]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/optabs.c
Merge from pch-branch up to tag pch-commit-20020603.
[thirdparty/gcc.git] / gcc / optabs.c
CommitLineData
77c9c6c2 1/* Expand the basic unary and binary arithmetic operations, for GNU compiler.
d050d723 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
c913b6f1 3 1999, 2000, 2001 Free Software Foundation, Inc.
77c9c6c2 4
1322177d 5This file is part of GCC.
77c9c6c2 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
77c9c6c2 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
77c9c6c2
RK
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
77c9c6c2
RK
21
22
23#include "config.h"
670ee920 24#include "system.h"
01198c2f 25#include "toplev.h"
dff01034
KG
26
27/* Include insn-config.h before expr.h so that HAVE_conditional_move
dc297297 28 is properly defined. */
dff01034 29#include "insn-config.h"
77c9c6c2
RK
30#include "rtl.h"
31#include "tree.h"
6baf1cc8 32#include "tm_p.h"
77c9c6c2 33#include "flags.h"
49ad7cfa 34#include "function.h"
52a11cbf 35#include "except.h"
77c9c6c2 36#include "expr.h"
e78d8e51
ZW
37#include "optabs.h"
38#include "libfuncs.h"
77c9c6c2 39#include "recog.h"
2829c155 40#include "reload.h"
87ff9c8e 41#include "ggc.h"
7bdb32b9 42#include "real.h"
77c9c6c2
RK
43
44/* Each optab contains info on how this target machine
45 can perform a particular operation
46 for all sizes and kinds of operands.
47
48 The operation to be performed is often specified
49 by passing one of these optabs as an argument.
50
51 See expr.h for documentation of these optabs. */
52
34220a12
BS
53optab optab_table[OTI_MAX];
54
55rtx libfunc_table[LTI_MAX];
19c3fc24 56
5d81dc5b
RK
57/* Tables of patterns for extending one integer mode to another. */
58enum insn_code extendtab[MAX_MACHINE_MODE][MAX_MACHINE_MODE][2];
59
0f41302f 60/* Tables of patterns for converting between fixed and floating point. */
5d81dc5b
RK
61enum insn_code fixtab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
62enum insn_code fixtrunctab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
63enum insn_code floattab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
64
377017c4
RK
65/* Contains the optab used for each rtx code. */
66optab code_to_optab[NUM_RTX_CODE + 1];
67
77c9c6c2
RK
68/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
69 gives the gen_function to make a branch to test that condition. */
70
71rtxfun bcc_gen_fctn[NUM_RTX_CODE];
72
73/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
74 gives the insn code to make a store-condition insn
75 to test that condition. */
76
77enum insn_code setcc_gen_code[NUM_RTX_CODE];
78
49c4584c
DE
79#ifdef HAVE_conditional_move
80/* Indexed by the machine mode, gives the insn code to make a conditional
81 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
82 setcc_gen_code to cut down on the number of named patterns. Consider a day
83 when a lot more rtx codes are conditional (eg: for the ARM). */
84
85enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
86#endif
87
13536812
KG
88static int add_equal_note PARAMS ((rtx, rtx, enum rtx_code, rtx, rtx));
89static rtx widen_operand PARAMS ((rtx, enum machine_mode,
c31049fd 90 enum machine_mode, int, int));
13536812 91static int expand_cmplxdiv_straight PARAMS ((rtx, rtx, rtx, rtx,
c64f913e
CB
92 rtx, rtx, enum machine_mode,
93 int, enum optab_methods,
94 enum mode_class, optab));
13536812 95static int expand_cmplxdiv_wide PARAMS ((rtx, rtx, rtx, rtx,
c64f913e
CB
96 rtx, rtx, enum machine_mode,
97 int, enum optab_methods,
98 enum mode_class, optab));
a06ef755
RK
99static void prepare_cmp_insn PARAMS ((rtx *, rtx *, enum rtx_code *, rtx,
100 enum machine_mode *, int *,
101 enum can_compare_purpose));
13536812 102static enum insn_code can_fix_p PARAMS ((enum machine_mode, enum machine_mode,
c19b0882 103 int, int *));
a06ef755
RK
104static enum insn_code can_float_p PARAMS ((enum machine_mode,
105 enum machine_mode,
106 int));
13536812 107static rtx ftruncify PARAMS ((rtx));
ef89d648
ZW
108static optab new_optab PARAMS ((void));
109static inline optab init_optab PARAMS ((enum rtx_code));
110static inline optab init_optabv PARAMS ((enum rtx_code));
6835a09c
TM
111static inline int complex_part_zero_p PARAMS ((rtx, enum mode_class,
112 enum machine_mode));
13536812
KG
113static void init_libfuncs PARAMS ((optab, int, int, const char *, int));
114static void init_integral_libfuncs PARAMS ((optab, const char *, int));
115static void init_floating_libfuncs PARAMS ((optab, const char *, int));
4ef873c2 116#ifdef HAVE_conditional_trap
13536812 117static void init_traps PARAMS ((void));
4ef873c2 118#endif
13536812 119static void emit_cmp_and_jump_insn_1 PARAMS ((rtx, rtx, enum machine_mode,
b30f05db 120 enum rtx_code, int, rtx));
13536812 121static void prepare_float_lib_cmp PARAMS ((rtx *, rtx *, enum rtx_code *,
b30f05db 122 enum machine_mode *, int *));
77c9c6c2
RK
123\f
124/* Add a REG_EQUAL note to the last insn in SEQ. TARGET is being set to
125 the result of operation CODE applied to OP0 (and OP1 if it is a binary
126 operation).
127
128 If the last insn does not set TARGET, don't do anything, but return 1.
129
130 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
131 don't add the REG_EQUAL note but return 0. Our caller can then try
132 again, ensuring that TARGET is not one of the operands. */
133
134static int
135add_equal_note (seq, target, code, op0, op1)
136 rtx seq;
137 rtx target;
138 enum rtx_code code;
139 rtx op0, op1;
140{
141 rtx set;
142 int i;
143 rtx note;
144
145 if ((GET_RTX_CLASS (code) != '1' && GET_RTX_CLASS (code) != '2'
146 && GET_RTX_CLASS (code) != 'c' && GET_RTX_CLASS (code) != '<')
147 || GET_CODE (seq) != SEQUENCE
148 || (set = single_set (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))) == 0
149 || GET_CODE (target) == ZERO_EXTRACT
150 || (! rtx_equal_p (SET_DEST (set), target)
151 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside the
152 SUBREG. */
153 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
154 || ! rtx_equal_p (SUBREG_REG (XEXP (SET_DEST (set), 0)),
155 target))))
156 return 1;
157
158 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
159 besides the last insn. */
160 if (reg_overlap_mentioned_p (target, op0)
161 || (op1 && reg_overlap_mentioned_p (target, op1)))
162 for (i = XVECLEN (seq, 0) - 2; i >= 0; i--)
163 if (reg_set_p (target, XVECEXP (seq, 0, i)))
164 return 0;
165
166 if (GET_RTX_CLASS (code) == '1')
9e6a5703 167 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
77c9c6c2 168 else
9e6a5703 169 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
77c9c6c2 170
5fa671cf 171 set_unique_reg_note (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1), REG_EQUAL, note);
77c9c6c2
RK
172
173 return 1;
174}
175\f
835532b8
RK
176/* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
177 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
178 not actually do a sign-extend or zero-extend, but can leave the
179 higher-order bits of the result rtx undefined, for example, in the case
180 of logical operations, but not right shifts. */
181
182static rtx
0661a3de 183widen_operand (op, mode, oldmode, unsignedp, no_extend)
835532b8 184 rtx op;
0661a3de 185 enum machine_mode mode, oldmode;
835532b8
RK
186 int unsignedp;
187 int no_extend;
188{
189 rtx result;
190
8041889f
RK
191 /* If we don't have to extend and this is a constant, return it. */
192 if (no_extend && GET_MODE (op) == VOIDmode)
193 return op;
194
195 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
196 extend since it will be more efficient to do so unless the signedness of
197 a promoted object differs from our extension. */
835532b8 198 if (! no_extend
cb8f73be
RK
199 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
200 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
0661a3de 201 return convert_modes (mode, oldmode, op, unsignedp);
835532b8
RK
202
203 /* If MODE is no wider than a single word, we return a paradoxical
204 SUBREG. */
205 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
9e6a5703 206 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
835532b8
RK
207
208 /* Otherwise, get an object of MODE, clobber it, and set the low-order
209 part to OP. */
210
211 result = gen_reg_rtx (mode);
9e6a5703 212 emit_insn (gen_rtx_CLOBBER (VOIDmode, result));
835532b8
RK
213 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
214 return result;
215}
216\f
6835a09c
TM
217/* Test whether either the real or imaginary part of a complex floating
218 point number is 0.0, so that it can be ignored (when compiling
219 with -funsafe-math-optimizations). */
220
221static inline int
222complex_part_zero_p (part, class, submode)
223 rtx part;
224 enum mode_class class;
225 enum machine_mode submode;
226{
227 return part == 0 ||
228 (flag_unsafe_math_optimizations
229 && class == MODE_COMPLEX_FLOAT
230 && part == CONST0_RTX (submode));
231}
232
c64f913e
CB
233/* Generate code to perform a straightforward complex divide. */
234
235static int
f96b337a
KG
236expand_cmplxdiv_straight (real0, real1, imag0, imag1, realr, imagr, submode,
237 unsignedp, methods, class, binoptab)
238 rtx real0, real1, imag0, imag1, realr, imagr;
239 enum machine_mode submode;
240 int unsignedp;
241 enum optab_methods methods;
242 enum mode_class class;
243 optab binoptab;
c64f913e
CB
244{
245 rtx divisor;
246 rtx real_t, imag_t;
247 rtx temp1, temp2;
248 rtx res;
91ce572a
CC
249 optab this_add_optab = add_optab;
250 optab this_sub_optab = sub_optab;
251 optab this_neg_optab = neg_optab;
252 optab this_mul_optab = smul_optab;
c64f913e 253
91ce572a
CC
254 if (binoptab == sdivv_optab)
255 {
256 this_add_optab = addv_optab;
257 this_sub_optab = subv_optab;
258 this_neg_optab = negv_optab;
259 this_mul_optab = smulv_optab;
260 }
261
c64f913e
CB
262 /* Don't fetch these from memory more than once. */
263 real0 = force_reg (submode, real0);
264 real1 = force_reg (submode, real1);
265
266 if (imag0 != 0)
267 imag0 = force_reg (submode, imag0);
268
269 imag1 = force_reg (submode, imag1);
270
271 /* Divisor: c*c + d*d. */
91ce572a 272 temp1 = expand_binop (submode, this_mul_optab, real1, real1,
c64f913e
CB
273 NULL_RTX, unsignedp, methods);
274
91ce572a 275 temp2 = expand_binop (submode, this_mul_optab, imag1, imag1,
c64f913e
CB
276 NULL_RTX, unsignedp, methods);
277
278 if (temp1 == 0 || temp2 == 0)
279 return 0;
280
91ce572a 281 divisor = expand_binop (submode, this_add_optab, temp1, temp2,
c64f913e
CB
282 NULL_RTX, unsignedp, methods);
283 if (divisor == 0)
284 return 0;
285
6835a09c 286 if (complex_part_zero_p (imag0, class, submode))
c64f913e
CB
287 {
288 /* Mathematically, ((a)(c-id))/divisor. */
289 /* Computationally, (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)). */
290
291 /* Calculate the dividend. */
91ce572a 292 real_t = expand_binop (submode, this_mul_optab, real0, real1,
c64f913e
CB
293 NULL_RTX, unsignedp, methods);
294
91ce572a 295 imag_t = expand_binop (submode, this_mul_optab, real0, imag1,
c64f913e
CB
296 NULL_RTX, unsignedp, methods);
297
298 if (real_t == 0 || imag_t == 0)
299 return 0;
300
91ce572a 301 imag_t = expand_unop (submode, this_neg_optab, imag_t,
c64f913e
CB
302 NULL_RTX, unsignedp);
303 }
304 else
305 {
306 /* Mathematically, ((a+ib)(c-id))/divider. */
307 /* Calculate the dividend. */
91ce572a 308 temp1 = expand_binop (submode, this_mul_optab, real0, real1,
c64f913e
CB
309 NULL_RTX, unsignedp, methods);
310
91ce572a 311 temp2 = expand_binop (submode, this_mul_optab, imag0, imag1,
c64f913e
CB
312 NULL_RTX, unsignedp, methods);
313
314 if (temp1 == 0 || temp2 == 0)
315 return 0;
316
91ce572a 317 real_t = expand_binop (submode, this_add_optab, temp1, temp2,
c64f913e
CB
318 NULL_RTX, unsignedp, methods);
319
91ce572a 320 temp1 = expand_binop (submode, this_mul_optab, imag0, real1,
c64f913e
CB
321 NULL_RTX, unsignedp, methods);
322
91ce572a 323 temp2 = expand_binop (submode, this_mul_optab, real0, imag1,
c64f913e
CB
324 NULL_RTX, unsignedp, methods);
325
326 if (temp1 == 0 || temp2 == 0)
327 return 0;
328
91ce572a 329 imag_t = expand_binop (submode, this_sub_optab, temp1, temp2,
c64f913e
CB
330 NULL_RTX, unsignedp, methods);
331
332 if (real_t == 0 || imag_t == 0)
333 return 0;
334 }
335
336 if (class == MODE_COMPLEX_FLOAT)
337 res = expand_binop (submode, binoptab, real_t, divisor,
338 realr, unsignedp, methods);
339 else
340 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
341 real_t, divisor, realr, unsignedp);
342
343 if (res == 0)
344 return 0;
345
346 if (res != realr)
347 emit_move_insn (realr, res);
348
349 if (class == MODE_COMPLEX_FLOAT)
350 res = expand_binop (submode, binoptab, imag_t, divisor,
351 imagr, unsignedp, methods);
352 else
353 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
354 imag_t, divisor, imagr, unsignedp);
355
356 if (res == 0)
357 return 0;
358
359 if (res != imagr)
360 emit_move_insn (imagr, res);
361
362 return 1;
363}
364\f
365/* Generate code to perform a wide-input-range-acceptable complex divide. */
366
367static int
f96b337a
KG
368expand_cmplxdiv_wide (real0, real1, imag0, imag1, realr, imagr, submode,
369 unsignedp, methods, class, binoptab)
370 rtx real0, real1, imag0, imag1, realr, imagr;
371 enum machine_mode submode;
372 int unsignedp;
373 enum optab_methods methods;
374 enum mode_class class;
375 optab binoptab;
c64f913e
CB
376{
377 rtx ratio, divisor;
378 rtx real_t, imag_t;
379 rtx temp1, temp2, lab1, lab2;
380 enum machine_mode mode;
c64f913e 381 rtx res;
91ce572a
CC
382 optab this_add_optab = add_optab;
383 optab this_sub_optab = sub_optab;
384 optab this_neg_optab = neg_optab;
385 optab this_mul_optab = smul_optab;
386
387 if (binoptab == sdivv_optab)
388 {
389 this_add_optab = addv_optab;
390 this_sub_optab = subv_optab;
391 this_neg_optab = negv_optab;
392 this_mul_optab = smulv_optab;
393 }
c64f913e
CB
394
395 /* Don't fetch these from memory more than once. */
396 real0 = force_reg (submode, real0);
397 real1 = force_reg (submode, real1);
398
399 if (imag0 != 0)
400 imag0 = force_reg (submode, imag0);
401
402 imag1 = force_reg (submode, imag1);
403
a59a536c
RE
404 /* XXX What's an "unsigned" complex number? */
405 if (unsignedp)
406 {
407 temp1 = real1;
408 temp2 = imag1;
409 }
410 else
411 {
91ce572a
CC
412 temp1 = expand_abs (submode, real1, NULL_RTX, unsignedp, 1);
413 temp2 = expand_abs (submode, imag1, NULL_RTX, unsignedp, 1);
a59a536c 414 }
c64f913e
CB
415
416 if (temp1 == 0 || temp2 == 0)
417 return 0;
418
419 mode = GET_MODE (temp1);
c64f913e
CB
420 lab1 = gen_label_rtx ();
421 emit_cmp_and_jump_insns (temp1, temp2, LT, NULL_RTX,
a06ef755 422 mode, unsignedp, lab1);
c64f913e
CB
423
424 /* |c| >= |d|; use ratio d/c to scale dividend and divisor. */
425
426 if (class == MODE_COMPLEX_FLOAT)
427 ratio = expand_binop (submode, binoptab, imag1, real1,
428 NULL_RTX, unsignedp, methods);
429 else
430 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
431 imag1, real1, NULL_RTX, unsignedp);
432
433 if (ratio == 0)
434 return 0;
435
436 /* Calculate divisor. */
437
91ce572a 438 temp1 = expand_binop (submode, this_mul_optab, imag1, ratio,
c64f913e
CB
439 NULL_RTX, unsignedp, methods);
440
441 if (temp1 == 0)
442 return 0;
443
91ce572a 444 divisor = expand_binop (submode, this_add_optab, temp1, real1,
c64f913e
CB
445 NULL_RTX, unsignedp, methods);
446
447 if (divisor == 0)
448 return 0;
449
450 /* Calculate dividend. */
451
6835a09c 452 if (complex_part_zero_p (imag0, class, submode))
c64f913e
CB
453 {
454 real_t = real0;
455
456 /* Compute a / (c+id) as a / (c+d(d/c)) + i (-a(d/c)) / (c+d(d/c)). */
457
91ce572a 458 imag_t = expand_binop (submode, this_mul_optab, real0, ratio,
c64f913e
CB
459 NULL_RTX, unsignedp, methods);
460
461 if (imag_t == 0)
462 return 0;
463
91ce572a 464 imag_t = expand_unop (submode, this_neg_optab, imag_t,
c64f913e
CB
465 NULL_RTX, unsignedp);
466
467 if (real_t == 0 || imag_t == 0)
468 return 0;
469 }
470 else
471 {
472 /* Compute (a+ib)/(c+id) as
473 (a+b(d/c))/(c+d(d/c) + i(b-a(d/c))/(c+d(d/c)). */
474
91ce572a 475 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
c64f913e
CB
476 NULL_RTX, unsignedp, methods);
477
478 if (temp1 == 0)
479 return 0;
480
91ce572a 481 real_t = expand_binop (submode, this_add_optab, temp1, real0,
c64f913e
CB
482 NULL_RTX, unsignedp, methods);
483
91ce572a 484 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
c64f913e
CB
485 NULL_RTX, unsignedp, methods);
486
487 if (temp1 == 0)
488 return 0;
489
91ce572a 490 imag_t = expand_binop (submode, this_sub_optab, imag0, temp1,
c64f913e
CB
491 NULL_RTX, unsignedp, methods);
492
493 if (real_t == 0 || imag_t == 0)
494 return 0;
495 }
496
497 if (class == MODE_COMPLEX_FLOAT)
498 res = expand_binop (submode, binoptab, real_t, divisor,
499 realr, unsignedp, methods);
500 else
501 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
502 real_t, divisor, realr, unsignedp);
503
504 if (res == 0)
505 return 0;
506
507 if (res != realr)
508 emit_move_insn (realr, res);
509
510 if (class == MODE_COMPLEX_FLOAT)
511 res = expand_binop (submode, binoptab, imag_t, divisor,
512 imagr, unsignedp, methods);
513 else
514 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
515 imag_t, divisor, imagr, unsignedp);
516
517 if (res == 0)
518 return 0;
519
520 if (res != imagr)
521 emit_move_insn (imagr, res);
522
523 lab2 = gen_label_rtx ();
524 emit_jump_insn (gen_jump (lab2));
525 emit_barrier ();
526
527 emit_label (lab1);
528
529 /* |d| > |c|; use ratio c/d to scale dividend and divisor. */
530
531 if (class == MODE_COMPLEX_FLOAT)
532 ratio = expand_binop (submode, binoptab, real1, imag1,
533 NULL_RTX, unsignedp, methods);
534 else
535 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
536 real1, imag1, NULL_RTX, unsignedp);
537
538 if (ratio == 0)
539 return 0;
540
541 /* Calculate divisor. */
542
91ce572a 543 temp1 = expand_binop (submode, this_mul_optab, real1, ratio,
c64f913e
CB
544 NULL_RTX, unsignedp, methods);
545
546 if (temp1 == 0)
547 return 0;
548
91ce572a 549 divisor = expand_binop (submode, this_add_optab, temp1, imag1,
c64f913e
CB
550 NULL_RTX, unsignedp, methods);
551
552 if (divisor == 0)
553 return 0;
554
555 /* Calculate dividend. */
556
c0fe508e 557 if (complex_part_zero_p (imag0, class, submode))
c64f913e
CB
558 {
559 /* Compute a / (c+id) as a(c/d) / (c(c/d)+d) + i (-a) / (c(c/d)+d). */
560
91ce572a 561 real_t = expand_binop (submode, this_mul_optab, real0, ratio,
c64f913e
CB
562 NULL_RTX, unsignedp, methods);
563
91ce572a 564 imag_t = expand_unop (submode, this_neg_optab, real0,
c64f913e
CB
565 NULL_RTX, unsignedp);
566
567 if (real_t == 0 || imag_t == 0)
568 return 0;
569 }
570 else
571 {
572 /* Compute (a+ib)/(c+id) as
573 (a(c/d)+b)/(c(c/d)+d) + i (b(c/d)-a)/(c(c/d)+d). */
574
91ce572a 575 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
c64f913e
CB
576 NULL_RTX, unsignedp, methods);
577
578 if (temp1 == 0)
579 return 0;
580
91ce572a 581 real_t = expand_binop (submode, this_add_optab, temp1, imag0,
c64f913e
CB
582 NULL_RTX, unsignedp, methods);
583
91ce572a 584 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
c64f913e
CB
585 NULL_RTX, unsignedp, methods);
586
587 if (temp1 == 0)
588 return 0;
589
91ce572a 590 imag_t = expand_binop (submode, this_sub_optab, temp1, real0,
c64f913e
CB
591 NULL_RTX, unsignedp, methods);
592
593 if (real_t == 0 || imag_t == 0)
594 return 0;
595 }
596
597 if (class == MODE_COMPLEX_FLOAT)
598 res = expand_binop (submode, binoptab, real_t, divisor,
599 realr, unsignedp, methods);
600 else
601 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
602 real_t, divisor, realr, unsignedp);
603
604 if (res == 0)
605 return 0;
606
607 if (res != realr)
608 emit_move_insn (realr, res);
609
610 if (class == MODE_COMPLEX_FLOAT)
611 res = expand_binop (submode, binoptab, imag_t, divisor,
612 imagr, unsignedp, methods);
613 else
614 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
615 imag_t, divisor, imagr, unsignedp);
616
617 if (res == 0)
618 return 0;
619
620 if (res != imagr)
621 emit_move_insn (imagr, res);
622
623 emit_label (lab2);
624
625 return 1;
626}
627\f
ef89d648
ZW
628/* Wrapper around expand_binop which takes an rtx code to specify
629 the operation to perform, not an optab pointer. All other
630 arguments are the same. */
631rtx
632expand_simple_binop (mode, code, op0, op1, target, unsignedp, methods)
633 enum machine_mode mode;
634 enum rtx_code code;
635 rtx op0, op1;
636 rtx target;
637 int unsignedp;
638 enum optab_methods methods;
639{
640 optab binop = code_to_optab [(int) code];
641 if (binop == 0)
642 abort ();
643
644 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
645}
646
77c9c6c2
RK
647/* Generate code to perform an operation specified by BINOPTAB
648 on operands OP0 and OP1, with result having machine-mode MODE.
