))
2011
c6cfa2bf 2012(for minmax (FMIN_ALL FMAX_ALL)
0122e8e5
RS
2013 /* If either argument is NaN, return the other one. Avoid the
2014 transformation if we get (and honor) a signalling NaN. */
2015 (simplify
2016 (minmax:c @0 REAL_CST@1)
2017 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2018 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2019 @0)))
2020/* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2021 functions to return the numeric arg if the other one is NaN.
2022 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2023 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2024 worry about it either. */
2025(if (flag_finite_math_only)
2026 (simplify
c6cfa2bf 2027 (FMIN_ALL @0 @1)
0122e8e5 2028 (min @0 @1))
4119b2eb 2029 (simplify
c6cfa2bf 2030 (FMAX_ALL @0 @1)
0122e8e5 2031 (max @0 @1)))
ce0e66ff 2032/* min (-A, -B) -> -max (A, B) */
c6cfa2bf
MM
2033(for minmax (min max FMIN_ALL FMAX_ALL)
2034 maxmin (max min FMAX_ALL FMIN_ALL)
ce0e66ff
MG
2035 (simplify
2036 (minmax (negate:s@2 @0) (negate:s@3 @1))
2037 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2038 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2039 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2040 (negate (maxmin @0 @1)))))
2041/* MIN (~X, ~Y) -> ~MAX (X, Y)
2042 MAX (~X, ~Y) -> ~MIN (X, Y) */
2043(for minmax (min max)
2044 maxmin (max min)
2045 (simplify
2046 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2047 (bit_not (maxmin @0 @1))))
a7f24614 2048
b4817bd6
MG
2049/* MIN (X, Y) == X -> X <= Y */
2050(for minmax (min min max max)
2051 cmp (eq ne eq ne )
2052 out (le gt ge lt )
2053 (simplify
2054 (cmp:c (minmax:c @0 @1) @0)
2055 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2056 (out @0 @1))))
2057/* MIN (X, 5) == 0 -> X == 0
2058 MIN (X, 5) == 7 -> false */
2059(for cmp (eq ne)
2060 (simplify
2061 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
8e6cdc90
RS
2062 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2063 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6 2064 { constant_boolean_node (cmp == NE_EXPR, type); }
8e6cdc90
RS
2065 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2066 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6
MG
2067 (cmp @0 @2)))))
2068(for cmp (eq ne)
2069 (simplify
2070 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
8e6cdc90
RS
2071 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2072 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6 2073 { constant_boolean_node (cmp == NE_EXPR, type); }
8e6cdc90
RS
2074 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2075 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6
MG
2076 (cmp @0 @2)))))
2077/* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2078(for minmax (min min max max min min max max )
2079 cmp (lt le gt ge gt ge lt le )
2080 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2081 (simplify
2082 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2083 (comb (cmp @0 @2) (cmp @1 @2))))
2084
a7f24614
RB
2085/* Simplifications of shift and rotates. */
2086
2087(for rotate (lrotate rrotate)
2088 (simplify
2089 (rotate integer_all_onesp@0 @1)
2090 @0))
2091
2092/* Optimize -1 >> x for arithmetic right shifts. */
2093(simplify
2094 (rshift integer_all_onesp@0 @1)
2095 (if (!TYPE_UNSIGNED (type)
2096 && tree_expr_nonnegative_p (@1))
2097 @0))
2098
12085390
N
2099/* Optimize (x >> c) << c into x & (-1<<c). */
2100(simplify
2101 (lshift (rshift @0 INTEGER_CST@1) @1)
8e6cdc90 2102 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
12085390
N
2103 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2104
2105/* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2106 types. */
2107(simplify
2108 (rshift (lshift @0 INTEGER_CST@1) @1)
2109 (if (TYPE_UNSIGNED (type)
8e6cdc90 2110 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
12085390
N
2111 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2112
a7f24614
RB
2113(for shiftrotate (lrotate rrotate lshift rshift)
2114 (simplify
2115 (shiftrotate @0 integer_zerop)
2116 (non_lvalue @0))
2117 (simplify
2118 (shiftrotate integer_zerop@0 @1)
2119 @0)
2120 /* Prefer vector1 << scalar to vector1 << vector2
2121 if vector2 is uniform. */
2122 (for vec (VECTOR_CST CONSTRUCTOR)
2123 (simplify
2124 (shiftrotate @0 vec@1)
2125 (with { tree tem = uniform_vector_p (@1); }
2126 (if (tem)
2127 (shiftrotate @0 { tem; }))))))
2128
165ba2e9
JJ
2129/* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2130 Y is 0. Similarly for X >> Y. */
2131#if GIMPLE
2132(for shift (lshift rshift)
2133 (simplify
2134 (shift @0 SSA_NAME@1)
2135 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2136 (with {
2137 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2138 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2139 }
2140 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2141 @0)))))
2142#endif
2143
a7f24614
RB
2144/* Rewrite an LROTATE_EXPR by a constant into an
2145 RROTATE_EXPR by a new constant. */
2146(simplify
2147 (lrotate @0 INTEGER_CST@1)
23f27839 2148 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
a7f24614
RB
2149 build_int_cst (TREE_TYPE (@1),
2150 element_precision (type)), @1); }))
2151
14ea9f92
RB
2152/* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2153(for op (lrotate rrotate rshift lshift)
2154 (simplify
2155 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2156 (with { unsigned int prec = element_precision (type); }
8e6cdc90
RS
2157 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2158 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2159 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2160 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
a1488398
RS
2161 (with { unsigned int low = (tree_to_uhwi (@1)
2162 + tree_to_uhwi (@2)); }
14ea9f92
RB
2163 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2164 being well defined. */
2165 (if (low >= prec)
2166 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
8fdc6c67 2167 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
50301115 2168 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
8fdc6c67
RB
2169 { build_zero_cst (type); }
2170 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2171 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
14ea9f92
RB
2172
2173
01ada710
MP
2174/* ((1 << A) & 1) != 0 -> A == 0
2175 ((1 << A) & 1) == 0 -> A != 0 */
2176(for cmp (ne eq)
2177 icmp (eq ne)
2178 (simplify
2179 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2180 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
cc7b5acf 2181
f2e609c3
MP
2182/* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2183 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2184 if CST2 != 0. */
2185(for cmp (ne eq)
2186 (simplify
2187 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
8e6cdc90 2188 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
f2e609c3
MP
2189 (if (cand < 0
2190 || (!integer_zerop (@2)
8e6cdc90 2191 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
8fdc6c67
RB
2192 { constant_boolean_node (cmp == NE_EXPR, type); }
2193 (if (!integer_zerop (@2)
8e6cdc90 2194 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
8fdc6c67 2195 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
f2e609c3 2196
1ffbaa3f
RB
2197/* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2198 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2199 if the new mask might be further optimized. */
2200(for shift (lshift rshift)
2201 (simplify
44fc0a51
RB
2202 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2203 INTEGER_CST@2)
1ffbaa3f
RB
2204 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2205 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2206 && tree_fits_uhwi_p (@1)
2207 && tree_to_uhwi (@1) > 0
2208 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2209 (with
2210 {
2211 unsigned int shiftc = tree_to_uhwi (@1);
2212 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2213 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2214 tree shift_type = TREE_TYPE (@3);
2215 unsigned int prec;
2216
2217 if (shift == LSHIFT_EXPR)
fecfbfa4 2218 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
1ffbaa3f 2219 else if (shift == RSHIFT_EXPR
2be65d9e 2220 && type_has_mode_precision_p (shift_type))
1ffbaa3f
RB
2221 {
2222 prec = TYPE_PRECISION (TREE_TYPE (@3));
2223 tree arg00 = @0;
2224 /* See if more bits can be proven as zero because of
2225 zero extension. */
2226 if (@3 != @0
2227 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2228 {
2229 tree inner_type = TREE_TYPE (@0);
2be65d9e 2230 if (type_has_mode_precision_p (inner_type)
1ffbaa3f
RB
2231 && TYPE_PRECISION (inner_type) < prec)
2232 {
2233 prec = TYPE_PRECISION (inner_type);
2234 /* See if we can shorten the right shift. */
2235 if (shiftc < prec)
2236 shift_type = inner_type;
2237 /* Otherwise X >> C1 is all zeros, so we'll optimize
2238 it into (X, 0) later on by making sure zerobits
2239 is all ones. */
2240 }
2241 }
dd4786fe 2242 zerobits = HOST_WIDE_INT_M1U;
1ffbaa3f
RB
2243 if (shiftc < prec)
2244 {
2245 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2246 zerobits <<= prec - shiftc;
2247 }
2248 /* For arithmetic shift if sign bit could be set, zerobits
2249 can contain actually sign bits, so no transformation is
2250 possible, unless MASK masks them all away. In that
2251 case the shift needs to be converted into logical shift. */
2252 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2253 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2254 {
2255 if ((mask & zerobits) == 0)
2256 shift_type = unsigned_type_for (TREE_TYPE (@3));
2257 else
2258 zerobits = 0;
2259 }
2260 }
2261 }
2262 /* ((X << 16) & 0xff00) is (X, 0). */
2263 (if ((mask & zerobits) == mask)
8fdc6c67
RB
2264 { build_int_cst (type, 0); }
2265 (with { newmask = mask | zerobits; }
2266 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2267 (with
2268 {
2269 /* Only do the transformation if NEWMASK is some integer
2270 mode's mask. */
2271 for (prec = BITS_PER_UNIT;
2272 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
fecfbfa4 2273 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
8fdc6c67
RB
2274 break;
2275 }
2276 (if (prec < HOST_BITS_PER_WIDE_INT
dd4786fe 2277 || newmask == HOST_WIDE_INT_M1U)
8fdc6c67
RB
2278 (with
2279 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2280 (if (!tree_int_cst_equal (newmaskt, @2))
2281 (if (shift_type != TREE_TYPE (@3))
2282 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2283 (bit_and @4 { newmaskt; })))))))))))))
1ffbaa3f 2284
84ff66b8
AV
2285/* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2286 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
98e30e51 2287(for shift (lshift rshift)
84ff66b8
AV
2288 (for bit_op (bit_and bit_xor bit_ior)
2289 (simplify
2290 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2291 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2292 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2293 (bit_op (shift (convert @0) @1) { mask; }))))))
98e30e51 2294
ad1d92ab
MM
2295/* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2296(simplify
2297 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2298 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
ece46666
MG
2299 && (element_precision (TREE_TYPE (@0))
2300 <= element_precision (TREE_TYPE (@1))
2301 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
ad1d92ab
MM
2302 (with
2303 { tree shift_type = TREE_TYPE (@0); }
2304 (convert (rshift (convert:shift_type @1) @2)))))
2305
2306/* ~(~X >>r Y) -> X >>r Y
2307 ~(~X <<r Y) -> X <<r Y */
2308(for rotate (lrotate rrotate)
2309 (simplify
2310 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
ece46666
MG
2311 (if ((element_precision (TREE_TYPE (@0))
2312 <= element_precision (TREE_TYPE (@1))
2313 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2314 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2315 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
ad1d92ab
MM
2316 (with
2317 { tree rotate_type = TREE_TYPE (@0); }
2318 (convert (rotate (convert:rotate_type @1) @2))))))
98e30e51 2319
d4573ffe
RB
2320/* Simplifications of conversions. */
2321
