]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/mode-switching.c
alias.c: Reorder #include statements and remove duplicates.
[thirdparty/gcc.git] / gcc / mode-switching.c
CommitLineData
610d2478 1/* CPU mode switching
5624e564 2 Copyright (C) 1998-2015 Free Software Foundation, Inc.
610d2478
SB
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
610d2478
SB
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
610d2478
SB
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
c7131fb2 23#include "backend.h"
957060b5 24#include "target.h"
610d2478 25#include "rtl.h"
957060b5 26#include "cfghooks.h"
c7131fb2 27#include "df.h"
957060b5 28#include "tm_p.h"
610d2478 29#include "insn-config.h"
957060b5
AM
30#include "regs.h"
31#include "emit-rtl.h"
610d2478 32#include "recog.h"
957060b5 33#include "flags.h"
60393bbc
AM
34#include "cfgrtl.h"
35#include "cfganal.h"
36#include "lcm.h"
37#include "cfgcleanup.h"
ef330312 38#include "tree-pass.h"
610d2478
SB
39
40/* We want target macros for the mode switching code to be able to refer
41 to instruction attribute values. */
42#include "insn-attr.h"
43
44#ifdef OPTIMIZE_MODE_SWITCHING
45
46/* The algorithm for setting the modes consists of scanning the insn list
47 and finding all the insns which require a specific mode. Each insn gets
48 a unique struct seginfo element. These structures are inserted into a list
49 for each basic block. For each entity, there is an array of bb_info over
cee9defb 50 the flow graph basic blocks (local var 'bb_info'), which contains a list
610d2478
SB
51 of all insns within that basic block, in the order they are encountered.
52
53 For each entity, any basic block WITHOUT any insns requiring a specific
cee9defb
EB
54 mode are given a single entry without a mode (each basic block in the
55 flow graph must have at least one entry in the segment table).
610d2478
SB
56
57 The LCM algorithm is then run over the flow graph to determine where to
cee9defb 58 place the sets to the highest-priority mode with respect to the first
610d2478
SB
59 insn in any one block. Any adjustments required to the transparency
60 vectors are made, then the next iteration starts for the next-lower
61 priority mode, till for each entity all modes are exhausted.
62
cee9defb 63 More details can be found in the code of optimize_mode_switching. */
610d2478
SB
64\f
65/* This structure contains the information for each insn which requires
66 either single or double mode to be set.
67 MODE is the mode this insn must be executed in.
68 INSN_PTR is the insn to be executed (may be the note that marks the
69 beginning of a basic block).
70 BBNUM is the flow graph basic block this insn occurs in.
71 NEXT is the next insn in the same basic block. */
72struct seginfo
73{
74 int mode;
1d455520 75 rtx_insn *insn_ptr;
610d2478
SB
76 int bbnum;
77 struct seginfo *next;
78 HARD_REG_SET regs_live;
79};
80
81struct bb_info
82{
83 struct seginfo *seginfo;
84 int computing;
cbb1e3d9
CB
85 int mode_out;
86 int mode_in;
610d2478
SB
87};
88
1d455520 89static struct seginfo * new_seginfo (int, rtx_insn *, int, HARD_REG_SET);
610d2478 90static void add_seginfo (struct bb_info *, struct seginfo *);
408bed3c 91static void reg_dies (rtx, HARD_REG_SET *);
7bc980e1 92static void reg_becomes_live (rtx, const_rtx, void *);
610d2478 93
cbb1e3d9
CB
94/* Clear ode I from entity J in bitmap B. */
95#define clear_mode_bit(b, j, i) \
96 bitmap_clear_bit (b, (j * max_num_modes) + i)
97
98/* Test mode I from entity J in bitmap B. */
99#define mode_bit_p(b, j, i) \
100 bitmap_bit_p (b, (j * max_num_modes) + i)
101
102/* Set mode I from entity J in bitmal B. */
103#define set_mode_bit(b, j, i) \
104 bitmap_set_bit (b, (j * max_num_modes) + i)
105
106/* Emit modes segments from EDGE_LIST associated with entity E.