649
650 UNSIGNEDP is for the case where we have to widen the operands
651 to perform the operation. It says to use zero-extension.
652
653 If TARGET is nonzero, the value
654 is generated there, if it is convenient to do so.
655 In all cases an rtx is returned for the locus of the value;
656 this may or may not be TARGET. */
657
658rtx
659expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods)
660 enum machine_mode mode;
661 optab binoptab;
662 rtx op0, op1;
663 rtx target;
664 int unsignedp;
665 enum optab_methods methods;
666{
70864443
RK
667 enum optab_methods next_methods
668 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
669 ? OPTAB_WIDEN : methods);
77c9c6c2
RK
670 enum mode_class class;
671 enum machine_mode wider_mode;
b3694847 672 rtx temp;
77c9c6c2
RK
673 int commutative_op = 0;
674 int shift_op = (binoptab->code == ASHIFT
675 || binoptab->code == ASHIFTRT
77c9c6c2
RK
676 || binoptab->code == LSHIFTRT
677 || binoptab->code == ROTATE
678 || binoptab->code == ROTATERT);
abd418d3 679 rtx entry_last = get_last_insn ();
77c9c6c2
RK
680 rtx last;
681
682 class = GET_MODE_CLASS (mode);
683
684 op0 = protect_from_queue (op0, 0);
685 op1 = protect_from_queue (op1, 0);
686 if (target)
687 target = protect_from_queue (target, 1);
688
689 if (flag_force_mem)
690 {
691 op0 = force_not_mem (op0);
692 op1 = force_not_mem (op1);
693 }
694
8aecce0a
RK
695 /* If subtracting an integer constant, convert this into an addition of
696 the negated constant. */
697
698 if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
699 {
700 op1 = negate_rtx (mode, op1);
701 binoptab = add_optab;
702 }
703
77c9c6c2
RK
704 /* If we are inside an appropriately-short loop and one operand is an
705 expensive constant, force it into a register. */
aeedc93f 706 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
b437f1a7 707 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
77c9c6c2
RK
708 op0 = force_reg (mode, op0);
709
aeedc93f 710 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
b437f1a7 711 && ! shift_op && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
4074220e 712 op1 = force_reg (mode, op1);
77c9c6c2 713
77c9c6c2
RK
714 /* Record where to delete back to if we backtrack. */
715 last = get_last_insn ();
716
717 /* If operation is commutative,
718 try to make the first operand a register.
719 Even better, try to make it the same as the target.
720 Also try to make the last operand a constant. */
721 if (GET_RTX_CLASS (binoptab->code) == 'c'
722 || binoptab == smul_widen_optab
5035bbfe
TG
723 || binoptab == umul_widen_optab
724 || binoptab == smul_highpart_optab
725 || binoptab == umul_highpart_optab)
77c9c6c2
RK
726 {
727 commutative_op = 1;
728
729 if (((target == 0 || GET_CODE (target) == REG)
730 ? ((GET_CODE (op1) == REG
731 && GET_CODE (op0) != REG)
732 || target == op1)
733 : rtx_equal_p (op1, target))
734 || GET_CODE (op0) == CONST_INT)
735 {
736 temp = op1;
737 op1 = op0;
738 op0 = temp;
739 }
740 }
741
742 /* If we can do it with a three-operand insn, do so. */
743
744 if (methods != OPTAB_MUST_WIDEN
745 && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
746 {
747 int icode = (int) binoptab->handlers[(int) mode].insn_code;
a995e389
RH
748 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
749 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
77c9c6c2
RK
750 rtx pat;
751 rtx xop0 = op0, xop1 = op1;
752
753 if (target)
754 temp = target;
755 else
756 temp = gen_reg_rtx (mode);
757
758 /* If it is a commutative operator and the modes would match
0f41302f 759 if we would swap the operands, we can save the conversions. */
77c9c6c2
RK
760 if (commutative_op)
761 {
762 if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
763 && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
764 {
b3694847 765 rtx tmp;
77c9c6c2
RK
766
767 tmp = op0; op0 = op1; op1 = tmp;
768 tmp = xop0; xop0 = xop1; xop1 = tmp;
769 }
770 }
771
772 /* In case the insn wants input operands in modes different from
69107307
AO
773 the result, convert the operands. It would seem that we
774 don't need to convert CONST_INTs, but we do, so that they're
3c04502e
AO
775 a properly sign-extended for their modes; we choose the
776 widest mode between mode and mode[01], so that, in a widening
777 operation, we call convert_modes with different FROM and TO
778 modes, which ensures the value is sign-extended. Shift
779 operations are an exception, because the second operand needs
780 not be extended to the mode of the result. */
77c9c6c2 781
69107307 782 if (GET_MODE (op0) != mode0
4074220e 783 && mode0 != VOIDmode)
69107307
AO
784 xop0 = convert_modes (mode0,
785 GET_MODE (op0) != VOIDmode
786 ? GET_MODE (op0)
3c04502e
AO
787 : GET_MODE_SIZE (mode) > GET_MODE_SIZE (mode0)
788 ? mode
69107307
AO
789 : mode0,
790 xop0, unsignedp);
77c9c6c2 791
69107307 792 if (GET_MODE (xop1) != mode1
4074220e 793 && mode1 != VOIDmode)
69107307
AO
794 xop1 = convert_modes (mode1,
795 GET_MODE (op1) != VOIDmode
796 ? GET_MODE (op1)
3c04502e
AO
797 : (GET_MODE_SIZE (mode) > GET_MODE_SIZE (mode1)
798 && ! shift_op)
799 ? mode
69107307
AO
800 : mode1,
801 xop1, unsignedp);
77c9c6c2
RK
802
803 /* Now, if insn's predicates don't allow our operands, put them into
804 pseudo regs. */
805
a995e389 806 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0)
4074220e 807 && mode0 != VOIDmode)
77c9c6c2
RK
808 xop0 = copy_to_mode_reg (mode0, xop0);
809
a995e389 810 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1)
4074220e 811 && mode1 != VOIDmode)
77c9c6c2
RK
812 xop1 = copy_to_mode_reg (mode1, xop1);
813
a995e389 814 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
77c9c6c2
RK
815 temp = gen_reg_rtx (mode);
816
817 pat = GEN_FCN (icode) (temp, xop0, xop1);
818 if (pat)
819 {
820 /* If PAT is a multi-insn sequence, try to add an appropriate
821 REG_EQUAL note to it. If we can't because TEMP conflicts with an
822 operand, call ourselves again, this time without a target. */
823 if (GET_CODE (pat) == SEQUENCE
824 && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
825 {
826 delete_insns_since (last);
b1ec3c92
CH
827 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
828 unsignedp, methods);
77c9c6c2
RK
829 }
830
831 emit_insn (pat);
832 return temp;
833 }
834 else
835 delete_insns_since (last);
836 }
837
5a5064dc
RK
838 /* If this is a multiply, see if we can do a widening operation that
839 takes operands of this mode and makes a wider mode. */
840
841 if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode
842 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
843 ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
844 != CODE_FOR_nothing))
845 {
846 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
847 unsignedp ? umul_widen_optab : smul_widen_optab,
73d9a835 848 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
5a5064dc 849
70864443
RK
850 if (temp != 0)
851 {
852 if (GET_MODE_CLASS (mode) == MODE_INT)
853 return gen_lowpart (mode, temp);
854 else
855 return convert_to_mode (mode, temp, unsignedp);
856 }
5a5064dc
RK
857 }
858
9a856ec7 859 /* Look for a wider mode of the same class for which we think we
5a5064dc
RK
860 can open-code the operation. Check for a widening multiply at the
861 wider mode as well. */
9a856ec7
RK
862
863 if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
6f43c157 864 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
9a856ec7
RK
865 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
866 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
867 {
5a5064dc
RK
868 if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
869 || (binoptab == smul_optab
870 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
871 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
872 ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
873 != CODE_FOR_nothing)))
9a856ec7
RK
874 {
875 rtx xop0 = op0, xop1 = op1;
876 int no_extend = 0;
877
878 /* For certain integer operations, we need not actually extend
879 the narrow operands, as long as we will truncate
6d2f8887 880 the results to the same narrowness. */
9a856ec7
RK
881
882 if ((binoptab == ior_optab || binoptab == and_optab
883 || binoptab == xor_optab
884 || binoptab == add_optab || binoptab == sub_optab
e5df894b 885 || binoptab == smul_optab || binoptab == ashl_optab)
835532b8 886 && class == MODE_INT)
9a856ec7
RK
887 no_extend = 1;
888
0661a3de 889 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
943cc242
RK
890
891 /* The second operand of a shift must always be extended. */
0661a3de 892 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
e5df894b 893 no_extend && binoptab != ashl_optab);
943cc242 894
b1ec3c92 895 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
9a856ec7
RK
896 unsignedp, OPTAB_DIRECT);
897 if (temp)
898 {
899 if (class != MODE_INT)
900 {
901 if (target == 0)
902 target = gen_reg_rtx (mode);
903 convert_move (target, temp, 0);
904 return target;
905 }
906 else
907 return gen_lowpart (mode, temp);
908 }
909 else
910 delete_insns_since (last);
911 }
912 }
913
77c9c6c2
RK
914 /* These can be done a word at a time. */
915 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
916 && class == MODE_INT
917 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
34e56753 918 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
77c9c6c2 919 {
bb93b973 920 int i;
77c9c6c2
RK
921 rtx insns;
922 rtx equiv_value;
923
924 /* If TARGET is the same as one of the operands, the REG_EQUAL note
925 won't be accurate, so use a new target. */
926 if (target == 0 || target == op0 || target == op1)
927 target = gen_reg_rtx (mode);
928
929 start_sequence ();
930
931 /* Do the actual arithmetic. */
932 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
933 {
934 rtx target_piece = operand_subword (target, i, 1, mode);
34e56753 935 rtx x = expand_binop (word_mode, binoptab,
77c9c6c2
RK
936 operand_subword_force (op0, i, mode),
937 operand_subword_force (op1, i, mode),
70864443
RK
938 target_piece, unsignedp, next_methods);
939
940 if (x == 0)
941 break;
942
77c9c6c2
RK
943 if (target_piece != x)
944 emit_move_insn (target_piece, x);
945 }
946
947 insns = get_insns ();
948 end_sequence ();
949
70864443
RK
950 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
951 {
952 if (binoptab->code != UNKNOWN)
953 equiv_value
9e6a5703
JC
954 = gen_rtx_fmt_ee (binoptab->code, mode,
955 copy_rtx (op0), copy_rtx (op1));
70864443
RK
956 else
957 equiv_value = 0;
77c9c6c2 958
70864443
RK
959 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
960 return target;
961 }
77c9c6c2
RK
962 }
963
8c597270 964 /* Synthesize double word shifts from single word shifts. */
e5df894b
RK
965 if ((binoptab == lshr_optab || binoptab == ashl_optab
966 || binoptab == ashr_optab)
8c597270
JW
967 && class == MODE_INT
968 && GET_CODE (op1) == CONST_INT
969 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
970 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
971 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
972 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
973 {
70864443 974 rtx insns, inter, equiv_value;
8c597270
JW
975 rtx into_target, outof_target;
976 rtx into_input, outof_input;
977 int shift_count, left_shift, outof_word;
978
979 /* If TARGET is the same as one of the operands, the REG_EQUAL note
980 won't be accurate, so use a new target. */
981 if (target == 0 || target == op0 || target == op1)
982 target = gen_reg_rtx (mode);
983
984 start_sequence ();
985
986 shift_count = INTVAL (op1);
987
988 /* OUTOF_* is the word we are shifting bits away from, and
989 INTO_* is the word that we are shifting bits towards, thus
990 they differ depending on the direction of the shift and
991 WORDS_BIG_ENDIAN. */
992
e5df894b 993 left_shift = binoptab == ashl_optab;
8c597270
JW
994 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
995
996 outof_target = operand_subword (target, outof_word, 1, mode);
997 into_target = operand_subword (target, 1 - outof_word, 1, mode);
998
999 outof_input = operand_subword_force (op0, outof_word, mode);
1000 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1001
1002 if (shift_count >= BITS_PER_WORD)
1003 {
70864443
RK
1004 inter = expand_binop (word_mode, binoptab,
1005 outof_input,
1006 GEN_INT (shift_count - BITS_PER_WORD),
1007 into_target, unsignedp, next_methods);
1008
cb5b00cf 1009 if (inter != 0 && inter != into_target)
70864443 1010 emit_move_insn (into_target, inter);
8c597270
JW
1011
1012 /* For a signed right shift, we must fill the word we are shifting
1013 out of with copies of the sign bit. Otherwise it is zeroed. */
cb5b00cf
RK
1014 if (inter != 0 && binoptab != ashr_optab)
1015 inter = CONST0_RTX (word_mode);
70864443
RK
1016 else if (inter != 0)
1017 inter = expand_binop (word_mode, binoptab,
1018 outof_input,
1019 GEN_INT (BITS_PER_WORD - 1),
1020 outof_target, unsignedp, next_methods);
1021
cb5b00cf 1022 if (inter != 0 && inter != outof_target)
70864443 1023 emit_move_insn (outof_target, inter);
8c597270
JW
1024 }
1025 else
1026 {
70864443 1027 rtx carries;
8c597270
JW
1028 optab reverse_unsigned_shift, unsigned_shift;
1029
1030 /* For a shift of less then BITS_PER_WORD, to compute the carry,
1031 we must do a logical shift in the opposite direction of the
1032 desired shift. */
1033
8c597270
JW
1034 reverse_unsigned_shift = (left_shift ? lshr_optab : ashl_optab);
1035
1036 /* For a shift of less than BITS_PER_WORD, to compute the word
1037 shifted towards, we need to unsigned shift the orig value of
1038 that word. */
1039
1040 unsigned_shift = (left_shift ? ashl_optab : lshr_optab);
1041
1042 carries = expand_binop (word_mode, reverse_unsigned_shift,
1043 outof_input,
1044 GEN_INT (BITS_PER_WORD - shift_count),
70864443
RK
1045 0, unsignedp, next_methods);
1046
1047 if (carries == 0)
1048 inter = 0;
1049 else
70864443
RK
1050 inter = expand_binop (word_mode, unsigned_shift, into_input,
1051 op1, 0, unsignedp, next_methods);
1052
1053 if (inter != 0)
1054 inter = expand_binop (word_mode, ior_optab, carries, inter,
1055 into_target, unsignedp, next_methods);
1056
cb5b00cf 1057 if (inter != 0 && inter != into_target)
70864443 1058 emit_move_insn (into_target, inter);
cf2f7113
RE
1059
1060 if (inter != 0)
1061 inter = expand_binop (word_mode, binoptab, outof_input,
1062 op1, outof_target, unsignedp, next_methods);
1063
1064 if (inter != 0 && inter != outof_target)
1065 emit_move_insn (outof_target, inter);
8c597270
JW
1066 }
1067
1068 insns = get_insns ();
1069 end_sequence ();
1070
70864443
RK
1071 if (inter != 0)
1072 {
1073 if (binoptab->code != UNKNOWN)
9e6a5703 1074 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
70864443
RK
1075 else
1076 equiv_value = 0;
8c597270 1077
70864443
RK
1078 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1079 return target;
1080 }
8c597270
JW
1081 }
1082
1083 /* Synthesize double word rotates from single word shifts. */
1084 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1085 && class == MODE_INT
1086 && GET_CODE (op1) == CONST_INT
1087 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1088 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1089 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1090 {
1091 rtx insns, equiv_value;
1092 rtx into_target, outof_target;
1093 rtx into_input, outof_input;
70864443 1094 rtx inter;
8c597270
JW
1095 int shift_count, left_shift, outof_word;
1096
1097 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1098 won't be accurate, so use a new target. */
1099 if (target == 0 || target == op0 || target == op1)
1100 target = gen_reg_rtx (mode);
1101
1102 start_sequence ();
1103
1104 shift_count = INTVAL (op1);
1105
1106 /* OUTOF_* is the word we are shifting bits away from, and
1107 INTO_* is the word that we are shifting bits towards, thus
1108 they differ depending on the direction of the shift and
1109 WORDS_BIG_ENDIAN. */
1110
1111 left_shift = (binoptab == rotl_optab);
1112 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1113
1114 outof_target = operand_subword (target, outof_word, 1, mode);
1115 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1116
1117 outof_input = operand_subword_force (op0, outof_word, mode);
1118 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1119
1120 if (shift_count == BITS_PER_WORD)
1121 {
1122 /* This is just a word swap. */
1123 emit_move_insn (outof_target, into_input);
1124 emit_move_insn (into_target, outof_input);
70864443 1125 inter = const0_rtx;
8c597270
JW
1126 }
1127 else
1128 {
1129 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1130 rtx first_shift_count, second_shift_count;
1131 optab reverse_unsigned_shift, unsigned_shift;
1132
1133 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1134 ? lshr_optab : ashl_optab);
1135
1136 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1137 ? ashl_optab : lshr_optab);
1138
1139 if (shift_count > BITS_PER_WORD)
1140 {
1141 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1142 second_shift_count = GEN_INT (2*BITS_PER_WORD - shift_count);
1143 }
1144 else
1145 {
1146 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1147 second_shift_count = GEN_INT (shift_count);
1148 }
1149
1150 into_temp1 = expand_binop (word_mode, unsigned_shift,
1151 outof_input, first_shift_count,
70864443 1152 NULL_RTX, unsignedp, next_methods);
8c597270
JW
1153 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1154 into_input, second_shift_count,
70864443
RK
1155 into_target, unsignedp, next_methods);
1156
1157 if (into_temp1 != 0 && into_temp2 != 0)
1158 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1159 into_target, unsignedp, next_methods);
1160 else
1161 inter = 0;
1162
cb5b00cf 1163 if (inter != 0 && inter != into_target)
70864443 1164 emit_move_insn (into_target, inter);
8c597270
JW
1165
1166 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1167 into_input, first_shift_count,
70864443 1168 NULL_RTX, unsignedp, next_methods);
8c597270
JW
1169 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1170 outof_input, second_shift_count,
70864443
RK
1171 outof_target, unsignedp, next_methods);
1172
1173 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1174 inter = expand_binop (word_mode, ior_optab,
1175 outof_temp1, outof_temp2,
1176 outof_target, unsignedp, next_methods);
1177
cb5b00cf 1178 if (inter != 0 && inter != outof_target)
70864443 1179 emit_move_insn (outof_target, inter);
8c597270
JW
1180 }
1181
1182 insns = get_insns ();
1183 end_sequence ();
1184
70864443
RK
1185 if (inter != 0)
1186 {
1187 if (binoptab->code != UNKNOWN)
9e6a5703 1188 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
70864443
RK
1189 else
1190 equiv_value = 0;
8c597270 1191
70864443
RK
1192 /* We can't make this a no conflict block if this is a word swap,
1193 because the word swap case fails if the input and output values
1194 are in the same register. */
1195 if (shift_count != BITS_PER_WORD)
1196 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1197 else
1198 emit_insns (insns);
1199
1200
1201 return target;
1202 }
8c597270
JW
1203 }
1204
77c9c6c2
RK
1205 /* These can be done a word at a time by propagating carries. */
1206 if ((binoptab == add_optab || binoptab == sub_optab)
