]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/modulo-sched.c
Put the CL into the right dir.
[thirdparty/gcc.git] / gcc / modulo-sched.c
CommitLineData
5b6269ed 1/* Swing Modulo Scheduling implementation.
fbd26352 2 Copyright (C) 2004-2019 Free Software Foundation, Inc.
5b6269ed 3 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
8c4c00c1 9Software Foundation; either version 3, or (at your option) any later
5b6269ed 10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
8c4c00c1 18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
5b6269ed 20
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
9ef16211 25#include "backend.h"
7c29e30e 26#include "target.h"
5b6269ed 27#include "rtl.h"
7c29e30e 28#include "tree.h"
29#include "cfghooks.h"
9ef16211 30#include "df.h"
ad7b10a2 31#include "memmodel.h"
7c29e30e 32#include "optabs.h"
5b6269ed 33#include "regs.h"
7c29e30e 34#include "emit-rtl.h"
7c29e30e 35#include "gcov-io.h"
886c1262 36#include "profile.h"
5b6269ed 37#include "insn-attr.h"
94ea8568 38#include "cfgrtl.h"
5b6269ed 39#include "sched-int.h"
5b6269ed 40#include "cfgloop.h"
5b6269ed 41#include "expr.h"
42#include "params.h"
5b6269ed 43#include "ddg.h"
77fce4cd 44#include "tree-pass.h"
76aaf9f0 45#include "dbgcnt.h"
f7b51129 46#include "loop-unroll.h"
5b6269ed 47
07cba988 48#ifdef INSN_SCHEDULING
5b6269ed 49
50/* This file contains the implementation of the Swing Modulo Scheduler,
51 described in the following references:
52 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
53 Lifetime--sensitive modulo scheduling in a production environment.
54 IEEE Trans. on Comps., 50(3), March 2001
55 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
56 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
365db11e 57 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
5b6269ed 58
59 The basic structure is:
60 1. Build a data-dependence graph (DDG) for each loop.
61 2. Use the DDG to order the insns of a loop (not in topological order
62 necessarily, but rather) trying to place each insn after all its
63 predecessors _or_ after all its successors.
64 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
65 4. Use the ordering to perform list-scheduling of the loop:
66 1. Set II = MII. We will try to schedule the loop within II cycles.
67 2. Try to schedule the insns one by one according to the ordering.
68 For each insn compute an interval of cycles by considering already-
69 scheduled preds and succs (and associated latencies); try to place
70 the insn in the cycles of this window checking for potential
71 resource conflicts (using the DFA interface).
72 Note: this is different from the cycle-scheduling of schedule_insns;
73 here the insns are not scheduled monotonically top-down (nor bottom-
74 up).
75 3. If failed in scheduling all insns - bump II++ and try again, unless
0870fd6e 76 II reaches an upper bound MaxII, in which case report failure.
5b6269ed 77 5. If we succeeded in scheduling the loop within II cycles, we now
78 generate prolog and epilog, decrease the counter of the loop, and
79 perform modulo variable expansion for live ranges that span more than
80 II cycles (i.e. use register copies to prevent a def from overwriting
81 itself before reaching the use).
5b6269ed 82
abbfd803 83 SMS works with countable loops (1) whose control part can be easily
84 decoupled from the rest of the loop and (2) whose loop count can
85 be easily adjusted. This is because we peel a constant number of
86 iterations into a prologue and epilogue for which we want to avoid
87 emitting the control part, and a kernel which is to iterate that
88 constant number of iterations less than the original loop. So the
89 control part should be a set of insns clearly identified and having
90 its own iv, not otherwise used in the loop (at-least for now), which
7bfc9b7c 91 initializes a register before the loop to the number of iterations.
92 Currently SMS relies on the do-loop pattern to recognize such loops,
93 where (1) the control part comprises of all insns defining and/or
94 using a certain 'count' register and (2) the loop count can be
48e1416a 95 adjusted by modifying this register prior to the loop.
7bfc9b7c 96 TODO: Rely on cfgloop analysis instead. */
5b6269ed 97\f
98/* This page defines partial-schedule structures and functions for
99 modulo scheduling. */
100
101typedef struct partial_schedule *partial_schedule_ptr;
102typedef struct ps_insn *ps_insn_ptr;
103
104/* The minimum (absolute) cycle that a node of ps was scheduled in. */
105#define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
106
107/* The maximum (absolute) cycle that a node of ps was scheduled in. */
108#define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
109
110/* Perform signed modulo, always returning a non-negative value. */
111#define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
112
113/* The number of different iterations the nodes in ps span, assuming
114 the stage boundaries are placed efficiently. */
6f7f081f 115#define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
116 + 1 + ii - 1) / ii)
117/* The stage count of ps. */
118#define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
5b6269ed 119
5b6269ed 120/* A single instruction in the partial schedule. */
121struct ps_insn
122{
0b79ae60 123 /* Identifies the instruction to be scheduled. Values smaller than
124 the ddg's num_nodes refer directly to ddg nodes. A value of
125 X - num_nodes refers to register move X. */
7282ef12 126 int id;
5b6269ed 127
128 /* The (absolute) cycle in which the PS instruction is scheduled.
129 Same as SCHED_TIME (node). */
130 int cycle;
131
132 /* The next/prev PS_INSN in the same row. */
133 ps_insn_ptr next_in_row,
134 prev_in_row;
135
5b6269ed 136};
137
0b79ae60 138/* Information about a register move that has been added to a partial
139 schedule. */
140struct ps_reg_move_info
141{
142 /* The source of the move is defined by the ps_insn with id DEF.
143 The destination is used by the ps_insns with the ids in USES. */
144 int def;
145 sbitmap uses;
146
147 /* The original form of USES' instructions used OLD_REG, but they
148 should now use NEW_REG. */
149 rtx old_reg;
150 rtx new_reg;
151
e9df34d5 152 /* The number of consecutive stages that the move occupies. */
153 int num_consecutive_stages;
154
0b79ae60 155 /* An instruction that sets NEW_REG to the correct value. The first
156 move associated with DEF will have an rhs of OLD_REG; later moves
157 use the result of the previous move. */
bc69df91 158 rtx_insn *insn;
0b79ae60 159};
160
5b6269ed 161/* Holds the partial schedule as an array of II rows. Each entry of the
162 array points to a linked list of PS_INSNs, which represents the
163 instructions that are scheduled for that row. */
164struct partial_schedule
165{
166 int ii; /* Number of rows in the partial schedule. */
167 int history; /* Threshold for conflict checking using DFA. */
168
169 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
170 ps_insn_ptr *rows;
171
0b79ae60 172 /* All the moves added for this partial schedule. Index X has
173 a ps_insn id of X + g->num_nodes. */
f1f41a6c 174 vec<ps_reg_move_info> reg_moves;
0b79ae60 175
4815ed0c 176 /* rows_length[i] holds the number of instructions in the row.
177 It is used only (as an optimization) to back off quickly from
178 trying to schedule a node in a full row; that is, to avoid running
179 through futile DFA state transitions. */
180 int *rows_length;
181
5b6269ed 182 /* The earliest absolute cycle of an insn in the partial schedule. */
183 int min_cycle;
184
185 /* The latest absolute cycle of an insn in the partial schedule. */
186 int max_cycle;
187
188 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
6f7f081f 189
190 int stage_count; /* The stage count of the partial schedule. */
5b6269ed 191};
192
48e1416a 193
1bed606a 194static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
195static void free_partial_schedule (partial_schedule_ptr);
196static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
5b6269ed 197void print_partial_schedule (partial_schedule_ptr, FILE *);
76387907 198static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
daca8c86 199static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
7282ef12 200 int, int, sbitmap, sbitmap);
daca8c86 201static void rotate_partial_schedule (partial_schedule_ptr, int);
b6a75366 202void set_row_column_for_ps (partial_schedule_ptr);
76387907 203static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
204static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
b6a75366 205
5b6269ed 206\f
365db11e 207/* This page defines constants and structures for the modulo scheduling
5b6269ed 208 driver. */
209
c0fb94bd 210static int sms_order_nodes (ddg_ptr, int, int *, int *);
5b6269ed 211static void set_node_sched_params (ddg_ptr);
3f5be5f4 212static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
4cd001d5 213static void permute_partial_schedule (partial_schedule_ptr, rtx_insn *);
2e966e2a 214static void generate_prolog_epilog (partial_schedule_ptr, class loop *,
7bfc9b7c 215 rtx, rtx);
a5ea7ace 216static int calculate_stage_count (partial_schedule_ptr, int);
217static void calculate_must_precede_follow (ddg_node_ptr, int, int,
218 int, int, sbitmap, sbitmap, sbitmap);
219static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
220 sbitmap, int, int *, int *, int *);
7282ef12 221static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
222 sbitmap, int *, sbitmap, sbitmap);
9bf2b489 223static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
a5ea7ace 224
7282ef12 225#define NODE_ASAP(node) ((node)->aux.count)
226
f1f41a6c 227#define SCHED_PARAMS(x) (&node_sched_param_vec[x])
7282ef12 228#define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
7282ef12 229#define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
230#define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
231#define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
5b6269ed 232
233/* The scheduling parameters held for each node. */
234typedef struct node_sched_params
235{
7282ef12 236 int time; /* The absolute scheduling cycle. */
5b6269ed 237
5b6269ed 238 int row; /* Holds time % ii. */
239 int stage; /* Holds time / ii. */
240
241 /* The column of a node inside the ps. If nodes u, v are on the same row,
365db11e 242 u will precede v if column (u) < column (v). */
5b6269ed 243 int column;
244} *node_sched_params_ptr;
5b6269ed 245\f
246/* The following three functions are copied from the current scheduler
2c763ed4 247 code in order to use sched_analyze() for computing the dependencies.
5b6269ed 248 They are used when initializing the sched_info structure. */
249static const char *
b24ef467 250sms_print_insn (const rtx_insn *insn, int aligned ATTRIBUTE_UNUSED)
5b6269ed 251{
252 static char tmp[80];
253
254 sprintf (tmp, "i%4d", INSN_UID (insn));
255 return tmp;
256}
257
5b6269ed 258static void
259compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
6aed13f1 260 regset used ATTRIBUTE_UNUSED)
5b6269ed 261{
262}
263
e1ab7874 264static struct common_sched_info_def sms_common_sched_info;
265
266static struct sched_deps_info_def sms_sched_deps_info =
267 {
268 compute_jump_reg_dependencies,
269 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
270 NULL,
271 0, 0, 0
272 };
273
274static struct haifa_sched_info sms_sched_info =
5b6269ed 275{
276 NULL,
277 NULL,
278 NULL,
279 NULL,
280 NULL,
281 sms_print_insn,
6a1cdb4d 282 NULL,
4db82bc9 283 NULL, /* insn_finishes_block_p */
5b6269ed 284 NULL, NULL,
285 NULL, NULL,
e1ab7874 286 0, 0,
4d64d9a4 287
d2412f57 288 NULL, NULL, NULL, NULL,
e2f4a6ff 289 NULL, NULL,
4d64d9a4 290 0
5b6269ed 291};
292
0b79ae60 293/* Partial schedule instruction ID in PS is a register move. Return
294 information about it. */
295static struct ps_reg_move_info *
296ps_reg_move (partial_schedule_ptr ps, int id)
297{
298 gcc_checking_assert (id >= ps->g->num_nodes);
f1f41a6c 299 return &ps->reg_moves[id - ps->g->num_nodes];
0b79ae60 300}
301
7282ef12 302/* Return the rtl instruction that is being scheduled by partial schedule
303 instruction ID, which belongs to schedule PS. */
bc69df91 304static rtx_insn *
7282ef12 305ps_rtl_insn (partial_schedule_ptr ps, int id)
306{
0b79ae60 307 if (id < ps->g->num_nodes)
308 return ps->g->nodes[id].insn;
309 else
310 return ps_reg_move (ps, id)->insn;
7282ef12 311}
312
9d75589a 313/* Partial schedule instruction ID, which belongs to PS, occurred in
0b79ae60 314 the original (unscheduled) loop. Return the first instruction
315 in the loop that was associated with ps_rtl_insn (PS, ID).
316 If the instruction had some notes before it, this is the first
317 of those notes. */
57c26b3a 318static rtx_insn *
7282ef12 319ps_first_note (partial_schedule_ptr ps, int id)
320{
0b79ae60 321 gcc_assert (id < ps->g->num_nodes);
7282ef12 322 return ps->g->nodes[id].first_note;
323}
324
e9df34d5 325/* Return the number of consecutive stages that are occupied by
326 partial schedule instruction ID in PS. */
327static int
328ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
329{
330 if (id < ps->g->num_nodes)
331 return 1;
332 else
333 return ps_reg_move (ps, id)->num_consecutive_stages;
334}
335
7bfc9b7c 336/* Given HEAD and TAIL which are the first and last insns in a loop;
337 return the register which controls the loop. Return zero if it has
338 more than one occurrence in the loop besides the control part or the
339 do-loop pattern is not of the form we expect. */
5b6269ed 340static rtx
4177c695 341doloop_register_get (rtx_insn *head, rtx_insn *tail)
5b6269ed 342{
bc69df91 343 rtx reg, condition;
344 rtx_insn *insn, *first_insn_not_to_check;
5b6269ed 345
7bfc9b7c 346 if (!JUMP_P (tail))
5b6269ed 347 return NULL_RTX;
348
4177c695 349 if (!targetm.code_for_doloop_end)
350 return NULL_RTX;
351
7bfc9b7c 352 /* TODO: Free SMS's dependence on doloop_condition_get. */
353 condition = doloop_condition_get (tail);
fc2abfd3 354 if (! condition)
5b6269ed 355 return NULL_RTX;
356
fc2abfd3 357 if (REG_P (XEXP (condition, 0)))
358 reg = XEXP (condition, 0);
359 else if (GET_CODE (XEXP (condition, 0)) == PLUS
360 && REG_P (XEXP (XEXP (condition, 0), 0)))
361 reg = XEXP (XEXP (condition, 0), 0);
362 else
363 gcc_unreachable ();
5b6269ed 364
7bfc9b7c 365 /* Check that the COUNT_REG has no other occurrences in the loop
366 until the decrement. We assume the control part consists of
367 either a single (parallel) branch-on-count or a (non-parallel)
368 branch immediately preceded by a single (decrement) insn. */
11dd7ac1 369 first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
cf961a94 370 : prev_nondebug_insn (tail));
11dd7ac1 371
372 for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
9973add0 373 if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
7bfc9b7c 374 {
375 if (dump_file)
11dd7ac1 376 {
377 fprintf (dump_file, "SMS count_reg found ");
378 print_rtl_single (dump_file, reg);
379 fprintf (dump_file, " outside control in insn:\n");
380 print_rtl_single (dump_file, insn);
381 }
7bfc9b7c 382
383 return NULL_RTX;
384 }
11dd7ac1 385
fc2abfd3 386 return reg;
5b6269ed 387}
388
389/* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
390 that the number of iterations is a compile-time constant. If so,
6fe7b8c2 391 return the rtx_insn that sets COUNT_REG to a constant, and set COUNT to
5b6269ed 392 this constant. Otherwise return 0. */
6fe7b8c2 393static rtx_insn *
5b6269ed 394const_iteration_count (rtx count_reg, basic_block pre_header,
3a4303e7 395 int64_t * count)
5b6269ed 396{
6fe7b8c2 397 rtx_insn *insn;
398 rtx_insn *head, *tail;
a337a404 399
400 if (! pre_header)
6fe7b8c2 401 return NULL;
a337a404 402
6a1cdb4d 403 get_ebb_head_tail (pre_header, pre_header, &head, &tail);
5b6269ed 404
405 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
9845d120 406 if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
5b6269ed 407 rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
408 {
409 rtx pat = single_set (insn);
410
971ba038 411 if (CONST_INT_P (SET_SRC (pat)))
5b6269ed 412 {
413 *count = INTVAL (SET_SRC (pat));
414 return insn;
415 }
416
6fe7b8c2 417 return NULL;
5b6269ed 418 }
419
6fe7b8c2 420 return NULL;
5b6269ed 421}
422
423/* A very simple resource-based lower bound on the initiation interval.
