]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/match.pd
re PR middle-end/86095 (documentation for -Wunsafe-loop-optimizations references...
[thirdparty/gcc.git] / gcc / match.pd
CommitLineData
3d2cf79f
RB
1/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
85ec4feb 5 Copyright (C) 2014-2018 Free Software Foundation, Inc.
3d2cf79f
RB
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
13Software Foundation; either version 3, or (at your option) any later
14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING3. If not see
23<http://www.gnu.org/licenses/>. */
24
25
26/* Generic tree predicates we inherit. */
27(define_predicates
cc7b5acf 28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
53a19317 29 integer_each_onep integer_truep integer_nonzerop
cc7b5acf 30 real_zerop real_onep real_minus_onep
b0eb889b 31 zerop
f3582e54 32 CONSTANT_CLASS_P
887ab609 33 tree_expr_nonnegative_p
e36c1cfe 34 tree_expr_nonzero_p
67dbe582 35 integer_valued_real_p
53a19317
RB
36 integer_pow2p
37 HONOR_NANS)
e0ee10ed 38
f84e7fd6
RB
39/* Operator lists. */
40(define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42(define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44(define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
534bd33b
MG
46(define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
07cdc2b8
RB
48(define_operator_list simple_comparison lt le eq ne ge gt)
49(define_operator_list swapped_simple_comparison gt ge eq ne le lt)
50
b1dc4a20 51#include "cfn-operators.pd"
257aecb4 52
543a9bcd
RS
53/* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
56
57 Also define operand lists:
58
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62#define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
543a9bcd
RS
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
64 BUILT_IN_L##FN##F \
65 BUILT_IN_LL##FN##F) \
66 (define_operator_list X##FN BUILT_IN_I##FN \
67 BUILT_IN_L##FN \
68 BUILT_IN_LL##FN) \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
70 BUILT_IN_L##FN##L \
71 BUILT_IN_LL##FN##L)
72
543a9bcd
RS
73DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
0d2b3bca
RS
77
78/* Binary operations and their associated IFN_COND_* function. */
79(define_operator_list UNCOND_BINARY
80 plus minus
6c4fd4a9 81 mult trunc_div trunc_mod rdiv
0d2b3bca
RS
82 min max
83 bit_and bit_ior bit_xor)
84(define_operator_list COND_BINARY
85 IFN_COND_ADD IFN_COND_SUB
6c4fd4a9 86 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
0d2b3bca
RS
87 IFN_COND_MIN IFN_COND_MAX
88 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR)
ed73f46f
MG
89
90/* As opposed to convert?, this still creates a single pattern, so
91 it is not a suitable replacement for convert? in all cases. */
92(match (nop_convert @0)
93 (convert @0)
94 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
95(match (nop_convert @0)
96 (view_convert @0)
97 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
928686b1
RS
98 && known_eq (TYPE_VECTOR_SUBPARTS (type),
99 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
ed73f46f
MG
100 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
101/* This one has to be last, or it shadows the others. */
102(match (nop_convert @0)
103 @0)
f84e7fd6 104
e0ee10ed 105/* Simplifications of operations with one constant operand and
36a60e48 106 simplifications to constants or single values. */
e0ee10ed
RB
107
108(for op (plus pointer_plus minus bit_ior bit_xor)
109 (simplify
110 (op @0 integer_zerop)
111 (non_lvalue @0)))
112
a499aac5
RB
113/* 0 +p index -> (type)index */
114(simplify
115 (pointer_plus integer_zerop @1)
116 (non_lvalue (convert @1)))
117
d43177ad
MG
118/* ptr - 0 -> (type)ptr */
119(simplify
120 (pointer_diff @0 integer_zerop)
121 (convert @0))
122
a7f24614
RB
123/* See if ARG1 is zero and X + ARG1 reduces to X.
124 Likewise if the operands are reversed. */
125(simplify
126 (plus:c @0 real_zerop@1)
127 (if (fold_real_zero_addition_p (type, @1, 0))
128 (non_lvalue @0)))
129
130/* See if ARG1 is zero and X - ARG1 reduces to X. */
131(simplify
132 (minus @0 real_zerop@1)
133 (if (fold_real_zero_addition_p (type, @1, 1))
134 (non_lvalue @0)))
135
e0ee10ed
RB
136/* Simplify x - x.
137 This is unsafe for certain floats even in non-IEEE formats.
138 In IEEE, it is unsafe because it does wrong for NaNs.
139 Also note that operand_equal_p is always false if an operand
140 is volatile. */
141(simplify
a7f24614 142 (minus @0 @0)
1b457aa4 143 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
a7f24614 144 { build_zero_cst (type); }))
1af4ebf5
MG
145(simplify
146 (pointer_diff @@0 @0)
147 { build_zero_cst (type); })
e0ee10ed
RB
148
149(simplify
a7f24614
RB
150 (mult @0 integer_zerop@1)
151 @1)
152
153/* Maybe fold x * 0 to 0. The expressions aren't the same
154 when x is NaN, since x * 0 is also NaN. Nor are they the
155 same in modes with signed zeros, since multiplying a
156 negative value by 0 gives -0, not +0. */
157(simplify
158 (mult @0 real_zerop@1)
8b5ee871 159 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
a7f24614
RB
160 @1))
161
162/* In IEEE floating point, x*1 is not equivalent to x for snans.
163 Likewise for complex arithmetic with signed zeros. */
164(simplify
165 (mult @0 real_onep)
8b5ee871
MG
166 (if (!HONOR_SNANS (type)
167 && (!HONOR_SIGNED_ZEROS (type)
a7f24614
RB
168 || !COMPLEX_FLOAT_TYPE_P (type)))
169 (non_lvalue @0)))
170
171/* Transform x * -1.0 into -x. */
172(simplify
173 (mult @0 real_minus_onep)
8b5ee871
MG
174 (if (!HONOR_SNANS (type)
175 && (!HONOR_SIGNED_ZEROS (type)
a7f24614
RB
176 || !COMPLEX_FLOAT_TYPE_P (type)))
177 (negate @0)))
e0ee10ed 178
8c2805bb
AP
179(for cmp (gt ge lt le)
180 outp (convert convert negate negate)
181 outn (negate negate convert convert)
182 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
183 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
184 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
185 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
186 (simplify
187 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
188 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
189 && types_match (type, TREE_TYPE (@0)))
190 (switch
191 (if (types_match (type, float_type_node))
192 (BUILT_IN_COPYSIGNF @1 (outp @0)))
193 (if (types_match (type, double_type_node))
194 (BUILT_IN_COPYSIGN @1 (outp @0)))
195 (if (types_match (type, long_double_type_node))
196 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
197 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
198 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
199 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
200 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
201 (simplify
202 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
203 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
204 && types_match (type, TREE_TYPE (@0)))
205 (switch
206 (if (types_match (type, float_type_node))
207 (BUILT_IN_COPYSIGNF @1 (outn @0)))
208 (if (types_match (type, double_type_node))
209 (BUILT_IN_COPYSIGN @1 (outn @0)))
210 (if (types_match (type, long_double_type_node))
211 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
212
213/* Transform X * copysign (1.0, X) into abs(X). */
214(simplify
c6cfa2bf 215 (mult:c @0 (COPYSIGN_ALL real_onep @0))
8c2805bb
AP
216 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
217 (abs @0)))
218
219/* Transform X * copysign (1.0, -X) into -abs(X). */
220(simplify
c6cfa2bf 221 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
8c2805bb
AP
222 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
223 (negate (abs @0))))
224
225/* Transform copysign (CST, X) into copysign (ABS(CST), X). */
226(simplify
c6cfa2bf 227 (COPYSIGN_ALL REAL_CST@0 @1)
8c2805bb 228 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
c6cfa2bf 229 (COPYSIGN_ALL (negate @0) @1)))
8c2805bb 230
5b7f6ed0 231/* X * 1, X / 1 -> X. */
e0ee10ed
RB
232(for op (mult trunc_div ceil_div floor_div round_div exact_div)
233 (simplify
234 (op @0 integer_onep)
235 (non_lvalue @0)))
236
71f82be9
JG
237/* (A / (1 << B)) -> (A >> B).
238 Only for unsigned A. For signed A, this would not preserve rounding
239 toward zero.
240 For example: (-1 / ( 1 << B)) != -1 >> B. */
241(simplify
242 (trunc_div @0 (lshift integer_onep@1 @2))
243 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
244 && (!VECTOR_TYPE_P (type)
245 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
246 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
247 (rshift @0 @2)))
248
5b7f6ed0
MG
249/* Preserve explicit divisions by 0: the C++ front-end wants to detect
250 undefined behavior in constexpr evaluation, and assuming that the division
251 traps enables better optimizations than these anyway. */
a7f24614 252(for div (trunc_div ceil_div floor_div round_div exact_div)
5b7f6ed0
MG
253 /* 0 / X is always zero. */
254 (simplify
255 (div integer_zerop@0 @1)
256 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
257 (if (!integer_zerop (@1))
258 @0))
da186c1f 259 /* X / -1 is -X. */
a7f24614 260 (simplify
09240451
MG
261 (div @0 integer_minus_onep@1)
262 (if (!TYPE_UNSIGNED (type))
da186c1f 263 (negate @0)))
5b7f6ed0
MG
264 /* X / X is one. */
265 (simplify
266 (div @0 @0)
9ebce098
JJ
267 /* But not for 0 / 0 so that we can get the proper warnings and errors.
268 And not for _Fract types where we can't build 1. */
269 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
5b7f6ed0 270 { build_one_cst (type); }))
da186c1f
RB
271 /* X / abs (X) is X < 0 ? -1 : 1. */
272 (simplify
d96a5585
RB
273 (div:C @0 (abs @0))
274 (if (INTEGRAL_TYPE_P (type)
da186c1f
RB
275 && TYPE_OVERFLOW_UNDEFINED (type))
276 (cond (lt @0 { build_zero_cst (type); })
277 { build_minus_one_cst (type); } { build_one_cst (type); })))
278 /* X / -X is -1. */
279 (simplify
d96a5585 280 (div:C @0 (negate @0))
da186c1f
RB
281 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
282 && TYPE_OVERFLOW_UNDEFINED (type))
283 { build_minus_one_cst (type); })))
a7f24614
RB
284
285/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
286 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
287(simplify
288 (floor_div @0 @1)
09240451
MG
289 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
290 && TYPE_UNSIGNED (type))
a7f24614
RB
291 (trunc_div @0 @1)))
292
28093105
RB
293/* Combine two successive divisions. Note that combining ceil_div
294 and floor_div is trickier and combining round_div even more so. */
295(for div (trunc_div exact_div)
c306cfaf
RB
296 (simplify
297 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
298 (with {
299 bool overflow_p;
8e6cdc90
RS
300 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
301 TYPE_SIGN (type), &overflow_p);
c306cfaf
RB
302 }
303 (if (!overflow_p)
8fdc6c67
RB
304 (div @0 { wide_int_to_tree (type, mul); })
305 (if (TYPE_UNSIGNED (type)
306 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
307 { build_zero_cst (type); })))))
c306cfaf 308
288fe52e
AM
309/* Combine successive multiplications. Similar to above, but handling
310 overflow is different. */
311(simplify
312 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
313 (with {
314 bool overflow_p;
8e6cdc90
RS
315 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
316 TYPE_SIGN (type), &overflow_p);
288fe52e
AM
317 }
318 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
319 otherwise undefined overflow implies that @0 must be zero. */
320 (if (!overflow_p || TYPE_OVERFLOW_WRAPS (type))
321 (mult @0 { wide_int_to_tree (type, mul); }))))
322
a7f24614 323/* Optimize A / A to 1.0 if we don't care about
09240451 324 NaNs or Infinities. */
a7f24614
RB
325(simplify
326 (rdiv @0 @0)
09240451 327 (if (FLOAT_TYPE_P (type)
1b457aa4 328 && ! HONOR_NANS (type)
8b5ee871 329 && ! HONOR_INFINITIES (type))
09240451
MG
330 { build_one_cst (type); }))
331
332/* Optimize -A / A to -1.0 if we don't care about
333 NaNs or Infinities. */
334(simplify
e04d2a35 335 (rdiv:C @0 (negate @0))
09240451 336 (if (FLOAT_TYPE_P (type)
1b457aa4 337 && ! HONOR_NANS (type)
8b5ee871 338 && ! HONOR_INFINITIES (type))
09240451 339 { build_minus_one_cst (type); }))
a7f24614 340
8c6961ca
PK
341/* PR71078: x / abs(x) -> copysign (1.0, x) */
342(simplify
343 (rdiv:C (convert? @0) (convert? (abs @0)))
344 (if (SCALAR_FLOAT_TYPE_P (type)
345 && ! HONOR_NANS (type)
346 && ! HONOR_INFINITIES (type))
347 (switch
348 (if (types_match (type, float_type_node))
349 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
350 (if (types_match (type, double_type_node))
351 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
352 (if (types_match (type, long_double_type_node))
353 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
354
a7f24614
RB
355/* In IEEE floating point, x/1 is not equivalent to x for snans. */
356(simplify
357 (rdiv @0 real_onep)
8b5ee871 358 (if (!HONOR_SNANS (type))
a7f24614
RB
359 (non_lvalue @0)))
360
361/* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
362(simplify
363 (rdiv @0 real_minus_onep)
8b5ee871 364 (if (!HONOR_SNANS (type))
a7f24614
RB
365 (negate @0)))
366
5711ac88 367(if (flag_reciprocal_math)
81825e28 368 /* Convert (A/B)/C to A/(B*C). */
5711ac88
N
369 (simplify
370 (rdiv (rdiv:s @0 @1) @2)
81825e28
WD
371 (rdiv @0 (mult @1 @2)))
372
373 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
374 (simplify
375 (rdiv @0 (mult:s @1 REAL_CST@2))
376 (with
377 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
378 (if (tem)
379 (rdiv (mult @0 { tem; } ) @1))))
5711ac88
N
380
381 /* Convert A/(B/C) to (A/B)*C */
382 (simplify
383 (rdiv @0 (rdiv:s @1 @2))
384 (mult (rdiv @0 @1) @2)))
385
6a435314
WD
386/* Simplify x / (- y) to -x / y. */
387(simplify
388 (rdiv @0 (negate @1))
389 (rdiv (negate @0) @1))
390
5711ac88
N
391/* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
392(for div (trunc_div ceil_div floor_div round_div exact_div)
393 (simplify
394 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
395 (if (integer_pow2p (@2)
396 && tree_int_cst_sgn (@2) > 0
a1488398 397 && tree_nop_conversion_p (type, TREE_TYPE (@0))
8e6cdc90
RS
398 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
399 (rshift (convert @0)
400 { build_int_cst (integer_type_node,
401 wi::exact_log2 (wi::to_wide (@2))); }))))
5711ac88 402
a7f24614
RB
403/* If ARG1 is a constant, we can convert this to a multiply by the
404 reciprocal. This does not have the same rounding properties,
405 so only do this if -freciprocal-math. We can actually
406 always safely do it if ARG1 is a power of two, but it's hard to
407 tell if it is or not in a portable manner. */
408(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
409 (simplify
410 (rdiv @0 cst@1)
411 (if (optimize)
53bc4b3a
RB
412 (if (flag_reciprocal_math
413 && !real_zerop (@1))
a7f24614 414 (with
249700b5 415 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
a7f24614 416 (if (tem)
8fdc6c67
RB
417 (mult @0 { tem; } )))
418 (if (cst != COMPLEX_CST)
419 (with { tree inverse = exact_inverse (type, @1); }
420 (if (inverse)
421 (mult @0 { inverse; } ))))))))
a7f24614 422
a7f24614 423(for mod (ceil_mod floor_mod round_mod trunc_mod)
e0ee10ed
RB
424 /* 0 % X is always zero. */
425 (simplify
a7f24614 426 (mod integer_zerop@0 @1)
e0ee10ed
RB
427 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
428 (if (!integer_zerop (@1))
429 @0))
430 /* X % 1 is always zero. */
431 (simplify
a7f24614
RB
432 (mod @0 integer_onep)
433 { build_zero_cst (type); })
434 /* X % -1 is zero. */
435 (simplify
09240451
MG
436 (mod @0 integer_minus_onep@1)
437 (if (!TYPE_UNSIGNED (type))
bc4315fb 438 { build_zero_cst (type); }))
5b7f6ed0
MG
439 /* X % X is zero. */
440 (simplify
441 (mod @0 @0)
442 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
443 (if (!integer_zerop (@0))
444 { build_zero_cst (type); }))
bc4315fb
MG
445 /* (X % Y) % Y is just X % Y. */
446 (simplify
447 (mod (mod@2 @0 @1) @1)
98e30e51
RB
448 @2)
449 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
450 (simplify
451 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
452 (if (ANY_INTEGRAL_TYPE_P (type)
453 && TYPE_OVERFLOW_UNDEFINED (type)
8e6cdc90
RS
454 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
455 TYPE_SIGN (type)))
98e30e51 456 { build_zero_cst (type); })))
a7f24614
RB
457
458/* X % -C is the same as X % C. */
459(simplify
460 (trunc_mod @0 INTEGER_CST@1)
461 (if (TYPE_SIGN (type) == SIGNED
462 && !TREE_OVERFLOW (@1)
8e6cdc90 463 && wi::neg_p (wi::to_wide (@1))
a7f24614
RB
464 && !TYPE_OVERFLOW_TRAPS (type)
465 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
466 && !sign_bit_p (@1, @1))
467 (trunc_mod @0 (negate @1))))
e0ee10ed 468
8f0c696a
RB
469/* X % -Y is the same as X % Y. */
470(simplify
471 (trunc_mod @0 (convert? (negate @1)))
a2a743a1
MP
472 (if (INTEGRAL_TYPE_P (type)
473 && !TYPE_UNSIGNED (type)
8f0c696a 474 && !TYPE_OVERFLOW_TRAPS (type)
20b8d734
JJ
475 && tree_nop_conversion_p (type, TREE_TYPE (@1))
476 /* Avoid this transformation if X might be INT_MIN or
477 Y might be -1, because we would then change valid
478 INT_MIN % -(-1) into invalid INT_MIN % -1. */
8e6cdc90 479 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
20b8d734
JJ
480 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
481 (TREE_TYPE (@1))))))
8f0c696a
RB
482 (trunc_mod @0 (convert @1))))
483
f461569a
MP
484/* X - (X / Y) * Y is the same as X % Y. */
485(simplify
2eef1fc1
RB
486 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
487 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
fba46f03 488 (convert (trunc_mod @0 @1))))
f461569a 489
8f0c696a
RB
490/* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
491 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
492 Also optimize A % (C << N) where C is a power of 2,
493 to A & ((C << N) - 1). */
494(match (power_of_two_cand @1)
495 INTEGER_CST@1)
496(match (power_of_two_cand @1)
497 (lshift INTEGER_CST@1 @2))
498(for mod (trunc_mod floor_mod)
499 (simplify
4ab1e111 500 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
8f0c696a
RB
501 (if ((TYPE_UNSIGNED (type)
502 || tree_expr_nonnegative_p (@0))
4ab1e111 503 && tree_nop_conversion_p (type, TREE_TYPE (@3))
8f0c696a 504 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
4ab1e111 505 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
8f0c696a 506
887ab609
N
507/* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
508(simplify
509 (trunc_div (mult @0 integer_pow2p@1) @1)
510 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
511 (bit_and @0 { wide_int_to_tree
8e6cdc90
RS
512 (type, wi::mask (TYPE_PRECISION (type)
513 - wi::exact_log2 (wi::to_wide (@1)),
887ab609
N
514 false, TYPE_PRECISION (type))); })))
515
5f8d832e
N
516/* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
517(simplify
518 (mult (trunc_div @0 integer_pow2p@1) @1)
519 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
520 (bit_and @0 (negate @1))))
521
95765f36
N
522/* Simplify (t * 2) / 2) -> t. */
523(for div (trunc_div ceil_div floor_div round_div exact_div)
524 (simplify
55d84e61 525 (div (mult:c @0 @1) @1)
95765f36
N
526 (if (ANY_INTEGRAL_TYPE_P (type)
527 && TYPE_OVERFLOW_UNDEFINED (type))
528 @0)))
529
d202f9bd 530(for op (negate abs)
9b054b08
RS
531 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
532 (for coss (COS COSH)
533 (simplify
534 (coss (op @0))
535 (coss @0)))
536 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
537 (for pows (POW)
538 (simplify
539 (pows (op @0) REAL_CST@1)
540 (with { HOST_WIDE_INT n; }
541 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
5d3498b4 542 (pows @0 @1)))))
de3fbea3
RB
543 /* Likewise for powi. */
544 (for pows (POWI)
545 (simplify
546 (pows (op @0) INTEGER_CST@1)
8e6cdc90 547 (if ((wi::to_wide (@1) & 1) == 0)
de3fbea3 548 (pows @0 @1))))
5d3498b4
RS
549 /* Strip negate and abs from both operands of hypot. */
550 (for hypots (HYPOT)
551 (simplify
552 (hypots (op @0) @1)
553 (hypots @0 @1))
554 (simplify
555 (hypots @0 (op @1))
556 (hypots @0 @1)))
557 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
