]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/modulo-sched.c
2013-11-19 Richard Biener <rguenther@suse.de>
[thirdparty/gcc.git] / gcc / modulo-sched.c
CommitLineData
5b6269ed 1/* Swing Modulo Scheduling implementation.
711789cc 2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
5b6269ed 3 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
8c4c00c1 9Software Foundation; either version 3, or (at your option) any later
5b6269ed 10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
8c4c00c1 18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
5b6269ed 20
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
0b205f4c 26#include "diagnostic-core.h"
5b6269ed 27#include "rtl.h"
28#include "tm_p.h"
29#include "hard-reg-set.h"
5b6269ed 30#include "regs.h"
31#include "function.h"
32#include "flags.h"
33#include "insn-config.h"
34#include "insn-attr.h"
35#include "except.h"
5b6269ed 36#include "recog.h"
37#include "sched-int.h"
38#include "target.h"
5b6269ed 39#include "cfgloop.h"
5b6269ed 40#include "expr.h"
41#include "params.h"
42#include "gcov-io.h"
5b6269ed 43#include "ddg.h"
77fce4cd 44#include "tree-pass.h"
76aaf9f0 45#include "dbgcnt.h"
0f71a633 46#include "df.h"
5b6269ed 47
07cba988 48#ifdef INSN_SCHEDULING
5b6269ed 49
50/* This file contains the implementation of the Swing Modulo Scheduler,
51 described in the following references:
52 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
53 Lifetime--sensitive modulo scheduling in a production environment.
54 IEEE Trans. on Comps., 50(3), March 2001
55 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
56 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
365db11e 57 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
5b6269ed 58
59 The basic structure is:
60 1. Build a data-dependence graph (DDG) for each loop.
61 2. Use the DDG to order the insns of a loop (not in topological order
62 necessarily, but rather) trying to place each insn after all its
63 predecessors _or_ after all its successors.
64 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
65 4. Use the ordering to perform list-scheduling of the loop:
66 1. Set II = MII. We will try to schedule the loop within II cycles.
67 2. Try to schedule the insns one by one according to the ordering.
68 For each insn compute an interval of cycles by considering already-
69 scheduled preds and succs (and associated latencies); try to place
70 the insn in the cycles of this window checking for potential
71 resource conflicts (using the DFA interface).
72 Note: this is different from the cycle-scheduling of schedule_insns;
73 here the insns are not scheduled monotonically top-down (nor bottom-
74 up).
75 3. If failed in scheduling all insns - bump II++ and try again, unless
0870fd6e 76 II reaches an upper bound MaxII, in which case report failure.
5b6269ed 77 5. If we succeeded in scheduling the loop within II cycles, we now
78 generate prolog and epilog, decrease the counter of the loop, and
79 perform modulo variable expansion for live ranges that span more than
80 II cycles (i.e. use register copies to prevent a def from overwriting
81 itself before reaching the use).
5b6269ed 82
abbfd803 83 SMS works with countable loops (1) whose control part can be easily
84 decoupled from the rest of the loop and (2) whose loop count can
85 be easily adjusted. This is because we peel a constant number of
86 iterations into a prologue and epilogue for which we want to avoid
87 emitting the control part, and a kernel which is to iterate that
88 constant number of iterations less than the original loop. So the
89 control part should be a set of insns clearly identified and having
90 its own iv, not otherwise used in the loop (at-least for now), which
7bfc9b7c 91 initializes a register before the loop to the number of iterations.
92 Currently SMS relies on the do-loop pattern to recognize such loops,
93 where (1) the control part comprises of all insns defining and/or
94 using a certain 'count' register and (2) the loop count can be
48e1416a 95 adjusted by modifying this register prior to the loop.
7bfc9b7c 96 TODO: Rely on cfgloop analysis instead. */
5b6269ed 97\f
98/* This page defines partial-schedule structures and functions for
99 modulo scheduling. */
100
101typedef struct partial_schedule *partial_schedule_ptr;
102typedef struct ps_insn *ps_insn_ptr;
103
104/* The minimum (absolute) cycle that a node of ps was scheduled in. */
105#define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
106
107/* The maximum (absolute) cycle that a node of ps was scheduled in. */
108#define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
109
110/* Perform signed modulo, always returning a non-negative value. */
111#define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
112
113/* The number of different iterations the nodes in ps span, assuming
114 the stage boundaries are placed efficiently. */
6f7f081f 115#define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
116 + 1 + ii - 1) / ii)
117/* The stage count of ps. */
118#define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
5b6269ed 119
5b6269ed 120/* A single instruction in the partial schedule. */
121struct ps_insn
122{
0b79ae60 123 /* Identifies the instruction to be scheduled. Values smaller than
124 the ddg's num_nodes refer directly to ddg nodes. A value of
125 X - num_nodes refers to register move X. */
7282ef12 126 int id;
5b6269ed 127
128 /* The (absolute) cycle in which the PS instruction is scheduled.
129 Same as SCHED_TIME (node). */
130 int cycle;
131
132 /* The next/prev PS_INSN in the same row. */
133 ps_insn_ptr next_in_row,
134 prev_in_row;
135
5b6269ed 136};
137
0b79ae60 138/* Information about a register move that has been added to a partial
139 schedule. */
140struct ps_reg_move_info
141{
142 /* The source of the move is defined by the ps_insn with id DEF.
143 The destination is used by the ps_insns with the ids in USES. */
144 int def;
145 sbitmap uses;
146
147 /* The original form of USES' instructions used OLD_REG, but they
148 should now use NEW_REG. */
149 rtx old_reg;
150 rtx new_reg;
151
e9df34d5 152 /* The number of consecutive stages that the move occupies. */
153 int num_consecutive_stages;
154
0b79ae60 155 /* An instruction that sets NEW_REG to the correct value. The first
156 move associated with DEF will have an rhs of OLD_REG; later moves
157 use the result of the previous move. */
158 rtx insn;
159};
160
161typedef struct ps_reg_move_info ps_reg_move_info;
0b79ae60 162
5b6269ed 163/* Holds the partial schedule as an array of II rows. Each entry of the
164 array points to a linked list of PS_INSNs, which represents the
165 instructions that are scheduled for that row. */
166struct partial_schedule
167{
168 int ii; /* Number of rows in the partial schedule. */
169 int history; /* Threshold for conflict checking using DFA. */
170
171 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
172 ps_insn_ptr *rows;
173
0b79ae60 174 /* All the moves added for this partial schedule. Index X has
175 a ps_insn id of X + g->num_nodes. */
f1f41a6c 176 vec<ps_reg_move_info> reg_moves;
0b79ae60 177
4815ed0c 178 /* rows_length[i] holds the number of instructions in the row.
179 It is used only (as an optimization) to back off quickly from
180 trying to schedule a node in a full row; that is, to avoid running
181 through futile DFA state transitions. */
182 int *rows_length;
183
5b6269ed 184 /* The earliest absolute cycle of an insn in the partial schedule. */
185 int min_cycle;
186
187 /* The latest absolute cycle of an insn in the partial schedule. */
188 int max_cycle;
189
190 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
6f7f081f 191
192 int stage_count; /* The stage count of the partial schedule. */
5b6269ed 193};
194
48e1416a 195
1bed606a 196static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
197static void free_partial_schedule (partial_schedule_ptr);
198static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
5b6269ed 199void print_partial_schedule (partial_schedule_ptr, FILE *);
76387907 200static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
daca8c86 201static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
7282ef12 202 int, int, sbitmap, sbitmap);
daca8c86 203static void rotate_partial_schedule (partial_schedule_ptr, int);
b6a75366 204void set_row_column_for_ps (partial_schedule_ptr);
76387907 205static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
206static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
b6a75366 207
5b6269ed 208\f
365db11e 209/* This page defines constants and structures for the modulo scheduling
5b6269ed 210 driver. */
211
c0fb94bd 212static int sms_order_nodes (ddg_ptr, int, int *, int *);
5b6269ed 213static void set_node_sched_params (ddg_ptr);
3f5be5f4 214static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
c0fb94bd 215static void permute_partial_schedule (partial_schedule_ptr, rtx);
216static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
7bfc9b7c 217 rtx, rtx);
a5ea7ace 218static int calculate_stage_count (partial_schedule_ptr, int);
219static void calculate_must_precede_follow (ddg_node_ptr, int, int,
220 int, int, sbitmap, sbitmap, sbitmap);
221static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
222 sbitmap, int, int *, int *, int *);
7282ef12 223static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
224 sbitmap, int *, sbitmap, sbitmap);
9bf2b489 225static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
a5ea7ace 226
7282ef12 227#define NODE_ASAP(node) ((node)->aux.count)
228
f1f41a6c 229#define SCHED_PARAMS(x) (&node_sched_param_vec[x])
7282ef12 230#define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
7282ef12 231#define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
232#define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
233#define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
5b6269ed 234
235/* The scheduling parameters held for each node. */
236typedef struct node_sched_params
237{
7282ef12 238 int time; /* The absolute scheduling cycle. */
5b6269ed 239
5b6269ed 240 int row; /* Holds time % ii. */
241 int stage; /* Holds time / ii. */
242
243 /* The column of a node inside the ps. If nodes u, v are on the same row,
365db11e 244 u will precede v if column (u) < column (v). */
5b6269ed 245 int column;
246} *node_sched_params_ptr;
247
0b79ae60 248typedef struct node_sched_params node_sched_params;
5b6269ed 249\f
250/* The following three functions are copied from the current scheduler
2c763ed4 251 code in order to use sched_analyze() for computing the dependencies.
5b6269ed 252 They are used when initializing the sched_info structure. */
253static const char *
e1ab7874 254sms_print_insn (const_rtx insn, int aligned ATTRIBUTE_UNUSED)
5b6269ed 255{
256 static char tmp[80];
257
258 sprintf (tmp, "i%4d", INSN_UID (insn));
259 return tmp;
260}
261
5b6269ed 262static void
263compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
6aed13f1 264 regset used ATTRIBUTE_UNUSED)
5b6269ed 265{
266}
267
e1ab7874 268static struct common_sched_info_def sms_common_sched_info;
269
270static struct sched_deps_info_def sms_sched_deps_info =
271 {
272 compute_jump_reg_dependencies,
273 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
274 NULL,
275 0, 0, 0
276 };
277
278static struct haifa_sched_info sms_sched_info =
5b6269ed 279{
280 NULL,
281 NULL,
282 NULL,
283 NULL,
284 NULL,
285 sms_print_insn,
6a1cdb4d 286 NULL,
4db82bc9 287 NULL, /* insn_finishes_block_p */
5b6269ed 288 NULL, NULL,
289 NULL, NULL,
e1ab7874 290 0, 0,
4d64d9a4 291
d2412f57 292 NULL, NULL, NULL, NULL,
e2f4a6ff 293 NULL, NULL,
4d64d9a4 294 0
5b6269ed 295};
296
0b79ae60 297/* Partial schedule instruction ID in PS is a register move. Return
298 information about it. */
299static struct ps_reg_move_info *
300ps_reg_move (partial_schedule_ptr ps, int id)
301{
302 gcc_checking_assert (id >= ps->g->num_nodes);
f1f41a6c 303 return &ps->reg_moves[id - ps->g->num_nodes];
0b79ae60 304}
305
7282ef12 306/* Return the rtl instruction that is being scheduled by partial schedule
307 instruction ID, which belongs to schedule PS. */
308static rtx
309ps_rtl_insn (partial_schedule_ptr ps, int id)
310{
0b79ae60 311 if (id < ps->g->num_nodes)
312 return ps->g->nodes[id].insn;
313 else
314 return ps_reg_move (ps, id)->insn;
7282ef12 315}
316
9d75589a 317/* Partial schedule instruction ID, which belongs to PS, occurred in
0b79ae60 318 the original (unscheduled) loop. Return the first instruction
319 in the loop that was associated with ps_rtl_insn (PS, ID).
320 If the instruction had some notes before it, this is the first
321 of those notes. */
7282ef12 322static rtx
323ps_first_note (partial_schedule_ptr ps, int id)
324{
0b79ae60 325 gcc_assert (id < ps->g->num_nodes);
7282ef12 326 return ps->g->nodes[id].first_note;
327}
328
e9df34d5 329/* Return the number of consecutive stages that are occupied by
330 partial schedule instruction ID in PS. */
331static int
332ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
333{
334 if (id < ps->g->num_nodes)
335 return 1;
336 else
337 return ps_reg_move (ps, id)->num_consecutive_stages;
338}
339
7bfc9b7c 340/* Given HEAD and TAIL which are the first and last insns in a loop;
341 return the register which controls the loop. Return zero if it has
342 more than one occurrence in the loop besides the control part or the
343 do-loop pattern is not of the form we expect. */
5b6269ed 344static rtx
7bfc9b7c 345doloop_register_get (rtx head ATTRIBUTE_UNUSED, rtx tail ATTRIBUTE_UNUSED)
5b6269ed 346{
6bcf94f5 347#ifdef HAVE_doloop_end
11dd7ac1 348 rtx reg, condition, insn, first_insn_not_to_check;
5b6269ed 349
7bfc9b7c 350 if (!JUMP_P (tail))
5b6269ed 351 return NULL_RTX;
352
7bfc9b7c 353 /* TODO: Free SMS's dependence on doloop_condition_get. */
354 condition = doloop_condition_get (tail);
fc2abfd3 355 if (! condition)
5b6269ed 356 return NULL_RTX;
357
fc2abfd3 358 if (REG_P (XEXP (condition, 0)))
359 reg = XEXP (condition, 0);
360 else if (GET_CODE (XEXP (condition, 0)) == PLUS
361 && REG_P (XEXP (XEXP (condition, 0), 0)))
362 reg = XEXP (XEXP (condition, 0), 0);
363 else
364 gcc_unreachable ();
5b6269ed 365
7bfc9b7c 366 /* Check that the COUNT_REG has no other occurrences in the loop
367 until the decrement. We assume the control part consists of
368 either a single (parallel) branch-on-count or a (non-parallel)
369 branch immediately preceded by a single (decrement) insn. */
11dd7ac1 370 first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
cf961a94 371 : prev_nondebug_insn (tail));
11dd7ac1 372
373 for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
9973add0 374 if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
7bfc9b7c 375 {
376 if (dump_file)
11dd7ac1 377 {
378 fprintf (dump_file, "SMS count_reg found ");
379 print_rtl_single (dump_file, reg);
380 fprintf (dump_file, " outside control in insn:\n");
381 print_rtl_single (dump_file, insn);
382 }
7bfc9b7c 383
384 return NULL_RTX;
385 }
11dd7ac1 386
fc2abfd3 387 return reg;
6bcf94f5 388#else
389 return NULL_RTX;
390#endif
5b6269ed 391}
392
393/* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
394 that the number of iterations is a compile-time constant. If so,
395 return the rtx that sets COUNT_REG to a constant, and set COUNT to
396 this constant. Otherwise return 0. */
397static rtx
398const_iteration_count (rtx count_reg, basic_block pre_header,
399 HOST_WIDEST_INT * count)
400{
401 rtx insn;
402 rtx head, tail;
a337a404 403
404 if (! pre_header)
405 return NULL_RTX;
406
6a1cdb4d 407 get_ebb_head_tail (pre_header, pre_header, &head, &tail);
5b6269ed 408
409 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
9845d120 410 if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
5b6269ed 411 rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
412 {
413 rtx pat = single_set (insn);
414
971ba038 415 if (CONST_INT_P (SET_SRC (pat)))
5b6269ed 416 {
417 *count = INTVAL (SET_SRC (pat));
418 return insn;
419 }
420
421 return NULL_RTX;
422 }
423
424 return NULL_RTX;
425}
426
427/* A very simple resource-based lower bound on the initiation interval.