1207 && class == MODE_INT
1208 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
34e56753 1209 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
77c9c6c2 1210 {
e2500fed 1211 unsigned int i;
77c9c6c2 1212 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
64de6c0a 1213 int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
07444f1d 1214 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
64de6c0a 1215 rtx xop0, xop1, xtarget;
77c9c6c2
RK
1216
1217 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1218 value is one of those, use it. Otherwise, use 1 since it is the
1219 one easiest to get. */
1220#if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1221 int normalizep = STORE_FLAG_VALUE;
1222#else
1223 int normalizep = 1;
1224#endif
1225
1226 /* Prepare the operands. */
cee85023
RS
1227 xop0 = force_reg (mode, op0);
1228 xop1 = force_reg (mode, op1);
77c9c6c2 1229
64de6c0a
DE
1230 xtarget = gen_reg_rtx (mode);
1231
1232 if (target == 0 || GET_CODE (target) != REG)
1233 target = xtarget;
77c9c6c2 1234
af2cc4dd
RS
1235 /* Indicate for flow that the entire target reg is being set. */
1236 if (GET_CODE (target) == REG)
64de6c0a 1237 emit_insn (gen_rtx_CLOBBER (VOIDmode, xtarget));
af2cc4dd 1238
77c9c6c2
RK
1239 /* Do the actual arithmetic. */
1240 for (i = 0; i < nwords; i++)
1241 {
1242 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
64de6c0a 1243 rtx target_piece = operand_subword (xtarget, index, 1, mode);
cee85023
RS
1244 rtx op0_piece = operand_subword_force (xop0, index, mode);
1245 rtx op1_piece = operand_subword_force (xop1, index, mode);
77c9c6c2
RK
1246 rtx x;
1247
1248 /* Main add/subtract of the input operands. */
34e56753 1249 x = expand_binop (word_mode, binoptab,
77c9c6c2 1250 op0_piece, op1_piece,
70864443 1251 target_piece, unsignedp, next_methods);
77c9c6c2
RK
1252 if (x == 0)
1253 break;
1254
1255 if (i + 1 < nwords)
1256 {
1257 /* Store carry from main add/subtract. */
34e56753 1258 carry_out = gen_reg_rtx (word_mode);
23357404
TG
1259 carry_out = emit_store_flag_force (carry_out,
1260 (binoptab == add_optab
b30f05db 1261 ? LT : GT),
23357404
TG
1262 x, op0_piece,
1263 word_mode, 1, normalizep);
77c9c6c2
RK
1264 }
1265
1266 if (i > 0)
1267 {
859cb4d8
GK
1268 rtx newx;
1269
77c9c6c2 1270 /* Add/subtract previous carry to main result. */
859cb4d8
GK
1271 newx = expand_binop (word_mode,
1272 normalizep == 1 ? binoptab : otheroptab,
1273 x, carry_in,
1274 NULL_RTX, 1, next_methods);
77c9c6c2
RK
1275
1276 if (i + 1 < nwords)
1277 {
77c9c6c2 1278 /* Get out carry from adding/subtracting carry in. */
859cb4d8 1279 rtx carry_tmp = gen_reg_rtx (word_mode);
23357404 1280 carry_tmp = emit_store_flag_force (carry_tmp,
859cb4d8
GK
1281 (binoptab == add_optab
1282 ? LT : GT),
1283 newx, x,
23357404 1284 word_mode, 1, normalizep);
70864443 1285
77c9c6c2 1286 /* Logical-ior the two poss. carry together. */
34e56753 1287 carry_out = expand_binop (word_mode, ior_optab,
77c9c6c2 1288 carry_out, carry_tmp,
70864443
RK
1289 carry_out, 0, next_methods);
1290 if (carry_out == 0)
77c9c6c2
RK
1291 break;
1292 }
859cb4d8 1293 emit_move_insn (target_piece, newx);
77c9c6c2
RK
1294 }
1295
1296 carry_in = carry_out;
1297 }
1298
e2500fed 1299 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
77c9c6c2 1300 {
02214a5c
RK
1301 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1302 {
64de6c0a 1303 rtx temp = emit_move_insn (target, xtarget);
70864443 1304
5fa671cf
AM
1305 set_unique_reg_note (temp,
1306 REG_EQUAL,
1307 gen_rtx_fmt_ee (binoptab->code, mode,
1308 copy_rtx (xop0),
1309 copy_rtx (xop1)));
02214a5c 1310 }
c5c76735 1311
77c9c6c2
RK
1312 return target;
1313 }
c5c76735 1314
77c9c6c2
RK
1315 else
1316 delete_insns_since (last);
1317 }
1318
1319 /* If we want to multiply two two-word values and have normal and widening
1320 multiplies of single-word values, we can do this with three smaller
1321 multiplications. Note that we do not make a REG_NO_CONFLICT block here
1322 because we are not operating on one word at a time.
1323
1324 The multiplication proceeds as follows:
34e56753
RS
1325 _______________________
1326 [__op0_high_|__op0_low__]
1327 _______________________
6ffe0821 1328 * [__op1_high_|__op1_low__]
34e56753
RS
1329 _______________________________________________
1330 _______________________
6ffe0821 1331 (1) [__op0_low__*__op1_low__]
34e56753 1332 _______________________
6ffe0821 1333 (2a) [__op0_low__*__op1_high_]
34e56753 1334 _______________________
6ffe0821 1335 (2b) [__op0_high_*__op1_low__]
34e56753
RS
1336 _______________________
1337 (3) [__op0_high_*__op1_high_]
77c9c6c2
RK
1338
1339
1340 This gives a 4-word result. Since we are only interested in the
1341 lower 2 words, partial result (3) and the upper words of (2a) and
1342 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1343 calculated using non-widening multiplication.
1344
1345 (1), however, needs to be calculated with an unsigned widening
1346 multiplication. If this operation is not directly supported we
1347 try using a signed widening multiplication and adjust the result.
1348 This adjustment works as follows:
1349
1350 If both operands are positive then no adjustment is needed.
1351
1352 If the operands have different signs, for example op0_low < 0 and
1353 op1_low >= 0, the instruction treats the most significant bit of
1354 op0_low as a sign bit instead of a bit with significance
1355 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1356 with 2**BITS_PER_WORD - op0_low, and two's complements the
1357 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1358 the result.
1359
1360 Similarly, if both operands are negative, we need to add
1361 (op0_low + op1_low) * 2**BITS_PER_WORD.
1362
1363 We use a trick to adjust quickly. We logically shift op0_low right
1364 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1365 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1366 logical shift exists, we do an arithmetic right shift and subtract
1367 the 0 or -1. */
1368
1369 if (binoptab == smul_optab
1370 && class == MODE_INT
1371 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
34e56753
RS
1372 && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1373 && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
77c9c6c2
RK
1374 && ((umul_widen_optab->handlers[(int) mode].insn_code
1375 != CODE_FOR_nothing)
1376 || (smul_widen_optab->handlers[(int) mode].insn_code
1377 != CODE_FOR_nothing)))
1378 {
1379 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1380 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1381 rtx op0_high = operand_subword_force (op0, high, mode);
1382 rtx op0_low = operand_subword_force (op0, low, mode);
1383 rtx op1_high = operand_subword_force (op1, high, mode);
1384 rtx op1_low = operand_subword_force (op1, low, mode);
1385 rtx product = 0;
07444f1d
TM
1386 rtx op0_xhigh = NULL_RTX;
1387 rtx op1_xhigh = NULL_RTX;
77c9c6c2
RK
1388
1389 /* If the target is the same as one of the inputs, don't use it. This
1390 prevents problems with the REG_EQUAL note. */
f96d689c
RK
1391 if (target == op0 || target == op1
1392 || (target != 0 && GET_CODE (target) != REG))
77c9c6c2
RK
1393 target = 0;
1394
1395 /* Multiply the two lower words to get a double-word product.
1396 If unsigned widening multiplication is available, use that;
1397 otherwise use the signed form and compensate. */
1398
1399 if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1400 {
1401 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1402 target, 1, OPTAB_DIRECT);
1403
1404 /* If we didn't succeed, delete everything we did so far. */
1405 if (product == 0)
1406 delete_insns_since (last);
1407 else
1408 op0_xhigh = op0_high, op1_xhigh = op1_high;
1409 }
1410
1411 if (product == 0
1412 && smul_widen_optab->handlers[(int) mode].insn_code
1413 != CODE_FOR_nothing)
1414 {
b1ec3c92 1415 rtx wordm1 = GEN_INT (BITS_PER_WORD - 1);
77c9c6c2
RK
1416 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1417 target, 1, OPTAB_DIRECT);
34e56753 1418 op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
70864443 1419 NULL_RTX, 1, next_methods);
77c9c6c2 1420 if (op0_xhigh)
34e56753 1421 op0_xhigh = expand_binop (word_mode, add_optab, op0_high,
70864443 1422 op0_xhigh, op0_xhigh, 0, next_methods);
77c9c6c2
RK
1423 else
1424 {
34e56753 1425 op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
70864443 1426 NULL_RTX, 0, next_methods);
77c9c6c2 1427 if (op0_xhigh)
34e56753 1428 op0_xhigh = expand_binop (word_mode, sub_optab, op0_high,
77c9c6c2 1429 op0_xhigh, op0_xhigh, 0,
70864443 1430 next_methods);
77c9c6c2
RK
1431 }
1432
34e56753 1433 op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
70864443 1434 NULL_RTX, 1, next_methods);
77c9c6c2 1435 if (op1_xhigh)
34e56753 1436 op1_xhigh = expand_binop (word_mode, add_optab, op1_high,
70864443 1437 op1_xhigh, op1_xhigh, 0, next_methods);
77c9c6c2
RK
1438 else
1439 {
34e56753 1440 op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
70864443 1441 NULL_RTX, 0, next_methods);
77c9c6c2 1442 if (op1_xhigh)
34e56753 1443 op1_xhigh = expand_binop (word_mode, sub_optab, op1_high,
77c9c6c2 1444 op1_xhigh, op1_xhigh, 0,
70864443 1445 next_methods);
77c9c6c2
RK
1446 }
1447 }
1448
1449 /* If we have been able to directly compute the product of the
1450 low-order words of the operands and perform any required adjustments
1451 of the operands, we proceed by trying two more multiplications
1452 and then computing the appropriate sum.
1453
1454 We have checked above that the required addition is provided.
1455 Full-word addition will normally always succeed, especially if
1456 it is provided at all, so we don't worry about its failure. The
1457 multiplication may well fail, however, so we do handle that. */
1458
1459 if (product && op0_xhigh && op1_xhigh)
1460 {
77c9c6c2 1461 rtx product_high = operand_subword (product, high, 1, mode);
b1ec3c92
CH
1462 rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh,
1463 NULL_RTX, 0, OPTAB_DIRECT);
77c9c6c2 1464
c7539aa0
JL
1465 if (!REG_P (product_high))
1466 product_high = force_reg (word_mode, product_high);
1467
70864443
RK
1468 if (temp != 0)
1469 temp = expand_binop (word_mode, add_optab, temp, product_high,
1470 product_high, 0, next_methods);
77c9c6c2 1471
70864443
RK
1472 if (temp != 0 && temp != product_high)
1473 emit_move_insn (product_high, temp);
1474
1475 if (temp != 0)
1476 temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh,
1477 NULL_RTX, 0, OPTAB_DIRECT);
1478
1479 if (temp != 0)
1480 temp = expand_binop (word_mode, add_optab, temp,
1481 product_high, product_high,
1482 0, next_methods);
77c9c6c2 1483
70864443
RK
1484 if (temp != 0 && temp != product_high)
1485 emit_move_insn (product_high, temp);
77c9c6c2 1486
c7539aa0
JL
1487 emit_move_insn (operand_subword (product, high, 1, mode), product_high);
1488
70864443
RK
1489 if (temp != 0)
1490 {
02214a5c
RK
1491 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1492 {
1493 temp = emit_move_insn (product, product);
5fa671cf
AM
1494 set_unique_reg_note (temp,
1495 REG_EQUAL,
1496 gen_rtx_fmt_ee (MULT, mode,
1497 copy_rtx (op0),
1498 copy_rtx (op1)));
02214a5c 1499 }
c5c76735 1500
77c9c6c2
RK
1501 return product;
1502 }
1503 }
1504
1505 /* If we get here, we couldn't do it for some reason even though we
1506 originally thought we could. Delete anything we've emitted in
1507 trying to do it. */
1508
1509 delete_insns_since (last);
1510 }
1511
b818abb0
RS
1512 /* We need to open-code the complex type operations: '+, -, * and /' */
1513
1514 /* At this point we allow operations between two similar complex
1515 numbers, and also if one of the operands is not a complex number
1516 but rather of MODE_FLOAT or MODE_INT. However, the caller
1517 must make sure that the MODE of the non-complex operand matches
6f43c157 1518 the SUBMODE of the complex operand. */
b818abb0
RS
1519
1520 if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
6f43c157 1521 {
70864443
RK
1522 rtx real0 = 0, imag0 = 0;
1523 rtx real1 = 0, imag1 = 0;
1524 rtx realr, imagr, res;
b818abb0
RS
1525 rtx seq;
1526 rtx equiv_value;
70864443 1527 int ok = 0;
b818abb0
RS
1528
1529 /* Find the correct mode for the real and imaginary parts */
6f43c157
RS
1530 enum machine_mode submode
1531 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
1532 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
1533 0);
b818abb0
RS
1534
1535 if (submode == BLKmode)
1536 abort ();
1537
1538 if (! target)
1539 target = gen_reg_rtx (mode);
1540
1541 start_sequence ();
1542
c64f913e 1543 realr = gen_realpart (submode, target);
decdfa82 1544 imagr = gen_imagpart (submode, target);
b818abb0
RS
1545
1546 if (GET_MODE (op0) == mode)
1547 {
c64f913e 1548 real0 = gen_realpart (submode, op0);
decdfa82 1549 imag0 = gen_imagpart (submode, op0);
b818abb0
RS
1550 }
1551 else
1552 real0 = op0;
1553
1554 if (GET_MODE (op1) == mode)
1555 {
c64f913e 1556 real1 = gen_realpart (submode, op1);
decdfa82 1557 imag1 = gen_imagpart (submode, op1);
b818abb0
RS
1558 }
1559 else
1560 real1 = op1;
1561
c0fe508e 1562 if (real0 == 0 || real1 == 0 || ! (imag0 != 0 || imag1 != 0))
b818abb0
RS
1563 abort ();
1564
6f43c157
RS
1565 switch (binoptab->code)
1566 {
1567 case PLUS:
96f153da 1568 /* (a+ib) + (c+id) = (a+c) + i(b+d) */
6f43c157 1569 case MINUS:
96f153da 1570 /* (a+ib) - (c+id) = (a-c) + i(b-d) */
b818abb0
RS
1571 res = expand_binop (submode, binoptab, real0, real1,
1572 realr, unsignedp, methods);
70864443
RK
1573
1574 if (res == 0)
1575 break;
1576 else if (res != realr)
b818abb0
RS
1577 emit_move_insn (realr, res);
1578
c0fe508e
TM
1579 if (!complex_part_zero_p (imag0, class, submode)
1580 && !complex_part_zero_p (imag1, class, submode))
b818abb0
RS
1581 res = expand_binop (submode, binoptab, imag0, imag1,
1582 imagr, unsignedp, methods);
c0fe508e 1583 else if (!complex_part_zero_p (imag0, class, submode))
b818abb0
RS
1584 res = imag0;
1585 else if (binoptab->code == MINUS)
91ce572a
CC
1586 res = expand_unop (submode,
1587 binoptab == subv_optab ? negv_optab : neg_optab,
1588 imag1, imagr, unsignedp);
b818abb0
RS
1589 else
1590 res = imag1;
1591
70864443
RK
1592 if (res == 0)
1593 break;
1594 else if (res != imagr)
b818abb0 1595 emit_move_insn (imagr, res);
70864443
RK
1596
1597 ok = 1;
b818abb0 1598 break;
6f43c157
RS
1599
1600 case MULT:
b818abb0
RS
1601 /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */
1602
c0fe508e
TM
1603 if (!complex_part_zero_p (imag0, class, submode)
1604 && !complex_part_zero_p (imag1, class, submode))
b818abb0 1605 {
70864443
RK
1606 rtx temp1, temp2;
1607
54e7b5e6
RS
1608 /* Don't fetch these from memory more than once. */
1609 real0 = force_reg (submode, real0);
1610 real1 = force_reg (submode, real1);
1611 imag0 = force_reg (submode, imag0);
1612 imag1 = force_reg (submode, imag1);
1613
70864443
RK
1614 temp1 = expand_binop (submode, binoptab, real0, real1, NULL_RTX,
1615 unsignedp, methods);
1616
1617 temp2 = expand_binop (submode, binoptab, imag0, imag1, NULL_RTX,
1618 unsignedp, methods);
1619
1620 if (temp1 == 0 || temp2 == 0)
1621 break;
1622
91ce572a
CC
1623 res = (expand_binop
1624 (submode,
1625 binoptab == smulv_optab ? subv_optab : sub_optab,
1626 temp1, temp2, realr, unsignedp, methods));
b818abb0 1627
70864443
RK
1628 if (res == 0)
1629 break;
1630 else if (res != realr)
54e7b5e6 1631 emit_move_insn (realr, res);
b818abb0 1632
70864443
RK
1633 temp1 = expand_binop (submode, binoptab, real0, imag1,
1634 NULL_RTX, unsignedp, methods);
1635
1636 temp2 = expand_binop (submode, binoptab, real1, imag0,
1637 NULL_RTX, unsignedp, methods);
1638
1639 if (temp1 == 0 || temp2 == 0)
1c63cc82
RK
1640 break;
1641
91ce572a
CC
1642 res = (expand_binop
1643 (submode,
1644 binoptab == smulv_optab ? addv_optab : add_optab,
1645 temp1, temp2, imagr, unsignedp, methods));
70864443
RK
1646
1647 if (res == 0)
1648 break;
1649 else if (res != imagr)
b818abb0 1650 emit_move_insn (imagr, res);
70864443
RK
1651
1652 ok = 1;
b818abb0
RS
1653 }
1654 else
1655 {
54e7b5e6
RS
1656 /* Don't fetch these from memory more than once. */
1657 real0 = force_reg (submode, real0);
1658 real1 = force_reg (submode, real1);
1659
96f153da
RS
1660 res = expand_binop (submode, binoptab, real0, real1,
1661 realr, unsignedp, methods);
70864443
RK
1662 if (res == 0)
1663 break;
1664 else if (res != realr)
b818abb0
RS
1665 emit_move_insn (realr, res);
1666
c0fe508e 1667 if (!complex_part_zero_p (imag0, class, submode))
b818abb0
RS
1668 res = expand_binop (submode, binoptab,
1669 real1, imag0, imagr, unsignedp, methods);
1670 else
1671 res = expand_binop (submode, binoptab,
1672 real0, imag1, imagr, unsignedp, methods);
70864443
RK
1673
1674 if (res == 0)
1675 break;
1676 else if (res != imagr)
b818abb0 1677 emit_move_insn (imagr, res);
70864443
RK
1678
1679 ok = 1;
b818abb0
RS
1680 }
1681 break;
6f43c157
RS
1682
1683 case DIV:
96f153da 1684 /* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */
b818abb0 1685
6835a09c 1686 if (complex_part_zero_p (imag1, class, submode))
70864443
RK
1687 {
1688 /* (a+ib) / (c+i0) = (a/c) + i(b/c) */
54e7b5e6
RS
1689
1690 /* Don't fetch these from memory more than once. */
1691 real1 = force_reg (submode, real1);
1692
96f153da 1693 /* Simply divide the real and imaginary parts by `c' */
2140ed5b
RK
1694 if (class == MODE_COMPLEX_FLOAT)
1695 res = expand_binop (submode, binoptab, real0, real1,
1696 realr, unsignedp, methods);
1697 else
1698 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1699 real0, real1, realr, unsignedp);
1700
70864443
RK
1701 if (res == 0)
1702 break;
1703 else if (res != realr)
b818abb0
RS
1704 emit_move_insn (realr, res);
1705
2140ed5b
RK
1706 if (class == MODE_COMPLEX_FLOAT)
1707 res = expand_binop (submode, binoptab, imag0, real1,
1708 imagr, unsignedp, methods);
1709 else
1710 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1711 imag0, real1, imagr, unsignedp);
1712
70864443
RK
1713 if (res == 0)
1714 break;
1715 else if (res != imagr)
b818abb0 1716 emit_move_insn (imagr, res);
b818abb0 1717
70864443
RK
1718 ok = 1;
1719 }
1720 else
1721 {
c64f913e 1722 switch (flag_complex_divide_method)
70864443 1723 {
c64f913e
CB
1724 case 0:
1725 ok = expand_cmplxdiv_straight (real0, real1, imag0, imag1,
1726 realr, imagr, submode,
1727 unsignedp, methods,
1728 class, binoptab);
1729 break;
41b19f3e 1730
c64f913e
CB
1731 case 1:
1732 ok = expand_cmplxdiv_wide (real0, real1, imag0, imag1,
1733 realr, imagr, submode,
1734 unsignedp, methods,
1735 class, binoptab);
1736 break;
70864443 1737
c64f913e
CB
1738 default:
1739 abort ();
b818abb0 1740 }
b818abb0
RS
1741 }
1742 break;
1743
1744 default:
1745 abort ();
1746 }
1747
c15886da 1748 seq = get_insns ();
b818abb0
RS
1749 end_sequence ();
1750
70864443
RK
1751 if (ok)
1752 {
1753 if (binoptab->code != UNKNOWN)
1754 equiv_value
9e6a5703
JC
1755 = gen_rtx_fmt_ee (binoptab->code, mode,
1756 copy_rtx (op0), copy_rtx (op1));
70864443
RK
1757 else
1758 equiv_value = 0;
b818abb0 1759
70864443 1760 emit_no_conflict_block (seq, target, op0, op1, equiv_value);
b818abb0 1761
70864443
RK
1762 return target;
1763 }
b818abb0 1764 }
b818abb0 1765
77c9c6c2
RK
1766 /* It can't be open-coded in this mode.