c6cfa2bf 558 (for copysigns (COPYSIGN_ALL)
5d3498b4
RS
559 (simplify
560 (copysigns (op @0) @1)
561 (copysigns @0 @1))))
562
563/* abs(x)*abs(x) -> x*x. Should be valid for all types. */
564(simplify
565 (mult (abs@1 @0) @1)
566 (mult @0 @0))
567
568/* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
569(for coss (COS COSH)
570 copysigns (COPYSIGN)
571 (simplify
572 (coss (copysigns @0 @1))
573 (coss @0)))
574
575/* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
576(for pows (POW)
577 copysigns (COPYSIGN)
578 (simplify
de3fbea3 579 (pows (copysigns @0 @2) REAL_CST@1)
5d3498b4
RS
580 (with { HOST_WIDE_INT n; }
581 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
582 (pows @0 @1)))))
de3fbea3
RB
583/* Likewise for powi. */
584(for pows (POWI)
585 copysigns (COPYSIGN)
586 (simplify
587 (pows (copysigns @0 @2) INTEGER_CST@1)
8e6cdc90 588 (if ((wi::to_wide (@1) & 1) == 0)
de3fbea3 589 (pows @0 @1))))
5d3498b4
RS
590
591(for hypots (HYPOT)
592 copysigns (COPYSIGN)
593 /* hypot(copysign(x, y), z) -> hypot(x, z). */
594 (simplify
595 (hypots (copysigns @0 @1) @2)
596 (hypots @0 @2))
597 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
598 (simplify
599 (hypots @0 (copysigns @1 @2))
600 (hypots @0 @1)))
601
eeb57981 602/* copysign(x, CST) -> [-]abs (x). */
c6cfa2bf 603(for copysigns (COPYSIGN_ALL)
eeb57981
RB
604 (simplify
605 (copysigns @0 REAL_CST@1)
606 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
607 (negate (abs @0))
608 (abs @0))))
609
5d3498b4 610/* copysign(copysign(x, y), z) -> copysign(x, z). */
c6cfa2bf 611(for copysigns (COPYSIGN_ALL)
5d3498b4
RS
612 (simplify
613 (copysigns (copysigns @0 @1) @2)
614 (copysigns @0 @2)))
615
616/* copysign(x,y)*copysign(x,y) -> x*x. */
c6cfa2bf 617(for copysigns (COPYSIGN_ALL)
5d3498b4
RS
618 (simplify
619 (mult (copysigns@2 @0 @1) @2)
620 (mult @0 @0)))
621
622/* ccos(-x) -> ccos(x). Similarly for ccosh. */
623(for ccoss (CCOS CCOSH)
624 (simplify
625 (ccoss (negate @0))
626 (ccoss @0)))
d202f9bd 627
abcc43f5
RS
628/* cabs(-x) and cos(conj(x)) -> cabs(x). */
629(for ops (conj negate)
630 (for cabss (CABS)
631 (simplify
632 (cabss (ops @0))
633 (cabss @0))))
634
0a8f32b8
RB
635/* Fold (a * (1 << b)) into (a << b) */
636(simplify
637 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
638 (if (! FLOAT_TYPE_P (type)
9ff6fb6e 639 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
0a8f32b8
RB
640 (lshift @0 @2)))
641
4349b15f
SD
642/* Fold (1 << (C - x)) where C = precision(type) - 1
643 into ((1 << C) >> x). */
644(simplify
645 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
646 (if (INTEGRAL_TYPE_P (type)
56ccfbd6 647 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
4349b15f
SD
648 && single_use (@1))
649 (if (TYPE_UNSIGNED (type))
650 (rshift (lshift @0 @2) @3)
651 (with
652 { tree utype = unsigned_type_for (type); }
653 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
654
0a8f32b8
RB
655/* Fold (C1/X)*C2 into (C1*C2)/X. */
656(simplify
ff86345f
RB
657 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
658 (if (flag_associative_math
659 && single_use (@3))
0a8f32b8
RB
660 (with
661 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
662 (if (tem)
663 (rdiv { tem; } @1)))))
664
665/* Simplify ~X & X as zero. */
666(simplify
667 (bit_and:c (convert? @0) (convert? (bit_not @0)))
668 { build_zero_cst (type); })
669
89b80c42
PK
670/* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
671(simplify
672 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
673 (if (TYPE_UNSIGNED (type))
674 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
675
7aa13860
PK
676(for bitop (bit_and bit_ior)
677 cmp (eq ne)
a93952d2
JJ
678 /* PR35691: Transform
679 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
680 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
7aa13860
PK
681 (simplify
682 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
683 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
a93952d2
JJ
684 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
685 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
686 (cmp (bit_ior @0 (convert @1)) @2)))
687 /* Transform:
688 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
689 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
690 (simplify
691 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
692 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
693 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
694 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
695 (cmp (bit_and @0 (convert @1)) @2))))
7aa13860 696
10158317
RB
697/* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
698(simplify
a9658b11 699 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
10158317
RB
700 (minus (bit_xor @0 @1) @1))
701(simplify
702 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
8e6cdc90 703 (if (~wi::to_wide (@2) == wi::to_wide (@1))
10158317
RB
704 (minus (bit_xor @0 @1) @1)))
705
706/* Fold (A & B) - (A & ~B) into B - (A ^ B). */
707(simplify
a8e9f9a3 708 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
10158317
RB
709 (minus @1 (bit_xor @0 @1)))
710
42bd89ce
MG
711/* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
712(for op (bit_ior bit_xor plus)
713 (simplify
714 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
715 (bit_xor @0 @1))
716 (simplify
717 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
8e6cdc90 718 (if (~wi::to_wide (@2) == wi::to_wide (@1))
42bd89ce 719 (bit_xor @0 @1))))
2066ef6a
PK
720
721/* PR53979: Transform ((a ^ b) | a) -> (a | b) */
722(simplify
723 (bit_ior:c (bit_xor:c @0 @1) @0)
724 (bit_ior @0 @1))
725
e268a77b
MG
726/* (a & ~b) | (a ^ b) --> a ^ b */
727(simplify
728 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
729 @2)
730
731/* (a & ~b) ^ ~a --> ~(a & b) */
732(simplify
733 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
734 (bit_not (bit_and @0 @1)))
735
736/* (a | b) & ~(a ^ b) --> a & b */
737(simplify
738 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
739 (bit_and @0 @1))
740
741/* a | ~(a ^ b) --> a | ~b */
742(simplify
743 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
744 (bit_ior @0 (bit_not @1)))
745
746/* (a | b) | (a &^ b) --> a | b */
747(for op (bit_and bit_xor)
748 (simplify
749 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
750 @2))
751
752/* (a & b) | ~(a ^ b) --> ~(a ^ b) */
753(simplify
754 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
755 @2)
756
757/* ~(~a & b) --> a | ~b */
758(simplify
759 (bit_not (bit_and:cs (bit_not @0) @1))
760 (bit_ior @0 (bit_not @1)))
761
d982c5b7
MG
762/* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
763#if GIMPLE
764(simplify
765 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
766 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
8e6cdc90 767 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
d982c5b7
MG
768 (bit_xor @0 @1)))
769#endif
10158317 770
bc4315fb
MG
771/* X % Y is smaller than Y. */
772(for cmp (lt ge)
773 (simplify
774 (cmp (trunc_mod @0 @1) @1)
775 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
776 { constant_boolean_node (cmp == LT_EXPR, type); })))
777(for cmp (gt le)
778 (simplify
779 (cmp @1 (trunc_mod @0 @1))
780 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
781 { constant_boolean_node (cmp == GT_EXPR, type); })))
782
e0ee10ed
RB
783/* x | ~0 -> ~0 */
784(simplify
ca0b7ece
RB
785 (bit_ior @0 integer_all_onesp@1)
786 @1)
787
788/* x | 0 -> x */
789(simplify
790 (bit_ior @0 integer_zerop)
791 @0)
e0ee10ed
RB
792
793/* x & 0 -> 0 */
794(simplify
ca0b7ece
RB
795 (bit_and @0 integer_zerop@1)
796 @1)
e0ee10ed 797
a4398a30 798/* ~x | x -> -1 */
8b5ee871
MG
799/* ~x ^ x -> -1 */
800/* ~x + x -> -1 */
801(for op (bit_ior bit_xor plus)
802 (simplify
803 (op:c (convert? @0) (convert? (bit_not @0)))
804 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
a4398a30 805
e0ee10ed
RB
806/* x ^ x -> 0 */
807(simplify
808 (bit_xor @0 @0)
809 { build_zero_cst (type); })
810
36a60e48
RB
811/* Canonicalize X ^ ~0 to ~X. */
812(simplify
813 (bit_xor @0 integer_all_onesp@1)
814 (bit_not @0))
815
816/* x & ~0 -> x */
817(simplify
818 (bit_and @0 integer_all_onesp)
819 (non_lvalue @0))
820
821/* x & x -> x, x | x -> x */
822(for bitop (bit_and bit_ior)
823 (simplify
824 (bitop @0 @0)
825 (non_lvalue @0)))
826
c7986356
MG
827/* x & C -> x if we know that x & ~C == 0. */
828#if GIMPLE
829(simplify
830 (bit_and SSA_NAME@0 INTEGER_CST@1)
831 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
8e6cdc90 832 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
c7986356
MG
833 @0))
834#endif
835
0f770b01
RV
836/* x + (x & 1) -> (x + 1) & ~1 */
837(simplify
44fc0a51
RB
838 (plus:c @0 (bit_and:s @0 integer_onep@1))
839 (bit_and (plus @0 @1) (bit_not @1)))
0f770b01
RV
840
841/* x & ~(x & y) -> x & ~y */
842/* x | ~(x | y) -> x | ~y */
843(for bitop (bit_and bit_ior)
af563d4b 844 (simplify
44fc0a51
RB
845 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
846 (bitop @0 (bit_not @1))))
af563d4b
MG
847
848/* (x | y) & ~x -> y & ~x */
849/* (x & y) | ~x -> y | ~x */
850(for bitop (bit_and bit_ior)
851 rbitop (bit_ior bit_and)
852 (simplify
853 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
854 (bitop @1 @2)))
0f770b01 855
f13c4673
MP
856/* (x & y) ^ (x | y) -> x ^ y */
857(simplify
2d6f2dce
MP
858 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
859 (bit_xor @0 @1))
f13c4673 860
9ea65ca6
MP
861/* (x ^ y) ^ (x | y) -> x & y */
862(simplify
863 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
864 (bit_and @0 @1))
865
866/* (x & y) + (x ^ y) -> x | y */
867/* (x & y) | (x ^ y) -> x | y */
868/* (x & y) ^ (x ^ y) -> x | y */
869(for op (plus bit_ior bit_xor)
870 (simplify
871 (op:c (bit_and @0 @1) (bit_xor @0 @1))
872 (bit_ior @0 @1)))
873
874/* (x & y) + (x | y) -> x + y */
875(simplify
876 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
877 (plus @0 @1))
878
9737efaf
MP
879/* (x + y) - (x | y) -> x & y */
880(simplify
881 (minus (plus @0 @1) (bit_ior @0 @1))
882 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
883 && !TYPE_SATURATING (type))
884 (bit_and @0 @1)))
885
886/* (x + y) - (x & y) -> x | y */
887(simplify
888 (minus (plus @0 @1) (bit_and @0 @1))
889 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
890 && !TYPE_SATURATING (type))
891 (bit_ior @0 @1)))
892
9ea65ca6
MP
893/* (x | y) - (x ^ y) -> x & y */
894(simplify
895 (minus (bit_ior @0 @1) (bit_xor @0 @1))
896 (bit_and @0 @1))
897
898/* (x | y) - (x & y) -> x ^ y */
899(simplify
900 (minus (bit_ior @0 @1) (bit_and @0 @1))
901 (bit_xor @0 @1))
902
66cc6273
MP
903/* (x | y) & ~(x & y) -> x ^ y */
904(simplify
905 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
906 (bit_xor @0 @1))
907
908/* (x | y) & (~x ^ y) -> x & y */
909(simplify
910 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
911 (bit_and @0 @1))
912
5b00d921
RB
913/* ~x & ~y -> ~(x | y)
914 ~x | ~y -> ~(x & y) */
915(for op (bit_and bit_ior)
916 rop (bit_ior bit_and)
917 (simplify
918 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
ece46666
MG
919 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
920 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
5b00d921
RB
921 (bit_not (rop (convert @0) (convert @1))))))
922
14ea9f92 923/* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
5b00d921
RB
924 with a constant, and the two constants have no bits in common,
925 we should treat this as a BIT_IOR_EXPR since this may produce more
926 simplifications. */
14ea9f92
RB
927(for op (bit_xor plus)
928 (simplify
929 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
930 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
931 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
932 && tree_nop_conversion_p (type, TREE_TYPE (@2))
8e6cdc90 933 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
14ea9f92 934 (bit_ior (convert @4) (convert @5)))))
5b00d921
RB
935
936/* (X | Y) ^ X -> Y & ~ X*/
937(simplify
2eef1fc1 938 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
5b00d921
RB
939 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
940 (convert (bit_and @1 (bit_not @0)))))
941
942/* Convert ~X ^ ~Y to X ^ Y. */
943(simplify
944 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
ece46666
MG
945 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
946 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
5b00d921
RB
947 (bit_xor (convert @0) (convert @1))))
948
949/* Convert ~X ^ C to X ^ ~C. */
950(simplify
951 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
c8ba6498
EB
952 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
953 (bit_xor (convert @0) (bit_not @1))))
5b00d921 954
e39dab2c
MG
955/* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
956(for opo (bit_and bit_xor)
957 opi (bit_xor bit_and)
958 (simplify
959 (opo:c (opi:c @0 @1) @1)
960 (bit_and (bit_not @0) @1)))
97e77391 961
14ea9f92
RB
962/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
963 operands are another bit-wise operation with a common input. If so,
964 distribute the bit operations to save an operation and possibly two if
965 constants are involved. For example, convert
966 (A | B) & (A | C) into A | (B & C)
967 Further simplification will occur if B and C are constants. */
e07ab2fe
MG
968(for op (bit_and bit_ior bit_xor)
969 rop (bit_ior bit_and bit_and)
14ea9f92 970 (simplify
2eef1fc1 971 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
e07ab2fe
MG
972 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
973 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
14ea9f92
RB
974 (rop (convert @0) (op (convert @1) (convert @2))))))
975
e39dab2c
MG
976/* Some simple reassociation for bit operations, also handled in reassoc. */
977/* (X & Y) & Y -> X & Y
978 (X | Y) | Y -> X | Y */
979(for op (bit_and bit_ior)
980 (simplify
2eef1fc1 981 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
e39dab2c
MG
982 @2))
983/* (X ^ Y) ^ Y -> X */
984(simplify
2eef1fc1 985 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
ece46666 986 (convert @0))
e39dab2c
MG
987/* (X & Y) & (X & Z) -> (X & Y) & Z
988 (X | Y) | (X | Z) -> (X | Y) | Z */
989(for op (bit_and bit_ior)
990 (simplify
6c35e5b0 991 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
e39dab2c
MG
992 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
993 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
994 (if (single_use (@5) && single_use (@6))
995 (op @3 (convert @2))
996 (if (single_use (@3) && single_use (@4))
997 (op (convert @1) @5))))))
998/* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
999(simplify
1000 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1001 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1002 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
d78789f5 1003 (bit_xor (convert @1) (convert @2))))
5b00d921 1004
b14a9c57
RB
1005(simplify
1006 (abs (abs@1 @0))
1007 @1)
f3582e54
RB
1008(simplify
1009 (abs (negate @0))
1010 (abs @0))
1011(simplify
1012 (abs tree_expr_nonnegative_p@0)
1013 @0)
1014
55cf3946
RB
1015/* A few cases of fold-const.c negate_expr_p predicate. */
1016(match negate_expr_p
1017 INTEGER_CST
b14a9c57 1018 (if ((INTEGRAL_TYPE_P (type)
56a6d474 1019 && TYPE_UNSIGNED (type))
b14a9c57 1020 || (!TYPE_OVERFLOW_SANITIZED (type)
55cf3946
RB
1021 && may_negate_without_overflow_p (t)))))
1022(match negate_expr_p
1023 FIXED_CST)
1024(match negate_expr_p
1025 (negate @0)
1026 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1027(match negate_expr_p
1028 REAL_CST
1029 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1030/* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1031 ways. */
1032(match negate_expr_p
1033 VECTOR_CST
1034 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
81bd903a
MG
1035(match negate_expr_p
1036 (minus @0 @1)
1037 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1038 || (FLOAT_TYPE_P (type)
1039 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1040 && !HONOR_SIGNED_ZEROS (type)))))
0a8f32b8
RB
1041
1042/* (-A) * (-B) -> A * B */
1043(simplify
1044 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1045 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1046 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1047 (mult (convert @0) (convert (negate @1)))))
55cf3946
RB
1048
1049/* -(A + B) -> (-B) - A. */
b14a9c57 1050(simplify
55cf3946
RB
1051 (negate (plus:c @0 negate_expr_p@1))
1052 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1053 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1054 (minus (negate @1) @0)))
1055
81bd903a
MG
1056/* -(A - B) -> B - A. */
1057(simplify
1058 (negate (minus @0 @1))
1059 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1060 || (FLOAT_TYPE_P (type)
1061 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1062 && !HONOR_SIGNED_ZEROS (type)))
1063 (minus @1 @0)))
1af4ebf5
MG
1064(simplify
1065 (negate (pointer_diff @0 @1))
1066 (if (TYPE_OVERFLOW_UNDEFINED (type))
1067 (pointer_diff @1 @0)))
81bd903a 1068
55cf3946 1069/* A - B -> A + (-B) if B is easily negatable. */
b14a9c57 1070(simplify
55cf3946 1071 (minus @0 negate_expr_p@1)
e4e96a4f
KT
1072 (if (!FIXED_POINT_TYPE_P (type))
1073 (plus @0 (negate @1))))
d4573ffe 1074
5609420f
RB
1075/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1076 when profitable.
1077 For bitwise binary operations apply operand conversions to the
1078 binary operation result instead of to the operands. This allows
1079 to combine successive conversions and bitwise binary operations.
1080 We combine the above two cases by using a conditional convert. */
1081(for bitop (bit_and bit_ior bit_xor)
1082 (simplify
1083 (bitop (convert @0) (convert? @1))
1084 (if (((TREE_CODE (@1) == INTEGER_CST
1085 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
ad6f996c 1086 && int_fits_type_p (@1, TREE_TYPE (@0)))
aea417d7 1087 || types_match (@0, @1))
ad6f996c
RB
1088 /* ??? This transform conflicts with fold-const.c doing
1089 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1090 constants (if x has signed type, the sign bit cannot be set
1091 in c). This folds extension into the BIT_AND_EXPR.
1092 Restrict it to GIMPLE to avoid endless recursions. */
1093 && (bitop != BIT_AND_EXPR || GIMPLE)
5609420f
RB
1094 && (/* That's a good idea if the conversion widens the operand, thus
1095 after hoisting the conversion the operation will be narrower. */
1096 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1097 /* It's also a good idea if the conversion is to a non-integer
1098 mode. */
1099 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1100 /* Or if the precision of TO is not the same as the precision
1101 of its mode. */
2be65d9e 1102 || !type_has_mode_precision_p (type)))
5609420f
RB
1103 (convert (bitop @0 (convert @1))))))
1104
b14a9c57
RB
1105(for bitop (bit_and bit_ior)
1106 rbitop (bit_ior bit_and)
1107 /* (x | y) & x -> x */
1108 /* (x & y) | x -> x */
1109 (simplify
1110 (bitop:c (rbitop:c @0 @1) @0)
1111 @0)
1112 /* (~x | y) & x -> x & y */
1113 /* (~x & y) | x -> x | y */
1114 (simplify
1115 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1116 (bitop @0 @1)))
1117
5609420f
RB
1118/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1119(simplify
1120 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1121 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1122
1123/* Combine successive equal operations with constants. */
1124(for bitop (bit_and bit_ior bit_xor)
1125 (simplify
1126 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
fba05d9e
RS
1127 (if (!CONSTANT_CLASS_P (@0))
1128 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1129 folded to a constant. */
1130 (bitop @0 (bitop @1 @2))
1131 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1132 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1133 the values involved are such that the operation can't be decided at
1134 compile time. Try folding one of @0 or @1 with @2 to see whether
1135 that combination can be decided at compile time.
