]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/match.pd
Simplify structure try_transform_to_exit_first_loop_alt
[thirdparty/gcc.git] / gcc / match.pd
CommitLineData
3d2cf79f
RB
1/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5624e564 5 Copyright (C) 2014-2015 Free Software Foundation, Inc.
3d2cf79f
RB
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
13Software Foundation; either version 3, or (at your option) any later
14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING3. If not see
23<http://www.gnu.org/licenses/>. */
24
25
26/* Generic tree predicates we inherit. */
27(define_predicates
cc7b5acf 28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
09240451 29 integer_each_onep integer_truep
cc7b5acf 30 real_zerop real_onep real_minus_onep
f3582e54
RB
31 CONSTANT_CLASS_P
32 tree_expr_nonnegative_p)
e0ee10ed 33
f84e7fd6
RB
34/* Operator lists. */
35(define_operator_list tcc_comparison
36 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
37(define_operator_list inverted_tcc_comparison
38 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
39(define_operator_list inverted_tcc_comparison_with_nans
40 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
534bd33b
MG
41(define_operator_list swapped_tcc_comparison
42 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
f84e7fd6 43
e0ee10ed
RB
44
45/* Simplifications of operations with one constant operand and
36a60e48 46 simplifications to constants or single values. */
e0ee10ed
RB
47
48(for op (plus pointer_plus minus bit_ior bit_xor)
49 (simplify
50 (op @0 integer_zerop)
51 (non_lvalue @0)))
52
a499aac5
RB
53/* 0 +p index -> (type)index */
54(simplify
55 (pointer_plus integer_zerop @1)
56 (non_lvalue (convert @1)))
57
a7f24614
RB
58/* See if ARG1 is zero and X + ARG1 reduces to X.
59 Likewise if the operands are reversed. */
60(simplify
61 (plus:c @0 real_zerop@1)
62 (if (fold_real_zero_addition_p (type, @1, 0))
63 (non_lvalue @0)))
64
65/* See if ARG1 is zero and X - ARG1 reduces to X. */
66(simplify
67 (minus @0 real_zerop@1)
68 (if (fold_real_zero_addition_p (type, @1, 1))
69 (non_lvalue @0)))
70
e0ee10ed
RB
71/* Simplify x - x.
72 This is unsafe for certain floats even in non-IEEE formats.
73 In IEEE, it is unsafe because it does wrong for NaNs.
74 Also note that operand_equal_p is always false if an operand
75 is volatile. */
76(simplify
a7f24614 77 (minus @0 @0)
1b457aa4 78 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
a7f24614 79 { build_zero_cst (type); }))
e0ee10ed
RB
80
81(simplify
a7f24614
RB
82 (mult @0 integer_zerop@1)
83 @1)
84
85/* Maybe fold x * 0 to 0. The expressions aren't the same
86 when x is NaN, since x * 0 is also NaN. Nor are they the
87 same in modes with signed zeros, since multiplying a
88 negative value by 0 gives -0, not +0. */
89(simplify
90 (mult @0 real_zerop@1)
1b457aa4 91 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (element_mode (type)))
a7f24614
RB
92 @1))
93
94/* In IEEE floating point, x*1 is not equivalent to x for snans.
95 Likewise for complex arithmetic with signed zeros. */
96(simplify
97 (mult @0 real_onep)
09240451
MG
98 (if (!HONOR_SNANS (element_mode (type))
99 && (!HONOR_SIGNED_ZEROS (element_mode (type))
a7f24614
RB
100 || !COMPLEX_FLOAT_TYPE_P (type)))
101 (non_lvalue @0)))
102
103/* Transform x * -1.0 into -x. */
104(simplify
105 (mult @0 real_minus_onep)
09240451
MG
106 (if (!HONOR_SNANS (element_mode (type))
107 && (!HONOR_SIGNED_ZEROS (element_mode (type))
a7f24614
RB
108 || !COMPLEX_FLOAT_TYPE_P (type)))
109 (negate @0)))
e0ee10ed
RB
110
111/* Make sure to preserve divisions by zero. This is the reason why
112 we don't simplify x / x to 1 or 0 / x to 0. */
113(for op (mult trunc_div ceil_div floor_div round_div exact_div)
114 (simplify
115 (op @0 integer_onep)
116 (non_lvalue @0)))
117
a7f24614
RB
118/* X / -1 is -X. */
119(for div (trunc_div ceil_div floor_div round_div exact_div)
120 (simplify
09240451
MG
121 (div @0 integer_minus_onep@1)
122 (if (!TYPE_UNSIGNED (type))
a7f24614
RB
123 (negate @0))))
124
125/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
126 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
127(simplify
128 (floor_div @0 @1)
09240451
MG
129 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
130 && TYPE_UNSIGNED (type))
a7f24614
RB
131 (trunc_div @0 @1)))
132
28093105
RB
133/* Combine two successive divisions. Note that combining ceil_div
134 and floor_div is trickier and combining round_div even more so. */
135(for div (trunc_div exact_div)
c306cfaf
RB
136 (simplify
137 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
138 (with {
139 bool overflow_p;
140 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
141 }
142 (if (!overflow_p)
143 (div @0 { wide_int_to_tree (type, mul); }))
ac19a303
RB
144 (if (overflow_p
145 && (TYPE_UNSIGNED (type)
146 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED)))
c306cfaf
RB
147 { build_zero_cst (type); }))))
148
a7f24614 149/* Optimize A / A to 1.0 if we don't care about
09240451 150 NaNs or Infinities. */
a7f24614
RB
151(simplify
152 (rdiv @0 @0)
09240451 153 (if (FLOAT_TYPE_P (type)
1b457aa4 154 && ! HONOR_NANS (type)
09240451
MG
155 && ! HONOR_INFINITIES (element_mode (type)))
156 { build_one_cst (type); }))
157
158/* Optimize -A / A to -1.0 if we don't care about
159 NaNs or Infinities. */
160(simplify
161 (rdiv:c @0 (negate @0))
162 (if (FLOAT_TYPE_P (type)
1b457aa4 163 && ! HONOR_NANS (type)
09240451
MG
164 && ! HONOR_INFINITIES (element_mode (type)))
165 { build_minus_one_cst (type); }))
a7f24614
RB
166
167/* In IEEE floating point, x/1 is not equivalent to x for snans. */
168(simplify
169 (rdiv @0 real_onep)
09240451 170 (if (!HONOR_SNANS (element_mode (type)))
a7f24614
RB
171 (non_lvalue @0)))
172
173/* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
174(simplify
175 (rdiv @0 real_minus_onep)
09240451 176 (if (!HONOR_SNANS (element_mode (type)))
a7f24614
RB
177 (negate @0)))
178
179/* If ARG1 is a constant, we can convert this to a multiply by the
180 reciprocal. This does not have the same rounding properties,
181 so only do this if -freciprocal-math. We can actually
182 always safely do it if ARG1 is a power of two, but it's hard to