424 ??? Improve the accuracy of this bound by considering the
425 utilization of various units. */
426static int
427res_MII (ddg_ptr g)
428{
d52fd16a 429 if (targetm.sched.sms_res_mii)
48e1416a 430 return targetm.sched.sms_res_mii (g);
431
9845d120 432 return ((g->num_nodes - g->num_debug) / issue_rate);
5b6269ed 433}
434
435
0b79ae60 436/* A vector that contains the sched data for each ps_insn. */
f1f41a6c 437static vec<node_sched_params> node_sched_param_vec;
5b6269ed 438
7282ef12 439/* Allocate sched_params for each node and initialize it. */
5b6269ed 440static void
441set_node_sched_params (ddg_ptr g)
442{
f1f41a6c 443 node_sched_param_vec.truncate (0);
444 node_sched_param_vec.safe_grow_cleared (g->num_nodes);
5b6269ed 445}
446
e9df34d5 447/* Make sure that node_sched_param_vec has an entry for every move in PS. */
448static void
449extend_node_sched_params (partial_schedule_ptr ps)
450{
f1f41a6c 451 node_sched_param_vec.safe_grow_cleared (ps->g->num_nodes
452 + ps->reg_moves.length ());
e9df34d5 453}
454
455/* Update the sched_params (time, row and stage) for node U using the II,
456 the CYCLE of U and MIN_CYCLE.
457 We're not simply taking the following
458 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
459 because the stages may not be aligned on cycle 0. */
460static void
461update_node_sched_params (int u, int ii, int cycle, int min_cycle)
462{
463 int sc_until_cycle_zero;
464 int stage;
465
466 SCHED_TIME (u) = cycle;
467 SCHED_ROW (u) = SMODULO (cycle, ii);
468
469 /* The calculation of stage count is done adding the number
470 of stages before cycle zero and after cycle zero. */
471 sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
472
473 if (SCHED_TIME (u) < 0)
474 {
475 stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
476 SCHED_STAGE (u) = sc_until_cycle_zero - stage;
477 }
478 else
479 {
480 stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
481 SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
482 }
483}
484
5b6269ed 485static void
0b79ae60 486print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
5b6269ed 487{
488 int i;
489
3f5be5f4 490 if (! file)
a337a404 491 return;
5b6269ed 492 for (i = 0; i < num_nodes; i++)
493 {
7282ef12 494 node_sched_params_ptr nsp = SCHED_PARAMS (i);
5b6269ed 495
896dbaed 496 fprintf (file, "Node = %d; INSN = %d\n", i,
0b79ae60 497 INSN_UID (ps_rtl_insn (ps, i)));
498 fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
3f5be5f4 499 fprintf (file, " time = %d:\n", nsp->time);
e9df34d5 500 fprintf (file, " stage = %d:\n", nsp->stage);
501 }
502}
503
504/* Set SCHED_COLUMN for each instruction in row ROW of PS. */
505static void
506set_columns_for_row (partial_schedule_ptr ps, int row)
507{
508 ps_insn_ptr cur_insn;
509 int column;
510
511 column = 0;
512 for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
513 SCHED_COLUMN (cur_insn->id) = column++;
514}
515
516/* Set SCHED_COLUMN for each instruction in PS. */
517static void
518set_columns_for_ps (partial_schedule_ptr ps)
519{
520 int row;
521
522 for (row = 0; row < ps->ii; row++)
523 set_columns_for_row (ps, row);
524}
0b79ae60 525
e9df34d5 526/* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
527 Its single predecessor has already been scheduled, as has its
528 ddg node successors. (The move may have also another move as its
529 successor, in which case that successor will be scheduled later.)
530
531 The move is part of a chain that satisfies register dependencies
532 between a producing ddg node and various consuming ddg nodes.
533 If some of these dependencies have a distance of 1 (meaning that
469e33a0 534 the use is upward-exposed) then DISTANCE1_USES is nonnull and
e9df34d5 535 contains the set of uses with distance-1 dependencies.
536 DISTANCE1_USES is null otherwise.
537
538 MUST_FOLLOW is a scratch bitmap that is big enough to hold
539 all current ps_insn ids.
540
541 Return true on success. */
542static bool
543schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
544 sbitmap distance1_uses, sbitmap must_follow)
545{
546 unsigned int u;
547 int this_time, this_distance, this_start, this_end, this_latency;
548 int start, end, c, ii;
549 sbitmap_iterator sbi;
550 ps_reg_move_info *move;
bc69df91 551 rtx_insn *this_insn;
e9df34d5 552 ps_insn_ptr psi;
553
554 move = ps_reg_move (ps, i_reg_move);
555 ii = ps->ii;
556 if (dump_file)
557 {
558 fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
559 ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
560 PS_MIN_CYCLE (ps));
561 print_rtl_single (dump_file, move->insn);
562 fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
563 fprintf (dump_file, "=========== =========== =====\n");
564 }
565
566 start = INT_MIN;
567 end = INT_MAX;
568
569 /* For dependencies of distance 1 between a producer ddg node A
570 and consumer ddg node B, we have a chain of dependencies:
571
572 A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
573
574 where Mi is the ith move. For dependencies of distance 0 between
575 a producer ddg node A and consumer ddg node C, we have a chain of
576 dependencies:
577
578 A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
579
580 where Mi' occupies the same position as Mi but occurs a stage later.
581 We can only schedule each move once, so if we have both types of
582 chain, we model the second as:
583
584 A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
585
586 First handle the dependencies between the previously-scheduled
587 predecessor and the move. */
588 this_insn = ps_rtl_insn (ps, move->def);
589 this_latency = insn_latency (this_insn, move->insn);
590 this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
591 this_time = SCHED_TIME (move->def) - this_distance * ii;
592 this_start = this_time + this_latency;
593 this_end = this_time + ii;
594 if (dump_file)
595 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
596 this_start, this_end, SCHED_TIME (move->def),
597 INSN_UID (this_insn), this_latency, this_distance,
598 INSN_UID (move->insn));
599
600 if (start < this_start)
601 start = this_start;
602 if (end > this_end)
603 end = this_end;
604
605 /* Handle the dependencies between the move and previously-scheduled
606 successors. */
0d211963 607 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, u, sbi)
e9df34d5 608 {
609 this_insn = ps_rtl_insn (ps, u);
610 this_latency = insn_latency (move->insn, this_insn);
08b7917c 611 if (distance1_uses && !bitmap_bit_p (distance1_uses, u))
e9df34d5 612 this_distance = -1;
613 else
614 this_distance = 0;
615 this_time = SCHED_TIME (u) + this_distance * ii;
616 this_start = this_time - ii;
617 this_end = this_time - this_latency;
618 if (dump_file)
619 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
620 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
621 this_latency, this_distance, INSN_UID (this_insn));
622
623 if (start < this_start)
624 start = this_start;
625 if (end > this_end)
626 end = this_end;
627 }
628
629 if (dump_file)
630 {
631 fprintf (dump_file, "----------- ----------- -----\n");
632 fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
633 }
634
53c5d9d4 635 bitmap_clear (must_follow);
08b7917c 636 bitmap_set_bit (must_follow, move->def);
e9df34d5 637
638 start = MAX (start, end - (ii - 1));
639 for (c = end; c >= start; c--)
640 {
641 psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
642 move->uses, must_follow);
643 if (psi)
644 {
645 update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
646 if (dump_file)
647 fprintf (dump_file, "\nScheduled register move INSN %d at"
648 " time %d, row %d\n\n", INSN_UID (move->insn), c,
649 SCHED_ROW (i_reg_move));
650 return true;
5b6269ed 651 }
652 }
e9df34d5 653
654 if (dump_file)
655 fprintf (dump_file, "\nNo available slot\n\n");
656
657 return false;
5b6269ed 658}
659
a337a404 660/*
661 Breaking intra-loop register anti-dependences:
662 Each intra-loop register anti-dependence implies a cross-iteration true
663 dependence of distance 1. Therefore, we can remove such false dependencies
664 and figure out if the partial schedule broke them by checking if (for a
665 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
666 if so generate a register move. The number of such moves is equal to:
667 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
06b27565 668 nreg_moves = ----------------------------------- + 1 - { dependence.
a337a404 669 ii { 1 if not.
670*/
0b79ae60 671static bool
672schedule_reg_moves (partial_schedule_ptr ps)
5b6269ed 673{
674 ddg_ptr g = ps->g;
675 int ii = ps->ii;
676 int i;
677
678 for (i = 0; i < g->num_nodes; i++)
679 {
680 ddg_node_ptr u = &g->nodes[i];
681 ddg_edge_ptr e;
682 int nreg_moves = 0, i_reg_move;
5b6269ed 683 rtx prev_reg, old_reg;
0b79ae60 684 int first_move;
e9df34d5 685 int distances[2];
e9df34d5 686 sbitmap distance1_uses;
d1cae43e 687 rtx set = single_set (u->insn);
688
689 /* Skip instructions that do not set a register. */
0caed3f5 690 if (set && !REG_P (SET_DEST (set)))
d1cae43e 691 continue;
0caed3f5 692
5b6269ed 693 /* Compute the number of reg_moves needed for u, by looking at life
694 ranges started at u (excluding self-loops). */
e9df34d5 695 distances[0] = distances[1] = false;
5b6269ed 696 for (e = u->out; e; e = e->next_out)
697 if (e->type == TRUE_DEP && e->dest != e->src)
698 {
7282ef12 699 int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
700 - SCHED_TIME (e->src->cuid)) / ii;
5b6269ed 701
a337a404 702 if (e->distance == 1)
7282ef12 703 nreg_moves4e = (SCHED_TIME (e->dest->cuid)
704 - SCHED_TIME (e->src->cuid) + ii) / ii;
a337a404 705
365db11e 706 /* If dest precedes src in the schedule of the kernel, then dest
5b6269ed 707 will read before src writes and we can save one reg_copy. */
7282ef12 708 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
709 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
5b6269ed 710 nreg_moves4e--;
711
d1cae43e 712 if (nreg_moves4e >= 1)
713 {
714 /* !single_set instructions are not supported yet and
715 thus we do not except to encounter them in the loop
716 except from the doloop part. For the latter case
717 we assume no regmoves are generated as the doloop
718 instructions are tied to the branch with an edge. */
719 gcc_assert (set);
2917ecd3 720 /* If the instruction contains auto-inc register then
721 validate that the regmov is being generated for the
722 target regsiter rather then the inc'ed register. */
723 gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
d1cae43e 724 }
725
e9df34d5 726 if (nreg_moves4e)
727 {
728 gcc_assert (e->distance < 2);
729 distances[e->distance] = true;
730 }
5b6269ed 731 nreg_moves = MAX (nreg_moves, nreg_moves4e);
732 }
733
734 if (nreg_moves == 0)
735 continue;
736
0b79ae60 737 /* Create NREG_MOVES register moves. */
f1f41a6c 738 first_move = ps->reg_moves.length ();
739 ps->reg_moves.safe_grow_cleared (first_move + nreg_moves);
e9df34d5 740 extend_node_sched_params (ps);
0b79ae60 741
742 /* Record the moves associated with this node. */
743 first_move += ps->g->num_nodes;
0b79ae60 744
745 /* Generate each move. */
0caed3f5 746 old_reg = prev_reg = SET_DEST (set);
747 if (HARD_REGISTER_P (old_reg))
748 return false;
749
0b79ae60 750 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
751 {
752 ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
753
754 move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
e9df34d5 755 move->uses = sbitmap_alloc (first_move + nreg_moves);
0b79ae60 756 move->old_reg = old_reg;
757 move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
e9df34d5 758 move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
f9a00e9e 759 move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg));
53c5d9d4 760 bitmap_clear (move->uses);
0b79ae60 761
762 prev_reg = move->new_reg;
763 }
764
e9df34d5 765 distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
766
5ce4a75a 767 if (distance1_uses)
768 bitmap_clear (distance1_uses);
769
5b6269ed 770 /* Every use of the register defined by node may require a different
771 copy of this register, depending on the time the use is scheduled.