1767 Use a library call if one is available and caller says that's ok. */
1768
1769 if (binoptab->handlers[(int) mode].libfunc
1770 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1771 {
1772 rtx insns;
0bbb7f4d
RS
1773 rtx op1x = op1;
1774 enum machine_mode op1_mode = mode;
9a7f678c 1775 rtx value;
77c9c6c2
RK
1776
1777 start_sequence ();
1778
0bbb7f4d
RS
1779 if (shift_op)
1780 {
1781 op1_mode = word_mode;
1782 /* Specify unsigned here,
1783 since negative shift counts are meaningless. */
1784 op1x = convert_to_mode (word_mode, op1, 1);
1785 }
1786
82f0e2cc
RK
1787 if (GET_MODE (op0) != VOIDmode
1788 && GET_MODE (op0) != mode)
5035bbfe
TG
1789 op0 = convert_to_mode (mode, op0, unsignedp);
1790
77c9c6c2
RK
1791 /* Pass 1 for NO_QUEUE so we don't lose any increments
1792 if the libcall is cse'd or moved. */
9a7f678c 1793 value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
ebb1b59a 1794 NULL_RTX, LCT_CONST, mode, 2,
9a7f678c 1795 op0, mode, op1x, op1_mode);
77c9c6c2
RK
1796
1797 insns = get_insns ();
1798 end_sequence ();
1799
1800 target = gen_reg_rtx (mode);
9a7f678c 1801 emit_libcall_block (insns, target, value,
9e6a5703 1802 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
77c9c6c2
RK
1803
1804 return target;
1805 }
1806
1807 delete_insns_since (last);
1808
1809 /* It can't be done in this mode. Can we do it in a wider mode? */
1810
1811 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1812 || methods == OPTAB_MUST_WIDEN))
abd418d3
RS
1813 {
1814 /* Caller says, don't even try. */
1815 delete_insns_since (entry_last);
1816 return 0;
1817 }
77c9c6c2
RK
1818
1819 /* Compute the value of METHODS to pass to recursive calls.
1820 Don't allow widening to be tried recursively. */
1821
1822 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1823
34e56753
RS
1824 /* Look for a wider mode of the same class for which it appears we can do
1825 the operation. */
77c9c6c2
RK
1826
1827 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1828 {
34e56753 1829 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
77c9c6c2
RK
1830 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1831 {
1832 if ((binoptab->handlers[(int) wider_mode].insn_code
1833 != CODE_FOR_nothing)
1834 || (methods == OPTAB_LIB
1835 && binoptab->handlers[(int) wider_mode].libfunc))
1836 {
1837 rtx xop0 = op0, xop1 = op1;
1838 int no_extend = 0;
1839
34e56753 1840 /* For certain integer operations, we need not actually extend
77c9c6c2 1841 the narrow operands, as long as we will truncate
835532b8 1842 the results to the same narrowness. */
77c9c6c2 1843
34e56753
RS
1844 if ((binoptab == ior_optab || binoptab == and_optab
1845 || binoptab == xor_optab
1846 || binoptab == add_optab || binoptab == sub_optab
e5df894b 1847 || binoptab == smul_optab || binoptab == ashl_optab)
835532b8 1848 && class == MODE_INT)
77c9c6c2
RK
1849 no_extend = 1;
1850
0661a3de
RS
1851 xop0 = widen_operand (xop0, wider_mode, mode,
1852 unsignedp, no_extend);
943cc242
RK
1853
1854 /* The second operand of a shift must always be extended. */
0661a3de 1855 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
e5df894b 1856 no_extend && binoptab != ashl_optab);
77c9c6c2 1857
b1ec3c92 1858 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
77c9c6c2
RK
1859 unsignedp, methods);
1860 if (temp)
1861 {
34e56753 1862 if (class != MODE_INT)
77c9c6c2
RK
1863 {
1864 if (target == 0)
1865 target = gen_reg_rtx (mode);
1866 convert_move (target, temp, 0);
1867 return target;
1868 }
1869 else
1870 return gen_lowpart (mode, temp);
1871 }
1872 else
1873 delete_insns_since (last);
1874 }
1875 }
1876 }
1877
abd418d3 1878 delete_insns_since (entry_last);
77c9c6c2
RK
1879 return 0;
1880}
1881\f
1882/* Expand a binary operator which has both signed and unsigned forms.
1883 UOPTAB is the optab for unsigned operations, and SOPTAB is for
1884 signed operations.
1885
1886 If we widen unsigned operands, we may use a signed wider operation instead
1887 of an unsigned wider operation, since the result would be the same. */
1888
1889rtx
1890sign_expand_binop (mode, uoptab, soptab, op0, op1, target, unsignedp, methods)
1891 enum machine_mode mode;
1892 optab uoptab, soptab;
1893 rtx op0, op1, target;
1894 int unsignedp;
1895 enum optab_methods methods;
1896{
b3694847 1897 rtx temp;
77c9c6c2
RK
1898 optab direct_optab = unsignedp ? uoptab : soptab;
1899 struct optab wide_soptab;
1900
1901 /* Do it without widening, if possible. */
1902 temp = expand_binop (mode, direct_optab, op0, op1, target,
1903 unsignedp, OPTAB_DIRECT);
1904 if (temp || methods == OPTAB_DIRECT)
1905 return temp;
1906
1907 /* Try widening to a signed int. Make a fake signed optab that
1908 hides any signed insn for direct use. */
1909 wide_soptab = *soptab;
1910 wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
1911 wide_soptab.handlers[(int) mode].libfunc = 0;
1912
1913 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
1914 unsignedp, OPTAB_WIDEN);
1915
1916 /* For unsigned operands, try widening to an unsigned int. */
1917 if (temp == 0 && unsignedp)
1918 temp = expand_binop (mode, uoptab, op0, op1, target,
1919 unsignedp, OPTAB_WIDEN);
1920 if (temp || methods == OPTAB_WIDEN)
1921 return temp;
1922
1923 /* Use the right width lib call if that exists. */
1924 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
1925 if (temp || methods == OPTAB_LIB)
1926 return temp;
1927
1928 /* Must widen and use a lib call, use either signed or unsigned. */
1929 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
1930 unsignedp, methods);
1931 if (temp != 0)
1932 return temp;
1933 if (unsignedp)
1934 return expand_binop (mode, uoptab, op0, op1, target,
1935 unsignedp, methods);
1936 return 0;
1937}
1938\f
1939/* Generate code to perform an operation specified by BINOPTAB
1940 on operands OP0 and OP1, with two results to TARG1 and TARG2.
1941 We assume that the order of the operands for the instruction
1942 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
1943 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
1944
1945 Either TARG0 or TARG1 may be zero, but what that means is that
38e01259 1946 the result is not actually wanted. We will generate it into
77c9c6c2
RK
1947 a dummy pseudo-reg and discard it. They may not both be zero.
1948
1949 Returns 1 if this operation can be performed; 0 if not. */
1950
1951int
1952expand_twoval_binop (binoptab, op0, op1, targ0, targ1, unsignedp)
1953 optab binoptab;
1954 rtx op0, op1;
1955 rtx targ0, targ1;
1956 int unsignedp;
1957{
1958 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
1959 enum mode_class class;
1960 enum machine_mode wider_mode;
abd418d3 1961 rtx entry_last = get_last_insn ();
77c9c6c2
RK
1962 rtx last;
1963
1964 class = GET_MODE_CLASS (mode);
1965
1966 op0 = protect_from_queue (op0, 0);
1967 op1 = protect_from_queue (op1, 0);
1968
1969 if (flag_force_mem)
1970 {
1971 op0 = force_not_mem (op0);
1972 op1 = force_not_mem (op1);
1973 }
1974
1975 /* If we are inside an appropriately-short loop and one operand is an
1976 expensive constant, force it into a register. */
aeedc93f 1977 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
b437f1a7 1978 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
77c9c6c2
RK
1979 op0 = force_reg (mode, op0);
1980
aeedc93f 1981 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
b437f1a7 1982 && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
77c9c6c2
RK
1983 op1 = force_reg (mode, op1);
1984
1985 if (targ0)
1986 targ0 = protect_from_queue (targ0, 1);
1987 else
1988 targ0 = gen_reg_rtx (mode);
1989 if (targ1)
1990 targ1 = protect_from_queue (targ1, 1);
1991 else
1992 targ1 = gen_reg_rtx (mode);
1993
1994 /* Record where to go back to if we fail. */
1995 last = get_last_insn ();
1996
1997 if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1998 {
1999 int icode = (int) binoptab->handlers[(int) mode].insn_code;
a995e389
RH
2000 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2001 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
77c9c6c2
RK
2002 rtx pat;
2003 rtx xop0 = op0, xop1 = op1;
2004
2005 /* In case this insn wants input operands in modes different from the
2006 result, convert the operands. */
2007 if (GET_MODE (op0) != VOIDmode && GET_MODE (op0) != mode0)
2008 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2009
2010 if (GET_MODE (op1) != VOIDmode && GET_MODE (op1) != mode1)
2011 xop1 = convert_to_mode (mode1, xop1, unsignedp);
2012
2013 /* Now, if insn doesn't accept these operands, put them into pseudos. */
a995e389 2014 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
77c9c6c2
RK
2015 xop0 = copy_to_mode_reg (mode0, xop0);
2016
a995e389 2017 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1))
77c9c6c2
RK
2018 xop1 = copy_to_mode_reg (mode1, xop1);
2019
2020 /* We could handle this, but we should always be called with a pseudo
2021 for our targets and all insns should take them as outputs. */
a995e389
RH
2022 if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
2023 || ! (*insn_data[icode].operand[3].predicate) (targ1, mode))
77c9c6c2
RK
2024 abort ();
2025
2026 pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
2027 if (pat)
2028 {
2029 emit_insn (pat);
2030 return 1;
2031 }
2032 else
2033 delete_insns_since (last);
2034 }
2035
2036 /* It can't be done in this mode. Can we do it in a wider mode? */
2037
2038 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2039 {
34e56753 2040 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
77c9c6c2
RK
2041 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2042 {
2043 if (binoptab->handlers[(int) wider_mode].insn_code
2044 != CODE_FOR_nothing)
2045 {
b3694847
SS
2046 rtx t0 = gen_reg_rtx (wider_mode);
2047 rtx t1 = gen_reg_rtx (wider_mode);
76791f3d
JH
2048 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2049 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
77c9c6c2 2050
76791f3d 2051 if (expand_twoval_binop (binoptab, cop0, cop1,
77c9c6c2
RK
2052 t0, t1, unsignedp))
2053 {
2054 convert_move (targ0, t0, unsignedp);
2055 convert_move (targ1, t1, unsignedp);
2056 return 1;
2057 }
2058 else
2059 delete_insns_since (last);
2060 }
2061 }
2062 }
2063
abd418d3 2064 delete_insns_since (entry_last);
77c9c6c2
RK
2065 return 0;
2066}
2067\f
ef89d648
ZW
2068/* Wrapper around expand_unop which takes an rtx code to specify
2069 the operation to perform, not an optab pointer. All other
2070 arguments are the same. */
2071rtx
2072expand_simple_unop (mode, code, op0, target, unsignedp)
2073 enum machine_mode mode;
2074 enum rtx_code code;
2075 rtx op0;
2076 rtx target;
2077 int unsignedp;
2078{
2079 optab unop = code_to_optab [(int) code];
2080 if (unop == 0)
2081 abort ();
2082
2083 return expand_unop (mode, unop, op0, target, unsignedp);
2084}
2085
77c9c6c2
RK
2086/* Generate code to perform an operation specified by UNOPTAB
2087 on operand OP0, with result having machine-mode MODE.
2088
2089 UNSIGNEDP is for the case where we have to widen the operands
2090 to perform the operation. It says to use zero-extension.
2091
2092 If TARGET is nonzero, the value
2093 is generated there, if it is convenient to do so.