107 INFO gives mode availability for each mode. */
108
109static bool
110commit_mode_sets (struct edge_list *edge_list, int e, struct bb_info *info)
111{
112 bool need_commit = false;
113
114 for (int ed = NUM_EDGES (edge_list) - 1; ed >= 0; ed--)
115 {
116 edge eg = INDEX_EDGE (edge_list, ed);
117 int mode;
118
119 if ((mode = (int)(intptr_t)(eg->aux)) != -1)
120 {
121 HARD_REG_SET live_at_edge;
122 basic_block src_bb = eg->src;
123 int cur_mode = info[src_bb->index].mode_out;
f4701c96 124 rtx_insn *mode_set;
cbb1e3d9
CB
125
126 REG_SET_TO_HARD_REG_SET (live_at_edge, df_get_live_out (src_bb));
127
128 rtl_profile_for_edge (eg);
129 start_sequence ();
130
131 targetm.mode_switching.emit (e, mode, cur_mode, live_at_edge);
132
133 mode_set = get_insns ();
134 end_sequence ();
135 default_rtl_profile ();
136
137 /* Do not bother to insert empty sequence. */
f4701c96 138 if (mode_set == NULL)
cbb1e3d9
CB
139 continue;
140
141 /* We should not get an abnormal edge here. */
142 gcc_assert (! (eg->flags & EDGE_ABNORMAL));
143
144 need_commit = true;
145 insert_insn_on_edge (mode_set, eg);
146 }
147 }
148
149 return need_commit;
150}
151
152/* Allocate a new BBINFO structure, initialized with the MODE, INSN,
153 and basic block BB parameters.
473fd99a
JR
154 INSN may not be a NOTE_INSN_BASIC_BLOCK, unless it is an empty
155 basic block; that allows us later to insert instructions in a FIFO-like
156 manner. */
610d2478
SB
157
158static struct seginfo *
1d455520 159new_seginfo (int mode, rtx_insn *insn, int bb, HARD_REG_SET regs_live)
610d2478
SB
160{
161 struct seginfo *ptr;
473fd99a
JR
162
163 gcc_assert (!NOTE_INSN_BASIC_BLOCK_P (insn)
164 || insn == BB_END (NOTE_BASIC_BLOCK (insn)));
5ed6ace5 165 ptr = XNEW (struct seginfo);
610d2478
SB
166 ptr->mode = mode;
167 ptr->insn_ptr = insn;
168 ptr->bbnum = bb;
169 ptr->next = NULL;
170 COPY_HARD_REG_SET (ptr->regs_live, regs_live);
171 return ptr;
172}
173
174/* Add a seginfo element to the end of a list.
175 HEAD is a pointer to the list beginning.
176 INFO is the structure to be linked in. */
177
178static void
179add_seginfo (struct bb_info *head, struct seginfo *info)
180{
181 struct seginfo *ptr;
182
183 if (head->seginfo == NULL)
184 head->seginfo = info;
185 else
186 {
187 ptr = head->seginfo;
188 while (ptr->next != NULL)
189 ptr = ptr->next;
190 ptr->next = info;
191 }
192}
193
610d2478
SB
194/* Record in LIVE that register REG died. */
195
196static void
408bed3c 197reg_dies (rtx reg, HARD_REG_SET *live)
610d2478 198{
09e18274 199 int regno;
610d2478
SB
200
201 if (!REG_P (reg))
202 return;
203
204 regno = REGNO (reg);
205 if (regno < FIRST_PSEUDO_REGISTER)
09e18274 206 remove_from_hard_reg_set (live, GET_MODE (reg), regno);
610d2478
SB
207}
208
209/* Record in LIVE that register REG became live.