1136
1137 Keep the existing form if both folds fail, to avoid endless
1138 oscillation. */
1139 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1140 (if (cst1)
1141 (bitop @1 { cst1; })
1142 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1143 (if (cst2)
1144 (bitop @0 { cst2; }))))))))
5609420f
RB
1145
1146/* Try simple folding for X op !X, and X op X with the help
1147 of the truth_valued_p and logical_inverted_value predicates. */
1148(match truth_valued_p
1149 @0
1150 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
f84e7fd6 1151(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
5609420f
RB
1152 (match truth_valued_p
1153 (op @0 @1)))
1154(match truth_valued_p
1155 (truth_not @0))
1156
0a8f32b8
RB
1157(match (logical_inverted_value @0)
1158 (truth_not @0))
5609420f
RB
1159(match (logical_inverted_value @0)
1160 (bit_not truth_valued_p@0))
1161(match (logical_inverted_value @0)
09240451 1162 (eq @0 integer_zerop))
5609420f 1163(match (logical_inverted_value @0)
09240451 1164 (ne truth_valued_p@0 integer_truep))
5609420f 1165(match (logical_inverted_value @0)
09240451 1166 (bit_xor truth_valued_p@0 integer_truep))
5609420f
RB
1167
1168/* X & !X -> 0. */
1169(simplify
1170 (bit_and:c @0 (logical_inverted_value @0))
1171 { build_zero_cst (type); })
1172/* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1173(for op (bit_ior bit_xor)
1174 (simplify
1175 (op:c truth_valued_p@0 (logical_inverted_value @0))
f84e7fd6 1176 { constant_boolean_node (true, type); }))
59c20dc7
RB
1177/* X ==/!= !X is false/true. */
1178(for op (eq ne)
1179 (simplify
1180 (op:c truth_valued_p@0 (logical_inverted_value @0))
1181 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
5609420f 1182
5609420f
RB
1183/* ~~x -> x */
1184(simplify
1185 (bit_not (bit_not @0))
1186 @0)
1187
b14a9c57
RB
1188/* Convert ~ (-A) to A - 1. */
1189(simplify
1190 (bit_not (convert? (negate @0)))
ece46666
MG
1191 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1192 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
8b5ee871 1193 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
b14a9c57 1194
81bd903a
MG
1195/* Convert - (~A) to A + 1. */
1196(simplify
1197 (negate (nop_convert (bit_not @0)))
1198 (plus (view_convert @0) { build_each_one_cst (type); }))
1199
b14a9c57
RB
1200/* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1201(simplify
8b5ee871 1202 (bit_not (convert? (minus @0 integer_each_onep)))
ece46666
MG
1203 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1204 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
b14a9c57
RB
1205 (convert (negate @0))))
1206(simplify
1207 (bit_not (convert? (plus @0 integer_all_onesp)))
ece46666
MG
1208 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1209 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
b14a9c57
RB
1210 (convert (negate @0))))
1211
1212/* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1213(simplify
1214 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1215 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1216 (convert (bit_xor @0 (bit_not @1)))))
1217(simplify
1218 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1219 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1220 (convert (bit_xor @0 @1))))
1221
e268a77b
MG
1222/* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1223(simplify
1224 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1225 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1226 (bit_not (bit_xor (view_convert @0) @1))))
1227
f52baa7b
MP
1228/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1229(simplify
44fc0a51
RB
1230 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1231 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
f52baa7b 1232
f7b7b0aa
MP
1233/* Fold A - (A & B) into ~B & A. */
1234(simplify
2eef1fc1 1235 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
f7b7b0aa
MP
1236 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1237 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1238 (convert (bit_and (bit_not @1) @0))))
5609420f 1239
2071f8f9
N
1240/* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1241(for cmp (gt lt ge le)
1242(simplify
1243 (mult (convert (cmp @0 @1)) @2)
1244 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1245
e36c1cfe
N
1246/* For integral types with undefined overflow and C != 0 fold
1247 x * C EQ/NE y * C into x EQ/NE y. */
1248(for cmp (eq ne)
1249 (simplify
1250 (cmp (mult:c @0 @1) (mult:c @2 @1))
1251 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1252 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1253 && tree_expr_nonzero_p (@1))
1254 (cmp @0 @2))))
1255
42bd89ce
MG
1256/* For integral types with wrapping overflow and C odd fold
1257 x * C EQ/NE y * C into x EQ/NE y. */
1258(for cmp (eq ne)
1259 (simplify
1260 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1261 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1262 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1263 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1264 (cmp @0 @2))))
1265
e36c1cfe
N
1266/* For integral types with undefined overflow and C != 0 fold
1267 x * C RELOP y * C into:
84ff66b8 1268
e36c1cfe
N
1269 x RELOP y for nonnegative C
1270 y RELOP x for negative C */
1271(for cmp (lt gt le ge)
1272 (simplify
1273 (cmp (mult:c @0 @1) (mult:c @2 @1))
1274 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1275 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1276 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1277 (cmp @0 @2)
1278 (if (TREE_CODE (@1) == INTEGER_CST
8e6cdc90 1279 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
e36c1cfe 1280 (cmp @2 @0))))))
84ff66b8 1281
564e405c
JJ
1282/* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1283(for cmp (le gt)
1284 icmp (gt le)
1285 (simplify
1286 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1287 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1288 && TYPE_UNSIGNED (TREE_TYPE (@0))
1289 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
8e6cdc90
RS
1290 && (wi::to_wide (@2)
1291 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
564e405c
JJ
1292 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1293 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1294
a8492d5e
MG
1295/* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1296(for cmp (simple_comparison)
1297 (simplify
1298 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
8e6cdc90 1299 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
a8492d5e
MG
1300 (cmp @0 @1))))
1301
8d1628eb
JJ
1302/* X / C1 op C2 into a simple range test. */
1303(for cmp (simple_comparison)
1304 (simplify
1305 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1306 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1307 && integer_nonzerop (@1)
1308 && !TREE_OVERFLOW (@1)
1309 && !TREE_OVERFLOW (@2))
1310 (with { tree lo, hi; bool neg_overflow;
1311 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1312 &neg_overflow); }
1313 (switch
1314 (if (code == LT_EXPR || code == GE_EXPR)
1315 (if (TREE_OVERFLOW (lo))
1316 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1317 (if (code == LT_EXPR)
1318 (lt @0 { lo; })
1319 (ge @0 { lo; }))))
1320 (if (code == LE_EXPR || code == GT_EXPR)
1321 (if (TREE_OVERFLOW (hi))
1322 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1323 (if (code == LE_EXPR)
1324 (le @0 { hi; })
1325 (gt @0 { hi; }))))
1326 (if (!lo && !hi)
1327 { build_int_cst (type, code == NE_EXPR); })
1328 (if (code == EQ_EXPR && !hi)
1329 (ge @0 { lo; }))
1330 (if (code == EQ_EXPR && !lo)
1331 (le @0 { hi; }))
1332 (if (code == NE_EXPR && !hi)
1333 (lt @0 { lo; }))
1334 (if (code == NE_EXPR && !lo)
1335 (gt @0 { hi; }))
1336 (if (GENERIC)
1337 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1338 lo, hi); })
1339 (with
1340 {
1341 tree etype = range_check_type (TREE_TYPE (@0));
1342 if (etype)
1343 {
1344 if (! TYPE_UNSIGNED (etype))
1345 etype = unsigned_type_for (etype);
1346 hi = fold_convert (etype, hi);
1347 lo = fold_convert (etype, lo);
1348 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1349 }
1350 }
1351 (if (etype && hi && !TREE_OVERFLOW (hi))
1352 (if (code == EQ_EXPR)
1353 (le (minus (convert:etype @0) { lo; }) { hi; })
1354 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1355
d35256b6
MG
1356/* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1357(for op (lt le ge gt)
1358 (simplify
1359 (op (plus:c @0 @2) (plus:c @1 @2))
1360 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1361 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1362 (op @0 @1))))
1363/* For equality and subtraction, this is also true with wrapping overflow. */
1364(for op (eq ne minus)
1365 (simplify
1366 (op (plus:c @0 @2) (plus:c @1 @2))
1367 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1368 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1369 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1370 (op @0 @1))))
1371
1372/* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1373(for op (lt le ge gt)
1374 (simplify
1375 (op (minus @0 @2) (minus @1 @2))
1376 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1377 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1378 (op @0 @1))))
1379/* For equality and subtraction, this is also true with wrapping overflow. */
1380(for op (eq ne minus)
1381 (simplify
1382 (op (minus @0 @2) (minus @1 @2))
1383 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1384 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1385 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1386 (op @0 @1))))
1af4ebf5
MG
1387/* And for pointers... */
1388(for op (simple_comparison)
1389 (simplify
1390 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1391 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1392 (op @0 @1))))
1393(simplify
1394 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1395 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1396 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1397 (pointer_diff @0 @1)))
d35256b6
MG
1398
1399/* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1400(for op (lt le ge gt)
1401 (simplify
1402 (op (minus @2 @0) (minus @2 @1))
1403 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1404 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1405 (op @1 @0))))
1406/* For equality and subtraction, this is also true with wrapping overflow. */
1407(for op (eq ne minus)
1408 (simplify
1409 (op (minus @2 @0) (minus @2 @1))
1410 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1411 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1412 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1413 (op @1 @0))))
1af4ebf5
MG
1414/* And for pointers... */
1415(for op (simple_comparison)
1416 (simplify
1417 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1418 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1419 (op @1 @0))))
1420(simplify
1421 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1422 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1423 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1424 (pointer_diff @1 @0)))
d35256b6 1425
6358a676
MG
1426/* X + Y < Y is the same as X < 0 when there is no overflow. */
1427(for op (lt le gt ge)
1428 (simplify
1429 (op:c (plus:c@2 @0 @1) @1)
1430 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1431 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1432 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1433 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1434/* For equality, this is also true with wrapping overflow. */
1435(for op (eq ne)
1436 (simplify
1437 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1438 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1439 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1440 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1441 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1442 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1443 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1444 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1445 (simplify
1446 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1447 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1448 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1449 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1450 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1451
1452/* X - Y < X is the same as Y > 0 when there is no overflow.
1453 For equality, this is also true with wrapping overflow. */
1454(for op (simple_comparison)
1455 (simplify
1456 (op:c @0 (minus@2 @0 @1))
1457 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1458 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1459 || ((op == EQ_EXPR || op == NE_EXPR)
1460 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1461 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1462 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1463
1d6fadee 1464/* Transform:
b8d85005
JJ
1465 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1466 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1d6fadee
PK
1467(for cmp (eq ne)
1468 ocmp (lt ge)
1469 (simplify
1470 (cmp (trunc_div @0 @1) integer_zerop)
1471 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
b8d85005
JJ
1472 /* Complex ==/!= is allowed, but not </>=. */
1473 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1d6fadee
PK
1474 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1475 (ocmp @0 @1))))
1476
8b656ca7
MG
1477/* X == C - X can never be true if C is odd. */
1478(for cmp (eq ne)
1479 (simplify
1480 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1481 (if (TREE_INT_CST_LOW (@1) & 1)
1482 { constant_boolean_node (cmp == NE_EXPR, type); })))
1483
10bc8017
MG
1484/* Arguments on which one can call get_nonzero_bits to get the bits
1485 possibly set. */
1486(match with_possible_nonzero_bits
1487 INTEGER_CST@0)
1488(match with_possible_nonzero_bits
1489 SSA_NAME@0
1490 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1491/* Slightly extended version, do not make it recursive to keep it cheap. */
1492(match (with_possible_nonzero_bits2 @0)
1493 with_possible_nonzero_bits@0)
1494(match (with_possible_nonzero_bits2 @0)
1495 (bit_and:c with_possible_nonzero_bits@0 @2))
1496
1497/* Same for bits that are known to be set, but we do not have
1498 an equivalent to get_nonzero_bits yet. */
1499(match (with_certain_nonzero_bits2 @0)
1500 INTEGER_CST@0)
1501(match (with_certain_nonzero_bits2 @0)
1502 (bit_ior @1 INTEGER_CST@0))
1503
1504/* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1505(for cmp (eq ne)
1506 (simplify
1507 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
8e6cdc90 1508 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
10bc8017
MG
1509 { constant_boolean_node (cmp == NE_EXPR, type); })))
1510
84ff66b8
AV
1511/* ((X inner_op C0) outer_op C1)
1512 With X being a tree where value_range has reasoned certain bits to always be
1513 zero throughout its computed value range,
1514 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1515 where zero_mask has 1's for all bits that are sure to be 0 in
1516 and 0's otherwise.
1517 if (inner_op == '^') C0 &= ~C1;
1518 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1519 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1520*/
1521(for inner_op (bit_ior bit_xor)
1522 outer_op (bit_xor bit_ior)
1523(simplify
1524 (outer_op
1525 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1526 (with
1527 {
1528 bool fail = false;
1529 wide_int zero_mask_not;
1530 wide_int C0;
1531 wide_int cst_emit;
1532
1533 if (TREE_CODE (@2) == SSA_NAME)
1534 zero_mask_not = get_nonzero_bits (@2);
1535 else
1536 fail = true;
1537
1538 if (inner_op == BIT_XOR_EXPR)
1539 {
8e6cdc90
RS
1540 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1541 cst_emit = C0 | wi::to_wide (@1);
84ff66b8
AV
1542 }
1543 else
1544 {
8e6cdc90
RS
1545 C0 = wi::to_wide (@0);
1546 cst_emit = C0 ^ wi::to_wide (@1);
84ff66b8
AV
1547 }
1548 }
8e6cdc90 1549 (if (!fail && (C0 & zero_mask_not) == 0)
84ff66b8 1550 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
8e6cdc90 1551 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
84ff66b8
AV
1552 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1553
a499aac5
RB
1554/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1555(simplify
44fc0a51
RB
1556 (pointer_plus (pointer_plus:s @0 @1) @3)
1557 (pointer_plus @0 (plus @1 @3)))
a499aac5
RB
1558
1559/* Pattern match
1560 tem1 = (long) ptr1;
1561 tem2 = (long) ptr2;
1562 tem3 = tem2 - tem1;
1563 tem4 = (unsigned long) tem3;
1564 tem5 = ptr1 + tem4;
1565 and produce
1566 tem5 = ptr2; */
1567(simplify
1568 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1569 /* Conditionally look through a sign-changing conversion. */
1570 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1571 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1572 || (GENERIC && type == TREE_TYPE (@1))))
1573 @1))
1af4ebf5
MG
1574(simplify
1575 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1576 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1577 (convert @1)))
a499aac5
RB
1578
1579/* Pattern match
1580 tem = (sizetype) ptr;
1581 tem = tem & algn;
1582 tem = -tem;
1583 ... = ptr p+ tem;
1584 and produce the simpler and easier to analyze with respect to alignment
1585 ... = ptr & ~algn; */
1586(simplify
1587 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
8e6cdc90 1588 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
a499aac5
RB
1589 (bit_and @0 { algn; })))
1590
99e943a2
RB
1591/* Try folding difference of addresses. */
1592(simplify
1593 (minus (convert ADDR_EXPR@0) (convert @1))
1594 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
f37fac2b 1595 (with { poly_int64 diff; }
99e943a2
RB
1596 (if (ptr_difference_const (@0, @1, &diff))
1597 { build_int_cst_type (type, diff); }))))
1598(simplify
1599 (minus (convert @0) (convert ADDR_EXPR@1))
1600 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
f37fac2b 1601 (with { poly_int64 diff; }
99e943a2
RB
1602 (if (ptr_difference_const (@0, @1, &diff))
1603 { build_int_cst_type (type, diff); }))))
1af4ebf5
MG
1604(simplify
1605 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert?@3 @1))
1606 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1607 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
f37fac2b 1608 (with { poly_int64 diff; }
1af4ebf5
MG
1609 (if (ptr_difference_const (@0, @1, &diff))
1610 { build_int_cst_type (type, diff); }))))
1611(simplify
1612 (pointer_diff (convert?@2 @0) (convert?@3 ADDR_EXPR@1))
1613 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1614 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
f37fac2b 1615 (with { poly_int64 diff; }
1af4ebf5
MG
1616 (if (ptr_difference_const (@0, @1, &diff))
1617 { build_int_cst_type (type, diff); }))))
99e943a2 1618
bab73f11
RB
1619/* If arg0 is derived from the address of an object or function, we may
1620 be able to fold this expression using the object or function's
1621 alignment. */
1622(simplify
1623 (bit_and (convert? @0) INTEGER_CST@1)
1624 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1625 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1626 (with
1627 {
1628 unsigned int align;
1629 unsigned HOST_WIDE_INT bitpos;
1630 get_pointer_alignment_1 (@0, &align, &bitpos);
1631 }
8e6cdc90
RS
1632 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1633 { wide_int_to_tree (type, (wi::to_wide (@1)
1634 & (bitpos / BITS_PER_UNIT))); }))))
99e943a2 1635
a499aac5 1636
cc7b5acf
RB
1637/* We can't reassociate at all for saturating types. */
1638(if (!TYPE_SATURATING (type))
1639
1640 /* Contract negates. */
1641 /* A + (-B) -> A - B */
1642 (simplify
248179b5
RB
1643 (plus:c @0 (convert? (negate @1)))
1644 /* Apply STRIP_NOPS on the negate. */
1645 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1646 && !TYPE_OVERFLOW_SANITIZED (type))
248179b5
RB
1647 (with
1648 {
1649 tree t1 = type;
1650 if (INTEGRAL_TYPE_P (type)
1651 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1652 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1653 }
1654 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
cc7b5acf
RB
1655 /* A - (-B) -> A + B */
1656 (simplify
248179b5
RB
1657 (minus @0 (convert? (negate @1)))
1658 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 1659 && !TYPE_OVERFLOW_SANITIZED (type))
248179b5
RB
1660 (with
1661 {
1662 tree t1 = type;
1663 if (INTEGRAL_TYPE_P (type)
1664 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1665 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1666 }
1667 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
63626547
MG
1668 /* -(T)(-A) -> (T)A
1669 Sign-extension is ok except for INT_MIN, which thankfully cannot
1670 happen without overflow. */
1671 (simplify
1672 (negate (convert (negate @1)))
1673 (if (INTEGRAL_TYPE_P (type)
1674 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1675 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1676 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1677 && !TYPE_OVERFLOW_SANITIZED (type)
1678 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
a0f12cf8 1679 (convert @1)))
63626547
MG
1680 (simplify
1681 (negate (convert negate_expr_p@1))
1682 (if (SCALAR_FLOAT_TYPE_P (type)
1683 && ((DECIMAL_FLOAT_TYPE_P (type)
1684 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1685 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1686 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1687 (convert (negate @1))))
1688 (simplify
1689 (negate (nop_convert (negate @1)))
1690 (if (!TYPE_OVERFLOW_SANITIZED (type)
1691 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1692 (view_convert @1)))
cc7b5acf 1693
7318e44f
RB
1694 /* We can't reassociate floating-point unless -fassociative-math
1695 or fixed-point plus or minus because of saturation to +-Inf. */
1696 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1697 && !FIXED_POINT_TYPE_P (type))
cc7b5acf
RB
1698
1699 /* Match patterns that allow contracting a plus-minus pair
1700 irrespective of overflow issues. */
1701 /* (A +- B) - A -> +- B */
1702 /* (A +- B) -+ B -> A */
1703 /* A - (A +- B) -> -+ B */
1704 /* A +- (B -+ A) -> +- B */
1705 (simplify
1706 (minus (plus:c @0 @1) @0)
1707 @1)
1708 (simplify
1709 (minus (minus @0 @1) @0)
1710 (negate @1))
1711 (simplify
1712 (plus:c (minus @0 @1) @1)
1713 @0)
1714 (simplify
1715 (minus @0 (plus:c @0 @1))
1716 (negate @1))
1717 (simplify
1718 (minus @0 (minus @0 @1))
1719 @1)
1e7df2e6
MG
1720 /* (A +- B) + (C - A) -> C +- B */
1721 /* (A + B) - (A - C) -> B + C */
1722 /* More cases are handled with comparisons. */
1723 (simplify
1724 (plus:c (plus:c @0 @1) (minus @2 @0))
1725 (plus @2 @1))
1726 (simplify
1727 (plus:c (minus @0 @1) (minus @2 @0))
1728 (minus @2 @1))
1af4ebf5
MG
1729 (simplify
1730 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1731 (if (TYPE_OVERFLOW_UNDEFINED (type)
1732 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1733 (pointer_diff @2 @1)))
1e7df2e6
MG
1734 (simplify
1735 (minus (plus:c @0 @1) (minus @0 @2))
1736 (plus @1 @2))
cc7b5acf 1737
ed73f46f
MG
1738 /* (A +- CST1) +- CST2 -> A + CST3
1739 Use view_convert because it is safe for vectors and equivalent for
1740 scalars. */
cc7b5acf
RB
1741 (for outer_op (plus minus)
1742 (for inner_op (plus minus)
ed73f46f 1743 neg_inner_op (minus plus)
cc7b5acf 1744 (simplify
ed73f46f
MG
1745 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1746 CONSTANT_CLASS_P@2)
1747 /* If one of the types wraps, use that one. */
1748 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
3eb1eecf
JJ
1749 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1750 forever if something doesn't simplify into a constant. */
1751 (if (!CONSTANT_CLASS_P (@0))
1752 (if (outer_op == PLUS_EXPR)
1753 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1754 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
ed73f46f
MG
1755 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1756 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1757 (if (outer_op == PLUS_EXPR)
1758 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1759 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1760 /* If the constant operation overflows we cannot do the transform
1761 directly as we would introduce undefined overflow, for example
1762 with (a - 1) + INT_MIN. */
1763 (if (types_match (type, @0))
1764 (with { tree cst = const_binop (outer_op == inner_op
1765 ? PLUS_EXPR : MINUS_EXPR,
1766 type, @1, @2); }
1767 (if (cst && !TREE_OVERFLOW (cst))
1768 (inner_op @0 { cst; } )
1769 /* X+INT_MAX+1 is X-INT_MIN. */
1770 (if (INTEGRAL_TYPE_P (type) && cst
8e6cdc90
RS
1771 && wi::to_wide (cst) == wi::min_value (type))
1772 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
ed73f46f
MG
1773 /* Last resort, use some unsigned type. */
1774 (with { tree utype = unsigned_type_for (type); }
48fcd201
JJ
1775 (if (utype)
1776 (view_convert (inner_op
1777 (view_convert:utype @0)
1778 (view_convert:utype
1779 { drop_tree_overflow (cst); }))))))))))))))
cc7b5acf 1780
b302f2e0 1781 /* (CST1 - A) +- CST2 -> CST3 - A */
cc7b5acf
RB
1782 (for outer_op (plus minus)
1783 (simplify
1784 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
23f27839 1785 (with { tree cst = const_binop (outer_op, type, @1, @2); }
cc7b5acf
RB
1786 (if (cst && !TREE_OVERFLOW (cst))
1787 (minus { cst; } @0)))))
1788
b302f2e0
RB
1789 /* CST1 - (CST2 - A) -> CST3 + A */
1790 (simplify
1791 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1792 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1793 (if (cst && !TREE_OVERFLOW (cst))
1794 (plus { cst; } @0))))
1795
cc7b5acf
RB
1796 /* ~A + A -> -1 */
1797 (simplify
1798 (plus:c (bit_not @0) @0)
1799 (if (!TYPE_OVERFLOW_TRAPS (type))
1800 { build_all_ones_cst (type); }))
1801
1802 /* ~A + 1 -> -A */
1803 (simplify
e19740ae
RB
1804 (plus (convert? (bit_not @0)) integer_each_onep)
1805 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1806 (negate (convert @0))))
1807
1808 /* -A - 1 -> ~A */
1809 (simplify
1810 (minus (convert? (negate @0)) integer_each_onep)
1811 (if (!TYPE_OVERFLOW_TRAPS (type)
1812 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1813 (bit_not (convert @0))))
1814
1815 /* -1 - A -> ~A */
1816 (simplify
1817 (minus integer_all_onesp @0)
bc4315fb 1818 (bit_not @0))
cc7b5acf
RB
1819
1820 /* (T)(P + A) - (T)P -> (T) A */
d7f44d4d 1821 (simplify
a72610d4
JJ
1822 (minus (convert (plus:c @@0 @1))
1823 (convert? @0))
d7f44d4d
JJ
1824 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1825 /* For integer types, if A has a smaller type
1826 than T the result depends on the possible
1827 overflow in P + A.
1828 E.g. T=size_t, A=(unsigned)429497295, P>0.
1829 However, if an overflow in P + A would cause
1830 undefined behavior, we can assume that there
1831 is no overflow. */
a72610d4
JJ
1832 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1833 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
d7f44d4d
JJ
1834 (convert @1)))
1835 (simplify
1836 (minus (convert (pointer_plus @@0 @1))
1837 (convert @0))
1838 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1839 /* For pointer types, if the conversion of A to the
1840 final type requires a sign- or zero-extension,
1841 then we have to punt - it is not defined which
1842 one is correct. */
1843 || (POINTER_TYPE_P (TREE_TYPE (@0))
1844 && TREE_CODE (@1) == INTEGER_CST
1845 && tree_int_cst_sign_bit (@1) == 0))
1846 (convert @1)))
1af4ebf5
MG
1847 (simplify
1848 (pointer_diff (pointer_plus @@0 @1) @0)
1849 /* The second argument of pointer_plus must be interpreted as signed, and
1850 thus sign-extended if necessary. */
1851 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
8ae43881
JJ
1852 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1853 second arg is unsigned even when we need to consider it as signed,
1854 we don't want to diagnose overflow here. */
1855 (convert (view_convert:stype @1))))
a8fc2579
RB
1856
1857 /* (T)P - (T)(P + A) -> -(T) A */
d7f44d4d 1858 (simplify
a72610d4
JJ
1859 (minus (convert? @0)
1860 (convert (plus:c @@0 @1)))
d7f44d4d
JJ
1861 (if (INTEGRAL_TYPE_P (type)
1862 && TYPE_OVERFLOW_UNDEFINED (type)
1863 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1864 (with { tree utype = unsigned_type_for (type); }
1865 (convert (negate (convert:utype @1))))
a8fc2579
RB
1866 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1867 /* For integer types, if A has a smaller type
1868 than T the result depends on the possible
1869 overflow in P + A.