2322/* Basic strip-useless-type-conversions / strip_nops. */
f3582e54 2323(for cvt (convert view_convert float fix_trunc)
d4573ffe
RB
2324 (simplify
2325 (cvt @0)
2326 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2327 || (GENERIC && type == TREE_TYPE (@0)))
2328 @0)))
2329
2330/* Contract view-conversions. */
2331(simplify
2332 (view_convert (view_convert @0))
2333 (view_convert @0))
2334
2335/* For integral conversions with the same precision or pointer
2336 conversions use a NOP_EXPR instead. */
2337(simplify
2338 (view_convert @0)
2339 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2340 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2341 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2342 (convert @0)))
2343
bce8ef71
MG
2344/* Strip inner integral conversions that do not change precision or size, or
2345 zero-extend while keeping the same size (for bool-to-char). */
d4573ffe
RB
2346(simplify
2347 (view_convert (convert@0 @1))
2348 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2349 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
bce8ef71
MG
2350 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2351 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2352 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2353 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
d4573ffe
RB
2354 (view_convert @1)))
2355
2356/* Re-association barriers around constants and other re-association
2357 barriers can be removed. */
2358(simplify
2359 (paren CONSTANT_CLASS_P@0)
2360 @0)
2361(simplify
2362 (paren (paren@1 @0))
2363 @1)
1e51d0a2
RB
2364
2365/* Handle cases of two conversions in a row. */
2366(for ocvt (convert float fix_trunc)
2367 (for icvt (convert float)
2368 (simplify
2369 (ocvt (icvt@1 @0))
2370 (with
2371 {
2372 tree inside_type = TREE_TYPE (@0);
2373 tree inter_type = TREE_TYPE (@1);
2374 int inside_int = INTEGRAL_TYPE_P (inside_type);
2375 int inside_ptr = POINTER_TYPE_P (inside_type);
2376 int inside_float = FLOAT_TYPE_P (inside_type);
09240451 2377 int inside_vec = VECTOR_TYPE_P (inside_type);
1e51d0a2
RB
2378 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2379 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2380 int inter_int = INTEGRAL_TYPE_P (inter_type);
2381 int inter_ptr = POINTER_TYPE_P (inter_type);
2382 int inter_float = FLOAT_TYPE_P (inter_type);
09240451 2383 int inter_vec = VECTOR_TYPE_P (inter_type);
1e51d0a2
RB
2384 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2385 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2386 int final_int = INTEGRAL_TYPE_P (type);
2387 int final_ptr = POINTER_TYPE_P (type);
2388 int final_float = FLOAT_TYPE_P (type);
09240451 2389 int final_vec = VECTOR_TYPE_P (type);
1e51d0a2
RB
2390 unsigned int final_prec = TYPE_PRECISION (type);
2391 int final_unsignedp = TYPE_UNSIGNED (type);
2392 }
64d3a1f0
RB
2393 (switch
2394 /* In addition to the cases of two conversions in a row
2395 handled below, if we are converting something to its own
2396 type via an object of identical or wider precision, neither
2397 conversion is needed. */
2398 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2399 || (GENERIC
2400 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2401 && (((inter_int || inter_ptr) && final_int)
2402 || (inter_float && final_float))
2403 && inter_prec >= final_prec)
2404 (ocvt @0))
2405
2406 /* Likewise, if the intermediate and initial types are either both
2407 float or both integer, we don't need the middle conversion if the
2408 former is wider than the latter and doesn't change the signedness
2409 (for integers). Avoid this if the final type is a pointer since
36088299 2410 then we sometimes need the middle conversion. */
64d3a1f0
RB
2411 (if (((inter_int && inside_int) || (inter_float && inside_float))
2412 && (final_int || final_float)
2413 && inter_prec >= inside_prec
36088299 2414 && (inter_float || inter_unsignedp == inside_unsignedp))
64d3a1f0
RB
2415 (ocvt @0))
2416
2417 /* If we have a sign-extension of a zero-extended value, we can
2418 replace that by a single zero-extension. Likewise if the
2419 final conversion does not change precision we can drop the
2420 intermediate conversion. */
2421 (if (inside_int && inter_int && final_int
2422 && ((inside_prec < inter_prec && inter_prec < final_prec
2423 && inside_unsignedp && !inter_unsignedp)
2424 || final_prec == inter_prec))
2425 (ocvt @0))
2426
2427 /* Two conversions in a row are not needed unless:
1e51d0a2
RB
2428 - some conversion is floating-point (overstrict for now), or
2429 - some conversion is a vector (overstrict for now), or
2430 - the intermediate type is narrower than both initial and
2431 final, or
2432 - the intermediate type and innermost type differ in signedness,
2433 and the outermost type is wider than the intermediate, or
2434 - the initial type is a pointer type and the precisions of the
2435 intermediate and final types differ, or
2436 - the final type is a pointer type and the precisions of the
2437 initial and intermediate types differ. */
64d3a1f0
RB
2438 (if (! inside_float && ! inter_float && ! final_float
2439 && ! inside_vec && ! inter_vec && ! final_vec
2440 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2441 && ! (inside_int && inter_int
2442 && inter_unsignedp != inside_unsignedp
2443 && inter_prec < final_prec)
2444 && ((inter_unsignedp && inter_prec > inside_prec)
2445 == (final_unsignedp && final_prec > inter_prec))
2446 && ! (inside_ptr && inter_prec != final_prec)
36088299 2447 && ! (final_ptr && inside_prec != inter_prec))
64d3a1f0
RB
2448 (ocvt @0))
2449
2450 /* A truncation to an unsigned type (a zero-extension) should be
2451 canonicalized as bitwise and of a mask. */
1d510e04
JJ
2452 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2453 && final_int && inter_int && inside_int
64d3a1f0
RB
2454 && final_prec == inside_prec
2455 && final_prec > inter_prec
2456 && inter_unsignedp)
2457 (convert (bit_and @0 { wide_int_to_tree
2458 (inside_type,
2459 wi::mask (inter_prec, false,
2460 TYPE_PRECISION (inside_type))); })))
2461
2462 /* If we are converting an integer to a floating-point that can
2463 represent it exactly and back to an integer, we can skip the
2464 floating-point conversion. */
2465 (if (GIMPLE /* PR66211 */
2466 && inside_int && inter_float && final_int &&
2467 (unsigned) significand_size (TYPE_MODE (inter_type))
2468 >= inside_prec - !inside_unsignedp)
2469 (convert @0)))))))
ea2042ba
RB
2470
2471/* If we have a narrowing conversion to an integral type that is fed by a
2472 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2473 masks off bits outside the final type (and nothing else). */
2474(simplify
2475 (convert (bit_and @0 INTEGER_CST@1))
2476 (if (INTEGRAL_TYPE_P (type)
2477 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2478 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2479 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2480 TYPE_PRECISION (type)), 0))
2481 (convert @0)))
a25454ea
RB
2482
2483
2484/* (X /[ex] A) * A -> X. */
2485(simplify
2eef1fc1
RB
2486 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2487 (convert @0))
eaeba53a 2488
a7f24614
RB
2489/* Canonicalization of binary operations. */
2490
2491/* Convert X + -C into X - C. */
2492(simplify
2493 (plus @0 REAL_CST@1)
2494 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
23f27839 2495 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
a7f24614
RB
2496 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2497 (minus @0 { tem; })))))
2498
6b6aa8d3 2499/* Convert x+x into x*2. */
a7f24614
RB
2500(simplify
2501 (plus @0 @0)
2502 (if (SCALAR_FLOAT_TYPE_P (type))
6b6aa8d3
MG
2503 (mult @0 { build_real (type, dconst2); })
2504 (if (INTEGRAL_TYPE_P (type))
2505 (mult @0 { build_int_cst (type, 2); }))))
a7f24614 2506
406520e2 2507/* 0 - X -> -X. */
a7f24614
RB
2508(simplify
2509 (minus integer_zerop @1)
2510 (negate @1))
406520e2
MG
2511(simplify
2512 (pointer_diff integer_zerop @1)
2513 (negate (convert @1)))
a7f24614
RB
2514
2515/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2516 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2517 (-ARG1 + ARG0) reduces to -ARG1. */
2518(simplify
2519 (minus real_zerop@0 @1)
2520 (if (fold_real_zero_addition_p (type, @0, 0))
2521 (negate @1)))
2522
2523/* Transform x * -1 into -x. */
2524(simplify
2525 (mult @0 integer_minus_onep)
2526 (negate @0))
eaeba53a 2527
b771c609
AM
2528/* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2529 signed overflow for CST != 0 && CST != -1. */
2530(simplify
2531 (mult:c (mult:s @0 INTEGER_CST@1) @2)
2532 (if (TREE_CODE (@2) != INTEGER_CST
2533 && !integer_zerop (@1) && !integer_minus_onep (@1))
2534 (mult (mult @0 @2) @1)))
2535
96285749
RS
2536/* True if we can easily extract the real and imaginary parts of a complex
2537 number. */
2538(match compositional_complex
2539 (convert? (complex @0 @1)))
2540
eaeba53a
RB
2541/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2542(simplify
2543 (complex (realpart @0) (imagpart @0))
2544 @0)
2545(simplify
2546 (realpart (complex @0 @1))
2547 @0)
2548(simplify
2549 (imagpart (complex @0 @1))
2550 @1)
83633539 2551
77c028c5
MG
2552/* Sometimes we only care about half of a complex expression. */
2553(simplify
2554 (realpart (convert?:s (conj:s @0)))
2555 (convert (realpart @0)))
2556(simplify
2557 (imagpart (convert?:s (conj:s @0)))
2558 (convert (negate (imagpart @0))))
2559(for part (realpart imagpart)
2560 (for op (plus minus)
2561 (simplify
2562 (part (convert?:s@2 (op:s @0 @1)))
2563 (convert (op (part @0) (part @1))))))
2564(simplify
2565 (realpart (convert?:s (CEXPI:s @0)))
2566 (convert (COS @0)))
2567(simplify
2568 (imagpart (convert?:s (CEXPI:s @0)))
2569 (convert (SIN @0)))
2570
2571/* conj(conj(x)) -> x */
2572(simplify
2573 (conj (convert? (conj @0)))
2574 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2575 (convert @0)))
2576
2577/* conj({x,y}) -> {x,-y} */
2578(simplify
2579 (conj (convert?:s (complex:s @0 @1)))
2580 (with { tree itype = TREE_TYPE (type); }
2581 (complex (convert:itype @0) (negate (convert:itype @1)))))
83633539
RB
2582
2583/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2584(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2585 (simplify
2586 (bswap (bswap @0))
2587 @0)
2588 (simplify
2589 (bswap (bit_not (bswap @0)))
2590 (bit_not @0))
2591 (for bitop (bit_xor bit_ior bit_and)
2592 (simplify
2593 (bswap (bitop:c (bswap @0) @1))
2594 (bitop @0 (bswap @1)))))
96994de0
RB
2595
2596
2597/* Combine COND_EXPRs and VEC_COND_EXPRs. */
2598
2599/* Simplify constant conditions.
2600 Only optimize constant conditions when the selected branch
2601 has the same type as the COND_EXPR. This avoids optimizing
2602 away "c ? x : throw", where the throw has a void type.
2603 Note that we cannot throw away the fold-const.c variant nor
2604 this one as we depend on doing this transform before possibly
2605 A ? B : B -> B triggers and the fold-const.c one can optimize
2606 0 ? A : B to B even if A has side-effects. Something
2607 genmatch cannot handle. */
2608(simplify
2609 (cond INTEGER_CST@0 @1 @2)
8fdc6c67
RB
2610 (if (integer_zerop (@0))
2611 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2612 @2)
2613 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2614 @1)))
96994de0
RB
2615(simplify
2616 (vec_cond VECTOR_CST@0 @1 @2)
2617 (if (integer_all_onesp (@0))
8fdc6c67
RB
2618 @1
2619 (if (integer_zerop (@0))
2620 @2)))
96994de0 2621
b5481987
BC
2622/* Simplification moved from fold_cond_expr_with_comparison. It may also
2623 be extended. */
e2535011
BC
2624/* This pattern implements two kinds simplification:
2625
2626 Case 1)
2627 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
b5481987
BC
2628 1) Conversions are type widening from smaller type.
2629 2) Const c1 equals to c2 after canonicalizing comparison.
2630 3) Comparison has tree code LT, LE, GT or GE.
2631 This specific pattern is needed when (cmp (convert x) c) may not
2632 be simplified by comparison patterns because of multiple uses of
2633 x. It also makes sense here because simplifying across multiple
e2535011
BC
2634 referred var is always benefitial for complicated cases.