210 This is called via note_stores. */
211
212static void
7bc980e1 213reg_becomes_live (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *live)
610d2478 214{
09e18274 215 int regno;
610d2478
SB
216
217 if (GET_CODE (reg) == SUBREG)
218 reg = SUBREG_REG (reg);
219
220 if (!REG_P (reg))
221 return;
222
223 regno = REGNO (reg);
224 if (regno < FIRST_PSEUDO_REGISTER)
09e18274 225 add_to_hard_reg_set ((HARD_REG_SET *) live, GET_MODE (reg), regno);
610d2478
SB
226}
227
610d2478
SB
228/* Split the fallthrough edge to the exit block, so that we can note
229 that there NORMAL_MODE is required. Return the new block if it's
230 inserted before the exit block. Otherwise return null. */
231
232static basic_block
233create_pre_exit (int n_entities, int *entity_map, const int *num_modes)
234{
235 edge eg;
236 edge_iterator ei;
237 basic_block pre_exit;
238
239 /* The only non-call predecessor at this stage is a block with a
240 fallthrough edge; there can be at most one, but there could be
241 none at all, e.g. when exit is called. */
242 pre_exit = 0;
fefa31b5 243 FOR_EACH_EDGE (eg, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
610d2478
SB
244 if (eg->flags & EDGE_FALLTHRU)
245 {
246 basic_block src_bb = eg->src;
1d455520
DM
247 rtx_insn *last_insn;
248 rtx ret_reg;
610d2478
SB
249
250 gcc_assert (!pre_exit);
251 /* If this function returns a value at the end, we have to
252 insert the final mode switch before the return value copy
253 to its hard register. */
fefa31b5 254 if (EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) == 1
610d2478
SB
255 && NONJUMP_INSN_P ((last_insn = BB_END (src_bb)))
256 && GET_CODE (PATTERN (last_insn)) == USE
257 && GET_CODE ((ret_reg = XEXP (PATTERN (last_insn), 0))) == REG)
258 {
259 int ret_start = REGNO (ret_reg);
dc8afb70 260 int nregs = REG_NREGS (ret_reg);
610d2478 261 int ret_end = ret_start + nregs;
c07757e5
UB
262 bool short_block = false;
263 bool multi_reg_return = false;
264 bool forced_late_switch = false;
1d455520 265 rtx_insn *before_return_copy;
610d2478
SB
266
267 do
268 {
1d455520 269 rtx_insn *return_copy = PREV_INSN (last_insn);
610d2478
SB
270 rtx return_copy_pat, copy_reg;
271 int copy_start, copy_num;
272 int j;
273
141a9e06 274 if (NONDEBUG_INSN_P (return_copy))
610d2478 275 {
2bde7ae9
RS
276 /* When using SJLJ exceptions, the call to the
277 unregister function is inserted between the
278 clobber of the return value and the copy.
279 We do not want to split the block before this
280 or any other call; if we have not found the
281 copy yet, the copy must have been deleted. */
282 if (CALL_P (return_copy))
283 {
c07757e5 284 short_block = true;
2bde7ae9
RS
285 break;
286 }
89ab4659
KK
287 return_copy_pat = PATTERN (return_copy);
288 switch (GET_CODE (return_copy_pat))
07288ab0 289 {
89ab4659 290 case USE:
c07757e5
UB
291 /* Skip USEs of multiple return registers.
292 __builtin_apply pattern is also handled here. */
89ab4659 293 if (GET_CODE (XEXP (return_copy_pat, 0)) == REG
82f81f18 294 && (targetm.calls.function_value_regno_p
89ab4659
KK
295 (REGNO (XEXP (return_copy_pat, 0)))))
296 {
c07757e5 297 multi_reg_return = true;
89ab4659
KK
298 last_insn = return_copy;
299 continue;
300 }
301 break;
302
303 case ASM_OPERANDS:
304 /* Skip barrier insns. */
305 if (!MEM_VOLATILE_P (return_copy_pat))
306 break;
307
308 /* Fall through. */
309
310 case ASM_INPUT:
311 case UNSPEC_VOLATILE:
07288ab0
KK
312 last_insn = return_copy;
313 continue;
89ab4659
KK
314
315 default:
316 break;
07288ab0 317 }
89ab4659 318
610d2478
SB
319 /* If the return register is not (in its entirety)
320 likely spilled, the return copy might be
321 partially or completely optimized away. */
322 return_copy_pat = single_set (return_copy);
323 if (!return_copy_pat)
324 {
325 return_copy_pat = PATTERN (return_copy);
326 if (GET_CODE (return_copy_pat) != CLOBBER)
327 break;
6fb5fa3c
DB
328 else if (!optimize)
329 {
330 /* This might be (clobber (reg [<result>]))
331 when not optimizing. Then check if
332 the previous insn is the clobber for