183 tell if it is or not in a portable manner. */
184(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
185 (simplify
186 (rdiv @0 cst@1)
187 (if (optimize)
53bc4b3a
RB
188 (if (flag_reciprocal_math
189 && !real_zerop (@1))
a7f24614 190 (with
249700b5 191 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
a7f24614
RB
192 (if (tem)
193 (mult @0 { tem; } ))))
194 (if (cst != COMPLEX_CST)
195 (with { tree inverse = exact_inverse (type, @1); }
196 (if (inverse)
197 (mult @0 { inverse; } )))))))
198
e0ee10ed
RB
199/* Same applies to modulo operations, but fold is inconsistent here
200 and simplifies 0 % x to 0, only preserving literal 0 % 0. */
a7f24614 201(for mod (ceil_mod floor_mod round_mod trunc_mod)
e0ee10ed
RB
202 /* 0 % X is always zero. */
203 (simplify
a7f24614 204 (mod integer_zerop@0 @1)
e0ee10ed
RB
205 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
206 (if (!integer_zerop (@1))
207 @0))
208 /* X % 1 is always zero. */
209 (simplify
a7f24614
RB
210 (mod @0 integer_onep)
211 { build_zero_cst (type); })
212 /* X % -1 is zero. */
213 (simplify
09240451
MG
214 (mod @0 integer_minus_onep@1)
215 (if (!TYPE_UNSIGNED (type))
bc4315fb
MG
216 { build_zero_cst (type); }))
217 /* (X % Y) % Y is just X % Y. */
218 (simplify
219 (mod (mod@2 @0 @1) @1)
220 @2))
a7f24614
RB
221
222/* X % -C is the same as X % C. */
223(simplify
224 (trunc_mod @0 INTEGER_CST@1)
225 (if (TYPE_SIGN (type) == SIGNED
226 && !TREE_OVERFLOW (@1)
227 && wi::neg_p (@1)
228 && !TYPE_OVERFLOW_TRAPS (type)
229 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
230 && !sign_bit_p (@1, @1))
231 (trunc_mod @0 (negate @1))))
e0ee10ed 232
8f0c696a
RB
233/* X % -Y is the same as X % Y. */
234(simplify
235 (trunc_mod @0 (convert? (negate @1)))
236 (if (!TYPE_UNSIGNED (type)
237 && !TYPE_OVERFLOW_TRAPS (type)
238 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
239 (trunc_mod @0 (convert @1))))
240
241/* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
242 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
243 Also optimize A % (C << N) where C is a power of 2,
244 to A & ((C << N) - 1). */
245(match (power_of_two_cand @1)
246 INTEGER_CST@1)
247(match (power_of_two_cand @1)
248 (lshift INTEGER_CST@1 @2))
249(for mod (trunc_mod floor_mod)
250 (simplify
4ab1e111 251 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
8f0c696a
RB
252 (if ((TYPE_UNSIGNED (type)
253 || tree_expr_nonnegative_p (@0))
4ab1e111 254 && tree_nop_conversion_p (type, TREE_TYPE (@3))
8f0c696a 255 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
4ab1e111 256 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
8f0c696a 257
bc4315fb
MG
258/* X % Y is smaller than Y. */
259(for cmp (lt ge)
260 (simplify
261 (cmp (trunc_mod @0 @1) @1)
262 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
263 { constant_boolean_node (cmp == LT_EXPR, type); })))
264(for cmp (gt le)
265 (simplify
266 (cmp @1 (trunc_mod @0 @1))
267 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
268 { constant_boolean_node (cmp == GT_EXPR, type); })))
269
e0ee10ed
RB
270/* x | ~0 -> ~0 */
271(simplify
272 (bit_ior @0 integer_all_onesp@1)
273 @1)
274
275/* x & 0 -> 0 */
276(simplify
277 (bit_and @0 integer_zerop@1)
278 @1)
279
280/* x ^ x -> 0 */
281(simplify
282 (bit_xor @0 @0)
283 { build_zero_cst (type); })
284
36a60e48
RB
285/* Canonicalize X ^ ~0 to ~X. */
286(simplify
287 (bit_xor @0 integer_all_onesp@1)
288 (bit_not @0))
289
290/* x & ~0 -> x */
291(simplify
292 (bit_and @0 integer_all_onesp)
293 (non_lvalue @0))
294
295/* x & x -> x, x | x -> x */
296(for bitop (bit_and bit_ior)
297 (simplify
298 (bitop @0 @0)
299 (non_lvalue @0)))
300
0f770b01
RV
301/* x + (x & 1) -> (x + 1) & ~1 */
302(simplify
303 (plus:c @0 (bit_and@2 @0 integer_onep@1))
6e28e516 304 (if (single_use (@2))
0f770b01
RV
305 (bit_and (plus @0 @1) (bit_not @1))))
306
307/* x & ~(x & y) -> x & ~y */
308/* x | ~(x | y) -> x | ~y */
309(for bitop (bit_and bit_ior)
af563d4b
MG
310 (simplify
311 (bitop:c @0 (bit_not (bitop:c@2 @0 @1)))
6e28e516 312 (if (single_use (@2))
af563d4b
MG
313 (bitop @0 (bit_not @1)))))
314
315/* (x | y) & ~x -> y & ~x */
316/* (x & y) | ~x -> y | ~x */
317(for bitop (bit_and bit_ior)
318 rbitop (bit_ior bit_and)
319 (simplify
320 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
321 (bitop @1 @2)))
0f770b01 322
f13c4673
MP
323/* (x & y) ^ (x | y) -> x ^ y */
324(simplify
2d6f2dce
MP
325 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
326 (bit_xor @0 @1))
f13c4673 327
9ea65ca6
MP
328/* (x ^ y) ^ (x | y) -> x & y */
329(simplify
330 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
331 (bit_and @0 @1))
332
333/* (x & y) + (x ^ y) -> x | y */
334/* (x & y) | (x ^ y) -> x | y */
335/* (x & y) ^ (x ^ y) -> x | y */
336(for op (plus bit_ior bit_xor)
337 (simplify
338 (op:c (bit_and @0 @1) (bit_xor @0 @1))
339 (bit_ior @0 @1)))
340
341/* (x & y) + (x | y) -> x + y */
342(simplify
343 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
344 (plus @0 @1))
345
9737efaf
MP
346/* (x + y) - (x | y) -> x & y */
347(simplify
348 (minus (plus @0 @1) (bit_ior @0 @1))
349 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
350 && !TYPE_SATURATING (type))
351 (bit_and @0 @1)))
352
353/* (x + y) - (x & y) -> x | y */
354(simplify
355 (minus (plus @0 @1) (bit_and @0 @1))
356 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
357 && !TYPE_SATURATING (type))
358 (bit_ior @0 @1)))
359
9ea65ca6
MP
360/* (x | y) - (x ^ y) -> x & y */
361(simplify
362 (minus (bit_ior @0 @1) (bit_xor @0 @1))
363 (bit_and @0 @1))
364
365/* (x | y) - (x & y) -> x ^ y */
366(simplify
367 (minus (bit_ior @0 @1) (bit_and @0 @1))
368 (bit_xor @0 @1))
369
66cc6273
MP
370/* (x | y) & ~(x & y) -> x ^ y */
371(simplify
372 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
373 (bit_xor @0 @1))
374
375/* (x | y) & (~x ^ y) -> x & y */
376(simplify
377 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
378 (bit_and @0 @1))
379
f3582e54
RB
380(simplify
381 (abs (negate @0))
382 (abs @0))
383(simplify
384 (abs tree_expr_nonnegative_p@0)
385 @0)
386
d4573ffe 387
5609420f
RB
388/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
389 when profitable.