428 ??? Improve the accuracy of this bound by considering the
429 utilization of various units. */
430static int
431res_MII (ddg_ptr g)
432{
d52fd16a 433 if (targetm.sched.sms_res_mii)
48e1416a 434 return targetm.sched.sms_res_mii (g);
435
9845d120 436 return ((g->num_nodes - g->num_debug) / issue_rate);
5b6269ed 437}
438
439
0b79ae60 440/* A vector that contains the sched data for each ps_insn. */
f1f41a6c 441static vec<node_sched_params> node_sched_param_vec;
5b6269ed 442
7282ef12 443/* Allocate sched_params for each node and initialize it. */
5b6269ed 444static void
445set_node_sched_params (ddg_ptr g)
446{
f1f41a6c 447 node_sched_param_vec.truncate (0);
448 node_sched_param_vec.safe_grow_cleared (g->num_nodes);
5b6269ed 449}
450
e9df34d5 451/* Make sure that node_sched_param_vec has an entry for every move in PS. */
452static void
453extend_node_sched_params (partial_schedule_ptr ps)
454{
f1f41a6c 455 node_sched_param_vec.safe_grow_cleared (ps->g->num_nodes
456 + ps->reg_moves.length ());
e9df34d5 457}
458
459/* Update the sched_params (time, row and stage) for node U using the II,
460 the CYCLE of U and MIN_CYCLE.
461 We're not simply taking the following
462 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
463 because the stages may not be aligned on cycle 0. */
464static void
465update_node_sched_params (int u, int ii, int cycle, int min_cycle)
466{
467 int sc_until_cycle_zero;
468 int stage;
469
470 SCHED_TIME (u) = cycle;
471 SCHED_ROW (u) = SMODULO (cycle, ii);
472
473 /* The calculation of stage count is done adding the number
474 of stages before cycle zero and after cycle zero. */
475 sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
476
477 if (SCHED_TIME (u) < 0)
478 {
479 stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
480 SCHED_STAGE (u) = sc_until_cycle_zero - stage;
481 }
482 else
483 {
484 stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
485 SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
486 }
487}
488
5b6269ed 489static void
0b79ae60 490print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
5b6269ed 491{
492 int i;
493
3f5be5f4 494 if (! file)
a337a404 495 return;
5b6269ed 496 for (i = 0; i < num_nodes; i++)
497 {
7282ef12 498 node_sched_params_ptr nsp = SCHED_PARAMS (i);
5b6269ed 499
896dbaed 500 fprintf (file, "Node = %d; INSN = %d\n", i,
0b79ae60 501 INSN_UID (ps_rtl_insn (ps, i)));
502 fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
3f5be5f4 503 fprintf (file, " time = %d:\n", nsp->time);
e9df34d5 504 fprintf (file, " stage = %d:\n", nsp->stage);
505 }
506}
507
508/* Set SCHED_COLUMN for each instruction in row ROW of PS. */
509static void
510set_columns_for_row (partial_schedule_ptr ps, int row)
511{
512 ps_insn_ptr cur_insn;
513 int column;
514
515 column = 0;
516 for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
517 SCHED_COLUMN (cur_insn->id) = column++;
518}
519
520/* Set SCHED_COLUMN for each instruction in PS. */
521static void
522set_columns_for_ps (partial_schedule_ptr ps)
523{
524 int row;
525
526 for (row = 0; row < ps->ii; row++)
527 set_columns_for_row (ps, row);
528}
0b79ae60 529
e9df34d5 530/* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
531 Its single predecessor has already been scheduled, as has its
532 ddg node successors. (The move may have also another move as its
533 successor, in which case that successor will be scheduled later.)
534
535 The move is part of a chain that satisfies register dependencies
536 between a producing ddg node and various consuming ddg nodes.
537 If some of these dependencies have a distance of 1 (meaning that
469e33a0 538 the use is upward-exposed) then DISTANCE1_USES is nonnull and
e9df34d5 539 contains the set of uses with distance-1 dependencies.
540 DISTANCE1_USES is null otherwise.
541
542 MUST_FOLLOW is a scratch bitmap that is big enough to hold
543 all current ps_insn ids.
544
545 Return true on success. */
546static bool
547schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
548 sbitmap distance1_uses, sbitmap must_follow)
549{
550 unsigned int u;
551 int this_time, this_distance, this_start, this_end, this_latency;
552 int start, end, c, ii;
553 sbitmap_iterator sbi;
554 ps_reg_move_info *move;
555 rtx this_insn;
556 ps_insn_ptr psi;
557
558 move = ps_reg_move (ps, i_reg_move);
559 ii = ps->ii;
560 if (dump_file)
561 {
562 fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
563 ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
564 PS_MIN_CYCLE (ps));
565 print_rtl_single (dump_file, move->insn);
566 fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
567 fprintf (dump_file, "=========== =========== =====\n");
568 }
569
570 start = INT_MIN;
571 end = INT_MAX;
572
573 /* For dependencies of distance 1 between a producer ddg node A
574 and consumer ddg node B, we have a chain of dependencies:
575
576 A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
577
578 where Mi is the ith move. For dependencies of distance 0 between
579 a producer ddg node A and consumer ddg node C, we have a chain of
580 dependencies:
581
582 A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
583
584 where Mi' occupies the same position as Mi but occurs a stage later.
585 We can only schedule each move once, so if we have both types of
586 chain, we model the second as:
587
588 A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
589
590 First handle the dependencies between the previously-scheduled
591 predecessor and the move. */
592 this_insn = ps_rtl_insn (ps, move->def);
593 this_latency = insn_latency (this_insn, move->insn);
594 this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
595 this_time = SCHED_TIME (move->def) - this_distance * ii;
596 this_start = this_time + this_latency;
597 this_end = this_time + ii;
598 if (dump_file)
599 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
600 this_start, this_end, SCHED_TIME (move->def),
601 INSN_UID (this_insn), this_latency, this_distance,
602 INSN_UID (move->insn));
603
604 if (start < this_start)
605 start = this_start;
606 if (end > this_end)
607 end = this_end;
608
609 /* Handle the dependencies between the move and previously-scheduled
610 successors. */
0d211963 611 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, u, sbi)
e9df34d5 612 {
613 this_insn = ps_rtl_insn (ps, u);
614 this_latency = insn_latency (move->insn, this_insn);
08b7917c 615 if (distance1_uses && !bitmap_bit_p (distance1_uses, u))
e9df34d5 616 this_distance = -1;
617 else
618 this_distance = 0;
619 this_time = SCHED_TIME (u) + this_distance * ii;
620 this_start = this_time - ii;
621 this_end = this_time - this_latency;
622 if (dump_file)
623 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
624 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
625 this_latency, this_distance, INSN_UID (this_insn));
626
627 if (start < this_start)
628 start = this_start;
629 if (end > this_end)
630 end = this_end;
631 }
632
633 if (dump_file)
634 {
635 fprintf (dump_file, "----------- ----------- -----\n");
636 fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
637 }
638
53c5d9d4 639 bitmap_clear (must_follow);
08b7917c 640 bitmap_set_bit (must_follow, move->def);
e9df34d5 641
642 start = MAX (start, end - (ii - 1));
643 for (c = end; c >= start; c--)
644 {
645 psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
646 move->uses, must_follow);
647 if (psi)
648 {
649 update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
650 if (dump_file)
651 fprintf (dump_file, "\nScheduled register move INSN %d at"
652 " time %d, row %d\n\n", INSN_UID (move->insn), c,
653 SCHED_ROW (i_reg_move));
654 return true;
5b6269ed 655 }
656 }
e9df34d5 657
658 if (dump_file)
659 fprintf (dump_file, "\nNo available slot\n\n");
660
661 return false;
5b6269ed 662}
663
a337a404 664/*
665 Breaking intra-loop register anti-dependences:
666 Each intra-loop register anti-dependence implies a cross-iteration true
667 dependence of distance 1. Therefore, we can remove such false dependencies
668 and figure out if the partial schedule broke them by checking if (for a
669 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
670 if so generate a register move. The number of such moves is equal to:
671 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
06b27565 672 nreg_moves = ----------------------------------- + 1 - { dependence.
a337a404 673 ii { 1 if not.
674*/
0b79ae60 675static bool
676schedule_reg_moves (partial_schedule_ptr ps)
5b6269ed 677{
678 ddg_ptr g = ps->g;
679 int ii = ps->ii;
680 int i;
681
682 for (i = 0; i < g->num_nodes; i++)
683 {
684 ddg_node_ptr u = &g->nodes[i];
685 ddg_edge_ptr e;
686 int nreg_moves = 0, i_reg_move;
5b6269ed 687 rtx prev_reg, old_reg;
0b79ae60 688 int first_move;
e9df34d5 689 int distances[2];
690 sbitmap must_follow;
691 sbitmap distance1_uses;
d1cae43e 692 rtx set = single_set (u->insn);
693
694 /* Skip instructions that do not set a register. */
695 if ((set && !REG_P (SET_DEST (set))))
696 continue;
697
5b6269ed 698 /* Compute the number of reg_moves needed for u, by looking at life
699 ranges started at u (excluding self-loops). */
e9df34d5 700 distances[0] = distances[1] = false;
5b6269ed 701 for (e = u->out; e; e = e->next_out)
702 if (e->type == TRUE_DEP && e->dest != e->src)
703 {
7282ef12 704 int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
705 - SCHED_TIME (e->src->cuid)) / ii;
5b6269ed 706
a337a404 707 if (e->distance == 1)
7282ef12 708 nreg_moves4e = (SCHED_TIME (e->dest->cuid)
709 - SCHED_TIME (e->src->cuid) + ii) / ii;
a337a404 710
365db11e 711 /* If dest precedes src in the schedule of the kernel, then dest
5b6269ed 712 will read before src writes and we can save one reg_copy. */
7282ef12 713 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
714 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
5b6269ed 715 nreg_moves4e--;
716
d1cae43e 717 if (nreg_moves4e >= 1)
718 {
719 /* !single_set instructions are not supported yet and
720 thus we do not except to encounter them in the loop
721 except from the doloop part. For the latter case
722 we assume no regmoves are generated as the doloop
723 instructions are tied to the branch with an edge. */
724 gcc_assert (set);
2917ecd3 725 /* If the instruction contains auto-inc register then
726 validate that the regmov is being generated for the
727 target regsiter rather then the inc'ed register. */
728 gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
d1cae43e 729 }
730
e9df34d5 731 if (nreg_moves4e)
732 {
733 gcc_assert (e->distance < 2);
734 distances[e->distance] = true;
735 }
5b6269ed 736 nreg_moves = MAX (nreg_moves, nreg_moves4e);
737 }
738
739 if (nreg_moves == 0)
740 continue;
741
0b79ae60 742 /* Create NREG_MOVES register moves. */
f1f41a6c 743 first_move = ps->reg_moves.length ();
744 ps->reg_moves.safe_grow_cleared (first_move + nreg_moves);
e9df34d5 745 extend_node_sched_params (ps);
0b79ae60 746
747 /* Record the moves associated with this node. */
748 first_move += ps->g->num_nodes;
0b79ae60 749
750 /* Generate each move. */
751 old_reg = prev_reg = SET_DEST (single_set (u->insn));
752 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
753 {
754 ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
755
756 move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
e9df34d5 757 move->uses = sbitmap_alloc (first_move + nreg_moves);
0b79ae60 758 move->old_reg = old_reg;
759 move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
e9df34d5 760 move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
0b79ae60 761 move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg));
53c5d9d4 762 bitmap_clear (move->uses);
0b79ae60 763
764 prev_reg = move->new_reg;
765 }
766
e9df34d5 767 distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
768
5b6269ed 769 /* Every use of the register defined by node may require a different
770 copy of this register, depending on the time the use is scheduled.