2094 In all cases an rtx is returned for the locus of the value;
2095 this may or may not be TARGET. */
2096
2097rtx
2098expand_unop (mode, unoptab, op0, target, unsignedp)
2099 enum machine_mode mode;
2100 optab unoptab;
2101 rtx op0;
2102 rtx target;
2103 int unsignedp;
2104{
2105 enum mode_class class;
2106 enum machine_mode wider_mode;
b3694847 2107 rtx temp;
77c9c6c2
RK
2108 rtx last = get_last_insn ();
2109 rtx pat;
2110
2111 class = GET_MODE_CLASS (mode);
2112
2113 op0 = protect_from_queue (op0, 0);
2114
2115 if (flag_force_mem)
2116 {
2117 op0 = force_not_mem (op0);
2118 }
2119
2120 if (target)
2121 target = protect_from_queue (target, 1);
2122
2123 if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2124 {
2125 int icode = (int) unoptab->handlers[(int) mode].insn_code;
a995e389 2126 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
77c9c6c2
RK
2127 rtx xop0 = op0;
2128
2129 if (target)
2130 temp = target;
2131 else
2132 temp = gen_reg_rtx (mode);
2133
2134 if (GET_MODE (xop0) != VOIDmode
2135 && GET_MODE (xop0) != mode0)
2136 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2137
2138 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2139
a995e389 2140 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
77c9c6c2
RK
2141 xop0 = copy_to_mode_reg (mode0, xop0);
2142
a995e389 2143 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
77c9c6c2
RK
2144 temp = gen_reg_rtx (mode);
2145
2146 pat = GEN_FCN (icode) (temp, xop0);
2147 if (pat)
2148 {
2149 if (GET_CODE (pat) == SEQUENCE
b1ec3c92 2150 && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
77c9c6c2
RK
2151 {
2152 delete_insns_since (last);
b1ec3c92 2153 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
77c9c6c2
RK
2154 }
2155
2156 emit_insn (pat);
2157
2158 return temp;
2159 }
2160 else
2161 delete_insns_since (last);
2162 }
2163
9a856ec7
RK
2164 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2165
2166 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2167 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2168 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2169 {
2170 if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
2171 {
2172 rtx xop0 = op0;
2173
2174 /* For certain operations, we need not actually extend
2175 the narrow operand, as long as we will truncate the
835532b8
RK
2176 results to the same narrowness. */
2177
0661a3de 2178 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
835532b8
RK
2179 (unoptab == neg_optab
2180 || unoptab == one_cmpl_optab)
2181 && class == MODE_INT);
9a856ec7 2182
b1ec3c92
CH
2183 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2184 unsignedp);
9a856ec7
RK
2185
2186 if (temp)
2187 {
2188 if (class != MODE_INT)
2189 {
2190 if (target == 0)
2191 target = gen_reg_rtx (mode);
2192 convert_move (target, temp, 0);
2193 return target;
2194 }
2195 else
2196 return gen_lowpart (mode, temp);
2197 }
2198 else
2199 delete_insns_since (last);
2200 }
2201 }
2202
77c9c6c2
RK
2203 /* These can be done a word at a time. */
2204 if (unoptab == one_cmpl_optab
2205 && class == MODE_INT
2206 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
34e56753 2207 && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
77c9c6c2 2208 {
bb93b973 2209 int i;
77c9c6c2
RK
2210 rtx insns;
2211
2212 if (target == 0 || target == op0)
2213 target = gen_reg_rtx (mode);
2214
2215 start_sequence ();
2216
2217 /* Do the actual arithmetic. */
2218 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
2219 {
2220 rtx target_piece = operand_subword (target, i, 1, mode);
34e56753 2221 rtx x = expand_unop (word_mode, unoptab,
77c9c6c2
RK
2222 operand_subword_force (op0, i, mode),
2223 target_piece, unsignedp);
bb93b973 2224
77c9c6c2
RK
2225 if (target_piece != x)
2226 emit_move_insn (target_piece, x);
2227 }
2228
2229 insns = get_insns ();
2230 end_sequence ();
2231
b1ec3c92 2232 emit_no_conflict_block (insns, target, op0, NULL_RTX,
9e6a5703
JC
2233 gen_rtx_fmt_e (unoptab->code, mode,
2234 copy_rtx (op0)));
77c9c6c2
RK
2235 return target;
2236 }
2237
139e5e08 2238 /* Open-code the complex negation operation. */
91ce572a 2239 else if (unoptab->code == NEG
139e5e08
RS
2240 && (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT))
2241 {
2242 rtx target_piece;
2243 rtx x;
2244 rtx seq;
2245
2246 /* Find the correct mode for the real and imaginary parts */
2247 enum machine_mode submode
2248 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
2249 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
2250 0);
2251
2252 if (submode == BLKmode)
2253 abort ();
2254
2255 if (target == 0)
2256 target = gen_reg_rtx (mode);
2257
2258 start_sequence ();
2259
decdfa82 2260 target_piece = gen_imagpart (submode, target);
139e5e08 2261 x = expand_unop (submode, unoptab,
decdfa82 2262 gen_imagpart (submode, op0),
139e5e08
RS
2263 target_piece, unsignedp);
2264 if (target_piece != x)
2265 emit_move_insn (target_piece, x);
2266
decdfa82 2267 target_piece = gen_realpart (submode, target);
139e5e08 2268 x = expand_unop (submode, unoptab,
decdfa82 2269 gen_realpart (submode, op0),
139e5e08
RS
2270 target_piece, unsignedp);
2271 if (target_piece != x)
2272 emit_move_insn (target_piece, x);
2273
a29b481b 2274 seq = get_insns ();
139e5e08
RS
2275 end_sequence ();
2276
2277 emit_no_conflict_block (seq, target, op0, 0,
9e6a5703
JC
2278 gen_rtx_fmt_e (unoptab->code, mode,
2279 copy_rtx (op0)));
139e5e08
RS
2280 return target;
2281 }
2282
139e5e08 2283 /* Now try a library call in this mode. */
77c9c6c2
RK
2284 if (unoptab->handlers[(int) mode].libfunc)
2285 {
2286 rtx insns;
9a7f678c 2287 rtx value;
77c9c6c2
RK
2288
2289 start_sequence ();
2290
2291 /* Pass 1 for NO_QUEUE so we don't lose any increments
2292 if the libcall is cse'd or moved. */
9a7f678c 2293 value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
ebb1b59a 2294 NULL_RTX, LCT_CONST, mode, 1, op0, mode);
77c9c6c2
RK
2295 insns = get_insns ();
2296 end_sequence ();
2297
2298 target = gen_reg_rtx (mode);
9a7f678c 2299 emit_libcall_block (insns, target, value,
9e6a5703 2300 gen_rtx_fmt_e (unoptab->code, mode, op0));
77c9c6c2
RK
2301
2302 return target;
2303 }
2304
2305 /* It can't be done in this mode. Can we do it in a wider mode? */
2306
2307 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2308 {
34e56753 2309 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
77c9c6c2
RK
2310 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2311 {
2312 if ((unoptab->handlers[(int) wider_mode].insn_code
2313 != CODE_FOR_nothing)
2314 || unoptab->handlers[(int) wider_mode].libfunc)
2315 {
34e56753
RS
2316 rtx xop0 = op0;
2317
2318 /* For certain operations, we need not actually extend
2319 the narrow operand, as long as we will truncate the
2320 results to the same narrowness. */
2321
0661a3de 2322 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
835532b8
RK
2323 (unoptab == neg_optab
2324 || unoptab == one_cmpl_optab)
2325 && class == MODE_INT);
77c9c6c2 2326
b1ec3c92
CH
2327 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2328 unsignedp);
34e56753
RS
2329
2330 if (temp)
77c9c6c2 2331 {
34e56753
RS
2332 if (class != MODE_INT)
2333 {
2334 if (target == 0)
2335 target = gen_reg_rtx (mode);
2336 convert_move (target, temp, 0);
2337 return target;
2338 }
2339 else
2340 return gen_lowpart (mode, temp);
77c9c6c2
RK
2341 }
2342 else
34e56753 2343 delete_insns_since (last);
77c9c6c2
RK
2344 }
2345 }
2346 }
2347
b82b6eea
DE
2348 /* If there is no negate operation, try doing a subtract from zero.
2349 The US Software GOFAST library needs this. */
91ce572a 2350 if (unoptab->code == NEG)
b82b6eea
DE
2351 {
2352 rtx temp;
91ce572a
CC
2353 temp = expand_binop (mode,
2354 unoptab == negv_optab ? subv_optab : sub_optab,
2355 CONST0_RTX (mode), op0,
2356 target, unsignedp, OPTAB_LIB_WIDEN);
b82b6eea
DE
2357 if (temp)
2358 return temp;
2359 }
2360
77c9c6c2
RK
2361 return 0;
2362}
2363\f
decdfa82
RS
2364/* Emit code to compute the absolute value of OP0, with result to
2365 TARGET if convenient. (TARGET may be 0.) The return value says
2366 where the result actually is to be found.
2367
2368 MODE is the mode of the operand; the mode of the result is
2369 different but can be deduced from MODE.
2370
91813b28 2371 */
7fd01431
RK
2372
2373rtx
91ce572a 2374expand_abs (mode, op0, target, result_unsignedp, safe)
7fd01431
RK
2375 enum machine_mode mode;
2376 rtx op0;
2377 rtx target;
91ce572a 2378 int result_unsignedp;
7fd01431
RK
2379 int safe;
2380{
2381 rtx temp, op1;
2382
91ce572a
CC
2383 if (! flag_trapv)
2384 result_unsignedp = 1;
2385
7fd01431 2386 /* First try to do it with a special abs instruction. */
91ce572a
CC
2387 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
2388 op0, target, 0);
7fd01431
RK
2389 if (temp != 0)
2390 return temp;
2391
14a774a9
RK
2392 /* If we have a MAX insn, we can do this as MAX (x, -x). */
2393 if (smax_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2394 {
2395 rtx last = get_last_insn ();
2396
2397 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
2398 if (temp != 0)
2399 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
2400 OPTAB_WIDEN);
2401
2402 if (temp != 0)
2403 return temp;
2404
2405 delete_insns_since (last);
2406 }
2407
7fd01431
RK
2408 /* If this machine has expensive jumps, we can do integer absolute
2409 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
e1078cfc 2410 where W is the width of MODE. */
7fd01431
RK
2411
2412 if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
2413 {
2414 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
2415 size_int (GET_MODE_BITSIZE (mode) - 1),
2416 NULL_RTX, 0);
2417
2418 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
2419 OPTAB_LIB_WIDEN);
2420 if (temp != 0)
91ce572a
CC
2421 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
2422 temp, extended, target, 0, OPTAB_LIB_WIDEN);
7fd01431
RK
2423
2424 if (temp != 0)
2425 return temp;
2426 }
2427
2428 /* If that does not win, use conditional jump and negate. */
5c0bf747
RK
2429
2430 /* It is safe to use the target if it is the same
2431 as the source if this is also a pseudo register */
2432 if (op0 == target && GET_CODE (op0) == REG
2433 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
2434 safe = 1;
2435
7fd01431
RK
2436 op1 = gen_label_rtx ();
2437 if (target == 0 || ! safe
2438 || GET_MODE (target) != mode
2439 || (GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
2440 || (GET_CODE (target) == REG
2441 && REGNO (target) < FIRST_PSEUDO_REGISTER))
2442 target = gen_reg_rtx (mode);
2443
2444 emit_move_insn (target, op0);
2445 NO_DEFER_POP;
2446
2447 /* If this mode is an integer too wide to compare properly,
2448 compare word by word. Rely on CSE to optimize constant cases. */
1eb8759b
RH
2449 if (GET_MODE_CLASS (mode) == MODE_INT
2450 && ! can_compare_p (GE, mode, ccp_jump))
7fd01431
RK
2451 do_jump_by_parts_greater_rtx (mode, 0, target, const0_rtx,
2452 NULL_RTX, op1);
2453 else
b30f05db 2454 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
a06ef755 2455 NULL_RTX, NULL_RTX, op1);
7fd01431 2456
91ce572a
CC
2457 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
2458 target, target, 0);
7fd01431
RK
2459 if (op0 != target)
2460 emit_move_insn (target, op0);
2461 emit_label (op1);
2462 OK_DEFER_POP;
2463 return target;
2464}
2465\f
2466/* Emit code to compute the absolute value of OP0, with result to
2467 TARGET if convenient. (TARGET may be 0.) The return value says
2468 where the result actually is to be found.
2469
2470 MODE is the mode of the operand; the mode of the result is
2471 different but can be deduced from MODE.
2472
decdfa82
RS
2473 UNSIGNEDP is relevant for complex integer modes. */
2474
2475rtx
2476expand_complex_abs (mode, op0, target, unsignedp)
2477 enum machine_mode mode;
2478 rtx op0;
2479 rtx target;
2480 int unsignedp;
2481{
2482 enum mode_class class = GET_MODE_CLASS (mode);
2483 enum machine_mode wider_mode;
b3694847 2484 rtx temp;
abd418d3
RS
2485 rtx entry_last = get_last_insn ();
2486 rtx last;
decdfa82 2487 rtx pat;
91ce572a 2488 optab this_abs_optab;
decdfa82
RS
2489
2490 /* Find the correct mode for the real and imaginary parts. */
2491 enum machine_mode submode
2492 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
2493 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
2494 0);
2495
2496 if (submode == BLKmode)
2497 abort ();
2498
2499 op0 = protect_from_queue (op0, 0);
2500
2501 if (flag_force_mem)
2502 {
2503 op0 = force_not_mem (op0);
2504 }
2505
abd418d3
RS
2506 last = get_last_insn ();
2507
decdfa82
RS
2508 if (target)
2509 target = protect_from_queue (target, 1);
2510
91ce572a
CC
2511 this_abs_optab = ! unsignedp && flag_trapv
2512 && (GET_MODE_CLASS(mode) == MODE_INT)
2513 ? absv_optab : abs_optab;
2514
2515 if (this_abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
decdfa82 2516 {
91ce572a 2517 int icode = (int) this_abs_optab->handlers[(int) mode].insn_code;
a995e389 2518 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
decdfa82
RS
2519 rtx xop0 = op0;
2520
2521 if (target)
2522 temp = target;
2523 else
2524 temp = gen_reg_rtx (submode);
2525
2526 if (GET_MODE (xop0) != VOIDmode
2527 && GET_MODE (xop0) != mode0)
2528 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2529
2530 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2531
a995e389 2532 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
decdfa82
RS
2533 xop0 = copy_to_mode_reg (mode0, xop0);
2534
a995e389 2535 if (! (*insn_data[icode].operand[0].predicate) (temp, submode))
decdfa82
RS
2536 temp = gen_reg_rtx (submode);
2537
2538 pat = GEN_FCN (icode) (temp, xop0);
2539 if (pat)
2540 {
2541 if (GET_CODE (pat) == SEQUENCE
91ce572a
CC
2542 && ! add_equal_note (pat, temp, this_abs_optab->code, xop0,
2543 NULL_RTX))
decdfa82
RS
2544 {
2545 delete_insns_since (last);
91ce572a
CC
2546 return expand_unop (mode, this_abs_optab, op0, NULL_RTX,
2547 unsignedp);
decdfa82
RS
2548 }
2549
2550 emit_insn (pat);
2551
2552 return temp;
2553 }
2554 else
2555 delete_insns_since (last);
2556 }
2557
2558 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2559
2560 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2561 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2562 {
91ce572a
CC
2563 if (this_abs_optab->handlers[(int) wider_mode].insn_code
2564 != CODE_FOR_nothing)
decdfa82
RS
2565 {
2566 rtx xop0 = op0;
2567
0661a3de 2568 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
decdfa82
RS
2569 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
2570
2571 if (temp)
2572 {
2573 if (class != MODE_COMPLEX_INT)
2574 {
2575 if (target == 0)
2576 target = gen_reg_rtx (submode);
2577 convert_move (target, temp, 0);
2578 return target;
2579 }
2580 else
2581 return gen_lowpart (submode, temp);
2582 }
2583 else
2584 delete_insns_since (last);
2585 }
2586 }
2587
2588 /* Open-code the complex absolute-value operation
2589 if we can open-code sqrt. Otherwise it's not worth while. */
10e927ef
CC
2590 if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing
2591 && ! flag_trapv)
decdfa82
RS
2592 {
2593 rtx real, imag, total;
2594
2595 real = gen_realpart (submode, op0);
2596 imag = gen_imagpart (submode, op0);
9061e4cd 2597
decdfa82 2598 /* Square both parts. */
9061e4cd
RK
2599 real = expand_mult (submode, real, real, NULL_RTX, 0);
2600 imag = expand_mult (submode, imag, imag, NULL_RTX, 0);
2601
decdfa82 2602 /* Sum the parts. */
73d9a835 2603 total = expand_binop (submode, add_optab, real, imag, NULL_RTX,
decdfa82 2604 0, OPTAB_LIB_WIDEN);
9061e4cd 2605
decdfa82
RS
2606 /* Get sqrt in TARGET. Set TARGET to where the result is. */
2607 target = expand_unop (submode, sqrt_optab, total, target, 0);
2608 if (target == 0)
2609 delete_insns_since (last);
2610 else
2611 return target;
2612 }
2613
2614 /* Now try a library call in this mode. */
91ce572a 2615 if (this_abs_optab->handlers[(int) mode].libfunc)
decdfa82
RS
2616 {
2617 rtx insns;
a0bc0933 2618 rtx value;
decdfa82
RS
2619
2620 start_sequence ();
2621
2622 /* Pass 1 for NO_QUEUE so we don't lose any increments
2623 if the libcall is cse'd or moved. */
9a7f678c 2624 value = emit_library_call_value (abs_optab->handlers[(int) mode].libfunc,
ebb1b59a 2625 NULL_RTX, LCT_CONST, submode, 1, op0, mode);
decdfa82
RS
2626 insns = get_insns ();
2627 end_sequence ();
2628
2629 target = gen_reg_rtx (submode);
9a7f678c 2630 emit_libcall_block (insns, target, value,
91ce572a 2631 gen_rtx_fmt_e (this_abs_optab->code, mode, op0));
decdfa82
RS
2632
2633 return target;
2634 }
2635
2636 /* It can't be done in this mode. Can we do it in a wider mode? */
2637
2638 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2639 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2640 {
91ce572a 2641 if ((this_abs_optab->handlers[(int) wider_mode].insn_code
decdfa82 2642 != CODE_FOR_nothing)
91ce572a 2643 || this_abs_optab->handlers[(int) wider_mode].libfunc)
decdfa82
RS
2644 {
2645 rtx xop0 = op0;
2646
0661a3de 2647 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
decdfa82
RS
2648
2649 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
2650
2651 if (temp)
2652 {
2653 if (class != MODE_COMPLEX_INT)
2654 {
2655 if (target == 0)
2656 target = gen_reg_rtx (submode);
2657 convert_move (target, temp, 0);
2658 return target;
2659 }
2660 else
2661 return gen_lowpart (submode, temp);
2662 }
2663 else
2664 delete_insns_since (last);
2665 }
2666 }
2667
abd418d3 2668 delete_insns_since (entry_last);
decdfa82
RS
2669 return 0;
2670}
2671\f
77c9c6c2
RK
2672/* Generate an instruction whose insn-code is INSN_CODE,
2673 with two operands: an output TARGET and an input OP0.
2674 TARGET *must* be nonzero, and the output is always stored there.
2675 CODE is an rtx code such that (CODE OP0) is an rtx that describes
2676 the value that is stored into TARGET. */
2677
2678void
2679emit_unop_insn (icode, target, op0, code)
2680 int icode;
2681 rtx target;
2682 rtx op0;
2683 enum rtx_code code;
2684{
b3694847 2685 rtx temp;
a995e389 2686 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
77c9c6c2
RK
2687 rtx pat;
2688
2689 temp = target = protect_from_queue (target, 1);
2690
2691 op0 = protect_from_queue (op0, 0);
2692
bd8c4b14
ILT
2693 /* Sign and zero extension from memory is often done specially on
2694 RISC machines, so forcing into a register here can pessimize
2695 code. */
2696 if (flag_force_mem && code != SIGN_EXTEND && code != ZERO_EXTEND)
77c9c6c2
RK
2697 op0 = force_not_mem (op0);
2698
2699 /* Now, if insn does not accept our operands, put them into pseudos. */
2700
a995e389 2701 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
77c9c6c2
RK
2702 op0 = copy_to_mode_reg (mode0, op0);
2703
a995e389 2704 if (! (*insn_data[icode].operand[0].predicate) (temp, GET_MODE (temp))
77c9c6c2
RK
2705 || (flag_force_mem && GET_CODE (temp) == MEM))
2706 temp = gen_reg_rtx (GET_MODE (temp));
2707
2708 pat = GEN_FCN (icode) (temp, op0);
2709
2710 if (GET_CODE (pat) == SEQUENCE && code != UNKNOWN)
b1ec3c92 2711 add_equal_note (pat, temp, code, op0, NULL_RTX);
77c9c6c2
RK
2712
2713 emit_insn (pat);
2714
2715 if (temp != target)
2716 emit_move_insn (target, temp);
2717}
2718\f
2719/* Emit code to perform a series of operations on a multi-word quantity, one
2720 word at a time.
2721
d45cf215 2722 Such a block is preceded by a CLOBBER of the output, consists of multiple
77c9c6c2
RK
2723 insns, each setting one word of the output, and followed by a SET copying
2724 the output to itself.
2725
2726 Each of the insns setting words of the output receives a REG_NO_CONFLICT
2727 note indicating that it doesn't conflict with the (also multi-word)
2728 inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
2729 notes.
2730
2731 INSNS is a block of code generated to perform the operation, not including
2732 the CLOBBER and final copy. All insns that compute intermediate values
dce39da6 2733 are first emitted, followed by the block as described above.
77c9c6c2
RK
2734
2735 TARGET, OP0, and OP1 are the output and inputs of the operations,
2736 respectively. OP1 may be zero for a unary operation.
2737
2738 EQUIV, if non-zero, is an expression to be placed into a REG_EQUAL note
2739 on the last insn.
2740
2741 If TARGET is not a register, INSNS is simply emitted with no special
dce39da6
RK
2742 processing. Likewise if anything in INSNS is not an INSN or if
2743 there is a libcall block inside INSNS.