390 For bitwise binary operations apply operand conversions to the
391 binary operation result instead of to the operands. This allows
392 to combine successive conversions and bitwise binary operations.
393 We combine the above two cases by using a conditional convert. */
394(for bitop (bit_and bit_ior bit_xor)
395 (simplify
396 (bitop (convert @0) (convert? @1))
397 (if (((TREE_CODE (@1) == INTEGER_CST
398 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
ad6f996c 399 && int_fits_type_p (@1, TREE_TYPE (@0)))
aea417d7 400 || types_match (@0, @1))
ad6f996c
RB
401 /* ??? This transform conflicts with fold-const.c doing
402 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
403 constants (if x has signed type, the sign bit cannot be set
404 in c). This folds extension into the BIT_AND_EXPR.
405 Restrict it to GIMPLE to avoid endless recursions. */
406 && (bitop != BIT_AND_EXPR || GIMPLE)
5609420f
RB
407 && (/* That's a good idea if the conversion widens the operand, thus
408 after hoisting the conversion the operation will be narrower. */
409 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
410 /* It's also a good idea if the conversion is to a non-integer
411 mode. */
412 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
413 /* Or if the precision of TO is not the same as the precision
414 of its mode. */
415 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
416 (convert (bitop @0 (convert @1))))))
417
418/* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
419(for bitop (bit_and bit_ior bit_xor)
420 (simplify
421 (bitop (bit_and:c @0 @1) (bit_and @2 @1))
422 (bit_and (bitop @0 @2) @1)))
423
424/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
425(simplify
426 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
427 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
428
429/* Combine successive equal operations with constants. */
430(for bitop (bit_and bit_ior bit_xor)
431 (simplify
432 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
433 (bitop @0 (bitop @1 @2))))
434
435/* Try simple folding for X op !X, and X op X with the help
436 of the truth_valued_p and logical_inverted_value predicates. */
437(match truth_valued_p
438 @0
439 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
f84e7fd6 440(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
5609420f
RB
441 (match truth_valued_p
442 (op @0 @1)))
443(match truth_valued_p
444 (truth_not @0))
445
446(match (logical_inverted_value @0)
447 (bit_not truth_valued_p@0))
448(match (logical_inverted_value @0)
09240451 449 (eq @0 integer_zerop))
5609420f 450(match (logical_inverted_value @0)
09240451 451 (ne truth_valued_p@0 integer_truep))
5609420f 452(match (logical_inverted_value @0)
09240451 453 (bit_xor truth_valued_p@0 integer_truep))
5609420f
RB
454
455/* X & !X -> 0. */
456(simplify
457 (bit_and:c @0 (logical_inverted_value @0))
458 { build_zero_cst (type); })
459/* X | !X and X ^ !X -> 1, , if X is truth-valued. */
460(for op (bit_ior bit_xor)
461 (simplify
462 (op:c truth_valued_p@0 (logical_inverted_value @0))
f84e7fd6 463 { constant_boolean_node (true, type); }))
5609420f
RB
464
465(for bitop (bit_and bit_ior)
466 rbitop (bit_ior bit_and)
467 /* (x | y) & x -> x */
468 /* (x & y) | x -> x */
469 (simplify
470 (bitop:c (rbitop:c @0 @1) @0)
471 @0)
472 /* (~x | y) & x -> x & y */
473 /* (~x & y) | x -> x | y */
474 (simplify
475 (bitop:c (rbitop:c (bit_not @0) @1) @0)
476 (bitop @0 @1)))
477
478/* If arg1 and arg2 are booleans (or any single bit type)
479 then try to simplify:
480
481 (~X & Y) -> X < Y
482 (X & ~Y) -> Y < X
483 (~X | Y) -> X <= Y
484 (X | ~Y) -> Y <= X
485
486 But only do this if our result feeds into a comparison as
487 this transformation is not always a win, particularly on
488 targets with and-not instructions.