0b79ae60 771 Record which uses require which move results. */
5b6269ed 772 for (e = u->out; e; e = e->next_out)
773 if (e->type == TRUE_DEP && e->dest != e->src)
774 {
7282ef12 775 int dest_copy = (SCHED_TIME (e->dest->cuid)
776 - SCHED_TIME (e->src->cuid)) / ii;
5b6269ed 777
a337a404 778 if (e->distance == 1)
7282ef12 779 dest_copy = (SCHED_TIME (e->dest->cuid)
780 - SCHED_TIME (e->src->cuid) + ii) / ii;
a337a404 781
7282ef12 782 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
783 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
5b6269ed 784 dest_copy--;
785
786 if (dest_copy)
0b79ae60 787 {
788 ps_reg_move_info *move;
5b6269ed 789
0b79ae60 790 move = ps_reg_move (ps, first_move + dest_copy - 1);
08b7917c 791 bitmap_set_bit (move->uses, e->dest->cuid);
e9df34d5 792 if (e->distance == 1)
08b7917c 793 bitmap_set_bit (distance1_uses, e->dest->cuid);
0b79ae60 794 }
795 }
e9df34d5 796
797 must_follow = sbitmap_alloc (first_move + nreg_moves);
798 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
799 if (!schedule_reg_move (ps, first_move + i_reg_move,
800 distance1_uses, must_follow))
801 break;
802 sbitmap_free (must_follow);
803 if (distance1_uses)
804 sbitmap_free (distance1_uses);
805 if (i_reg_move < nreg_moves)
806 return false;
0b79ae60 807 }
808 return true;
809}
5b6269ed 810
0b79ae60 811/* Emit the moves associatied with PS. Apply the substitutions
812 associated with them. */
813static void
814apply_reg_moves (partial_schedule_ptr ps)
815{
816 ps_reg_move_info *move;
817 int i;
5b6269ed 818
f1f41a6c 819 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
0b79ae60 820 {
821 unsigned int i_use;
822 sbitmap_iterator sbi;
5b6269ed 823
0d211963 824 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, i_use, sbi)
0b79ae60 825 {
826 replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
827 df_insn_rescan (ps->g->nodes[i_use].insn);
5b6269ed 828 }
829 }
a5ea7ace 830}
831
6f7f081f 832/* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
833 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
834 will move to cycle zero. */
5b6269ed 835static void
6f7f081f 836reset_sched_times (partial_schedule_ptr ps, int amount)
5b6269ed 837{
76387907 838 int row;
5b6269ed 839 int ii = ps->ii;
76387907 840 ps_insn_ptr crr_insn;
5b6269ed 841
76387907 842 for (row = 0; row < ii; row++)
843 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
844 {
7282ef12 845 int u = crr_insn->id;
76387907 846 int normalized_time = SCHED_TIME (u) - amount;
6f7f081f 847 int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
76387907 848
6f7f081f 849 if (dump_file)
850 {
851 /* Print the scheduling times after the rotation. */
7282ef12 852 rtx insn = ps_rtl_insn (ps, u);
853
6f7f081f 854 fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
7282ef12 855 "crr_insn->cycle=%d, min_cycle=%d", u,
856 INSN_UID (insn), normalized_time, new_min_cycle);
857 if (JUMP_P (insn))
6f7f081f 858 fprintf (dump_file, " (branch)");
859 fprintf (dump_file, "\n");
860 }
861
76387907 862 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
863 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
a5ea7ace 864
865 crr_insn->cycle = normalized_time;
866 update_node_sched_params (u, ii, normalized_time, new_min_cycle);
76387907 867 }
5b6269ed 868}
6f7f081f 869
5b6269ed 870/* Permute the insns according to their order in PS, from row 0 to
871 row ii-1, and position them right before LAST. This schedules
872 the insns of the loop kernel. */
873static void
874permute_partial_schedule (partial_schedule_ptr ps, rtx last)
875{
876 int ii = ps->ii;
877 int row;
878 ps_insn_ptr ps_ij;
879
880 for (row = 0; row < ii ; row++)
881 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
7282ef12 882 {
883 rtx insn = ps_rtl_insn (ps, ps_ij->id);
884
885 if (PREV_INSN (last) != insn)
e9df34d5 886 {
887 if (ps_ij->id < ps->g->num_nodes)
888 reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
889 PREV_INSN (last));
890 else
891 add_insn_before (insn, last, NULL);
892 }
7282ef12 893 }
5b6269ed 894}
895
a5ea7ace 896/* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
897 respectively only if cycle C falls on the border of the scheduling
898 window boundaries marked by START and END cycles. STEP is the
899 direction of the window. */
900static inline void
901set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
902 sbitmap *tmp_precede, sbitmap must_precede, int c,
903 int start, int end, int step)
904{
905 *tmp_precede = NULL;
906 *tmp_follow = NULL;
907
908 if (c == start)
909 {
910 if (step == 1)
911 *tmp_precede = must_precede;
912 else /* step == -1. */
913 *tmp_follow = must_follow;
914 }
915 if (c == end - step)
916 {
917 if (step == 1)
918 *tmp_follow = must_follow;
919 else /* step == -1. */
920 *tmp_precede = must_precede;
921 }
922
923}
924
925/* Return True if the branch can be moved to row ii-1 while
926 normalizing the partial schedule PS to start from cycle zero and thus
927 optimize the SC. Otherwise return False. */
928static bool
929optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
930{
931 int amount = PS_MIN_CYCLE (ps);
932 sbitmap sched_nodes = sbitmap_alloc (g->num_nodes);
933 int start, end, step;
934 int ii = ps->ii;
935 bool ok = false;
936 int stage_count, stage_count_curr;
937
938 /* Compare the SC after normalization and SC after bringing the branch
939 to row ii-1. If they are equal just bail out. */
940 stage_count = calculate_stage_count (ps, amount);
941 stage_count_curr =
7282ef12 942 calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
a5ea7ace 943
944 if (stage_count == stage_count_curr)
945 {
946 if (dump_file)
947 fprintf (dump_file, "SMS SC already optimized.\n");
948
949 ok = false;
950 goto clear;
951 }
952
953 if (dump_file)
954 {
955 fprintf (dump_file, "SMS Trying to optimize branch location\n");
956 fprintf (dump_file, "SMS partial schedule before trial:\n");
957 print_partial_schedule (ps, dump_file);
958 }
959
960 /* First, normalize the partial scheduling. */
961 reset_sched_times (ps, amount);
962 rotate_partial_schedule (ps, amount);
963 if (dump_file)
964 {
965 fprintf (dump_file,
966 "SMS partial schedule after normalization (ii, %d, SC %d):\n",
967 ii, stage_count);
968 print_partial_schedule (ps, dump_file);
969 }
970
7282ef12 971 if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
a5ea7ace 972 {
973 ok = true;
974 goto clear;
975 }
976
53c5d9d4 977 bitmap_ones (sched_nodes);
a5ea7ace 978
979 /* Calculate the new placement of the branch. It should be in row
980 ii-1 and fall into it's scheduling window. */
981 if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
982 &step, &end) == 0)
983 {
984 bool success;
985 ps_insn_ptr next_ps_i;
7282ef12 986 int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
a5ea7ace 987 int row = SMODULO (branch_cycle, ps->ii);
988 int num_splits = 0;
989 sbitmap must_precede, must_follow, tmp_precede, tmp_follow;
990 int c;
991
992 if (dump_file)
993 fprintf (dump_file, "\nTrying to schedule node %d "
994 "INSN = %d in (%d .. %d) step %d\n",
995 g->closing_branch->cuid,
996 (INSN_UID (g->closing_branch->insn)), start, end, step);
997
998 gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
999 if (step == 1)
1000 {
1001 c = start + ii - SMODULO (start, ii) - 1;
1002 gcc_assert (c >= start);
1003 if (c >= end)
1004 {
1005 ok = false;
1006 if (dump_file)
1007 fprintf (dump_file,
1008 "SMS failed to schedule branch at cycle: %d\n", c);
1009 goto clear;
1010 }
1011 }
1012 else
1013 {
1014 c = start - SMODULO (start, ii) - 1;
1015 gcc_assert (c <= start);
1016
1017 if (c <= end)
1018 {
1019 if (dump_file)
1020 fprintf (dump_file,
1021 "SMS failed to schedule branch at cycle: %d\n", c);
1022 ok = false;
1023 goto clear;
1024 }
1025 }
1026
1027 must_precede = sbitmap_alloc (g->num_nodes);
1028 must_follow = sbitmap_alloc (g->num_nodes);
1029
1030 /* Try to schedule the branch is it's new cycle. */
1031 calculate_must_precede_follow (g->closing_branch, start, end,
1032 step, ii, sched_nodes,
1033 must_precede, must_follow);
1034
1035 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1036 must_precede, c, start, end, step);
1037
1038 /* Find the element in the partial schedule related to the closing
1039 branch so we can remove it from it's current cycle. */
1040 for (next_ps_i = ps->rows[row];
1041 next_ps_i; next_ps_i = next_ps_i->next_in_row)
7282ef12 1042 if (next_ps_i->id == g->closing_branch->cuid)
a5ea7ace 1043 break;
1044
9bf2b489 1045 remove_node_from_ps (ps, next_ps_i);
a5ea7ace 1046 success =
7282ef12 1047 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
a5ea7ace 1048 sched_nodes, &num_splits,
1049 tmp_precede, tmp_follow);
1050 gcc_assert (num_splits == 0);
1051 if (!success)
1052 {
1053 if (dump_file)
1054 fprintf (dump_file,
1055 "SMS failed to schedule branch at cycle: %d, "
1056 "bringing it back to cycle %d\n", c, branch_cycle);
1057
1058 /* The branch was failed to be placed in row ii - 1.
1059 Put it back in it's original place in the partial
1060 schedualing. */
1061 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1062 must_precede, branch_cycle, start, end,
1063 step);
1064 success =
7282ef12 1065 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
a5ea7ace 1066 branch_cycle, sched_nodes,
1067 &num_splits, tmp_precede,
1068 tmp_follow);
1069 gcc_assert (success && (num_splits == 0));
1070 ok = false;
1071 }
1072 else
1073 {
1074 /* The branch is placed in row ii - 1. */
1075 if (dump_file)
1076 fprintf (dump_file,
1077 "SMS success in moving branch to cycle %d\n", c);
1078
7282ef12 1079 update_node_sched_params (g->closing_branch->cuid, ii, c,
a5ea7ace 1080 PS_MIN_CYCLE (ps));
1081 ok = true;
1082 }
1083
1084 free (must_precede);
1085 free (must_follow);
1086 }
1087
1088clear:
1089 free (sched_nodes);
1090 return ok;
1091}
1092
5b6269ed 1093static void
1094duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
e9df34d5 1095 int to_stage, rtx count_reg)
5b6269ed 1096{
1097 int row;
1098 ps_insn_ptr ps_ij;
1099
1100 for (row = 0; row < ps->ii; row++)
1101 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
1102 {
7282ef12 1103 int u = ps_ij->id;
e9df34d5 1104 int first_u, last_u;
7282ef12 1105 rtx u_insn;
5b6269ed 1106
7bfc9b7c 1107 /* Do not duplicate any insn which refers to count_reg as it
1108 belongs to the control part.
6f7f081f 1109 The closing branch is scheduled as well and thus should
1110 be ignored.
7bfc9b7c 1111 TODO: This should be done by analyzing the control part of
1112 the loop. */
7282ef12 1113 u_insn = ps_rtl_insn (ps, u);
1114 if (reg_mentioned_p (count_reg, u_insn)
1115 || JUMP_P (u_insn))
7bfc9b7c 1116 continue;
1117
e9df34d5 1118 first_u = SCHED_STAGE (u);
1119 last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
1120 if (from_stage <= last_u && to_stage >= first_u)
5b6269ed 1121 {
e9df34d5 1122 if (u < ps->g->num_nodes)
1123 duplicate_insn_chain (ps_first_note (ps, u), u_insn);
1124 else
1125 emit_insn (copy_rtx (PATTERN (u_insn)));
5b6269ed 1126 }
5b6269ed 1127 }
1128}
1129
1130
1131/* Generate the instructions (including reg_moves) for prolog & epilog. */
1132static void
7bfc9b7c 1133generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
1134 rtx count_reg, rtx count_init)
5b6269ed 1135{
1136 int i;
1137 int last_stage = PS_STAGE_COUNT (ps) - 1;
1138 edge e;
48e1416a 1139
5b6269ed 1140 /* Generate the prolog, inserting its insns on the loop-entry edge. */
1141 start_sequence ();
1142
7bfc9b7c 1143 if (!count_init)
1144 {
1145 /* Generate instructions at the beginning of the prolog to
1146 adjust the loop count by STAGE_COUNT. If loop count is constant
1147 (count_init), this constant is adjusted by STAGE_COUNT in
1148 generate_prolog_epilog function. */
1149 rtx sub_reg = NULL_RTX;
1150
0359f9f5 1151 sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, count_reg,
1152 gen_int_mode (last_stage,
1153 GET_MODE (count_reg)),
7bfc9b7c 1154 count_reg, 1, OPTAB_DIRECT);
1155 gcc_assert (REG_P (sub_reg));
1156 if (REGNO (sub_reg) != REGNO (count_reg))
1157 emit_move_insn (count_reg, sub_reg);
1158 }
5b6269ed 1159
1160 for (i = 0; i < last_stage; i++)
e9df34d5 1161 duplicate_insns_of_cycles (ps, 0, i, count_reg);
48e1416a 1162
88e6f696 1163 /* Put the prolog on the entry edge. */
b6a75366 1164 e = loop_preheader_edge (loop);
d4473c84 1165 split_edge_and_insert (e, get_insns ());
6c3ff102 1166 if (!flag_resched_modulo_sched)
1167 e->dest->flags |= BB_DISABLE_SCHEDULE;
b6a75366 1168
5b6269ed 1169 end_sequence ();
1170
1171 /* Generate the epilog, inserting its insns on the loop-exit edge. */
1172 start_sequence ();
1173
1174 for (i = 0; i < last_stage; i++)
e9df34d5 1175 duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
48e1416a 1176
88e6f696 1177 /* Put the epilogue on the exit edge. */
d9e7e1a2 1178 gcc_assert (single_exit (loop));
1179 e = single_exit (loop);
d4473c84 1180 split_edge_and_insert (e, get_insns ());
6c3ff102 1181 if (!flag_resched_modulo_sched)
1182 e->dest->flags |= BB_DISABLE_SCHEDULE;
1183
b6a75366 1184 end_sequence ();
1185}
1186
6c3ff102 1187/* Mark LOOP as software pipelined so the later
1188 scheduling passes don't touch it. */
1189static void
1190mark_loop_unsched (struct loop *loop)
1191{
1192 unsigned i;
1193 basic_block *bbs = get_loop_body (loop);
1194
1195 for (i = 0; i < loop->num_nodes; i++)
1196 bbs[i]->flags |= BB_DISABLE_SCHEDULE;
eb05e398 1197
1198 free (bbs);
6c3ff102 1199}
1200
b6a75366 1201/* Return true if all the BBs of the loop are empty except the
1202 loop header. */
1203static bool
1204loop_single_full_bb_p (struct loop *loop)
1205{
1206 unsigned i;
1207 basic_block *bbs = get_loop_body (loop);
1208
1209 for (i = 0; i < loop->num_nodes ; i++)
5b6269ed 1210 {
b6a75366 1211 rtx head, tail;
1212 bool empty_bb = true;
1213
1214 if (bbs[i] == loop->header)
1215 continue;
1216
1217 /* Make sure that basic blocks other than the header
1218 have only notes labels or jumps. */
6a1cdb4d 1219 get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
b6a75366 1220 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
1221 {
1222 if (NOTE_P (head) || LABEL_P (head)
9845d120 1223 || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
b6a75366 1224 continue;
1225 empty_bb = false;
1226 break;
1227 }
1228
1229 if (! empty_bb)
1230 {
1231 free (bbs);
1232 return false;
1233 }
1234 }
1235 free (bbs);
1236 return true;
1237}
5b6269ed 1238
56134a9f 1239/* Dump file:line from INSN's location info to dump_file. */
1240
1241static void
5169661d 1242dump_insn_location (rtx insn)
56134a9f 1243{
5169661d 1244 if (dump_file && INSN_LOCATION (insn))
56134a9f 1245 {
1246 const char *file = insn_file (insn);
1247 if (file)
1248 fprintf (dump_file, " %s:%i", file, insn_line (insn));
1249 }
1250}
1251
b6a75366 1252/* A simple loop from SMS point of view; it is a loop that is composed of
1253 either a single basic block or two BBs - a header and a latch. */
1254#define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
1255 && (EDGE_COUNT (loop->latch->preds) == 1) \
1256 && (EDGE_COUNT (loop->latch->succs) == 1))
5b6269ed 1257
b6a75366 1258/* Return true if the loop is in its canonical form and false if not.
1259 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
1260static bool
3f5be5f4 1261loop_canon_p (struct loop *loop)
b6a75366 1262{
5b6269ed 1263
9e3536f4 1264 if (loop->inner || !loop_outer (loop))
7707ba40 1265 {
1266 if (dump_file)
1267 fprintf (dump_file, "SMS loop inner or !loop_outer\n");
b6a75366 1268 return false;
7707ba40 1269 }
5b6269ed 1270
d9e7e1a2 1271 if (!single_exit (loop))
b6a75366 1272 {
1273 if (dump_file)
1274 {
3953ee1c 1275 rtx insn = BB_END (loop->header);
48e1416a 1276
56134a9f 1277 fprintf (dump_file, "SMS loop many exits");
5169661d 1278 dump_insn_location (insn);
56134a9f 1279 fprintf (dump_file, "\n");
b6a75366 1280 }
1281 return false;
1282 }
5b6269ed 1283
b6a75366 1284 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
1285 {
1286 if (dump_file)
1287 {
3953ee1c 1288 rtx insn = BB_END (loop->header);
48e1416a 1289
56134a9f 1290 fprintf (dump_file, "SMS loop many BBs.");
5169661d 1291 dump_insn_location (insn);
56134a9f 1292 fprintf (dump_file, "\n");
b6a75366 1293 }
1294 return false;
5b6269ed 1295 }
1296
b6a75366 1297 return true;
1298}
5b6269ed 1299
b6a75366 1300/* If there are more than one entry for the loop,
1301 make it one by splitting the first entry edge and
1302 redirecting the others to the new BB. */
1303static void
1304canon_loop (struct loop *loop)
1305{
1306 edge e;
1307 edge_iterator i;
5b6269ed 1308
b6a75366 1309 /* Avoid annoying special cases of edges going to exit
1310 block. */
1311 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR->preds)
1312 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
88e6f696 1313 split_edge (e);
5b6269ed 1314
b6a75366 1315 if (loop->latch == loop->header
1316 || EDGE_COUNT (loop->latch->succs) > 1)
5b6269ed 1317 {
b6a75366 1318 FOR_EACH_EDGE (e, i, loop->header->preds)
1319 if (e->src == loop->latch)
1320 break;
88e6f696 1321 split_edge (e);
5b6269ed 1322 }
1323}
1324
e1ab7874 1325/* Setup infos. */
1326static void
1327setup_sched_infos (void)
1328{
1329 memcpy (&sms_common_sched_info, &haifa_common_sched_info,
1330 sizeof (sms_common_sched_info));
1331 sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
1332 common_sched_info = &sms_common_sched_info;
1333
1334 sched_deps_info = &sms_sched_deps_info;
1335 current_sched_info = &sms_sched_info;
1336}
1337
7cef6c97 1338/* Probability in % that the sms-ed loop rolls enough so that optimized
1339 version may be entered. Just a guess. */
1340#define PROB_SMS_ENOUGH_ITERATIONS 80
1341
896dbaed 1342/* Used to calculate the upper bound of ii. */
1343#define MAXII_FACTOR 2
1344
5b6269ed 1345/* Main entry point, perform SMS scheduling on the loops of the function
1346 that consist of single basic blocks. */
73b62548 1347static void
3f5be5f4 1348sms_schedule (void)
5b6269ed 1349{
5b6269ed 1350 rtx insn;
1351 ddg_ptr *g_arr, g;
5b6269ed 1352 int * node_order;
c0fb94bd 1353 int maxii, max_asap;
5b6269ed 1354 partial_schedule_ptr ps;
b6a75366 1355 basic_block bb = NULL;
7cef6c97 1356 struct loop *loop;
b6a75366 1357 basic_block condition_bb = NULL;
1358 edge latch_edge;
1359 gcov_type trip_count = 0;
1360
88e6f696 1361 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
dce58e66 1362 | LOOPS_HAVE_RECORDED_EXITS);
41f75a99 1363 if (number_of_loops (cfun) <= 1)
7a3bf727 1364 {
1365 loop_optimizer_finalize ();
1366 return; /* There are no loops to schedule. */
1367 }
b6a75366 1368
5b6269ed 1369 /* Initialize issue_rate. */
1370 if (targetm.sched.issue_rate)
1371 {
1372 int temp = reload_completed;
1373
1374 reload_completed = 1;
ffa47ae0 1375 issue_rate = targetm.sched.issue_rate ();
5b6269ed 1376 reload_completed = temp;
1377 }
1378 else
1379 issue_rate = 1;
1380
2c763ed4 1381 /* Initialize the scheduler. */
e1ab7874 1382 setup_sched_infos ();
1383 haifa_sched_init ();
02a8ad7e 1384
b6a75366 1385 /* Allocate memory to hold the DDG array one entry for each loop.