0b79ae60 772 Record which uses require which move results. */
5b6269ed 773 for (e = u->out; e; e = e->next_out)
774 if (e->type == TRUE_DEP && e->dest != e->src)
775 {
7282ef12 776 int dest_copy = (SCHED_TIME (e->dest->cuid)
777 - SCHED_TIME (e->src->cuid)) / ii;
5b6269ed 778
a337a404 779 if (e->distance == 1)
7282ef12 780 dest_copy = (SCHED_TIME (e->dest->cuid)
781 - SCHED_TIME (e->src->cuid) + ii) / ii;
a337a404 782
7282ef12 783 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
784 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
5b6269ed 785 dest_copy--;
786
787 if (dest_copy)
0b79ae60 788 {
789 ps_reg_move_info *move;
5b6269ed 790
0b79ae60 791 move = ps_reg_move (ps, first_move + dest_copy - 1);
08b7917c 792 bitmap_set_bit (move->uses, e->dest->cuid);
e9df34d5 793 if (e->distance == 1)
08b7917c 794 bitmap_set_bit (distance1_uses, e->dest->cuid);
0b79ae60 795 }
796 }
e9df34d5 797
3c6549f8 798 auto_sbitmap must_follow (first_move + nreg_moves);
e9df34d5 799 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
800 if (!schedule_reg_move (ps, first_move + i_reg_move,
801 distance1_uses, must_follow))
802 break;
e9df34d5 803 if (distance1_uses)
804 sbitmap_free (distance1_uses);
805 if (i_reg_move < nreg_moves)
806 return false;
0b79ae60 807 }
808 return true;
809}
5b6269ed 810
2fbe7a32 811/* Emit the moves associated with PS. Apply the substitutions
0b79ae60 812 associated with them. */
813static void
814apply_reg_moves (partial_schedule_ptr ps)
815{
816 ps_reg_move_info *move;
817 int i;
5b6269ed 818
f1f41a6c 819 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
0b79ae60 820 {
821 unsigned int i_use;
822 sbitmap_iterator sbi;
5b6269ed 823
0d211963 824 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, i_use, sbi)
0b79ae60 825 {
826 replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
827 df_insn_rescan (ps->g->nodes[i_use].insn);
5b6269ed 828 }
829 }
a5ea7ace 830}
831
6f7f081f 832/* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
833 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
834 will move to cycle zero. */
5b6269ed 835static void
6f7f081f 836reset_sched_times (partial_schedule_ptr ps, int amount)
5b6269ed 837{
76387907 838 int row;
5b6269ed 839 int ii = ps->ii;
76387907 840 ps_insn_ptr crr_insn;
5b6269ed 841
76387907 842 for (row = 0; row < ii; row++)
843 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
844 {
7282ef12 845 int u = crr_insn->id;
76387907 846 int normalized_time = SCHED_TIME (u) - amount;
6f7f081f 847 int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
76387907 848
6f7f081f 849 if (dump_file)
850 {
851 /* Print the scheduling times after the rotation. */
bc69df91 852 rtx_insn *insn = ps_rtl_insn (ps, u);
7282ef12 853
6f7f081f 854 fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
7282ef12 855 "crr_insn->cycle=%d, min_cycle=%d", u,
856 INSN_UID (insn), normalized_time, new_min_cycle);
857 if (JUMP_P (insn))
6f7f081f 858 fprintf (dump_file, " (branch)");
859 fprintf (dump_file, "\n");
860 }
861
76387907 862 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
863 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
a5ea7ace 864
865 crr_insn->cycle = normalized_time;
866 update_node_sched_params (u, ii, normalized_time, new_min_cycle);
76387907 867 }
5b6269ed 868}
6f7f081f 869
5b6269ed 870/* Permute the insns according to their order in PS, from row 0 to
871 row ii-1, and position them right before LAST. This schedules
872 the insns of the loop kernel. */
873static void
4cd001d5 874permute_partial_schedule (partial_schedule_ptr ps, rtx_insn *last)
5b6269ed 875{
876 int ii = ps->ii;
877 int row;
878 ps_insn_ptr ps_ij;
879
880 for (row = 0; row < ii ; row++)
881 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
7282ef12 882 {
bc69df91 883 rtx_insn *insn = ps_rtl_insn (ps, ps_ij->id);
7282ef12 884
885 if (PREV_INSN (last) != insn)
e9df34d5 886 {
887 if (ps_ij->id < ps->g->num_nodes)
888 reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
889 PREV_INSN (last));
890 else
891 add_insn_before (insn, last, NULL);
892 }
7282ef12 893 }
5b6269ed 894}
895
a5ea7ace 896/* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
897 respectively only if cycle C falls on the border of the scheduling
898 window boundaries marked by START and END cycles. STEP is the
899 direction of the window. */
900static inline void
901set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
902 sbitmap *tmp_precede, sbitmap must_precede, int c,
903 int start, int end, int step)
904{
905 *tmp_precede = NULL;
906 *tmp_follow = NULL;
907
908 if (c == start)
909 {
910 if (step == 1)
911 *tmp_precede = must_precede;
912 else /* step == -1. */
913 *tmp_follow = must_follow;
914 }
915 if (c == end - step)
916 {
917 if (step == 1)
918 *tmp_follow = must_follow;
919 else /* step == -1. */
920 *tmp_precede = must_precede;
921 }
922
923}
924
925/* Return True if the branch can be moved to row ii-1 while
926 normalizing the partial schedule PS to start from cycle zero and thus
927 optimize the SC. Otherwise return False. */
928static bool
929optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
930{
931 int amount = PS_MIN_CYCLE (ps);
a5ea7ace 932 int start, end, step;
933 int ii = ps->ii;
934 bool ok = false;
935 int stage_count, stage_count_curr;
936
937 /* Compare the SC after normalization and SC after bringing the branch
938 to row ii-1. If they are equal just bail out. */
939 stage_count = calculate_stage_count (ps, amount);
940 stage_count_curr =
7282ef12 941 calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
a5ea7ace 942
943 if (stage_count == stage_count_curr)
944 {
945 if (dump_file)
946 fprintf (dump_file, "SMS SC already optimized.\n");
947
3c6549f8 948 return false;
a5ea7ace 949 }
950
951 if (dump_file)
952 {
953 fprintf (dump_file, "SMS Trying to optimize branch location\n");
954 fprintf (dump_file, "SMS partial schedule before trial:\n");
955 print_partial_schedule (ps, dump_file);
956 }
957
958 /* First, normalize the partial scheduling. */
959 reset_sched_times (ps, amount);
960 rotate_partial_schedule (ps, amount);
961 if (dump_file)
962 {
963 fprintf (dump_file,
964 "SMS partial schedule after normalization (ii, %d, SC %d):\n",
965 ii, stage_count);
966 print_partial_schedule (ps, dump_file);
967 }
968
7282ef12 969 if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
3c6549f8 970 return true;
a5ea7ace 971
3c6549f8 972 auto_sbitmap sched_nodes (g->num_nodes);
53c5d9d4 973 bitmap_ones (sched_nodes);
a5ea7ace 974
975 /* Calculate the new placement of the branch. It should be in row
976 ii-1 and fall into it's scheduling window. */
977 if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
978 &step, &end) == 0)
979 {
980 bool success;
981 ps_insn_ptr next_ps_i;
7282ef12 982 int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
a5ea7ace 983 int row = SMODULO (branch_cycle, ps->ii);
984 int num_splits = 0;
3c6549f8 985 sbitmap tmp_precede, tmp_follow;
f3a6a26f 986 int min_cycle, c;
a5ea7ace 987
988 if (dump_file)
989 fprintf (dump_file, "\nTrying to schedule node %d "
990 "INSN = %d in (%d .. %d) step %d\n",
991 g->closing_branch->cuid,
992 (INSN_UID (g->closing_branch->insn)), start, end, step);
993
994 gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
995 if (step == 1)
996 {
997 c = start + ii - SMODULO (start, ii) - 1;
998 gcc_assert (c >= start);
999 if (c >= end)
1000 {
a5ea7ace 1001 if (dump_file)
1002 fprintf (dump_file,
1003 "SMS failed to schedule branch at cycle: %d\n", c);
3c6549f8 1004 return false;
a5ea7ace 1005 }
1006 }
1007 else
1008 {
1009 c = start - SMODULO (start, ii) - 1;
1010 gcc_assert (c <= start);
1011
1012 if (c <= end)
1013 {
1014 if (dump_file)
1015 fprintf (dump_file,
1016 "SMS failed to schedule branch at cycle: %d\n", c);
3c6549f8 1017 return false;
a5ea7ace 1018 }
1019 }
1020
3c6549f8 1021 auto_sbitmap must_precede (g->num_nodes);
1022 auto_sbitmap must_follow (g->num_nodes);
a5ea7ace 1023
1024 /* Try to schedule the branch is it's new cycle. */
1025 calculate_must_precede_follow (g->closing_branch, start, end,
1026 step, ii, sched_nodes,
1027 must_precede, must_follow);
1028
1029 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1030 must_precede, c, start, end, step);
1031
1032 /* Find the element in the partial schedule related to the closing
1033 branch so we can remove it from it's current cycle. */
1034 for (next_ps_i = ps->rows[row];
1035 next_ps_i; next_ps_i = next_ps_i->next_in_row)
7282ef12 1036 if (next_ps_i->id == g->closing_branch->cuid)
a5ea7ace 1037 break;
1038
f3a6a26f 1039 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
9bf2b489 1040 remove_node_from_ps (ps, next_ps_i);
a5ea7ace 1041 success =
7282ef12 1042 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
a5ea7ace 1043 sched_nodes, &num_splits,
1044 tmp_precede, tmp_follow);
1045 gcc_assert (num_splits == 0);
1046 if (!success)
1047 {
1048 if (dump_file)
1049 fprintf (dump_file,
1050 "SMS failed to schedule branch at cycle: %d, "
1051 "bringing it back to cycle %d\n", c, branch_cycle);
1052
1053 /* The branch was failed to be placed in row ii - 1.
1054 Put it back in it's original place in the partial
1055 schedualing. */
1056 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1057 must_precede, branch_cycle, start, end,
1058 step);
1059 success =
7282ef12 1060 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
a5ea7ace 1061 branch_cycle, sched_nodes,
1062 &num_splits, tmp_precede,
1063 tmp_follow);
1064 gcc_assert (success && (num_splits == 0));
1065 ok = false;
1066 }
1067 else
1068 {
1069 /* The branch is placed in row ii - 1. */
1070 if (dump_file)
1071 fprintf (dump_file,
1072 "SMS success in moving branch to cycle %d\n", c);
1073
7282ef12 1074 update_node_sched_params (g->closing_branch->cuid, ii, c,
a5ea7ace 1075 PS_MIN_CYCLE (ps));
1076 ok = true;
1077 }
1078
f3a6a26f 1079 /* This might have been added to a new first stage. */
1080 if (PS_MIN_CYCLE (ps) < min_cycle)
1081 reset_sched_times (ps, 0);
a5ea7ace 1082 }
1083
a5ea7ace 1084 return ok;
1085}
1086
5b6269ed 1087static void
1088duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
e9df34d5 1089 int to_stage, rtx count_reg)
5b6269ed 1090{
1091 int row;
1092 ps_insn_ptr ps_ij;
1093
1094 for (row = 0; row < ps->ii; row++)
1095 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
1096 {
7282ef12 1097 int u = ps_ij->id;
e9df34d5 1098 int first_u, last_u;
bc69df91 1099 rtx_insn *u_insn;
5b6269ed 1100
7bfc9b7c 1101 /* Do not duplicate any insn which refers to count_reg as it
1102 belongs to the control part.
6f7f081f 1103 The closing branch is scheduled as well and thus should
1104 be ignored.
7bfc9b7c 1105 TODO: This should be done by analyzing the control part of
1106 the loop. */
7282ef12 1107 u_insn = ps_rtl_insn (ps, u);
1108 if (reg_mentioned_p (count_reg, u_insn)
1109 || JUMP_P (u_insn))
7bfc9b7c 1110 continue;
1111
e9df34d5 1112 first_u = SCHED_STAGE (u);
1113 last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
1114 if (from_stage <= last_u && to_stage >= first_u)
5b6269ed 1115 {
e9df34d5 1116 if (u < ps->g->num_nodes)
1117 duplicate_insn_chain (ps_first_note (ps, u), u_insn);
1118 else
1119 emit_insn (copy_rtx (PATTERN (u_insn)));
5b6269ed 1120 }
5b6269ed 1121 }
1122}
1123
1124
1125/* Generate the instructions (including reg_moves) for prolog & epilog. */
1126static void
2e966e2a 1127generate_prolog_epilog (partial_schedule_ptr ps, class loop *loop,
7bfc9b7c 1128 rtx count_reg, rtx count_init)
5b6269ed 1129{
1130 int i;
1131 int last_stage = PS_STAGE_COUNT (ps) - 1;
1132 edge e;
48e1416a 1133
5b6269ed 1134 /* Generate the prolog, inserting its insns on the loop-entry edge. */
1135 start_sequence ();
1136
7bfc9b7c 1137 if (!count_init)
1138 {
1139 /* Generate instructions at the beginning of the prolog to
1140 adjust the loop count by STAGE_COUNT. If loop count is constant
1141 (count_init), this constant is adjusted by STAGE_COUNT in
1142 generate_prolog_epilog function. */
1143 rtx sub_reg = NULL_RTX;
1144
0359f9f5 1145 sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, count_reg,
1146 gen_int_mode (last_stage,
1147 GET_MODE (count_reg)),
7bfc9b7c 1148 count_reg, 1, OPTAB_DIRECT);
1149 gcc_assert (REG_P (sub_reg));
1150 if (REGNO (sub_reg) != REGNO (count_reg))
1151 emit_move_insn (count_reg, sub_reg);
1152 }
5b6269ed 1153
1154 for (i = 0; i < last_stage; i++)
e9df34d5 1155 duplicate_insns_of_cycles (ps, 0, i, count_reg);
48e1416a 1156
88e6f696 1157 /* Put the prolog on the entry edge. */
b6a75366 1158 e = loop_preheader_edge (loop);
d4473c84 1159 split_edge_and_insert (e, get_insns ());
6c3ff102 1160 if (!flag_resched_modulo_sched)
1161 e->dest->flags |= BB_DISABLE_SCHEDULE;
b6a75366 1162
5b6269ed 1163 end_sequence ();
1164
1165 /* Generate the epilog, inserting its insns on the loop-exit edge. */
1166 start_sequence ();
1167
1168 for (i = 0; i < last_stage; i++)
e9df34d5 1169 duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
48e1416a 1170
88e6f696 1171 /* Put the epilogue on the exit edge. */
d9e7e1a2 1172 gcc_assert (single_exit (loop));
1173 e = single_exit (loop);
d4473c84 1174 split_edge_and_insert (e, get_insns ());
6c3ff102 1175 if (!flag_resched_modulo_sched)
1176 e->dest->flags |= BB_DISABLE_SCHEDULE;
1177
b6a75366 1178 end_sequence ();
1179}
1180
6c3ff102 1181/* Mark LOOP as software pipelined so the later
1182 scheduling passes don't touch it. */
1183static void
2e966e2a 1184mark_loop_unsched (class loop *loop)
6c3ff102 1185{
1186 unsigned i;
1187 basic_block *bbs = get_loop_body (loop);
1188
1189 for (i = 0; i < loop->num_nodes; i++)
1190 bbs[i]->flags |= BB_DISABLE_SCHEDULE;
eb05e398 1191
1192 free (bbs);
6c3ff102 1193}
1194
b6a75366 1195/* Return true if all the BBs of the loop are empty except the
1196 loop header. */
1197static bool
2e966e2a 1198loop_single_full_bb_p (class loop *loop)
b6a75366 1199{
1200 unsigned i;
1201 basic_block *bbs = get_loop_body (loop);
1202
1203 for (i = 0; i < loop->num_nodes ; i++)
5b6269ed 1204 {
6fe7b8c2 1205 rtx_insn *head, *tail;
b6a75366 1206 bool empty_bb = true;
1207
1208 if (bbs[i] == loop->header)
1209 continue;
1210
1211 /* Make sure that basic blocks other than the header
1212 have only notes labels or jumps. */
6a1cdb4d 1213 get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
b6a75366 1214 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
1215 {
1216 if (NOTE_P (head) || LABEL_P (head)
9845d120 1217 || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
b6a75366 1218 continue;
1219 empty_bb = false;
1220 break;
1221 }
1222
1223 if (! empty_bb)
1224 {
1225 free (bbs);
1226 return false;
1227 }
1228 }
1229 free (bbs);
1230 return true;
1231}
5b6269ed 1232
56134a9f 1233/* Dump file:line from INSN's location info to dump_file. */
1234
1235static void
bc69df91 1236dump_insn_location (rtx_insn *insn)
56134a9f 1237{
0e7ae557 1238 if (dump_file && INSN_HAS_LOCATION (insn))
56134a9f 1239 {
0e7ae557 1240 expanded_location xloc = insn_location (insn);
1241 fprintf (dump_file, " %s:%i", xloc.file, xloc.line);
56134a9f 1242 }
1243}
1244
b6a75366 1245/* A simple loop from SMS point of view; it is a loop that is composed of
1246 either a single basic block or two BBs - a header and a latch. */
1247#define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
1248 && (EDGE_COUNT (loop->latch->preds) == 1) \
1249 && (EDGE_COUNT (loop->latch->succs) == 1))
5b6269ed 1250
b6a75366 1251/* Return true if the loop is in its canonical form and false if not.