489 -> simplify_bitwise_binary_boolean */
490(simplify
491 (ne (bit_and:c (bit_not @0) @1) integer_zerop)
492 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
493 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
494 (lt @0 @1)))
495(simplify
496 (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
497 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
498 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
499 (le @0 @1)))
500
5609420f
RB
501/* ~~x -> x */
502(simplify
503 (bit_not (bit_not @0))
504 @0)
505
f52baa7b
MP
506/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
507(simplify
508 (bit_ior:c (bit_and:c@3 @0 (bit_not @2)) (bit_and:c@4 @1 @2))
6e28e516 509 (if (single_use (@3) && single_use (@4))
f52baa7b
MP
510 (bit_xor (bit_and (bit_xor @0 @1) @2) @0)))
511
5609420f 512
a499aac5
RB
513/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
514(simplify
e6121733 515 (pointer_plus (pointer_plus@2 @0 @1) @3)
7318e44f
RB
516 (if (single_use (@2)
517 || (TREE_CODE (@1) == INTEGER_CST && TREE_CODE (@3) == INTEGER_CST))
e6121733 518 (pointer_plus @0 (plus @1 @3))))
a499aac5
RB
519
520/* Pattern match
521 tem1 = (long) ptr1;
522 tem2 = (long) ptr2;
523 tem3 = tem2 - tem1;
524 tem4 = (unsigned long) tem3;
525 tem5 = ptr1 + tem4;
526 and produce
527 tem5 = ptr2; */
528(simplify
529 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
530 /* Conditionally look through a sign-changing conversion. */
531 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
532 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
533 || (GENERIC && type == TREE_TYPE (@1))))
534 @1))
535
536/* Pattern match
537 tem = (sizetype) ptr;
538 tem = tem & algn;
539 tem = -tem;
540 ... = ptr p+ tem;
541 and produce the simpler and easier to analyze with respect to alignment
542 ... = ptr & ~algn; */
543(simplify
544 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
545 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
546 (bit_and @0 { algn; })))
547
99e943a2
RB
548/* Try folding difference of addresses. */
549(simplify
550 (minus (convert ADDR_EXPR@0) (convert @1))
551 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
552 (with { HOST_WIDE_INT diff; }
553 (if (ptr_difference_const (@0, @1, &diff))
554 { build_int_cst_type (type, diff); }))))
555(simplify
556 (minus (convert @0) (convert ADDR_EXPR@1))
557 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
558 (with { HOST_WIDE_INT diff; }
559 (if (ptr_difference_const (@0, @1, &diff))
560 { build_int_cst_type (type, diff); }))))
561
562
a499aac5 563
cc7b5acf
RB
564/* We can't reassociate at all for saturating types. */
565(if (!TYPE_SATURATING (type))
566
567 /* Contract negates. */
568 /* A + (-B) -> A - B */
569 (simplify
570 (plus:c (convert1? @0) (convert2? (negate @1)))
571 /* Apply STRIP_NOPS on @0 and the negate. */
572 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
573 && tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 574 && !TYPE_OVERFLOW_SANITIZED (type))
cc7b5acf
RB
575 (minus (convert @0) (convert @1))))
576 /* A - (-B) -> A + B */
577 (simplify
578 (minus (convert1? @0) (convert2? (negate @1)))
579 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
2f68e8bc 580 && tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 581 && !TYPE_OVERFLOW_SANITIZED (type))
cc7b5acf
RB
582 (plus (convert @0) (convert @1))))
583 /* -(-A) -> A */
584 (simplify
585 (negate (convert? (negate @1)))
586 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
6a4f0678 587 && !TYPE_OVERFLOW_SANITIZED (type))
a0f12cf8 588 (convert @1)))
cc7b5acf 589
7318e44f
RB
590 /* We can't reassociate floating-point unless -fassociative-math
591 or fixed-point plus or minus because of saturation to +-Inf. */
592 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
593 && !FIXED_POINT_TYPE_P (type))
cc7b5acf
RB
594
595 /* Match patterns that allow contracting a plus-minus pair
596 irrespective of overflow issues. */
597 /* (A +- B) - A -> +- B */
598 /* (A +- B) -+ B -> A */
599 /* A - (A +- B) -> -+ B */
600 /* A +- (B -+ A) -> +- B */
601 (simplify
602 (minus (plus:c @0 @1) @0)
603 @1)
604 (simplify
605 (minus (minus @0 @1) @0)
606 (negate @1))
607 (simplify
608 (plus:c (minus @0 @1) @1)
609 @0)
610 (simplify
611 (minus @0 (plus:c @0 @1))
612 (negate @1))
613 (simplify
614 (minus @0 (minus @0 @1))
615 @1)
616
617 /* (A +- CST) +- CST -> A + CST */
618 (for outer_op (plus minus)
619 (for inner_op (plus minus)
620 (simplify
621 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
622 /* If the constant operation overflows we cannot do the transform
623 as we would introduce undefined overflow, for example
624 with (a - 1) + INT_MIN. */
625 (with { tree cst = fold_binary (outer_op == inner_op
626 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
627 (if (cst && !TREE_OVERFLOW (cst))
628 (inner_op @0 { cst; } ))))))
629
630 /* (CST - A) +- CST -> CST - A */
631 (for outer_op (plus minus)
632 (simplify
633 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
634 (with { tree cst = fold_binary (outer_op, type, @1, @2); }
635 (if (cst && !TREE_OVERFLOW (cst))
636 (minus { cst; } @0)))))
637
638 /* ~A + A -> -1 */
639 (simplify
640 (plus:c (bit_not @0) @0)
641 (if (!TYPE_OVERFLOW_TRAPS (type))
642 { build_all_ones_cst (type); }))
643
644 /* ~A + 1 -> -A */
645 (simplify
e19740ae
RB
646 (plus (convert? (bit_not @0)) integer_each_onep)
647 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
648 (negate (convert @0))))
649
650 /* -A - 1 -> ~A */
651 (simplify
652 (minus (convert? (negate @0)) integer_each_onep)
653 (if (!TYPE_OVERFLOW_TRAPS (type)
654 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
655 (bit_not (convert @0))))
656
657 /* -1 - A -> ~A */
658 (simplify
659 (minus integer_all_onesp @0)
bc4315fb 660 (bit_not @0))
cc7b5acf
RB
661
662 /* (T)(P + A) - (T)P -> (T) A */
663 (for add (plus pointer_plus)
664 (simplify
665 (minus (convert (add @0 @1))
666 (convert @0))
09240451 667 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
cc7b5acf
RB
668 /* For integer types, if A has a smaller type
669 than T the result depends on the possible
670 overflow in P + A.