333 the return register. */
334 copy_reg = SET_DEST (return_copy_pat);
335 if (GET_CODE (copy_reg) == REG
336 && !HARD_REGISTER_NUM_P (REGNO (copy_reg)))
337 {
338 if (INSN_P (PREV_INSN (return_copy)))
339 {
340 return_copy = PREV_INSN (return_copy);
341 return_copy_pat = PATTERN (return_copy);
342 if (GET_CODE (return_copy_pat) != CLOBBER)
343 break;
344 }
345 }
346 }
610d2478
SB
347 }
348 copy_reg = SET_DEST (return_copy_pat);
349 if (GET_CODE (copy_reg) == REG)
350 copy_start = REGNO (copy_reg);
351 else if (GET_CODE (copy_reg) == SUBREG
352 && GET_CODE (SUBREG_REG (copy_reg)) == REG)
353 copy_start = REGNO (SUBREG_REG (copy_reg));
354 else
d78e64db
KK
355 {
356 /* When control reaches end of non-void function,
357 there are no return copy insns at all. This
358 avoids an ice on that invalid function. */
359 if (ret_start + nregs == ret_end)
c07757e5 360 short_block = true;
d78e64db
KK
361 break;
362 }
ffbbfaba 363 if (!targetm.calls.function_value_regno_p (copy_start))
ce4a9422
JR
364 copy_num = 0;
365 else
366 copy_num
367 = hard_regno_nregs[copy_start][GET_MODE (copy_reg)];
610d2478
SB
368
369 /* If the return register is not likely spilled, - as is
370 the case for floating point on SH4 - then it might
371 be set by an arithmetic operation that needs a
372 different mode than the exit block. */
373 for (j = n_entities - 1; j >= 0; j--)
374 {
375 int e = entity_map[j];
06b90602
CB
376 int mode =
377 targetm.mode_switching.needed (e, return_copy);
610d2478 378
06b90602
CB
379 if (mode != num_modes[e]
380 && mode != targetm.mode_switching.exit (e))
610d2478
SB
381 break;
382 }
383 if (j >= 0)
384 {
b8435aa9
UB
385 /* __builtin_return emits a sequence of loads to all
386 return registers. One of them might require
387 another mode than MODE_EXIT, even if it is
388 unrelated to the return value, so we want to put
389 the final mode switch after it. */
c07757e5 390 if (multi_reg_return
b8435aa9
UB
391 && targetm.calls.function_value_regno_p
392 (copy_start))
c07757e5 393 forced_late_switch = true;
b8435aa9 394
610d2478
SB
395 /* For the SH4, floating point loads depend on fpscr,
396 thus we might need to put the final mode switch
397 after the return value copy. That is still OK,
398 because a floating point return value does not
399 conflict with address reloads. */
400 if (copy_start >= ret_start
401 && copy_start + copy_num <= ret_end
402 && OBJECT_P (SET_SRC (return_copy_pat)))
c07757e5 403 forced_late_switch = true;
610d2478
SB
404 break;
405 }
ce4a9422
JR
406 if (copy_num == 0)
407 {
408 last_insn = return_copy;
409 continue;
410 }
610d2478
SB
411
412 if (copy_start >= ret_start
413 && copy_start + copy_num <= ret_end)
414 nregs -= copy_num;
c07757e5 415 else if (!multi_reg_return
82f81f18
AS
416 || !targetm.calls.function_value_regno_p
417 (copy_start))
610d2478
SB
418 break;
419 last_insn = return_copy;
420 }
421 /* ??? Exception handling can lead to the return value
422 copy being already separated from the return value use,
423 as in unwind-dw2.c .
424 Similarly, conditionally returning without a value,
425 and conditionally using builtin_return can lead to an
426 isolated use. */
427 if (return_copy == BB_HEAD (src_bb))
428 {
c07757e5 429 short_block = true;
610d2478
SB
430 break;
431 }
432 last_insn = return_copy;
433 }
434 while (nregs);
b8698a0f 435
610d2478
SB
436 /* If we didn't see a full return value copy, verify that there
437 is a plausible reason for this. If some, but not all of the
438 return register is likely spilled, we can expect that there
439 is a copy for the likely spilled part. */
440 gcc_assert (!nregs
441 || forced_late_switch
442 || short_block
07b8f0a8 443 || !(targetm.class_likely_spilled_p
610d2478
SB
444 (REGNO_REG_CLASS (ret_start)))
445 || (nregs
446 != hard_regno_nregs[ret_start][GET_MODE (ret_reg)])
447 /* For multi-hard-register floating point
448 values, sometimes the likely-spilled part
449 is ordinarily copied first, then the other
450 part is set with an arithmetic operation.