77c9c6c2
RK
2744
2745 The final insn emitted is returned. */
2746
2747rtx
2748emit_no_conflict_block (insns, target, op0, op1, equiv)
2749 rtx insns;
2750 rtx target;
2751 rtx op0, op1;
2752 rtx equiv;
2753{
2754 rtx prev, next, first, last, insn;
2755
2756 if (GET_CODE (target) != REG || reload_in_progress)
2757 return emit_insns (insns);
dce39da6
RK
2758 else
2759 for (insn = insns; insn; insn = NEXT_INSN (insn))
2760 if (GET_CODE (insn) != INSN
2761 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2762 return emit_insns (insns);
77c9c6c2
RK
2763
2764 /* First emit all insns that do not store into words of the output and remove
2765 these from the list. */
2766 for (insn = insns; insn; insn = next)
2767 {
218aa620 2768 rtx set = 0, note;
77c9c6c2
RK
2769 int i;
2770
2771 next = NEXT_INSN (insn);
2772
218aa620
JH
2773 /* Some ports (cris) create an libcall regions at their own. We must
2774 avoid any potential nesting of LIBCALLs. */
2775 if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
2776 remove_note (insn, note);
2777 if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
2778 remove_note (insn, note);
2779
c5c76735
JL
2780 if (GET_CODE (PATTERN (insn)) == SET || GET_CODE (PATTERN (insn)) == USE
2781 || GET_CODE (PATTERN (insn)) == CLOBBER)
77c9c6c2
RK
2782 set = PATTERN (insn);
2783 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2784 {
2785 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2786 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
2787 {
2788 set = XVECEXP (PATTERN (insn), 0, i);
2789 break;
2790 }
2791 }
2792
2793 if (set == 0)
2794 abort ();
2795
2796 if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
2797 {
2798 if (PREV_INSN (insn))
2799 NEXT_INSN (PREV_INSN (insn)) = next;
2800 else
2801 insns = next;
2802
2803 if (next)
2804 PREV_INSN (next) = PREV_INSN (insn);
2805
2806 add_insn (insn);
2807 }
2808 }
2809
2810 prev = get_last_insn ();
2811
2812 /* Now write the CLOBBER of the output, followed by the setting of each
2813 of the words, followed by the final copy. */
2814 if (target != op0 && target != op1)
9e6a5703 2815 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
77c9c6c2
RK
2816
2817 for (insn = insns; insn; insn = next)
2818 {
2819 next = NEXT_INSN (insn);
2820 add_insn (insn);
2821
2822 if (op1 && GET_CODE (op1) == REG)
9e6a5703
JC
2823 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op1,
2824 REG_NOTES (insn));
77c9c6c2
RK
2825
2826 if (op0 && GET_CODE (op0) == REG)
9e6a5703
JC
2827 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op0,
2828 REG_NOTES (insn));
77c9c6c2
RK
2829 }
2830
54e7b5e6
RS
2831 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
2832 != CODE_FOR_nothing)
2833 {
2834 last = emit_move_insn (target, target);
2835 if (equiv)
5fa671cf 2836 set_unique_reg_note (last, REG_EQUAL, equiv);
54e7b5e6
RS
2837 }
2838 else
07edd4c5
HPN
2839 {
2840 last = get_last_insn ();
2841
2842 /* Remove any existing REG_EQUAL note from "last", or else it will
2843 be mistaken for a note referring to the full contents of the
2844 alleged libcall value when found together with the REG_RETVAL
2845 note added below. An existing note can come from an insn
2846 expansion at "last". */
2847 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
2848 }
77c9c6c2
RK
2849
2850 if (prev == 0)
2851 first = get_insns ();
2852 else
2853 first = NEXT_INSN (prev);
2854
2855 /* Encapsulate the block so it gets manipulated as a unit. */
9e6a5703
JC
2856 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
2857 REG_NOTES (first));
2858 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last));
77c9c6c2
RK
2859
2860 return last;
2861}
2862\f
2863/* Emit code to make a call to a constant function or a library call.
2864
2865 INSNS is a list containing all insns emitted in the call.
2866 These insns leave the result in RESULT. Our block is to copy RESULT
2867 to TARGET, which is logically equivalent to EQUIV.
2868
2869 We first emit any insns that set a pseudo on the assumption that these are
2870 loading constants into registers; doing so allows them to be safely cse'ed
2871 between blocks. Then we emit all the other insns in the block, followed by
2872 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
2873 note with an operand of EQUIV.
2874
29ebe69a
RK
2875 Moving assignments to pseudos outside of the block is done to improve
2876 the generated code, but is not required to generate correct code,
2877 hence being unable to move an assignment is not grounds for not making
2878 a libcall block. There are two reasons why it is safe to leave these
2879 insns inside the block: First, we know that these pseudos cannot be
2880 used in generated RTL outside the block since they are created for
2881 temporary purposes within the block. Second, CSE will not record the
2882 values of anything set inside a libcall block, so we know they must
2883 be dead at the end of the block.
2884
77c9c6c2
RK
2885 Except for the first group of insns (the ones setting pseudos), the
2886 block is delimited by REG_RETVAL and REG_LIBCALL notes. */
2887
2888void
2889emit_libcall_block (insns, target, result, equiv)
2890 rtx insns;
2891 rtx target;
2892 rtx result;
2893 rtx equiv;
2894{
aff2c2d3 2895 rtx final_dest = target;
77c9c6c2
RK
2896 rtx prev, next, first, last, insn;
2897
aff2c2d3
BS
2898 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
2899 into a MEM later. Protect the libcall block from this change. */
2900 if (! REG_P (target) || REG_USERVAR_P (target))
2901 target = gen_reg_rtx (GET_MODE (target));
5154e79a
AH
2902
2903 /* If we're using non-call exceptions, a libcall corresponding to an
2904 operation that may trap may also trap. */
2905 if (flag_non_call_exceptions && may_trap_p (equiv))
2906 {
2907 for (insn = insns; insn; insn = NEXT_INSN (insn))
2908 if (GET_CODE (insn) == CALL_INSN)
2909 {
2910 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2911
2912 if (note != 0 && INTVAL (XEXP (note, 0)) <= 0)
2913 remove_note (insn, note);
2914 }
2915 }
2916 else
b472794d 2917 /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
c29ea88a 2918 reg note to indicate that this call cannot throw or execute a nonlocal
cf67d231 2919 goto (unless there is already a REG_EH_REGION note, in which case
897aa57f 2920 we update it). */
5154e79a
AH
2921 for (insn = insns; insn; insn = NEXT_INSN (insn))
2922 if (GET_CODE (insn) == CALL_INSN)
2923 {
2924 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2925
2926 if (note != 0)
2927 XEXP (note, 0) = GEN_INT (-1);
2928 else
2929 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, GEN_INT (-1),
2930 REG_NOTES (insn));
2931 }
b472794d 2932
77c9c6c2 2933 /* First emit all insns that set pseudos. Remove them from the list as
ccf5f342 2934 we go. Avoid insns that set pseudos which were referenced in previous
29ebe69a 2935 insns. These can be generated by move_by_pieces, for example,
ccf5f342
RK
2936 to update an address. Similarly, avoid insns that reference things
2937 set in previous insns. */
77c9c6c2
RK
2938
2939 for (insn = insns; insn; insn = next)
2940 {
2941 rtx set = single_set (insn);
218aa620
JH
2942 rtx note;
2943
2944 /* Some ports (cris) create an libcall regions at their own. We must
2945 avoid any potential nesting of LIBCALLs. */
2946 if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
2947 remove_note (insn, note);
2948 if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
2949 remove_note (insn, note);
77c9c6c2
RK
2950
2951 next = NEXT_INSN (insn);
2952
2953 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
29ebe69a 2954 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
8d9e73cc 2955 && (insn == insns
9485c46e
DM
2956 || ((! INSN_P(insns)
2957 || ! reg_mentioned_p (SET_DEST (set), PATTERN (insns)))
ccf5f342
RK
2958 && ! reg_used_between_p (SET_DEST (set), insns, insn)
2959 && ! modified_in_p (SET_SRC (set), insns)
2960 && ! modified_between_p (SET_SRC (set), insns, insn))))
77c9c6c2
RK
2961 {
2962 if (PREV_INSN (insn))
2963 NEXT_INSN (PREV_INSN (insn)) = next;
2964 else
2965 insns = next;
2966
2967 if (next)
2968 PREV_INSN (next) = PREV_INSN (insn);
2969
2970 add_insn (insn);
2971 }
2972 }
2973
2974 prev = get_last_insn ();
2975
2976 /* Write the remaining insns followed by the final copy. */
2977
2978 for (insn = insns; insn; insn = next)
2979 {
2980 next = NEXT_INSN (insn);
2981
2982 add_insn (insn);
2983 }
2984
2985 last = emit_move_insn (target, result);
02214a5c
RK
2986 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
2987 != CODE_FOR_nothing)
5fa671cf 2988 set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
07edd4c5
HPN
2989 else
2990 {
2991 /* Remove any existing REG_EQUAL note from "last", or else it will
2992 be mistaken for a note referring to the full contents of the
2993 libcall value when found together with the REG_RETVAL note added
2994 below. An existing note can come from an insn expansion at
2995 "last". */
2996 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
2997 }
77c9c6c2 2998
e85427f9
BS
2999 if (final_dest != target)
3000 emit_move_insn (final_dest, target);
aff2c2d3 3001
77c9c6c2
RK
3002 if (prev == 0)
3003 first = get_insns ();
3004 else
3005 first = NEXT_INSN (prev);
3006
3007 /* Encapsulate the block so it gets manipulated as a unit. */
11e9ecc5
HB
3008 if (!flag_non_call_exceptions || !may_trap_p (equiv))
3009 {
3010 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3011 REG_NOTES (first));
3012 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first,
3013 REG_NOTES (last));
3014 }
77c9c6c2
RK
3015}
3016\f
3017/* Generate code to store zero in X. */
3018
3019void
3020emit_clr_insn (x)
3021 rtx x;
3022{
3023 emit_move_insn (x, const0_rtx);
3024}
3025
3026/* Generate code to store 1 in X
3027 assuming it contains zero beforehand. */
3028
3029void
3030emit_0_to_1_insn (x)
3031 rtx x;
3032{
3033 emit_move_insn (x, const1_rtx);
3034}
3035
1c0290ea 3036/* Nonzero if we can perform a comparison of mode MODE straightforwardly.
1eb8759b
RH
3037 PURPOSE describes how this comparison will be used. CODE is the rtx
3038 comparison code we will be using.
3039
3040 ??? Actually, CODE is slightly weaker than that. A target is still
3041 required to implement all of the normal bcc operations, but not
3042 required to implement all (or any) of the unordered bcc operations. */
1c0290ea
BS
3043
3044int
1eb8759b
RH
3045can_compare_p (code, mode, purpose)
3046 enum rtx_code code;
b30f05db 3047 enum machine_mode mode;
1c0290ea 3048 enum can_compare_purpose purpose;
b30f05db
BS
3049{
3050 do
3051 {
1c0290ea 3052 if (cmp_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
1eb8759b
RH
3053 {
3054 if (purpose == ccp_jump)
3055 return bcc_gen_fctn[(int)code] != NULL;
3056 else if (purpose == ccp_store_flag)
3057 return setcc_gen_code[(int)code] != CODE_FOR_nothing;
3058 else
3059 /* There's only one cmov entry point, and it's allowed to fail. */
3060 return 1;
3061 }
1c0290ea
BS
3062 if (purpose == ccp_jump
3063 && cbranch_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
3064 return 1;
3065 if (purpose == ccp_cmov
3066 && cmov_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
3067 return 1;
3068 if (purpose == ccp_store_flag
3069 && cstore_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
3070 return 1;
3071
b30f05db 3072 mode = GET_MODE_WIDER_MODE (mode);
1c0290ea
BS
3073 }
3074 while (mode != VOIDmode);
b30f05db
BS
3075
3076 return 0;
3077}
3078
3079/* This function is called when we are going to emit a compare instruction that
3080 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3081
3082 *PMODE is the mode of the inputs (in case they are const_int).
3083 *PUNSIGNEDP nonzero says that the operands are unsigned;
77c9c6c2
RK
3084 this matters if they need to be widened.
3085
a06ef755 3086 If they have mode BLKmode, then SIZE specifies the size of both operands.
77c9c6c2 3087
b30f05db
BS
3088 This function performs all the setup necessary so that the caller only has
3089 to emit a single comparison insn. This setup can involve doing a BLKmode
3090 comparison or emitting a library call to perform the comparison if no insn
3091 is available to handle it.
3092 The values which are passed in through pointers can be modified; the caller
3093 should perform the comparison on the modified values. */
77c9c6c2 3094
a06ef755
RK
3095static void
3096prepare_cmp_insn (px, py, pcomparison, size, pmode, punsignedp, purpose)
b30f05db 3097 rtx *px, *py;
c5c60e15 3098 enum rtx_code *pcomparison;
77c9c6c2 3099 rtx size;
b30f05db
BS
3100 enum machine_mode *pmode;
3101 int *punsignedp;
1c0290ea 3102 enum can_compare_purpose purpose;
77c9c6c2 3103{
b30f05db
BS
3104 enum machine_mode mode = *pmode;
3105 rtx x = *px, y = *py;
3106 int unsignedp = *punsignedp;
77c9c6c2 3107 enum mode_class class;
77c9c6c2
RK
3108
3109 class = GET_MODE_CLASS (mode);
3110
3111 /* They could both be VOIDmode if both args are immediate constants,
3112 but we should fold that at an earlier stage.
3113 With no special code here, this will call abort,
3114 reminding the programmer to implement such folding. */
3115
3116 if (mode != BLKmode && flag_force_mem)
3117 {
3118 x = force_not_mem (x);
3119 y = force_not_mem (y);
3120 }
3121
3122 /* If we are inside an appropriately-short loop and one operand is an
3123 expensive constant, force it into a register. */
19caa751 3124 if (CONSTANT_P (x) && preserve_subexpressions_p ()
b437f1a7 3125 && rtx_cost (x, COMPARE) > COSTS_N_INSNS (1))
77c9c6c2
RK
3126 x = force_reg (mode, x);
3127
19caa751 3128 if (CONSTANT_P (y) && preserve_subexpressions_p ()
b437f1a7 3129 && rtx_cost (y, COMPARE) > COSTS_N_INSNS (1))
77c9c6c2
RK
3130 y = force_reg (mode, y);
3131
362cc3d4
MH
3132#ifdef HAVE_cc0
3133 /* Abort if we have a non-canonical comparison. The RTL documentation
3134 states that canonical comparisons are required only for targets which
3135 have cc0. */
3136 if (CONSTANT_P (x) && ! CONSTANT_P (y))
3137 abort();
3138#endif
3139
77c9c6c2
RK
3140 /* Don't let both operands fail to indicate the mode. */
3141 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
3142 x = force_reg (mode, x);
3143
3144 /* Handle all BLKmode compares. */
3145
3146 if (mode == BLKmode)
3147 {
b30f05db
BS
3148 rtx result;
3149 enum machine_mode result_mode;
f4dc10d1
GS
3150 rtx opalign ATTRIBUTE_UNUSED
3151 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
b30f05db 3152
77c9c6c2
RK
3153 emit_queue ();
3154 x = protect_from_queue (x, 0);
3155 y = protect_from_queue (y, 0);
3156
3157 if (size == 0)
3158 abort ();
3159#ifdef HAVE_cmpstrqi
3160 if (HAVE_cmpstrqi
3161 && GET_CODE (size) == CONST_INT
3162 && INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode)))
3163 {
a995e389 3164 result_mode = insn_data[(int) CODE_FOR_cmpstrqi].operand[0].mode;
b30f05db 3165 result = gen_reg_rtx (result_mode);
19caa751 3166 emit_insn (gen_cmpstrqi (result, x, y, size, opalign));
77c9c6c2
RK
3167 }
3168 else
3169#endif
3170#ifdef HAVE_cmpstrhi
3171 if (HAVE_cmpstrhi
3172 && GET_CODE (size) == CONST_INT
3173 && INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode)))
3174 {
a995e389 3175 result_mode = insn_data[(int) CODE_FOR_cmpstrhi].operand[0].mode;
b30f05db 3176 result = gen_reg_rtx (result_mode);
19caa751 3177 emit_insn (gen_cmpstrhi (result, x, y, size, opalign));
77c9c6c2
RK
3178 }
3179 else
3180#endif
3181#ifdef HAVE_cmpstrsi
3182 if (HAVE_cmpstrsi)
3183 {
a995e389 3184 result_mode = insn_data[(int) CODE_FOR_cmpstrsi].operand[0].mode;
b30f05db 3185 result = gen_reg_rtx (result_mode);
06e40b26 3186 size = protect_from_queue (size, 0);
77c9c6c2
RK
3187 emit_insn (gen_cmpstrsi (result, x, y,
3188 convert_to_mode (SImode, size, 1),
19caa751 3189 opalign));
77c9c6c2
RK
3190 }
3191 else
3192#endif
3193 {
3194#ifdef TARGET_MEM_FUNCTIONS
ebb1b59a 3195 emit_library_call (memcmp_libfunc, LCT_PURE_MAKE_BLOCK,
77c9c6c2
RK
3196 TYPE_MODE (integer_type_node), 3,
3197 XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
48aa02a5
JW
3198 convert_to_mode (TYPE_MODE (sizetype), size,
3199 TREE_UNSIGNED (sizetype)),
3200 TYPE_MODE (sizetype));
77c9c6c2 3201#else
ebb1b59a 3202 emit_library_call (bcmp_libfunc, LCT_PURE_MAKE_BLOCK,
77c9c6c2
RK
3203 TYPE_MODE (integer_type_node), 3,
3204 XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
48aa02a5
JW
3205 convert_to_mode (TYPE_MODE (integer_type_node),
3206 size,
3207 TREE_UNSIGNED (integer_type_node)),
3208 TYPE_MODE (integer_type_node));
77c9c6c2 3209#endif
9725066d
JL
3210
3211 /* Immediately move the result of the libcall into a pseudo
3212 register so reload doesn't clobber the value if it needs
3213 the return register for a spill reg. */
3214 result = gen_reg_rtx (TYPE_MODE (integer_type_node));
b30f05db 3215 result_mode = TYPE_MODE (integer_type_node);
9725066d 3216 emit_move_insn (result,
b30f05db 3217 hard_libcall_value (result_mode));
77c9c6c2 3218 }
b30f05db
BS
3219 *px = result;
3220 *py = const0_rtx;
3221 *pmode = result_mode;
77c9c6c2
RK
3222 return;
3223 }
3224
b30f05db
BS
3225 *px = x;
3226 *py = y;
1eb8759b 3227 if (can_compare_p (*pcomparison, mode, purpose))
b30f05db 3228 return;
77c9c6c2
RK
3229
3230 /* Handle a lib call just for the mode we are using. */
3231
b30f05db 3232 if (cmp_optab->handlers[(int) mode].libfunc && class != MODE_FLOAT)
77c9c6c2
RK
3233 {
3234 rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
9725066d
JL
3235 rtx result;
3236
77c9c6c2
RK
3237 /* If we want unsigned, and this mode has a distinct unsigned
3238 comparison routine, use that. */
3239 if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
3240 libfunc = ucmp_optab->handlers[(int) mode].libfunc;
3241
1258ee80
JJ
3242 emit_library_call (libfunc, LCT_CONST_MAKE_BLOCK, word_mode, 2, x, mode,
3243 y, mode);
77c9c6c2 3244
9725066d
JL
3245 /* Immediately move the result of the libcall into a pseudo
3246 register so reload doesn't clobber the value if it needs
3247 the return register for a spill reg. */
3248 result = gen_reg_rtx (word_mode);
3249 emit_move_insn (result, hard_libcall_value (word_mode));
3250
77c9c6c2
RK
3251 /* Integer comparison returns a result that must be compared against 1,
3252 so that even if we do an unsigned compare afterward,
3253 there is still a value that can represent the result "less than". */
b30f05db
BS
3254 *px = result;
3255 *py = const1_rtx;
3256 *pmode = word_mode;
77c9c6c2
RK
3257 return;
3258 }
3259
3260 if (class == MODE_FLOAT)
c5c60e15 3261 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
77c9c6c2
RK
3262
3263 else
3264 abort ();
3265}
3266
b30f05db
BS
3267/* Before emitting an insn with code ICODE, make sure that X, which is going
3268 to be used for operand OPNUM of the insn, is converted from mode MODE to
4fe9b91c 3269 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
b30f05db 3270 that it is accepted by the operand predicate. Return the new value. */
749a2da1 3271
1c0290ea 3272rtx
b30f05db
BS
3273prepare_operand (icode, x, opnum, mode, wider_mode, unsignedp)
3274 int icode;
3275 rtx x;
3276 int opnum;
3277 enum machine_mode mode, wider_mode;
3278 int unsignedp;
3279{
3280 x = protect_from_queue (x, 0);
3281
3282 if (mode != wider_mode)
3283 x = convert_modes (wider_mode, mode, x, unsignedp);
3284
a995e389
RH
3285 if (! (*insn_data[icode].operand[opnum].predicate)
3286 (x, insn_data[icode].operand[opnum].mode))
3287 x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
b30f05db
BS
3288 return x;
3289}
3290
3291/* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
3292 we can do the comparison.