671 E.g. T=size_t, A=(unsigned)429497295, P>0.
672 However, if an overflow in P + A would cause
673 undefined behavior, we can assume that there
674 is no overflow. */
675 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
676 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
677 /* For pointer types, if the conversion of A to the
678 final type requires a sign- or zero-extension,
679 then we have to punt - it is not defined which
680 one is correct. */
681 || (POINTER_TYPE_P (TREE_TYPE (@0))
682 && TREE_CODE (@1) == INTEGER_CST
683 && tree_int_cst_sign_bit (@1) == 0))
684 (convert @1))))))
685
686
a7f24614
RB
687/* Simplifications of MIN_EXPR and MAX_EXPR. */
688
689(for minmax (min max)
690 (simplify
691 (minmax @0 @0)
692 @0))
693(simplify
694 (min @0 @1)
695 (if (INTEGRAL_TYPE_P (type)
696 && TYPE_MIN_VALUE (type)
697 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
698 @1))
699(simplify
700 (max @0 @1)
701 (if (INTEGRAL_TYPE_P (type)
702 && TYPE_MAX_VALUE (type)
703 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
704 @1))
705
706
707/* Simplifications of shift and rotates. */
708
709(for rotate (lrotate rrotate)
710 (simplify
711 (rotate integer_all_onesp@0 @1)
712 @0))
713
714/* Optimize -1 >> x for arithmetic right shifts. */
715(simplify
716 (rshift integer_all_onesp@0 @1)
717 (if (!TYPE_UNSIGNED (type)
718 && tree_expr_nonnegative_p (@1))
719 @0))
720
721(for shiftrotate (lrotate rrotate lshift rshift)
722 (simplify
723 (shiftrotate @0 integer_zerop)
724 (non_lvalue @0))
725 (simplify
726 (shiftrotate integer_zerop@0 @1)
727 @0)
728 /* Prefer vector1 << scalar to vector1 << vector2
729 if vector2 is uniform. */
730 (for vec (VECTOR_CST CONSTRUCTOR)
731 (simplify
732 (shiftrotate @0 vec@1)
733 (with { tree tem = uniform_vector_p (@1); }
734 (if (tem)
735 (shiftrotate @0 { tem; }))))))
736
737/* Rewrite an LROTATE_EXPR by a constant into an
738 RROTATE_EXPR by a new constant. */
739(simplify
740 (lrotate @0 INTEGER_CST@1)
741 (rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
742 build_int_cst (TREE_TYPE (@1),
743 element_precision (type)), @1); }))
744
01ada710
MP
745/* ((1 << A) & 1) != 0 -> A == 0
746 ((1 << A) & 1) == 0 -> A != 0 */
747(for cmp (ne eq)
748 icmp (eq ne)
749 (simplify
750 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
751 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
cc7b5acf 752
f2e609c3
MP
753/* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
754 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
755 if CST2 != 0. */
756(for cmp (ne eq)
757 (simplify
758 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
759 (with { int cand = wi::ctz (@2) - wi::ctz (@0); }
760 (if (cand < 0
761 || (!integer_zerop (@2)
762 && wi::ne_p (wi::lshift (@0, cand), @2)))
763 { constant_boolean_node (cmp == NE_EXPR, type); })
764 (if (!integer_zerop (@2)
765 && wi::eq_p (wi::lshift (@0, cand), @2))
766 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); })))))
767
1ffbaa3f
RB
768/* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
769 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
770 if the new mask might be further optimized. */
771(for shift (lshift rshift)
772 (simplify
773 (bit_and (convert?@4 (shift@5 (convert1?@3 @0) INTEGER_CST@1)) INTEGER_CST@2)
774 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
775 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
776 && tree_fits_uhwi_p (@1)
777 && tree_to_uhwi (@1) > 0
778 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
779 (with
780 {
781 unsigned int shiftc = tree_to_uhwi (@1);
782 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
783 unsigned HOST_WIDE_INT newmask, zerobits = 0;
784 tree shift_type = TREE_TYPE (@3);
785 unsigned int prec;
786
787 if (shift == LSHIFT_EXPR)
788 zerobits = ((((unsigned HOST_WIDE_INT) 1) << shiftc) - 1);
789 else if (shift == RSHIFT_EXPR
790 && (TYPE_PRECISION (shift_type)
791 == GET_MODE_PRECISION (TYPE_MODE (shift_type))))
792 {
793 prec = TYPE_PRECISION (TREE_TYPE (@3));
794 tree arg00 = @0;
795 /* See if more bits can be proven as zero because of
796 zero extension. */
797 if (@3 != @0
798 && TYPE_UNSIGNED (TREE_TYPE (@0)))
799 {
800 tree inner_type = TREE_TYPE (@0);
801 if ((TYPE_PRECISION (inner_type)
802 == GET_MODE_PRECISION (TYPE_MODE (inner_type)))
803 && TYPE_PRECISION (inner_type) < prec)
804 {
805 prec = TYPE_PRECISION (inner_type);
806 /* See if we can shorten the right shift. */
807 if (shiftc < prec)
808 shift_type = inner_type;
809 /* Otherwise X >> C1 is all zeros, so we'll optimize
810 it into (X, 0) later on by making sure zerobits
811 is all ones. */
812 }
813 }
814 zerobits = ~(unsigned HOST_WIDE_INT) 0;
815 if (shiftc < prec)
816 {
817 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
818 zerobits <<= prec - shiftc;
819 }
820 /* For arithmetic shift if sign bit could be set, zerobits
821 can contain actually sign bits, so no transformation is
822 possible, unless MASK masks them all away. In that
823 case the shift needs to be converted into logical shift. */
824 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
825 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
826 {
827 if ((mask & zerobits) == 0)
828 shift_type = unsigned_type_for (TREE_TYPE (@3));
829 else
830 zerobits = 0;
831 }
832 }
833 }
834 /* ((X << 16) & 0xff00) is (X, 0). */
835 (if ((mask & zerobits) == mask)
836 { build_int_cst (type, 0); })
837 (with { newmask = mask | zerobits; }
838 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
839 (with
840 {
841 /* Only do the transformation if NEWMASK is some integer
842 mode's mask. */
843 for (prec = BITS_PER_UNIT;
844 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
845 if (newmask == (((unsigned HOST_WIDE_INT) 1) << prec) - 1)
846 break;
847 }
848 (if (prec < HOST_BITS_PER_WIDE_INT
849 || newmask == ~(unsigned HOST_WIDE_INT) 0)
850 (with
851 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
852 (if (!tree_int_cst_equal (newmaskt, @2))
853 (if (shift_type != TREE_TYPE (@3)
854 && single_use (@4) && single_use (@5))
855 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; }))
856 (if (shift_type == TREE_TYPE (@3))
857 (bit_and @4 { newmaskt; }))))))))))))
858
d4573ffe
RB
859/* Simplifications of conversions. */
860
861/* Basic strip-useless-type-conversions / strip_nops. */
f3582e54 862(for cvt (convert view_convert float fix_trunc)
d4573ffe
RB
863 (simplify
864 (cvt @0)
865 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
866 || (GENERIC && type == TREE_TYPE (@0)))
867 @0)))
868
869/* Contract view-conversions. */
870(simplify
871 (view_convert (view_convert @0))
872 (view_convert @0))
873
874/* For integral conversions with the same precision or pointer
875 conversions use a NOP_EXPR instead. */
876(simplify
877 (view_convert @0)
878 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
879 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
880 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
881 (convert @0)))
882
883/* Strip inner integral conversions that do not change precision or size. */
884(simplify
885 (view_convert (convert@0 @1))
886 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
887 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
888 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
889 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
890 (view_convert @1)))
891
892/* Re-association barriers around constants and other re-association
893 barriers can be removed. */
894(simplify