1386 We use loop->num as index into this array. */
41f75a99 1387 g_arr = XCNEWVEC (ddg_ptr, number_of_loops (cfun));
5b6269ed 1388
7707ba40 1389 if (dump_file)
1390 {
1391 fprintf (dump_file, "\n\nSMS analysis phase\n");
1392 fprintf (dump_file, "===================\n\n");
1393 }
1394
5b6269ed 1395 /* Build DDGs for all the relevant loops and hold them in G_ARR
b6a75366 1396 indexed by the loop index. */
f21d4d00 1397 FOR_EACH_LOOP (loop, 0)
5b6269ed 1398 {
1399 rtx head, tail;
fc2abfd3 1400 rtx count_reg;
5b6269ed 1401
b6a75366 1402 /* For debugging. */
76aaf9f0 1403 if (dbg_cnt (sms_sched_loop) == false)
b6a75366 1404 {
1405 if (dump_file)
76aaf9f0 1406 fprintf (dump_file, "SMS reached max limit... \n");
5b6269ed 1407
f21d4d00 1408 break;
b6a75366 1409 }
5b6269ed 1410
7707ba40 1411 if (dump_file)
56134a9f 1412 {
1413 rtx insn = BB_END (loop->header);
7707ba40 1414
56134a9f 1415 fprintf (dump_file, "SMS loop num: %d", loop->num);
5169661d 1416 dump_insn_location (insn);
56134a9f 1417 fprintf (dump_file, "\n");
1418 }
7707ba40 1419
3f5be5f4 1420 if (! loop_canon_p (loop))
b6a75366 1421 continue;
5b6269ed 1422
b6a75366 1423 if (! loop_single_full_bb_p (loop))
7707ba40 1424 {
1425 if (dump_file)
1426 fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
5b6269ed 1427 continue;
7707ba40 1428 }
5b6269ed 1429
b6a75366 1430 bb = loop->header;
5b6269ed 1431
6a1cdb4d 1432 get_ebb_head_tail (bb, bb, &head, &tail);
b6a75366 1433 latch_edge = loop_latch_edge (loop);
d9e7e1a2 1434 gcc_assert (single_exit (loop));
1435 if (single_exit (loop)->count)
1436 trip_count = latch_edge->count / single_exit (loop)->count;
5b6269ed 1437
f0b5f617 1438 /* Perform SMS only on loops that their average count is above threshold. */
b6a75366 1439
1440 if ( latch_edge->count
d9e7e1a2 1441 && (latch_edge->count < single_exit (loop)->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
b6a75366 1442 {
3f5be5f4 1443 if (dump_file)
5b6269ed 1444 {
5169661d 1445 dump_insn_location (tail);
56134a9f 1446 fprintf (dump_file, "\nSMS single-bb-loop\n");
5b6269ed 1447 if (profile_info && flag_branch_probabilities)
1448 {
3f5be5f4 1449 fprintf (dump_file, "SMS loop-count ");
1450 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
5b6269ed 1451 (HOST_WIDEST_INT) bb->count);
3f5be5f4 1452 fprintf (dump_file, "\n");
1453 fprintf (dump_file, "SMS trip-count ");
1454 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
b6a75366 1455 (HOST_WIDEST_INT) trip_count);
3f5be5f4 1456 fprintf (dump_file, "\n");
1457 fprintf (dump_file, "SMS profile-sum-max ");
1458 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
5b6269ed 1459 (HOST_WIDEST_INT) profile_info->sum_max);
3f5be5f4 1460 fprintf (dump_file, "\n");
5b6269ed 1461 }
1462 }
1463 continue;
1464 }
1465
1466 /* Make sure this is a doloop. */
7bfc9b7c 1467 if ( !(count_reg = doloop_register_get (head, tail)))
7707ba40 1468 {
1469 if (dump_file)
1470 fprintf (dump_file, "SMS doloop_register_get failed\n");
5b6269ed 1471 continue;
7707ba40 1472 }
5b6269ed 1473
2917ecd3 1474 /* Don't handle BBs with calls or barriers
90c2bcf0 1475 or !single_set with the exception of instructions that include
1476 count_reg---these instructions are part of the control part
1477 that do-loop recognizes.
7bfc9b7c 1478 ??? Should handle insns defining subregs. */
1479 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1480 {
1481 rtx set;
1482
1483 if (CALL_P (insn)
1484 || BARRIER_P (insn)
9845d120 1485 || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
90c2bcf0 1486 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
1487 && !reg_mentioned_p (count_reg, insn))
7bfc9b7c 1488 || (INSN_P (insn) && (set = single_set (insn))
1489 && GET_CODE (SET_DEST (set)) == SUBREG))
1490 break;
1491 }
5b6269ed 1492
1493 if (insn != NEXT_INSN (tail))
1494 {
3f5be5f4 1495 if (dump_file)
5b6269ed 1496 {
6d7dc5b9 1497 if (CALL_P (insn))
3f5be5f4 1498 fprintf (dump_file, "SMS loop-with-call\n");
6d7dc5b9 1499 else if (BARRIER_P (insn))
3f5be5f4 1500 fprintf (dump_file, "SMS loop-with-barrier\n");
9845d120 1501 else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
7bfc9b7c 1502 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
1503 fprintf (dump_file, "SMS loop-with-not-single-set\n");
1504 else
1505 fprintf (dump_file, "SMS loop with subreg in lhs\n");
3f5be5f4 1506 print_rtl_single (dump_file, insn);
5b6269ed 1507 }
1508
1509 continue;
1510 }
1511
6f7f081f 1512 /* Always schedule the closing branch with the rest of the
1513 instructions. The branch is rotated to be in row ii-1 at the
1514 end of the scheduling procedure to make sure it's the last
1515 instruction in the iteration. */
1516 if (! (g = create_ddg (bb, 1)))
5b6269ed 1517 {
3f5be5f4 1518 if (dump_file)
34c7f568 1519 fprintf (dump_file, "SMS create_ddg failed\n");
5b6269ed 1520 continue;
1521 }
1522
17519ba0 1523 g_arr[loop->num] = g;
7707ba40 1524 if (dump_file)
1525 fprintf (dump_file, "...OK\n");
1526
5b6269ed 1527 }
7707ba40 1528 if (dump_file)
1529 {
1530 fprintf (dump_file, "\nSMS transformation phase\n");
1531 fprintf (dump_file, "=========================\n\n");
1532 }
5b6269ed 1533
b6a75366 1534 /* We don't want to perform SMS on new loops - created by versioning. */
f21d4d00 1535 FOR_EACH_LOOP (loop, 0)
5b6269ed 1536 {
1537 rtx head, tail;
fc2abfd3 1538 rtx count_reg, count_init;
e9df34d5 1539 int mii, rec_mii, stage_count, min_cycle;
5b6269ed 1540 HOST_WIDEST_INT loop_count = 0;
0b79ae60 1541 bool opt_sc_p;
5b6269ed 1542
17519ba0 1543 if (! (g = g_arr[loop->num]))
5b6269ed 1544 continue;
1545
1546 if (dump_file)
56134a9f 1547 {
1548 rtx insn = BB_END (loop->header);
7707ba40 1549
56134a9f 1550 fprintf (dump_file, "SMS loop num: %d", loop->num);
5169661d 1551 dump_insn_location (insn);
56134a9f 1552 fprintf (dump_file, "\n");
7707ba40 1553
56134a9f 1554 print_ddg (dump_file, g);
1555 }
5b6269ed 1556
6a1cdb4d 1557 get_ebb_head_tail (loop->header, loop->header, &head, &tail);
5b6269ed 1558
b6a75366 1559 latch_edge = loop_latch_edge (loop);
d9e7e1a2 1560 gcc_assert (single_exit (loop));
1561 if (single_exit (loop)->count)
1562 trip_count = latch_edge->count / single_exit (loop)->count;
5b6269ed 1563
3f5be5f4 1564 if (dump_file)
5b6269ed 1565 {
5169661d 1566 dump_insn_location (tail);
56134a9f 1567 fprintf (dump_file, "\nSMS single-bb-loop\n");
5b6269ed 1568 if (profile_info && flag_branch_probabilities)
1569 {
3f5be5f4 1570 fprintf (dump_file, "SMS loop-count ");
1571 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
5b6269ed 1572 (HOST_WIDEST_INT) bb->count);
3f5be5f4 1573 fprintf (dump_file, "\n");
1574 fprintf (dump_file, "SMS profile-sum-max ");
1575 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
5b6269ed 1576 (HOST_WIDEST_INT) profile_info->sum_max);
3f5be5f4 1577 fprintf (dump_file, "\n");
5b6269ed 1578 }
3f5be5f4 1579 fprintf (dump_file, "SMS doloop\n");
1580 fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1581 fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1582 fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
5b6269ed 1583 }
1584
5b6269ed 1585
b6a75366 1586 /* In case of th loop have doloop register it gets special
1587 handling. */
1588 count_init = NULL_RTX;
7bfc9b7c 1589 if ((count_reg = doloop_register_get (head, tail)))
b6a75366 1590 {
1591 basic_block pre_header;
1592
1593 pre_header = loop_preheader_edge (loop)->src;
1594 count_init = const_iteration_count (count_reg, pre_header,
1595 &loop_count);
1596 }
1597 gcc_assert (count_reg);
5b6269ed 1598
3f5be5f4 1599 if (dump_file && count_init)
5b6269ed 1600 {
3f5be5f4 1601 fprintf (dump_file, "SMS const-doloop ");
1602 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
b6a75366 1603 loop_count);
3f5be5f4 1604 fprintf (dump_file, "\n");
5b6269ed 1605 }
1606
4c36ffe6 1607 node_order = XNEWVEC (int, g->num_nodes);
5b6269ed 1608
1609 mii = 1; /* Need to pass some estimate of mii. */
c0fb94bd 1610 rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
5b6269ed 1611 mii = MAX (res_MII (g), rec_mii);
c0fb94bd 1612 maxii = MAX (max_asap, MAXII_FACTOR * mii);
5b6269ed 1613
3f5be5f4 1614 if (dump_file)
1615 fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
5b6269ed 1616 rec_mii, mii, maxii);
1617
0b79ae60 1618 for (;;)
a5ea7ace 1619 {
0b79ae60 1620 set_node_sched_params (g);
1621
1622 stage_count = 0;
1623 opt_sc_p = false;
1624 ps = sms_schedule_by_order (g, mii, maxii, node_order);
1625
1626 if (ps)
a5ea7ace 1627 {
0b79ae60 1628 /* Try to achieve optimized SC by normalizing the partial
1629 schedule (having the cycles start from cycle zero).
1630 The branch location must be placed in row ii-1 in the
1631 final scheduling. If failed, shift all instructions to
1632 position the branch in row ii-1. */
1633 opt_sc_p = optimize_sc (ps, g);
1634 if (opt_sc_p)
1635 stage_count = calculate_stage_count (ps, 0);
1636 else
1637 {
1638 /* Bring the branch to cycle ii-1. */
1639 int amount = (SCHED_TIME (g->closing_branch->cuid)
1640 - (ps->ii - 1));
1641
1642 if (dump_file)
1643 fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
1644
1645 stage_count = calculate_stage_count (ps, amount);
1646 }
1647
1648 gcc_assert (stage_count >= 1);
a5ea7ace 1649 }
0b79ae60 1650
1651 /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
1652 1 means that there is no interleaving between iterations thus
1653 we let the scheduling passes do the job in this case. */
e9df34d5 1654 if (stage_count < PARAM_VALUE (PARAM_SMS_MIN_SC)
0b79ae60 1655 || (count_init && (loop_count <= stage_count))
1656 || (flag_branch_probabilities && (trip_count <= stage_count)))
b6a75366 1657 {
0b79ae60 1658 if (dump_file)
1659 {
1660 fprintf (dump_file, "SMS failed... \n");
1661 fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
1662 " loop-count=", stage_count);
1663 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, loop_count);
1664 fprintf (dump_file, ", trip-count=");
1665 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, trip_count);
1666 fprintf (dump_file, ")\n");
1667 }
1668 break;
b6a75366 1669 }
0b79ae60 1670
a5ea7ace 1671 if (!opt_sc_p)
1672 {
1673 /* Rotate the partial schedule to have the branch in row ii-1. */
7282ef12 1674 int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
a5ea7ace 1675
1676 reset_sched_times (ps, amount);
1677 rotate_partial_schedule (ps, amount);
1678 }
6f7f081f 1679
6f7f081f 1680 set_columns_for_ps (ps);
5b6269ed 1681
e9df34d5 1682 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
0b79ae60 1683 if (!schedule_reg_moves (ps))
1684 {
1685 mii = ps->ii + 1;
1686 free_partial_schedule (ps);
1687 continue;
1688 }
1689
e9df34d5 1690 /* Moves that handle incoming values might have been added
1691 to a new first stage. Bump the stage count if so.