1870 E.g. T=size_t, A=(unsigned)429497295, P>0.
1871 However, if an overflow in P + A would cause
1872 undefined behavior, we can assume that there
1873 is no overflow. */
a72610d4
JJ
1874 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1875 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
d7f44d4d
JJ
1876 (negate (convert @1)))))
1877 (simplify
1878 (minus (convert @0)
1879 (convert (pointer_plus @@0 @1)))
1880 (if (INTEGRAL_TYPE_P (type)
1881 && TYPE_OVERFLOW_UNDEFINED (type)
1882 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1883 (with { tree utype = unsigned_type_for (type); }
1884 (convert (negate (convert:utype @1))))
1885 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
a8fc2579
RB
1886 /* For pointer types, if the conversion of A to the
1887 final type requires a sign- or zero-extension,
1888 then we have to punt - it is not defined which
1889 one is correct. */
1890 || (POINTER_TYPE_P (TREE_TYPE (@0))
1891 && TREE_CODE (@1) == INTEGER_CST
1892 && tree_int_cst_sign_bit (@1) == 0))
1893 (negate (convert @1)))))
1af4ebf5
MG
1894 (simplify
1895 (pointer_diff @0 (pointer_plus @@0 @1))
1896 /* The second argument of pointer_plus must be interpreted as signed, and
1897 thus sign-extended if necessary. */
1898 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
8ae43881
JJ
1899 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1900 second arg is unsigned even when we need to consider it as signed,
1901 we don't want to diagnose overflow here. */
1902 (negate (convert (view_convert:stype @1)))))
a8fc2579
RB
1903
1904 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
d7f44d4d 1905 (simplify
a72610d4 1906 (minus (convert (plus:c @@0 @1))
d7f44d4d
JJ
1907 (convert (plus:c @0 @2)))
1908 (if (INTEGRAL_TYPE_P (type)
1909 && TYPE_OVERFLOW_UNDEFINED (type)
a72610d4
JJ
1910 && element_precision (type) <= element_precision (TREE_TYPE (@1))
1911 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
d7f44d4d
JJ
1912 (with { tree utype = unsigned_type_for (type); }
1913 (convert (minus (convert:utype @1) (convert:utype @2))))
a72610d4
JJ
1914 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
1915 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
1916 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
1917 /* For integer types, if A has a smaller type
1918 than T the result depends on the possible
1919 overflow in P + A.
1920 E.g. T=size_t, A=(unsigned)429497295, P>0.
1921 However, if an overflow in P + A would cause
1922 undefined behavior, we can assume that there
1923 is no overflow. */
1924 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1925 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1926 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
1927 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
d7f44d4d
JJ
1928 (minus (convert @1) (convert @2)))))
1929 (simplify
1930 (minus (convert (pointer_plus @@0 @1))
1931 (convert (pointer_plus @0 @2)))
1932 (if (INTEGRAL_TYPE_P (type)
1933 && TYPE_OVERFLOW_UNDEFINED (type)
1934 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1935 (with { tree utype = unsigned_type_for (type); }
1936 (convert (minus (convert:utype @1) (convert:utype @2))))
1937 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
a8fc2579
RB
1938 /* For pointer types, if the conversion of A to the
1939 final type requires a sign- or zero-extension,
1940 then we have to punt - it is not defined which
1941 one is correct. */
1942 || (POINTER_TYPE_P (TREE_TYPE (@0))
1943 && TREE_CODE (@1) == INTEGER_CST
1944 && tree_int_cst_sign_bit (@1) == 0
1945 && TREE_CODE (@2) == INTEGER_CST
1946 && tree_int_cst_sign_bit (@2) == 0))
d7f44d4d 1947 (minus (convert @1) (convert @2)))))
1af4ebf5
MG
1948 (simplify
1949 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
1950 /* The second argument of pointer_plus must be interpreted as signed, and
1951 thus sign-extended if necessary. */
1952 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
8ae43881
JJ
1953 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1954 second arg is unsigned even when we need to consider it as signed,
1955 we don't want to diagnose overflow here. */
1956 (minus (convert (view_convert:stype @1))
1957 (convert (view_convert:stype @2)))))))
cc7b5acf 1958
5b55e6e3
RB
1959/* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
1960 Modeled after fold_plusminus_mult_expr. */
1961(if (!TYPE_SATURATING (type)
1962 && (!FLOAT_TYPE_P (type) || flag_associative_math))
1963 (for plusminus (plus minus)
1964 (simplify
c1bbe5b3
RB
1965 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
1966 (if ((!ANY_INTEGRAL_TYPE_P (type)
5b55e6e3
RB
1967 || TYPE_OVERFLOW_WRAPS (type)
1968 || (INTEGRAL_TYPE_P (type)
1969 && tree_expr_nonzero_p (@0)
1970 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
c1bbe5b3
RB
1971 /* If @1 +- @2 is constant require a hard single-use on either
1972 original operand (but not on both). */
1973 && (single_use (@3) || single_use (@4)))
1974 (mult (plusminus @1 @2) @0)))
1975 /* We cannot generate constant 1 for fract. */
1976 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
1977 (simplify
1978 (plusminus @0 (mult:c@3 @0 @2))
1979 (if ((!ANY_INTEGRAL_TYPE_P (type)
1980 || TYPE_OVERFLOW_WRAPS (type)
1981 || (INTEGRAL_TYPE_P (type)
1982 && tree_expr_nonzero_p (@0)
1983 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1984 && single_use (@3))
5b55e6e3
RB
1985 (mult (plusminus { build_one_cst (type); } @2) @0)))
1986 (simplify
c1bbe5b3
RB
1987 (plusminus (mult:c@3 @0 @2) @0)
1988 (if ((!ANY_INTEGRAL_TYPE_P (type)
1989 || TYPE_OVERFLOW_WRAPS (type)
1990 || (INTEGRAL_TYPE_P (type)
1991 && tree_expr_nonzero_p (@0)
1992 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1993 && single_use (@3))
5b55e6e3 1994 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
cc7b5acf 1995
0122e8e5 1996/* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
a7f24614 1997
c6cfa2bf 1998(for minmax (min max FMIN_ALL FMAX_ALL)
a7f24614
RB
1999 (simplify
2000 (minmax @0 @0)
2001 @0))
4a334cba
RS
2002/* min(max(x,y),y) -> y. */
2003(simplify
2004 (min:c (max:c @0 @1) @1)
2005 @1)
2006/* max(min(x,y),y) -> y. */
2007(simplify
2008 (max:c (min:c @0 @1) @1)
2009 @1)
d657e995
RB
2010/* max(a,-a) -> abs(a). */
2011(simplify
2012 (max:c @0 (negate @0))
2013 (if (TREE_CODE (type) != COMPLEX_TYPE
2014 && (! ANY_INTEGRAL_TYPE_P (type)
2015 || TYPE_OVERFLOW_UNDEFINED (type)))
2016 (abs @0)))
54f84ca9
RB
2017/* min(a,-a) -> -abs(a). */
2018(simplify
2019 (min:c @0 (negate @0))
2020 (if (TREE_CODE (type) != COMPLEX_TYPE
2021 && (! ANY_INTEGRAL_TYPE_P (type)
2022 || TYPE_OVERFLOW_UNDEFINED (type)))
2023 (negate (abs @0))))
a7f24614
RB
2024(simplify
2025 (min @0 @1)
2c2870a1
MG
2026 (switch
2027 (if (INTEGRAL_TYPE_P (type)
2028 && TYPE_MIN_VALUE (type)
2029 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2030 @1)
2031 (if (INTEGRAL_TYPE_P (type)
2032 && TYPE_MAX_VALUE (type)
2033 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2034 @0)))
a7f24614
RB
2035(simplify
2036 (max @0 @1)
2c2870a1
MG
2037 (switch
2038 (if (INTEGRAL_TYPE_P (type)
2039 && TYPE_MAX_VALUE (type)
2040 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2041 @1)
2042 (if (INTEGRAL_TYPE_P (type)
2043 && TYPE_MIN_VALUE (type)
2044 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2045 @0)))
ad6e4ba8 2046
182f37c9
N
2047/* max (a, a + CST) -> a + CST where CST is positive. */
2048/* max (a, a + CST) -> a where CST is negative. */
2049(simplify
2050 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2051 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2052 (if (tree_int_cst_sgn (@1) > 0)
2053 @2
2054 @0)))
2055
2056/* min (a, a + CST) -> a where CST is positive. */
2057/* min (a, a + CST) -> a + CST where CST is negative. */
2058(simplify
2059 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2060 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2061 (if (tree_int_cst_sgn (@1) > 0)
2062 @0
2063 @2)))
2064
ad6e4ba8
BC
2065/* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2066 and the outer convert demotes the expression back to x's type. */
2067(for minmax (min max)
2068 (simplify
2069 (convert (minmax@0 (convert @1) INTEGER_CST@2))
ebf41734
BC
2070 (if (INTEGRAL_TYPE_P (type)
2071 && types_match (@1, type) && int_fits_type_p (@2, type)
ad6e4ba8
BC
2072 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2073 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2074 (minmax @1 (convert @2)))))
2075
c6cfa2bf 2076(for minmax (FMIN_ALL FMAX_ALL)
0122e8e5
RS
2077 /* If either argument is NaN, return the other one. Avoid the
2078 transformation if we get (and honor) a signalling NaN. */
2079 (simplify
2080 (minmax:c @0 REAL_CST@1)
2081 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2082 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2083 @0)))
2084/* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2085 functions to return the numeric arg if the other one is NaN.
2086 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2087 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2088 worry about it either. */
2089(if (flag_finite_math_only)
2090 (simplify
c6cfa2bf 2091 (FMIN_ALL @0 @1)
0122e8e5 2092 (min @0 @1))
4119b2eb 2093 (simplify
c6cfa2bf 2094 (FMAX_ALL @0 @1)
0122e8e5 2095 (max @0 @1)))
ce0e66ff 2096/* min (-A, -B) -> -max (A, B) */
c6cfa2bf
MM
2097(for minmax (min max FMIN_ALL FMAX_ALL)
2098 maxmin (max min FMAX_ALL FMIN_ALL)
ce0e66ff
MG
2099 (simplify
2100 (minmax (negate:s@2 @0) (negate:s@3 @1))
2101 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2102 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2103 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2104 (negate (maxmin @0 @1)))))
2105/* MIN (~X, ~Y) -> ~MAX (X, Y)
2106 MAX (~X, ~Y) -> ~MIN (X, Y) */
2107(for minmax (min max)
2108 maxmin (max min)
2109 (simplify
2110 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2111 (bit_not (maxmin @0 @1))))
a7f24614 2112
b4817bd6
MG
2113/* MIN (X, Y) == X -> X <= Y */
2114(for minmax (min min max max)
2115 cmp (eq ne eq ne )
2116 out (le gt ge lt )
2117 (simplify
2118 (cmp:c (minmax:c @0 @1) @0)
2119 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2120 (out @0 @1))))
2121/* MIN (X, 5) == 0 -> X == 0
2122 MIN (X, 5) == 7 -> false */
2123(for cmp (eq ne)
2124 (simplify
2125 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
8e6cdc90
RS
2126 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2127 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6 2128 { constant_boolean_node (cmp == NE_EXPR, type); }
8e6cdc90
RS
2129 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2130 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6
MG
2131 (cmp @0 @2)))))
2132(for cmp (eq ne)
2133 (simplify
2134 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
8e6cdc90
RS
2135 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2136 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6 2137 { constant_boolean_node (cmp == NE_EXPR, type); }
8e6cdc90
RS
2138 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2139 TYPE_SIGN (TREE_TYPE (@0))))
b4817bd6
MG
2140 (cmp @0 @2)))))
2141/* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2142(for minmax (min min max max min min max max )
2143 cmp (lt le gt ge gt ge lt le )
2144 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2145 (simplify
2146 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2147 (comb (cmp @0 @2) (cmp @1 @2))))
2148
a7f24614
RB
2149/* Simplifications of shift and rotates. */
2150
2151(for rotate (lrotate rrotate)
2152 (simplify
2153 (rotate integer_all_onesp@0 @1)
2154 @0))
2155
2156/* Optimize -1 >> x for arithmetic right shifts. */
2157(simplify
2158 (rshift integer_all_onesp@0 @1)
2159 (if (!TYPE_UNSIGNED (type)
2160 && tree_expr_nonnegative_p (@1))
2161 @0))
2162
12085390
N
2163/* Optimize (x >> c) << c into x & (-1<<c). */
2164(simplify
2165 (lshift (rshift @0 INTEGER_CST@1) @1)
8e6cdc90 2166 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
12085390
N
2167 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2168
2169/* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2170 types. */
2171(simplify
2172 (rshift (lshift @0 INTEGER_CST@1) @1)
2173 (if (TYPE_UNSIGNED (type)
8e6cdc90 2174 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
12085390
N
2175 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2176
a7f24614
RB
2177(for shiftrotate (lrotate rrotate lshift rshift)
2178 (simplify
2179 (shiftrotate @0 integer_zerop)
2180 (non_lvalue @0))
2181 (simplify
2182 (shiftrotate integer_zerop@0 @1)
2183 @0)
2184 /* Prefer vector1 << scalar to vector1 << vector2
2185 if vector2 is uniform. */
2186 (for vec (VECTOR_CST CONSTRUCTOR)
2187 (simplify
2188 (shiftrotate @0 vec@1)
2189 (with { tree tem = uniform_vector_p (@1); }
2190 (if (tem)
2191 (shiftrotate @0 { tem; }))))))
2192
165ba2e9
JJ
2193/* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2194 Y is 0. Similarly for X >> Y. */
2195#if GIMPLE
2196(for shift (lshift rshift)
2197 (simplify
2198 (shift @0 SSA_NAME@1)
2199 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2200 (with {
2201 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2202 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2203 }
2204 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2205 @0)))))
2206#endif
2207
a7f24614
RB
2208/* Rewrite an LROTATE_EXPR by a constant into an
2209 RROTATE_EXPR by a new constant. */
2210(simplify
2211 (lrotate @0 INTEGER_CST@1)
23f27839 2212 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
a7f24614
RB
2213 build_int_cst (TREE_TYPE (@1),
2214 element_precision (type)), @1); }))
2215
14ea9f92
RB
2216/* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2217(for op (lrotate rrotate rshift lshift)
2218 (simplify
2219 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2220 (with { unsigned int prec = element_precision (type); }
8e6cdc90
RS
2221 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2222 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2223 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2224 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
a1488398
RS
2225 (with { unsigned int low = (tree_to_uhwi (@1)
2226 + tree_to_uhwi (@2)); }
14ea9f92
RB
2227 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2228 being well defined. */
2229 (if (low >= prec)
2230 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
8fdc6c67 2231 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
50301115 2232 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
8fdc6c67
RB
2233 { build_zero_cst (type); }
2234 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2235 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
14ea9f92
RB
2236
2237
01ada710
MP
2238/* ((1 << A) & 1) != 0 -> A == 0
2239 ((1 << A) & 1) == 0 -> A != 0 */
2240(for cmp (ne eq)
2241 icmp (eq ne)
2242 (simplify
2243 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2244 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
cc7b5acf 2245
f2e609c3
MP
2246/* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2247 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2248 if CST2 != 0. */
2249(for cmp (ne eq)
2250 (simplify
2251 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
8e6cdc90 2252 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
f2e609c3
MP
2253 (if (cand < 0
2254 || (!integer_zerop (@2)
8e6cdc90 2255 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
8fdc6c67
RB
2256 { constant_boolean_node (cmp == NE_EXPR, type); }
2257 (if (!integer_zerop (@2)
8e6cdc90 2258 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
8fdc6c67 2259 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
f2e609c3 2260
1ffbaa3f
RB
2261/* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2262 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2263 if the new mask might be further optimized. */
2264(for shift (lshift rshift)
2265 (simplify
44fc0a51
RB
2266 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2267 INTEGER_CST@2)
1ffbaa3f
RB
2268 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2269 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2270 && tree_fits_uhwi_p (@1)
2271 && tree_to_uhwi (@1) > 0
2272 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2273 (with
2274 {
2275 unsigned int shiftc = tree_to_uhwi (@1);
2276 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2277 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2278 tree shift_type = TREE_TYPE (@3);
2279 unsigned int prec;
2280
2281 if (shift == LSHIFT_EXPR)
fecfbfa4 2282 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
1ffbaa3f 2283 else if (shift == RSHIFT_EXPR
2be65d9e 2284 && type_has_mode_precision_p (shift_type))
1ffbaa3f
RB
2285 {
2286 prec = TYPE_PRECISION (TREE_TYPE (@3));
2287 tree arg00 = @0;
2288 /* See if more bits can be proven as zero because of
2289 zero extension. */
2290 if (@3 != @0
2291 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2292 {
2293 tree inner_type = TREE_TYPE (@0);
2be65d9e 2294 if (type_has_mode_precision_p (inner_type)
1ffbaa3f
RB
2295 && TYPE_PRECISION (inner_type) < prec)
2296 {
2297 prec = TYPE_PRECISION (inner_type);
2298 /* See if we can shorten the right shift. */
2299 if (shiftc < prec)
2300 shift_type = inner_type;
2301 /* Otherwise X >> C1 is all zeros, so we'll optimize
2302 it into (X, 0) later on by making sure zerobits
2303 is all ones. */
2304 }
2305 }
dd4786fe 2306 zerobits = HOST_WIDE_INT_M1U;
1ffbaa3f
RB
2307 if (shiftc < prec)
2308 {
2309 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2310 zerobits <<= prec - shiftc;
2311 }
2312 /* For arithmetic shift if sign bit could be set, zerobits
2313 can contain actually sign bits, so no transformation is
2314 possible, unless MASK masks them all away. In that
2315 case the shift needs to be converted into logical shift. */
2316 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2317 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2318 {
2319 if ((mask & zerobits) == 0)
2320 shift_type = unsigned_type_for (TREE_TYPE (@3));
2321 else
2322 zerobits = 0;
2323 }
2324 }
2325 }
2326 /* ((X << 16) & 0xff00) is (X, 0). */
2327 (if ((mask & zerobits) == mask)
8fdc6c67
RB
2328 { build_int_cst (type, 0); }
2329 (with { newmask = mask | zerobits; }
2330 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2331 (with
2332 {
2333 /* Only do the transformation if NEWMASK is some integer
2334 mode's mask. */
2335 for (prec = BITS_PER_UNIT;
2336 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
fecfbfa4 2337 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
8fdc6c67
RB
2338 break;
2339 }
2340 (if (prec < HOST_BITS_PER_WIDE_INT
dd4786fe 2341 || newmask == HOST_WIDE_INT_M1U)
8fdc6c67
RB
2342 (with
2343 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2344 (if (!tree_int_cst_equal (newmaskt, @2))
2345 (if (shift_type != TREE_TYPE (@3))
2346 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2347 (bit_and @4 { newmaskt; })))))))))))))
1ffbaa3f 2348
84ff66b8
AV
2349/* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2350 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
98e30e51 2351(for shift (lshift rshift)
84ff66b8
AV
2352 (for bit_op (bit_and bit_xor bit_ior)
2353 (simplify
2354 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2355 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2356 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2357 (bit_op (shift (convert @0) @1) { mask; }))))))
98e30e51 2358
ad1d92ab
MM
2359/* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2360(simplify
2361 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2362 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
ece46666
MG
2363 && (element_precision (TREE_TYPE (@0))
2364 <= element_precision (TREE_TYPE (@1))
2365 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
ad1d92ab
MM
2366 (with
2367 { tree shift_type = TREE_TYPE (@0); }
2368 (convert (rshift (convert:shift_type @1) @2)))))
2369
2370/* ~(~X >>r Y) -> X >>r Y
2371 ~(~X <<r Y) -> X <<r Y */
2372(for rotate (lrotate rrotate)
2373 (simplify
2374 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
ece46666
MG
2375 (if ((element_precision (TREE_TYPE (@0))
2376 <= element_precision (TREE_TYPE (@1))
2377 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2378 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2379 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
ad1d92ab
MM
2380 (with
2381 { tree rotate_type = TREE_TYPE (@0); }
2382 (convert (rotate (convert:rotate_type @1) @2))))))
98e30e51 2383
d4573ffe
RB
2384/* Simplifications of conversions. */
2385
2386/* Basic strip-useless-type-conversions / strip_nops. */
f3582e54 2387(for cvt (convert view_convert float fix_trunc)
d4573ffe
RB
2388 (simplify
2389 (cvt @0)
2390 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2391 || (GENERIC && type == TREE_TYPE (@0)))
2392 @0)))
2393
2394/* Contract view-conversions. */
2395(simplify
2396 (view_convert (view_convert @0))
2397 (view_convert @0))
2398
2399/* For integral conversions with the same precision or pointer
2400 conversions use a NOP_EXPR instead. */
2401(simplify
2402 (view_convert @0)
2403 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2404 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2405 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2406 (convert @0)))
2407
bce8ef71
MG
2408/* Strip inner integral conversions that do not change precision or size, or