1252 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
1253static bool
2e966e2a 1254loop_canon_p (class loop *loop)
b6a75366 1255{
5b6269ed 1256
9e3536f4 1257 if (loop->inner || !loop_outer (loop))
7707ba40 1258 {
1259 if (dump_file)
1260 fprintf (dump_file, "SMS loop inner or !loop_outer\n");
b6a75366 1261 return false;
7707ba40 1262 }
5b6269ed 1263
d9e7e1a2 1264 if (!single_exit (loop))
b6a75366 1265 {
1266 if (dump_file)
1267 {
bc69df91 1268 rtx_insn *insn = BB_END (loop->header);
48e1416a 1269
56134a9f 1270 fprintf (dump_file, "SMS loop many exits");
5169661d 1271 dump_insn_location (insn);
56134a9f 1272 fprintf (dump_file, "\n");
b6a75366 1273 }
1274 return false;
1275 }
5b6269ed 1276
b6a75366 1277 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
1278 {
1279 if (dump_file)
1280 {
bc69df91 1281 rtx_insn *insn = BB_END (loop->header);
48e1416a 1282
56134a9f 1283 fprintf (dump_file, "SMS loop many BBs.");
5169661d 1284 dump_insn_location (insn);
56134a9f 1285 fprintf (dump_file, "\n");
b6a75366 1286 }
1287 return false;
5b6269ed 1288 }
1289
b6a75366 1290 return true;
1291}
5b6269ed 1292
b6a75366 1293/* If there are more than one entry for the loop,
1294 make it one by splitting the first entry edge and
1295 redirecting the others to the new BB. */
1296static void
2e966e2a 1297canon_loop (class loop *loop)
b6a75366 1298{
1299 edge e;
1300 edge_iterator i;
5b6269ed 1301
b6a75366 1302 /* Avoid annoying special cases of edges going to exit
1303 block. */
34154e27 1304 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
b6a75366 1305 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
88e6f696 1306 split_edge (e);
5b6269ed 1307
b6a75366 1308 if (loop->latch == loop->header
1309 || EDGE_COUNT (loop->latch->succs) > 1)
5b6269ed 1310 {
b6a75366 1311 FOR_EACH_EDGE (e, i, loop->header->preds)
1312 if (e->src == loop->latch)
1313 break;
88e6f696 1314 split_edge (e);
5b6269ed 1315 }
1316}
1317
e1ab7874 1318/* Setup infos. */
1319static void
1320setup_sched_infos (void)
1321{
1322 memcpy (&sms_common_sched_info, &haifa_common_sched_info,
1323 sizeof (sms_common_sched_info));
1324 sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
1325 common_sched_info = &sms_common_sched_info;
1326
1327 sched_deps_info = &sms_sched_deps_info;
1328 current_sched_info = &sms_sched_info;
1329}
1330
7cef6c97 1331/* Probability in % that the sms-ed loop rolls enough so that optimized
1332 version may be entered. Just a guess. */
1333#define PROB_SMS_ENOUGH_ITERATIONS 80
1334
896dbaed 1335/* Used to calculate the upper bound of ii. */
1336#define MAXII_FACTOR 2
1337
5b6269ed 1338/* Main entry point, perform SMS scheduling on the loops of the function
1339 that consist of single basic blocks. */
73b62548 1340static void
3f5be5f4 1341sms_schedule (void)
5b6269ed 1342{
bc69df91 1343 rtx_insn *insn;
5b6269ed 1344 ddg_ptr *g_arr, g;
5b6269ed 1345 int * node_order;
c0fb94bd 1346 int maxii, max_asap;
5b6269ed 1347 partial_schedule_ptr ps;
b6a75366 1348 basic_block bb = NULL;
2e966e2a 1349 class loop *loop;
b6a75366 1350 basic_block condition_bb = NULL;
1351 edge latch_edge;
edfb0cd4 1352 HOST_WIDE_INT trip_count, max_trip_count;
b6a75366 1353
88e6f696 1354 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
dce58e66 1355 | LOOPS_HAVE_RECORDED_EXITS);
41f75a99 1356 if (number_of_loops (cfun) <= 1)
7a3bf727 1357 {
1358 loop_optimizer_finalize ();
1359 return; /* There are no loops to schedule. */
1360 }
b6a75366 1361
5b6269ed 1362 /* Initialize issue_rate. */
1363 if (targetm.sched.issue_rate)
1364 {
1365 int temp = reload_completed;
1366
1367 reload_completed = 1;
ffa47ae0 1368 issue_rate = targetm.sched.issue_rate ();
5b6269ed 1369 reload_completed = temp;
1370 }
1371 else
1372 issue_rate = 1;
1373
2c763ed4 1374 /* Initialize the scheduler. */
e1ab7874 1375 setup_sched_infos ();
1376 haifa_sched_init ();
02a8ad7e 1377
b6a75366 1378 /* Allocate memory to hold the DDG array one entry for each loop.
1379 We use loop->num as index into this array. */
41f75a99 1380 g_arr = XCNEWVEC (ddg_ptr, number_of_loops (cfun));
5b6269ed 1381
7707ba40 1382 if (dump_file)
1383 {
1384 fprintf (dump_file, "\n\nSMS analysis phase\n");
1385 fprintf (dump_file, "===================\n\n");
1386 }
1387
5b6269ed 1388 /* Build DDGs for all the relevant loops and hold them in G_ARR
b6a75366 1389 indexed by the loop index. */
f21d4d00 1390 FOR_EACH_LOOP (loop, 0)
5b6269ed 1391 {
6fe7b8c2 1392 rtx_insn *head, *tail;
fc2abfd3 1393 rtx count_reg;
5b6269ed 1394
b6a75366 1395 /* For debugging. */
76aaf9f0 1396 if (dbg_cnt (sms_sched_loop) == false)
b6a75366 1397 {
1398 if (dump_file)
76aaf9f0 1399 fprintf (dump_file, "SMS reached max limit... \n");
5b6269ed 1400
f21d4d00 1401 break;
b6a75366 1402 }
5b6269ed 1403
7707ba40 1404 if (dump_file)
56134a9f 1405 {
bc69df91 1406 rtx_insn *insn = BB_END (loop->header);
7707ba40 1407
56134a9f 1408 fprintf (dump_file, "SMS loop num: %d", loop->num);
5169661d 1409 dump_insn_location (insn);
56134a9f 1410 fprintf (dump_file, "\n");
1411 }
7707ba40 1412
3f5be5f4 1413 if (! loop_canon_p (loop))
b6a75366 1414 continue;
5b6269ed 1415
b6a75366 1416 if (! loop_single_full_bb_p (loop))
7707ba40 1417 {
1418 if (dump_file)
1419 fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
5b6269ed 1420 continue;
7707ba40 1421 }
5b6269ed 1422
b6a75366 1423 bb = loop->header;
5b6269ed 1424
6a1cdb4d 1425 get_ebb_head_tail (bb, bb, &head, &tail);
b6a75366 1426 latch_edge = loop_latch_edge (loop);
d9e7e1a2 1427 gcc_assert (single_exit (loop));
edfb0cd4 1428 trip_count = get_estimated_loop_iterations_int (loop);
1429 max_trip_count = get_max_loop_iterations_int (loop);
5b6269ed 1430
f0b5f617 1431 /* Perform SMS only on loops that their average count is above threshold. */
b6a75366 1432
ea5d3981 1433 if ( latch_edge->count () > profile_count::zero ()
1434 && (latch_edge->count()
1435 < single_exit (loop)->count ().apply_scale
db9cef39 1436 (SMS_LOOP_AVERAGE_COUNT_THRESHOLD, 1)))
b6a75366 1437 {
3f5be5f4 1438 if (dump_file)
5b6269ed 1439 {
5169661d 1440 dump_insn_location (tail);
56134a9f 1441 fprintf (dump_file, "\nSMS single-bb-loop\n");
5b6269ed 1442 if (profile_info && flag_branch_probabilities)
1443 {
3f5be5f4 1444 fprintf (dump_file, "SMS loop-count ");
f03df321 1445 fprintf (dump_file, "%" PRId64,
db9cef39 1446 (int64_t) bb->count.to_gcov_type ());
3f5be5f4 1447 fprintf (dump_file, "\n");
1448 fprintf (dump_file, "SMS trip-count ");
edfb0cd4 1449 fprintf (dump_file, "%" PRId64 "max %" PRId64,
1450 (int64_t) trip_count, (int64_t) max_trip_count);
3f5be5f4 1451 fprintf (dump_file, "\n");
5b6269ed 1452 }
1453 }
1454 continue;
1455 }
1456
1457 /* Make sure this is a doloop. */
7bfc9b7c 1458 if ( !(count_reg = doloop_register_get (head, tail)))
7707ba40 1459 {
1460 if (dump_file)
1461 fprintf (dump_file, "SMS doloop_register_get failed\n");
5b6269ed 1462 continue;
7707ba40 1463 }
5b6269ed 1464
c38b28e7 1465 /* Don't handle BBs with calls or barriers
90c2bcf0 1466 or !single_set with the exception of instructions that include
1467 count_reg---these instructions are part of the control part
1468 that do-loop recognizes.
7bfc9b7c 1469 ??? Should handle insns defining subregs. */
1470 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1471 {
1472 rtx set;
1473
1474 if (CALL_P (insn)
c38b28e7 1475 || BARRIER_P (insn)
9845d120 1476 || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
90c2bcf0 1477 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
1478 && !reg_mentioned_p (count_reg, insn))
7bfc9b7c 1479 || (INSN_P (insn) && (set = single_set (insn))
1480 && GET_CODE (SET_DEST (set)) == SUBREG))
1481 break;
1482 }
5b6269ed 1483
1484 if (insn != NEXT_INSN (tail))
1485 {
3f5be5f4 1486 if (dump_file)
5b6269ed 1487 {
6d7dc5b9 1488 if (CALL_P (insn))
3f5be5f4 1489 fprintf (dump_file, "SMS loop-with-call\n");
c38b28e7 1490 else if (BARRIER_P (insn))
1491 fprintf (dump_file, "SMS loop-with-barrier\n");
9845d120 1492 else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
7bfc9b7c 1493 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
1494 fprintf (dump_file, "SMS loop-with-not-single-set\n");
1495 else
1496 fprintf (dump_file, "SMS loop with subreg in lhs\n");
3f5be5f4 1497 print_rtl_single (dump_file, insn);
5b6269ed 1498 }
1499
1500 continue;
1501 }
1502
6f7f081f 1503 /* Always schedule the closing branch with the rest of the
1504 instructions. The branch is rotated to be in row ii-1 at the
1505 end of the scheduling procedure to make sure it's the last
1506 instruction in the iteration. */
1507 if (! (g = create_ddg (bb, 1)))
5b6269ed 1508 {
3f5be5f4 1509 if (dump_file)
34c7f568 1510 fprintf (dump_file, "SMS create_ddg failed\n");
5b6269ed 1511 continue;
1512 }
1513
17519ba0 1514 g_arr[loop->num] = g;
7707ba40 1515 if (dump_file)
1516 fprintf (dump_file, "...OK\n");
1517
5b6269ed 1518 }
7707ba40 1519 if (dump_file)
1520 {
1521 fprintf (dump_file, "\nSMS transformation phase\n");
1522 fprintf (dump_file, "=========================\n\n");
1523 }
5b6269ed 1524
b6a75366 1525 /* We don't want to perform SMS on new loops - created by versioning. */
f21d4d00 1526 FOR_EACH_LOOP (loop, 0)
5b6269ed 1527 {
6fe7b8c2 1528 rtx_insn *head, *tail;
50fc2d35 1529 rtx count_reg;
1530 rtx_insn *count_init;
e9df34d5 1531 int mii, rec_mii, stage_count, min_cycle;
3a4303e7 1532 int64_t loop_count = 0;
0b79ae60 1533 bool opt_sc_p;
5b6269ed 1534
17519ba0 1535 if (! (g = g_arr[loop->num]))
5b6269ed 1536 continue;
1537
1538 if (dump_file)
56134a9f 1539 {
bc69df91 1540 rtx_insn *insn = BB_END (loop->header);
7707ba40 1541
56134a9f 1542 fprintf (dump_file, "SMS loop num: %d", loop->num);
5169661d 1543 dump_insn_location (insn);
56134a9f 1544 fprintf (dump_file, "\n");
7707ba40 1545
56134a9f 1546 print_ddg (dump_file, g);
1547 }
5b6269ed 1548
6a1cdb4d 1549 get_ebb_head_tail (loop->header, loop->header, &head, &tail);
5b6269ed 1550
b6a75366 1551 latch_edge = loop_latch_edge (loop);
d9e7e1a2 1552 gcc_assert (single_exit (loop));
edfb0cd4 1553 trip_count = get_estimated_loop_iterations_int (loop);
1554 max_trip_count = get_max_loop_iterations_int (loop);
5b6269ed 1555
3f5be5f4 1556 if (dump_file)
5b6269ed 1557 {
5169661d 1558 dump_insn_location (tail);
56134a9f 1559 fprintf (dump_file, "\nSMS single-bb-loop\n");
5b6269ed 1560 if (profile_info && flag_branch_probabilities)
1561 {
3f5be5f4 1562 fprintf (dump_file, "SMS loop-count ");
f03df321 1563 fprintf (dump_file, "%" PRId64,
db9cef39 1564 (int64_t) bb->count.to_gcov_type ());
3f5be5f4 1565 fprintf (dump_file, "\n");
5b6269ed 1566 }
3f5be5f4 1567 fprintf (dump_file, "SMS doloop\n");
1568 fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1569 fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1570 fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
5b6269ed 1571 }
1572
5b6269ed 1573
b6a75366 1574 /* In case of th loop have doloop register it gets special
1575 handling. */
50fc2d35 1576 count_init = NULL;
7bfc9b7c 1577 if ((count_reg = doloop_register_get (head, tail)))
b6a75366 1578 {
1579 basic_block pre_header;
1580
1581 pre_header = loop_preheader_edge (loop)->src;
1582 count_init = const_iteration_count (count_reg, pre_header,
1583 &loop_count);
1584 }
1585 gcc_assert (count_reg);
5b6269ed 1586
3f5be5f4 1587 if (dump_file && count_init)
5b6269ed 1588 {
3f5be5f4 1589 fprintf (dump_file, "SMS const-doloop ");
f03df321 1590 fprintf (dump_file, "%" PRId64,
b6a75366 1591 loop_count);
3f5be5f4 1592 fprintf (dump_file, "\n");
5b6269ed 1593 }
1594
4c36ffe6 1595 node_order = XNEWVEC (int, g->num_nodes);
5b6269ed 1596
1597 mii = 1; /* Need to pass some estimate of mii. */
c0fb94bd 1598 rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
5b6269ed 1599 mii = MAX (res_MII (g), rec_mii);
c3c55e1c 1600 mii = MAX (mii, 1);
c0fb94bd 1601 maxii = MAX (max_asap, MAXII_FACTOR * mii);
5b6269ed 1602
3f5be5f4 1603 if (dump_file)
1604 fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
5b6269ed 1605 rec_mii, mii, maxii);
1606
0b79ae60 1607 for (;;)
a5ea7ace 1608 {
0b79ae60 1609 set_node_sched_params (g);
1610
1611 stage_count = 0;
1612 opt_sc_p = false;
1613 ps = sms_schedule_by_order (g, mii, maxii, node_order);
1614
1615 if (ps)
a5ea7ace 1616 {
0b79ae60 1617 /* Try to achieve optimized SC by normalizing the partial
1618 schedule (having the cycles start from cycle zero).
1619 The branch location must be placed in row ii-1 in the
1620 final scheduling. If failed, shift all instructions to
1621 position the branch in row ii-1. */
1622 opt_sc_p = optimize_sc (ps, g);
1623 if (opt_sc_p)
1624 stage_count = calculate_stage_count (ps, 0);
1625 else
1626 {
1627 /* Bring the branch to cycle ii-1. */
1628 int amount = (SCHED_TIME (g->closing_branch->cuid)
1629 - (ps->ii - 1));
1630
1631 if (dump_file)
1632 fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
1633
1634 stage_count = calculate_stage_count (ps, amount);
1635 }
1636
1637 gcc_assert (stage_count >= 1);
a5ea7ace 1638 }
0b79ae60 1639
1640 /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
1641 1 means that there is no interleaving between iterations thus
1642 we let the scheduling passes do the job in this case. */
e9df34d5 1643 if (stage_count < PARAM_VALUE (PARAM_SMS_MIN_SC)
0b79ae60 1644 || (count_init && (loop_count <= stage_count))
edfb0cd4 1645 || (max_trip_count >= 0 && max_trip_count <= stage_count)
1646 || (trip_count >= 0 && trip_count <= stage_count))
b6a75366 1647 {
0b79ae60 1648 if (dump_file)
1649 {
1650 fprintf (dump_file, "SMS failed... \n");
1651 fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
1652 " loop-count=", stage_count);
f03df321 1653 fprintf (dump_file, "%" PRId64, loop_count);
0b79ae60 1654 fprintf (dump_file, ", trip-count=");
edfb0cd4 1655 fprintf (dump_file, "%" PRId64 "max %" PRId64,
1656 (int64_t) trip_count, (int64_t) max_trip_count);
0b79ae60 1657 fprintf (dump_file, ")\n");
1658 }
1659 break;
b6a75366 1660 }
0b79ae60 1661
a5ea7ace 1662 if (!opt_sc_p)
1663 {
1664 /* Rotate the partial schedule to have the branch in row ii-1. */
7282ef12 1665 int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
a5ea7ace 1666
1667 reset_sched_times (ps, amount);
1668 rotate_partial_schedule (ps, amount);
1669 }
6f7f081f 1670
6f7f081f 1671 set_columns_for_ps (ps);
5b6269ed 1672
e9df34d5 1673 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
0b79ae60 1674 if (!schedule_reg_moves (ps))
1675 {
1676 mii = ps->ii + 1;
1677 free_partial_schedule (ps);
1678 continue;
1679 }
1680
e9df34d5 1681 /* Moves that handle incoming values might have been added
1682 to a new first stage. Bump the stage count if so.