2635
2636 Case 2)
2637 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2638(for cmp (lt le gt ge eq)
b5481987 2639 (simplify
ae22bc5d 2640 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
b5481987
BC
2641 (with
2642 {
2643 tree from_type = TREE_TYPE (@1);
2644 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
ae22bc5d 2645 enum tree_code code = ERROR_MARK;
b5481987 2646
ae22bc5d
BC
2647 if (INTEGRAL_TYPE_P (from_type)
2648 && int_fits_type_p (@2, from_type)
b5481987
BC
2649 && (types_match (c1_type, from_type)
2650 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2651 && (TYPE_UNSIGNED (from_type)
2652 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2653 && (types_match (c2_type, from_type)
2654 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2655 && (TYPE_UNSIGNED (from_type)
2656 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2657 {
ae22bc5d 2658 if (cmp != EQ_EXPR)
b5481987 2659 {
e2535011
BC
2660 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2661 {
2662 /* X <= Y - 1 equals to X < Y. */
ae22bc5d 2663 if (cmp == LE_EXPR)
e2535011
BC
2664 code = LT_EXPR;
2665 /* X > Y - 1 equals to X >= Y. */
ae22bc5d 2666 if (cmp == GT_EXPR)
e2535011
BC
2667 code = GE_EXPR;
2668 }
2669 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2670 {
2671 /* X < Y + 1 equals to X <= Y. */
ae22bc5d 2672 if (cmp == LT_EXPR)
e2535011
BC
2673 code = LE_EXPR;
2674 /* X >= Y + 1 equals to X > Y. */
ae22bc5d 2675 if (cmp == GE_EXPR)
e2535011
BC
2676 code = GT_EXPR;
2677 }
ae22bc5d
BC
2678 if (code != ERROR_MARK
2679 || wi::to_widest (@2) == wi::to_widest (@3))
e2535011 2680 {
ae22bc5d 2681 if (cmp == LT_EXPR || cmp == LE_EXPR)
e2535011 2682 code = MIN_EXPR;
ae22bc5d 2683 if (cmp == GT_EXPR || cmp == GE_EXPR)
e2535011
BC
2684 code = MAX_EXPR;
2685 }
b5481987 2686 }
e2535011 2687 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
ae22bc5d
BC
2688 else if (int_fits_type_p (@3, from_type))
2689 code = EQ_EXPR;
b5481987
BC
2690 }
2691 }
2692 (if (code == MAX_EXPR)
21aaaf1e 2693 (convert (max @1 (convert @2)))
b5481987 2694 (if (code == MIN_EXPR)
21aaaf1e 2695 (convert (min @1 (convert @2)))
e2535011 2696 (if (code == EQ_EXPR)
ae22bc5d 2697 (convert (cond (eq @1 (convert @3))
21aaaf1e 2698 (convert:from_type @3) (convert:from_type @2)))))))))
b5481987 2699
714445ae
BC
2700/* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2701
2702 1) OP is PLUS or MINUS.
2703 2) CMP is LT, LE, GT or GE.
2704 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2705
2706 This pattern also handles special cases like:
2707
2708 A) Operand x is a unsigned to signed type conversion and c1 is
2709 integer zero. In this case,
2710 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2711 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2712 B) Const c1 may not equal to (C3 op' C2). In this case we also
2713 check equality for (c1+1) and (c1-1) by adjusting comparison
2714 code.
2715
2716 TODO: Though signed type is handled by this pattern, it cannot be
2717 simplified at the moment because C standard requires additional
2718 type promotion. In order to match&simplify it here, the IR needs
2719 to be cleaned up by other optimizers, i.e, VRP. */
2720(for op (plus minus)
2721 (for cmp (lt le gt ge)
2722 (simplify
2723 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2724 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2725 (if (types_match (from_type, to_type)
2726 /* Check if it is special case A). */
2727 || (TYPE_UNSIGNED (from_type)
2728 && !TYPE_UNSIGNED (to_type)
2729 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2730 && integer_zerop (@1)
2731 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2732 (with
2733 {
2734 bool overflow = false;
2735 enum tree_code code, cmp_code = cmp;
8e6cdc90
RS
2736 wide_int real_c1;
2737 wide_int c1 = wi::to_wide (@1);
2738 wide_int c2 = wi::to_wide (@2);
2739 wide_int c3 = wi::to_wide (@3);
714445ae
BC
2740 signop sgn = TYPE_SIGN (from_type);
2741
2742 /* Handle special case A), given x of unsigned type:
2743 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2744 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2745 if (!types_match (from_type, to_type))
2746 {
2747 if (cmp_code == LT_EXPR)
2748 cmp_code = GT_EXPR;
2749 if (cmp_code == GE_EXPR)
2750 cmp_code = LE_EXPR;
2751 c1 = wi::max_value (to_type);
2752 }
2753 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
2754 compute (c3 op' c2) and check if it equals to c1 with op' being
2755 the inverted operator of op. Make sure overflow doesn't happen
2756 if it is undefined. */
2757 if (op == PLUS_EXPR)
2758 real_c1 = wi::sub (c3, c2, sgn, &overflow);
2759 else
2760 real_c1 = wi::add (c3, c2, sgn, &overflow);
2761
2762 code = cmp_code;
2763 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2764 {
2765 /* Check if c1 equals to real_c1. Boundary condition is handled
2766 by adjusting comparison operation if necessary. */
2767 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2768 && !overflow)
2769 {
2770 /* X <= Y - 1 equals to X < Y. */
2771 if (cmp_code == LE_EXPR)
2772 code = LT_EXPR;
2773 /* X > Y - 1 equals to X >= Y. */
2774 if (cmp_code == GT_EXPR)
2775 code = GE_EXPR;
2776 }
2777 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
2778 && !overflow)
2779 {
2780 /* X < Y + 1 equals to X <= Y. */
2781 if (cmp_code == LT_EXPR)
2782 code = LE_EXPR;
2783 /* X >= Y + 1 equals to X > Y. */
2784 if (cmp_code == GE_EXPR)
2785 code = GT_EXPR;
2786 }
2787 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
2788 {
2789 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
2790 code = MIN_EXPR;
2791 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
2792 code = MAX_EXPR;
2793 }
2794 }
2795 }
2796 (if (code == MAX_EXPR)
2797 (op (max @X { wide_int_to_tree (from_type, real_c1); })
2798 { wide_int_to_tree (from_type, c2); })
2799 (if (code == MIN_EXPR)
2800 (op (min @X { wide_int_to_tree (from_type, real_c1); })
2801 { wide_int_to_tree (from_type, c2); })))))))))
2802
96994de0
RB
2803(for cnd (cond vec_cond)
2804 /* A ? B : (A ? X : C) -> A ? B : C. */
2805 (simplify
2806 (cnd @0 (cnd @0 @1 @2) @3)
2807 (cnd @0 @1 @3))
2808 (simplify
2809 (cnd @0 @1 (cnd @0 @2 @3))
2810 (cnd @0 @1 @3))
24a179f8
RB
2811 /* A ? B : (!A ? C : X) -> A ? B : C. */
2812 /* ??? This matches embedded conditions open-coded because genmatch
2813 would generate matching code for conditions in separate stmts only.
2814 The following is still important to merge then and else arm cases
2815 from if-conversion. */
2816 (simplify
2817 (cnd @0 @1 (cnd @2 @3 @4))
2818 (if (COMPARISON_CLASS_P (@0)
2819 && COMPARISON_CLASS_P (@2)
2820 && invert_tree_comparison
2821 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@2)
2822 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@2, 0), 0)
2823 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@2, 1), 0))
2824 (cnd @0 @1 @3)))
2825 (simplify
2826 (cnd @0 (cnd @1 @2 @3) @4)
2827 (if (COMPARISON_CLASS_P (@0)
2828 && COMPARISON_CLASS_P (@1)
2829 && invert_tree_comparison
2830 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@1)
2831 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@1, 0), 0)
2832 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@1, 1), 0))
2833 (cnd @0 @3 @4)))
96994de0
RB
2834
2835 /* A ? B : B -> B. */
2836 (simplify
2837 (cnd @0 @1 @1)
09240451 2838 @1)
96994de0 2839
09240451
MG
2840 /* !A ? B : C -> A ? C : B. */
2841 (simplify
2842 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
2843 (cnd @0 @2 @1)))
f84e7fd6 2844
a3ca1bc5
RB
2845/* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
2846 return all -1 or all 0 results. */
f43d102e
RS
2847/* ??? We could instead convert all instances of the vec_cond to negate,
2848 but that isn't necessarily a win on its own. */
2849(simplify
a3ca1bc5 2850 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
f43d102e 2851 (if (VECTOR_TYPE_P (type)
4d8989d5 2852 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1))
f43d102e 2853 && (TYPE_MODE (TREE_TYPE (type))
4d8989d5 2854 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
a3ca1bc5 2855 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
f43d102e 2856
a3ca1bc5 2857/* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
f43d102e 2858(simplify
a3ca1bc5 2859 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
f43d102e 2860 (if (VECTOR_TYPE_P (type)
4d8989d5 2861 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1))
f43d102e 2862 && (TYPE_MODE (TREE_TYPE (type))
4d8989d5 2863 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
a3ca1bc5 2864 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
f84e7fd6 2865
2ee05f1e 2866
f84e7fd6
RB
2867/* Simplifications of comparisons. */
2868
24f1db9c
RB
2869/* See if we can reduce the magnitude of a constant involved in a
2870 comparison by changing the comparison code. This is a canonicalization
2871 formerly done by maybe_canonicalize_comparison_1. */
2872(for cmp (le gt)
2873 acmp (lt ge)
2874 (simplify
2875 (cmp @0 INTEGER_CST@1)
2876 (if (tree_int_cst_sgn (@1) == -1)
8e6cdc90 2877 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
24f1db9c
RB
2878(for cmp (ge lt)
2879 acmp (gt le)
2880 (simplify
2881 (cmp @0 INTEGER_CST@1)
2882 (if (tree_int_cst_sgn (@1) == 1)
8e6cdc90 2883 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
24f1db9c
RB
2884
2885
f84e7fd6
RB
2886/* We can simplify a logical negation of a comparison to the
2887 inverted comparison. As we cannot compute an expression
2888 operator using invert_tree_comparison we have to simulate
2889 that with expression code iteration. */
2890(for cmp (tcc_comparison)
2891 icmp (inverted_tcc_comparison)
2892 ncmp (inverted_tcc_comparison_with_nans)
2893 /* Ideally we'd like to combine the following two patterns
2894 and handle some more cases by using
2895 (logical_inverted_value (cmp @0 @1))
2896 here but for that genmatch would need to "inline" that.