2409 zero-extend while keeping the same size (for bool-to-char). */
d4573ffe
RB
2410(simplify
2411 (view_convert (convert@0 @1))
2412 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2413 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
bce8ef71
MG
2414 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2415 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2416 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2417 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
d4573ffe
RB
2418 (view_convert @1)))
2419
2420/* Re-association barriers around constants and other re-association
2421 barriers can be removed. */
2422(simplify
2423 (paren CONSTANT_CLASS_P@0)
2424 @0)
2425(simplify
2426 (paren (paren@1 @0))
2427 @1)
1e51d0a2
RB
2428
2429/* Handle cases of two conversions in a row. */
2430(for ocvt (convert float fix_trunc)
2431 (for icvt (convert float)
2432 (simplify
2433 (ocvt (icvt@1 @0))
2434 (with
2435 {
2436 tree inside_type = TREE_TYPE (@0);
2437 tree inter_type = TREE_TYPE (@1);
2438 int inside_int = INTEGRAL_TYPE_P (inside_type);
2439 int inside_ptr = POINTER_TYPE_P (inside_type);
2440 int inside_float = FLOAT_TYPE_P (inside_type);
09240451 2441 int inside_vec = VECTOR_TYPE_P (inside_type);
1e51d0a2
RB
2442 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2443 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2444 int inter_int = INTEGRAL_TYPE_P (inter_type);
2445 int inter_ptr = POINTER_TYPE_P (inter_type);
2446 int inter_float = FLOAT_TYPE_P (inter_type);
09240451 2447 int inter_vec = VECTOR_TYPE_P (inter_type);
1e51d0a2
RB
2448 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2449 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2450 int final_int = INTEGRAL_TYPE_P (type);
2451 int final_ptr = POINTER_TYPE_P (type);
2452 int final_float = FLOAT_TYPE_P (type);
09240451 2453 int final_vec = VECTOR_TYPE_P (type);
1e51d0a2
RB
2454 unsigned int final_prec = TYPE_PRECISION (type);
2455 int final_unsignedp = TYPE_UNSIGNED (type);
2456 }
64d3a1f0
RB
2457 (switch
2458 /* In addition to the cases of two conversions in a row
2459 handled below, if we are converting something to its own
2460 type via an object of identical or wider precision, neither
2461 conversion is needed. */
2462 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2463 || (GENERIC
2464 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2465 && (((inter_int || inter_ptr) && final_int)
2466 || (inter_float && final_float))
2467 && inter_prec >= final_prec)
2468 (ocvt @0))
2469
2470 /* Likewise, if the intermediate and initial types are either both
2471 float or both integer, we don't need the middle conversion if the
2472 former is wider than the latter and doesn't change the signedness
2473 (for integers). Avoid this if the final type is a pointer since
36088299 2474 then we sometimes need the middle conversion. */
64d3a1f0
RB
2475 (if (((inter_int && inside_int) || (inter_float && inside_float))
2476 && (final_int || final_float)
2477 && inter_prec >= inside_prec
36088299 2478 && (inter_float || inter_unsignedp == inside_unsignedp))
64d3a1f0
RB
2479 (ocvt @0))
2480
2481 /* If we have a sign-extension of a zero-extended value, we can
2482 replace that by a single zero-extension. Likewise if the
2483 final conversion does not change precision we can drop the
2484 intermediate conversion. */
2485 (if (inside_int && inter_int && final_int
2486 && ((inside_prec < inter_prec && inter_prec < final_prec
2487 && inside_unsignedp && !inter_unsignedp)
2488 || final_prec == inter_prec))
2489 (ocvt @0))
2490
2491 /* Two conversions in a row are not needed unless:
1e51d0a2
RB
2492 - some conversion is floating-point (overstrict for now), or
2493 - some conversion is a vector (overstrict for now), or
2494 - the intermediate type is narrower than both initial and
2495 final, or
2496 - the intermediate type and innermost type differ in signedness,
2497 and the outermost type is wider than the intermediate, or
2498 - the initial type is a pointer type and the precisions of the
2499 intermediate and final types differ, or
2500 - the final type is a pointer type and the precisions of the
2501 initial and intermediate types differ. */
64d3a1f0
RB
2502 (if (! inside_float && ! inter_float && ! final_float
2503 && ! inside_vec && ! inter_vec && ! final_vec
2504 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2505 && ! (inside_int && inter_int
2506 && inter_unsignedp != inside_unsignedp
2507 && inter_prec < final_prec)
2508 && ((inter_unsignedp && inter_prec > inside_prec)
2509 == (final_unsignedp && final_prec > inter_prec))
2510 && ! (inside_ptr && inter_prec != final_prec)
36088299 2511 && ! (final_ptr && inside_prec != inter_prec))
64d3a1f0
RB
2512 (ocvt @0))
2513
2514 /* A truncation to an unsigned type (a zero-extension) should be
2515 canonicalized as bitwise and of a mask. */
1d510e04
JJ
2516 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2517 && final_int && inter_int && inside_int
64d3a1f0
RB
2518 && final_prec == inside_prec
2519 && final_prec > inter_prec
2520 && inter_unsignedp)
2521 (convert (bit_and @0 { wide_int_to_tree
2522 (inside_type,
2523 wi::mask (inter_prec, false,
2524 TYPE_PRECISION (inside_type))); })))
2525
2526 /* If we are converting an integer to a floating-point that can
2527 represent it exactly and back to an integer, we can skip the
2528 floating-point conversion. */
2529 (if (GIMPLE /* PR66211 */
2530 && inside_int && inter_float && final_int &&
2531 (unsigned) significand_size (TYPE_MODE (inter_type))
2532 >= inside_prec - !inside_unsignedp)
2533 (convert @0)))))))
ea2042ba
RB
2534
2535/* If we have a narrowing conversion to an integral type that is fed by a
2536 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2537 masks off bits outside the final type (and nothing else). */
2538(simplify
2539 (convert (bit_and @0 INTEGER_CST@1))
2540 (if (INTEGRAL_TYPE_P (type)
2541 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2542 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2543 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2544 TYPE_PRECISION (type)), 0))
2545 (convert @0)))
a25454ea
RB
2546
2547
2548/* (X /[ex] A) * A -> X. */
2549(simplify
2eef1fc1
RB
2550 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2551 (convert @0))
eaeba53a 2552
a7f24614
RB
2553/* Canonicalization of binary operations. */
2554
2555/* Convert X + -C into X - C. */
2556(simplify
2557 (plus @0 REAL_CST@1)
2558 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
23f27839 2559 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
a7f24614
RB
2560 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2561 (minus @0 { tem; })))))
2562
6b6aa8d3 2563/* Convert x+x into x*2. */
a7f24614
RB
2564(simplify
2565 (plus @0 @0)
2566 (if (SCALAR_FLOAT_TYPE_P (type))
6b6aa8d3
MG
2567 (mult @0 { build_real (type, dconst2); })
2568 (if (INTEGRAL_TYPE_P (type))
2569 (mult @0 { build_int_cst (type, 2); }))))
a7f24614 2570
406520e2 2571/* 0 - X -> -X. */
a7f24614
RB
2572(simplify
2573 (minus integer_zerop @1)
2574 (negate @1))
406520e2
MG
2575(simplify
2576 (pointer_diff integer_zerop @1)
2577 (negate (convert @1)))
a7f24614
RB
2578
2579/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2580 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2581 (-ARG1 + ARG0) reduces to -ARG1. */
2582(simplify
2583 (minus real_zerop@0 @1)
2584 (if (fold_real_zero_addition_p (type, @0, 0))
2585 (negate @1)))
2586
2587/* Transform x * -1 into -x. */
2588(simplify
2589 (mult @0 integer_minus_onep)
2590 (negate @0))
eaeba53a 2591
b771c609
AM
2592/* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2593 signed overflow for CST != 0 && CST != -1. */
2594(simplify
b46ebc6c 2595 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
b771c609 2596 (if (TREE_CODE (@2) != INTEGER_CST
b46ebc6c 2597 && single_use (@3)
b771c609
AM
2598 && !integer_zerop (@1) && !integer_minus_onep (@1))
2599 (mult (mult @0 @2) @1)))
2600
96285749
RS
2601/* True if we can easily extract the real and imaginary parts of a complex
2602 number. */
2603(match compositional_complex
2604 (convert? (complex @0 @1)))
2605
eaeba53a
RB
2606/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2607(simplify
2608 (complex (realpart @0) (imagpart @0))
2609 @0)
2610(simplify
2611 (realpart (complex @0 @1))
2612 @0)
2613(simplify
2614 (imagpart (complex @0 @1))
2615 @1)
83633539 2616
77c028c5
MG
2617/* Sometimes we only care about half of a complex expression. */
2618(simplify
2619 (realpart (convert?:s (conj:s @0)))
2620 (convert (realpart @0)))
2621(simplify
2622 (imagpart (convert?:s (conj:s @0)))
2623 (convert (negate (imagpart @0))))
2624(for part (realpart imagpart)
2625 (for op (plus minus)
2626 (simplify
2627 (part (convert?:s@2 (op:s @0 @1)))
2628 (convert (op (part @0) (part @1))))))
2629(simplify
2630 (realpart (convert?:s (CEXPI:s @0)))
2631 (convert (COS @0)))
2632(simplify
2633 (imagpart (convert?:s (CEXPI:s @0)))
2634 (convert (SIN @0)))
2635
2636/* conj(conj(x)) -> x */
2637(simplify
2638 (conj (convert? (conj @0)))
2639 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2640 (convert @0)))
2641
2642/* conj({x,y}) -> {x,-y} */
2643(simplify
2644 (conj (convert?:s (complex:s @0 @1)))
2645 (with { tree itype = TREE_TYPE (type); }
2646 (complex (convert:itype @0) (negate (convert:itype @1)))))
83633539
RB
2647
2648/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2649(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2650 (simplify
2651 (bswap (bswap @0))
2652 @0)
2653 (simplify
2654 (bswap (bit_not (bswap @0)))
2655 (bit_not @0))
2656 (for bitop (bit_xor bit_ior bit_and)
2657 (simplify
2658 (bswap (bitop:c (bswap @0) @1))
2659 (bitop @0 (bswap @1)))))
96994de0
RB
2660
2661
2662/* Combine COND_EXPRs and VEC_COND_EXPRs. */
2663
2664/* Simplify constant conditions.
2665 Only optimize constant conditions when the selected branch
2666 has the same type as the COND_EXPR. This avoids optimizing
2667 away "c ? x : throw", where the throw has a void type.
2668 Note that we cannot throw away the fold-const.c variant nor
2669 this one as we depend on doing this transform before possibly
2670 A ? B : B -> B triggers and the fold-const.c one can optimize
2671 0 ? A : B to B even if A has side-effects. Something
2672 genmatch cannot handle. */
2673(simplify
2674 (cond INTEGER_CST@0 @1 @2)
8fdc6c67
RB
2675 (if (integer_zerop (@0))
2676 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2677 @2)
2678 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2679 @1)))
96994de0
RB
2680(simplify
2681 (vec_cond VECTOR_CST@0 @1 @2)
2682 (if (integer_all_onesp (@0))
8fdc6c67
RB
2683 @1
2684 (if (integer_zerop (@0))
2685 @2)))
96994de0 2686
b5481987
BC
2687/* Simplification moved from fold_cond_expr_with_comparison. It may also
2688 be extended. */
e2535011
BC
2689/* This pattern implements two kinds simplification:
2690
2691 Case 1)
2692 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
b5481987
BC
2693 1) Conversions are type widening from smaller type.
2694 2) Const c1 equals to c2 after canonicalizing comparison.
2695 3) Comparison has tree code LT, LE, GT or GE.
2696 This specific pattern is needed when (cmp (convert x) c) may not
2697 be simplified by comparison patterns because of multiple uses of
2698 x. It also makes sense here because simplifying across multiple
e2535011
BC
2699 referred var is always benefitial for complicated cases.
2700
2701 Case 2)
2702 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2703(for cmp (lt le gt ge eq)
b5481987 2704 (simplify
ae22bc5d 2705 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
b5481987
BC
2706 (with
2707 {
2708 tree from_type = TREE_TYPE (@1);
2709 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
ae22bc5d 2710 enum tree_code code = ERROR_MARK;
b5481987 2711
ae22bc5d
BC
2712 if (INTEGRAL_TYPE_P (from_type)
2713 && int_fits_type_p (@2, from_type)
b5481987
BC
2714 && (types_match (c1_type, from_type)
2715 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2716 && (TYPE_UNSIGNED (from_type)
2717 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2718 && (types_match (c2_type, from_type)
2719 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2720 && (TYPE_UNSIGNED (from_type)
2721 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2722 {
ae22bc5d 2723 if (cmp != EQ_EXPR)
b5481987 2724 {
e2535011
BC
2725 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2726 {
2727 /* X <= Y - 1 equals to X < Y. */
ae22bc5d 2728 if (cmp == LE_EXPR)
e2535011
BC
2729 code = LT_EXPR;
2730 /* X > Y - 1 equals to X >= Y. */
ae22bc5d 2731 if (cmp == GT_EXPR)
e2535011
BC
2732 code = GE_EXPR;
2733 }
2734 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2735 {
2736 /* X < Y + 1 equals to X <= Y. */
ae22bc5d 2737 if (cmp == LT_EXPR)
e2535011
BC
2738 code = LE_EXPR;
2739 /* X >= Y + 1 equals to X > Y. */
ae22bc5d 2740 if (cmp == GE_EXPR)
e2535011
BC
2741 code = GT_EXPR;
2742 }
ae22bc5d
BC
2743 if (code != ERROR_MARK
2744 || wi::to_widest (@2) == wi::to_widest (@3))
e2535011 2745 {
ae22bc5d 2746 if (cmp == LT_EXPR || cmp == LE_EXPR)
e2535011 2747 code = MIN_EXPR;
ae22bc5d 2748 if (cmp == GT_EXPR || cmp == GE_EXPR)
e2535011
BC
2749 code = MAX_EXPR;
2750 }
b5481987 2751 }
e2535011 2752 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
ae22bc5d
BC
2753 else if (int_fits_type_p (@3, from_type))
2754 code = EQ_EXPR;
b5481987
BC
2755 }
2756 }
2757 (if (code == MAX_EXPR)
21aaaf1e 2758 (convert (max @1 (convert @2)))
b5481987 2759 (if (code == MIN_EXPR)
21aaaf1e 2760 (convert (min @1 (convert @2)))
e2535011 2761 (if (code == EQ_EXPR)
ae22bc5d 2762 (convert (cond (eq @1 (convert @3))
21aaaf1e 2763 (convert:from_type @3) (convert:from_type @2)))))))))
b5481987 2764
714445ae
BC
2765/* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2766
2767 1) OP is PLUS or MINUS.
2768 2) CMP is LT, LE, GT or GE.
2769 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2770
2771 This pattern also handles special cases like:
2772
2773 A) Operand x is a unsigned to signed type conversion and c1 is
2774 integer zero. In this case,
2775 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2776 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2777 B) Const c1 may not equal to (C3 op' C2). In this case we also
2778 check equality for (c1+1) and (c1-1) by adjusting comparison
2779 code.
2780
2781 TODO: Though signed type is handled by this pattern, it cannot be
2782 simplified at the moment because C standard requires additional
2783 type promotion. In order to match&simplify it here, the IR needs
2784 to be cleaned up by other optimizers, i.e, VRP. */
2785(for op (plus minus)
2786 (for cmp (lt le gt ge)
2787 (simplify
2788 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2789 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2790 (if (types_match (from_type, to_type)
2791 /* Check if it is special case A). */
2792 || (TYPE_UNSIGNED (from_type)
2793 && !TYPE_UNSIGNED (to_type)
2794 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2795 && integer_zerop (@1)
2796 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2797 (with
2798 {
2799 bool overflow = false;
2800 enum tree_code code, cmp_code = cmp;
8e6cdc90
RS
2801 wide_int real_c1;
2802 wide_int c1 = wi::to_wide (@1);
2803 wide_int c2 = wi::to_wide (@2);
2804 wide_int c3 = wi::to_wide (@3);
714445ae
BC
2805 signop sgn = TYPE_SIGN (from_type);
2806
2807 /* Handle special case A), given x of unsigned type:
2808 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2809 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2810 if (!types_match (from_type, to_type))
2811 {
2812 if (cmp_code == LT_EXPR)
2813 cmp_code = GT_EXPR;
2814 if (cmp_code == GE_EXPR)
2815 cmp_code = LE_EXPR;
2816 c1 = wi::max_value (to_type);
2817 }
2818 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
2819 compute (c3 op' c2) and check if it equals to c1 with op' being
2820 the inverted operator of op. Make sure overflow doesn't happen
2821 if it is undefined. */
2822 if (op == PLUS_EXPR)
2823 real_c1 = wi::sub (c3, c2, sgn, &overflow);
2824 else
2825 real_c1 = wi::add (c3, c2, sgn, &overflow);
2826
2827 code = cmp_code;
2828 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2829 {
2830 /* Check if c1 equals to real_c1. Boundary condition is handled
2831 by adjusting comparison operation if necessary. */
2832 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2833 && !overflow)
2834 {
2835 /* X <= Y - 1 equals to X < Y. */
2836 if (cmp_code == LE_EXPR)
2837 code = LT_EXPR;
2838 /* X > Y - 1 equals to X >= Y. */
2839 if (cmp_code == GT_EXPR)
2840 code = GE_EXPR;
2841 }
2842 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
2843 && !overflow)
2844 {
2845 /* X < Y + 1 equals to X <= Y. */
2846 if (cmp_code == LT_EXPR)
2847 code = LE_EXPR;
2848 /* X >= Y + 1 equals to X > Y. */
2849 if (cmp_code == GE_EXPR)
2850 code = GT_EXPR;
2851 }
2852 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
2853 {
2854 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
2855 code = MIN_EXPR;
2856 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
2857 code = MAX_EXPR;
2858 }
2859 }
2860 }
2861 (if (code == MAX_EXPR)
2862 (op (max @X { wide_int_to_tree (from_type, real_c1); })
2863 { wide_int_to_tree (from_type, c2); })
2864 (if (code == MIN_EXPR)
2865 (op (min @X { wide_int_to_tree (from_type, real_c1); })
2866 { wide_int_to_tree (from_type, c2); })))))))))
2867
96994de0
RB
2868(for cnd (cond vec_cond)
2869 /* A ? B : (A ? X : C) -> A ? B : C. */
2870 (simplify
2871 (cnd @0 (cnd @0 @1 @2) @3)
2872 (cnd @0 @1 @3))
2873 (simplify
2874 (cnd @0 @1 (cnd @0 @2 @3))
2875 (cnd @0 @1 @3))
24a179f8
RB
2876 /* A ? B : (!A ? C : X) -> A ? B : C. */
2877 /* ??? This matches embedded conditions open-coded because genmatch
2878 would generate matching code for conditions in separate stmts only.
2879 The following is still important to merge then and else arm cases
2880 from if-conversion. */
2881 (simplify
2882 (cnd @0 @1 (cnd @2 @3 @4))
2883 (if (COMPARISON_CLASS_P (@0)
2884 && COMPARISON_CLASS_P (@2)
2885 && invert_tree_comparison
2886 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@2)
2887 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@2, 0), 0)
2888 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@2, 1), 0))
2889 (cnd @0 @1 @3)))
2890 (simplify
2891 (cnd @0 (cnd @1 @2 @3) @4)
2892 (if (COMPARISON_CLASS_P (@0)
2893 && COMPARISON_CLASS_P (@1)
2894 && invert_tree_comparison
2895 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@1)
2896 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@1, 0), 0)
2897 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@1, 1), 0))
2898 (cnd @0 @3 @4)))
96994de0
RB
2899
2900 /* A ? B : B -> B. */
2901 (simplify
2902 (cnd @0 @1 @1)
09240451 2903 @1)
96994de0 2904
09240451
MG
2905 /* !A ? B : C -> A ? C : B. */
2906 (simplify
2907 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
2908 (cnd @0 @2 @1)))
f84e7fd6 2909
a3ca1bc5
RB
2910/* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
2911 return all -1 or all 0 results. */
f43d102e
RS
2912/* ??? We could instead convert all instances of the vec_cond to negate,
2913 but that isn't necessarily a win on its own. */
2914(simplify
a3ca1bc5 2915 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
f43d102e 2916 (if (VECTOR_TYPE_P (type)
928686b1
RS
2917 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2918 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
f43d102e 2919 && (TYPE_MODE (TREE_TYPE (type))
4d8989d5 2920 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
a3ca1bc5 2921 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
f43d102e 2922
a3ca1bc5 2923/* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
f43d102e 2924(simplify
a3ca1bc5 2925 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
f43d102e 2926 (if (VECTOR_TYPE_P (type)
928686b1
RS
2927 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2928 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
f43d102e 2929 && (TYPE_MODE (TREE_TYPE (type))
4d8989d5 2930 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
a3ca1bc5 2931 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
f84e7fd6 2932
2ee05f1e 2933
f84e7fd6
RB
2934/* Simplifications of comparisons. */
2935
24f1db9c
RB
2936/* See if we can reduce the magnitude of a constant involved in a
2937 comparison by changing the comparison code. This is a canonicalization
2938 formerly done by maybe_canonicalize_comparison_1. */
2939(for cmp (le gt)
2940 acmp (lt ge)
2941 (simplify
2942 (cmp @0 INTEGER_CST@1)
2943 (if (tree_int_cst_sgn (@1) == -1)
8e6cdc90 2944 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
24f1db9c
RB
2945(for cmp (ge lt)
2946 acmp (gt le)
2947 (simplify
2948 (cmp @0 INTEGER_CST@1)
2949 (if (tree_int_cst_sgn (@1) == 1)
8e6cdc90 2950 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
24f1db9c
RB
2951
2952
f84e7fd6
RB
2953/* We can simplify a logical negation of a comparison to the
2954 inverted comparison. As we cannot compute an expression
2955 operator using invert_tree_comparison we have to simulate
2956 that with expression code iteration. */
2957(for cmp (tcc_comparison)
2958 icmp (inverted_tcc_comparison)
2959 ncmp (inverted_tcc_comparison_with_nans)
2960 /* Ideally we'd like to combine the following two patterns
2961 and handle some more cases by using
2962 (logical_inverted_value (cmp @0 @1))
2963 here but for that genmatch would need to "inline" that.