1683
1684 ??? Perhaps we could consider rotating the schedule here
1685 instead? */
1686 if (PS_MIN_CYCLE (ps) < min_cycle)
1687 {
1688 reset_sched_times (ps, 0);
1689 stage_count++;
1690 }
1691
1692 /* The stage count should now be correct without rotation. */
1693 gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
1694 PS_STAGE_COUNT (ps) = stage_count;
1695
6f7f081f 1696 canon_loop (loop);
1697
1698 if (dump_file)
1699 {
5169661d 1700 dump_insn_location (tail);
56134a9f 1701 fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
1702 ps->ii, stage_count);
3f5be5f4 1703 print_partial_schedule (ps, dump_file);
5b6269ed 1704 }
6f7f081f 1705
896dbaed 1706 /* case the BCT count is not known , Do loop-versioning */
1707 if (count_reg && ! count_init)
1708 {
c338f2e3 1709 rtx comp_rtx = gen_rtx_GT (VOIDmode, count_reg,
1710 gen_int_mode (stage_count,
1711 GET_MODE (count_reg)));
720cfc43 1712 profile_probability prob = profile_probability::guessed_always ()
1713 .apply_scale (PROB_SMS_ENOUGH_ITERATIONS, 100);
896dbaed 1714
1715 loop_version (loop, comp_rtx, &condition_bb,
720cfc43 1716 prob, prob.invert (),
ca69b069 1717 prob, prob.invert (), true);
896dbaed 1718 }
1719
1720 /* Set new iteration count of loop kernel. */
1721 if (count_reg && count_init)
1722 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1723 - stage_count + 1);
1724
1725 /* Now apply the scheduled kernel to the RTL of the loop. */
5b6269ed 1726 permute_partial_schedule (ps, g->closing_branch->first_note);
f045d41d 1727
896dbaed 1728 /* Mark this loop as software pipelined so the later
6c3ff102 1729 scheduling passes don't touch it. */
896dbaed 1730 if (! flag_resched_modulo_sched)
6c3ff102 1731 mark_loop_unsched (loop);
1732
896dbaed 1733 /* The life-info is not valid any more. */
1734 df_set_bb_dirty (g->bb);
f045d41d 1735
0b79ae60 1736 apply_reg_moves (ps);
896dbaed 1737 if (dump_file)
0b79ae60 1738 print_node_sched_params (dump_file, g->num_nodes, ps);
896dbaed 1739 /* Generate prolog and epilog. */
7bfc9b7c 1740 generate_prolog_epilog (ps, loop, count_reg, count_init);
0b79ae60 1741 break;
5b6269ed 1742 }
b6a75366 1743
5b6269ed 1744 free_partial_schedule (ps);
f1f41a6c 1745 node_sched_param_vec.release ();
5b6269ed 1746 free (node_order);
1747 free_ddg (g);
1748 }
1749
3fa19cbb 1750 free (g_arr);
1751
5b6269ed 1752 /* Release scheduler data, needed until now because of DFA. */
e1ab7874 1753 haifa_sched_finish ();
88e6f696 1754 loop_optimizer_finalize ();
5b6269ed 1755}
1756
1757/* The SMS scheduling algorithm itself
1758 -----------------------------------
1759 Input: 'O' an ordered list of insns of a loop.
1760 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1761
1762 'Q' is the empty Set
1763 'PS' is the partial schedule; it holds the currently scheduled nodes with
1764 their cycle/slot.
1765 'PSP' previously scheduled predecessors.
1766 'PSS' previously scheduled successors.
1767 't(u)' the cycle where u is scheduled.
1768 'l(u)' is the latency of u.
1769 'd(v,u)' is the dependence distance from v to u.
1770 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1771 the node ordering phase.
1772 'check_hardware_resources_conflicts(u, PS, c)'
1773 run a trace around cycle/slot through DFA model
1774 to check resource conflicts involving instruction u
1775 at cycle c given the partial schedule PS.
1776 'add_to_partial_schedule_at_time(u, PS, c)'
1777 Add the node/instruction u to the partial schedule
1778 PS at time c.
1779 'calculate_register_pressure(PS)'
1780 Given a schedule of instructions, calculate the register
1781 pressure it implies. One implementation could be the
1782 maximum number of overlapping live ranges.
1783 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1784 registers available in the hardware.
1785
1786 1. II = MII.
1787 2. PS = empty list
1788 3. for each node u in O in pre-computed order
1789 4. if (PSP(u) != Q && PSS(u) == Q) then
1790 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1791 6. start = Early_start; end = Early_start + II - 1; step = 1
1792 11. else if (PSP(u) == Q && PSS(u) != Q) then
1793 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1794 13. start = Late_start; end = Late_start - II + 1; step = -1
1795 14. else if (PSP(u) != Q && PSS(u) != Q) then
1796 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1797 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1798 17. start = Early_start;
1799 18. end = min(Early_start + II - 1 , Late_start);
1800 19. step = 1
1801 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1802 21. start = ASAP(u); end = start + II - 1; step = 1
1803 22. endif
1804
1805 23. success = false
1806 24. for (c = start ; c != end ; c += step)
1807 25. if check_hardware_resources_conflicts(u, PS, c) then
1808 26. add_to_partial_schedule_at_time(u, PS, c)
1809 27. success = true
1810 28. break
1811 29. endif
1812 30. endfor
1813 31. if (success == false) then
1814 32. II = II + 1
1815 33. if (II > maxII) then
1816 34. finish - failed to schedule
1817 35. endif
1818 36. goto 2.
1819 37. endif
1820 38. endfor
1821 39. if (calculate_register_pressure(PS) > maxRP) then
1822 40. goto 32.
1823 41. endif
1824 42. compute epilogue & prologue
1825 43. finish - succeeded to schedule
469e33a0 1826
1827 ??? The algorithm restricts the scheduling window to II cycles.
1828 In rare cases, it may be better to allow windows of II+1 cycles.
1829 The window would then start and end on the same row, but with
1830 different "must precede" and "must follow" requirements. */
5b6269ed 1831
1832/* A limit on the number of cycles that resource conflicts can span. ??? Should
1833 be provided by DFA, and be dependent on the type of insn scheduled. Currently
1834 set to 0 to save compile time. */
1835#define DFA_HISTORY SMS_DFA_HISTORY
1836
76387907 1837/* A threshold for the number of repeated unsuccessful attempts to insert
1838 an empty row, before we flush the partial schedule and start over. */
1839#define MAX_SPLIT_NUM 10
b6a75366 1840/* Given the partial schedule PS, this function calculates and returns the
d90dbd3e 1841 cycles in which we can schedule the node with the given index I.
b6a75366 1842 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1843 noticed that there are several cases in which we fail to SMS the loop
1844 because the sched window of a node is empty due to tight data-deps. In
d90dbd3e 1845 such cases we want to unschedule some of the predecessors/successors
b6a75366 1846 until we get non-empty scheduling window. It returns -1 if the
1847 scheduling window is empty and zero otherwise. */
1848
1849static int
a5ea7ace 1850get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
0f7b323c 1851 sbitmap sched_nodes, int ii, int *start_p, int *step_p,
1852 int *end_p)
b6a75366 1853{
1854 int start, step, end;
0f7b323c 1855 int early_start, late_start;
b6a75366 1856 ddg_edge_ptr e;
3c6549f8 1857 auto_sbitmap psp (ps->g->num_nodes);
1858 auto_sbitmap pss (ps->g->num_nodes);
b6a75366 1859 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1860 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1861 int psp_not_empty;
1862 int pss_not_empty;
0f7b323c 1863 int count_preds;
1864 int count_succs;
b6a75366 1865
1866 /* 1. compute sched window for u (start, end, step). */
53c5d9d4 1867 bitmap_clear (psp);
1868 bitmap_clear (pss);
1869 psp_not_empty = bitmap_and (psp, u_node_preds, sched_nodes);
1870 pss_not_empty = bitmap_and (pss, u_node_succs, sched_nodes);
b6a75366 1871
0f7b323c 1872 /* We first compute a forward range (start <= end), then decide whether
1873 to reverse it. */
1874 early_start = INT_MIN;
1875 late_start = INT_MAX;
1876 start = INT_MIN;
1877 end = INT_MAX;
1878 step = 1;
b6a75366 1879
0f7b323c 1880 count_preds = 0;
1881 count_succs = 0;
a9ac8caa 1882
2beb48b8 1883 if (dump_file && (psp_not_empty || pss_not_empty))
1884 {
1885 fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
1886 "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
1887 fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
1888 "start", "early start", "late start", "end", "time");
1889 fprintf (dump_file, "=========== =========== =========== ==========="
1890 " =====\n");
1891 }
0f7b323c 1892 /* Calculate early_start and limit end. Both bounds are inclusive. */
1893 if (psp_not_empty)
1894 for (e = u_node->in; e != 0; e = e->next_in)
1895 {
7282ef12 1896 int v = e->src->cuid;
76387907 1897
08b7917c 1898 if (bitmap_bit_p (sched_nodes, v))
0f7b323c 1899 {
7282ef12 1900 int p_st = SCHED_TIME (v);
2beb48b8 1901 int earliest = p_st + e->latency - (e->distance * ii);
1902 int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
76387907 1903
2beb48b8 1904 if (dump_file)
1905 {
1906 fprintf (dump_file, "%11s %11d %11s %11d %5d",
1907 "", earliest, "", latest, p_st);
1908 print_ddg_edge (dump_file, e);
1909 fprintf (dump_file, "\n");
1910 }
76387907 1911
2beb48b8 1912 early_start = MAX (early_start, earliest);
1913 end = MIN (end, latest);
b6a75366 1914
0f7b323c 1915 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1916 count_preds++;
0f7b323c 1917 }
0f7b323c 1918 }
fe861e75 1919
0f7b323c 1920 /* Calculate late_start and limit start. Both bounds are inclusive. */
1921 if (pss_not_empty)
1922 for (e = u_node->out; e != 0; e = e->next_out)
1923 {
7282ef12 1924 int v = e->dest->cuid;
a9ac8caa 1925
08b7917c 1926 if (bitmap_bit_p (sched_nodes, v))
0f7b323c 1927 {
7282ef12 1928 int s_st = SCHED_TIME (v);
2beb48b8 1929 int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
1930 int latest = s_st - e->latency + (e->distance * ii);
b6a75366 1931
2beb48b8 1932 if (dump_file)
1933 {
1934 fprintf (dump_file, "%11d %11s %11d %11s %5d",
1935 earliest, "", latest, "", s_st);
1936 print_ddg_edge (dump_file, e);
1937 fprintf (dump_file, "\n");
1938 }
76387907 1939
2beb48b8 1940 start = MAX (start, earliest);
1941 late_start = MIN (late_start, latest);
a9ac8caa 1942
0f7b323c 1943 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1944 count_succs++;
0f7b323c 1945 }
0f7b323c 1946 }
a9ac8caa 1947
2beb48b8 1948 if (dump_file && (psp_not_empty || pss_not_empty))
1949 {
1950 fprintf (dump_file, "----------- ----------- ----------- -----------"
1951 " -----\n");
1952 fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
1953 start, early_start, late_start, end, "",
1954 "(max, max, min, min)");
1955 }
1956
0f7b323c 1957 /* Get a target scheduling window no bigger than ii. */
1958 if (early_start == INT_MIN && late_start == INT_MAX)
7282ef12 1959 early_start = NODE_ASAP (u_node);
0f7b323c 1960 else if (early_start == INT_MIN)
1961 early_start = late_start - (ii - 1);
1962 late_start = MIN (late_start, early_start + (ii - 1));
a9ac8caa 1963
0f7b323c 1964 /* Apply memory dependence limits. */
1965 start = MAX (start, early_start);
1966 end = MIN (end, late_start);
fe861e75 1967
2beb48b8 1968 if (dump_file && (psp_not_empty || pss_not_empty))
1969 fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
1970 "", start, end, "", "");
1971
0f7b323c 1972 /* If there are at least as many successors as predecessors, schedule the
1973 node close to its successors. */
1974 if (pss_not_empty && count_succs >= count_preds)
b6a75366 1975 {
a4f59596 1976 std::swap (start, end);
0f7b323c 1977 step = -1;
b6a75366 1978 }
1979
0f7b323c 1980 /* Now that we've finalized the window, make END an exclusive rather
1981 than an inclusive bound. */
1982 end += step;
1983
b6a75366 1984 *start_p = start;
1985 *step_p = step;
1986 *end_p = end;
b6a75366 1987
1988 if ((start >= end && step == 1) || (start <= end && step == -1))
76387907 1989 {
1990 if (dump_file)
1991 fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
1992 start, end, step);
0f7b323c 1993 return -1;
76387907 1994 }
1995
0f7b323c 1996 return 0;
b6a75366 1997}
1998
fe861e75 1999/* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
2000 node currently been scheduled. At the end of the calculation
84004523 2001 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
2002 U_NODE which are (1) already scheduled in the first/last row of
2003 U_NODE's scheduling window, (2) whose dependence inequality with U
2004 becomes an equality when U is scheduled in this same row, and (3)
2005 whose dependence latency is zero.
2006
c15d54d8 2007 The first and last rows are calculated using the following parameters:
fe861e75 2008 START/END rows - The cycles that begins/ends the traversal on the window;
2009 searching for an empty cycle to schedule U_NODE.