2897 For now implement what forward_propagate_comparison did. */
2898 (simplify
2899 (bit_not (cmp @0 @1))
2900 (if (VECTOR_TYPE_P (type)
2901 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
2902 /* Comparison inversion may be impossible for trapping math,
2903 invert_tree_comparison will tell us. But we can't use
2904 a computed operator in the replacement tree thus we have
2905 to play the trick below. */
2906 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 2907 (cmp, HONOR_NANS (@0)); }
f84e7fd6 2908 (if (ic == icmp)
8fdc6c67
RB
2909 (icmp @0 @1)
2910 (if (ic == ncmp)
2911 (ncmp @0 @1))))))
f84e7fd6 2912 (simplify
09240451
MG
2913 (bit_xor (cmp @0 @1) integer_truep)
2914 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 2915 (cmp, HONOR_NANS (@0)); }
09240451 2916 (if (ic == icmp)
8fdc6c67
RB
2917 (icmp @0 @1)
2918 (if (ic == ncmp)
2919 (ncmp @0 @1))))))
e18c1d66 2920
2ee05f1e
RB
2921/* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
2922 ??? The transformation is valid for the other operators if overflow
2923 is undefined for the type, but performing it here badly interacts
2924 with the transformation in fold_cond_expr_with_comparison which
2925 attempts to synthetize ABS_EXPR. */
2926(for cmp (eq ne)
1af4ebf5
MG
2927 (for sub (minus pointer_diff)
2928 (simplify
2929 (cmp (sub@2 @0 @1) integer_zerop)
2930 (if (single_use (@2))
2931 (cmp @0 @1)))))
2ee05f1e
RB
2932
2933/* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
2934 signed arithmetic case. That form is created by the compiler
2935 often enough for folding it to be of value. One example is in
2936 computing loop trip counts after Operator Strength Reduction. */
07cdc2b8
RB
2937(for cmp (simple_comparison)
2938 scmp (swapped_simple_comparison)
2ee05f1e 2939 (simplify
bc6e9db4 2940 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
2ee05f1e
RB
2941 /* Handle unfolded multiplication by zero. */
2942 (if (integer_zerop (@1))
8fdc6c67
RB
2943 (cmp @1 @2)
2944 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
bc6e9db4
RB
2945 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2946 && single_use (@3))
8fdc6c67
RB
2947 /* If @1 is negative we swap the sense of the comparison. */
2948 (if (tree_int_cst_sgn (@1) < 0)
2949 (scmp @0 @2)
2950 (cmp @0 @2))))))
2ee05f1e
RB
2951
2952/* Simplify comparison of something with itself. For IEEE
2953 floating-point, we can only do some of these simplifications. */
287f8f17 2954(for cmp (eq ge le)
2ee05f1e
RB
2955 (simplify
2956 (cmp @0 @0)
287f8f17 2957 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
b9407883 2958 || ! HONOR_NANS (@0))
287f8f17
RB
2959 { constant_boolean_node (true, type); }
2960 (if (cmp != EQ_EXPR)
2961 (eq @0 @0)))))
2ee05f1e
RB
2962(for cmp (ne gt lt)
2963 (simplify
2964 (cmp @0 @0)
2965 (if (cmp != NE_EXPR
2966 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
b9407883 2967 || ! HONOR_NANS (@0))
2ee05f1e 2968 { constant_boolean_node (false, type); })))
b5d3d787
RB
2969(for cmp (unle unge uneq)
2970 (simplify
2971 (cmp @0 @0)
2972 { constant_boolean_node (true, type); }))
dd53d197
MG
2973(for cmp (unlt ungt)
2974 (simplify
2975 (cmp @0 @0)
2976 (unordered @0 @0)))
b5d3d787
RB
2977(simplify
2978 (ltgt @0 @0)
2979 (if (!flag_trapping_math)
2980 { constant_boolean_node (false, type); }))
2ee05f1e
RB
2981
2982/* Fold ~X op ~Y as Y op X. */
07cdc2b8 2983(for cmp (simple_comparison)
2ee05f1e 2984 (simplify
7fe996ba
RB
2985 (cmp (bit_not@2 @0) (bit_not@3 @1))
2986 (if (single_use (@2) && single_use (@3))
2987 (cmp @1 @0))))
2ee05f1e
RB
2988
2989/* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
07cdc2b8
RB
2990(for cmp (simple_comparison)
2991 scmp (swapped_simple_comparison)
2ee05f1e 2992 (simplify
7fe996ba
RB
2993 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
2994 (if (single_use (@2)
2995 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
2ee05f1e
RB
2996 (scmp @0 (bit_not @1)))))
2997
07cdc2b8
RB
2998(for cmp (simple_comparison)
2999 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3000 (simplify
3001 (cmp (convert@2 @0) (convert? @1))
3002 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3003 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3004 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3005 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3006 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3007 (with
3008 {
3009 tree type1 = TREE_TYPE (@1);
3010 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3011 {
3012 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3013 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3014 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3015 type1 = float_type_node;
3016 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3017 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3018 type1 = double_type_node;
3019 }
3020 tree newtype
3021 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3022 ? TREE_TYPE (@0) : type1);
3023 }
3024 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3025 (cmp (convert:newtype @0) (convert:newtype @1))))))
3026
3027 (simplify
3028 (cmp @0 REAL_CST@1)
3029 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
64d3a1f0
RB
3030 (switch
3031 /* a CMP (-0) -> a CMP 0 */
3032 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3033 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3034 /* x != NaN is always true, other ops are always false. */
3035 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3036 && ! HONOR_SNANS (@1))
3037 { constant_boolean_node (cmp == NE_EXPR, type); })
3038 /* Fold comparisons against infinity. */
3039 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3040 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3041 (with
3042 {
3043 REAL_VALUE_TYPE max;
3044 enum tree_code code = cmp;
3045 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3046 if (neg)
3047 code = swap_tree_comparison (code);
3048 }
3049 (switch
3050 /* x > +Inf is always false, if with ignore sNANs. */
3051 (if (code == GT_EXPR
3052 && ! HONOR_SNANS (@0))
3053 { constant_boolean_node (false, type); })
3054 (if (code == LE_EXPR)
3055 /* x <= +Inf is always true, if we don't case about NaNs. */
3056 (if (! HONOR_NANS (@0))
3057 { constant_boolean_node (true, type); }
b0eb889b 3058 /* x <= +Inf is the same as x == x, i.e. !isnan(x). */
64d3a1f0
RB
3059 (eq @0 @0)))
3060 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
3061 (if (code == EQ_EXPR || code == GE_EXPR)
3062 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3063 (if (neg)
3064 (lt @0 { build_real (TREE_TYPE (@0), max); })
3065 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3066 /* x < +Inf is always equal to x <= DBL_MAX. */
3067 (if (code == LT_EXPR)
3068 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3069 (if (neg)
3070 (ge @0 { build_real (TREE_TYPE (@0), max); })
3071 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3072 /* x != +Inf is always equal to !(x > DBL_MAX). */
3073 (if (code == NE_EXPR)
3074 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3075 (if (! HONOR_NANS (@0))
3076 (if (neg)
3077 (ge @0 { build_real (TREE_TYPE (@0), max); })
3078 (le @0 { build_real (TREE_TYPE (@0), max); }))
3079 (if (neg)
3080 (bit_xor (lt @0 { build_real (TREE_TYPE (@0), max); })
3081 { build_one_cst (type); })
3082 (bit_xor (gt @0 { build_real (TREE_TYPE (@0), max); })
3083 { build_one_cst (type); }))))))))))
07cdc2b8
RB
3084
3085 /* If this is a comparison of a real constant with a PLUS_EXPR
3086 or a MINUS_EXPR of a real constant, we can convert it into a
3087 comparison with a revised real constant as long as no overflow
3088 occurs when unsafe_math_optimizations are enabled. */
3089 (if (flag_unsafe_math_optimizations)
3090 (for op (plus minus)
3091 (simplify
3092 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3093 (with
3094 {
3095 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3096 TREE_TYPE (@1), @2, @1);
3097 }
f980c9a2 3098 (if (tem && !TREE_OVERFLOW (tem))
07cdc2b8
RB
3099 (cmp @0 { tem; }))))))
3100
3101 /* Likewise, we can simplify a comparison of a real constant with
3102 a MINUS_EXPR whose first operand is also a real constant, i.e.
3103 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3104 floating-point types only if -fassociative-math is set. */
3105 (if (flag_associative_math)
3106 (simplify
0409237b 3107 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
07cdc2b8 3108 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
f980c9a2 3109 (if (tem && !TREE_OVERFLOW (tem))
07cdc2b8
RB
3110 (cmp { tem; } @1)))))
3111
3112 /* Fold comparisons against built-in math functions. */
3113 (if (flag_unsafe_math_optimizations
3114 && ! flag_errno_math)
3115 (for sq (SQRT)
3116 (simplify
3117 (cmp (sq @0) REAL_CST@1)
64d3a1f0
RB
3118 (switch
3119 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3120 (switch
3121 /* sqrt(x) < y is always false, if y is negative. */
3122 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
8fdc6c67 3123 { constant_boolean_node (false, type); })
64d3a1f0
RB
3124 /* sqrt(x) > y is always true, if y is negative and we
3125 don't care about NaNs, i.e. negative values of x. */
3126 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3127 { constant_boolean_node (true, type); })
3128 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3129 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
c53233c6
RS
3130 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3131 (switch
3132 /* sqrt(x) < 0 is always false. */
3133 (if (cmp == LT_EXPR)
3134 { constant_boolean_node (false, type); })
3135 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3136 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3137 { constant_boolean_node (true, type); })
3138 /* sqrt(x) <= 0 -> x == 0. */
3139 (if (cmp == LE_EXPR)
3140 (eq @0 @1))
3141 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3142 == or !=. In the last case:
3143
3144 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3145
3146 if x is negative or NaN. Due to -funsafe-math-optimizations,
3147 the results for other x follow from natural arithmetic. */
3148 (cmp @0 @1)))
64d3a1f0
RB
3149 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3150 (with
3151 {
3152 REAL_VALUE_TYPE c2;
5c88ea94
RS
3153 real_arithmetic (&c2, MULT_EXPR,
3154 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
64d3a1f0
RB
3155 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3156 }
3157 (if (REAL_VALUE_ISINF (c2))
3158 /* sqrt(x) > y is x == +Inf, when y is very large. */
3159 (if (HONOR_INFINITIES (@0))
3160 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3161 { constant_boolean_node (false, type); })
3162 /* sqrt(x) > c is the same as x > c*c. */
3163 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3164 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3165 (with
3166 {
3167 REAL_VALUE_TYPE c2;
5c88ea94
RS
3168 real_arithmetic (&c2, MULT_EXPR,
3169 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
64d3a1f0
RB
3170 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3171 }
3172 (if (REAL_VALUE_ISINF (c2))
3173 (switch
3174 /* sqrt(x) < y is always true, when y is a very large
3175 value and we don't care about NaNs or Infinities. */
3176 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3177 { constant_boolean_node (true, type); })
3178 /* sqrt(x) < y is x != +Inf when y is very large and we
3179 don't care about NaNs. */
3180 (if (! HONOR_NANS (@0))
3181 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3182 /* sqrt(x) < y is x >= 0 when y is very large and we
3183 don't care about Infinities. */
3184 (if (! HONOR_INFINITIES (@0))
3185 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3186 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3187 (if (GENERIC)
3188 (truth_andif
3189 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3190 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3191 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3192 (if (! HONOR_NANS (@0))
3193 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3194 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3195 (if (GENERIC)
3196 (truth_andif
3197 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
0ca2e7f7
PK
3198 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3199 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3200 (simplify
3201 (cmp (sq @0) (sq @1))
3202 (if (! HONOR_NANS (@0))
3203 (cmp @0 @1))))))
2ee05f1e 3204
c779bea5
YG
3205/* Optimize various special cases of (FTYPE) N CMP CST. */
3206(for cmp (lt le eq ne ge gt)
3207 icmp (le le eq ne ge ge)
3208 (simplify
3209 (cmp (float @0) REAL_CST@1)
3210 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3211 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3212 (with
3213 {
3214 tree itype = TREE_TYPE (@0);
3215 signop isign = TYPE_SIGN (itype);
3216 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3217 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3218 /* Be careful to preserve any potential exceptions due to
3219 NaNs. qNaNs are ok in == or != context.
3220 TODO: relax under -fno-trapping-math or
3221 -fno-signaling-nans. */
3222 bool exception_p
3223 = real_isnan (cst) && (cst->signalling
c651dca2 3224 || (cmp != EQ_EXPR && cmp != NE_EXPR));
c779bea5
YG
3225 /* INT?_MIN is power-of-two so it takes
3226 only one mantissa bit. */
3227 bool signed_p = isign == SIGNED;
3228 bool itype_fits_ftype_p
3229 = TYPE_PRECISION (itype) - signed_p <= significand_size (fmt);
3230 }
3231 /* TODO: allow non-fitting itype and SNaNs when
3232 -fno-trapping-math. */
3233 (if (itype_fits_ftype_p && ! exception_p)
3234 (with
3235 {
3236 REAL_VALUE_TYPE imin, imax;
3237 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3238 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3239
3240 REAL_VALUE_TYPE icst;
3241 if (cmp == GT_EXPR || cmp == GE_EXPR)
3242 real_ceil (&icst, fmt, cst);
3243 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3244 real_floor (&icst, fmt, cst);
3245 else
3246 real_trunc (&icst, fmt, cst);
3247
b09bf97b 3248 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
c779bea5
YG
3249
3250 bool overflow_p = false;
3251 wide_int icst_val
3252 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3253 }
3254 (switch
3255 /* Optimize cases when CST is outside of ITYPE's range. */
3256 (if (real_compare (LT_EXPR, cst, &imin))
3257 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3258 type); })
3259 (if (real_compare (GT_EXPR, cst, &imax))
3260 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3261 type); })
3262 /* Remove cast if CST is an integer representable by ITYPE. */
3263 (if (cst_int_p)
3264 (cmp @0 { gcc_assert (!overflow_p);
3265 wide_int_to_tree (itype, icst_val); })
3266 )
3267 /* When CST is fractional, optimize
3268 (FTYPE) N == CST -> 0
3269 (FTYPE) N != CST -> 1. */
3270 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3271 { constant_boolean_node (cmp == NE_EXPR, type); })
3272 /* Otherwise replace with sensible integer constant. */
3273 (with
3274 {
3275 gcc_checking_assert (!overflow_p);
3276 }
3277 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3278
40fd269a
MG
3279/* Fold A /[ex] B CMP C to A CMP B * C. */
3280(for cmp (eq ne)
3281 (simplify
3282 (cmp (exact_div @0 @1) INTEGER_CST@2)
3283 (if (!integer_zerop (@1))
8e6cdc90 3284 (if (wi::to_wide (@2) == 0)
40fd269a
MG
3285 (cmp @0 @2)
3286 (if (TREE_CODE (@1) == INTEGER_CST)
3287 (with
3288 {
3289 bool ovf;
8e6cdc90
RS
3290 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3291 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
40fd269a
MG
3292 }
3293 (if (ovf)
3294 { constant_boolean_node (cmp == NE_EXPR, type); }
3295 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3296(for cmp (lt le gt ge)
3297 (simplify
3298 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
8e6cdc90 3299 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
40fd269a
MG
3300 (with
3301 {
3302 bool ovf;
8e6cdc90
RS
3303 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3304 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
40fd269a
MG
3305 }
3306 (if (ovf)
8e6cdc90
RS
3307 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3308 TYPE_SIGN (TREE_TYPE (@2)))
40fd269a
MG
3309 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3310 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3311
cfdc4f33
MG
3312/* Unordered tests if either argument is a NaN. */
3313(simplify
3314 (bit_ior (unordered @0 @0) (unordered @1 @1))
aea417d7 3315 (if (types_match (@0, @1))
cfdc4f33 3316 (unordered @0 @1)))
257b01ba
MG
3317(simplify
3318 (bit_and (ordered @0 @0) (ordered @1 @1))
3319 (if (types_match (@0, @1))
3320 (ordered @0 @1)))
cfdc4f33
MG
3321(simplify
3322 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3323 @2)
257b01ba
MG
3324(simplify
3325 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3326 @2)
e18c1d66 3327
90c6f26c
RB
3328/* Simple range test simplifications. */
3329/* A < B || A >= B -> true. */
5d30c58d
RB
3330(for test1 (lt le le le ne ge)
3331 test2 (ge gt ge ne eq ne)
90c6f26c
RB
3332 (simplify
3333 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3334 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3335 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3336 { constant_boolean_node (true, type); })))
3337/* A < B && A >= B -> false. */
3338(for test1 (lt lt lt le ne eq)
3339 test2 (ge gt eq gt eq gt)
3340 (simplify
3341 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3342 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3343 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3344 { constant_boolean_node (false, type); })))
3345
9ebc3467
YG
3346/* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3347 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3348
3349 Note that comparisons
3350 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3351 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3352 will be canonicalized to above so there's no need to
3353 consider them here.