1692
1693 ??? Perhaps we could consider rotating the schedule here
1694 instead? */
1695 if (PS_MIN_CYCLE (ps) < min_cycle)
1696 {
1697 reset_sched_times (ps, 0);
1698 stage_count++;
1699 }
1700
1701 /* The stage count should now be correct without rotation. */
1702 gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
1703 PS_STAGE_COUNT (ps) = stage_count;
1704
6f7f081f 1705 canon_loop (loop);
1706
1707 if (dump_file)
1708 {
5169661d 1709 dump_insn_location (tail);
56134a9f 1710 fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
1711 ps->ii, stage_count);
3f5be5f4 1712 print_partial_schedule (ps, dump_file);
5b6269ed 1713 }
6f7f081f 1714
896dbaed 1715 /* case the BCT count is not known , Do loop-versioning */
1716 if (count_reg && ! count_init)
1717 {
c338f2e3 1718 rtx comp_rtx = gen_rtx_GT (VOIDmode, count_reg,
1719 gen_int_mode (stage_count,
1720 GET_MODE (count_reg)));
896dbaed 1721 unsigned prob = (PROB_SMS_ENOUGH_ITERATIONS
1722 * REG_BR_PROB_BASE) / 100;
1723
1724 loop_version (loop, comp_rtx, &condition_bb,
1725 prob, prob, REG_BR_PROB_BASE - prob,
1726 true);
1727 }
1728
1729 /* Set new iteration count of loop kernel. */
1730 if (count_reg && count_init)
1731 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1732 - stage_count + 1);
1733
1734 /* Now apply the scheduled kernel to the RTL of the loop. */
5b6269ed 1735 permute_partial_schedule (ps, g->closing_branch->first_note);
f045d41d 1736
896dbaed 1737 /* Mark this loop as software pipelined so the later
6c3ff102 1738 scheduling passes don't touch it. */
896dbaed 1739 if (! flag_resched_modulo_sched)
6c3ff102 1740 mark_loop_unsched (loop);
1741
896dbaed 1742 /* The life-info is not valid any more. */
1743 df_set_bb_dirty (g->bb);
f045d41d 1744
0b79ae60 1745 apply_reg_moves (ps);
896dbaed 1746 if (dump_file)
0b79ae60 1747 print_node_sched_params (dump_file, g->num_nodes, ps);
896dbaed 1748 /* Generate prolog and epilog. */
7bfc9b7c 1749 generate_prolog_epilog (ps, loop, count_reg, count_init);
0b79ae60 1750 break;
5b6269ed 1751 }
b6a75366 1752
5b6269ed 1753 free_partial_schedule (ps);
f1f41a6c 1754 node_sched_param_vec.release ();
5b6269ed 1755 free (node_order);
1756 free_ddg (g);
1757 }
1758
3fa19cbb 1759 free (g_arr);
1760
5b6269ed 1761 /* Release scheduler data, needed until now because of DFA. */
e1ab7874 1762 haifa_sched_finish ();
88e6f696 1763 loop_optimizer_finalize ();
5b6269ed 1764}
1765
1766/* The SMS scheduling algorithm itself
1767 -----------------------------------
1768 Input: 'O' an ordered list of insns of a loop.
1769 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1770
1771 'Q' is the empty Set
1772 'PS' is the partial schedule; it holds the currently scheduled nodes with
1773 their cycle/slot.
1774 'PSP' previously scheduled predecessors.
1775 'PSS' previously scheduled successors.
1776 't(u)' the cycle where u is scheduled.
1777 'l(u)' is the latency of u.
1778 'd(v,u)' is the dependence distance from v to u.
1779 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1780 the node ordering phase.
1781 'check_hardware_resources_conflicts(u, PS, c)'
1782 run a trace around cycle/slot through DFA model
1783 to check resource conflicts involving instruction u
1784 at cycle c given the partial schedule PS.
1785 'add_to_partial_schedule_at_time(u, PS, c)'
1786 Add the node/instruction u to the partial schedule
1787 PS at time c.
1788 'calculate_register_pressure(PS)'
1789 Given a schedule of instructions, calculate the register
1790 pressure it implies. One implementation could be the
1791 maximum number of overlapping live ranges.
1792 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1793 registers available in the hardware.
1794
1795 1. II = MII.
1796 2. PS = empty list
1797 3. for each node u in O in pre-computed order
1798 4. if (PSP(u) != Q && PSS(u) == Q) then
1799 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1800 6. start = Early_start; end = Early_start + II - 1; step = 1
1801 11. else if (PSP(u) == Q && PSS(u) != Q) then
1802 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1803 13. start = Late_start; end = Late_start - II + 1; step = -1
1804 14. else if (PSP(u) != Q && PSS(u) != Q) then
1805 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1806 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1807 17. start = Early_start;
1808 18. end = min(Early_start + II - 1 , Late_start);
1809 19. step = 1
1810 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1811 21. start = ASAP(u); end = start + II - 1; step = 1
1812 22. endif
1813
1814 23. success = false
1815 24. for (c = start ; c != end ; c += step)
1816 25. if check_hardware_resources_conflicts(u, PS, c) then
1817 26. add_to_partial_schedule_at_time(u, PS, c)
1818 27. success = true
1819 28. break
1820 29. endif
1821 30. endfor
1822 31. if (success == false) then
1823 32. II = II + 1
1824 33. if (II > maxII) then
1825 34. finish - failed to schedule
1826 35. endif
1827 36. goto 2.
1828 37. endif
1829 38. endfor
1830 39. if (calculate_register_pressure(PS) > maxRP) then
1831 40. goto 32.
1832 41. endif
1833 42. compute epilogue & prologue
1834 43. finish - succeeded to schedule
469e33a0 1835
1836 ??? The algorithm restricts the scheduling window to II cycles.
1837 In rare cases, it may be better to allow windows of II+1 cycles.
1838 The window would then start and end on the same row, but with
1839 different "must precede" and "must follow" requirements. */
5b6269ed 1840
1841/* A limit on the number of cycles that resource conflicts can span. ??? Should
1842 be provided by DFA, and be dependent on the type of insn scheduled. Currently
1843 set to 0 to save compile time. */
1844#define DFA_HISTORY SMS_DFA_HISTORY
1845
76387907 1846/* A threshold for the number of repeated unsuccessful attempts to insert
1847 an empty row, before we flush the partial schedule and start over. */
1848#define MAX_SPLIT_NUM 10
b6a75366 1849/* Given the partial schedule PS, this function calculates and returns the
d90dbd3e 1850 cycles in which we can schedule the node with the given index I.
b6a75366 1851 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1852 noticed that there are several cases in which we fail to SMS the loop
1853 because the sched window of a node is empty due to tight data-deps. In
d90dbd3e 1854 such cases we want to unschedule some of the predecessors/successors
b6a75366 1855 until we get non-empty scheduling window. It returns -1 if the
1856 scheduling window is empty and zero otherwise. */
1857
1858static int
a5ea7ace 1859get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
0f7b323c 1860 sbitmap sched_nodes, int ii, int *start_p, int *step_p,
1861 int *end_p)
b6a75366 1862{
1863 int start, step, end;
0f7b323c 1864 int early_start, late_start;
b6a75366 1865 ddg_edge_ptr e;
b6a75366 1866 sbitmap psp = sbitmap_alloc (ps->g->num_nodes);
1867 sbitmap pss = sbitmap_alloc (ps->g->num_nodes);
1868 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1869 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1870 int psp_not_empty;
1871 int pss_not_empty;
0f7b323c 1872 int count_preds;
1873 int count_succs;
b6a75366 1874
1875 /* 1. compute sched window for u (start, end, step). */
53c5d9d4 1876 bitmap_clear (psp);
1877 bitmap_clear (pss);
1878 psp_not_empty = bitmap_and (psp, u_node_preds, sched_nodes);
1879 pss_not_empty = bitmap_and (pss, u_node_succs, sched_nodes);
b6a75366 1880
0f7b323c 1881 /* We first compute a forward range (start <= end), then decide whether
1882 to reverse it. */
1883 early_start = INT_MIN;
1884 late_start = INT_MAX;
1885 start = INT_MIN;
1886 end = INT_MAX;
1887 step = 1;
b6a75366 1888
0f7b323c 1889 count_preds = 0;
1890 count_succs = 0;
a9ac8caa 1891
2beb48b8 1892 if (dump_file && (psp_not_empty || pss_not_empty))
1893 {
1894 fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
1895 "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
1896 fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
1897 "start", "early start", "late start", "end", "time");
1898 fprintf (dump_file, "=========== =========== =========== ==========="
1899 " =====\n");
1900 }
0f7b323c 1901 /* Calculate early_start and limit end. Both bounds are inclusive. */
1902 if (psp_not_empty)
1903 for (e = u_node->in; e != 0; e = e->next_in)
1904 {
7282ef12 1905 int v = e->src->cuid;
76387907 1906
08b7917c 1907 if (bitmap_bit_p (sched_nodes, v))
0f7b323c 1908 {
7282ef12 1909 int p_st = SCHED_TIME (v);
2beb48b8 1910 int earliest = p_st + e->latency - (e->distance * ii);
1911 int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
76387907 1912
2beb48b8 1913 if (dump_file)
1914 {
1915 fprintf (dump_file, "%11s %11d %11s %11d %5d",
1916 "", earliest, "", latest, p_st);
1917 print_ddg_edge (dump_file, e);
1918 fprintf (dump_file, "\n");
1919 }
76387907 1920
2beb48b8 1921 early_start = MAX (early_start, earliest);
1922 end = MIN (end, latest);
b6a75366 1923
0f7b323c 1924 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1925 count_preds++;
0f7b323c 1926 }
0f7b323c 1927 }
fe861e75 1928
0f7b323c 1929 /* Calculate late_start and limit start. Both bounds are inclusive. */
1930 if (pss_not_empty)
1931 for (e = u_node->out; e != 0; e = e->next_out)
1932 {
7282ef12 1933 int v = e->dest->cuid;
a9ac8caa 1934
08b7917c 1935 if (bitmap_bit_p (sched_nodes, v))
0f7b323c 1936 {
7282ef12 1937 int s_st = SCHED_TIME (v);
2beb48b8 1938 int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
1939 int latest = s_st - e->latency + (e->distance * ii);
b6a75366 1940
2beb48b8 1941 if (dump_file)
1942 {
1943 fprintf (dump_file, "%11d %11s %11d %11s %5d",
1944 earliest, "", latest, "", s_st);
1945 print_ddg_edge (dump_file, e);
1946 fprintf (dump_file, "\n");
1947 }
76387907 1948
2beb48b8 1949 start = MAX (start, earliest);
1950 late_start = MIN (late_start, latest);
a9ac8caa 1951
0f7b323c 1952 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1953 count_succs++;
0f7b323c 1954 }
0f7b323c 1955 }
a9ac8caa 1956
2beb48b8 1957 if (dump_file && (psp_not_empty || pss_not_empty))
1958 {
1959 fprintf (dump_file, "----------- ----------- ----------- -----------"
1960 " -----\n");
1961 fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
1962 start, early_start, late_start, end, "",
1963 "(max, max, min, min)");
1964 }
1965
0f7b323c 1966 /* Get a target scheduling window no bigger than ii. */
1967 if (early_start == INT_MIN && late_start == INT_MAX)
7282ef12 1968 early_start = NODE_ASAP (u_node);
0f7b323c 1969 else if (early_start == INT_MIN)
1970 early_start = late_start - (ii - 1);
1971 late_start = MIN (late_start, early_start + (ii - 1));
a9ac8caa 1972
0f7b323c 1973 /* Apply memory dependence limits. */
1974 start = MAX (start, early_start);
1975 end = MIN (end, late_start);
fe861e75 1976
2beb48b8 1977 if (dump_file && (psp_not_empty || pss_not_empty))
1978 fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
1979 "", start, end, "", "");
1980
0f7b323c 1981 /* If there are at least as many successors as predecessors, schedule the
1982 node close to its successors. */
1983 if (pss_not_empty && count_succs >= count_preds)
b6a75366 1984 {
0f7b323c 1985 int tmp = end;
1986 end = start;
1987 start = tmp;
1988 step = -1;
b6a75366 1989 }
1990
0f7b323c 1991 /* Now that we've finalized the window, make END an exclusive rather
1992 than an inclusive bound. */
1993 end += step;
1994
b6a75366 1995 *start_p = start;
1996 *step_p = step;
1997 *end_p = end;
1998 sbitmap_free (psp);
1999 sbitmap_free (pss);
2000
2001 if ((start >= end && step == 1) || (start <= end && step == -1))
76387907 2002 {
2003 if (dump_file)
2004 fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
2005 start, end, step);
0f7b323c 2006 return -1;
76387907 2007 }
2008
0f7b323c 2009 return 0;
b6a75366 2010}
2011
fe861e75 2012/* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
2013 node currently been scheduled. At the end of the calculation
84004523 2014 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
2015 U_NODE which are (1) already scheduled in the first/last row of
2016 U_NODE's scheduling window, (2) whose dependence inequality with U
2017 becomes an equality when U is scheduled in this same row, and (3)
2018 whose dependence latency is zero.
2019
c15d54d8 2020 The first and last rows are calculated using the following parameters:
fe861e75 2021 START/END rows - The cycles that begins/ends the traversal on the window;
2022 searching for an empty cycle to schedule U_NODE.
2023 STEP - The direction in which we traverse the window.
84004523 2024 II - The initiation interval. */
fe861e75 2025
2026static void
2027calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
2028 int step, int ii, sbitmap sched_nodes,
2029 sbitmap must_precede, sbitmap must_follow)
2030{
2031 ddg_edge_ptr e;
2032 int first_cycle_in_window, last_cycle_in_window;
fe861e75 2033
2034 gcc_assert (must_precede && must_follow);
2035
2036 /* Consider the following scheduling window:
2037 {first_cycle_in_window, first_cycle_in_window+1, ...,
2038 last_cycle_in_window}. If step is 1 then the following will be
2039 the order we traverse the window: {start=first_cycle_in_window,
2040 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2041 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2042 end=first_cycle_in_window-1} if step is -1. */
2043 first_cycle_in_window = (step == 1) ? start : end - step;
2044 last_cycle_in_window = (step == 1) ? end - step : start;
2045
53c5d9d4 2046 bitmap_clear (must_precede);
2047 bitmap_clear (must_follow);
fe861e75 2048
2049 if (dump_file)
2050 fprintf (dump_file, "\nmust_precede: ");
2051
84004523 2052 /* Instead of checking if:
2053 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2054 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2055 first_cycle_in_window)
2056 && e->latency == 0
2057 we use the fact that latency is non-negative:
2058 SCHED_TIME (e->src) - (e->distance * ii) <=
2059 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2060 first_cycle_in_window
2061 and check only if
2062 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
fe861e75 2063 for (e = u_node->in; e != 0; e = e->next_in)
08b7917c 2064 if (bitmap_bit_p (sched_nodes, e->src->cuid)
7282ef12 2065 && ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
84004523 2066 first_cycle_in_window))
fe861e75 2067 {
2068 if (dump_file)
2069 fprintf (dump_file, "%d ", e->src->cuid);
2070
08b7917c 2071 bitmap_set_bit (must_precede, e->src->cuid);
fe861e75 2072 }
2073
2074 if (dump_file)
2075 fprintf (dump_file, "\nmust_follow: ");
2076
84004523 2077 /* Instead of checking if:
2078 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2079 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2080 last_cycle_in_window)
2081 && e->latency == 0
2082 we use the fact that latency is non-negative:
2083 SCHED_TIME (e->dest) + (e->distance * ii) >=
48e1416a 2084 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
84004523 2085 last_cycle_in_window
2086 and check only if
2087 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
fe861e75 2088 for (e = u_node->out; e != 0; e = e->next_out)
08b7917c 2089 if (bitmap_bit_p (sched_nodes, e->dest->cuid)
7282ef12 2090 && ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
84004523 2091 last_cycle_in_window))
fe861e75 2092 {
2093 if (dump_file)
2094 fprintf (dump_file, "%d ", e->dest->cuid);
2095
08b7917c 2096 bitmap_set_bit (must_follow, e->dest->cuid);
fe861e75 2097 }
2098
2099 if (dump_file)
2100 fprintf (dump_file, "\n");
2101}
2102
2103/* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
2104 parameters to decide if that's possible:
2105 PS - The partial schedule.
2106 U - The serial number of U_NODE.
f0b5f617 2107 NUM_SPLITS - The number of row splits made so far.