2964 For now implement what forward_propagate_comparison did. */
2965 (simplify
2966 (bit_not (cmp @0 @1))
2967 (if (VECTOR_TYPE_P (type)
2968 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
2969 /* Comparison inversion may be impossible for trapping math,
2970 invert_tree_comparison will tell us. But we can't use
2971 a computed operator in the replacement tree thus we have
2972 to play the trick below. */
2973 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 2974 (cmp, HONOR_NANS (@0)); }
f84e7fd6 2975 (if (ic == icmp)
8fdc6c67
RB
2976 (icmp @0 @1)
2977 (if (ic == ncmp)
2978 (ncmp @0 @1))))))
f84e7fd6 2979 (simplify
09240451
MG
2980 (bit_xor (cmp @0 @1) integer_truep)
2981 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 2982 (cmp, HONOR_NANS (@0)); }
09240451 2983 (if (ic == icmp)
8fdc6c67
RB
2984 (icmp @0 @1)
2985 (if (ic == ncmp)
2986 (ncmp @0 @1))))))
e18c1d66 2987
2ee05f1e
RB
2988/* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
2989 ??? The transformation is valid for the other operators if overflow
2990 is undefined for the type, but performing it here badly interacts
2991 with the transformation in fold_cond_expr_with_comparison which
2992 attempts to synthetize ABS_EXPR. */
2993(for cmp (eq ne)
1af4ebf5
MG
2994 (for sub (minus pointer_diff)
2995 (simplify
2996 (cmp (sub@2 @0 @1) integer_zerop)
2997 (if (single_use (@2))
2998 (cmp @0 @1)))))
2ee05f1e
RB
2999
3000/* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3001 signed arithmetic case. That form is created by the compiler
3002 often enough for folding it to be of value. One example is in
3003 computing loop trip counts after Operator Strength Reduction. */
07cdc2b8
RB
3004(for cmp (simple_comparison)
3005 scmp (swapped_simple_comparison)
2ee05f1e 3006 (simplify
bc6e9db4 3007 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
2ee05f1e
RB
3008 /* Handle unfolded multiplication by zero. */
3009 (if (integer_zerop (@1))
8fdc6c67
RB
3010 (cmp @1 @2)
3011 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
bc6e9db4
RB
3012 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3013 && single_use (@3))
8fdc6c67
RB
3014 /* If @1 is negative we swap the sense of the comparison. */
3015 (if (tree_int_cst_sgn (@1) < 0)
3016 (scmp @0 @2)
3017 (cmp @0 @2))))))
2ee05f1e
RB
3018
3019/* Simplify comparison of something with itself. For IEEE
3020 floating-point, we can only do some of these simplifications. */
287f8f17 3021(for cmp (eq ge le)
2ee05f1e
RB
3022 (simplify
3023 (cmp @0 @0)
287f8f17 3024 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
b9407883 3025 || ! HONOR_NANS (@0))
287f8f17
RB
3026 { constant_boolean_node (true, type); }
3027 (if (cmp != EQ_EXPR)
3028 (eq @0 @0)))))
2ee05f1e
RB
3029(for cmp (ne gt lt)
3030 (simplify
3031 (cmp @0 @0)
3032 (if (cmp != NE_EXPR
3033 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
b9407883 3034 || ! HONOR_NANS (@0))
2ee05f1e 3035 { constant_boolean_node (false, type); })))
b5d3d787
RB
3036(for cmp (unle unge uneq)
3037 (simplify
3038 (cmp @0 @0)
3039 { constant_boolean_node (true, type); }))
dd53d197
MG
3040(for cmp (unlt ungt)
3041 (simplify
3042 (cmp @0 @0)
3043 (unordered @0 @0)))
b5d3d787
RB
3044(simplify
3045 (ltgt @0 @0)
3046 (if (!flag_trapping_math)
3047 { constant_boolean_node (false, type); }))
2ee05f1e
RB
3048
3049/* Fold ~X op ~Y as Y op X. */
07cdc2b8 3050(for cmp (simple_comparison)
2ee05f1e 3051 (simplify
7fe996ba
RB
3052 (cmp (bit_not@2 @0) (bit_not@3 @1))
3053 (if (single_use (@2) && single_use (@3))
3054 (cmp @1 @0))))
2ee05f1e
RB
3055
3056/* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
07cdc2b8
RB
3057(for cmp (simple_comparison)
3058 scmp (swapped_simple_comparison)
2ee05f1e 3059 (simplify
7fe996ba
RB
3060 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3061 (if (single_use (@2)
3062 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
2ee05f1e
RB
3063 (scmp @0 (bit_not @1)))))
3064
07cdc2b8
RB
3065(for cmp (simple_comparison)
3066 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3067 (simplify
3068 (cmp (convert@2 @0) (convert? @1))
3069 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3070 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3071 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3072 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3073 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3074 (with
3075 {
3076 tree type1 = TREE_TYPE (@1);
3077 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3078 {
3079 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3080 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3081 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3082 type1 = float_type_node;
3083 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3084 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3085 type1 = double_type_node;
3086 }
3087 tree newtype
3088 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3089 ? TREE_TYPE (@0) : type1);
3090 }
3091 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3092 (cmp (convert:newtype @0) (convert:newtype @1))))))
3093
3094 (simplify
3095 (cmp @0 REAL_CST@1)
3096 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
64d3a1f0
RB
3097 (switch
3098 /* a CMP (-0) -> a CMP 0 */
3099 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3100 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3101 /* x != NaN is always true, other ops are always false. */
3102 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3103 && ! HONOR_SNANS (@1))
3104 { constant_boolean_node (cmp == NE_EXPR, type); })
3105 /* Fold comparisons against infinity. */
3106 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3107 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3108 (with
3109 {
3110 REAL_VALUE_TYPE max;
3111 enum tree_code code = cmp;
3112 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3113 if (neg)
3114 code = swap_tree_comparison (code);
3115 }
3116 (switch
e96a5786 3117 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
64d3a1f0 3118 (if (code == GT_EXPR
e96a5786 3119 && !(HONOR_NANS (@0) && flag_trapping_math))
64d3a1f0
RB
3120 { constant_boolean_node (false, type); })
3121 (if (code == LE_EXPR)
e96a5786 3122 /* x <= +Inf is always true, if we don't care about NaNs. */
64d3a1f0
RB
3123 (if (! HONOR_NANS (@0))
3124 { constant_boolean_node (true, type); }
e96a5786
JM
3125 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3126 an "invalid" exception. */
3127 (if (!flag_trapping_math)
3128 (eq @0 @0))))
3129 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3130 for == this introduces an exception for x a NaN. */
3131 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3132 || code == GE_EXPR)
64d3a1f0
RB
3133 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3134 (if (neg)
3135 (lt @0 { build_real (TREE_TYPE (@0), max); })
3136 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3137 /* x < +Inf is always equal to x <= DBL_MAX. */
3138 (if (code == LT_EXPR)
3139 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3140 (if (neg)
3141 (ge @0 { build_real (TREE_TYPE (@0), max); })
3142 (le @0 { build_real (TREE_TYPE (@0), max); }))))
e96a5786
JM
3143 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3144 an exception for x a NaN so use an unordered comparison. */
64d3a1f0
RB
3145 (if (code == NE_EXPR)
3146 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3147 (if (! HONOR_NANS (@0))
3148 (if (neg)
3149 (ge @0 { build_real (TREE_TYPE (@0), max); })
3150 (le @0 { build_real (TREE_TYPE (@0), max); }))
3151 (if (neg)
e96a5786
JM
3152 (unge @0 { build_real (TREE_TYPE (@0), max); })
3153 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
07cdc2b8
RB
3154
3155 /* If this is a comparison of a real constant with a PLUS_EXPR
3156 or a MINUS_EXPR of a real constant, we can convert it into a
3157 comparison with a revised real constant as long as no overflow
3158 occurs when unsafe_math_optimizations are enabled. */
3159 (if (flag_unsafe_math_optimizations)
3160 (for op (plus minus)
3161 (simplify
3162 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3163 (with
3164 {
3165 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3166 TREE_TYPE (@1), @2, @1);
3167 }
f980c9a2 3168 (if (tem && !TREE_OVERFLOW (tem))
07cdc2b8
RB
3169 (cmp @0 { tem; }))))))
3170
3171 /* Likewise, we can simplify a comparison of a real constant with
3172 a MINUS_EXPR whose first operand is also a real constant, i.e.
3173 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3174 floating-point types only if -fassociative-math is set. */
3175 (if (flag_associative_math)
3176 (simplify
0409237b 3177 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
07cdc2b8 3178 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
f980c9a2 3179 (if (tem && !TREE_OVERFLOW (tem))
07cdc2b8
RB
3180 (cmp { tem; } @1)))))
3181
3182 /* Fold comparisons against built-in math functions. */
3183 (if (flag_unsafe_math_optimizations
3184 && ! flag_errno_math)
3185 (for sq (SQRT)
3186 (simplify
3187 (cmp (sq @0) REAL_CST@1)
64d3a1f0
RB
3188 (switch
3189 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3190 (switch
3191 /* sqrt(x) < y is always false, if y is negative. */
3192 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
8fdc6c67 3193 { constant_boolean_node (false, type); })
64d3a1f0
RB
3194 /* sqrt(x) > y is always true, if y is negative and we
3195 don't care about NaNs, i.e. negative values of x. */
3196 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3197 { constant_boolean_node (true, type); })
3198 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3199 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
c53233c6
RS
3200 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3201 (switch
3202 /* sqrt(x) < 0 is always false. */
3203 (if (cmp == LT_EXPR)
3204 { constant_boolean_node (false, type); })
3205 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3206 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3207 { constant_boolean_node (true, type); })
3208 /* sqrt(x) <= 0 -> x == 0. */
3209 (if (cmp == LE_EXPR)
3210 (eq @0 @1))
3211 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3212 == or !=. In the last case:
3213
3214 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3215
3216 if x is negative or NaN. Due to -funsafe-math-optimizations,
3217 the results for other x follow from natural arithmetic. */
3218 (cmp @0 @1)))
64d3a1f0
RB
3219 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3220 (with
3221 {
3222 REAL_VALUE_TYPE c2;
5c88ea94
RS
3223 real_arithmetic (&c2, MULT_EXPR,
3224 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
64d3a1f0
RB
3225 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3226 }
3227 (if (REAL_VALUE_ISINF (c2))
3228 /* sqrt(x) > y is x == +Inf, when y is very large. */
3229 (if (HONOR_INFINITIES (@0))
3230 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3231 { constant_boolean_node (false, type); })
3232 /* sqrt(x) > c is the same as x > c*c. */
3233 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3234 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3235 (with
3236 {
3237 REAL_VALUE_TYPE c2;
5c88ea94
RS
3238 real_arithmetic (&c2, MULT_EXPR,
3239 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
64d3a1f0
RB
3240 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3241 }
3242 (if (REAL_VALUE_ISINF (c2))
3243 (switch
3244 /* sqrt(x) < y is always true, when y is a very large
3245 value and we don't care about NaNs or Infinities. */
3246 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3247 { constant_boolean_node (true, type); })
3248 /* sqrt(x) < y is x != +Inf when y is very large and we
3249 don't care about NaNs. */
3250 (if (! HONOR_NANS (@0))
3251 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3252 /* sqrt(x) < y is x >= 0 when y is very large and we
3253 don't care about Infinities. */
3254 (if (! HONOR_INFINITIES (@0))
3255 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3256 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3257 (if (GENERIC)
3258 (truth_andif
3259 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3260 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3261 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3262 (if (! HONOR_NANS (@0))
3263 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3264 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3265 (if (GENERIC)
3266 (truth_andif
3267 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
0ca2e7f7
PK
3268 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3269 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3270 (simplify
3271 (cmp (sq @0) (sq @1))
3272 (if (! HONOR_NANS (@0))
3273 (cmp @0 @1))))))
2ee05f1e 3274
c779bea5
YG
3275/* Optimize various special cases of (FTYPE) N CMP CST. */
3276(for cmp (lt le eq ne ge gt)
3277 icmp (le le eq ne ge ge)
3278 (simplify
3279 (cmp (float @0) REAL_CST@1)
3280 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3281 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3282 (with
3283 {
3284 tree itype = TREE_TYPE (@0);
3285 signop isign = TYPE_SIGN (itype);
3286 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3287 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3288 /* Be careful to preserve any potential exceptions due to
3289 NaNs. qNaNs are ok in == or != context.
3290 TODO: relax under -fno-trapping-math or
3291 -fno-signaling-nans. */
3292 bool exception_p
3293 = real_isnan (cst) && (cst->signalling
c651dca2 3294 || (cmp != EQ_EXPR && cmp != NE_EXPR));
c779bea5
YG
3295 /* INT?_MIN is power-of-two so it takes
3296 only one mantissa bit. */
3297 bool signed_p = isign == SIGNED;
3298 bool itype_fits_ftype_p
3299 = TYPE_PRECISION (itype) - signed_p <= significand_size (fmt);
3300 }
3301 /* TODO: allow non-fitting itype and SNaNs when
3302 -fno-trapping-math. */
3303 (if (itype_fits_ftype_p && ! exception_p)
3304 (with
3305 {
3306 REAL_VALUE_TYPE imin, imax;
3307 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3308 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3309
3310 REAL_VALUE_TYPE icst;
3311 if (cmp == GT_EXPR || cmp == GE_EXPR)
3312 real_ceil (&icst, fmt, cst);
3313 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3314 real_floor (&icst, fmt, cst);
3315 else
3316 real_trunc (&icst, fmt, cst);
3317
b09bf97b 3318 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
c779bea5
YG
3319
3320 bool overflow_p = false;
3321 wide_int icst_val
3322 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3323 }
3324 (switch
3325 /* Optimize cases when CST is outside of ITYPE's range. */
3326 (if (real_compare (LT_EXPR, cst, &imin))
3327 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3328 type); })
3329 (if (real_compare (GT_EXPR, cst, &imax))
3330 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3331 type); })
3332 /* Remove cast if CST is an integer representable by ITYPE. */
3333 (if (cst_int_p)
3334 (cmp @0 { gcc_assert (!overflow_p);
3335 wide_int_to_tree (itype, icst_val); })
3336 )
3337 /* When CST is fractional, optimize
3338 (FTYPE) N == CST -> 0
3339 (FTYPE) N != CST -> 1. */
3340 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3341 { constant_boolean_node (cmp == NE_EXPR, type); })
3342 /* Otherwise replace with sensible integer constant. */
3343 (with
3344 {
3345 gcc_checking_assert (!overflow_p);
3346 }
3347 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3348
40fd269a
MG
3349/* Fold A /[ex] B CMP C to A CMP B * C. */
3350(for cmp (eq ne)
3351 (simplify
3352 (cmp (exact_div @0 @1) INTEGER_CST@2)
3353 (if (!integer_zerop (@1))
8e6cdc90 3354 (if (wi::to_wide (@2) == 0)
40fd269a
MG
3355 (cmp @0 @2)
3356 (if (TREE_CODE (@1) == INTEGER_CST)
3357 (with
3358 {
3359 bool ovf;
8e6cdc90
RS
3360 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3361 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
40fd269a
MG
3362 }
3363 (if (ovf)
3364 { constant_boolean_node (cmp == NE_EXPR, type); }
3365 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3366(for cmp (lt le gt ge)
3367 (simplify
3368 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
8e6cdc90 3369 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
40fd269a
MG
3370 (with
3371 {
3372 bool ovf;
8e6cdc90
RS
3373 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3374 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
40fd269a
MG
3375 }
3376 (if (ovf)
8e6cdc90
RS
3377 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3378 TYPE_SIGN (TREE_TYPE (@2)))
40fd269a
MG
3379 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3380 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3381
cfdc4f33
MG
3382/* Unordered tests if either argument is a NaN. */
3383(simplify
3384 (bit_ior (unordered @0 @0) (unordered @1 @1))
aea417d7 3385 (if (types_match (@0, @1))
cfdc4f33 3386 (unordered @0 @1)))
257b01ba
MG
3387(simplify
3388 (bit_and (ordered @0 @0) (ordered @1 @1))
3389 (if (types_match (@0, @1))
3390 (ordered @0 @1)))
cfdc4f33
MG
3391(simplify
3392 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3393 @2)
257b01ba
MG
3394(simplify
3395 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3396 @2)
e18c1d66 3397
90c6f26c
RB
3398/* Simple range test simplifications. */
3399/* A < B || A >= B -> true. */
5d30c58d
RB
3400(for test1 (lt le le le ne ge)
3401 test2 (ge gt ge ne eq ne)
90c6f26c
RB
3402 (simplify
3403 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3404 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3405 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3406 { constant_boolean_node (true, type); })))
3407/* A < B && A >= B -> false. */
3408(for test1 (lt lt lt le ne eq)
3409 test2 (ge gt eq gt eq gt)
3410 (simplify
3411 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3412 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3413 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3414 { constant_boolean_node (false, type); })))
3415
9ebc3467
YG
3416/* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3417 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3418
3419 Note that comparisons
3420 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3421 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3422 will be canonicalized to above so there's no need to
3423 consider them here.
3424 */
3425
3426(for cmp (le gt)
3427 eqcmp (eq ne)
3428 (simplify
3429 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3430 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3431 (with
3432 {
3433 tree ty = TREE_TYPE (@0);
3434 unsigned prec = TYPE_PRECISION (ty);
3435 wide_int mask = wi::to_wide (@2, prec);
3436 wide_int rhs = wi::to_wide (@3, prec);
3437 signop sgn = TYPE_SIGN (ty);
3438 }
3439 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3440 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3441 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3442 { build_zero_cst (ty); }))))))
3443
534bd33b
MG
3444/* -A CMP -B -> B CMP A. */
3445(for cmp (tcc_comparison)
3446 scmp (swapped_tcc_comparison)
3447 (simplify
3448 (cmp (negate @0) (negate @1))
3449 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3450 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3451 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3452 (scmp @0 @1)))
3453 (simplify
3454 (cmp (negate @0) CONSTANT_CLASS_P@1)
3455 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3456 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3457 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
23f27839 3458 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
534bd33b
MG
3459 (if (tem && !TREE_OVERFLOW (tem))
3460 (scmp @0 { tem; }))))))
3461
b0eb889b
MG
3462/* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3463(for op (eq ne)
3464 (simplify
3465 (op (abs @0) zerop@1)
3466 (op @0 @1)))
3467
6358a676
MG
3468/* From fold_sign_changed_comparison and fold_widened_comparison.
3469 FIXME: the lack of symmetry is disturbing. */
79d4f7c6
RB
3470(for cmp (simple_comparison)
3471 (simplify
3472 (cmp (convert@0 @00) (convert?@1 @10))
452ec2a5 3473 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
79d4f7c6
RB
3474 /* Disable this optimization if we're casting a function pointer
3475 type on targets that require function pointer canonicalization. */
3476 && !(targetm.have_canonicalize_funcptr_for_compare ()
3477 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
2fde61e3
RB
3478 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
3479 && single_use (@0))
79d4f7c6
RB
3480 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3481 && (TREE_CODE (@10) == INTEGER_CST
6358a676 3482 || @1 != @10)
79d4f7c6
RB
3483 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3484 || cmp == NE_EXPR
3485 || cmp == EQ_EXPR)
6358a676 3486 && !POINTER_TYPE_P (TREE_TYPE (@00)))
79d4f7c6
RB
3487 /* ??? The special-casing of INTEGER_CST conversion was in the original
3488 code and here to avoid a spurious overflow flag on the resulting
3489 constant which fold_convert produces. */
3490 (if (TREE_CODE (@1) == INTEGER_CST)
3491 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3492 TREE_OVERFLOW (@1)); })
3493 (cmp @00 (convert @1)))
3494
3495 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3496 /* If possible, express the comparison in the shorter mode. */
3497 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
7fd82d52
PP
3498 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3499 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3500 && TYPE_UNSIGNED (TREE_TYPE (@00))))
79d4f7c6
RB
3501 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3502 || ((TYPE_PRECISION (TREE_TYPE (@00))
3503 >= TYPE_PRECISION (TREE_TYPE (@10)))
3504 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3505 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3506 || (TREE_CODE (@10) == INTEGER_CST
f6c15759 3507 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
79d4f7c6
RB
3508 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3509 (cmp @00 (convert @10))
3510 (if (TREE_CODE (@10) == INTEGER_CST
f6c15759 3511 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
79d4f7c6
RB
3512 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3513 (with
3514 {
3515 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3516 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3517 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3518 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3519 }
3520 (if (above || below)
3521 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3522 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3523 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3524 { constant_boolean_node (above ? true : false, type); }
3525 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3526 { constant_boolean_node (above ? false : true, type); }))))))))))))
66e1cacf 3527
96a111a3
RB
3528(for cmp (eq ne)
3529 /* A local variable can never be pointed to by
3530 the default SSA name of an incoming parameter.
3531 SSA names are canonicalized to 2nd place. */
3532 (simplify
3533 (cmp addr@0 SSA_NAME@1)
3534 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3535 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3536 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3537 (if (TREE_CODE (base) == VAR_DECL
3538 && auto_var_in_fn_p (base, current_function_decl))
3539 (if (cmp == NE_EXPR)
3540 { constant_boolean_node (true, type); }
3541 { constant_boolean_node (false, type); }))))))
3542
66e1cacf
RB
3543/* Equality compare simplifications from fold_binary */
3544(for cmp (eq ne)
3545
3546 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3547 Similarly for NE_EXPR. */
3548 (simplify
3549 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3550 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
8e6cdc90 3551 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
66e1cacf
RB
3552 { constant_boolean_node (cmp == NE_EXPR, type); }))
3553
3554 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3555 (simplify
3556 (cmp (bit_xor @0 @1) integer_zerop)
3557 (cmp @0 @1))
3558
3559 /* (X ^ Y) == Y becomes X == 0.
3560 Likewise (X ^ Y) == X becomes Y == 0. */
3561 (simplify
99e943a2 3562 (cmp:c (bit_xor:c @0 @1) @0)
66e1cacf
RB
3563 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3564
3565 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3566 (simplify
3567 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3568 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
d057c866 3569 (cmp @0 (bit_xor @1 (convert @2)))))
d057c866
RB
3570
3571 (simplify
3572 (cmp (convert? addr@0) integer_zerop)
3573 (if (tree_single_nonzero_warnv_p (@0, NULL))
3574 { constant_boolean_node (cmp == NE_EXPR, type); })))
3575
b0eb889b
MG
3576/* If we have (A & C) == C where C is a power of 2, convert this into
3577 (A & C) != 0. Similarly for NE_EXPR. */
3578(for cmp (eq ne)
3579 icmp (ne eq)
3580 (simplify
3581 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3582 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3583
519e0faa
PB
3584/* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3585 convert this into a shift followed by ANDing with D. */
3586(simplify
3587 (cond
3588 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
9e61e48e
JJ
3589 INTEGER_CST@2 integer_zerop)
3590 (if (integer_pow2p (@2))
3591 (with {
3592 int shift = (wi::exact_log2 (wi::to_wide (@2))
3593 - wi::exact_log2 (wi::to_wide (@1)));
3594 }
3595 (if (shift > 0)
3596 (bit_and
3597 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3598 (bit_and
3599 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
3600 @2)))))
519e0faa 3601
b0eb889b
MG
3602/* If we have (A & C) != 0 where C is the sign bit of A, convert
3603 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3604(for cmp (eq ne)
3605 ncmp (ge lt)
3606 (simplify
3607 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3608 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2be65d9e 3609 && type_has_mode_precision_p (TREE_TYPE (@0))
b0eb889b 3610 && element_precision (@2) >= element_precision (@0)
8e6cdc90 3611 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
b0eb889b
MG
3612 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3613 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3614
519e0faa 3615/* If we have A < 0 ? C : 0 where C is a power of 2, convert
c0140e3c 3616 this into a right shift or sign extension followed by ANDing with C. */
519e0faa
PB
3617(simplify
3618 (cond
3619 (lt @0 integer_zerop)
9e61e48e
JJ
3620 INTEGER_CST@1 integer_zerop)
3621 (if (integer_pow2p (@1)
3622 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
c0140e3c 3623 (with {
8e6cdc90 3624 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
c0140e3c
JJ
3625 }
3626 (if (shift >= 0)
3627 (bit_and
3628 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3629 @1)
3630 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3631 sign extension followed by AND with C will achieve the effect. */
3632 (bit_and (convert @0) @1)))))
519e0faa 3633
68aba1f6
RB
3634/* When the addresses are not directly of decls compare base and offset.