3354 */
3355
3356(for cmp (le gt)
3357 eqcmp (eq ne)
3358 (simplify
3359 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3360 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3361 (with
3362 {
3363 tree ty = TREE_TYPE (@0);
3364 unsigned prec = TYPE_PRECISION (ty);
3365 wide_int mask = wi::to_wide (@2, prec);
3366 wide_int rhs = wi::to_wide (@3, prec);
3367 signop sgn = TYPE_SIGN (ty);
3368 }
3369 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3370 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3371 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3372 { build_zero_cst (ty); }))))))
3373
534bd33b
MG
3374/* -A CMP -B -> B CMP A. */
3375(for cmp (tcc_comparison)
3376 scmp (swapped_tcc_comparison)
3377 (simplify
3378 (cmp (negate @0) (negate @1))
3379 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3380 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3381 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3382 (scmp @0 @1)))
3383 (simplify
3384 (cmp (negate @0) CONSTANT_CLASS_P@1)
3385 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3386 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3387 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
23f27839 3388 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
534bd33b
MG
3389 (if (tem && !TREE_OVERFLOW (tem))
3390 (scmp @0 { tem; }))))))
3391
b0eb889b
MG
3392/* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3393(for op (eq ne)
3394 (simplify
3395 (op (abs @0) zerop@1)
3396 (op @0 @1)))
3397
6358a676
MG
3398/* From fold_sign_changed_comparison and fold_widened_comparison.
3399 FIXME: the lack of symmetry is disturbing. */
79d4f7c6
RB
3400(for cmp (simple_comparison)
3401 (simplify
3402 (cmp (convert@0 @00) (convert?@1 @10))
452ec2a5 3403 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
79d4f7c6
RB
3404 /* Disable this optimization if we're casting a function pointer
3405 type on targets that require function pointer canonicalization. */
3406 && !(targetm.have_canonicalize_funcptr_for_compare ()
3407 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
2fde61e3
RB
3408 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
3409 && single_use (@0))
79d4f7c6
RB
3410 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3411 && (TREE_CODE (@10) == INTEGER_CST
6358a676 3412 || @1 != @10)
79d4f7c6
RB
3413 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3414 || cmp == NE_EXPR
3415 || cmp == EQ_EXPR)
6358a676 3416 && !POINTER_TYPE_P (TREE_TYPE (@00)))
79d4f7c6
RB
3417 /* ??? The special-casing of INTEGER_CST conversion was in the original
3418 code and here to avoid a spurious overflow flag on the resulting
3419 constant which fold_convert produces. */
3420 (if (TREE_CODE (@1) == INTEGER_CST)
3421 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3422 TREE_OVERFLOW (@1)); })
3423 (cmp @00 (convert @1)))
3424
3425 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3426 /* If possible, express the comparison in the shorter mode. */
3427 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
7fd82d52
PP
3428 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3429 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3430 && TYPE_UNSIGNED (TREE_TYPE (@00))))
79d4f7c6
RB
3431 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3432 || ((TYPE_PRECISION (TREE_TYPE (@00))
3433 >= TYPE_PRECISION (TREE_TYPE (@10)))
3434 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3435 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3436 || (TREE_CODE (@10) == INTEGER_CST
f6c15759 3437 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
79d4f7c6
RB
3438 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3439 (cmp @00 (convert @10))
3440 (if (TREE_CODE (@10) == INTEGER_CST
f6c15759 3441 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
79d4f7c6
RB
3442 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3443 (with
3444 {
3445 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3446 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3447 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3448 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3449 }
3450 (if (above || below)
3451 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3452 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3453 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3454 { constant_boolean_node (above ? true : false, type); }
3455 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3456 { constant_boolean_node (above ? false : true, type); }))))))))))))
66e1cacf 3457
96a111a3
RB
3458(for cmp (eq ne)
3459 /* A local variable can never be pointed to by
3460 the default SSA name of an incoming parameter.
3461 SSA names are canonicalized to 2nd place. */
3462 (simplify
3463 (cmp addr@0 SSA_NAME@1)
3464 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3465 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3466 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3467 (if (TREE_CODE (base) == VAR_DECL
3468 && auto_var_in_fn_p (base, current_function_decl))
3469 (if (cmp == NE_EXPR)
3470 { constant_boolean_node (true, type); }
3471 { constant_boolean_node (false, type); }))))))
3472
66e1cacf
RB
3473/* Equality compare simplifications from fold_binary */
3474(for cmp (eq ne)
3475
3476 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3477 Similarly for NE_EXPR. */
3478 (simplify
3479 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3480 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
8e6cdc90 3481 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
66e1cacf
RB
3482 { constant_boolean_node (cmp == NE_EXPR, type); }))
3483
3484 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3485 (simplify
3486 (cmp (bit_xor @0 @1) integer_zerop)
3487 (cmp @0 @1))
3488
3489 /* (X ^ Y) == Y becomes X == 0.
3490 Likewise (X ^ Y) == X becomes Y == 0. */
3491 (simplify
99e943a2 3492 (cmp:c (bit_xor:c @0 @1) @0)
66e1cacf
RB
3493 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3494
3495 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3496 (simplify
3497 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3498 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
d057c866 3499 (cmp @0 (bit_xor @1 (convert @2)))))
d057c866
RB
3500
3501 (simplify
3502 (cmp (convert? addr@0) integer_zerop)
3503 (if (tree_single_nonzero_warnv_p (@0, NULL))
3504 { constant_boolean_node (cmp == NE_EXPR, type); })))
3505
b0eb889b
MG
3506/* If we have (A & C) == C where C is a power of 2, convert this into
3507 (A & C) != 0. Similarly for NE_EXPR. */
3508(for cmp (eq ne)
3509 icmp (ne eq)
3510 (simplify
3511 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3512 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3513
519e0faa
PB
3514/* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3515 convert this into a shift followed by ANDing with D. */
3516(simplify
3517 (cond
3518 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
3519 integer_pow2p@2 integer_zerop)
3520 (with {
8e6cdc90
RS
3521 int shift = (wi::exact_log2 (wi::to_wide (@2))
3522 - wi::exact_log2 (wi::to_wide (@1)));
519e0faa
PB
3523 }
3524 (if (shift > 0)
3525 (bit_and
3526 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3527 (bit_and
3528 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); })) @2))))
3529
b0eb889b
MG
3530/* If we have (A & C) != 0 where C is the sign bit of A, convert
3531 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3532(for cmp (eq ne)
3533 ncmp (ge lt)
3534 (simplify
3535 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3536 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2be65d9e 3537 && type_has_mode_precision_p (TREE_TYPE (@0))
b0eb889b 3538 && element_precision (@2) >= element_precision (@0)
8e6cdc90 3539 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
b0eb889b
MG
3540 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3541 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3542
519e0faa 3543/* If we have A < 0 ? C : 0 where C is a power of 2, convert
c0140e3c 3544 this into a right shift or sign extension followed by ANDing with C. */
519e0faa
PB
3545(simplify
3546 (cond
3547 (lt @0 integer_zerop)
3548 integer_pow2p@1 integer_zerop)
c0140e3c
JJ
3549 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
3550 (with {
8e6cdc90 3551 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
c0140e3c
JJ
3552 }
3553 (if (shift >= 0)
3554 (bit_and
3555 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3556 @1)
3557 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3558 sign extension followed by AND with C will achieve the effect. */
3559 (bit_and (convert @0) @1)))))
519e0faa 3560
68aba1f6
RB
3561/* When the addresses are not directly of decls compare base and offset.
3562 This implements some remaining parts of fold_comparison address
3563 comparisons but still no complete part of it. Still it is good
3564 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3565(for cmp (simple_comparison)
3566 (simplify
f501d5cd 3567 (cmp (convert1?@2 addr@0) (convert2? addr@1))
68aba1f6
RB
3568 (with
3569 {
a90c8804 3570 poly_int64 off0, off1;
68aba1f6
RB
3571 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3572 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3573 if (base0 && TREE_CODE (base0) == MEM_REF)
3574 {
aca52e6f 3575 off0 += mem_ref_offset (base0).force_shwi ();
68aba1f6
RB
3576 base0 = TREE_OPERAND (base0, 0);
3577 }
3578 if (base1 && TREE_CODE (base1) == MEM_REF)
3579 {
aca52e6f 3580 off1 += mem_ref_offset (base1).force_shwi ();
68aba1f6
RB
3581 base1 = TREE_OPERAND (base1, 0);
3582 }
3583 }
da571fda
RB
3584 (if (base0 && base1)
3585 (with
3586 {
aad88aed 3587 int equal = 2;
70f40fea
JJ
3588 /* Punt in GENERIC on variables with value expressions;
3589 the value expressions might point to fields/elements
3590 of other vars etc. */
3591 if (GENERIC
3592 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3593 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3594 ;
3595 else if (decl_in_symtab_p (base0)
3596 && decl_in_symtab_p (base1))
da571fda
RB
3597 equal = symtab_node::get_create (base0)
3598 ->equal_address_to (symtab_node::get_create (base1));
c3bea076
RB
3599 else if ((DECL_P (base0)
3600 || TREE_CODE (base0) == SSA_NAME
3601 || TREE_CODE (base0) == STRING_CST)
3602 && (DECL_P (base1)
3603 || TREE_CODE (base1) == SSA_NAME
3604 || TREE_CODE (base1) == STRING_CST))
aad88aed 3605 equal = (base0 == base1);
da571fda 3606 }
5e19d437 3607 (if (equal == 1)
da571fda 3608 (switch
a90c8804
RS
3609 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3610 { constant_boolean_node (known_eq (off0, off1), type); })
3611 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3612 { constant_boolean_node (known_ne (off0, off1), type); })
3613 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
3614 { constant_boolean_node (known_lt (off0, off1), type); })
3615 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
3616 { constant_boolean_node (known_le (off0, off1), type); })
3617 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
3618 { constant_boolean_node (known_ge (off0, off1), type); })
3619 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
3620 { constant_boolean_node (known_gt (off0, off1), type); }))
da571fda
RB
3621 (if (equal == 0
3622 && DECL_P (base0) && DECL_P (base1)
3623 /* If we compare this as integers require equal offset. */
3624 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
a90c8804 3625 || known_eq (off0, off1)))
da571fda
RB
3626 (switch
3627 (if (cmp == EQ_EXPR)
3628 { constant_boolean_node (false, type); })
3629 (if (cmp == NE_EXPR)
3630 { constant_boolean_node (true, type); })))))))))
66e1cacf 3631
98998245
RB
3632/* Simplify pointer equality compares using PTA. */
3633(for neeq (ne eq)
3634 (simplify
3635 (neeq @0 @1)
3636 (if (POINTER_TYPE_P (TREE_TYPE (@0))
3637 && ptrs_compare_unequal (@0, @1))
3638 { neeq == EQ_EXPR ? boolean_false_node : boolean_true_node; })))
3639
8f63caf6 3640/* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
467719fb
PK
3641 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3642 Disable the transform if either operand is pointer to function.