895 (paren CONSTANT_CLASS_P@0)
896 @0)
897(simplify
898 (paren (paren@1 @0))
899 @1)
1e51d0a2
RB
900
901/* Handle cases of two conversions in a row. */
902(for ocvt (convert float fix_trunc)
903 (for icvt (convert float)
904 (simplify
905 (ocvt (icvt@1 @0))
906 (with
907 {
908 tree inside_type = TREE_TYPE (@0);
909 tree inter_type = TREE_TYPE (@1);
910 int inside_int = INTEGRAL_TYPE_P (inside_type);
911 int inside_ptr = POINTER_TYPE_P (inside_type);
912 int inside_float = FLOAT_TYPE_P (inside_type);
09240451 913 int inside_vec = VECTOR_TYPE_P (inside_type);
1e51d0a2
RB
914 unsigned int inside_prec = TYPE_PRECISION (inside_type);
915 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
916 int inter_int = INTEGRAL_TYPE_P (inter_type);
917 int inter_ptr = POINTER_TYPE_P (inter_type);
918 int inter_float = FLOAT_TYPE_P (inter_type);
09240451 919 int inter_vec = VECTOR_TYPE_P (inter_type);
1e51d0a2
RB
920 unsigned int inter_prec = TYPE_PRECISION (inter_type);
921 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
922 int final_int = INTEGRAL_TYPE_P (type);
923 int final_ptr = POINTER_TYPE_P (type);
924 int final_float = FLOAT_TYPE_P (type);
09240451 925 int final_vec = VECTOR_TYPE_P (type);
1e51d0a2
RB
926 unsigned int final_prec = TYPE_PRECISION (type);
927 int final_unsignedp = TYPE_UNSIGNED (type);
928 }
929 /* In addition to the cases of two conversions in a row
930 handled below, if we are converting something to its own
931 type via an object of identical or wider precision, neither
932 conversion is needed. */
933 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
934 || (GENERIC
935 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
936 && (((inter_int || inter_ptr) && final_int)
937 || (inter_float && final_float))
938 && inter_prec >= final_prec)
939 (ocvt @0))
940
941 /* Likewise, if the intermediate and initial types are either both
942 float or both integer, we don't need the middle conversion if the
943 former is wider than the latter and doesn't change the signedness
944 (for integers). Avoid this if the final type is a pointer since
945 then we sometimes need the middle conversion. Likewise if the
946 final type has a precision not equal to the size of its mode. */
d51a6714
JJ
947 (if (((inter_int && inside_int) || (inter_float && inside_float))
948 && (final_int || final_float)
1e51d0a2 949 && inter_prec >= inside_prec
d51a6714
JJ
950 && (inter_float || inter_unsignedp == inside_unsignedp)
951 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
952 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1e51d0a2
RB
953 (ocvt @0))
954
955 /* If we have a sign-extension of a zero-extended value, we can
956 replace that by a single zero-extension. Likewise if the
957 final conversion does not change precision we can drop the
958 intermediate conversion. */
959 (if (inside_int && inter_int && final_int
960 && ((inside_prec < inter_prec && inter_prec < final_prec
961 && inside_unsignedp && !inter_unsignedp)
962 || final_prec == inter_prec))
963 (ocvt @0))
964
965 /* Two conversions in a row are not needed unless:
966 - some conversion is floating-point (overstrict for now), or
967 - some conversion is a vector (overstrict for now), or
968 - the intermediate type is narrower than both initial and
969 final, or
970 - the intermediate type and innermost type differ in signedness,
971 and the outermost type is wider than the intermediate, or
972 - the initial type is a pointer type and the precisions of the
973 intermediate and final types differ, or
974 - the final type is a pointer type and the precisions of the
975 initial and intermediate types differ. */
976 (if (! inside_float && ! inter_float && ! final_float
977 && ! inside_vec && ! inter_vec && ! final_vec
978 && (inter_prec >= inside_prec || inter_prec >= final_prec)
979 && ! (inside_int && inter_int
980 && inter_unsignedp != inside_unsignedp
981 && inter_prec < final_prec)
982 && ((inter_unsignedp && inter_prec > inside_prec)
983 == (final_unsignedp && final_prec > inter_prec))
984 && ! (inside_ptr && inter_prec != final_prec)
985 && ! (final_ptr && inside_prec != inter_prec)
986 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
987 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1f00c1b9
RB
988 (ocvt @0))
989
990 /* A truncation to an unsigned type (a zero-extension) should be
991 canonicalized as bitwise and of a mask. */
992 (if (final_int && inter_int && inside_int
993 && final_prec == inside_prec
994 && final_prec > inter_prec
995 && inter_unsignedp)
996 (convert (bit_and @0 { wide_int_to_tree
997 (inside_type,
998 wi::mask (inter_prec, false,
999 TYPE_PRECISION (inside_type))); })))
1000
1001 /* If we are converting an integer to a floating-point that can
1002 represent it exactly and back to an integer, we can skip the
1003 floating-point conversion. */
5ba3ae6d
RB
1004 (if (GIMPLE /* PR66211 */
1005 && inside_int && inter_float && final_int &&
1f00c1b9
RB
1006 (unsigned) significand_size (TYPE_MODE (inter_type))
1007 >= inside_prec - !inside_unsignedp)
1008 (convert @0))))))
ea2042ba
RB
1009
1010/* If we have a narrowing conversion to an integral type that is fed by a
1011 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
1012 masks off bits outside the final type (and nothing else). */
1013(simplify
1014 (convert (bit_and @0 INTEGER_CST@1))
1015 (if (INTEGRAL_TYPE_P (type)
1016 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1017 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
1018 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
1019 TYPE_PRECISION (type)), 0))
1020 (convert @0)))
a25454ea
RB
1021
1022
1023/* (X /[ex] A) * A -> X. */
1024(simplify
1025 (mult (convert? (exact_div @0 @1)) @1)
1026 /* Look through a sign-changing conversion. */
257b01ba 1027 (convert @0))
eaeba53a 1028
a7f24614
RB
1029/* Canonicalization of binary operations. */
1030
1031/* Convert X + -C into X - C. */
1032(simplify
1033 (plus @0 REAL_CST@1)
1034 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1035 (with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
1036 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
1037 (minus @0 { tem; })))))
1038
1039/* Convert x+x into x*2.0. */
1040(simplify
1041 (plus @0 @0)
1042 (if (SCALAR_FLOAT_TYPE_P (type))
1043 (mult @0 { build_real (type, dconst2); })))
1044
1045(simplify
1046 (minus integer_zerop @1)
1047 (negate @1))
1048
1049/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
1050 ARG0 is zero and X + ARG0 reduces to X, since that would mean
1051 (-ARG1 + ARG0) reduces to -ARG1. */
1052(simplify
1053 (minus real_zerop@0 @1)
1054 (if (fold_real_zero_addition_p (type, @0, 0))
1055 (negate @1)))
1056
1057/* Transform x * -1 into -x. */
1058(simplify
1059 (mult @0 integer_minus_onep)
1060 (negate @0))
eaeba53a
RB
1061
1062/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
1063(simplify
1064 (complex (realpart @0) (imagpart @0))
1065 @0)
1066(simplify
1067 (realpart (complex @0 @1))
1068 @0)
1069(simplify
1070 (imagpart (complex @0 @1))
1071 @1)
83633539
RB
1072
1073
1074/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
1075(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
1076 (simplify
1077 (bswap (bswap @0))
1078 @0)
1079 (simplify
1080 (bswap (bit_not (bswap @0)))
1081 (bit_not @0))
1082 (for bitop (bit_xor bit_ior bit_and)
1083 (simplify
1084 (bswap (bitop:c (bswap @0) @1))
1085 (bitop @0 (bswap @1)))))
96994de0
RB
1086
1087
1088/* Combine COND_EXPRs and VEC_COND_EXPRs. */
1089
1090/* Simplify constant conditions.