451 This doesn't actually cause reload
452 failures, so let it pass. */
453 || (GET_MODE_CLASS (GET_MODE (ret_reg)) != MODE_INT
454 && nregs != 1));
b8698a0f 455
bba33211 456 if (!NOTE_INSN_BASIC_BLOCK_P (last_insn))
610d2478
SB
457 {
458 before_return_copy
459 = emit_note_before (NOTE_INSN_DELETED, last_insn);
460 /* Instructions preceding LAST_INSN in the same block might
461 require a different mode than MODE_EXIT, so if we might
462 have such instructions, keep them in a separate block
463 from pre_exit. */
bba33211
JR
464 src_bb = split_block (src_bb,
465 PREV_INSN (before_return_copy))->dest;
610d2478
SB
466 }
467 else
468 before_return_copy = last_insn;
469 pre_exit = split_block (src_bb, before_return_copy)->src;
470 }
471 else
472 {
473 pre_exit = split_edge (eg);
610d2478
SB
474 }
475 }
476
477 return pre_exit;
478}
610d2478
SB
479
480/* Find all insns that need a particular mode setting, and insert the
481 necessary mode switches. Return true if we did work. */
482
7399bcb0 483static int
10d22567 484optimize_mode_switching (void)
610d2478 485{
610d2478
SB
486 int e;
487 basic_block bb;
cbb1e3d9 488 bool need_commit = false;
610d2478
SB
489 static const int num_modes[] = NUM_MODES_FOR_MODE_SWITCHING;
490#define N_ENTITIES ARRAY_SIZE (num_modes)
491 int entity_map[N_ENTITIES];
492 struct bb_info *bb_info[N_ENTITIES];
493 int i, j;
cbb1e3d9 494 int n_entities = 0;
610d2478 495 int max_num_modes = 0;
073a8998 496 bool emitted ATTRIBUTE_UNUSED = false;
06b90602
CB
497 basic_block post_entry = 0;
498 basic_block pre_exit = 0;
cbb1e3d9
CB
499 struct edge_list *edge_list = 0;
500
501 /* These bitmaps are used for the LCM algorithm. */
502 sbitmap *kill, *del, *insert, *antic, *transp, *comp;
503 sbitmap *avin, *avout;
610d2478 504
cbb1e3d9 505 for (e = N_ENTITIES - 1; e >= 0; e--)
610d2478
SB
506 if (OPTIMIZE_MODE_SWITCHING (e))
507 {
508 int entry_exit_extra = 0;
509
510 /* Create the list of segments within each basic block.
511 If NORMAL_MODE is defined, allow for two extra
512 blocks split from the entry and exit block. */
06b90602
CB
513 if (targetm.mode_switching.entry && targetm.mode_switching.exit)
514 entry_exit_extra = 3;
515
610d2478 516 bb_info[n_entities]
8b1c6fd7
DM
517 = XCNEWVEC (struct bb_info,
518 last_basic_block_for_fn (cfun) + entry_exit_extra);
610d2478
SB
519 entity_map[n_entities++] = e;
520 if (num_modes[e] > max_num_modes)
521 max_num_modes = num_modes[e];
522 }
523
524 if (! n_entities)
525 return 0;
526
cbb1e3d9 527 /* Make sure if MODE_ENTRY is defined MODE_EXIT is defined. */
06b90602 528 gcc_assert ((targetm.mode_switching.entry && targetm.mode_switching.exit)
cbb1e3d9
CB
529 || (!targetm.mode_switching.entry
530 && !targetm.mode_switching.exit));
06b90602
CB
531
532 if (targetm.mode_switching.entry && targetm.mode_switching.exit)
533 {
534 /* Split the edge from the entry block, so that we can note that
535 there NORMAL_MODE is supplied. */
536 post_entry = split_edge (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
537 pre_exit = create_pre_exit (n_entities, entity_map, num_modes);
538 }
610d2478 539
6fb5fa3c
DB
540 df_analyze ();
541
610d2478 542 /* Create the bitmap vectors. */
cbb1e3d9
CB
543 antic = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
544 n_entities * max_num_modes);
545 transp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
546 n_entities * max_num_modes);
547 comp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
548 n_entities * max_num_modes);
549 avin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
550 n_entities * max_num_modes);
551 avout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
552 n_entities * max_num_modes);
553 kill = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
554 n_entities * max_num_modes);
610d2478 555
8b1c6fd7 556 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
cbb1e3d9
CB
557 bitmap_vector_clear (antic, last_basic_block_for_fn (cfun));
558 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
610d2478
SB
559
560 for (j = n_entities - 1; j >= 0; j--)
561 {
562 int e = entity_map[j];
563 int no_mode = num_modes[e];
564 struct bb_info *info = bb_info[j];
1d455520 565 rtx_insn *insn;
610d2478
SB
566
567 /* Determine what the first use (if any) need for a mode of entity E is.