fe861e75 2108 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2109 the first row of the scheduling window)
2110 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2111 last row of the scheduling window) */
2112
2113static bool
7282ef12 2114try_scheduling_node_in_cycle (partial_schedule_ptr ps,
34c7f568 2115 int u, int cycle, sbitmap sched_nodes,
fe861e75 2116 int *num_splits, sbitmap must_precede,
2117 sbitmap must_follow)
2118{
2119 ps_insn_ptr psi;
2120 bool success = 0;
2121
2122 verify_partial_schedule (ps, sched_nodes);
7282ef12 2123 psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
fe861e75 2124 if (psi)
2125 {
7282ef12 2126 SCHED_TIME (u) = cycle;
08b7917c 2127 bitmap_set_bit (sched_nodes, u);
fe861e75 2128 success = 1;
2129 *num_splits = 0;
2130 if (dump_file)
34c7f568 2131 fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
fe861e75 2132
2133 }
2134
2135 return success;
2136}
2137
b6a75366 2138/* This function implements the scheduling algorithm for SMS according to the
2139 above algorithm. */
5b6269ed 2140static partial_schedule_ptr
3f5be5f4 2141sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
5b6269ed 2142{
2143 int ii = mii;
76387907 2144 int i, c, success, num_splits = 0;
2145 int flush_and_start_over = true;
5b6269ed 2146 int num_nodes = g->num_nodes;
5b6269ed 2147 int start, end, step; /* Place together into one struct? */
2148 sbitmap sched_nodes = sbitmap_alloc (num_nodes);
f045d41d 2149 sbitmap must_precede = sbitmap_alloc (num_nodes);
2150 sbitmap must_follow = sbitmap_alloc (num_nodes);
b6a75366 2151 sbitmap tobe_scheduled = sbitmap_alloc (num_nodes);
f045d41d 2152
5b6269ed 2153 partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
2154
53c5d9d4 2155 bitmap_ones (tobe_scheduled);
2156 bitmap_clear (sched_nodes);
b6a75366 2157
76387907 2158 while (flush_and_start_over && (ii < maxii))
5b6269ed 2159 {
b6a75366 2160
5b6269ed 2161 if (dump_file)
d4473c84 2162 fprintf (dump_file, "Starting with ii=%d\n", ii);
76387907 2163 flush_and_start_over = false;
53c5d9d4 2164 bitmap_clear (sched_nodes);
5b6269ed 2165
2166 for (i = 0; i < num_nodes; i++)
2167 {
2168 int u = nodes_order[i];
b6a75366 2169 ddg_node_ptr u_node = &ps->g->nodes[u];
5b6269ed 2170 rtx insn = u_node->insn;
2171
9845d120 2172 if (!NONDEBUG_INSN_P (insn))
5b6269ed 2173 {
08b7917c 2174 bitmap_clear_bit (tobe_scheduled, u);
b6a75366 2175 continue;
5b6269ed 2176 }
2177
08b7917c 2178 if (bitmap_bit_p (sched_nodes, u))
b6a75366 2179 continue;
5b6269ed 2180
b6a75366 2181 /* Try to get non-empty scheduling window. */
76387907 2182 success = 0;
a5ea7ace 2183 if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
76387907 2184 &step, &end) == 0)
2185 {
2186 if (dump_file)
2beb48b8 2187 fprintf (dump_file, "\nTrying to schedule node %d "
2188 "INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
76387907 2189 (g->nodes[u].insn)), start, end, step);
76387907 2190
2191 gcc_assert ((step > 0 && start < end)
2192 || (step < 0 && start > end));
2193
fe861e75 2194 calculate_must_precede_follow (u_node, start, end, step, ii,
2195 sched_nodes, must_precede,
2196 must_follow);
2197
76387907 2198 for (c = start; c != end; c += step)
2199 {
a5ea7ace 2200 sbitmap tmp_precede, tmp_follow;
fe861e75 2201
a5ea7ace 2202 set_must_precede_follow (&tmp_follow, must_follow,
2203 &tmp_precede, must_precede,
2204 c, start, end, step);
fe861e75 2205 success =
7282ef12 2206 try_scheduling_node_in_cycle (ps, u, c,
fe861e75 2207 sched_nodes,
2208 &num_splits, tmp_precede,
2209 tmp_follow);
2210 if (success)
2211 break;
76387907 2212 }
fe861e75 2213
76387907 2214 verify_partial_schedule (ps, sched_nodes);
2215 }
2216 if (!success)
2217 {
2218 int split_row;
2219
2220 if (ii++ == maxii)
2221 break;
2222
2223 if (num_splits >= MAX_SPLIT_NUM)
2224 {
2225 num_splits = 0;
2226 flush_and_start_over = true;
2227 verify_partial_schedule (ps, sched_nodes);
2228 reset_partial_schedule (ps, ii);
2229 verify_partial_schedule (ps, sched_nodes);
2230 break;
2231 }
2232
2233 num_splits++;
7af239b5 2234 /* The scheduling window is exclusive of 'end'
2235 whereas compute_split_window() expects an inclusive,
2236 ordered range. */
76387907 2237 if (step == 1)
7af239b5 2238 split_row = compute_split_row (sched_nodes, start, end - 1,
76387907 2239 ps->ii, u_node);
2240 else
7af239b5 2241 split_row = compute_split_row (sched_nodes, end + 1, start,
76387907 2242 ps->ii, u_node);
b6a75366 2243
76387907 2244 ps_insert_empty_row (ps, split_row, sched_nodes);
2245 i--; /* Go back and retry node i. */
5b6269ed 2246
76387907 2247 if (dump_file)
2248 fprintf (dump_file, "num_splits=%d\n", num_splits);
2249 }
5b6269ed 2250
76387907 2251 /* ??? If (success), check register pressure estimates. */
2252 } /* Continue with next node. */
2253 } /* While flush_and_start_over. */
5b6269ed 2254 if (ii >= maxii)
2255 {
2256 free_partial_schedule (ps);
2257 ps = NULL;
2258 }
76387907 2259 else
53c5d9d4 2260 gcc_assert (bitmap_equal_p (tobe_scheduled, sched_nodes));
76387907 2261
2262 sbitmap_free (sched_nodes);
2263 sbitmap_free (must_precede);
2264 sbitmap_free (must_follow);
2265 sbitmap_free (tobe_scheduled);
2266
5b6269ed 2267 return ps;
2268}
2269
76387907 2270/* This function inserts a new empty row into PS at the position
2271 according to SPLITROW, keeping all already scheduled instructions
2272 intact and updating their SCHED_TIME and cycle accordingly. */
2273static void
2274ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
2275 sbitmap sched_nodes)
2276{
2277 ps_insn_ptr crr_insn;
2278 ps_insn_ptr *rows_new;
2279 int ii = ps->ii;
2280 int new_ii = ii + 1;
2281 int row;
4815ed0c 2282 int *rows_length_new;
76387907 2283
2284 verify_partial_schedule (ps, sched_nodes);
2285
2286 /* We normalize sched_time and rotate ps to have only non-negative sched
2287 times, for simplicity of updating cycles after inserting new row. */
2288 split_row -= ps->min_cycle;
2289 split_row = SMODULO (split_row, ii);
2290 if (dump_file)
2291 fprintf (dump_file, "split_row=%d\n", split_row);
2292
6f7f081f 2293 reset_sched_times (ps, PS_MIN_CYCLE (ps));
2294 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
76387907 2295
2296 rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
4815ed0c 2297 rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
76387907 2298 for (row = 0; row < split_row; row++)
2299 {
2300 rows_new[row] = ps->rows[row];
4815ed0c 2301 rows_length_new[row] = ps->rows_length[row];
76387907 2302 ps->rows[row] = NULL;
2303 for (crr_insn = rows_new[row];
2304 crr_insn; crr_insn = crr_insn->next_in_row)
2305 {
7282ef12 2306 int u = crr_insn->id;
76387907 2307 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
2308
2309 SCHED_TIME (u) = new_time;
2310 crr_insn->cycle = new_time;
2311 SCHED_ROW (u) = new_time % new_ii;
2312 SCHED_STAGE (u) = new_time / new_ii;
2313 }
2314
2315 }
2316
2317 rows_new[split_row] = NULL;
2318
2319 for (row = split_row; row < ii; row++)
2320 {
2321 rows_new[row + 1] = ps->rows[row];
4815ed0c 2322 rows_length_new[row + 1] = ps->rows_length[row];
76387907 2323 ps->rows[row] = NULL;
2324 for (crr_insn = rows_new[row + 1];
2325 crr_insn; crr_insn = crr_insn->next_in_row)
2326 {
7282ef12 2327 int u = crr_insn->id;
76387907 2328 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
2329
2330 SCHED_TIME (u) = new_time;
2331 crr_insn->cycle = new_time;
2332 SCHED_ROW (u) = new_time % new_ii;
2333 SCHED_STAGE (u) = new_time / new_ii;
2334 }
2335 }
2336
2337 /* Updating ps. */
2338 ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
2339 + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
2340 ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
2341 + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
2342 free (ps->rows);
2343 ps->rows = rows_new;
4815ed0c 2344 free (ps->rows_length);
2345 ps->rows_length = rows_length_new;
76387907 2346 ps->ii = new_ii;
2347 gcc_assert (ps->min_cycle >= 0);
2348
2349 verify_partial_schedule (ps, sched_nodes);
2350
2351 if (dump_file)
2352 fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
2353 ps->max_cycle);
2354}
2355
2356/* Given U_NODE which is the node that failed to be scheduled; LOW and
2357 UP which are the boundaries of it's scheduling window; compute using
c7684b8e 2358 SCHED_NODES and II a row in the partial schedule that can be split
76387907 2359 which will separate a critical predecessor from a critical successor
2360 thereby expanding the window, and return it. */
2361static int
2362compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
2363 ddg_node_ptr u_node)
2364{
2365 ddg_edge_ptr e;
2366 int lower = INT_MIN, upper = INT_MAX;
7282ef12 2367 int crit_pred = -1;
2368 int crit_succ = -1;
76387907 2369 int crit_cycle;
2370
2371 for (e = u_node->in; e != 0; e = e->next_in)
2372 {
7282ef12 2373 int v = e->src->cuid;
76387907 2374
08b7917c 2375 if (bitmap_bit_p (sched_nodes, v)
7282ef12 2376 && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
2377 if (SCHED_TIME (v) > lower)
76387907 2378 {
7282ef12 2379 crit_pred = v;
2380 lower = SCHED_TIME (v);
76387907 2381 }
2382 }
2383
7282ef12 2384 if (crit_pred >= 0)
76387907 2385 {
2386 crit_cycle = SCHED_TIME (crit_pred) + 1;
2387 return SMODULO (crit_cycle, ii);
2388 }
2389
2390 for (e = u_node->out; e != 0; e = e->next_out)
2391 {
7282ef12 2392 int v = e->dest->cuid;
2393
08b7917c 2394 if (bitmap_bit_p (sched_nodes, v)
7282ef12 2395 && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
2396 if (SCHED_TIME (v) < upper)
76387907 2397 {
7282ef12 2398 crit_succ = v;
2399 upper = SCHED_TIME (v);
76387907 2400 }
2401 }
2402
7282ef12 2403 if (crit_succ >= 0)
76387907 2404 {
2405 crit_cycle = SCHED_TIME (crit_succ);
2406 return SMODULO (crit_cycle, ii);
2407 }
2408
2409 if (dump_file)
2410 fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2411
2412 return SMODULO ((low + up + 1) / 2, ii);
2413}
2414
2415static void
2416verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2417{
2418 int row;
2419 ps_insn_ptr crr_insn;
2420
2421 for (row = 0; row < ps->ii; row++)
4815ed0c 2422 {
2423 int length = 0;
2424
2425 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2426 {
7282ef12 2427 int u = crr_insn->id;
4815ed0c 2428
2429 length++;
08b7917c 2430 gcc_assert (bitmap_bit_p (sched_nodes, u));
4815ed0c 2431 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2432 popcount (sched_nodes) == number of insns in ps. */
2433 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2434 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2435 }
2436
2437 gcc_assert (ps->rows_length[row] == length);
2438 }
76387907 2439}
2440
5b6269ed 2441\f
2442/* This page implements the algorithm for ordering the nodes of a DDG
2443 for modulo scheduling, activated through the
2444 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2445
2446#define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2447#define ASAP(x) (ORDER_PARAMS ((x))->asap)
2448#define ALAP(x) (ORDER_PARAMS ((x))->alap)
2449#define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2450#define MOB(x) (ALAP ((x)) - ASAP ((x)))
2451#define DEPTH(x) (ASAP ((x)))
2452
2453typedef struct node_order_params * nopa;
2454
2455static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2456static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
c0fb94bd 2457static nopa calculate_order_params (ddg_ptr, int, int *);
5b6269ed 2458static int find_max_asap (ddg_ptr, sbitmap);
2459static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2460static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2461
2462enum sms_direction {BOTTOMUP, TOPDOWN};
2463
2464struct node_order_params
2465{
2466 int asap;
2467 int alap;
2468 int height;
2469};
2470
2471/* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2472static void
2473check_nodes_order (int *node_order, int num_nodes)
2474{
2475 int i;
2476 sbitmap tmp = sbitmap_alloc (num_nodes);
2477
53c5d9d4 2478 bitmap_clear (tmp);
5b6269ed 2479
a9ac8caa 2480 if (dump_file)
2481 fprintf (dump_file, "SMS final nodes order: \n");
2482
5b6269ed 2483 for (i = 0; i < num_nodes; i++)
2484 {
2485 int u = node_order[i];
2486
a9ac8caa 2487 if (dump_file)
2488 fprintf (dump_file, "%d ", u);
08b7917c 2489 gcc_assert (u < num_nodes && u >= 0 && !bitmap_bit_p (tmp, u));
5b6269ed 2490
08b7917c 2491 bitmap_set_bit (tmp, u);
5b6269ed 2492 }
48e1416a 2493
a9ac8caa 2494 if (dump_file)
2495 fprintf (dump_file, "\n");
48e1416a 2496
5b6269ed 2497 sbitmap_free (tmp);
2498}
2499
2500/* Order the nodes of G for scheduling and pass the result in
2501 NODE_ORDER. Also set aux.count of each node to ASAP.
c0fb94bd 2502 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
5b6269ed 2503static int
c0fb94bd 2504sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
5b6269ed 2505{
2506 int i;
2507 int rec_mii = 0;
2508 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2509
c0fb94bd 2510 nopa nops = calculate_order_params (g, mii, pmax_asap);
5b6269ed 2511
65ef61df 2512 if (dump_file)
2513 print_sccs (dump_file, sccs, g);
2514
5b6269ed 2515 order_nodes_of_sccs (sccs, node_order);
2516
2517 if (sccs->num_sccs > 0)
2518 /* First SCC has the largest recurrence_length. */
2519 rec_mii = sccs->sccs[0]->recurrence_length;
2520
2521 /* Save ASAP before destroying node_order_params. */
2522 for (i = 0; i < g->num_nodes; i++)
2523 {
2524 ddg_node_ptr v = &g->nodes[i];
2525 v->aux.count = ASAP (v);
2526 }
2527
2528 free (nops);
2529 free_ddg_all_sccs (sccs);
2530 check_nodes_order (node_order, g->num_nodes);
2531
2532 return rec_mii;
2533}
2534
2535static void
2536order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2537{
2538 int i, pos = 0;
2539 ddg_ptr g = all_sccs->ddg;
2540 int num_nodes = g->num_nodes;
2541 sbitmap prev_sccs = sbitmap_alloc (num_nodes);
2542 sbitmap on_path = sbitmap_alloc (num_nodes);
2543 sbitmap tmp = sbitmap_alloc (num_nodes);
2544 sbitmap ones = sbitmap_alloc (num_nodes);
2545
53c5d9d4 2546 bitmap_clear (prev_sccs);
2547 bitmap_ones (ones);
5b6269ed 2548
f0b5f617 2549 /* Perform the node ordering starting from the SCC with the highest recMII.