3293 The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
3294 be NULL_RTX which indicates that only a comparison is to be generated. */
3295
3296static void
3297emit_cmp_and_jump_insn_1 (x, y, mode, comparison, unsignedp, label)
3298 rtx x, y;
3299 enum machine_mode mode;
3300 enum rtx_code comparison;
3301 int unsignedp;
3302 rtx label;
3303{
3304 rtx test = gen_rtx_fmt_ee (comparison, mode, x, y);
3305 enum mode_class class = GET_MODE_CLASS (mode);
3306 enum machine_mode wider_mode = mode;
3307
3308 /* Try combined insns first. */
3309 do
3310 {
3311 enum insn_code icode;
3312 PUT_MODE (test, wider_mode);
3313
1c0290ea
BS
3314 if (label)
3315 {
3316 icode = cbranch_optab->handlers[(int)wider_mode].insn_code;
3317
3318 if (icode != CODE_FOR_nothing
3319 && (*insn_data[icode].operand[0].predicate) (test, wider_mode))
3320 {
3321 x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp);
3322 y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp);
3323 emit_jump_insn (GEN_FCN (icode) (test, x, y, label));
3324 return;
3325 }
3326 }
3327
b30f05db
BS
3328 /* Handle some compares against zero. */
3329 icode = (int) tst_optab->handlers[(int) wider_mode].insn_code;
3330 if (y == CONST0_RTX (mode) && icode != CODE_FOR_nothing)
3331 {
3332 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3333 emit_insn (GEN_FCN (icode) (x));
3334 if (label)
3335 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3336 return;
3337 }
3338
3339 /* Handle compares for which there is a directly suitable insn. */
3340
3341 icode = (int) cmp_optab->handlers[(int) wider_mode].insn_code;
3342 if (icode != CODE_FOR_nothing)
3343 {
3344 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3345 y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp);
3346 emit_insn (GEN_FCN (icode) (x, y));
3347 if (label)
3348 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3349 return;
3350 }
3351
3352 if (class != MODE_INT && class != MODE_FLOAT
3353 && class != MODE_COMPLEX_FLOAT)
3354 break;
3355
3356 wider_mode = GET_MODE_WIDER_MODE (wider_mode);
3357 } while (wider_mode != VOIDmode);
3358
3359 abort ();
3360}
3361
362cc3d4
MH
3362/* Generate code to compare X with Y so that the condition codes are
3363 set and to jump to LABEL if the condition is true. If X is a
3364 constant and Y is not a constant, then the comparison is swapped to
3365 ensure that the comparison RTL has the canonical form.
3366
c5d5d461
JL
3367 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
3368 need to be widened by emit_cmp_insn. UNSIGNEDP is also used to select
3369 the proper branch condition code.
362cc3d4 3370
a06ef755 3371 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
362cc3d4 3372
c5d5d461
JL
3373 MODE is the mode of the inputs (in case they are const_int).
3374
3375 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It will
3376 be passed unchanged to emit_cmp_insn, then potentially converted into an
3377 unsigned variant based on UNSIGNEDP to select a proper jump instruction. */
362cc3d4
MH
3378
3379void
a06ef755 3380emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, label)
362cc3d4
MH
3381 rtx x, y;
3382 enum rtx_code comparison;
3383 rtx size;
3384 enum machine_mode mode;
3385 int unsignedp;
362cc3d4
MH
3386 rtx label;
3387{
8c9864f3
JH
3388 rtx op0 = x, op1 = y;
3389
3390 /* Swap operands and condition to ensure canonical RTL. */
3391 if (swap_commutative_operands_p (x, y))
362cc3d4 3392 {
8c9864f3
JH
3393 /* If we're not emitting a branch, this means some caller
3394 is out of sync. */
3395 if (! label)
3396 abort ();
3397
3398 op0 = y, op1 = x;
3399 comparison = swap_condition (comparison);
362cc3d4 3400 }
0ca40216
JL
3401
3402#ifdef HAVE_cc0
3403 /* If OP0 is still a constant, then both X and Y must be constants. Force
3404 X into a register to avoid aborting in emit_cmp_insn due to non-canonical
3405 RTL. */
3406 if (CONSTANT_P (op0))
3407 op0 = force_reg (mode, op0);
3408#endif
3409
b30f05db 3410 emit_queue ();
c5d5d461
JL
3411 if (unsignedp)
3412 comparison = unsigned_condition (comparison);
a06ef755
RK
3413
3414 prepare_cmp_insn (&op0, &op1, &comparison, size, &mode, &unsignedp,
1c0290ea 3415 ccp_jump);
b30f05db
BS
3416 emit_cmp_and_jump_insn_1 (op0, op1, mode, comparison, unsignedp, label);
3417}
3418
3419/* Like emit_cmp_and_jump_insns, but generate only the comparison. */
19caa751 3420
b30f05db 3421void
a06ef755 3422emit_cmp_insn (x, y, comparison, size, mode, unsignedp)
b30f05db
BS
3423 rtx x, y;
3424 enum rtx_code comparison;
3425 rtx size;
3426 enum machine_mode mode;
3427 int unsignedp;
b30f05db 3428{
a06ef755 3429 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, 0);
362cc3d4 3430}
77c9c6c2
RK
3431\f
3432/* Emit a library call comparison between floating point X and Y.
3433 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
3434
c5c60e15
BS
3435static void
3436prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp)
b30f05db 3437 rtx *px, *py;
c5c60e15 3438 enum rtx_code *pcomparison;
b30f05db
BS
3439 enum machine_mode *pmode;
3440 int *punsignedp;
77c9c6c2 3441{
c5c60e15 3442 enum rtx_code comparison = *pcomparison;
12f61e77 3443 rtx tmp;
885e80cc
AO
3444 rtx x = *px = protect_from_queue (*px, 0);
3445 rtx y = *py = protect_from_queue (*py, 0);
77c9c6c2 3446 enum machine_mode mode = GET_MODE (x);
0a300065 3447 rtx libfunc = 0;
9725066d 3448 rtx result;
77c9c6c2 3449
842dcd1a
RK
3450 if (mode == HFmode)
3451 switch (comparison)
3452 {
3453 case EQ:
3454 libfunc = eqhf2_libfunc;
3455 break;
3456
3457 case NE:
3458 libfunc = nehf2_libfunc;
3459 break;
3460
3461 case GT:
3462 libfunc = gthf2_libfunc;
12f61e77
AO
3463 if (libfunc == NULL_RTX)
3464 {
3465 tmp = x; x = y; y = tmp;
3466 *pcomparison = LT;
3467 libfunc = lthf2_libfunc;
3468 }
842dcd1a
RK
3469 break;
3470
3471 case GE:
3472 libfunc = gehf2_libfunc;
12f61e77
AO
3473 if (libfunc == NULL_RTX)
3474 {
3475 tmp = x; x = y; y = tmp;
3476 *pcomparison = LE;
3477 libfunc = lehf2_libfunc;
3478 }
842dcd1a
RK
3479 break;
3480
3481 case LT:
3482 libfunc = lthf2_libfunc;
12f61e77
AO
3483 if (libfunc == NULL_RTX)
3484 {
3485 tmp = x; x = y; y = tmp;
3486 *pcomparison = GT;
3487 libfunc = gthf2_libfunc;
3488 }
842dcd1a
RK
3489 break;
3490
3491 case LE:
3492 libfunc = lehf2_libfunc;
12f61e77
AO
3493 if (libfunc == NULL_RTX)
3494 {
3495 tmp = x; x = y; y = tmp;
3496 *pcomparison = GE;
3497 libfunc = gehf2_libfunc;
3498 }
842dcd1a 3499 break;
bb727b5a 3500
1eb8759b
RH
3501 case UNORDERED:
3502 libfunc = unordhf2_libfunc;
3503 break;
3504
bb727b5a
JM
3505 default:
3506 break;
842dcd1a
RK
3507 }
3508 else if (mode == SFmode)
77c9c6c2
RK
3509 switch (comparison)
3510 {
3511 case EQ:
3512 libfunc = eqsf2_libfunc;
3513 break;
3514
3515 case NE:
3516 libfunc = nesf2_libfunc;
3517 break;
3518
3519 case GT:
3520 libfunc = gtsf2_libfunc;
12f61e77
AO
3521 if (libfunc == NULL_RTX)
3522 {
3523 tmp = x; x = y; y = tmp;
3524 *pcomparison = LT;
3525 libfunc = ltsf2_libfunc;
3526 }
77c9c6c2
RK
3527 break;
3528
3529 case GE:
3530 libfunc = gesf2_libfunc;
12f61e77
AO
3531 if (libfunc == NULL_RTX)
3532 {
3533 tmp = x; x = y; y = tmp;
3534 *pcomparison = LE;
3535 libfunc = lesf2_libfunc;
3536 }
77c9c6c2
RK
3537 break;
3538
3539 case LT:
3540 libfunc = ltsf2_libfunc;
12f61e77
AO
3541 if (libfunc == NULL_RTX)
3542 {
3543 tmp = x; x = y; y = tmp;
3544 *pcomparison = GT;
3545 libfunc = gtsf2_libfunc;
3546 }
77c9c6c2
RK
3547 break;
3548
3549 case LE:
3550 libfunc = lesf2_libfunc;
12f61e77
AO
3551 if (libfunc == NULL_RTX)
3552 {
3553 tmp = x; x = y; y = tmp;
3554 *pcomparison = GE;
3555 libfunc = gesf2_libfunc;
3556 }
77c9c6c2 3557 break;
bb727b5a 3558
1eb8759b
RH
3559 case UNORDERED:
3560 libfunc = unordsf2_libfunc;
3561 break;
3562
bb727b5a
JM
3563 default:
3564 break;
77c9c6c2
RK
3565 }
3566 else if (mode == DFmode)
3567 switch (comparison)
3568 {
3569 case EQ:
3570 libfunc = eqdf2_libfunc;
3571 break;
3572
3573 case NE:
3574 libfunc = nedf2_libfunc;
3575 break;
3576
3577 case GT:
3578 libfunc = gtdf2_libfunc;
12f61e77
AO
3579 if (libfunc == NULL_RTX)
3580 {
3581 tmp = x; x = y; y = tmp;
3582 *pcomparison = LT;
3583 libfunc = ltdf2_libfunc;
3584 }
77c9c6c2
RK
3585 break;
3586
3587 case GE:
3588 libfunc = gedf2_libfunc;
12f61e77
AO
3589 if (libfunc == NULL_RTX)
3590 {
3591 tmp = x; x = y; y = tmp;
3592 *pcomparison = LE;
3593 libfunc = ledf2_libfunc;
3594 }
77c9c6c2
RK
3595 break;
3596
3597 case LT:
3598 libfunc = ltdf2_libfunc;
12f61e77
AO
3599 if (libfunc == NULL_RTX)
3600 {
3601 tmp = x; x = y; y = tmp;
3602 *pcomparison = GT;
3603 libfunc = gtdf2_libfunc;
3604 }
77c9c6c2
RK
3605 break;
3606
3607 case LE:
3608 libfunc = ledf2_libfunc;
12f61e77
AO
3609 if (libfunc == NULL_RTX)
3610 {
3611 tmp = x; x = y; y = tmp;
3612 *pcomparison = GE;
3613 libfunc = gedf2_libfunc;
3614 }
77c9c6c2 3615 break;
bb727b5a 3616
1eb8759b
RH
3617 case UNORDERED:
3618 libfunc = unorddf2_libfunc;
3619 break;
3620
bb727b5a
JM
3621 default:
3622 break;
77c9c6c2 3623 }
b092b471
JW
3624 else if (mode == XFmode)
3625 switch (comparison)
3626 {
3627 case EQ:
3628 libfunc = eqxf2_libfunc;
3629 break;
3630
3631 case NE:
3632 libfunc = nexf2_libfunc;
3633 break;
3634
3635 case GT:
3636 libfunc = gtxf2_libfunc;
12f61e77
AO
3637 if (libfunc == NULL_RTX)
3638 {
3639 tmp = x; x = y; y = tmp;
3640 *pcomparison = LT;
3641 libfunc = ltxf2_libfunc;
3642 }
b092b471
JW
3643 break;
3644
3645 case GE:
3646 libfunc = gexf2_libfunc;
12f61e77
AO
3647 if (libfunc == NULL_RTX)
3648 {
3649 tmp = x; x = y; y = tmp;
3650 *pcomparison = LE;
3651 libfunc = lexf2_libfunc;
3652 }
b092b471
JW
3653 break;
3654
3655 case LT:
3656 libfunc = ltxf2_libfunc;
12f61e77
AO
3657 if (libfunc == NULL_RTX)
3658 {
3659 tmp = x; x = y; y = tmp;
3660 *pcomparison = GT;
3661 libfunc = gtxf2_libfunc;
3662 }
b092b471
JW
3663 break;
3664
3665 case LE:
3666 libfunc = lexf2_libfunc;
12f61e77
AO
3667 if (libfunc == NULL_RTX)
3668 {
3669 tmp = x; x = y; y = tmp;
3670 *pcomparison = GE;
3671 libfunc = gexf2_libfunc;
3672 }
b092b471 3673 break;
bb727b5a 3674
1eb8759b
RH
3675 case UNORDERED:
3676 libfunc = unordxf2_libfunc;
3677 break;
3678
bb727b5a
JM
3679 default:
3680 break;
b092b471
JW
3681 }
3682 else if (mode == TFmode)
3683 switch (comparison)
3684 {
3685 case EQ:
3686 libfunc = eqtf2_libfunc;
3687 break;
3688
3689 case NE:
3690 libfunc = netf2_libfunc;
3691 break;
3692
3693 case GT:
3694 libfunc = gttf2_libfunc;
12f61e77
AO
3695 if (libfunc == NULL_RTX)
3696 {
3697 tmp = x; x = y; y = tmp;
3698 *pcomparison = LT;
3699 libfunc = lttf2_libfunc;
3700 }
b092b471
JW
3701 break;
3702
3703 case GE:
3704 libfunc = getf2_libfunc;
12f61e77
AO
3705 if (libfunc == NULL_RTX)
3706 {
3707 tmp = x; x = y; y = tmp;
3708 *pcomparison = LE;
3709 libfunc = letf2_libfunc;
3710 }
b092b471
JW
3711 break;
3712
3713 case LT:
3714 libfunc = lttf2_libfunc;
12f61e77
AO
3715 if (libfunc == NULL_RTX)
3716 {
3717 tmp = x; x = y; y = tmp;
3718 *pcomparison = GT;
3719 libfunc = gttf2_libfunc;
3720 }
b092b471
JW
3721 break;
3722
3723 case LE:
3724 libfunc = letf2_libfunc;
12f61e77
AO
3725 if (libfunc == NULL_RTX)
3726 {
3727 tmp = x; x = y; y = tmp;
3728 *pcomparison = GE;
3729 libfunc = getf2_libfunc;
3730 }
b092b471 3731 break;
bb727b5a 3732
1eb8759b
RH
3733 case UNORDERED:
3734 libfunc = unordtf2_libfunc;
3735 break;
3736
bb727b5a
JM
3737 default:
3738 break;
b092b471 3739 }
77c9c6c2
RK
3740 else
3741 {
3742 enum machine_mode wider_mode;
3743
34e56753 3744 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
77c9c6c2
RK
3745 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3746 {
3747 if ((cmp_optab->handlers[(int) wider_mode].insn_code
3748 != CODE_FOR_nothing)
3749 || (cmp_optab->handlers[(int) wider_mode].libfunc != 0))
3750 {
06e40b26
RS
3751 x = protect_from_queue (x, 0);
3752 y = protect_from_queue (y, 0);
b30f05db
BS
3753 *px = convert_to_mode (wider_mode, x, 0);
3754 *py = convert_to_mode (wider_mode, y, 0);
c5c60e15 3755 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
77c9c6c2
RK
3756 return;
3757 }
3758 }
3759 abort ();
3760 }
3761
0a300065
RK
3762 if (libfunc == 0)
3763 abort ();
3764
ebb1b59a
BS
3765 emit_library_call (libfunc, LCT_CONST_MAKE_BLOCK, word_mode, 2, x, mode, y,
3766 mode);
77c9c6c2 3767
9725066d
JL
3768 /* Immediately move the result of the libcall into a pseudo
3769 register so reload doesn't clobber the value if it needs
3770 the return register for a spill reg. */
3771 result = gen_reg_rtx (word_mode);
3772 emit_move_insn (result, hard_libcall_value (word_mode));
b30f05db
BS
3773 *px = result;
3774 *py = const0_rtx;
3775 *pmode = word_mode;
1eb8759b
RH
3776 if (comparison == UNORDERED)
3777 *pcomparison = NE;
c5c60e15 3778#ifdef FLOAT_LIB_COMPARE_RETURNS_BOOL
1eb8759b 3779 else if (FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
c5c60e15
BS
3780 *pcomparison = NE;
3781#endif
b30f05db 3782 *punsignedp = 0;
77c9c6c2
RK
3783}
3784\f
3785/* Generate code to indirectly jump to a location given in the rtx LOC. */
3786
3787void
3788emit_indirect_jump (loc)
3789 rtx loc;
3790{
a995e389 3791 if (! ((*insn_data[(int)CODE_FOR_indirect_jump].operand[0].predicate)
f2de2775
JW
3792 (loc, Pmode)))
3793 loc = copy_to_mode_reg (Pmode, loc);
77c9c6c2
RK
3794
3795 emit_jump_insn (gen_indirect_jump (loc));
9649fb4d 3796 emit_barrier ();
77c9c6c2
RK
3797}
3798\f
49c4584c
DE
3799#ifdef HAVE_conditional_move
3800
3801/* Emit a conditional move instruction if the machine supports one for that
3802 condition and machine mode.
3803
3804 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
3805 the mode to use should they be constants. If it is VOIDmode, they cannot
3806 both be constants.
3807
3808 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
3809 should be stored there. MODE is the mode to use should they be constants.