2010 STEP - The direction in which we traverse the window.
84004523 2011 II - The initiation interval. */
fe861e75 2012
2013static void
2014calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
2015 int step, int ii, sbitmap sched_nodes,
2016 sbitmap must_precede, sbitmap must_follow)
2017{
2018 ddg_edge_ptr e;
2019 int first_cycle_in_window, last_cycle_in_window;
fe861e75 2020
2021 gcc_assert (must_precede && must_follow);
2022
2023 /* Consider the following scheduling window:
2024 {first_cycle_in_window, first_cycle_in_window+1, ...,
2025 last_cycle_in_window}. If step is 1 then the following will be
2026 the order we traverse the window: {start=first_cycle_in_window,
2027 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2028 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2029 end=first_cycle_in_window-1} if step is -1. */
2030 first_cycle_in_window = (step == 1) ? start : end - step;
2031 last_cycle_in_window = (step == 1) ? end - step : start;
2032
53c5d9d4 2033 bitmap_clear (must_precede);
2034 bitmap_clear (must_follow);
fe861e75 2035
2036 if (dump_file)
2037 fprintf (dump_file, "\nmust_precede: ");
2038
84004523 2039 /* Instead of checking if:
2040 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2041 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2042 first_cycle_in_window)
2043 && e->latency == 0
2044 we use the fact that latency is non-negative:
2045 SCHED_TIME (e->src) - (e->distance * ii) <=
2046 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2047 first_cycle_in_window
2048 and check only if
2049 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
fe861e75 2050 for (e = u_node->in; e != 0; e = e->next_in)
08b7917c 2051 if (bitmap_bit_p (sched_nodes, e->src->cuid)
7282ef12 2052 && ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
84004523 2053 first_cycle_in_window))
fe861e75 2054 {
2055 if (dump_file)
2056 fprintf (dump_file, "%d ", e->src->cuid);
2057
08b7917c 2058 bitmap_set_bit (must_precede, e->src->cuid);
fe861e75 2059 }
2060
2061 if (dump_file)
2062 fprintf (dump_file, "\nmust_follow: ");
2063
84004523 2064 /* Instead of checking if:
2065 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2066 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2067 last_cycle_in_window)
2068 && e->latency == 0
2069 we use the fact that latency is non-negative:
2070 SCHED_TIME (e->dest) + (e->distance * ii) >=
48e1416a 2071 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
84004523 2072 last_cycle_in_window
2073 and check only if
2074 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
fe861e75 2075 for (e = u_node->out; e != 0; e = e->next_out)
08b7917c 2076 if (bitmap_bit_p (sched_nodes, e->dest->cuid)
7282ef12 2077 && ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
84004523 2078 last_cycle_in_window))
fe861e75 2079 {
2080 if (dump_file)
2081 fprintf (dump_file, "%d ", e->dest->cuid);
2082
08b7917c 2083 bitmap_set_bit (must_follow, e->dest->cuid);
fe861e75 2084 }
2085
2086 if (dump_file)
2087 fprintf (dump_file, "\n");
2088}
2089
2090/* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
2091 parameters to decide if that's possible:
2092 PS - The partial schedule.
2093 U - The serial number of U_NODE.
f0b5f617 2094 NUM_SPLITS - The number of row splits made so far.
fe861e75 2095 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2096 the first row of the scheduling window)
2097 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2098 last row of the scheduling window) */
2099
2100static bool
7282ef12 2101try_scheduling_node_in_cycle (partial_schedule_ptr ps,
34c7f568 2102 int u, int cycle, sbitmap sched_nodes,
fe861e75 2103 int *num_splits, sbitmap must_precede,
2104 sbitmap must_follow)
2105{
2106 ps_insn_ptr psi;
2107 bool success = 0;
2108
2109 verify_partial_schedule (ps, sched_nodes);
7282ef12 2110 psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
fe861e75 2111 if (psi)
2112 {
7282ef12 2113 SCHED_TIME (u) = cycle;
08b7917c 2114 bitmap_set_bit (sched_nodes, u);
fe861e75 2115 success = 1;
2116 *num_splits = 0;
2117 if (dump_file)
34c7f568 2118 fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
fe861e75 2119
2120 }
2121
2122 return success;
2123}
2124
b6a75366 2125/* This function implements the scheduling algorithm for SMS according to the
2126 above algorithm. */
5b6269ed 2127static partial_schedule_ptr
3f5be5f4 2128sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
5b6269ed 2129{
2130 int ii = mii;
76387907 2131 int i, c, success, num_splits = 0;
2132 int flush_and_start_over = true;
5b6269ed 2133 int num_nodes = g->num_nodes;
5b6269ed 2134 int start, end, step; /* Place together into one struct? */
3c6549f8 2135 auto_sbitmap sched_nodes (num_nodes);
2136 auto_sbitmap must_precede (num_nodes);
2137 auto_sbitmap must_follow (num_nodes);
2138 auto_sbitmap tobe_scheduled (num_nodes);
f045d41d 2139
5b6269ed 2140 partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
2141
53c5d9d4 2142 bitmap_ones (tobe_scheduled);
2143 bitmap_clear (sched_nodes);
b6a75366 2144
76387907 2145 while (flush_and_start_over && (ii < maxii))
5b6269ed 2146 {
b6a75366 2147
5b6269ed 2148 if (dump_file)
d4473c84 2149 fprintf (dump_file, "Starting with ii=%d\n", ii);
76387907 2150 flush_and_start_over = false;
53c5d9d4 2151 bitmap_clear (sched_nodes);
5b6269ed 2152
2153 for (i = 0; i < num_nodes; i++)
2154 {
2155 int u = nodes_order[i];
b6a75366 2156 ddg_node_ptr u_node = &ps->g->nodes[u];
bf79ca12 2157 rtx_insn *insn = u_node->insn;
5b6269ed 2158
9845d120 2159 if (!NONDEBUG_INSN_P (insn))
5b6269ed 2160 {
08b7917c 2161 bitmap_clear_bit (tobe_scheduled, u);
b6a75366 2162 continue;
5b6269ed 2163 }
2164
08b7917c 2165 if (bitmap_bit_p (sched_nodes, u))
b6a75366 2166 continue;
5b6269ed 2167
b6a75366 2168 /* Try to get non-empty scheduling window. */
76387907 2169 success = 0;
a5ea7ace 2170 if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
76387907 2171 &step, &end) == 0)
2172 {
2173 if (dump_file)
2beb48b8 2174 fprintf (dump_file, "\nTrying to schedule node %d "
2175 "INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
76387907 2176 (g->nodes[u].insn)), start, end, step);
76387907 2177
2178 gcc_assert ((step > 0 && start < end)
2179 || (step < 0 && start > end));
2180
fe861e75 2181 calculate_must_precede_follow (u_node, start, end, step, ii,
2182 sched_nodes, must_precede,
2183 must_follow);
2184
76387907 2185 for (c = start; c != end; c += step)
2186 {
a5ea7ace 2187 sbitmap tmp_precede, tmp_follow;
fe861e75 2188
a5ea7ace 2189 set_must_precede_follow (&tmp_follow, must_follow,
2190 &tmp_precede, must_precede,
2191 c, start, end, step);
fe861e75 2192 success =
7282ef12 2193 try_scheduling_node_in_cycle (ps, u, c,
fe861e75 2194 sched_nodes,
2195 &num_splits, tmp_precede,
2196 tmp_follow);
2197 if (success)
2198 break;
76387907 2199 }
fe861e75 2200
76387907 2201 verify_partial_schedule (ps, sched_nodes);
2202 }
2203 if (!success)
2204 {
2205 int split_row;
2206
2207 if (ii++ == maxii)
2208 break;
2209
2210 if (num_splits >= MAX_SPLIT_NUM)
2211 {
2212 num_splits = 0;
2213 flush_and_start_over = true;
2214 verify_partial_schedule (ps, sched_nodes);
2215 reset_partial_schedule (ps, ii);
2216 verify_partial_schedule (ps, sched_nodes);
2217 break;
2218 }
2219
2220 num_splits++;
7af239b5 2221 /* The scheduling window is exclusive of 'end'
2222 whereas compute_split_window() expects an inclusive,
2223 ordered range. */
76387907 2224 if (step == 1)
7af239b5 2225 split_row = compute_split_row (sched_nodes, start, end - 1,
76387907 2226 ps->ii, u_node);
2227 else
7af239b5 2228 split_row = compute_split_row (sched_nodes, end + 1, start,
76387907 2229 ps->ii, u_node);
b6a75366 2230
76387907 2231 ps_insert_empty_row (ps, split_row, sched_nodes);
2232 i--; /* Go back and retry node i. */
5b6269ed 2233
76387907 2234 if (dump_file)
2235 fprintf (dump_file, "num_splits=%d\n", num_splits);
2236 }
5b6269ed 2237
76387907 2238 /* ??? If (success), check register pressure estimates. */
2239 } /* Continue with next node. */
2240 } /* While flush_and_start_over. */
5b6269ed 2241 if (ii >= maxii)
2242 {
2243 free_partial_schedule (ps);
2244 ps = NULL;
2245 }
76387907 2246 else
53c5d9d4 2247 gcc_assert (bitmap_equal_p (tobe_scheduled, sched_nodes));
76387907 2248
5b6269ed 2249 return ps;
2250}
2251
76387907 2252/* This function inserts a new empty row into PS at the position
2253 according to SPLITROW, keeping all already scheduled instructions
2254 intact and updating their SCHED_TIME and cycle accordingly. */
2255static void
2256ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
2257 sbitmap sched_nodes)
2258{
2259 ps_insn_ptr crr_insn;
2260 ps_insn_ptr *rows_new;
2261 int ii = ps->ii;
2262 int new_ii = ii + 1;
2263 int row;
4815ed0c 2264 int *rows_length_new;
76387907 2265
2266 verify_partial_schedule (ps, sched_nodes);
2267
2268 /* We normalize sched_time and rotate ps to have only non-negative sched
2269 times, for simplicity of updating cycles after inserting new row. */
2270 split_row -= ps->min_cycle;
2271 split_row = SMODULO (split_row, ii);
2272 if (dump_file)
2273 fprintf (dump_file, "split_row=%d\n", split_row);
2274
6f7f081f 2275 reset_sched_times (ps, PS_MIN_CYCLE (ps));
2276 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
76387907 2277
2278 rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
4815ed0c 2279 rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
76387907 2280 for (row = 0; row < split_row; row++)
2281 {
2282 rows_new[row] = ps->rows[row];
4815ed0c 2283 rows_length_new[row] = ps->rows_length[row];
76387907 2284 ps->rows[row] = NULL;
2285 for (crr_insn = rows_new[row];
2286 crr_insn; crr_insn = crr_insn->next_in_row)
2287 {
7282ef12 2288 int u = crr_insn->id;
76387907 2289 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
2290
2291 SCHED_TIME (u) = new_time;
2292 crr_insn->cycle = new_time;
2293 SCHED_ROW (u) = new_time % new_ii;
2294 SCHED_STAGE (u) = new_time / new_ii;
2295 }
2296
2297 }
2298
2299 rows_new[split_row] = NULL;
2300
2301 for (row = split_row; row < ii; row++)
2302 {
2303 rows_new[row + 1] = ps->rows[row];
4815ed0c 2304 rows_length_new[row + 1] = ps->rows_length[row];
76387907 2305 ps->rows[row] = NULL;
2306 for (crr_insn = rows_new[row + 1];
2307 crr_insn; crr_insn = crr_insn->next_in_row)
2308 {
7282ef12 2309 int u = crr_insn->id;
76387907 2310 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
2311
2312 SCHED_TIME (u) = new_time;
2313 crr_insn->cycle = new_time;
2314 SCHED_ROW (u) = new_time % new_ii;
2315 SCHED_STAGE (u) = new_time / new_ii;
2316 }
2317 }
2318
2319 /* Updating ps. */
2320 ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
2321 + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
2322 ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
2323 + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
2324 free (ps->rows);
2325 ps->rows = rows_new;
4815ed0c 2326 free (ps->rows_length);
2327 ps->rows_length = rows_length_new;
76387907 2328 ps->ii = new_ii;
2329 gcc_assert (ps->min_cycle >= 0);
2330
2331 verify_partial_schedule (ps, sched_nodes);
2332
2333 if (dump_file)
2334 fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
2335 ps->max_cycle);
2336}
2337
2338/* Given U_NODE which is the node that failed to be scheduled; LOW and
2339 UP which are the boundaries of it's scheduling window; compute using
c7684b8e 2340 SCHED_NODES and II a row in the partial schedule that can be split
76387907 2341 which will separate a critical predecessor from a critical successor
2342 thereby expanding the window, and return it. */
2343static int
2344compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
2345 ddg_node_ptr u_node)
2346{
2347 ddg_edge_ptr e;
2348 int lower = INT_MIN, upper = INT_MAX;
7282ef12 2349 int crit_pred = -1;
2350 int crit_succ = -1;
76387907 2351 int crit_cycle;
2352
2353 for (e = u_node->in; e != 0; e = e->next_in)
2354 {
7282ef12 2355 int v = e->src->cuid;
76387907 2356
08b7917c 2357 if (bitmap_bit_p (sched_nodes, v)
7282ef12 2358 && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
2359 if (SCHED_TIME (v) > lower)
76387907 2360 {
7282ef12 2361 crit_pred = v;
2362 lower = SCHED_TIME (v);
76387907 2363 }
2364 }
2365
7282ef12 2366 if (crit_pred >= 0)
76387907 2367 {
2368 crit_cycle = SCHED_TIME (crit_pred) + 1;
2369 return SMODULO (crit_cycle, ii);
2370 }
2371
2372 for (e = u_node->out; e != 0; e = e->next_out)
2373 {
7282ef12 2374 int v = e->dest->cuid;
2375
08b7917c 2376 if (bitmap_bit_p (sched_nodes, v)
7282ef12 2377 && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
2378 if (SCHED_TIME (v) < upper)
76387907 2379 {
7282ef12 2380 crit_succ = v;
2381 upper = SCHED_TIME (v);
76387907 2382 }
2383 }
2384
7282ef12 2385 if (crit_succ >= 0)
76387907 2386 {
2387 crit_cycle = SCHED_TIME (crit_succ);
2388 return SMODULO (crit_cycle, ii);
2389 }
2390
2391 if (dump_file)
2392 fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2393
2394 return SMODULO ((low + up + 1) / 2, ii);
2395}
2396
2397static void
2398verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2399{
2400 int row;
2401 ps_insn_ptr crr_insn;
2402
2403 for (row = 0; row < ps->ii; row++)
4815ed0c 2404 {
2405 int length = 0;
2406
2407 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2408 {
7282ef12 2409 int u = crr_insn->id;
4815ed0c 2410
2411 length++;
08b7917c 2412 gcc_assert (bitmap_bit_p (sched_nodes, u));
4815ed0c 2413 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2414 popcount (sched_nodes) == number of insns in ps. */
2415 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2416 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2417 }
2418
2419 gcc_assert (ps->rows_length[row] == length);
2420 }
76387907 2421}
2422
5b6269ed 2423\f
2424/* This page implements the algorithm for ordering the nodes of a DDG
2425 for modulo scheduling, activated through the
2426 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2427
2428#define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2429#define ASAP(x) (ORDER_PARAMS ((x))->asap)
2430#define ALAP(x) (ORDER_PARAMS ((x))->alap)
2431#define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2432#define MOB(x) (ALAP ((x)) - ASAP ((x)))
2433#define DEPTH(x) (ASAP ((x)))
2434
2435typedef struct node_order_params * nopa;
2436
2437static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2438static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
c0fb94bd 2439static nopa calculate_order_params (ddg_ptr, int, int *);
5b6269ed 2440static int find_max_asap (ddg_ptr, sbitmap);
2441static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2442static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2443
2444enum sms_direction {BOTTOMUP, TOPDOWN};
2445
2446struct node_order_params
2447{
2448 int asap;
2449 int alap;
2450 int height;
2451};
2452
2453/* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2454static void
2455check_nodes_order (int *node_order, int num_nodes)
2456{
2457 int i;
3c6549f8 2458 auto_sbitmap tmp (num_nodes);
5b6269ed 2459
53c5d9d4 2460 bitmap_clear (tmp);
5b6269ed 2461
a9ac8caa 2462 if (dump_file)
2463 fprintf (dump_file, "SMS final nodes order: \n");
2464
5b6269ed 2465 for (i = 0; i < num_nodes; i++)
2466 {
2467 int u = node_order[i];
2468
a9ac8caa 2469 if (dump_file)
2470 fprintf (dump_file, "%d ", u);
08b7917c 2471 gcc_assert (u < num_nodes && u >= 0 && !bitmap_bit_p (tmp, u));
5b6269ed 2472
08b7917c 2473 bitmap_set_bit (tmp, u);
5b6269ed 2474 }
48e1416a 2475
a9ac8caa 2476 if (dump_file)
2477 fprintf (dump_file, "\n");
5b6269ed 2478}
2479
2480/* Order the nodes of G for scheduling and pass the result in
2481 NODE_ORDER. Also set aux.count of each node to ASAP.
c0fb94bd 2482 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
5b6269ed 2483static int
c0fb94bd 2484sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
5b6269ed 2485{
2486 int i;
2487 int rec_mii = 0;
2488 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2489
c0fb94bd 2490 nopa nops = calculate_order_params (g, mii, pmax_asap);
5b6269ed 2491
65ef61df 2492 if (dump_file)
2493 print_sccs (dump_file, sccs, g);
2494
5b6269ed 2495 order_nodes_of_sccs (sccs, node_order);
2496
2497 if (sccs->num_sccs > 0)
2498 /* First SCC has the largest recurrence_length. */
2499 rec_mii = sccs->sccs[0]->recurrence_length;
2500
2501 /* Save ASAP before destroying node_order_params. */
2502 for (i = 0; i < g->num_nodes; i++)
2503 {
2504 ddg_node_ptr v = &g->nodes[i];
2505 v->aux.count = ASAP (v);
2506 }
2507
2508 free (nops);
2509 free_ddg_all_sccs (sccs);
2510 check_nodes_order (node_order, g->num_nodes);
2511
2512 return rec_mii;
2513}
2514
2515static void
2516order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2517{
2518 int i, pos = 0;
2519 ddg_ptr g = all_sccs->ddg;
2520 int num_nodes = g->num_nodes;
3c6549f8 2521 auto_sbitmap prev_sccs (num_nodes);
2522 auto_sbitmap on_path (num_nodes);
2523 auto_sbitmap tmp (num_nodes);
2524 auto_sbitmap ones (num_nodes);
5b6269ed 2525
53c5d9d4 2526 bitmap_clear (prev_sccs);
2527 bitmap_ones (ones);
5b6269ed 2528
f0b5f617 2529 /* Perform the node ordering starting from the SCC with the highest recMII.