5b6269ed 2550 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2551 for (i = 0; i < all_sccs->num_sccs; i++)
2552 {
2553 ddg_scc_ptr scc = all_sccs->sccs[i];
2554
2555 /* Add nodes on paths from previous SCCs to the current SCC. */
2556 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
53c5d9d4 2557 bitmap_ior (tmp, scc->nodes, on_path);
5b6269ed 2558
2559 /* Add nodes on paths from the current SCC to previous SCCs. */
2560 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
53c5d9d4 2561 bitmap_ior (tmp, tmp, on_path);
5b6269ed 2562
2563 /* Remove nodes of previous SCCs from current extended SCC. */
53c5d9d4 2564 bitmap_and_compl (tmp, tmp, prev_sccs);
5b6269ed 2565
2566 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2567 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2568 }
2569
2570 /* Handle the remaining nodes that do not belong to any scc. Each call
2571 to order_nodes_in_scc handles a single connected component. */
2572 while (pos < g->num_nodes)
2573 {
53c5d9d4 2574 bitmap_and_compl (tmp, ones, prev_sccs);
5b6269ed 2575 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2576 }
2577 sbitmap_free (prev_sccs);
2578 sbitmap_free (on_path);
2579 sbitmap_free (tmp);
2580 sbitmap_free (ones);
2581}
2582
2583/* MII is needed if we consider backarcs (that do not close recursive cycles). */
2584static struct node_order_params *
c0fb94bd 2585calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
5b6269ed 2586{
2587 int u;
2588 int max_asap;
2589 int num_nodes = g->num_nodes;
2590 ddg_edge_ptr e;
2591 /* Allocate a place to hold ordering params for each node in the DDG. */
2592 nopa node_order_params_arr;
2593
2594 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2595 node_order_params_arr = (nopa) xcalloc (num_nodes,
2596 sizeof (struct node_order_params));
2597
2c763ed4 2598 /* Set the aux pointer of each node to point to its order_params structure. */
5b6269ed 2599 for (u = 0; u < num_nodes; u++)
2600 g->nodes[u].aux.info = &node_order_params_arr[u];
2601
2602 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2603 calculate ASAP, ALAP, mobility, distance, and height for each node
2604 in the dependence (direct acyclic) graph. */
2605
2606 /* We assume that the nodes in the array are in topological order. */
2607
2608 max_asap = 0;
2609 for (u = 0; u < num_nodes; u++)
2610 {
2611 ddg_node_ptr u_node = &g->nodes[u];
2612
2613 ASAP (u_node) = 0;
2614 for (e = u_node->in; e; e = e->next_in)
2615 if (e->distance == 0)
2616 ASAP (u_node) = MAX (ASAP (u_node),
2617 ASAP (e->src) + e->latency);
2618 max_asap = MAX (max_asap, ASAP (u_node));
2619 }
2620
2621 for (u = num_nodes - 1; u > -1; u--)
2622 {
2623 ddg_node_ptr u_node = &g->nodes[u];
2624
2625 ALAP (u_node) = max_asap;
2626 HEIGHT (u_node) = 0;
2627 for (e = u_node->out; e; e = e->next_out)
2628 if (e->distance == 0)
2629 {
2630 ALAP (u_node) = MIN (ALAP (u_node),
2631 ALAP (e->dest) - e->latency);
2632 HEIGHT (u_node) = MAX (HEIGHT (u_node),
2633 HEIGHT (e->dest) + e->latency);
2634 }
2635 }
a9ac8caa 2636 if (dump_file)
2637 {
2638 fprintf (dump_file, "\nOrder params\n");
2639 for (u = 0; u < num_nodes; u++)
2640 {
2641 ddg_node_ptr u_node = &g->nodes[u];
2642
2643 fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2644 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2645 }
2646 }
5b6269ed 2647
c0fb94bd 2648 *pmax_asap = max_asap;
5b6269ed 2649 return node_order_params_arr;
2650}
2651
2652static int
2653find_max_asap (ddg_ptr g, sbitmap nodes)
2654{
86c1585a 2655 unsigned int u = 0;
5b6269ed 2656 int max_asap = -1;
2657 int result = -1;
3e790786 2658 sbitmap_iterator sbi;
5b6269ed 2659
0d211963 2660 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
5b6269ed 2661 {
2662 ddg_node_ptr u_node = &g->nodes[u];
2663
2664 if (max_asap < ASAP (u_node))
2665 {
2666 max_asap = ASAP (u_node);
2667 result = u;
2668 }
3e790786 2669 }
5b6269ed 2670 return result;
2671}
2672
2673static int
2674find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2675{
86c1585a 2676 unsigned int u = 0;
5b6269ed 2677 int max_hv = -1;
2678 int min_mob = INT_MAX;
2679 int result = -1;
3e790786 2680 sbitmap_iterator sbi;
5b6269ed 2681
0d211963 2682 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
5b6269ed 2683 {
2684 ddg_node_ptr u_node = &g->nodes[u];
2685
2686 if (max_hv < HEIGHT (u_node))
2687 {
2688 max_hv = HEIGHT (u_node);
2689 min_mob = MOB (u_node);
2690 result = u;
2691 }
2692 else if ((max_hv == HEIGHT (u_node))
2693 && (min_mob > MOB (u_node)))
2694 {
2695 min_mob = MOB (u_node);
2696 result = u;
2697 }
3e790786 2698 }
5b6269ed 2699 return result;
2700}
2701
2702static int
2703find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2704{
86c1585a 2705 unsigned int u = 0;
5b6269ed 2706 int max_dv = -1;
2707 int min_mob = INT_MAX;
2708 int result = -1;
3e790786 2709 sbitmap_iterator sbi;
5b6269ed 2710
0d211963 2711 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
5b6269ed 2712 {
2713 ddg_node_ptr u_node = &g->nodes[u];
2714
2715 if (max_dv < DEPTH (u_node))
2716 {
2717 max_dv = DEPTH (u_node);
2718 min_mob = MOB (u_node);
2719 result = u;
2720 }
2721 else if ((max_dv == DEPTH (u_node))
2722 && (min_mob > MOB (u_node)))
2723 {
2724 min_mob = MOB (u_node);
2725 result = u;
2726 }
3e790786 2727 }
5b6269ed 2728 return result;
2729}
2730
2731/* Places the nodes of SCC into the NODE_ORDER array starting
2732 at position POS, according to the SMS ordering algorithm.
2733 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2734 the NODE_ORDER array, starting from position zero. */
2735static int
2736order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2737 int * node_order, int pos)
2738{
2739 enum sms_direction dir;
2740 int num_nodes = g->num_nodes;
2741 sbitmap workset = sbitmap_alloc (num_nodes);
2742 sbitmap tmp = sbitmap_alloc (num_nodes);
2743 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
2744 sbitmap predecessors = sbitmap_alloc (num_nodes);
2745 sbitmap successors = sbitmap_alloc (num_nodes);
2746
53c5d9d4 2747 bitmap_clear (predecessors);
5b6269ed 2748 find_predecessors (predecessors, g, nodes_ordered);
2749
53c5d9d4 2750 bitmap_clear (successors);
5b6269ed 2751 find_successors (successors, g, nodes_ordered);
2752
53c5d9d4 2753 bitmap_clear (tmp);
2754 if (bitmap_and (tmp, predecessors, scc))
5b6269ed 2755 {
53c5d9d4 2756 bitmap_copy (workset, tmp);
5b6269ed 2757 dir = BOTTOMUP;
2758 }
53c5d9d4 2759 else if (bitmap_and (tmp, successors, scc))
5b6269ed 2760 {
53c5d9d4 2761 bitmap_copy (workset, tmp);
5b6269ed 2762 dir = TOPDOWN;
2763 }
2764 else
2765 {
2766 int u;
2767
53c5d9d4 2768 bitmap_clear (workset);
5b6269ed 2769 if ((u = find_max_asap (g, scc)) >= 0)
08b7917c 2770 bitmap_set_bit (workset, u);
5b6269ed 2771 dir = BOTTOMUP;
2772 }
2773
53c5d9d4 2774 bitmap_clear (zero_bitmap);
2775 while (!bitmap_equal_p (workset, zero_bitmap))
5b6269ed 2776 {
2777 int v;
2778 ddg_node_ptr v_node;
2779 sbitmap v_node_preds;
2780 sbitmap v_node_succs;
2781
2782 if (dir == TOPDOWN)
2783 {
53c5d9d4 2784 while (!bitmap_equal_p (workset, zero_bitmap))
5b6269ed 2785 {
2786 v = find_max_hv_min_mob (g, workset);
2787 v_node = &g->nodes[v];
2788 node_order[pos++] = v;
2789 v_node_succs = NODE_SUCCESSORS (v_node);
53c5d9d4 2790 bitmap_and (tmp, v_node_succs, scc);
5b6269ed 2791
2792 /* Don't consider the already ordered successors again. */
53c5d9d4 2793 bitmap_and_compl (tmp, tmp, nodes_ordered);
2794 bitmap_ior (workset, workset, tmp);
08b7917c 2795 bitmap_clear_bit (workset, v);
2796 bitmap_set_bit (nodes_ordered, v);
5b6269ed 2797 }
2798 dir = BOTTOMUP;
53c5d9d4 2799 bitmap_clear (predecessors);
5b6269ed 2800 find_predecessors (predecessors, g, nodes_ordered);
53c5d9d4 2801 bitmap_and (workset, predecessors, scc);
5b6269ed 2802 }
2803 else
2804 {
53c5d9d4 2805 while (!bitmap_equal_p (workset, zero_bitmap))
5b6269ed 2806 {
2807 v = find_max_dv_min_mob (g, workset);
2808 v_node = &g->nodes[v];
2809 node_order[pos++] = v;
2810 v_node_preds = NODE_PREDECESSORS (v_node);
53c5d9d4 2811 bitmap_and (tmp, v_node_preds, scc);
5b6269ed 2812
2813 /* Don't consider the already ordered predecessors again. */
53c5d9d4 2814 bitmap_and_compl (tmp, tmp, nodes_ordered);
2815 bitmap_ior (workset, workset, tmp);
08b7917c 2816 bitmap_clear_bit (workset, v);
2817 bitmap_set_bit (nodes_ordered, v);
5b6269ed 2818 }
2819 dir = TOPDOWN;
53c5d9d4 2820 bitmap_clear (successors);
5b6269ed 2821 find_successors (successors, g, nodes_ordered);
53c5d9d4 2822 bitmap_and (workset, successors, scc);
5b6269ed 2823 }
2824 }
2825 sbitmap_free (tmp);
2826 sbitmap_free (workset);
2827 sbitmap_free (zero_bitmap);
2828 sbitmap_free (predecessors);
2829 sbitmap_free (successors);
2830 return pos;
2831}
2832
2833\f
2834/* This page contains functions for manipulating partial-schedules during
2835 modulo scheduling. */
2836
2837/* Create a partial schedule and allocate a memory to hold II rows. */
1bed606a 2838
2839static partial_schedule_ptr
5b6269ed 2840create_partial_schedule (int ii, ddg_ptr g, int history)
2841{
4c36ffe6 2842 partial_schedule_ptr ps = XNEW (struct partial_schedule);
5b6269ed 2843 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
4815ed0c 2844 ps->rows_length = (int *) xcalloc (ii, sizeof (int));
f1f41a6c 2845 ps->reg_moves.create (0);
5b6269ed 2846 ps->ii = ii;
2847 ps->history = history;
2848 ps->min_cycle = INT_MAX;
2849 ps->max_cycle = INT_MIN;
2850 ps->g = g;
2851
2852 return ps;
2853}
2854
2855/* Free the PS_INSNs in rows array of the given partial schedule.