568 This will be the mode that is anticipatable for this block.
569 Also compute the initial transparency settings. */
11cd3bed 570 FOR_EACH_BB_FN (bb, cfun)
610d2478
SB
571 {
572 struct seginfo *ptr;
573 int last_mode = no_mode;
a44250f4 574 bool any_set_required = false;
610d2478
SB
575 HARD_REG_SET live_now;
576
cbb1e3d9
CB
577 info[bb->index].mode_out = info[bb->index].mode_in = no_mode;
578
6fb5fa3c 579 REG_SET_TO_HARD_REG_SET (live_now, df_get_live_in (bb));
24c2fde2
RH
580
581 /* Pretend the mode is clobbered across abnormal edges. */
582 {
583 edge_iterator ei;
cbb1e3d9
CB
584 edge eg;
585 FOR_EACH_EDGE (eg, ei, bb->preds)
586 if (eg->flags & EDGE_COMPLEX)
24c2fde2 587 break;
cbb1e3d9 588 if (eg)
650a59ef 589 {
1d455520 590 rtx_insn *ins_pos = BB_HEAD (bb);
473fd99a
JR
591 if (LABEL_P (ins_pos))
592 ins_pos = NEXT_INSN (ins_pos);
593 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (ins_pos));
594 if (ins_pos != BB_END (bb))
595 ins_pos = NEXT_INSN (ins_pos);
596 ptr = new_seginfo (no_mode, ins_pos, bb->index, live_now);
650a59ef 597 add_seginfo (info + bb->index, ptr);
cbb1e3d9
CB
598 for (i = 0; i < no_mode; i++)
599 clear_mode_bit (transp[bb->index], j, i);
650a59ef 600 }
24c2fde2
RH
601 }
602
0f346928 603 FOR_BB_INSNS (bb, insn)
610d2478
SB
604 {
605 if (INSN_P (insn))
606 {
06b90602 607 int mode = targetm.mode_switching.needed (e, insn);
610d2478
SB
608 rtx link;
609
610 if (mode != no_mode && mode != last_mode)
611 {
a44250f4 612 any_set_required = true;
610d2478
SB
613 last_mode = mode;
614 ptr = new_seginfo (mode, insn, bb->index, live_now);
615 add_seginfo (info + bb->index, ptr);
cbb1e3d9
CB
616 for (i = 0; i < no_mode; i++)
617 clear_mode_bit (transp[bb->index], j, i);
610d2478 618 }
06b90602
CB
619
620 if (targetm.mode_switching.after)
cbb1e3d9
CB
621 last_mode = targetm.mode_switching.after (e, last_mode,
622 insn);
06b90602 623
610d2478
SB
624 /* Update LIVE_NOW. */
625 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
626 if (REG_NOTE_KIND (link) == REG_DEAD)
408bed3c 627 reg_dies (XEXP (link, 0), &live_now);
610d2478
SB
628
629 note_stores (PATTERN (insn), reg_becomes_live, &live_now);
630 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
631 if (REG_NOTE_KIND (link) == REG_UNUSED)
408bed3c 632 reg_dies (XEXP (link, 0), &live_now);
610d2478
SB
633 }
634 }
635
636 info[bb->index].computing = last_mode;
a44250f4 637 /* Check for blocks without ANY mode requirements.
611a4849
UB
638 N.B. because of MODE_AFTER, last_mode might still
639 be different from no_mode, in which case we need to
640 mark the block as nontransparent. */
a44250f4 641 if (!any_set_required)
610d2478
SB
642 {
643 ptr = new_seginfo (no_mode, BB_END (bb), bb->index, live_now);
644 add_seginfo (info + bb->index, ptr);
611a4849 645 if (last_mode != no_mode)
cbb1e3d9
CB
646 for (i = 0; i < no_mode; i++)
647 clear_mode_bit (transp[bb->index], j, i);
610d2478
SB
648 }
649 }
06b90602
CB
650 if (targetm.mode_switching.entry && targetm.mode_switching.exit)
651 {
652 int mode = targetm.mode_switching.entry (e);
610d2478 653
cbb1e3d9
CB
654 info[post_entry->index].mode_out =
655 info[post_entry->index].mode_in = no_mode;
656 if (pre_exit)
657 {
658 info[pre_exit->index].mode_out =
659 info[pre_exit->index].mode_in = no_mode;
660 }
661
06b90602
CB
662 if (mode != no_mode)
663 {
664 bb = post_entry;