3635 This implements some remaining parts of fold_comparison address
3636 comparisons but still no complete part of it. Still it is good
3637 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3638(for cmp (simple_comparison)
3639 (simplify
f501d5cd 3640 (cmp (convert1?@2 addr@0) (convert2? addr@1))
68aba1f6
RB
3641 (with
3642 {
a90c8804 3643 poly_int64 off0, off1;
68aba1f6
RB
3644 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3645 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3646 if (base0 && TREE_CODE (base0) == MEM_REF)
3647 {
aca52e6f 3648 off0 += mem_ref_offset (base0).force_shwi ();
68aba1f6
RB
3649 base0 = TREE_OPERAND (base0, 0);
3650 }
3651 if (base1 && TREE_CODE (base1) == MEM_REF)
3652 {
aca52e6f 3653 off1 += mem_ref_offset (base1).force_shwi ();
68aba1f6
RB
3654 base1 = TREE_OPERAND (base1, 0);
3655 }
3656 }
da571fda
RB
3657 (if (base0 && base1)
3658 (with
3659 {
aad88aed 3660 int equal = 2;
70f40fea
JJ
3661 /* Punt in GENERIC on variables with value expressions;
3662 the value expressions might point to fields/elements
3663 of other vars etc. */
3664 if (GENERIC
3665 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3666 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3667 ;
3668 else if (decl_in_symtab_p (base0)
3669 && decl_in_symtab_p (base1))
da571fda
RB
3670 equal = symtab_node::get_create (base0)
3671 ->equal_address_to (symtab_node::get_create (base1));
c3bea076
RB
3672 else if ((DECL_P (base0)
3673 || TREE_CODE (base0) == SSA_NAME
3674 || TREE_CODE (base0) == STRING_CST)
3675 && (DECL_P (base1)
3676 || TREE_CODE (base1) == SSA_NAME
3677 || TREE_CODE (base1) == STRING_CST))
aad88aed 3678 equal = (base0 == base1);
da571fda 3679 }
3fccbb9e
JJ
3680 (if (equal == 1
3681 && (cmp == EQ_EXPR || cmp == NE_EXPR
3682 /* If the offsets are equal we can ignore overflow. */
3683 || known_eq (off0, off1)
3684 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3685 /* Or if we compare using pointers to decls or strings. */
3686 || (POINTER_TYPE_P (TREE_TYPE (@2))
3687 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
da571fda 3688 (switch
a90c8804
RS
3689 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3690 { constant_boolean_node (known_eq (off0, off1), type); })
3691 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3692 { constant_boolean_node (known_ne (off0, off1), type); })
3693 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
3694 { constant_boolean_node (known_lt (off0, off1), type); })
3695 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
3696 { constant_boolean_node (known_le (off0, off1), type); })
3697 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
3698 { constant_boolean_node (known_ge (off0, off1), type); })
3699 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
3700 { constant_boolean_node (known_gt (off0, off1), type); }))
da571fda
RB
3701 (if (equal == 0
3702 && DECL_P (base0) && DECL_P (base1)
3703 /* If we compare this as integers require equal offset. */
3704 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
a90c8804 3705 || known_eq (off0, off1)))
da571fda
RB
3706 (switch
3707 (if (cmp == EQ_EXPR)
3708 { constant_boolean_node (false, type); })
3709 (if (cmp == NE_EXPR)
3710 { constant_boolean_node (true, type); })))))))))
66e1cacf 3711
98998245
RB
3712/* Simplify pointer equality compares using PTA. */
3713(for neeq (ne eq)
3714 (simplify
3715 (neeq @0 @1)
3716 (if (POINTER_TYPE_P (TREE_TYPE (@0))
3717 && ptrs_compare_unequal (@0, @1))
f913ff2a 3718 { constant_boolean_node (neeq != EQ_EXPR, type); })))
98998245 3719
8f63caf6 3720/* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
467719fb
PK
3721 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3722 Disable the transform if either operand is pointer to function.
3723 This broke pr22051-2.c for arm where function pointer
3724 canonicalizaion is not wanted. */
1c0a8806 3725
8f63caf6
RB
3726(for cmp (ne eq)
3727 (simplify
3728 (cmp (convert @0) INTEGER_CST@1)
f53e7e13
JJ
3729 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
3730 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3731 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3732 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3733 && POINTER_TYPE_P (TREE_TYPE (@1))
3734 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
3735 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
8f63caf6
RB
3736 (cmp @0 (convert @1)))))
3737
21aacde4
RB
3738/* Non-equality compare simplifications from fold_binary */
3739(for cmp (lt gt le ge)
3740 /* Comparisons with the highest or lowest possible integer of
3741 the specified precision will have known values. */
3742 (simplify
3743 (cmp (convert?@2 @0) INTEGER_CST@1)
3744 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3745 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3746 (with
3747 {
3748 tree arg1_type = TREE_TYPE (@1);
3749 unsigned int prec = TYPE_PRECISION (arg1_type);
3750 wide_int max = wi::max_value (arg1_type);
3751 wide_int signed_max = wi::max_value (prec, SIGNED);
3752 wide_int min = wi::min_value (arg1_type);
3753 }
3754 (switch
8e6cdc90 3755 (if (wi::to_wide (@1) == max)
21aacde4
RB
3756 (switch
3757 (if (cmp == GT_EXPR)
3758 { constant_boolean_node (false, type); })
3759 (if (cmp == GE_EXPR)
3760 (eq @2 @1))
3761 (if (cmp == LE_EXPR)
3762 { constant_boolean_node (true, type); })
3763 (if (cmp == LT_EXPR)
3764 (ne @2 @1))))
8e6cdc90 3765 (if (wi::to_wide (@1) == min)
21aacde4
RB
3766 (switch
3767 (if (cmp == LT_EXPR)
3768 { constant_boolean_node (false, type); })
3769 (if (cmp == LE_EXPR)
3770 (eq @2 @1))
3771 (if (cmp == GE_EXPR)
3772 { constant_boolean_node (true, type); })
3773 (if (cmp == GT_EXPR)
3774 (ne @2 @1))))
8e6cdc90 3775 (if (wi::to_wide (@1) == max - 1)
9bc22d19
RB
3776 (switch
3777 (if (cmp == GT_EXPR)
8e6cdc90 3778 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))
9bc22d19 3779 (if (cmp == LE_EXPR)
8e6cdc90
RS
3780 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3781 (if (wi::to_wide (@1) == min + 1)
21aacde4
RB
3782 (switch
3783 (if (cmp == GE_EXPR)
8e6cdc90 3784 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))
21aacde4 3785 (if (cmp == LT_EXPR)
8e6cdc90
RS
3786 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3787 (if (wi::to_wide (@1) == signed_max
21aacde4
RB
3788 && TYPE_UNSIGNED (arg1_type)
3789 /* We will flip the signedness of the comparison operator
3790 associated with the mode of @1, so the sign bit is
3791 specified by this mode. Check that @1 is the signed
3792 max associated with this sign bit. */
7a504f33 3793 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
21aacde4
RB
3794 /* signed_type does not work on pointer types. */
3795 && INTEGRAL_TYPE_P (arg1_type))
3796 /* The following case also applies to X < signed_max+1
3797 and X >= signed_max+1 because previous transformations. */
3798 (if (cmp == LE_EXPR || cmp == GT_EXPR)
3799 (with { tree st = signed_type_for (arg1_type); }
3800 (if (cmp == LE_EXPR)
3801 (ge (convert:st @0) { build_zero_cst (st); })
3802 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
3803
b5d3d787
RB
3804(for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
3805 /* If the second operand is NaN, the result is constant. */
3806 (simplify
3807 (cmp @0 REAL_CST@1)
3808 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3809 && (cmp != LTGT_EXPR || ! flag_trapping_math))
50301115 3810 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
b5d3d787 3811 ? false : true, type); })))
21aacde4 3812
55cf3946
RB
3813/* bool_var != 0 becomes bool_var. */
3814(simplify
b5d3d787 3815 (ne @0 integer_zerop)
55cf3946
RB
3816 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3817 && types_match (type, TREE_TYPE (@0)))
3818 (non_lvalue @0)))
3819/* bool_var == 1 becomes bool_var. */
3820(simplify
b5d3d787 3821 (eq @0 integer_onep)
55cf3946
RB
3822 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3823 && types_match (type, TREE_TYPE (@0)))
3824 (non_lvalue @0)))
b5d3d787
RB
3825/* Do not handle
3826 bool_var == 0 becomes !bool_var or
3827 bool_var != 1 becomes !bool_var
3828 here because that only is good in assignment context as long
3829 as we require a tcc_comparison in GIMPLE_CONDs where we'd
3830 replace if (x == 0) with tem = ~x; if (tem != 0) which is
3831 clearly less optimal and which we'll transform again in forwprop. */
55cf3946 3832
ca1206be
MG
3833/* When one argument is a constant, overflow detection can be simplified.
3834 Currently restricted to single use so as not to interfere too much with
3835 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
3836 A + CST CMP A -> A CMP' CST' */
3837(for cmp (lt le ge gt)
3838 out (gt gt le le)
3839 (simplify
a8e9f9a3 3840 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
ca1206be
MG
3841 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3842 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
8e6cdc90 3843 && wi::to_wide (@1) != 0
ca1206be 3844 && single_use (@2))
8e6cdc90
RS
3845 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
3846 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
3847 wi::max_value (prec, UNSIGNED)
3848 - wi::to_wide (@1)); })))))
ca1206be 3849
3563f78f
MG
3850/* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
3851 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
3852 expects the long form, so we restrict the transformation for now. */
3853(for cmp (gt le)
3854 (simplify
a8e9f9a3 3855 (cmp:c (minus@2 @0 @1) @0)
3563f78f
MG
3856 (if (single_use (@2)
3857 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3858 && TYPE_UNSIGNED (TREE_TYPE (@0))
3859 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3860 (cmp @1 @0))))
3563f78f
MG
3861
3862/* Testing for overflow is unnecessary if we already know the result. */
3563f78f
MG
3863/* A - B > A */
3864(for cmp (gt le)
3865 out (ne eq)
3866 (simplify
a8e9f9a3 3867 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3563f78f
MG
3868 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3869 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3870 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3871/* A + B < A */
3872(for cmp (lt ge)
3873 out (ne eq)
3874 (simplify
a8e9f9a3 3875 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3563f78f
MG
3876 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3877 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3878 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3879
603aeb87 3880/* For unsigned operands, -1 / B < A checks whether A * B would overflow.
0557293f 3881 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
0557293f
AM
3882(for cmp (lt ge)
3883 out (ne eq)
3884 (simplify
603aeb87 3885 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
0557293f
AM
3886 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
3887 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
3888 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
55cf3946 3889
53f3cd25
RS
3890/* Simplification of math builtins. These rules must all be optimizations
3891 as well as IL simplifications. If there is a possibility that the new
3892 form could be a pessimization, the rule should go in the canonicalization
3893 section that follows this one.
e18c1d66 3894
53f3cd25
RS
3895 Rules can generally go in this section if they satisfy one of
3896 the following:
3897
3898 - the rule describes an identity
3899
3900 - the rule replaces calls with something as simple as addition or
3901 multiplication
3902
3903 - the rule contains unary calls only and simplifies the surrounding
3904 arithmetic. (The idea here is to exclude non-unary calls in which
3905 one operand is constant and in which the call is known to be cheap
3906 when the operand has that value.) */
52c6378a 3907
53f3cd25 3908(if (flag_unsafe_math_optimizations)
52c6378a
N
3909 /* Simplify sqrt(x) * sqrt(x) -> x. */
3910 (simplify
c6cfa2bf 3911 (mult (SQRT_ALL@1 @0) @1)
52c6378a
N
3912 (if (!HONOR_SNANS (type))
3913 @0))
3914
ed17cb57
JW
3915 (for op (plus minus)
3916 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
3917 (simplify
3918 (op (rdiv @0 @1)
3919 (rdiv @2 @1))
3920 (rdiv (op @0 @2) @1)))
3921
35401640
N
3922 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
3923 (for root (SQRT CBRT)
3924 (simplify
3925 (mult (root:s @0) (root:s @1))
3926 (root (mult @0 @1))))
3927
35401640
N
3928 /* Simplify expN(x) * expN(y) -> expN(x+y). */
3929 (for exps (EXP EXP2 EXP10 POW10)
3930 (simplify
3931 (mult (exps:s @0) (exps:s @1))
3932 (exps (plus @0 @1))))
3933
52c6378a 3934 /* Simplify a/root(b/c) into a*root(c/b). */
35401640
N
3935 (for root (SQRT CBRT)
3936 (simplify
3937 (rdiv @0 (root:s (rdiv:s @1 @2)))
3938 (mult @0 (root (rdiv @2 @1)))))
3939
3940 /* Simplify x/expN(y) into x*expN(-y). */
3941 (for exps (EXP EXP2 EXP10 POW10)
3942 (simplify
3943 (rdiv @0 (exps:s @1))
3944 (mult @0 (exps (negate @1)))))
52c6378a 3945
eee7b6c4
RB
3946 (for logs (LOG LOG2 LOG10 LOG10)
3947 exps (EXP EXP2 EXP10 POW10)
8acda9b2 3948 /* logN(expN(x)) -> x. */
e18c1d66
RB
3949 (simplify
3950 (logs (exps @0))
8acda9b2
RS
3951 @0)
3952 /* expN(logN(x)) -> x. */
3953 (simplify
3954 (exps (logs @0))
3955 @0))
53f3cd25 3956
e18c1d66
RB
3957 /* Optimize logN(func()) for various exponential functions. We
3958 want to determine the value "x" and the power "exponent" in
3959 order to transform logN(x**exponent) into exponent*logN(x). */
eee7b6c4
RB
3960 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
3961 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
e18c1d66
RB
3962 (simplify
3963 (logs (exps @0))
c9e926ce
RS
3964 (if (SCALAR_FLOAT_TYPE_P (type))
3965 (with {
3966 tree x;
3967 switch (exps)
3968 {
3969 CASE_CFN_EXP:
3970 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
3971 x = build_real_truncate (type, dconst_e ());
3972 break;
3973 CASE_CFN_EXP2:
3974 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
3975 x = build_real (type, dconst2);
3976 break;
3977 CASE_CFN_EXP10:
3978 CASE_CFN_POW10:
3979 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
3980 {
3981 REAL_VALUE_TYPE dconst10;
3982 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
3983 x = build_real (type, dconst10);
3984 }
3985 break;
3986 default:
3987 gcc_unreachable ();
3988 }
3989 }
3990 (mult (logs { x; }) @0)))))
53f3cd25 3991
e18c1d66
RB
3992 (for logs (LOG LOG
3993 LOG2 LOG2
3994 LOG10 LOG10)
3995 exps (SQRT CBRT)
3996 (simplify
3997 (logs (exps @0))
c9e926ce
RS
3998 (if (SCALAR_FLOAT_TYPE_P (type))
3999 (with {
4000 tree x;
4001 switch (exps)
4002 {
4003 CASE_CFN_SQRT:
4004 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4005 x = build_real (type, dconsthalf);
4006 break;
4007 CASE_CFN_CBRT:
4008 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4009 x = build_real_truncate (type, dconst_third ());
4010 break;
4011 default:
4012 gcc_unreachable ();
4013 }
4014 }
4015 (mult { x; } (logs @0))))))
53f3cd25
RS
4016
4017 /* logN(pow(x,exponent)) -> exponent*logN(x). */
e18c1d66
RB
4018 (for logs (LOG LOG2 LOG10)
4019 pows (POW)
4020 (simplify
4021 (logs (pows @0 @1))
53f3cd25
RS
4022 (mult @1 (logs @0))))
4023
848bb6fc
JJ
4024 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4025 or if C is a positive power of 2,
4026 pow(C,x) -> exp2(log2(C)*x). */
30a2c10e 4027#if GIMPLE
e83fe013
WD
4028 (for pows (POW)
4029 exps (EXP)
4030 logs (LOG)
848bb6fc
JJ
4031 exp2s (EXP2)
4032 log2s (LOG2)
e83fe013
WD
4033 (simplify
4034 (pows REAL_CST@0 @1)
848bb6fc 4035 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
ef7866a3
JJ
4036 && real_isfinite (TREE_REAL_CST_PTR (@0))
4037 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4038 the use_exp2 case until after vectorization. It seems actually
4039 beneficial for all constants to postpone this until later,
4040 because exp(log(C)*x), while faster, will have worse precision
4041 and if x folds into a constant too, that is unnecessary
4042 pessimization. */
4043 && canonicalize_math_after_vectorization_p ())
848bb6fc
JJ
4044 (with {
4045 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4046 bool use_exp2 = false;
4047 if (targetm.libc_has_function (function_c99_misc)
4048 && value->cl == rvc_normal)
4049 {
4050 REAL_VALUE_TYPE frac_rvt = *value;
4051 SET_REAL_EXP (&frac_rvt, 1);
4052 if (real_equal (&frac_rvt, &dconst1))
4053 use_exp2 = true;
4054 }
4055 }
4056 (if (!use_exp2)
30a2c10e
JJ
4057 (if (optimize_pow_to_exp (@0, @1))
4058 (exps (mult (logs @0) @1)))
ef7866a3 4059 (exp2s (mult (log2s @0) @1)))))))
30a2c10e 4060#endif
e83fe013 4061
16ef0a8c
JJ
4062 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4063 (for pows (POW)
4064 exps (EXP EXP2 EXP10 POW10)
4065 logs (LOG LOG2 LOG10 LOG10)
4066 (simplify
4067 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4068 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4069 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4070 (exps (plus (mult (logs @0) @1) @2)))))
4071
53f3cd25
RS
4072 (for sqrts (SQRT)
4073 cbrts (CBRT)
b4838d77 4074 pows (POW)
53f3cd25
RS
4075 exps (EXP EXP2 EXP10 POW10)
4076 /* sqrt(expN(x)) -> expN(x*0.5). */
4077 (simplify
4078 (sqrts (exps @0))
4079 (exps (mult @0 { build_real (type, dconsthalf); })))
4080 /* cbrt(expN(x)) -> expN(x/3). */
4081 (simplify
4082 (cbrts (exps @0))
b4838d77
RS
4083 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4084 /* pow(expN(x), y) -> expN(x*y). */
4085 (simplify
4086 (pows (exps @0) @1)
4087 (exps (mult @0 @1))))
cfed37a0
RS
4088
4089 /* tan(atan(x)) -> x. */
4090 (for tans (TAN)
4091 atans (ATAN)
4092 (simplify
4093 (tans (atans @0))
4094 @0)))
53f3cd25 4095
abcc43f5
RS
4096/* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4097(simplify
e04d2a35 4098 (CABS (complex:C @0 real_zerop@1))
abcc43f5
RS
4099 (abs @0))
4100
67dbe582 4101/* trunc(trunc(x)) -> trunc(x), etc. */
c6cfa2bf 4102(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
67dbe582
RS
4103 (simplify
4104 (fns (fns @0))
4105 (fns @0)))
4106/* f(x) -> x if x is integer valued and f does nothing for such values. */
c6cfa2bf 4107(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
67dbe582
RS
4108 (simplify
4109 (fns integer_valued_real_p@0)
4110 @0))
67dbe582 4111
4d7836c4
RS
4112/* hypot(x,0) and hypot(0,x) -> abs(x). */
4113(simplify
c9e926ce 4114 (HYPOT:c @0 real_zerop@1)
4d7836c4
RS
4115 (abs @0))
4116
b4838d77
RS
4117/* pow(1,x) -> 1. */
4118(simplify
4119 (POW real_onep@0 @1)
4120 @0)
4121
461e4145
RS
4122(simplify
4123 /* copysign(x,x) -> x. */
c6cfa2bf 4124 (COPYSIGN_ALL @0 @0)
461e4145
RS
4125 @0)
4126
4127(simplify
4128 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
c6cfa2bf 4129 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
461e4145
RS
4130 (abs @0))
4131
86c0733f
RS
4132(for scale (LDEXP SCALBN SCALBLN)
4133 /* ldexp(0, x) -> 0. */
4134 (simplify
4135 (scale real_zerop@0 @1)
4136 @0)
4137 /* ldexp(x, 0) -> x. */
4138 (simplify
4139 (scale @0 integer_zerop@1)
4140 @0)
4141 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4142 (simplify
4143 (scale REAL_CST@0 @1)
4144 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4145 @0)))
4146
53f3cd25
RS
4147/* Canonicalization of sequences of math builtins. These rules represent
4148 IL simplifications but are not necessarily optimizations.
4149
4150 The sincos pass is responsible for picking "optimal" implementations
4151 of math builtins, which may be more complicated and can sometimes go
4152 the other way, e.g. converting pow into a sequence of sqrts.