5b6269ed 2530 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2531 for (i = 0; i < all_sccs->num_sccs; i++)
2532 {
2533 ddg_scc_ptr scc = all_sccs->sccs[i];
2534
2535 /* Add nodes on paths from previous SCCs to the current SCC. */
2536 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
53c5d9d4 2537 bitmap_ior (tmp, scc->nodes, on_path);
5b6269ed 2538
2539 /* Add nodes on paths from the current SCC to previous SCCs. */
2540 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
53c5d9d4 2541 bitmap_ior (tmp, tmp, on_path);
5b6269ed 2542
2543 /* Remove nodes of previous SCCs from current extended SCC. */
53c5d9d4 2544 bitmap_and_compl (tmp, tmp, prev_sccs);
5b6269ed 2545
2546 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2547 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2548 }
2549
2550 /* Handle the remaining nodes that do not belong to any scc. Each call
2551 to order_nodes_in_scc handles a single connected component. */
2552 while (pos < g->num_nodes)
2553 {
53c5d9d4 2554 bitmap_and_compl (tmp, ones, prev_sccs);
5b6269ed 2555 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2556 }
5b6269ed 2557}
2558
2559/* MII is needed if we consider backarcs (that do not close recursive cycles). */
2560static struct node_order_params *
c0fb94bd 2561calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
5b6269ed 2562{
2563 int u;
2564 int max_asap;
2565 int num_nodes = g->num_nodes;
2566 ddg_edge_ptr e;
2567 /* Allocate a place to hold ordering params for each node in the DDG. */
2568 nopa node_order_params_arr;
2569
2570 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2571 node_order_params_arr = (nopa) xcalloc (num_nodes,
2572 sizeof (struct node_order_params));
2573
2c763ed4 2574 /* Set the aux pointer of each node to point to its order_params structure. */
5b6269ed 2575 for (u = 0; u < num_nodes; u++)
2576 g->nodes[u].aux.info = &node_order_params_arr[u];
2577
2578 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2579 calculate ASAP, ALAP, mobility, distance, and height for each node
2580 in the dependence (direct acyclic) graph. */
2581
2582 /* We assume that the nodes in the array are in topological order. */
2583
2584 max_asap = 0;
2585 for (u = 0; u < num_nodes; u++)
2586 {
2587 ddg_node_ptr u_node = &g->nodes[u];
2588
2589 ASAP (u_node) = 0;
2590 for (e = u_node->in; e; e = e->next_in)
2591 if (e->distance == 0)
2592 ASAP (u_node) = MAX (ASAP (u_node),
2593 ASAP (e->src) + e->latency);
2594 max_asap = MAX (max_asap, ASAP (u_node));
2595 }
2596
2597 for (u = num_nodes - 1; u > -1; u--)
2598 {
2599 ddg_node_ptr u_node = &g->nodes[u];
2600
2601 ALAP (u_node) = max_asap;
2602 HEIGHT (u_node) = 0;
2603 for (e = u_node->out; e; e = e->next_out)
2604 if (e->distance == 0)
2605 {
2606 ALAP (u_node) = MIN (ALAP (u_node),
2607 ALAP (e->dest) - e->latency);
2608 HEIGHT (u_node) = MAX (HEIGHT (u_node),
2609 HEIGHT (e->dest) + e->latency);
2610 }
2611 }
a9ac8caa 2612 if (dump_file)
2613 {
2614 fprintf (dump_file, "\nOrder params\n");
2615 for (u = 0; u < num_nodes; u++)
2616 {
2617 ddg_node_ptr u_node = &g->nodes[u];
2618
2619 fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2620 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2621 }
2622 }
5b6269ed 2623
c0fb94bd 2624 *pmax_asap = max_asap;
5b6269ed 2625 return node_order_params_arr;
2626}
2627
2628static int
2629find_max_asap (ddg_ptr g, sbitmap nodes)
2630{
86c1585a 2631 unsigned int u = 0;
5b6269ed 2632 int max_asap = -1;
2633 int result = -1;
3e790786 2634 sbitmap_iterator sbi;
5b6269ed 2635
0d211963 2636 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
5b6269ed 2637 {
2638 ddg_node_ptr u_node = &g->nodes[u];
2639
2640 if (max_asap < ASAP (u_node))
2641 {
2642 max_asap = ASAP (u_node);
2643 result = u;
2644 }
3e790786 2645 }
5b6269ed 2646 return result;
2647}
2648
2649static int
2650find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2651{
86c1585a 2652 unsigned int u = 0;
5b6269ed 2653 int max_hv = -1;
2654 int min_mob = INT_MAX;
2655 int result = -1;
3e790786 2656 sbitmap_iterator sbi;
5b6269ed 2657
0d211963 2658 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
5b6269ed 2659 {
2660 ddg_node_ptr u_node = &g->nodes[u];
2661
2662 if (max_hv < HEIGHT (u_node))
2663 {
2664 max_hv = HEIGHT (u_node);
2665 min_mob = MOB (u_node);
2666 result = u;
2667 }
2668 else if ((max_hv == HEIGHT (u_node))
2669 && (min_mob > MOB (u_node)))
2670 {
2671 min_mob = MOB (u_node);
2672 result = u;
2673 }
3e790786 2674 }
5b6269ed 2675 return result;
2676}
2677
2678static int
2679find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2680{
86c1585a 2681 unsigned int u = 0;
5b6269ed 2682 int max_dv = -1;
2683 int min_mob = INT_MAX;
2684 int result = -1;
3e790786 2685 sbitmap_iterator sbi;
5b6269ed 2686
0d211963 2687 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
5b6269ed 2688 {
2689 ddg_node_ptr u_node = &g->nodes[u];
2690
2691 if (max_dv < DEPTH (u_node))
2692 {
2693 max_dv = DEPTH (u_node);
2694 min_mob = MOB (u_node);
2695 result = u;
2696 }
2697 else if ((max_dv == DEPTH (u_node))
2698 && (min_mob > MOB (u_node)))
2699 {
2700 min_mob = MOB (u_node);
2701 result = u;
2702 }
3e790786 2703 }
5b6269ed 2704 return result;
2705}
2706
2707/* Places the nodes of SCC into the NODE_ORDER array starting
2708 at position POS, according to the SMS ordering algorithm.
2709 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2710 the NODE_ORDER array, starting from position zero. */
2711static int
2712order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2713 int * node_order, int pos)
2714{
2715 enum sms_direction dir;
2716 int num_nodes = g->num_nodes;
3c6549f8 2717 auto_sbitmap workset (num_nodes);
2718 auto_sbitmap tmp (num_nodes);
5b6269ed 2719 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
3c6549f8 2720 auto_sbitmap predecessors (num_nodes);
2721 auto_sbitmap successors (num_nodes);
5b6269ed 2722
53c5d9d4 2723 bitmap_clear (predecessors);
5b6269ed 2724 find_predecessors (predecessors, g, nodes_ordered);
2725
53c5d9d4 2726 bitmap_clear (successors);
5b6269ed 2727 find_successors (successors, g, nodes_ordered);
2728
53c5d9d4 2729 bitmap_clear (tmp);
2730 if (bitmap_and (tmp, predecessors, scc))
5b6269ed 2731 {
53c5d9d4 2732 bitmap_copy (workset, tmp);
5b6269ed 2733 dir = BOTTOMUP;
2734 }
53c5d9d4 2735 else if (bitmap_and (tmp, successors, scc))
5b6269ed 2736 {
53c5d9d4 2737 bitmap_copy (workset, tmp);
5b6269ed 2738 dir = TOPDOWN;
2739 }
2740 else
2741 {
2742 int u;
2743
53c5d9d4 2744 bitmap_clear (workset);
5b6269ed 2745 if ((u = find_max_asap (g, scc)) >= 0)
08b7917c 2746 bitmap_set_bit (workset, u);
5b6269ed 2747 dir = BOTTOMUP;
2748 }
2749
53c5d9d4 2750 bitmap_clear (zero_bitmap);
2751 while (!bitmap_equal_p (workset, zero_bitmap))
5b6269ed 2752 {
2753 int v;
2754 ddg_node_ptr v_node;
2755 sbitmap v_node_preds;
2756 sbitmap v_node_succs;
2757
2758 if (dir == TOPDOWN)
2759 {
53c5d9d4 2760 while (!bitmap_equal_p (workset, zero_bitmap))
5b6269ed 2761 {
2762 v = find_max_hv_min_mob (g, workset);
2763 v_node = &g->nodes[v];
2764 node_order[pos++] = v;
2765 v_node_succs = NODE_SUCCESSORS (v_node);
53c5d9d4 2766 bitmap_and (tmp, v_node_succs, scc);
5b6269ed 2767
2768 /* Don't consider the already ordered successors again. */
53c5d9d4 2769 bitmap_and_compl (tmp, tmp, nodes_ordered);
2770 bitmap_ior (workset, workset, tmp);
08b7917c 2771 bitmap_clear_bit (workset, v);
2772 bitmap_set_bit (nodes_ordered, v);
5b6269ed 2773 }
2774 dir = BOTTOMUP;
53c5d9d4 2775 bitmap_clear (predecessors);
5b6269ed 2776 find_predecessors (predecessors, g, nodes_ordered);
53c5d9d4 2777 bitmap_and (workset, predecessors, scc);
5b6269ed 2778 }
2779 else
2780 {
53c5d9d4 2781 while (!bitmap_equal_p (workset, zero_bitmap))
5b6269ed 2782 {
2783 v = find_max_dv_min_mob (g, workset);
2784 v_node = &g->nodes[v];
2785 node_order[pos++] = v;
2786 v_node_preds = NODE_PREDECESSORS (v_node);
53c5d9d4 2787 bitmap_and (tmp, v_node_preds, scc);
5b6269ed 2788
2789 /* Don't consider the already ordered predecessors again. */
53c5d9d4 2790 bitmap_and_compl (tmp, tmp, nodes_ordered);
2791 bitmap_ior (workset, workset, tmp);
08b7917c 2792 bitmap_clear_bit (workset, v);
2793 bitmap_set_bit (nodes_ordered, v);
5b6269ed 2794 }
2795 dir = TOPDOWN;
53c5d9d4 2796 bitmap_clear (successors);
5b6269ed 2797 find_successors (successors, g, nodes_ordered);
53c5d9d4 2798 bitmap_and (workset, successors, scc);
5b6269ed 2799 }
2800 }
5b6269ed 2801 sbitmap_free (zero_bitmap);
5b6269ed 2802 return pos;
2803}
2804
2805\f
2806/* This page contains functions for manipulating partial-schedules during
2807 modulo scheduling. */
2808
2809/* Create a partial schedule and allocate a memory to hold II rows. */
1bed606a 2810
2811static partial_schedule_ptr
5b6269ed 2812create_partial_schedule (int ii, ddg_ptr g, int history)
2813{
4c36ffe6 2814 partial_schedule_ptr ps = XNEW (struct partial_schedule);
5b6269ed 2815 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
4815ed0c 2816 ps->rows_length = (int *) xcalloc (ii, sizeof (int));
f1f41a6c 2817 ps->reg_moves.create (0);
5b6269ed 2818 ps->ii = ii;
2819 ps->history = history;
2820 ps->min_cycle = INT_MAX;
2821 ps->max_cycle = INT_MIN;
2822 ps->g = g;
2823
2824 return ps;
2825}
2826
2827/* Free the PS_INSNs in rows array of the given partial schedule.