2856 ??? Consider caching the PS_INSN's. */
2857static void
2858free_ps_insns (partial_schedule_ptr ps)
2859{
2860 int i;
2861
2862 for (i = 0; i < ps->ii; i++)
2863 {
2864 while (ps->rows[i])
2865 {
2866 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2867
2868 free (ps->rows[i]);
2869 ps->rows[i] = ps_insn;
2870 }
2871 ps->rows[i] = NULL;
2872 }
2873}
2874
2875/* Free all the memory allocated to the partial schedule. */
1bed606a 2876
2877static void
5b6269ed 2878free_partial_schedule (partial_schedule_ptr ps)
2879{
0b79ae60 2880 ps_reg_move_info *move;
2881 unsigned int i;
2882
5b6269ed 2883 if (!ps)
2884 return;
0b79ae60 2885
f1f41a6c 2886 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
0b79ae60 2887 sbitmap_free (move->uses);
f1f41a6c 2888 ps->reg_moves.release ();
0b79ae60 2889
5b6269ed 2890 free_ps_insns (ps);
2891 free (ps->rows);
4815ed0c 2892 free (ps->rows_length);
5b6269ed 2893 free (ps);
2894}
2895
2896/* Clear the rows array with its PS_INSNs, and create a new one with
2897 NEW_II rows. */
1bed606a 2898
2899static void
5b6269ed 2900reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2901{
2902 if (!ps)
2903 return;
2904 free_ps_insns (ps);
2905 if (new_ii == ps->ii)
2906 return;
2907 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2908 * sizeof (ps_insn_ptr));
2909 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
4815ed0c 2910 ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
2911 memset (ps->rows_length, 0, new_ii * sizeof (int));
5b6269ed 2912 ps->ii = new_ii;
2913 ps->min_cycle = INT_MAX;
2914 ps->max_cycle = INT_MIN;
2915}
2916
2917/* Prints the partial schedule as an ii rows array, for each rows
2918 print the ids of the insns in it. */
2919void
2920print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2921{
2922 int i;
2923
2924 for (i = 0; i < ps->ii; i++)
2925 {
2926 ps_insn_ptr ps_i = ps->rows[i];
2927
34c7f568 2928 fprintf (dump, "\n[ROW %d ]: ", i);
5b6269ed 2929 while (ps_i)
2930 {
7282ef12 2931 rtx insn = ps_rtl_insn (ps, ps_i->id);
2932
2933 if (JUMP_P (insn))
2934 fprintf (dump, "%d (branch), ", INSN_UID (insn));
abbfd803 2935 else
7282ef12 2936 fprintf (dump, "%d, ", INSN_UID (insn));
abbfd803 2937
5b6269ed 2938 ps_i = ps_i->next_in_row;
2939 }
2940 }
2941}
2942
2943/* Creates an object of PS_INSN and initializes it to the given parameters. */
2944static ps_insn_ptr
7282ef12 2945create_ps_insn (int id, int cycle)
5b6269ed 2946{
4c36ffe6 2947 ps_insn_ptr ps_i = XNEW (struct ps_insn);
5b6269ed 2948
7282ef12 2949 ps_i->id = id;
5b6269ed 2950 ps_i->next_in_row = NULL;
2951 ps_i->prev_in_row = NULL;
5b6269ed 2952 ps_i->cycle = cycle;
2953
2954 return ps_i;
2955}
2956
2957
9bf2b489 2958/* Removes the given PS_INSN from the partial schedule. */
2959static void
5b6269ed 2960remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2961{
2962 int row;
2963
9bf2b489 2964 gcc_assert (ps && ps_i);
2965
5b6269ed 2966 row = SMODULO (ps_i->cycle, ps->ii);
2967 if (! ps_i->prev_in_row)
2968 {
9bf2b489 2969 gcc_assert (ps_i == ps->rows[row]);
5b6269ed 2970 ps->rows[row] = ps_i->next_in_row;
2971 if (ps->rows[row])
2972 ps->rows[row]->prev_in_row = NULL;
2973 }
2974 else
2975 {
2976 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2977 if (ps_i->next_in_row)
2978 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2979 }
4815ed0c 2980
2981 ps->rows_length[row] -= 1;
5b6269ed 2982 free (ps_i);
9bf2b489 2983 return;
5b6269ed 2984}
2985
f045d41d 2986/* Unlike what literature describes for modulo scheduling (which focuses
2987 on VLIW machines) the order of the instructions inside a cycle is
2988 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2989 where the current instruction should go relative to the already
2990 scheduled instructions in the given cycle. Go over these
2991 instructions and find the first possible column to put it in. */
2992static bool
2993ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2994 sbitmap must_precede, sbitmap must_follow)
2995{
2996 ps_insn_ptr next_ps_i;
2997 ps_insn_ptr first_must_follow = NULL;
2998 ps_insn_ptr last_must_precede = NULL;
6f7f081f 2999 ps_insn_ptr last_in_row = NULL;
f045d41d 3000 int row;
3001
3002 if (! ps_i)
3003 return false;
3004
3005 row = SMODULO (ps_i->cycle, ps->ii);
3006
3007 /* Find the first must follow and the last must precede
91275768 3008 and insert the node immediately after the must precede
dac49aa5 3009 but make sure that it there is no must follow after it. */
f045d41d 3010 for (next_ps_i = ps->rows[row];
3011 next_ps_i;
3012 next_ps_i = next_ps_i->next_in_row)
3013 {
7282ef12 3014 if (must_follow
08b7917c 3015 && bitmap_bit_p (must_follow, next_ps_i->id)
f045d41d 3016 && ! first_must_follow)
3017 first_must_follow = next_ps_i;
08b7917c 3018 if (must_precede && bitmap_bit_p (must_precede, next_ps_i->id))
f045d41d 3019 {
3020 /* If we have already met a node that must follow, then
3021 there is no possible column. */
3022 if (first_must_follow)
3023 return false;
3024 else
3025 last_must_precede = next_ps_i;
3026 }
6f7f081f 3027 /* The closing branch must be the last in the row. */
3028 if (must_precede
08b7917c 3029 && bitmap_bit_p (must_precede, next_ps_i->id)
7282ef12 3030 && JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
6f7f081f 3031 return false;
3032
3033 last_in_row = next_ps_i;
f045d41d 3034 }
3035
6f7f081f 3036 /* The closing branch is scheduled as well. Make sure there is no
3037 dependent instruction after it as the branch should be the last
3038 instruction in the row. */
7282ef12 3039 if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
6f7f081f 3040 {
3041 if (first_must_follow)
3042 return false;
3043 if (last_in_row)
3044 {
3045 /* Make the branch the last in the row. New instructions
3046 will be inserted at the beginning of the row or after the
3047 last must_precede instruction thus the branch is guaranteed
3048 to remain the last instruction in the row. */
3049 last_in_row->next_in_row = ps_i;
3050 ps_i->prev_in_row = last_in_row;
3051 ps_i->next_in_row = NULL;
3052 }
3053 else
3054 ps->rows[row] = ps_i;
3055 return true;
3056 }
3057
f045d41d 3058 /* Now insert the node after INSERT_AFTER_PSI. */
3059
3060 if (! last_must_precede)
3061 {
3062 ps_i->next_in_row = ps->rows[row];
3063 ps_i->prev_in_row = NULL;
3064 if (ps_i->next_in_row)
3065 ps_i->next_in_row->prev_in_row = ps_i;
3066 ps->rows[row] = ps_i;
3067 }
3068 else
3069 {
3070 ps_i->next_in_row = last_must_precede->next_in_row;
3071 last_must_precede->next_in_row = ps_i;
3072 ps_i->prev_in_row = last_must_precede;
3073 if (ps_i->next_in_row)
3074 ps_i->next_in_row->prev_in_row = ps_i;
3075 }
3076
3077 return true;
3078}
3079
5b6269ed 3080/* Advances the PS_INSN one column in its current row; returns false
48e1416a 3081 in failure and true in success. Bit N is set in MUST_FOLLOW if
3082 the node with cuid N must be come after the node pointed to by
f045d41d 3083 PS_I when scheduled in the same cycle. */
5b6269ed 3084static int
f045d41d 3085ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3086 sbitmap must_follow)
5b6269ed 3087{
3088 ps_insn_ptr prev, next;
3089 int row;
3090
3091 if (!ps || !ps_i)
3092 return false;
3093
3094 row = SMODULO (ps_i->cycle, ps->ii);
3095
3096 if (! ps_i->next_in_row)
3097 return false;
3098
3099 /* Check if next_in_row is dependent on ps_i, both having same sched
3100 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
08b7917c 3101 if (must_follow && bitmap_bit_p (must_follow, ps_i->next_in_row->id))
f045d41d 3102 return false;
5b6269ed 3103
91275768 3104 /* Advance PS_I over its next_in_row in the doubly linked list. */
5b6269ed 3105 prev = ps_i->prev_in_row;
3106 next = ps_i->next_in_row;
3107
3108 if (ps_i == ps->rows[row])
3109 ps->rows[row] = next;
3110
3111 ps_i->next_in_row = next->next_in_row;
3112
3113 if (next->next_in_row)
3114 next->next_in_row->prev_in_row = ps_i;
3115
3116 next->next_in_row = ps_i;
3117 ps_i->prev_in_row = next;
3118
3119 next->prev_in_row = prev;
3120 if (prev)
3121 prev->next_in_row = next;
3122
3123 return true;
3124}
3125
3126/* Inserts a DDG_NODE to the given partial schedule at the given cycle.
48e1416a 3127 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
3128 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3129 before/after (respectively) the node pointed to by PS_I when scheduled
f045d41d 3130 in the same cycle. */
5b6269ed 3131static ps_insn_ptr
7282ef12 3132add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
f045d41d 3133 sbitmap must_precede, sbitmap must_follow)
5b6269ed 3134{
f045d41d 3135 ps_insn_ptr ps_i;
5b6269ed 3136 int row = SMODULO (cycle, ps->ii);
5b6269ed 3137
4815ed0c 3138 if (ps->rows_length[row] >= issue_rate)
5b6269ed 3139 return NULL;
3140
7282ef12 3141 ps_i = create_ps_insn (id, cycle);
f045d41d 3142
3143 /* Finds and inserts PS_I according to MUST_FOLLOW and
3144 MUST_PRECEDE. */
3145 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
3146 {
3147 free (ps_i);
3148 return NULL;
3149 }
5b6269ed 3150
4815ed0c 3151 ps->rows_length[row] += 1;
5b6269ed 3152 return ps_i;
3153}
3154
3155/* Advance time one cycle. Assumes DFA is being used. */
3156static void
3157advance_one_cycle (void)
3158{
67900a4f 3159 if (targetm.sched.dfa_pre_cycle_insn)
3160 state_transition (curr_state,
ffa47ae0 3161 targetm.sched.dfa_pre_cycle_insn ());
5b6269ed 3162
67900a4f 3163 state_transition (curr_state, NULL);
5b6269ed 3164
67900a4f 3165 if (targetm.sched.dfa_post_cycle_insn)
3166 state_transition (curr_state,
ffa47ae0 3167 targetm.sched.dfa_post_cycle_insn ());
5b6269ed 3168}
3169
b6a75366 3170
b6a75366 3171
5b6269ed 3172/* Checks if PS has resource conflicts according to DFA, starting from
3173 FROM cycle to TO cycle; returns true if there are conflicts and false
3174 if there are no conflicts. Assumes DFA is being used. */
3175static int
3176ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
3177{
3178 int cycle;
3179
5b6269ed 3180 state_reset (curr_state);
3181
3182 for (cycle = from; cycle <= to; cycle++)
3183 {
3184 ps_insn_ptr crr_insn;
3185 /* Holds the remaining issue slots in the current row. */
3186 int can_issue_more = issue_rate;
3187
3188 /* Walk through the DFA for the current row. */
3189 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
3190 crr_insn;
3191 crr_insn = crr_insn->next_in_row)
3192 {
7282ef12 3193 rtx insn = ps_rtl_insn (ps, crr_insn->id);
5b6269ed 3194
9845d120 3195 if (!NONDEBUG_INSN_P (insn))
5b6269ed 3196 continue;
3197
3198 /* Check if there is room for the current insn. */
3199 if (!can_issue_more || state_dead_lock_p (curr_state))
3200 return true;
3201
3202 /* Update the DFA state and return with failure if the DFA found
f0b5f617 3203 resource conflicts. */
5b6269ed 3204 if (state_transition (curr_state, insn) >= 0)
3205 return true;
3206
3207 if (targetm.sched.variable_issue)
3208 can_issue_more =
ffa47ae0 3209 targetm.sched.variable_issue (sched_dump, sched_verbose,
3210 insn, can_issue_more);
5b6269ed 3211 /* A naked CLOBBER or USE generates no instruction, so don't
3212 let them consume issue slots. */
3213 else if (GET_CODE (PATTERN (insn)) != USE
3214 && GET_CODE (PATTERN (insn)) != CLOBBER)
3215 can_issue_more--;
3216 }
3217
3218 /* Advance the DFA to the next cycle. */
3219 advance_one_cycle ();
3220 }
3221 return false;
3222}
3223
3224/* Checks if the given node causes resource conflicts when added to PS at
3225 cycle C. If not the node is added to PS and returned; otherwise zero
48e1416a 3226 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3227 cuid N must be come before/after (respectively) the node pointed to by
f045d41d 3228 PS_I when scheduled in the same cycle. */
b6a75366 3229ps_insn_ptr
7282ef12 3230ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
f045d41d 3231 int c, sbitmap must_precede,
3232 sbitmap must_follow)
5b6269ed 3233{
3234 int has_conflicts = 0;
3235 ps_insn_ptr ps_i;
3236
f045d41d 3237 /* First add the node to the PS, if this succeeds check for
3238 conflicts, trying different issue slots in the same row. */
3239 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
5b6269ed 3240 return NULL; /* Failed to insert the node at the given cycle. */
3241
3242 has_conflicts = ps_has_conflicts (ps, c, c)
3243 || (ps->history > 0
3244 && ps_has_conflicts (ps,
3245 c - ps->history,
3246 c + ps->history));
3247
3248 /* Try different issue slots to find one that the given node can be
3249 scheduled in without conflicts. */
3250 while (has_conflicts)
3251 {
f045d41d 3252 if (! ps_insn_advance_column (ps, ps_i, must_follow))
5b6269ed 3253 break;
3254 has_conflicts = ps_has_conflicts (ps, c, c)
3255 || (ps->history > 0
3256 && ps_has_conflicts (ps,
3257 c - ps->history,
3258 c + ps->history));
3259 }
3260
3261 if (has_conflicts)
3262 {
3263 remove_node_from_ps (ps, ps_i);
3264 return NULL;
3265 }
3266
3267 ps->min_cycle = MIN (ps->min_cycle, c);
3268 ps->max_cycle = MAX (ps->max_cycle, c);
3269 return ps_i;
3270}
3271
6f7f081f 3272/* Calculate the stage count of the partial schedule PS. The calculation
a5ea7ace 3273 takes into account the rotation amount passed in ROTATION_AMOUNT. */
6f7f081f 3274int
a5ea7ace 3275calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
6f7f081f 3276{
6f7f081f 3277 int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
3278 int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
3279 int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
3280
3281 /* The calculation of stage count is done adding the number of stages
3282 before cycle zero and after cycle zero. */
3283 stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
3284
3285 return stage_count;
3286}
3287
5b6269ed 3288/* Rotate the rows of PS such that insns scheduled at time
3289 START_CYCLE will appear in row 0. Updates max/min_cycles. */
b6a75366 3290void
5b6269ed 3291rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
3292{
3293 int i, row, backward_rotates;
3294 int last_row = ps->ii - 1;
3295
3296 if (start_cycle == 0)
3297 return;
3298
3299 backward_rotates = SMODULO (start_cycle, ps->ii);
3300
3301 /* Revisit later and optimize this into a single loop. */
3302 for (i = 0; i < backward_rotates; i++)
3303 {
3304 ps_insn_ptr first_row = ps->rows[0];
4815ed0c 3305 int first_row_length = ps->rows_length[0];
5b6269ed 3306
3307 for (row = 0; row < last_row; row++)
4815ed0c 3308 {
3309 ps->rows[row] = ps->rows[row + 1];
3310 ps->rows_length[row] = ps->rows_length[row + 1];
3311 }
5b6269ed 3312
3313 ps->rows[last_row] = first_row;
4815ed0c 3314 ps->rows_length[last_row] = first_row_length;
5b6269ed 3315 }
3316
3317 ps->max_cycle -= start_cycle;
3318 ps->min_cycle -= start_cycle;
3319}
07cba988 3320
77fce4cd 3321#endif /* INSN_SCHEDULING */
3322\f
3323static bool
3324gate_handle_sms (void)
3325{
3326 return (optimize > 0 && flag_modulo_sched);
3327}
3328
3329
3330/* Run instruction scheduler. */
3331/* Perform SMS module scheduling. */
2a1990e9 3332static unsigned int
77fce4cd 3333rest_of_handle_sms (void)
3334{
3335#ifdef INSN_SCHEDULING
3336 basic_block bb;
77fce4cd 3337
77fce4cd 3338 /* Collect loop information to be used in SMS. */
3072d30e 3339 cfg_layout_initialize (0);
3f5be5f4 3340 sms_schedule ();
77fce4cd 3341
3342 /* Update the life information, because we add pseudos. */
3343 max_regno = max_reg_num ();
77fce4cd 3344
3345 /* Finalize layout changes. */
3346 FOR_EACH_BB (bb)
3347 if (bb->next_bb != EXIT_BLOCK_PTR)
3348 bb->aux = bb->next_bb;
77fce4cd 3349 free_dominance_info (CDI_DOMINATORS);
73d0c05c 3350 cfg_layout_finalize ();
77fce4cd 3351#endif /* INSN_SCHEDULING */
2a1990e9 3352 return 0;
77fce4cd 3353}
3354
cbe8bda8 3355namespace {
3356
3357const pass_data pass_data_sms =
3358{
3359 RTL_PASS, /* type */
3360 "sms", /* name */
3361 OPTGROUP_NONE, /* optinfo_flags */
3362 true, /* has_gate */
3363 true, /* has_execute */
3364 TV_SMS, /* tv_id */
3365 0, /* properties_required */
3366 0, /* properties_provided */
3367 0, /* properties_destroyed */
3368 0, /* todo_flags_start */
3369 ( TODO_df_finish | TODO_verify_flow
3370 | TODO_verify_rtl_sharing ), /* todo_flags_finish */
77fce4cd 3371};
cbe8bda8 3372
3373class pass_sms : public rtl_opt_pass
3374{
3375public:
9af5ce0c 3376 pass_sms (gcc::context *ctxt)
3377 : rtl_opt_pass (pass_data_sms, ctxt)
cbe8bda8 3378 {}
3379
3380 /* opt_pass methods: */
3381 bool gate () { return gate_handle_sms (); }
3382 unsigned int execute () { return rest_of_handle_sms (); }
3383
3384}; // class pass_sms
3385
3386} // anon namespace
3387
3388rtl_opt_pass *
3389make_pass_sms (gcc::context *ctxt)
3390{
3391 return new pass_sms (ctxt);
3392}