4153 We only want to do these canonicalizations before the pass has run. */
4154
4155(if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4156 /* Simplify tan(x) * cos(x) -> sin(x). */
4157 (simplify
4158 (mult:c (TAN:s @0) (COS:s @0))
4159 (SIN @0))
4160
4161 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4162 (simplify
de3fbea3 4163 (mult:c @0 (POW:s @0 REAL_CST@1))
53f3cd25
RS
4164 (if (!TREE_OVERFLOW (@1))
4165 (POW @0 (plus @1 { build_one_cst (type); }))))
4166
4167 /* Simplify sin(x) / cos(x) -> tan(x). */
4168 (simplify
4169 (rdiv (SIN:s @0) (COS:s @0))
4170 (TAN @0))
4171
4172 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4173 (simplify
4174 (rdiv (COS:s @0) (SIN:s @0))
4175 (rdiv { build_one_cst (type); } (TAN @0)))
4176
4177 /* Simplify sin(x) / tan(x) -> cos(x). */
4178 (simplify
4179 (rdiv (SIN:s @0) (TAN:s @0))
4180 (if (! HONOR_NANS (@0)
4181 && ! HONOR_INFINITIES (@0))
c9e926ce 4182 (COS @0)))
53f3cd25
RS
4183
4184 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4185 (simplify
4186 (rdiv (TAN:s @0) (SIN:s @0))
4187 (if (! HONOR_NANS (@0)
4188 && ! HONOR_INFINITIES (@0))
4189 (rdiv { build_one_cst (type); } (COS @0))))
4190
4191 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4192 (simplify
4193 (mult (POW:s @0 @1) (POW:s @0 @2))
4194 (POW @0 (plus @1 @2)))
4195
4196 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4197 (simplify
4198 (mult (POW:s @0 @1) (POW:s @2 @1))
4199 (POW (mult @0 @2) @1))
4200
de3fbea3
RB
4201 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4202 (simplify
4203 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4204 (POWI (mult @0 @2) @1))
4205
53f3cd25
RS
4206 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4207 (simplify
4208 (rdiv (POW:s @0 REAL_CST@1) @0)
4209 (if (!TREE_OVERFLOW (@1))
4210 (POW @0 (minus @1 { build_one_cst (type); }))))
4211
4212 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4213 (simplify
4214 (rdiv @0 (POW:s @1 @2))
4215 (mult @0 (POW @1 (negate @2))))
4216
4217 (for sqrts (SQRT)
4218 cbrts (CBRT)
4219 pows (POW)
4220 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4221 (simplify
4222 (sqrts (sqrts @0))
4223 (pows @0 { build_real (type, dconst_quarter ()); }))
4224 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4225 (simplify
4226 (sqrts (cbrts @0))
4227 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4228 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4229 (simplify
4230 (cbrts (sqrts @0))
4231 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4232 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4233 (simplify
4234 (cbrts (cbrts tree_expr_nonnegative_p@0))
4235 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4236 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4237 (simplify
4238 (sqrts (pows @0 @1))
4239 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4240 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4241 (simplify
4242 (cbrts (pows tree_expr_nonnegative_p@0 @1))
b4838d77
RS
4243 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4244 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4245 (simplify
4246 (pows (sqrts @0) @1)
4247 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4248 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4249 (simplify
4250 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4251 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4252 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4253 (simplify
4254 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4255 (pows @0 (mult @1 @2))))
abcc43f5
RS
4256
4257 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4258 (simplify
4259 (CABS (complex @0 @0))
96285749
RS
4260 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4261
4d7836c4
RS
4262 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4263 (simplify
4264 (HYPOT @0 @0)
4265 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4266
96285749
RS
4267 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4268 (for cexps (CEXP)
4269 exps (EXP)
4270 cexpis (CEXPI)
4271 (simplify
4272 (cexps compositional_complex@0)
4273 (if (targetm.libc_has_function (function_c99_math_complex))
4274 (complex
4275 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4276 (mult @1 (imagpart @2)))))))
e18c1d66 4277
67dbe582
RS
4278(if (canonicalize_math_p ())
4279 /* floor(x) -> trunc(x) if x is nonnegative. */
c6cfa2bf
MM
4280 (for floors (FLOOR_ALL)
4281 truncs (TRUNC_ALL)
67dbe582
RS
4282 (simplify
4283 (floors tree_expr_nonnegative_p@0)
4284 (truncs @0))))
4285
4286(match double_value_p
4287 @0
4288 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4289(for froms (BUILT_IN_TRUNCL
4290 BUILT_IN_FLOORL
4291 BUILT_IN_CEILL
4292 BUILT_IN_ROUNDL
4293 BUILT_IN_NEARBYINTL
4294 BUILT_IN_RINTL)
4295 tos (BUILT_IN_TRUNC
4296 BUILT_IN_FLOOR
4297 BUILT_IN_CEIL
4298 BUILT_IN_ROUND
4299 BUILT_IN_NEARBYINT
4300 BUILT_IN_RINT)
4301 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4302 (if (optimize && canonicalize_math_p ())
4303 (simplify
4304 (froms (convert double_value_p@0))
4305 (convert (tos @0)))))
4306
4307(match float_value_p
4308 @0
4309 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4310(for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4311 BUILT_IN_FLOORL BUILT_IN_FLOOR
4312 BUILT_IN_CEILL BUILT_IN_CEIL
4313 BUILT_IN_ROUNDL BUILT_IN_ROUND
4314 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4315 BUILT_IN_RINTL BUILT_IN_RINT)
4316 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4317 BUILT_IN_FLOORF BUILT_IN_FLOORF
4318 BUILT_IN_CEILF BUILT_IN_CEILF
4319 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4320 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4321 BUILT_IN_RINTF BUILT_IN_RINTF)
4322 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4323 if x is a float. */
5dac7dbd
JDA
4324 (if (optimize && canonicalize_math_p ()
4325 && targetm.libc_has_function (function_c99_misc))
67dbe582
RS
4326 (simplify
4327 (froms (convert float_value_p@0))
4328 (convert (tos @0)))))
4329
543a9bcd
RS
4330(for froms (XFLOORL XCEILL XROUNDL XRINTL)
4331 tos (XFLOOR XCEIL XROUND XRINT)
4332 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4333 (if (optimize && canonicalize_math_p ())
4334 (simplify
4335 (froms (convert double_value_p@0))
4336 (tos @0))))
4337
4338(for froms (XFLOORL XCEILL XROUNDL XRINTL
4339 XFLOOR XCEIL XROUND XRINT)
4340 tos (XFLOORF XCEILF XROUNDF XRINTF)
4341 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4342 if x is a float. */
4343 (if (optimize && canonicalize_math_p ())
4344 (simplify
4345 (froms (convert float_value_p@0))
4346 (tos @0))))
4347
4348(if (canonicalize_math_p ())
4349 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4350 (for floors (IFLOOR LFLOOR LLFLOOR)
4351 (simplify
4352 (floors tree_expr_nonnegative_p@0)
4353 (fix_trunc @0))))
4354
4355(if (canonicalize_math_p ())
4356 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4357 (for fns (IFLOOR LFLOOR LLFLOOR
4358 ICEIL LCEIL LLCEIL
4359 IROUND LROUND LLROUND)
4360 (simplify
4361 (fns integer_valued_real_p@0)
4362 (fix_trunc @0)))
4363 (if (!flag_errno_math)
4364 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4365 (for rints (IRINT LRINT LLRINT)
4366 (simplify
4367 (rints integer_valued_real_p@0)
4368 (fix_trunc @0)))))
4369
4370(if (canonicalize_math_p ())
4371 (for ifn (IFLOOR ICEIL IROUND IRINT)
4372 lfn (LFLOOR LCEIL LROUND LRINT)
4373 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4374 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4375 sizeof (int) == sizeof (long). */
4376 (if (TYPE_PRECISION (integer_type_node)
4377 == TYPE_PRECISION (long_integer_type_node))
4378 (simplify
4379 (ifn @0)
4380 (lfn:long_integer_type_node @0)))
4381 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4382 sizeof (long long) == sizeof (long). */
4383 (if (TYPE_PRECISION (long_long_integer_type_node)
4384 == TYPE_PRECISION (long_integer_type_node))
4385 (simplify
4386 (llfn @0)
4387 (lfn:long_integer_type_node @0)))))
4388
92c52eab
RS
4389/* cproj(x) -> x if we're ignoring infinities. */
4390(simplify
4391 (CPROJ @0)
4392 (if (!HONOR_INFINITIES (type))
4393 @0))
4394
4534c203
RB
4395/* If the real part is inf and the imag part is known to be
4396 nonnegative, return (inf + 0i). */
4397(simplify
4398 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4399 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
92c52eab
RS
4400 { build_complex_inf (type, false); }))
4401
4534c203
RB
4402/* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4403(simplify
4404 (CPROJ (complex @0 REAL_CST@1))
4405 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
92c52eab 4406 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4534c203 4407
b4838d77
RS
4408(for pows (POW)
4409 sqrts (SQRT)
4410 cbrts (CBRT)
4411 (simplify
4412 (pows @0 REAL_CST@1)
4413 (with {
4414 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4415 REAL_VALUE_TYPE tmp;
4416 }
4417 (switch
4418 /* pow(x,0) -> 1. */
4419 (if (real_equal (value, &dconst0))
4420 { build_real (type, dconst1); })
4421 /* pow(x,1) -> x. */
4422 (if (real_equal (value, &dconst1))
4423 @0)
4424 /* pow(x,-1) -> 1/x. */
4425 (if (real_equal (value, &dconstm1))
4426 (rdiv { build_real (type, dconst1); } @0))
4427 /* pow(x,0.5) -> sqrt(x). */
4428 (if (flag_unsafe_math_optimizations
4429 && canonicalize_math_p ()
4430 && real_equal (value, &dconsthalf))
4431 (sqrts @0))
4432 /* pow(x,1/3) -> cbrt(x). */
4433 (if (flag_unsafe_math_optimizations
4434 && canonicalize_math_p ()
4435 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4436 real_equal (value, &tmp)))
4437 (cbrts @0))))))
4534c203 4438
5ddc84ca
RS
4439/* powi(1,x) -> 1. */
4440(simplify
4441 (POWI real_onep@0 @1)
4442 @0)
4443
4444(simplify
4445 (POWI @0 INTEGER_CST@1)
4446 (switch
4447 /* powi(x,0) -> 1. */
8e6cdc90 4448 (if (wi::to_wide (@1) == 0)
5ddc84ca
RS
4449 { build_real (type, dconst1); })
4450 /* powi(x,1) -> x. */
8e6cdc90 4451 (if (wi::to_wide (@1) == 1)
5ddc84ca
RS
4452 @0)
4453 /* powi(x,-1) -> 1/x. */
8e6cdc90 4454 (if (wi::to_wide (@1) == -1)
5ddc84ca
RS
4455 (rdiv { build_real (type, dconst1); } @0))))
4456
be144838
JL
4457/* Narrowing of arithmetic and logical operations.
4458
4459 These are conceptually similar to the transformations performed for
4460 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4461 term we want to move all that code out of the front-ends into here. */
4462
4463/* If we have a narrowing conversion of an arithmetic operation where
4464 both operands are widening conversions from the same type as the outer
4465 narrowing conversion. Then convert the innermost operands to a suitable
9c582551 4466 unsigned type (to avoid introducing undefined behavior), perform the
be144838
JL
4467 operation and convert the result to the desired type. */
4468(for op (plus minus)
4469 (simplify
93f90bec 4470 (convert (op:s (convert@2 @0) (convert?@3 @1)))
be144838
JL
4471 (if (INTEGRAL_TYPE_P (type)
4472 /* We check for type compatibility between @0 and @1 below,
4473 so there's no need to check that @1/@3 are integral types. */
4474 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4475 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4476 /* The precision of the type of each operand must match the
4477 precision of the mode of each operand, similarly for the
4478 result. */
2be65d9e
RS
4479 && type_has_mode_precision_p (TREE_TYPE (@0))
4480 && type_has_mode_precision_p (TREE_TYPE (@1))
4481 && type_has_mode_precision_p (type)
be144838
JL
4482 /* The inner conversion must be a widening conversion. */
4483 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
93f90bec
BC
4484 && types_match (@0, type)
4485 && (types_match (@0, @1)
4486 /* Or the second operand is const integer or converted const
4487 integer from valueize. */
4488 || TREE_CODE (@1) == INTEGER_CST))
be144838 4489 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
93f90bec 4490 (op @0 (convert @1))
8fdc6c67 4491 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
93f90bec
BC
4492 (convert (op (convert:utype @0)
4493 (convert:utype @1))))))))
48451e8f
JL
4494
4495/* This is another case of narrowing, specifically when there's an outer
4496 BIT_AND_EXPR which masks off bits outside the type of the innermost
4497 operands. Like the previous case we have to convert the operands
9c582551 4498 to unsigned types to avoid introducing undefined behavior for the
48451e8f
JL
4499 arithmetic operation. */
4500(for op (minus plus)
8fdc6c67
RB
4501 (simplify
4502 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4503 (if (INTEGRAL_TYPE_P (type)
4504 /* We check for type compatibility between @0 and @1 below,
4505 so there's no need to check that @1/@3 are integral types. */
4506 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4507 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4508 /* The precision of the type of each operand must match the
4509 precision of the mode of each operand, similarly for the
4510 result. */
2be65d9e
RS
4511 && type_has_mode_precision_p (TREE_TYPE (@0))
4512 && type_has_mode_precision_p (TREE_TYPE (@1))
4513 && type_has_mode_precision_p (type)
8fdc6c67
RB
4514 /* The inner conversion must be a widening conversion. */
4515 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4516 && types_match (@0, @1)
4517 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4518 <= TYPE_PRECISION (TREE_TYPE (@0)))
8e6cdc90
RS
4519 && (wi::to_wide (@4)
4520 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4521 true, TYPE_PRECISION (type))) == 0)
8fdc6c67
RB
4522 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4523 (with { tree ntype = TREE_TYPE (@0); }
4524 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4525 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4526 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4527 (convert:utype @4))))))))
4f7a5692
MC
4528
4529/* Transform (@0 < @1 and @0 < @2) to use min,
4530 (@0 > @1 and @0 > @2) to use max */
dac920e8
MG
4531(for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
4532 op (lt le gt ge lt le gt ge )
4533 ext (min min max max max max min min )
4f7a5692 4534 (simplify
dac920e8 4535 (logic (op:cs @0 @1) (op:cs @0 @2))
4618c453
RB
4536 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4537 && TREE_CODE (@0) != INTEGER_CST)
4f7a5692
MC
4538 (op @0 (ext @1 @2)))))
4539
7317ef4a
RS
4540(simplify
4541 /* signbit(x) -> 0 if x is nonnegative. */
4542 (SIGNBIT tree_expr_nonnegative_p@0)
4543 { integer_zero_node; })
4544
4545(simplify
4546 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4547 (SIGNBIT @0)
4548 (if (!HONOR_SIGNED_ZEROS (@0))
4549 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
a8b85ce9
MG
4550
4551/* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4552(for cmp (eq ne)
4553 (for op (plus minus)
4554 rop (minus plus)
4555 (simplify
4556 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4557 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4558 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4559 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4560 && !TYPE_SATURATING (TREE_TYPE (@0)))
4561 (with { tree res = int_const_binop (rop, @2, @1); }
75473a91
RB
4562 (if (TREE_OVERFLOW (res)
4563 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
a8b85ce9
MG
4564 { constant_boolean_node (cmp == NE_EXPR, type); }
4565 (if (single_use (@3))
11c1e63c
JJ
4566 (cmp @0 { TREE_OVERFLOW (res)
4567 ? drop_tree_overflow (res) : res; }))))))))
a8b85ce9
MG
4568(for cmp (lt le gt ge)
4569 (for op (plus minus)
4570 rop (minus plus)
4571 (simplify
4572 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4573 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4574 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4575 (with { tree res = int_const_binop (rop, @2, @1); }
4576 (if (TREE_OVERFLOW (res))
4577 {
4578 fold_overflow_warning (("assuming signed overflow does not occur "
4579 "when simplifying conditional to constant"),
4580 WARN_STRICT_OVERFLOW_CONDITIONAL);
4581 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4582 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
8e6cdc90
RS
4583 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4584 TYPE_SIGN (TREE_TYPE (@1)))
a8b85ce9
MG
4585 != (op == MINUS_EXPR);
4586 constant_boolean_node (less == ovf_high, type);
4587 }
4588 (if (single_use (@3))
4589 (with
4590 {
4591 fold_overflow_warning (("assuming signed overflow does not occur "
4592 "when changing X +- C1 cmp C2 to "
4593 "X cmp C2 -+ C1"),
4594 WARN_STRICT_OVERFLOW_COMPARISON);
4595 }
4596 (cmp @0 { res; })))))))))
d3e40b76
RB
4597
4598/* Canonicalizations of BIT_FIELD_REFs. */
4599
4600(simplify
4601 (BIT_FIELD_REF @0 @1 @2)
4602 (switch
4603 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
4604 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4605 (switch
4606 (if (integer_zerop (@2))
4607 (view_convert (realpart @0)))
4608 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4609 (view_convert (imagpart @0)))))
4610 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4611 && INTEGRAL_TYPE_P (type)
171f6f05
RB
4612 /* On GIMPLE this should only apply to register arguments. */
4613 && (! GIMPLE || is_gimple_reg (@0))
d3e40b76
RB
4614 /* A bit-field-ref that referenced the full argument can be stripped. */
4615 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
4616 && integer_zerop (@2))
4617 /* Low-parts can be reduced to integral conversions.
4618 ??? The following doesn't work for PDP endian. */
4619 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
4620 /* Don't even think about BITS_BIG_ENDIAN. */
4621 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
4622 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
4623 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
4624 ? (TYPE_PRECISION (TREE_TYPE (@0))
4625 - TYPE_PRECISION (type))
4626 : 0)) == 0)))
4627 (convert @0))))
4628
4629/* Simplify vector extracts. */
4630
4631(simplify
4632 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
4633 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
4634 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
4635 || (VECTOR_TYPE_P (type)
4636 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
4637 (with
4638 {
4639 tree ctor = (TREE_CODE (@0) == SSA_NAME
4640 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
4641 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
4642 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
4643 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
4644 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
4645 }
4646 (if (n != 0
4647 && (idx % width) == 0
4648 && (n % width) == 0
928686b1
RS
4649 && known_le ((idx + n) / width,
4650 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
d3e40b76
RB
4651 (with
4652 {
4653 idx = idx / width;
4654 n = n / width;
4655 /* Constructor elements can be subvectors. */
d34457c1 4656 poly_uint64 k = 1;
d3e40b76
RB
4657 if (CONSTRUCTOR_NELTS (ctor) != 0)
4658 {
4659 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
4660 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
4661 k = TYPE_VECTOR_SUBPARTS (cons_elem);
4662 }
d34457c1 4663 unsigned HOST_WIDE_INT elt, count, const_k;
d3e40b76
RB
4664 }
4665 (switch
4666 /* We keep an exact subset of the constructor elements. */
d34457c1 4667 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
d3e40b76
RB
4668 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4669 { build_constructor (type, NULL); }
d34457c1
RS
4670 (if (count == 1)
4671 (if (elt < CONSTRUCTOR_NELTS (ctor))
4c1da8ea 4672 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
d34457c1 4673 { build_zero_cst (type); })
d3e40b76 4674 {
d34457c1
RS
4675 vec<constructor_elt, va_gc> *vals;
4676 vec_alloc (vals, count);
4677 for (unsigned i = 0;
4678 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
4679 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
4680 CONSTRUCTOR_ELT (ctor, elt + i)->value);
4681 build_constructor (type, vals);
4682 })))
d3e40b76 4683 /* The bitfield references a single constructor element. */
d34457c1
RS
4684 (if (k.is_constant (&const_k)
4685 && idx + n <= (idx / const_k + 1) * const_k)
d3e40b76 4686 (switch
d34457c1 4687 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
d3e40b76 4688 { build_zero_cst (type); })
d34457c1 4689 (if (n == const_k)
4c1da8ea 4690 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
d34457c1
RS
4691 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
4692 @1 { bitsize_int ((idx % const_k) * width); })))))))))
92e29a5e
RB
4693
4694/* Simplify a bit extraction from a bit insertion for the cases with
4695 the inserted element fully covering the extraction or the insertion
4696 not touching the extraction. */
4697(simplify
4698 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
4699 (with
4700 {
4701 unsigned HOST_WIDE_INT isize;
4702 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4703 isize = TYPE_PRECISION (TREE_TYPE (@1));
4704 else
4705 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
4706 }
4707 (switch
8e6cdc90
RS
4708 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
4709 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
4710 wi::to_wide (@ipos) + isize))
92e29a5e 4711 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
8e6cdc90
RS
4712 wi::to_wide (@rpos)
4713 - wi::to_wide (@ipos)); }))
4714 (if (wi::geu_p (wi::to_wide (@ipos),
4715 wi::to_wide (@rpos) + wi::to_wide (@rsize))
4716 || wi::geu_p (wi::to_wide (@rpos),
4717 wi::to_wide (@ipos) + isize))
92e29a5e 4718 (BIT_FIELD_REF @0 @rsize @rpos)))))
c566cc9f 4719
c453ccc2
RS
4720(if (canonicalize_math_after_vectorization_p ())
4721 (for fmas (FMA)
4722 (simplify
4723 (fmas:c (negate @0) @1 @2)
4724 (IFN_FNMA @0 @1 @2))
4725 (simplify
4726 (fmas @0 @1 (negate @2))
4727 (IFN_FMS @0 @1 @2))
4728 (simplify
4729 (fmas:c (negate @0) @1 (negate @2))
4730 (IFN_FNMS @0 @1 @2))
4731 (simplify
4732 (negate (fmas@3 @0 @1 @2))
4733 (if (single_use (@3))
4734 (IFN_FNMS @0 @1 @2))))
4735
c566cc9f 4736 (simplify
c453ccc2
RS
4737 (IFN_FMS:c (negate @0) @1 @2)
4738 (IFN_FNMS @0 @1 @2))
4739 (simplify
4740 (IFN_FMS @0 @1 (negate @2))
4741 (IFN_FMA @0 @1 @2))
4742 (simplify
4743 (IFN_FMS:c (negate @0) @1 (negate @2))
c566cc9f
RS
4744 (IFN_FNMA @0 @1 @2))
4745 (simplify
c453ccc2
RS
4746 (negate (IFN_FMS@3 @0 @1 @2))
4747 (if (single_use (@3))
4748 (IFN_FNMA @0 @1 @2)))
4749
4750 (simplify
4751 (IFN_FNMA:c (negate @0) @1 @2)
4752 (IFN_FMA @0 @1 @2))
c566cc9f 4753 (simplify
c453ccc2 4754 (IFN_FNMA @0 @1 (negate @2))
c566cc9f
RS
4755 (IFN_FNMS @0 @1 @2))
4756 (simplify
c453ccc2
RS
4757 (IFN_FNMA:c (negate @0) @1 (negate @2))
4758 (IFN_FMS @0 @1 @2))
4759 (simplify
4760 (negate (IFN_FNMA@3 @0 @1 @2))
c566cc9f 4761 (if (single_use (@3))
c453ccc2 4762 (IFN_FMS @0 @1 @2)))
c566cc9f 4763
c453ccc2
RS
4764 (simplify
4765 (IFN_FNMS:c (negate @0) @1 @2)
4766 (IFN_FMS @0 @1 @2))
4767 (simplify
4768 (IFN_FNMS @0 @1 (negate @2))
4769 (IFN_FNMA @0 @1 @2))
4770 (simplify
4771 (IFN_FNMS:c (negate @0) @1 (negate @2))
4772 (IFN_FMA @0 @1 @2))
4773 (simplify
4774 (negate (IFN_FNMS@3 @0 @1 @2))
c566cc9f 4775 (if (single_use (@3))
c453ccc2 4776 (IFN_FMA @0 @1 @2))))
ba6557e2
RS
4777
4778/* POPCOUNT simplifications. */
4779(for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
4780 BUILT_IN_POPCOUNTIMAX)
4781 /* popcount(X&1) is nop_expr(X&1). */
4782 (simplify
4783 (popcount @0)
4784 (if (tree_nonzero_bits (@0) == 1)
4785 (convert @0)))
4786 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
4787 (simplify
4788 (plus (popcount:s @0) (popcount:s @1))
4789 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
4790 (popcount (bit_ior @0 @1))))
4791 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
4792 (for cmp (le eq ne gt)
4793 rep (eq eq ne ne)
4794 (simplify
4795 (cmp (popcount @0) integer_zerop)
4796 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
0d2b3bca
RS
4797
4798/* Simplify:
4799
4800 a = a1 op a2
4801 r = c ? a : b;
4802
4803 to:
4804
4805 r = c ? a1 op a2 : b;
4806
4807 if the target can do it in one go. This makes the operation conditional
4808 on c, so could drop potentially-trapping arithmetic, but that's a valid
4809 simplification if the result of the operation isn't needed. */
4810(for uncond_op (UNCOND_BINARY)
4811 cond_op (COND_BINARY)
4812 (simplify
4813 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
4814 (with { tree op_type = TREE_TYPE (@4); }
4815 (if (element_precision (type) == element_precision (op_type))
4816 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
4817 (simplify
4818 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
4819 (with { tree op_type = TREE_TYPE (@4); }
4820 (if (element_precision (type) == element_precision (op_type))
4821 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))