665
666 /* By always making this nontransparent, we save
667 an extra check in make_preds_opaque. We also
668 need this to avoid confusing pre_edge_lcm when
669 antic is cleared but transp and comp are set. */
cbb1e3d9
CB
670 for (i = 0; i < no_mode; i++)
671 clear_mode_bit (transp[bb->index], j, i);
06b90602
CB
672
673 /* Insert a fake computing definition of MODE into entry
674 blocks which compute no mode. This represents the mode on
675 entry. */
676 info[bb->index].computing = mode;
677
678 if (pre_exit)
679 info[pre_exit->index].seginfo->mode =
680 targetm.mode_switching.exit (e);
681 }
682 }
610d2478
SB
683
684 /* Set the anticipatable and computing arrays. */
cbb1e3d9 685 for (i = 0; i < no_mode; i++)
610d2478 686 {
cbb1e3d9 687 int m = targetm.mode_switching.priority (entity_map[j], i);
610d2478 688
11cd3bed 689 FOR_EACH_BB_FN (bb, cfun)
610d2478
SB
690 {
691 if (info[bb->index].seginfo->mode == m)
cbb1e3d9 692 set_mode_bit (antic[bb->index], j, m);
610d2478
SB
693
694 if (info[bb->index].computing == m)
cbb1e3d9 695 set_mode_bit (comp[bb->index], j, m);
610d2478
SB
696 }
697 }
cbb1e3d9 698 }
610d2478 699
cbb1e3d9
CB
700 /* Calculate the optimal locations for the
701 placement mode switches to modes with priority I. */
610d2478 702
cbb1e3d9
CB
703 FOR_EACH_BB_FN (bb, cfun)
704 bitmap_not (kill[bb->index], transp[bb->index]);
610d2478 705
cbb1e3d9
CB
706 edge_list = pre_edge_lcm_avs (n_entities * max_num_modes, transp, comp, antic,
707 kill, avin, avout, &insert, &del);
610d2478 708
cbb1e3d9
CB
709 for (j = n_entities - 1; j >= 0; j--)
710 {
711 int no_mode = num_modes[entity_map[j]];
610d2478 712
cbb1e3d9 713 /* Insert all mode sets that have been inserted by lcm. */
610d2478 714
cbb1e3d9
CB
715 for (int ed = NUM_EDGES (edge_list) - 1; ed >= 0; ed--)
716 {
717 edge eg = INDEX_EDGE (edge_list, ed);
610d2478 718
cbb1e3d9 719 eg->aux = (void *)(intptr_t)-1;
610d2478 720
cbb1e3d9
CB
721 for (i = 0; i < no_mode; i++)
722 {
723 int m = targetm.mode_switching.priority (entity_map[j], i);
724 if (mode_bit_p (insert[ed], j, m))
725 {
726 eg->aux = (void *)(intptr_t)m;
727 break;
728 }
729 }
730 }
610d2478 731
cbb1e3d9
CB
732 FOR_EACH_BB_FN (bb, cfun)
733 {
734 struct bb_info *info = bb_info[j];
735 int last_mode = no_mode;
650a59ef 736
cbb1e3d9
CB
737 /* intialize mode in availability for bb. */
738 for (i = 0; i < no_mode; i++)
739 if (mode_bit_p (avout[bb->index], j, i))
740 {
741 if (last_mode == no_mode)
742 last_mode = i;
743 if (last_mode != i)
744 {
745 last_mode = no_mode;
746 break;
747 }
748 }
749 info[bb->index].mode_out = last_mode;
610d2478 750
cbb1e3d9
CB
751 /* intialize mode out availability for bb. */
752 last_mode = no_mode;
753 for (i = 0; i < no_mode; i++)
754 if (mode_bit_p (avin[bb->index], j, i))
610d2478 755 {
cbb1e3d9
CB
756 if (last_mode == no_mode)
757 last_mode = i;
758 if (last_mode != i)
759 {
760 last_mode = no_mode;
761 break;
762 }
610d2478 763 }
cbb1e3d9
CB
764 info[bb->index].mode_in = last_mode;
765
766 for (i = 0; i < no_mode; i++)
767 if (mode_bit_p (del[bb->index], j, i))
768 info[bb->index].seginfo->mode = no_mode;
610d2478
SB
769 }
770
cbb1e3d9 771 /* Now output the remaining mode sets in all the segments. */
610d2478 772
cbb1e3d9
CB
773 /* In case there was no mode inserted. the mode information on the edge
774 might not be complete.