3643 This broke pr22051-2.c for arm where function pointer
3644 canonicalizaion is not wanted. */
1c0a8806 3645
8f63caf6
RB
3646(for cmp (ne eq)
3647 (simplify
3648 (cmp (convert @0) INTEGER_CST@1)
467719fb
PK
3649 (if ((POINTER_TYPE_P (TREE_TYPE (@0)) && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3650 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3651 || (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && POINTER_TYPE_P (TREE_TYPE (@1))
3652 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
8f63caf6
RB
3653 (cmp @0 (convert @1)))))
3654
21aacde4
RB
3655/* Non-equality compare simplifications from fold_binary */
3656(for cmp (lt gt le ge)
3657 /* Comparisons with the highest or lowest possible integer of
3658 the specified precision will have known values. */
3659 (simplify
3660 (cmp (convert?@2 @0) INTEGER_CST@1)
3661 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3662 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3663 (with
3664 {
3665 tree arg1_type = TREE_TYPE (@1);
3666 unsigned int prec = TYPE_PRECISION (arg1_type);
3667 wide_int max = wi::max_value (arg1_type);
3668 wide_int signed_max = wi::max_value (prec, SIGNED);
3669 wide_int min = wi::min_value (arg1_type);
3670 }
3671 (switch
8e6cdc90 3672 (if (wi::to_wide (@1) == max)
21aacde4
RB
3673 (switch
3674 (if (cmp == GT_EXPR)
3675 { constant_boolean_node (false, type); })
3676 (if (cmp == GE_EXPR)
3677 (eq @2 @1))
3678 (if (cmp == LE_EXPR)
3679 { constant_boolean_node (true, type); })
3680 (if (cmp == LT_EXPR)
3681 (ne @2 @1))))
8e6cdc90 3682 (if (wi::to_wide (@1) == min)
21aacde4
RB
3683 (switch
3684 (if (cmp == LT_EXPR)
3685 { constant_boolean_node (false, type); })
3686 (if (cmp == LE_EXPR)
3687 (eq @2 @1))
3688 (if (cmp == GE_EXPR)
3689 { constant_boolean_node (true, type); })
3690 (if (cmp == GT_EXPR)
3691 (ne @2 @1))))
8e6cdc90 3692 (if (wi::to_wide (@1) == max - 1)
9bc22d19
RB
3693 (switch
3694 (if (cmp == GT_EXPR)
8e6cdc90 3695 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))
9bc22d19 3696 (if (cmp == LE_EXPR)
8e6cdc90
RS
3697 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3698 (if (wi::to_wide (@1) == min + 1)
21aacde4
RB
3699 (switch
3700 (if (cmp == GE_EXPR)
8e6cdc90 3701 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))
21aacde4 3702 (if (cmp == LT_EXPR)
8e6cdc90
RS
3703 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3704 (if (wi::to_wide (@1) == signed_max
21aacde4
RB
3705 && TYPE_UNSIGNED (arg1_type)
3706 /* We will flip the signedness of the comparison operator
3707 associated with the mode of @1, so the sign bit is
3708 specified by this mode. Check that @1 is the signed
3709 max associated with this sign bit. */
7a504f33 3710 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
21aacde4
RB
3711 /* signed_type does not work on pointer types. */
3712 && INTEGRAL_TYPE_P (arg1_type))
3713 /* The following case also applies to X < signed_max+1
3714 and X >= signed_max+1 because previous transformations. */
3715 (if (cmp == LE_EXPR || cmp == GT_EXPR)
3716 (with { tree st = signed_type_for (arg1_type); }
3717 (if (cmp == LE_EXPR)
3718 (ge (convert:st @0) { build_zero_cst (st); })
3719 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
3720
b5d3d787
RB
3721(for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
3722 /* If the second operand is NaN, the result is constant. */
3723 (simplify
3724 (cmp @0 REAL_CST@1)
3725 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3726 && (cmp != LTGT_EXPR || ! flag_trapping_math))
50301115 3727 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
b5d3d787 3728 ? false : true, type); })))
21aacde4 3729
55cf3946
RB
3730/* bool_var != 0 becomes bool_var. */
3731(simplify
b5d3d787 3732 (ne @0 integer_zerop)
55cf3946
RB
3733 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3734 && types_match (type, TREE_TYPE (@0)))
3735 (non_lvalue @0)))
3736/* bool_var == 1 becomes bool_var. */
3737(simplify
b5d3d787 3738 (eq @0 integer_onep)
55cf3946
RB
3739 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3740 && types_match (type, TREE_TYPE (@0)))
3741 (non_lvalue @0)))
b5d3d787
RB
3742/* Do not handle
3743 bool_var == 0 becomes !bool_var or
3744 bool_var != 1 becomes !bool_var
3745 here because that only is good in assignment context as long
3746 as we require a tcc_comparison in GIMPLE_CONDs where we'd
3747 replace if (x == 0) with tem = ~x; if (tem != 0) which is
3748 clearly less optimal and which we'll transform again in forwprop. */
55cf3946 3749
ca1206be
MG
3750/* When one argument is a constant, overflow detection can be simplified.
3751 Currently restricted to single use so as not to interfere too much with
3752 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
3753 A + CST CMP A -> A CMP' CST' */
3754(for cmp (lt le ge gt)
3755 out (gt gt le le)
3756 (simplify
a8e9f9a3 3757 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
ca1206be
MG
3758 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3759 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
8e6cdc90 3760 && wi::to_wide (@1) != 0
ca1206be 3761 && single_use (@2))
8e6cdc90
RS
3762 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
3763 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
3764 wi::max_value (prec, UNSIGNED)
3765 - wi::to_wide (@1)); })))))
ca1206be 3766
3563f78f
MG
3767/* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
3768 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
3769 expects the long form, so we restrict the transformation for now. */
3770(for cmp (gt le)
3771 (simplify
a8e9f9a3 3772 (cmp:c (minus@2 @0 @1) @0)
3563f78f
MG
3773 (if (single_use (@2)
3774 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3775 && TYPE_UNSIGNED (TREE_TYPE (@0))
3776 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3777 (cmp @1 @0))))
3563f78f
MG
3778
3779/* Testing for overflow is unnecessary if we already know the result. */
3563f78f
MG
3780/* A - B > A */
3781(for cmp (gt le)
3782 out (ne eq)
3783 (simplify
a8e9f9a3 3784 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3563f78f
MG
3785 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3786 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3787 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3788/* A + B < A */
3789(for cmp (lt ge)
3790 out (ne eq)
3791 (simplify
a8e9f9a3 3792 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3563f78f
MG
3793 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3794 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3795 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3796
603aeb87 3797/* For unsigned operands, -1 / B < A checks whether A * B would overflow.
0557293f 3798 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
0557293f
AM
3799(for cmp (lt ge)
3800 out (ne eq)
3801 (simplify
603aeb87 3802 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
0557293f
AM
3803 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
3804 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
3805 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
55cf3946 3806
53f3cd25
RS
3807/* Simplification of math builtins. These rules must all be optimizations
3808 as well as IL simplifications. If there is a possibility that the new
3809 form could be a pessimization, the rule should go in the canonicalization
3810 section that follows this one.
e18c1d66 3811
53f3cd25
RS
3812 Rules can generally go in this section if they satisfy one of
3813 the following:
3814
3815 - the rule describes an identity
3816
3817 - the rule replaces calls with something as simple as addition or
3818 multiplication
3819
3820 - the rule contains unary calls only and simplifies the surrounding
3821 arithmetic. (The idea here is to exclude non-unary calls in which
3822 one operand is constant and in which the call is known to be cheap
3823 when the operand has that value.) */
52c6378a 3824
53f3cd25 3825(if (flag_unsafe_math_optimizations)
52c6378a
N
3826 /* Simplify sqrt(x) * sqrt(x) -> x. */
3827 (simplify
c6cfa2bf 3828 (mult (SQRT_ALL@1 @0) @1)
52c6378a
N
3829 (if (!HONOR_SNANS (type))
3830 @0))
3831
ed17cb57
JW
3832 (for op (plus minus)
3833 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
3834 (simplify
3835 (op (rdiv @0 @1)
3836 (rdiv @2 @1))
3837 (rdiv (op @0 @2) @1)))
3838
35401640
N
3839 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
3840 (for root (SQRT CBRT)
3841 (simplify
3842 (mult (root:s @0) (root:s @1))
3843 (root (mult @0 @1))))
3844
35401640
N
3845 /* Simplify expN(x) * expN(y) -> expN(x+y). */
3846 (for exps (EXP EXP2 EXP10 POW10)
3847 (simplify
3848 (mult (exps:s @0) (exps:s @1))
3849 (exps (plus @0 @1))))
3850
52c6378a 3851 /* Simplify a/root(b/c) into a*root(c/b). */
35401640
N
3852 (for root (SQRT CBRT)
3853 (simplify
3854 (rdiv @0 (root:s (rdiv:s @1 @2)))
3855 (mult @0 (root (rdiv @2 @1)))))
3856
3857 /* Simplify x/expN(y) into x*expN(-y). */
3858 (for exps (EXP EXP2 EXP10 POW10)
3859 (simplify
3860 (rdiv @0 (exps:s @1))
3861 (mult @0 (exps (negate @1)))))
52c6378a 3862
eee7b6c4
RB
3863 (for logs (LOG LOG2 LOG10 LOG10)
3864 exps (EXP EXP2 EXP10 POW10)
8acda9b2 3865 /* logN(expN(x)) -> x. */
e18c1d66
RB
3866 (simplify
3867 (logs (exps @0))
8acda9b2
RS
3868 @0)
3869 /* expN(logN(x)) -> x. */
3870 (simplify
3871 (exps (logs @0))
3872 @0))
53f3cd25 3873
e18c1d66
RB
3874 /* Optimize logN(func()) for various exponential functions. We
3875 want to determine the value "x" and the power "exponent" in
3876 order to transform logN(x**exponent) into exponent*logN(x). */
eee7b6c4
RB
3877 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
3878 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
e18c1d66
RB
3879 (simplify
3880 (logs (exps @0))
c9e926ce
RS
3881 (if (SCALAR_FLOAT_TYPE_P (type))
3882 (with {
3883 tree x;
3884 switch (exps)
3885 {
3886 CASE_CFN_EXP:
3887 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
3888 x = build_real_truncate (type, dconst_e ());
3889 break;
3890 CASE_CFN_EXP2:
3891 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
3892 x = build_real (type, dconst2);
3893 break;
3894 CASE_CFN_EXP10:
3895 CASE_CFN_POW10:
3896 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
3897 {
3898 REAL_VALUE_TYPE dconst10;
3899 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
3900 x = build_real (type, dconst10);
3901 }
3902 break;
3903 default:
3904 gcc_unreachable ();
3905 }
3906 }
3907 (mult (logs { x; }) @0)))))
53f3cd25 3908
e18c1d66
RB
3909 (for logs (LOG LOG
3910 LOG2 LOG2
3911 LOG10 LOG10)
3912 exps (SQRT CBRT)
3913 (simplify
3914 (logs (exps @0))
c9e926ce
RS
3915 (if (SCALAR_FLOAT_TYPE_P (type))
3916 (with {
3917 tree x;
3918 switch (exps)
3919 {
3920 CASE_CFN_SQRT:
3921 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
3922 x = build_real (type, dconsthalf);
3923 break;
3924 CASE_CFN_CBRT:
3925 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
3926 x = build_real_truncate (type, dconst_third ());
3927 break;
3928 default:
3929 gcc_unreachable ();
3930 }
3931 }
3932 (mult { x; } (logs @0))))))
53f3cd25
RS
3933
3934 /* logN(pow(x,exponent)) -> exponent*logN(x). */
e18c1d66
RB
3935 (for logs (LOG LOG2 LOG10)
3936 pows (POW)
3937 (simplify
3938 (logs (pows @0 @1))
53f3cd25
RS
3939 (mult @1 (logs @0))))
3940
e83fe013
WD
3941 /* pow(C,x) -> exp(log(C)*x) if C > 0. */
3942 (for pows (POW)
3943 exps (EXP)
3944 logs (LOG)
3945 (simplify
3946 (pows REAL_CST@0 @1)
3947 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
3948 && real_isfinite (TREE_REAL_CST_PTR (@0)))
3949 (exps (mult (logs @0) @1)))))
3950
53f3cd25
RS
3951 (for sqrts (SQRT)
3952 cbrts (CBRT)
b4838d77 3953 pows (POW)
53f3cd25
RS
3954 exps (EXP EXP2 EXP10 POW10)
3955 /* sqrt(expN(x)) -> expN(x*0.5). */
3956 (simplify
3957 (sqrts (exps @0))
3958 (exps (mult @0 { build_real (type, dconsthalf); })))
3959 /* cbrt(expN(x)) -> expN(x/3). */
3960 (simplify
3961 (cbrts (exps @0))
b4838d77
RS
3962 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
3963 /* pow(expN(x), y) -> expN(x*y). */
3964 (simplify
3965 (pows (exps @0) @1)
3966 (exps (mult @0 @1))))
cfed37a0
RS
3967
3968 /* tan(atan(x)) -> x. */
3969 (for tans (TAN)
3970 atans (ATAN)
3971 (simplify
3972 (tans (atans @0))
3973 @0)))
53f3cd25 3974
abcc43f5
RS
3975/* cabs(x+0i) or cabs(0+xi) -> abs(x). */
3976(simplify
e04d2a35 3977 (CABS (complex:C @0 real_zerop@1))
abcc43f5
RS
3978 (abs @0))
3979
67dbe582 3980/* trunc(trunc(x)) -> trunc(x), etc. */
c6cfa2bf 3981(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
67dbe582
RS
3982 (simplify
3983 (fns (fns @0))
3984 (fns @0)))
3985/* f(x) -> x if x is integer valued and f does nothing for such values. */
c6cfa2bf 3986(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
67dbe582
RS
3987 (simplify
3988 (fns integer_valued_real_p@0)
3989 @0))
67dbe582 3990
4d7836c4
RS
3991/* hypot(x,0) and hypot(0,x) -> abs(x). */
3992(simplify
c9e926ce 3993 (HYPOT:c @0 real_zerop@1)
4d7836c4
RS
3994 (abs @0))
3995
b4838d77
RS
3996/* pow(1,x) -> 1. */
3997(simplify
3998 (POW real_onep@0 @1)
3999 @0)
4000
461e4145
RS
4001(simplify
4002 /* copysign(x,x) -> x. */
c6cfa2bf 4003 (COPYSIGN_ALL @0 @0)
461e4145
RS
4004 @0)
4005
4006(simplify
4007 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
c6cfa2bf 4008 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
461e4145
RS
4009 (abs @0))
4010
86c0733f
RS
4011(for scale (LDEXP SCALBN SCALBLN)
4012 /* ldexp(0, x) -> 0. */
4013 (simplify
4014 (scale real_zerop@0 @1)
4015 @0)
4016 /* ldexp(x, 0) -> x. */
4017 (simplify
4018 (scale @0 integer_zerop@1)
4019 @0)
4020 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4021 (simplify
4022 (scale REAL_CST@0 @1)
4023 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4024 @0)))