1091 Only optimize constant conditions when the selected branch
1092 has the same type as the COND_EXPR. This avoids optimizing
1093 away "c ? x : throw", where the throw has a void type.
1094 Note that we cannot throw away the fold-const.c variant nor
1095 this one as we depend on doing this transform before possibly
1096 A ? B : B -> B triggers and the fold-const.c one can optimize
1097 0 ? A : B to B even if A has side-effects. Something
1098 genmatch cannot handle. */
1099(simplify
1100 (cond INTEGER_CST@0 @1 @2)
1101 (if (integer_zerop (@0)
1102 && (!VOID_TYPE_P (TREE_TYPE (@2))
1103 || VOID_TYPE_P (type)))
1104 @2)
1105 (if (!integer_zerop (@0)
1106 && (!VOID_TYPE_P (TREE_TYPE (@1))
1107 || VOID_TYPE_P (type)))
1108 @1))
1109(simplify
1110 (vec_cond VECTOR_CST@0 @1 @2)
1111 (if (integer_all_onesp (@0))
1112 @1)
1113 (if (integer_zerop (@0))
1114 @2))
1115
1116(for cnd (cond vec_cond)
1117 /* A ? B : (A ? X : C) -> A ? B : C. */
1118 (simplify
1119 (cnd @0 (cnd @0 @1 @2) @3)
1120 (cnd @0 @1 @3))
1121 (simplify
1122 (cnd @0 @1 (cnd @0 @2 @3))
1123 (cnd @0 @1 @3))
1124
1125 /* A ? B : B -> B. */
1126 (simplify
1127 (cnd @0 @1 @1)
09240451 1128 @1)
96994de0 1129
09240451
MG
1130 /* !A ? B : C -> A ? C : B. */
1131 (simplify
1132 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
1133 (cnd @0 @2 @1)))
f84e7fd6 1134
f43d102e
RS
1135/* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C), since vector comparisons
1136 return all-1 or all-0 results. */
1137/* ??? We could instead convert all instances of the vec_cond to negate,
1138 but that isn't necessarily a win on its own. */
1139(simplify
1140 (plus:c @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1141 (if (VECTOR_TYPE_P (type)
1142 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1143 && (TYPE_MODE (TREE_TYPE (type))
1144 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1145 (minus @3 (view_convert @0))))
1146
1147/* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C). */
1148(simplify
1149 (minus @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1150 (if (VECTOR_TYPE_P (type)
1151 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1152 && (TYPE_MODE (TREE_TYPE (type))
1153 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1154 (plus @3 (view_convert @0))))
f84e7fd6
RB
1155
1156/* Simplifications of comparisons. */
1157
1158/* We can simplify a logical negation of a comparison to the
1159 inverted comparison. As we cannot compute an expression
1160 operator using invert_tree_comparison we have to simulate
1161 that with expression code iteration. */
1162(for cmp (tcc_comparison)
1163 icmp (inverted_tcc_comparison)
1164 ncmp (inverted_tcc_comparison_with_nans)
1165 /* Ideally we'd like to combine the following two patterns
1166 and handle some more cases by using
1167 (logical_inverted_value (cmp @0 @1))
1168 here but for that genmatch would need to "inline" that.
1169 For now implement what forward_propagate_comparison did. */
1170 (simplify
1171 (bit_not (cmp @0 @1))
1172 (if (VECTOR_TYPE_P (type)
1173 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
1174 /* Comparison inversion may be impossible for trapping math,
1175 invert_tree_comparison will tell us. But we can't use
1176 a computed operator in the replacement tree thus we have
1177 to play the trick below. */
1178 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 1179 (cmp, HONOR_NANS (@0)); }
f84e7fd6
RB
1180 (if (ic == icmp)
1181 (icmp @0 @1))
1182 (if (ic == ncmp)
1183 (ncmp @0 @1)))))
1184 (simplify
09240451
MG
1185 (bit_xor (cmp @0 @1) integer_truep)
1186 (with { enum tree_code ic = invert_tree_comparison
1b457aa4 1187 (cmp, HONOR_NANS (@0)); }
09240451
MG
1188 (if (ic == icmp)
1189 (icmp @0 @1))
1190 (if (ic == ncmp)
1191 (ncmp @0 @1)))))
e18c1d66 1192
cfdc4f33
MG
1193/* Unordered tests if either argument is a NaN. */
1194(simplify
1195 (bit_ior (unordered @0 @0) (unordered @1 @1))
aea417d7 1196 (if (types_match (@0, @1))
cfdc4f33 1197 (unordered @0 @1)))
257b01ba
MG
1198(simplify
1199 (bit_and (ordered @0 @0) (ordered @1 @1))
1200 (if (types_match (@0, @1))
1201 (ordered @0 @1)))
cfdc4f33
MG
1202(simplify
1203 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
1204 @2)
257b01ba
MG
1205(simplify
1206 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
1207 @2)
e18c1d66 1208
534bd33b
MG
1209/* -A CMP -B -> B CMP A. */
1210(for cmp (tcc_comparison)
1211 scmp (swapped_tcc_comparison)
1212 (simplify
1213 (cmp (negate @0) (negate @1))
1214 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1215 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1216 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1217 (scmp @0 @1)))
1218 (simplify
1219 (cmp (negate @0) CONSTANT_CLASS_P@1)
1220 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1221 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1222 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1223 (with { tree tem = fold_unary (NEGATE_EXPR, TREE_TYPE (@0), @1); }
1224 (if (tem && !TREE_OVERFLOW (tem))
1225 (scmp @0 { tem; }))))))
1226
66e1cacf
RB
1227
1228/* Equality compare simplifications from fold_binary */
1229(for cmp (eq ne)
1230
1231 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
1232 Similarly for NE_EXPR. */
1233 (simplify
1234 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
1235 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1236 && wi::bit_and_not (@1, @2) != 0)
1237 { constant_boolean_node (cmp == NE_EXPR, type); }))
1238
1239 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
1240 (simplify
1241 (cmp (bit_xor @0 @1) integer_zerop)
1242 (cmp @0 @1))
1243
1244 /* (X ^ Y) == Y becomes X == 0.