775 Update mode info on edges and commit pending mode sets. */
776 need_commit |= commit_mode_sets (edge_list, entity_map[j], bb_info[j]);
777
778 /* Reset modes for next entity. */
779 clear_aux_for_edges ();
610d2478 780
cbb1e3d9 781 FOR_EACH_BB_FN (bb, cfun)
610d2478
SB
782 {
783 struct seginfo *ptr, *next;
cbb1e3d9
CB
784 int cur_mode = bb_info[j][bb->index].mode_in;
785
610d2478
SB
786 for (ptr = bb_info[j][bb->index].seginfo; ptr; ptr = next)
787 {
788 next = ptr->next;
789 if (ptr->mode != no_mode)
790 {
1d455520 791 rtx_insn *mode_set;
610d2478 792
5f28524a 793 rtl_profile_for_bb (bb);
610d2478 794 start_sequence ();
cbb1e3d9
CB
795
796 targetm.mode_switching.emit (entity_map[j], ptr->mode,
797 cur_mode, ptr->regs_live);
610d2478
SB
798 mode_set = get_insns ();
799 end_sequence ();
800
cbb1e3d9
CB
801 /* modes kill each other inside a basic block. */
802 cur_mode = ptr->mode;
803
610d2478
SB
804 /* Insert MODE_SET only if it is nonempty. */
805 if (mode_set != NULL_RTX)
806 {
073a8998 807 emitted = true;
a38e7aa5 808 if (NOTE_INSN_BASIC_BLOCK_P (ptr->insn_ptr))
473fd99a
JR
809 /* We need to emit the insns in a FIFO-like manner,
810 i.e. the first to be emitted at our insertion
811 point ends up first in the instruction steam.
812 Because we made sure that NOTE_INSN_BASIC_BLOCK is
813 only used for initially empty basic blocks, we
74145685 814 can achieve this by appending at the end of
473fd99a
JR
815 the block. */
816 emit_insn_after
817 (mode_set, BB_END (NOTE_BASIC_BLOCK (ptr->insn_ptr)));
610d2478
SB
818 else
819 emit_insn_before (mode_set, ptr->insn_ptr);
820 }
5f28524a
JH
821
822 default_rtl_profile ();
610d2478
SB
823 }
824
825 free (ptr);
826 }
827 }
828
829 free (bb_info[j]);
830 }
831
cbb1e3d9
CB
832 free_edge_list (edge_list);
833
610d2478 834 /* Finished. Free up all the things we've allocated. */
cbb1e3d9
CB
835 sbitmap_vector_free (del);
836 sbitmap_vector_free (insert);
610d2478
SB
837 sbitmap_vector_free (kill);
838 sbitmap_vector_free (antic);
839 sbitmap_vector_free (transp);
840 sbitmap_vector_free (comp);
cbb1e3d9
CB
841 sbitmap_vector_free (avin);
842 sbitmap_vector_free (avout);
610d2478
SB
843
844 if (need_commit)
845 commit_edge_insertions ();
846
06b90602
CB
847 if (targetm.mode_switching.entry && targetm.mode_switching.exit)
848 cleanup_cfg (CLEANUP_NO_INSN_DEL);
849 else if (!need_commit && !emitted)
610d2478 850 return 0;
610d2478 851
610d2478
SB
852 return 1;
853}
ef330312 854
610d2478 855#endif /* OPTIMIZE_MODE_SWITCHING */
ef330312 856\f
17795822
TS
857namespace {
858
859const pass_data pass_data_mode_switching =
ef330312 860{
27a4cd48
DM
861 RTL_PASS, /* type */
862 "mode_sw", /* name */
863 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
864 TV_MODE_SWITCH, /* tv_id */
865 0, /* properties_required */
866 0, /* properties_provided */
867 0, /* properties_destroyed */
868 0, /* todo_flags_start */
3bea341f 869 TODO_df_finish, /* todo_flags_finish */
ef330312 870};
27a4cd48 871
17795822 872class pass_mode_switching : public rtl_opt_pass
27a4cd48
DM
873{
874public:
c3284718
RS
875 pass_mode_switching (gcc::context *ctxt)
876 : rtl_opt_pass (pass_data_mode_switching, ctxt)
27a4cd48
DM
877 {}
878
879 /* opt_pass methods: */
05555c4a
DM
880 /* The epiphany backend creates a second instance of this pass, so we need
881 a clone method. */
65d3284b 882 opt_pass * clone () { return new pass_mode_switching (m_ctxt); }
1a3d085c
TS
883 virtual bool gate (function *)
884 {
885#ifdef OPTIMIZE_MODE_SWITCHING
886 return true;
887#else
888 return false;
889#endif
890 }
891
be55bfe6
TS
892 virtual unsigned int execute (function *)
893 {
894#ifdef OPTIMIZE_MODE_SWITCHING
895 optimize_mode_switching ();
896#endif /* OPTIMIZE_MODE_SWITCHING */
897 return 0;
898 }
27a4cd48
DM
899
900}; // class pass_mode_switching
901
17795822
TS
902} // anon namespace
903
27a4cd48
DM
904rtl_opt_pass *
905make_pass_mode_switching (gcc::context *ctxt)
906{
907 return new pass_mode_switching (ctxt);
908}