4025
53f3cd25
RS
4026/* Canonicalization of sequences of math builtins. These rules represent
4027 IL simplifications but are not necessarily optimizations.
4028
4029 The sincos pass is responsible for picking "optimal" implementations
4030 of math builtins, which may be more complicated and can sometimes go
4031 the other way, e.g. converting pow into a sequence of sqrts.
4032 We only want to do these canonicalizations before the pass has run. */
4033
4034(if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4035 /* Simplify tan(x) * cos(x) -> sin(x). */
4036 (simplify
4037 (mult:c (TAN:s @0) (COS:s @0))
4038 (SIN @0))
4039
4040 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4041 (simplify
de3fbea3 4042 (mult:c @0 (POW:s @0 REAL_CST@1))
53f3cd25
RS
4043 (if (!TREE_OVERFLOW (@1))
4044 (POW @0 (plus @1 { build_one_cst (type); }))))
4045
4046 /* Simplify sin(x) / cos(x) -> tan(x). */
4047 (simplify
4048 (rdiv (SIN:s @0) (COS:s @0))
4049 (TAN @0))
4050
4051 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4052 (simplify
4053 (rdiv (COS:s @0) (SIN:s @0))
4054 (rdiv { build_one_cst (type); } (TAN @0)))
4055
4056 /* Simplify sin(x) / tan(x) -> cos(x). */
4057 (simplify
4058 (rdiv (SIN:s @0) (TAN:s @0))
4059 (if (! HONOR_NANS (@0)
4060 && ! HONOR_INFINITIES (@0))
c9e926ce 4061 (COS @0)))
53f3cd25
RS
4062
4063 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4064 (simplify
4065 (rdiv (TAN:s @0) (SIN:s @0))
4066 (if (! HONOR_NANS (@0)
4067 && ! HONOR_INFINITIES (@0))
4068 (rdiv { build_one_cst (type); } (COS @0))))
4069
4070 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4071 (simplify
4072 (mult (POW:s @0 @1) (POW:s @0 @2))
4073 (POW @0 (plus @1 @2)))
4074
4075 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4076 (simplify
4077 (mult (POW:s @0 @1) (POW:s @2 @1))
4078 (POW (mult @0 @2) @1))
4079
de3fbea3
RB
4080 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4081 (simplify
4082 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4083 (POWI (mult @0 @2) @1))
4084
53f3cd25
RS
4085 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4086 (simplify
4087 (rdiv (POW:s @0 REAL_CST@1) @0)
4088 (if (!TREE_OVERFLOW (@1))
4089 (POW @0 (minus @1 { build_one_cst (type); }))))
4090
4091 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4092 (simplify
4093 (rdiv @0 (POW:s @1 @2))
4094 (mult @0 (POW @1 (negate @2))))
4095
4096 (for sqrts (SQRT)
4097 cbrts (CBRT)
4098 pows (POW)
4099 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4100 (simplify
4101 (sqrts (sqrts @0))
4102 (pows @0 { build_real (type, dconst_quarter ()); }))
4103 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4104 (simplify
4105 (sqrts (cbrts @0))
4106 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4107 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4108 (simplify
4109 (cbrts (sqrts @0))
4110 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4111 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4112 (simplify
4113 (cbrts (cbrts tree_expr_nonnegative_p@0))
4114 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4115 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4116 (simplify
4117 (sqrts (pows @0 @1))
4118 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4119 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4120 (simplify
4121 (cbrts (pows tree_expr_nonnegative_p@0 @1))
b4838d77
RS
4122 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4123 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4124 (simplify
4125 (pows (sqrts @0) @1)
4126 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4127 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4128 (simplify
4129 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4130 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4131 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4132 (simplify
4133 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4134 (pows @0 (mult @1 @2))))
abcc43f5
RS
4135
4136 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4137 (simplify
4138 (CABS (complex @0 @0))
96285749
RS
4139 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4140
4d7836c4
RS
4141 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4142 (simplify
4143 (HYPOT @0 @0)
4144 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4145
96285749
RS
4146 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4147 (for cexps (CEXP)
4148 exps (EXP)
4149 cexpis (CEXPI)
4150 (simplify
4151 (cexps compositional_complex@0)
4152 (if (targetm.libc_has_function (function_c99_math_complex))
4153 (complex
4154 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4155 (mult @1 (imagpart @2)))))))
e18c1d66 4156
67dbe582
RS
4157(if (canonicalize_math_p ())
4158 /* floor(x) -> trunc(x) if x is nonnegative. */
c6cfa2bf
MM
4159 (for floors (FLOOR_ALL)
4160 truncs (TRUNC_ALL)
67dbe582
RS
4161 (simplify
4162 (floors tree_expr_nonnegative_p@0)
4163 (truncs @0))))
4164
4165(match double_value_p
4166 @0
4167 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4168(for froms (BUILT_IN_TRUNCL
4169 BUILT_IN_FLOORL
4170 BUILT_IN_CEILL
4171 BUILT_IN_ROUNDL
4172 BUILT_IN_NEARBYINTL
4173 BUILT_IN_RINTL)
4174 tos (BUILT_IN_TRUNC
4175 BUILT_IN_FLOOR
4176 BUILT_IN_CEIL
4177 BUILT_IN_ROUND
4178 BUILT_IN_NEARBYINT
4179 BUILT_IN_RINT)
4180 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4181 (if (optimize && canonicalize_math_p ())
4182 (simplify
4183 (froms (convert double_value_p@0))
4184 (convert (tos @0)))))
4185
4186(match float_value_p
4187 @0
4188 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4189(for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4190 BUILT_IN_FLOORL BUILT_IN_FLOOR
4191 BUILT_IN_CEILL BUILT_IN_CEIL
4192 BUILT_IN_ROUNDL BUILT_IN_ROUND
4193 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4194 BUILT_IN_RINTL BUILT_IN_RINT)
4195 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4196 BUILT_IN_FLOORF BUILT_IN_FLOORF
4197 BUILT_IN_CEILF BUILT_IN_CEILF
4198 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4199 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4200 BUILT_IN_RINTF BUILT_IN_RINTF)
4201 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4202 if x is a float. */
5dac7dbd
JDA
4203 (if (optimize && canonicalize_math_p ()
4204 && targetm.libc_has_function (function_c99_misc))
67dbe582
RS
4205 (simplify
4206 (froms (convert float_value_p@0))
4207 (convert (tos @0)))))
4208
543a9bcd
RS
4209(for froms (XFLOORL XCEILL XROUNDL XRINTL)
4210 tos (XFLOOR XCEIL XROUND XRINT)
4211 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4212 (if (optimize && canonicalize_math_p ())
4213 (simplify
4214 (froms (convert double_value_p@0))
4215 (tos @0))))
4216
4217(for froms (XFLOORL XCEILL XROUNDL XRINTL
4218 XFLOOR XCEIL XROUND XRINT)
4219 tos (XFLOORF XCEILF XROUNDF XRINTF)
4220 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4221 if x is a float. */
4222 (if (optimize && canonicalize_math_p ())
4223 (simplify
4224 (froms (convert float_value_p@0))
4225 (tos @0))))
4226
4227(if (canonicalize_math_p ())
4228 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4229 (for floors (IFLOOR LFLOOR LLFLOOR)
4230 (simplify
4231 (floors tree_expr_nonnegative_p@0)
4232 (fix_trunc @0))))
4233
4234(if (canonicalize_math_p ())
4235 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4236 (for fns (IFLOOR LFLOOR LLFLOOR
4237 ICEIL LCEIL LLCEIL
4238 IROUND LROUND LLROUND)
4239 (simplify
4240 (fns integer_valued_real_p@0)
4241 (fix_trunc @0)))
4242 (if (!flag_errno_math)
4243 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4244 (for rints (IRINT LRINT LLRINT)
4245 (simplify
4246 (rints integer_valued_real_p@0)
4247 (fix_trunc @0)))))
4248
4249(if (canonicalize_math_p ())
4250 (for ifn (IFLOOR ICEIL IROUND IRINT)
4251 lfn (LFLOOR LCEIL LROUND LRINT)
4252 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4253 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4254 sizeof (int) == sizeof (long). */
4255 (if (TYPE_PRECISION (integer_type_node)
4256 == TYPE_PRECISION (long_integer_type_node))
4257 (simplify
4258 (ifn @0)
4259 (lfn:long_integer_type_node @0)))
4260 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4261 sizeof (long long) == sizeof (long). */
4262 (if (TYPE_PRECISION (long_long_integer_type_node)
4263 == TYPE_PRECISION (long_integer_type_node))
4264 (simplify
4265 (llfn @0)
4266 (lfn:long_integer_type_node @0)))))
4267
92c52eab
RS
4268/* cproj(x) -> x if we're ignoring infinities. */
4269(simplify
4270 (CPROJ @0)
4271 (if (!HONOR_INFINITIES (type))
4272 @0))
4273
4534c203
RB
4274/* If the real part is inf and the imag part is known to be
4275 nonnegative, return (inf + 0i). */
4276(simplify
4277 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4278 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
92c52eab
RS
4279 { build_complex_inf (type, false); }))
4280
4534c203
RB
4281/* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4282(simplify
4283 (CPROJ (complex @0 REAL_CST@1))
4284 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
92c52eab 4285 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4534c203 4286
b4838d77
RS
4287(for pows (POW)
4288 sqrts (SQRT)
4289 cbrts (CBRT)
4290 (simplify
4291 (pows @0 REAL_CST@1)
4292 (with {
4293 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4294 REAL_VALUE_TYPE tmp;
4295 }
4296 (switch
4297 /* pow(x,0) -> 1. */
4298 (if (real_equal (value, &dconst0))
4299 { build_real (type, dconst1); })
4300 /* pow(x,1) -> x. */
4301 (if (real_equal (value, &dconst1))
4302 @0)
4303 /* pow(x,-1) -> 1/x. */
4304 (if (real_equal (value, &dconstm1))
4305 (rdiv { build_real (type, dconst1); } @0))
4306 /* pow(x,0.5) -> sqrt(x). */
4307 (if (flag_unsafe_math_optimizations
4308 && canonicalize_math_p ()
4309 && real_equal (value, &dconsthalf))
4310 (sqrts @0))
4311 /* pow(x,1/3) -> cbrt(x). */
4312 (if (flag_unsafe_math_optimizations
4313 && canonicalize_math_p ()
4314 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4315 real_equal (value, &tmp)))
4316 (cbrts @0))))))
4534c203 4317
5ddc84ca
RS
4318/* powi(1,x) -> 1. */
4319(simplify
4320 (POWI real_onep@0 @1)
4321 @0)
4322
4323(simplify
4324 (POWI @0 INTEGER_CST@1)
4325 (switch
4326 /* powi(x,0) -> 1. */
8e6cdc90 4327 (if (wi::to_wide (@1) == 0)
5ddc84ca
RS
4328 { build_real (type, dconst1); })
4329 /* powi(x,1) -> x. */
8e6cdc90 4330 (if (wi::to_wide (@1) == 1)
5ddc84ca
RS
4331 @0)
4332 /* powi(x,-1) -> 1/x. */
8e6cdc90 4333 (if (wi::to_wide (@1) == -1)
5ddc84ca
RS
4334 (rdiv { build_real (type, dconst1); } @0))))
4335
be144838
JL
4336/* Narrowing of arithmetic and logical operations.