1245 Likewise (X ^ Y) == X becomes Y == 0. */
1246 (simplify
99e943a2 1247 (cmp:c (bit_xor:c @0 @1) @0)
66e1cacf
RB
1248 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
1249
1250 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
1251 (simplify
1252 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
1253 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
1254 (cmp @0 (bit_xor @1 (convert @2))))))
1255
e18c1d66
RB
1256/* Simplification of math builtins. */
1257
1258(define_operator_list LOG BUILT_IN_LOGF BUILT_IN_LOG BUILT_IN_LOGL)
1259(define_operator_list EXP BUILT_IN_EXPF BUILT_IN_EXP BUILT_IN_EXPL)
1260(define_operator_list LOG2 BUILT_IN_LOG2F BUILT_IN_LOG2 BUILT_IN_LOG2L)
1261(define_operator_list EXP2 BUILT_IN_EXP2F BUILT_IN_EXP2 BUILT_IN_EXP2L)
1262(define_operator_list LOG10 BUILT_IN_LOG10F BUILT_IN_LOG10 BUILT_IN_LOG10L)
1263(define_operator_list EXP10 BUILT_IN_EXP10F BUILT_IN_EXP10 BUILT_IN_EXP10L)
1264(define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
1265(define_operator_list POW10 BUILT_IN_POW10F BUILT_IN_POW10 BUILT_IN_POW10L)
1266(define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
1267(define_operator_list CBRT BUILT_IN_CBRTF BUILT_IN_CBRT BUILT_IN_CBRTL)
1268
1269
1270/* fold_builtin_logarithm */
1271(if (flag_unsafe_math_optimizations)
1272 /* Special case, optimize logN(expN(x)) = x. */
1273 (for logs (LOG LOG2 LOG10)
1274 exps (EXP EXP2 EXP10)
1275 (simplify
1276 (logs (exps @0))
1277 @0))
1278 /* Optimize logN(func()) for various exponential functions. We
1279 want to determine the value "x" and the power "exponent" in
1280 order to transform logN(x**exponent) into exponent*logN(x). */
1281 (for logs (LOG LOG LOG LOG
1282 LOG2 LOG2 LOG2 LOG2
1283 LOG10 LOG10 LOG10 LOG10)
1284 exps (EXP EXP2 EXP10 POW10)
1285 (simplify
1286 (logs (exps @0))
1287 (with {
1288 tree x;
1289 switch (exps)
1290 {
1291 CASE_FLT_FN (BUILT_IN_EXP):
1292 /* Prepare to do logN(exp(exponent) -> exponent*logN(e). */
1293 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1294 dconst_e ()));
1295 break;
1296 CASE_FLT_FN (BUILT_IN_EXP2):
1297 /* Prepare to do logN(exp2(exponent) -> exponent*logN(2). */
1298 x = build_real (type, dconst2);
1299 break;
1300 CASE_FLT_FN (BUILT_IN_EXP10):
1301 CASE_FLT_FN (BUILT_IN_POW10):
1302 /* Prepare to do logN(exp10(exponent) -> exponent*logN(10). */
1303 {
1304 REAL_VALUE_TYPE dconst10;
1305 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
1306 x = build_real (type, dconst10);
1307 }
1308 break;
1309 }
1310 }
1311 (mult (logs { x; }) @0))))
1312 (for logs (LOG LOG
1313 LOG2 LOG2
1314 LOG10 LOG10)
1315 exps (SQRT CBRT)
1316 (simplify
1317 (logs (exps @0))
1318 (with {
1319 tree x;
1320 switch (exps)
1321 {
1322 CASE_FLT_FN (BUILT_IN_SQRT):
1323 /* Prepare to do logN(sqrt(x) -> 0.5*logN(x). */
1324 x = build_real (type, dconsthalf);
1325 break;
1326 CASE_FLT_FN (BUILT_IN_CBRT):
1327 /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x). */
1328 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1329 dconst_third ()));
1330 break;
1331 }
1332 }
1333 (mult { x; } (logs @0)))))
1334 /* logN(pow(x,exponent) -> exponent*logN(x). */
1335 (for logs (LOG LOG2 LOG10)
1336 pows (POW)
1337 (simplify
1338 (logs (pows @0 @1))
1339 (mult @1 (logs @0)))))
1340
be144838
JL
1341/* Narrowing of arithmetic and logical operations.
1342
1343 These are conceptually similar to the transformations performed for
1344 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
1345 term we want to move all that code out of the front-ends into here. */
1346
1347/* If we have a narrowing conversion of an arithmetic operation where
1348 both operands are widening conversions from the same type as the outer
1349 narrowing conversion. Then convert the innermost operands to a suitable
1350 unsigned type (to avoid introducing undefined behaviour), perform the
1351 operation and convert the result to the desired type. */
1352(for op (plus minus)
1353 (simplify
48451e8f 1354 (convert (op@4 (convert@2 @0) (convert@3 @1)))
be144838
JL
1355 (if (INTEGRAL_TYPE_P (type)
1356 /* We check for type compatibility between @0 and @1 below,
1357 so there's no need to check that @1/@3 are integral types. */
1358 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1359 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1360 /* The precision of the type of each operand must match the
1361 precision of the mode of each operand, similarly for the
1362 result. */
1363 && (TYPE_PRECISION (TREE_TYPE (@0))
1364 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1365 && (TYPE_PRECISION (TREE_TYPE (@1))
1366 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1367 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1368 /* The inner conversion must be a widening conversion. */
1369 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
aea417d7
MG
1370 && types_match (@0, @1)
1371 && types_match (@0, type)
48451e8f 1372 && single_use (@4))
be144838
JL
1373 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1374 (convert (op @0 @1)))
1375 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1376 (convert (op (convert:utype @0) (convert:utype @1)))))))
48451e8f
JL
1377
1378/* This is another case of narrowing, specifically when there's an outer
1379 BIT_AND_EXPR which masks off bits outside the type of the innermost
1380 operands. Like the previous case we have to convert the operands
1381 to unsigned types to avoid introducing undefined behaviour for the
1382 arithmetic operation. */
1383(for op (minus plus)
1384 (simplify
1385 (bit_and (op@5 (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
1386 (if (INTEGRAL_TYPE_P (type)
1387 /* We check for type compatibility between @0 and @1 below,
1388 so there's no need to check that @1/@3 are integral types. */
1389 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1390 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1391 /* The precision of the type of each operand must match the
1392 precision of the mode of each operand, similarly for the
1393 result. */
1394 && (TYPE_PRECISION (TREE_TYPE (@0))
1395 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1396 && (TYPE_PRECISION (TREE_TYPE (@1))
1397 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1398 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1399 /* The inner conversion must be a widening conversion. */
1400 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
aea417d7 1401 && types_match (@0, @1)
a60c51fe 1402 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
48451e8f 1403 <= TYPE_PRECISION (TREE_TYPE (@0)))
a60c51fe
JJ
1404 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1405 || tree_int_cst_sgn (@4) >= 0)
48451e8f
JL
1406 && single_use (@5))
1407 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1408 (with { tree ntype = TREE_TYPE (@0); }
1409 (convert (bit_and (op @0 @1) (convert:ntype @4)))))
1410 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1411 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
1412 (convert:utype @4)))))))
1413