2828 ??? Consider caching the PS_INSN's. */
2829static void
2830free_ps_insns (partial_schedule_ptr ps)
2831{
2832 int i;
2833
2834 for (i = 0; i < ps->ii; i++)
2835 {
2836 while (ps->rows[i])
2837 {
2838 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2839
2840 free (ps->rows[i]);
2841 ps->rows[i] = ps_insn;
2842 }
2843 ps->rows[i] = NULL;
2844 }
2845}
2846
2847/* Free all the memory allocated to the partial schedule. */
1bed606a 2848
2849static void
5b6269ed 2850free_partial_schedule (partial_schedule_ptr ps)
2851{
0b79ae60 2852 ps_reg_move_info *move;
2853 unsigned int i;
2854
5b6269ed 2855 if (!ps)
2856 return;
0b79ae60 2857
f1f41a6c 2858 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
0b79ae60 2859 sbitmap_free (move->uses);
f1f41a6c 2860 ps->reg_moves.release ();
0b79ae60 2861
5b6269ed 2862 free_ps_insns (ps);
2863 free (ps->rows);
4815ed0c 2864 free (ps->rows_length);
5b6269ed 2865 free (ps);
2866}
2867
2868/* Clear the rows array with its PS_INSNs, and create a new one with
2869 NEW_II rows. */
1bed606a 2870
2871static void
5b6269ed 2872reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2873{
2874 if (!ps)
2875 return;
2876 free_ps_insns (ps);
2877 if (new_ii == ps->ii)
2878 return;
2879 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2880 * sizeof (ps_insn_ptr));
2881 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
4815ed0c 2882 ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
2883 memset (ps->rows_length, 0, new_ii * sizeof (int));
5b6269ed 2884 ps->ii = new_ii;
2885 ps->min_cycle = INT_MAX;
2886 ps->max_cycle = INT_MIN;
2887}
2888
2889/* Prints the partial schedule as an ii rows array, for each rows
2890 print the ids of the insns in it. */
2891void
2892print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2893{
2894 int i;
2895
2896 for (i = 0; i < ps->ii; i++)
2897 {
2898 ps_insn_ptr ps_i = ps->rows[i];
2899
34c7f568 2900 fprintf (dump, "\n[ROW %d ]: ", i);
5b6269ed 2901 while (ps_i)
2902 {
bc69df91 2903 rtx_insn *insn = ps_rtl_insn (ps, ps_i->id);
7282ef12 2904
2905 if (JUMP_P (insn))
2906 fprintf (dump, "%d (branch), ", INSN_UID (insn));
abbfd803 2907 else
7282ef12 2908 fprintf (dump, "%d, ", INSN_UID (insn));
abbfd803 2909
5b6269ed 2910 ps_i = ps_i->next_in_row;
2911 }
2912 }
2913}
2914
2915/* Creates an object of PS_INSN and initializes it to the given parameters. */
2916static ps_insn_ptr
7282ef12 2917create_ps_insn (int id, int cycle)
5b6269ed 2918{
4c36ffe6 2919 ps_insn_ptr ps_i = XNEW (struct ps_insn);
5b6269ed 2920
7282ef12 2921 ps_i->id = id;
5b6269ed 2922 ps_i->next_in_row = NULL;
2923 ps_i->prev_in_row = NULL;
5b6269ed 2924 ps_i->cycle = cycle;
2925
2926 return ps_i;
2927}
2928
2929
9bf2b489 2930/* Removes the given PS_INSN from the partial schedule. */
2931static void
5b6269ed 2932remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2933{
2934 int row;
2935
9bf2b489 2936 gcc_assert (ps && ps_i);
2937
5b6269ed 2938 row = SMODULO (ps_i->cycle, ps->ii);
2939 if (! ps_i->prev_in_row)
2940 {
9bf2b489 2941 gcc_assert (ps_i == ps->rows[row]);
5b6269ed 2942 ps->rows[row] = ps_i->next_in_row;
2943 if (ps->rows[row])
2944 ps->rows[row]->prev_in_row = NULL;
2945 }
2946 else
2947 {
2948 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2949 if (ps_i->next_in_row)
2950 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2951 }
4815ed0c 2952
2953 ps->rows_length[row] -= 1;
5b6269ed 2954 free (ps_i);
9bf2b489 2955 return;
5b6269ed 2956}
2957
f045d41d 2958/* Unlike what literature describes for modulo scheduling (which focuses
2959 on VLIW machines) the order of the instructions inside a cycle is
2960 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2961 where the current instruction should go relative to the already
2962 scheduled instructions in the given cycle. Go over these
2963 instructions and find the first possible column to put it in. */
2964static bool
2965ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2966 sbitmap must_precede, sbitmap must_follow)
2967{
2968 ps_insn_ptr next_ps_i;
2969 ps_insn_ptr first_must_follow = NULL;
2970 ps_insn_ptr last_must_precede = NULL;
6f7f081f 2971 ps_insn_ptr last_in_row = NULL;
f045d41d 2972 int row;
2973
2974 if (! ps_i)
2975 return false;
2976
2977 row = SMODULO (ps_i->cycle, ps->ii);
2978
2979 /* Find the first must follow and the last must precede
91275768 2980 and insert the node immediately after the must precede
dac49aa5 2981 but make sure that it there is no must follow after it. */
f045d41d 2982 for (next_ps_i = ps->rows[row];
2983 next_ps_i;
2984 next_ps_i = next_ps_i->next_in_row)
2985 {
7282ef12 2986 if (must_follow
08b7917c 2987 && bitmap_bit_p (must_follow, next_ps_i->id)
f045d41d 2988 && ! first_must_follow)
2989 first_must_follow = next_ps_i;
08b7917c 2990 if (must_precede && bitmap_bit_p (must_precede, next_ps_i->id))
f045d41d 2991 {
2992 /* If we have already met a node that must follow, then
2993 there is no possible column. */
2994 if (first_must_follow)
2995 return false;
2996 else
2997 last_must_precede = next_ps_i;
2998 }
6f7f081f 2999 /* The closing branch must be the last in the row. */
fba98a9a 3000 if (JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
6f7f081f 3001 return false;
3002
3003 last_in_row = next_ps_i;
f045d41d 3004 }
3005
6f7f081f 3006 /* The closing branch is scheduled as well. Make sure there is no
3007 dependent instruction after it as the branch should be the last
3008 instruction in the row. */
7282ef12 3009 if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
6f7f081f 3010 {
3011 if (first_must_follow)
3012 return false;
3013 if (last_in_row)
3014 {
3015 /* Make the branch the last in the row. New instructions
3016 will be inserted at the beginning of the row or after the
3017 last must_precede instruction thus the branch is guaranteed
3018 to remain the last instruction in the row. */
3019 last_in_row->next_in_row = ps_i;
3020 ps_i->prev_in_row = last_in_row;
3021 ps_i->next_in_row = NULL;
3022 }
3023 else
3024 ps->rows[row] = ps_i;
3025 return true;
3026 }
3027
f045d41d 3028 /* Now insert the node after INSERT_AFTER_PSI. */
3029
3030 if (! last_must_precede)
3031 {
3032 ps_i->next_in_row = ps->rows[row];
3033 ps_i->prev_in_row = NULL;
3034 if (ps_i->next_in_row)
3035 ps_i->next_in_row->prev_in_row = ps_i;
3036 ps->rows[row] = ps_i;
3037 }
3038 else
3039 {
3040 ps_i->next_in_row = last_must_precede->next_in_row;
3041 last_must_precede->next_in_row = ps_i;
3042 ps_i->prev_in_row = last_must_precede;
3043 if (ps_i->next_in_row)
3044 ps_i->next_in_row->prev_in_row = ps_i;
3045 }
3046
3047 return true;
3048}
3049
5b6269ed 3050/* Advances the PS_INSN one column in its current row; returns false
48e1416a 3051 in failure and true in success. Bit N is set in MUST_FOLLOW if
3052 the node with cuid N must be come after the node pointed to by
f045d41d 3053 PS_I when scheduled in the same cycle. */
5b6269ed 3054static int
f045d41d 3055ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3056 sbitmap must_follow)
5b6269ed 3057{
3058 ps_insn_ptr prev, next;
3059 int row;
3060
3061 if (!ps || !ps_i)
3062 return false;
3063
3064 row = SMODULO (ps_i->cycle, ps->ii);
3065
3066 if (! ps_i->next_in_row)
3067 return false;
3068
3069 /* Check if next_in_row is dependent on ps_i, both having same sched
3070 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
08b7917c 3071 if (must_follow && bitmap_bit_p (must_follow, ps_i->next_in_row->id))
f045d41d 3072 return false;
5b6269ed 3073
91275768 3074 /* Advance PS_I over its next_in_row in the doubly linked list. */
5b6269ed 3075 prev = ps_i->prev_in_row;
3076 next = ps_i->next_in_row;
3077
3078 if (ps_i == ps->rows[row])
3079 ps->rows[row] = next;
3080
3081 ps_i->next_in_row = next->next_in_row;
3082
3083 if (next->next_in_row)
3084 next->next_in_row->prev_in_row = ps_i;
3085
3086 next->next_in_row = ps_i;
3087 ps_i->prev_in_row = next;
3088
3089 next->prev_in_row = prev;
3090 if (prev)
3091 prev->next_in_row = next;
3092
3093 return true;
3094}
3095
3096/* Inserts a DDG_NODE to the given partial schedule at the given cycle.
48e1416a 3097 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
3098 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3099 before/after (respectively) the node pointed to by PS_I when scheduled
f045d41d 3100 in the same cycle. */
5b6269ed 3101static ps_insn_ptr
7282ef12 3102add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
f045d41d 3103 sbitmap must_precede, sbitmap must_follow)
5b6269ed 3104{
f045d41d 3105 ps_insn_ptr ps_i;
5b6269ed 3106 int row = SMODULO (cycle, ps->ii);
5b6269ed 3107
4815ed0c 3108 if (ps->rows_length[row] >= issue_rate)
5b6269ed 3109 return NULL;
3110
7282ef12 3111 ps_i = create_ps_insn (id, cycle);
f045d41d 3112
3113 /* Finds and inserts PS_I according to MUST_FOLLOW and
3114 MUST_PRECEDE. */
3115 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
3116 {
3117 free (ps_i);
3118 return NULL;
3119 }
5b6269ed 3120
4815ed0c 3121 ps->rows_length[row] += 1;
5b6269ed 3122 return ps_i;
3123}
3124
3125/* Advance time one cycle. Assumes DFA is being used. */
3126static void
3127advance_one_cycle (void)
3128{
67900a4f 3129 if (targetm.sched.dfa_pre_cycle_insn)
3130 state_transition (curr_state,
ffa47ae0 3131 targetm.sched.dfa_pre_cycle_insn ());
5b6269ed 3132
67900a4f 3133 state_transition (curr_state, NULL);
5b6269ed 3134
67900a4f 3135 if (targetm.sched.dfa_post_cycle_insn)
3136 state_transition (curr_state,
ffa47ae0 3137 targetm.sched.dfa_post_cycle_insn ());
5b6269ed 3138}
3139
b6a75366 3140
b6a75366 3141
5b6269ed 3142/* Checks if PS has resource conflicts according to DFA, starting from
3143 FROM cycle to TO cycle; returns true if there are conflicts and false
3144 if there are no conflicts. Assumes DFA is being used. */
3145static int
3146ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
3147{
3148 int cycle;
3149
5b6269ed 3150 state_reset (curr_state);
3151
3152 for (cycle = from; cycle <= to; cycle++)
3153 {
3154 ps_insn_ptr crr_insn;
3155 /* Holds the remaining issue slots in the current row. */
3156 int can_issue_more = issue_rate;
3157
3158 /* Walk through the DFA for the current row. */
3159 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
3160 crr_insn;
3161 crr_insn = crr_insn->next_in_row)
3162 {
bc69df91 3163 rtx_insn *insn = ps_rtl_insn (ps, crr_insn->id);
5b6269ed 3164
9845d120 3165 if (!NONDEBUG_INSN_P (insn))
5b6269ed 3166 continue;
3167
3168 /* Check if there is room for the current insn. */
3169 if (!can_issue_more || state_dead_lock_p (curr_state))
3170 return true;
3171
3172 /* Update the DFA state and return with failure if the DFA found
f0b5f617 3173 resource conflicts. */
5b6269ed 3174 if (state_transition (curr_state, insn) >= 0)
3175 return true;
3176
3177 if (targetm.sched.variable_issue)
3178 can_issue_more =
ffa47ae0 3179 targetm.sched.variable_issue (sched_dump, sched_verbose,
3180 insn, can_issue_more);
5b6269ed 3181 /* A naked CLOBBER or USE generates no instruction, so don't
3182 let them consume issue slots. */
3183 else if (GET_CODE (PATTERN (insn)) != USE
3184 && GET_CODE (PATTERN (insn)) != CLOBBER)
3185 can_issue_more--;
3186 }
3187
3188 /* Advance the DFA to the next cycle. */
3189 advance_one_cycle ();
3190 }
3191 return false;
3192}
3193
3194/* Checks if the given node causes resource conflicts when added to PS at
3195 cycle C. If not the node is added to PS and returned; otherwise zero
48e1416a 3196 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3197 cuid N must be come before/after (respectively) the node pointed to by
f045d41d 3198 PS_I when scheduled in the same cycle. */
b6a75366 3199ps_insn_ptr
7282ef12 3200ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
f045d41d 3201 int c, sbitmap must_precede,
3202 sbitmap must_follow)
5b6269ed 3203{
3204 int has_conflicts = 0;
3205 ps_insn_ptr ps_i;
3206
f045d41d 3207 /* First add the node to the PS, if this succeeds check for
3208 conflicts, trying different issue slots in the same row. */
3209 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
5b6269ed 3210 return NULL; /* Failed to insert the node at the given cycle. */
3211
3212 has_conflicts = ps_has_conflicts (ps, c, c)
3213 || (ps->history > 0
3214 && ps_has_conflicts (ps,
3215 c - ps->history,
3216 c + ps->history));
3217
3218 /* Try different issue slots to find one that the given node can be
3219 scheduled in without conflicts. */
3220 while (has_conflicts)
3221 {
f045d41d 3222 if (! ps_insn_advance_column (ps, ps_i, must_follow))
5b6269ed 3223 break;
3224 has_conflicts = ps_has_conflicts (ps, c, c)
3225 || (ps->history > 0
3226 && ps_has_conflicts (ps,
3227 c - ps->history,
3228 c + ps->history));
3229 }
3230
3231 if (has_conflicts)
3232 {
3233 remove_node_from_ps (ps, ps_i);
3234 return NULL;
3235 }
3236
3237 ps->min_cycle = MIN (ps->min_cycle, c);
3238 ps->max_cycle = MAX (ps->max_cycle, c);
3239 return ps_i;
3240}
3241
6f7f081f 3242/* Calculate the stage count of the partial schedule PS. The calculation
a5ea7ace 3243 takes into account the rotation amount passed in ROTATION_AMOUNT. */
6f7f081f 3244int
a5ea7ace 3245calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
6f7f081f 3246{
6f7f081f 3247 int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
3248 int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
3249 int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
3250
3251 /* The calculation of stage count is done adding the number of stages
3252 before cycle zero and after cycle zero. */
3253 stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
3254
3255 return stage_count;
3256}
3257
5b6269ed 3258/* Rotate the rows of PS such that insns scheduled at time
3259 START_CYCLE will appear in row 0. Updates max/min_cycles. */
b6a75366 3260void
5b6269ed 3261rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
3262{
3263 int i, row, backward_rotates;
3264 int last_row = ps->ii - 1;
3265
3266 if (start_cycle == 0)
3267 return;
3268
3269 backward_rotates = SMODULO (start_cycle, ps->ii);
3270
3271 /* Revisit later and optimize this into a single loop. */
3272 for (i = 0; i < backward_rotates; i++)
3273 {
3274 ps_insn_ptr first_row = ps->rows[0];
4815ed0c 3275 int first_row_length = ps->rows_length[0];
5b6269ed 3276
3277 for (row = 0; row < last_row; row++)
4815ed0c 3278 {
3279 ps->rows[row] = ps->rows[row + 1];
3280 ps->rows_length[row] = ps->rows_length[row + 1];
3281 }
5b6269ed 3282
3283 ps->rows[last_row] = first_row;
4815ed0c 3284 ps->rows_length[last_row] = first_row_length;
5b6269ed 3285 }
3286
3287 ps->max_cycle -= start_cycle;
3288 ps->min_cycle -= start_cycle;
3289}
07cba988 3290
77fce4cd 3291#endif /* INSN_SCHEDULING */
3292\f
77fce4cd 3293/* Run instruction scheduler. */
3294/* Perform SMS module scheduling. */
77fce4cd 3295
cbe8bda8 3296namespace {
3297
3298const pass_data pass_data_sms =
3299{
3300 RTL_PASS, /* type */
3301 "sms", /* name */
3302 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 3303 TV_SMS, /* tv_id */
3304 0, /* properties_required */
3305 0, /* properties_provided */
3306 0, /* properties_destroyed */
3307 0, /* todo_flags_start */
8b88439e 3308 TODO_df_finish, /* todo_flags_finish */
77fce4cd 3309};
cbe8bda8 3310
3311class pass_sms : public rtl_opt_pass
3312{
3313public:
9af5ce0c 3314 pass_sms (gcc::context *ctxt)
3315 : rtl_opt_pass (pass_data_sms, ctxt)
cbe8bda8 3316 {}
3317
3318 /* opt_pass methods: */
31315c24 3319 virtual bool gate (function *)
3320{
3321 return (optimize > 0 && flag_modulo_sched);
3322}
3323
65b0537f 3324 virtual unsigned int execute (function *);
cbe8bda8 3325
3326}; // class pass_sms
3327
65b0537f 3328unsigned int
3329pass_sms::execute (function *fun ATTRIBUTE_UNUSED)
3330{
3331#ifdef INSN_SCHEDULING
3332 basic_block bb;
3333
3334 /* Collect loop information to be used in SMS. */
3335 cfg_layout_initialize (0);
3336 sms_schedule ();
3337
3338 /* Update the life information, because we add pseudos. */
3339 max_regno = max_reg_num ();
3340
3341 /* Finalize layout changes. */
3342 FOR_EACH_BB_FN (bb, fun)
3343 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3344 bb->aux = bb->next_bb;
3345 free_dominance_info (CDI_DOMINATORS);
3346 cfg_layout_finalize ();
3347#endif /* INSN_SCHEDULING */
3348 return 0;
3349}
3350
cbe8bda8 3351} // anon namespace
3352
3353rtl_opt_pass *
3354make_pass_sms (gcc::context *ctxt)
3355{
3356 return new pass_sms (ctxt);
3357}