4337
4338 These are conceptually similar to the transformations performed for
4339 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4340 term we want to move all that code out of the front-ends into here. */
4341
4342/* If we have a narrowing conversion of an arithmetic operation where
4343 both operands are widening conversions from the same type as the outer
4344 narrowing conversion. Then convert the innermost operands to a suitable
9c582551 4345 unsigned type (to avoid introducing undefined behavior), perform the
be144838
JL
4346 operation and convert the result to the desired type. */
4347(for op (plus minus)
4348 (simplify
93f90bec 4349 (convert (op:s (convert@2 @0) (convert?@3 @1)))
be144838
JL
4350 (if (INTEGRAL_TYPE_P (type)
4351 /* We check for type compatibility between @0 and @1 below,
4352 so there's no need to check that @1/@3 are integral types. */
4353 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4354 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4355 /* The precision of the type of each operand must match the
4356 precision of the mode of each operand, similarly for the
4357 result. */
2be65d9e
RS
4358 && type_has_mode_precision_p (TREE_TYPE (@0))
4359 && type_has_mode_precision_p (TREE_TYPE (@1))
4360 && type_has_mode_precision_p (type)
be144838
JL
4361 /* The inner conversion must be a widening conversion. */
4362 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
93f90bec
BC
4363 && types_match (@0, type)
4364 && (types_match (@0, @1)
4365 /* Or the second operand is const integer or converted const
4366 integer from valueize. */
4367 || TREE_CODE (@1) == INTEGER_CST))
be144838 4368 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
93f90bec 4369 (op @0 (convert @1))
8fdc6c67 4370 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
93f90bec
BC
4371 (convert (op (convert:utype @0)
4372 (convert:utype @1))))))))
48451e8f
JL
4373
4374/* This is another case of narrowing, specifically when there's an outer
4375 BIT_AND_EXPR which masks off bits outside the type of the innermost
4376 operands. Like the previous case we have to convert the operands
9c582551 4377 to unsigned types to avoid introducing undefined behavior for the
48451e8f
JL
4378 arithmetic operation. */
4379(for op (minus plus)
8fdc6c67
RB
4380 (simplify
4381 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4382 (if (INTEGRAL_TYPE_P (type)
4383 /* We check for type compatibility between @0 and @1 below,
4384 so there's no need to check that @1/@3 are integral types. */
4385 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4386 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4387 /* The precision of the type of each operand must match the
4388 precision of the mode of each operand, similarly for the
4389 result. */
2be65d9e
RS
4390 && type_has_mode_precision_p (TREE_TYPE (@0))
4391 && type_has_mode_precision_p (TREE_TYPE (@1))
4392 && type_has_mode_precision_p (type)
8fdc6c67
RB
4393 /* The inner conversion must be a widening conversion. */
4394 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4395 && types_match (@0, @1)
4396 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4397 <= TYPE_PRECISION (TREE_TYPE (@0)))
8e6cdc90
RS
4398 && (wi::to_wide (@4)
4399 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4400 true, TYPE_PRECISION (type))) == 0)
8fdc6c67
RB
4401 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4402 (with { tree ntype = TREE_TYPE (@0); }
4403 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4404 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4405 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4406 (convert:utype @4))))))))
4f7a5692
MC
4407
4408/* Transform (@0 < @1 and @0 < @2) to use min,
4409 (@0 > @1 and @0 > @2) to use max */
4410(for op (lt le gt ge)
4411 ext (min min max max)
4412 (simplify
4618c453
RB
4413 (bit_and (op:cs @0 @1) (op:cs @0 @2))
4414 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4415 && TREE_CODE (@0) != INTEGER_CST)
4f7a5692
MC
4416 (op @0 (ext @1 @2)))))
4417
7317ef4a
RS
4418(simplify
4419 /* signbit(x) -> 0 if x is nonnegative. */
4420 (SIGNBIT tree_expr_nonnegative_p@0)
4421 { integer_zero_node; })
4422
4423(simplify
4424 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4425 (SIGNBIT @0)
4426 (if (!HONOR_SIGNED_ZEROS (@0))
4427 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
a8b85ce9
MG
4428
4429/* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4430(for cmp (eq ne)
4431 (for op (plus minus)
4432 rop (minus plus)
4433 (simplify
4434 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4435 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4436 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4437 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4438 && !TYPE_SATURATING (TREE_TYPE (@0)))
4439 (with { tree res = int_const_binop (rop, @2, @1); }
75473a91
RB
4440 (if (TREE_OVERFLOW (res)
4441 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
a8b85ce9
MG
4442 { constant_boolean_node (cmp == NE_EXPR, type); }
4443 (if (single_use (@3))
11c1e63c
JJ
4444 (cmp @0 { TREE_OVERFLOW (res)
4445 ? drop_tree_overflow (res) : res; }))))))))
a8b85ce9
MG
4446(for cmp (lt le gt ge)
4447 (for op (plus minus)
4448 rop (minus plus)
4449 (simplify
4450 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4451 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4452 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4453 (with { tree res = int_const_binop (rop, @2, @1); }
4454 (if (TREE_OVERFLOW (res))
4455 {
4456 fold_overflow_warning (("assuming signed overflow does not occur "
4457 "when simplifying conditional to constant"),
4458 WARN_STRICT_OVERFLOW_CONDITIONAL);
4459 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4460 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
8e6cdc90
RS
4461 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4462 TYPE_SIGN (TREE_TYPE (@1)))
a8b85ce9
MG
4463 != (op == MINUS_EXPR);
4464 constant_boolean_node (less == ovf_high, type);
4465 }
4466 (if (single_use (@3))
4467 (with
4468 {
4469 fold_overflow_warning (("assuming signed overflow does not occur "
4470 "when changing X +- C1 cmp C2 to "
4471 "X cmp C2 -+ C1"),
4472 WARN_STRICT_OVERFLOW_COMPARISON);
4473 }
4474 (cmp @0 { res; })))))))))
d3e40b76
RB
4475
4476/* Canonicalizations of BIT_FIELD_REFs. */
4477
4478(simplify
4479 (BIT_FIELD_REF @0 @1 @2)
4480 (switch
4481 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
4482 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4483 (switch
4484 (if (integer_zerop (@2))
4485 (view_convert (realpart @0)))
4486 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4487 (view_convert (imagpart @0)))))
4488 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4489 && INTEGRAL_TYPE_P (type)
171f6f05
RB
4490 /* On GIMPLE this should only apply to register arguments. */
4491 && (! GIMPLE || is_gimple_reg (@0))
d3e40b76
RB
4492 /* A bit-field-ref that referenced the full argument can be stripped. */
4493 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
4494 && integer_zerop (@2))
4495 /* Low-parts can be reduced to integral conversions.
4496 ??? The following doesn't work for PDP endian. */
4497 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
4498 /* Don't even think about BITS_BIG_ENDIAN. */
4499 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
4500 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
4501 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
4502 ? (TYPE_PRECISION (TREE_TYPE (@0))
4503 - TYPE_PRECISION (type))
4504 : 0)) == 0)))
4505 (convert @0))))
4506
4507/* Simplify vector extracts. */
4508
4509(simplify
4510 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
4511 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
4512 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
4513 || (VECTOR_TYPE_P (type)
4514 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
4515 (with
4516 {
4517 tree ctor = (TREE_CODE (@0) == SSA_NAME
4518 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
4519 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
4520 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
4521 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
4522 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
4523 }
4524 (if (n != 0
4525 && (idx % width) == 0
4526 && (n % width) == 0
4527 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor)))
4528 (with
4529 {
4530 idx = idx / width;
4531 n = n / width;
4532 /* Constructor elements can be subvectors. */
d34457c1 4533 poly_uint64 k = 1;
d3e40b76
RB
4534 if (CONSTRUCTOR_NELTS (ctor) != 0)
4535 {
4536 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
4537 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
4538 k = TYPE_VECTOR_SUBPARTS (cons_elem);
4539 }
d34457c1 4540 unsigned HOST_WIDE_INT elt, count, const_k;
d3e40b76
RB
4541 }
4542 (switch
4543 /* We keep an exact subset of the constructor elements. */
d34457c1 4544 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
d3e40b76
RB
4545 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4546 { build_constructor (type, NULL); }
d34457c1
RS
4547 (if (count == 1)
4548 (if (elt < CONSTRUCTOR_NELTS (ctor))
4549 { CONSTRUCTOR_ELT (ctor, elt)->value; }
4550 { build_zero_cst (type); })
d3e40b76 4551 {
d34457c1
RS
4552 vec<constructor_elt, va_gc> *vals;
4553 vec_alloc (vals, count);
4554 for (unsigned i = 0;
4555 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
4556 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
4557 CONSTRUCTOR_ELT (ctor, elt + i)->value);
4558 build_constructor (type, vals);
4559 })))
d3e40b76 4560 /* The bitfield references a single constructor element. */
d34457c1
RS
4561 (if (k.is_constant (&const_k)
4562 && idx + n <= (idx / const_k + 1) * const_k)
d3e40b76 4563 (switch
d34457c1 4564 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
d3e40b76 4565 { build_zero_cst (type); })
d34457c1
RS
4566 (if (n == const_k)
4567 { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; })
4568 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
4569 @1 { bitsize_int ((idx % const_k) * width); })))))))))
92e29a5e
RB
4570
4571/* Simplify a bit extraction from a bit insertion for the cases with
4572 the inserted element fully covering the extraction or the insertion
4573 not touching the extraction. */
4574(simplify
4575 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
4576 (with
4577 {
4578 unsigned HOST_WIDE_INT isize;
4579 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4580 isize = TYPE_PRECISION (TREE_TYPE (@1));
4581 else
4582 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
4583 }
4584 (switch
8e6cdc90
RS
4585 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
4586 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
4587 wi::to_wide (@ipos) + isize))
92e29a5e 4588 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
8e6cdc90
RS
4589 wi::to_wide (@rpos)
4590 - wi::to_wide (@ipos)); }))
4591 (if (wi::geu_p (wi::to_wide (@ipos),
4592 wi::to_wide (@rpos) + wi::to_wide (@rsize))
4593 || wi::geu_p (wi::to_wide (@rpos),
4594 wi::to_wide (@ipos) + isize))
92e29a5e 4595 (BIT_FIELD_REF @0 @rsize @rpos)))))