3810 If it is VOIDmode, they cannot both be constants.
3811
3812 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
3813 is not supported. */
3814
3815rtx
3816emit_conditional_move (target, code, op0, op1, cmode, op2, op3, mode,
3817 unsignedp)
3818 rtx target;
3819 enum rtx_code code;
3820 rtx op0, op1;
3821 enum machine_mode cmode;
3822 rtx op2, op3;
3823 enum machine_mode mode;
3824 int unsignedp;
3825{
3826 rtx tem, subtarget, comparison, insn;
3827 enum insn_code icode;
e5c56fd9 3828 enum rtx_code reversed;
49c4584c
DE
3829
3830 /* If one operand is constant, make it the second one. Only do this
3831 if the other operand is not constant as well. */
3832
e5c56fd9 3833 if (swap_commutative_operands_p (op0, op1))
49c4584c
DE
3834 {
3835 tem = op0;
3836 op0 = op1;
3837 op1 = tem;
3838 code = swap_condition (code);
3839 }
3840
c5c76735
JL
3841 /* get_condition will prefer to generate LT and GT even if the old
3842 comparison was against zero, so undo that canonicalization here since
3843 comparisons against zero are cheaper. */
3844 if (code == LT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == 1)
3845 code = LE, op1 = const0_rtx;
3846 else if (code == GT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == -1)
3847 code = GE, op1 = const0_rtx;
3848
49c4584c
DE
3849 if (cmode == VOIDmode)
3850 cmode = GET_MODE (op0);
3851
e5c56fd9
JH
3852 if (swap_commutative_operands_p (op2, op3)
3853 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
3854 != UNKNOWN))
49c4584c
DE
3855 {
3856 tem = op2;
3857 op2 = op3;
3858 op3 = tem;
e5c56fd9 3859 code = reversed;
49c4584c
DE
3860 }
3861
3862 if (mode == VOIDmode)
3863 mode = GET_MODE (op2);
3864
3865 icode = movcc_gen_code[mode];
3866
3867 if (icode == CODE_FOR_nothing)
3868 return 0;
3869
3870 if (flag_force_mem)
3871 {
3872 op2 = force_not_mem (op2);
3873 op3 = force_not_mem (op3);
3874 }
3875
3876 if (target)
3877 target = protect_from_queue (target, 1);
3878 else
3879 target = gen_reg_rtx (mode);
3880
3881 subtarget = target;
3882
3883 emit_queue ();
3884
3885 op2 = protect_from_queue (op2, 0);
3886 op3 = protect_from_queue (op3, 0);
3887
3888 /* If the insn doesn't accept these operands, put them in pseudos. */
3889
a995e389
RH
3890 if (! (*insn_data[icode].operand[0].predicate)
3891 (subtarget, insn_data[icode].operand[0].mode))
3892 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
49c4584c 3893
a995e389
RH
3894 if (! (*insn_data[icode].operand[2].predicate)
3895 (op2, insn_data[icode].operand[2].mode))
3896 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
49c4584c 3897
a995e389
RH
3898 if (! (*insn_data[icode].operand[3].predicate)
3899 (op3, insn_data[icode].operand[3].mode))
3900 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
49c4584c
DE
3901
3902 /* Everything should now be in the suitable form, so emit the compare insn
3903 and then the conditional move. */
3904
3905 comparison
a06ef755 3906 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
49c4584c
DE
3907
3908 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
144a5f9d
JL
3909 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
3910 return NULL and let the caller figure out how best to deal with this
3911 situation. */
49c4584c 3912 if (GET_CODE (comparison) != code)
144a5f9d 3913 return NULL_RTX;
49c4584c
DE
3914
3915 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
3916
3917 /* If that failed, then give up. */
3918 if (insn == 0)
3919 return 0;
3920
3921 emit_insn (insn);
3922
3923 if (subtarget != target)
3924 convert_move (target, subtarget, 0);
3925
3926 return target;
3927}
3928
3929/* Return non-zero if a conditional move of mode MODE is supported.
3930
3931 This function is for combine so it can tell whether an insn that looks
3932 like a conditional move is actually supported by the hardware. If we
3933 guess wrong we lose a bit on optimization, but that's it. */
3934/* ??? sparc64 supports conditionally moving integers values based on fp
3935 comparisons, and vice versa. How do we handle them? */
3936
3937int
3938can_conditionally_move_p (mode)
3939 enum machine_mode mode;
3940{
3941 if (movcc_gen_code[mode] != CODE_FOR_nothing)
3942 return 1;
3943
3944 return 0;
3945}
3946
3947#endif /* HAVE_conditional_move */
3948\f
e78d8e51 3949/* These functions generate an insn body and return it
77c9c6c2
RK
3950 rather than emitting the insn.
3951
3952 They do not protect from queued increments,
3953 because they may be used 1) in protect_from_queue itself
3954 and 2) in other passes where there is no queue. */
3955
3956/* Generate and return an insn body to add Y to X. */
3957
3958rtx
3959gen_add2_insn (x, y)
3960 rtx x, y;
3961{
3962 int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
3963
a995e389
RH
3964 if (! ((*insn_data[icode].operand[0].predicate)
3965 (x, insn_data[icode].operand[0].mode))
3966 || ! ((*insn_data[icode].operand[1].predicate)
3967 (x, insn_data[icode].operand[1].mode))
3968 || ! ((*insn_data[icode].operand[2].predicate)
3969 (y, insn_data[icode].operand[2].mode)))
77c9c6c2
RK
3970 abort ();
3971
3972 return (GEN_FCN (icode) (x, x, y));
3973}
3974
e78d8e51
ZW
3975/* Generate and return an insn body to add r1 and c,
3976 storing the result in r0. */
3977rtx
3978gen_add3_insn (r0, r1, c)
3979 rtx r0, r1, c;
3980{
3981 int icode = (int) add_optab->handlers[(int) GET_MODE (r0)].insn_code;
3982
3983 if (icode == CODE_FOR_nothing
3984 || ! ((*insn_data[icode].operand[0].predicate)
3985 (r0, insn_data[icode].operand[0].mode))
3986 || ! ((*insn_data[icode].operand[1].predicate)
3987 (r1, insn_data[icode].operand[1].mode))
3988 || ! ((*insn_data[icode].operand[2].predicate)
3989 (c, insn_data[icode].operand[2].mode)))
3990 return NULL_RTX;
3991
3992 return (GEN_FCN (icode) (r0, r1, c));
3993}
3994
77c9c6c2 3995int
fb7e77d7
TM
3996have_add2_insn (x, y)
3997 rtx x, y;
77c9c6c2 3998{
fb7e77d7
TM
3999 int icode;
4000
4001 if (GET_MODE (x) == VOIDmode)
4002 abort ();
4003
4004 icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
4005
4006 if (icode == CODE_FOR_nothing)
4007 return 0;
4008
4009 if (! ((*insn_data[icode].operand[0].predicate)
4010 (x, insn_data[icode].operand[0].mode))
4011 || ! ((*insn_data[icode].operand[1].predicate)
4012 (x, insn_data[icode].operand[1].mode))
4013 || ! ((*insn_data[icode].operand[2].predicate)
4014 (y, insn_data[icode].operand[2].mode)))
4015 return 0;
4016
4017 return 1;
77c9c6c2
RK
4018}
4019
4020/* Generate and return an insn body to subtract Y from X. */
4021
4022rtx
4023gen_sub2_insn (x, y)
4024 rtx x, y;
4025{
4026 int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
4027
a995e389
RH
4028 if (! ((*insn_data[icode].operand[0].predicate)
4029 (x, insn_data[icode].operand[0].mode))
4030 || ! ((*insn_data[icode].operand[1].predicate)
4031 (x, insn_data[icode].operand[1].mode))
4032 || ! ((*insn_data[icode].operand[2].predicate)
4033 (y, insn_data[icode].operand[2].mode)))
77c9c6c2
RK
4034 abort ();
4035
4036 return (GEN_FCN (icode) (x, x, y));
4037}
4038
ef89d648
ZW
4039/* Generate and return an insn body to subtract r1 and c,
4040 storing the result in r0. */
4041rtx
4042gen_sub3_insn (r0, r1, c)
4043 rtx r0, r1, c;
4044{
4045 int icode = (int) sub_optab->handlers[(int) GET_MODE (r0)].insn_code;
4046
4047 if (icode == CODE_FOR_nothing
4048 || ! ((*insn_data[icode].operand[0].predicate)
4049 (r0, insn_data[icode].operand[0].mode))
4050 || ! ((*insn_data[icode].operand[1].predicate)
4051 (r1, insn_data[icode].operand[1].mode))
4052 || ! ((*insn_data[icode].operand[2].predicate)
4053 (c, insn_data[icode].operand[2].mode)))
4054 return NULL_RTX;
4055
4056 return (GEN_FCN (icode) (r0, r1, c));
4057}
4058
77c9c6c2 4059int
fb7e77d7
TM
4060have_sub2_insn (x, y)
4061 rtx x, y;
77c9c6c2 4062{
fb7e77d7
TM
4063 int icode;
4064
4065 if (GET_MODE (x) == VOIDmode)
4066 abort ();
4067
4068 icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
4069
4070 if (icode == CODE_FOR_nothing)
4071 return 0;
4072
4073 if (! ((*insn_data[icode].operand[0].predicate)
4074 (x, insn_data[icode].operand[0].mode))
4075 || ! ((*insn_data[icode].operand[1].predicate)
4076 (x, insn_data[icode].operand[1].mode))
4077 || ! ((*insn_data[icode].operand[2].predicate)
4078 (y, insn_data[icode].operand[2].mode)))
4079 return 0;
4080
4081 return 1;
77c9c6c2
RK
4082}
4083
e3654226
RS
4084/* Generate the body of an instruction to copy Y into X.
4085 It may be a SEQUENCE, if one insn isn't enough. */
77c9c6c2
RK
4086
4087rtx
4088gen_move_insn (x, y)
4089 rtx x, y;
4090{
b3694847 4091 enum machine_mode mode = GET_MODE (x);
77c9c6c2 4092 enum insn_code insn_code;
e3654226 4093 rtx seq;
77c9c6c2
RK
4094
4095 if (mode == VOIDmode)
4096 mode = GET_MODE (y);
4097
4098 insn_code = mov_optab->handlers[(int) mode].insn_code;
4099
4100 /* Handle MODE_CC modes: If we don't have a special move insn for this mode,
4101 find a mode to do it in. If we have a movcc, use it. Otherwise,
4102 find the MODE_INT mode of the same width. */
4103
aa0cd7a2 4104 if (GET_MODE_CLASS (mode) == MODE_CC && insn_code == CODE_FOR_nothing)
77c9c6c2
RK
4105 {
4106 enum machine_mode tmode = VOIDmode;
4107 rtx x1 = x, y1 = y;
4108
aa0cd7a2 4109 if (mode != CCmode
77c9c6c2
RK
4110 && mov_optab->handlers[(int) CCmode].insn_code != CODE_FOR_nothing)
4111 tmode = CCmode;
aa0cd7a2 4112 else
77c9c6c2
RK
4113 for (tmode = QImode; tmode != VOIDmode;
4114 tmode = GET_MODE_WIDER_MODE (tmode))
4115 if (GET_MODE_SIZE (tmode) == GET_MODE_SIZE (mode))
4116 break;
4117
4118 if (tmode == VOIDmode)
4119 abort ();
4120
4121 /* Get X and Y in TMODE. We can't use gen_lowpart here because it
4122 may call change_address which is not appropriate if we were
4123 called when a reload was in progress. We don't have to worry
4124 about changing the address since the size in bytes is supposed to
4125 be the same. Copy the MEM to change the mode and move any
4126 substitutions from the old MEM to the new one. */
4127
4128 if (reload_in_progress)
4129 {
4130 x = gen_lowpart_common (tmode, x1);
4131 if (x == 0 && GET_CODE (x1) == MEM)
4132 {
f1ec5147 4133 x = adjust_address_nv (x1, tmode, 0);
77c9c6c2
RK
4134 copy_replacements (x1, x);
4135 }
4136
4137 y = gen_lowpart_common (tmode, y1);
4138 if (y == 0 && GET_CODE (y1) == MEM)
4139 {
f1ec5147 4140 y = adjust_address_nv (y1, tmode, 0);
77c9c6c2
RK
4141 copy_replacements (y1, y);
4142 }
4143 }
4144 else
4145 {
4146 x = gen_lowpart (tmode, x);
4147 y = gen_lowpart (tmode, y);
4148 }
4149
4150 insn_code = mov_optab->handlers[(int) tmode].insn_code;
e3654226 4151 return (GEN_FCN (insn_code) (x, y));
77c9c6c2
RK
4152 }
4153
e3654226
RS
4154 start_sequence ();
4155 emit_move_insn_1 (x, y);
4156 seq = gen_sequence ();
4157 end_sequence ();
4158 return seq;
77c9c6c2
RK
4159}
4160\f
34e56753
RS
4161/* Return the insn code used to extend FROM_MODE to TO_MODE.
4162 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4163 no such operation exists, CODE_FOR_nothing will be returned. */
77c9c6c2 4164
34e56753 4165enum insn_code
77c9c6c2
RK
4166can_extend_p (to_mode, from_mode, unsignedp)
4167 enum machine_mode to_mode, from_mode;
4168 int unsignedp;
4169{
6dd12198
SE
4170#ifdef HAVE_ptr_extend
4171 if (unsignedp < 0)
4172 return CODE_FOR_ptr_extend;
4173 else
4174#endif
4175 return extendtab[(int) to_mode][(int) from_mode][unsignedp != 0];
77c9c6c2
RK
4176}
4177
4178/* Generate the body of an insn to extend Y (with mode MFROM)
4179 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4180
4181rtx
4182gen_extend_insn (x, y, mto, mfrom, unsignedp)
4183 rtx x, y;
4184 enum machine_mode mto, mfrom;
4185 int unsignedp;
4186{
678164a5 4187 return (GEN_FCN (extendtab[(int) mto][(int) mfrom][unsignedp != 0]) (x, y));
77c9c6c2 4188}
77c9c6c2
RK
4189\f
4190/* can_fix_p and can_float_p say whether the target machine
4191 can directly convert a given fixed point type to
4192 a given floating point type, or vice versa.
4193 The returned value is the CODE_FOR_... value to use,
5d81dc5b 4194 or CODE_FOR_nothing if these modes cannot be directly converted.
77c9c6c2 4195
5d81dc5b 4196 *TRUNCP_PTR is set to 1 if it is necessary to output
77c9c6c2
RK
4197 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4198
4199static enum insn_code
4200can_fix_p (fixmode, fltmode, unsignedp, truncp_ptr)
4201 enum machine_mode fltmode, fixmode;
4202 int unsignedp;
4203 int *truncp_ptr;
4204{
4205 *truncp_ptr = 0;
678164a5
RK
4206 if (fixtrunctab[(int) fltmode][(int) fixmode][unsignedp != 0]
4207 != CODE_FOR_nothing)
4208 return fixtrunctab[(int) fltmode][(int) fixmode][unsignedp != 0];
77c9c6c2
RK
4209
4210 if (ftrunc_optab->handlers[(int) fltmode].insn_code != CODE_FOR_nothing)
4211 {
4212 *truncp_ptr = 1;
678164a5 4213 return fixtab[(int) fltmode][(int) fixmode][unsignedp != 0];
77c9c6c2
RK
4214 }
4215 return CODE_FOR_nothing;
4216}
4217
4218static enum insn_code
4219can_float_p (fltmode, fixmode, unsignedp)
4220 enum machine_mode fixmode, fltmode;
4221 int unsignedp;
4222{
678164a5 4223 return floattab[(int) fltmode][(int) fixmode][unsignedp != 0];
77c9c6c2 4224}
77c9c6c2
RK
4225\f
4226/* Generate code to convert FROM to floating point
34e56753 4227 and store in TO. FROM must be fixed point and not VOIDmode.
77c9c6c2
RK
4228 UNSIGNEDP nonzero means regard FROM as unsigned.
4229 Normally this is done by correcting the final value
4230 if it is negative. */
4231
4232void
4233expand_float (to, from, unsignedp)
4234 rtx to, from;
4235 int unsignedp;
4236{
4237 enum insn_code icode;
b3694847 4238 rtx target = to;
77c9c6c2
RK
4239 enum machine_mode fmode, imode;
4240
34e56753
RS
4241 /* Crash now, because we won't be able to decide which mode to use. */
4242 if (GET_MODE (from) == VOIDmode)
4243 abort ();
4244
77c9c6c2
RK
4245 /* Look for an insn to do the conversion. Do it in the specified
4246 modes if possible; otherwise convert either input, output or both to
4247 wider mode. If the integer mode is wider than the mode of FROM,
4248 we can do the conversion signed even if the input is unsigned. */
4249
4250 for (imode = GET_MODE (from); imode != VOIDmode;
4251 imode = GET_MODE_WIDER_MODE (imode))
4252 for (fmode = GET_MODE (to); fmode != VOIDmode;
4253 fmode = GET_MODE_WIDER_MODE (fmode))
4254 {
4255 int doing_unsigned = unsignedp;
4256
5ba02ca6
GK
4257 if (fmode != GET_MODE (to)
4258 && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
4259 continue;
4260
77c9c6c2
RK
4261 icode = can_float_p (fmode, imode, unsignedp);
4262 if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
4263 icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
4264
4265 if (icode != CODE_FOR_nothing)
4266 {
4267 to = protect_from_queue (to, 1);
06e40b26 4268 from = protect_from_queue (from, 0);
77c9c6c2
RK
4269
4270 if (imode != GET_MODE (from))
4271 from = convert_to_mode (imode, from, unsignedp);
77c9c6c2
RK
4272
4273 if (fmode != GET_MODE (to))
4274 target = gen_reg_rtx (fmode);
4275
4276 emit_unop_insn (icode, target, from,
4277 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4278
4279 if (target != to)
4280 convert_move (to, target, 0);
4281 return;
4282 }
4283 }
4284
77c9c6c2
RK
4285 /* Unsigned integer, and no way to convert directly.
4286 Convert as signed, then conditionally adjust the result. */
4287 if (unsignedp)
4288 {
4289 rtx label = gen_label_rtx ();
4290 rtx temp;
4291 REAL_VALUE_TYPE offset;
4292
4293 emit_queue ();
4294
4295 to = protect_from_queue (to, 1);
4296 from = protect_from_queue (from, 0);
4297
4298 if (flag_force_mem)
4299 from = force_not_mem (from);
4300
c95c47f3
PE
4301 /* Look for a usable floating mode FMODE wider than the source and at
4302 least as wide as the target. Using FMODE will avoid rounding woes
4303 with unsigned values greater than the signed maximum value. */
70864443 4304
c95c47f3
PE
4305 for (fmode = GET_MODE (to); fmode != VOIDmode;
4306 fmode = GET_MODE_WIDER_MODE (fmode))
4307 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4308 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4309 break;
a48fb61b 4310
c95c47f3
PE
4311 if (fmode == VOIDmode)
4312 {
a48fb61b 4313 /* There is no such mode. Pretend the target is wide enough. */
c95c47f3 4314 fmode = GET_MODE (to);
a48fb61b 4315
0f41302f 4316 /* Avoid double-rounding when TO is narrower than FROM. */
a48fb61b
RK
4317 if ((significand_size (fmode) + 1)
4318 < GET_MODE_BITSIZE (GET_MODE (from)))
4319 {
4320 rtx temp1;
4321 rtx neglabel = gen_label_rtx ();
4322
70864443
RK
4323 /* Don't use TARGET if it isn't a register, is a hard register,
4324 or is the wrong mode. */
44f51d4a 4325 if (GET_CODE (target) != REG
70864443
RK
4326 || REGNO (target) < FIRST_PSEUDO_REGISTER
4327 || GET_MODE (target) != fmode)
44f51d4a
RK
4328 target = gen_reg_rtx (fmode);
4329
a48fb61b
RK
4330 imode = GET_MODE (from);
4331 do_pending_stack_adjust ();
4332
4333 /* Test whether the sign bit is set. */
1c0290ea 4334 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
a06ef755 4335 0, neglabel);
a48fb61b
RK
4336
4337 /* The sign bit is not set. Convert as signed. */
4338 expand_float (target, from, 0);
4339 emit_jump_insn (gen_jump (label));
2ad79487 4340 emit_barrier ();
a48fb61b
RK
4341
4342 /* The sign bit is set.
4343 Convert to a usable (positive signed) value by shifting right
4344 one bit, while remembering if a nonzero bit was shifted
4345 out; i.e., compute (from & 1) | (from >> 1). */
4346
4347 emit_label (neglabel);
4348 temp = expand_binop (imode, and_optab, from, const1_rtx,
70864443 4349 NULL_RTX, 1, OPTAB_LIB_WIDEN);
73d9a835
RK
4350 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
4351 NULL_RTX, 1);
70864443
RK
4352 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
4353 OPTAB_LIB_WIDEN);
a48fb61b
RK
4354 expand_float (target, temp, 0);
4355
4356 /* Multiply by 2 to undo the shift above. */
a93738eb 4357 temp = expand_binop (fmode, add_optab, target, target,
70864443 4358 target, 0, OPTAB_LIB_WIDEN);
a93738eb
RK
4359 if (temp != target)
4360 emit_move_insn (target, temp);
4361
a48fb61b
RK
4362 do_pending_stack_adjust ();
4363 emit_label (label);
4364 goto done;
4365 }
c95c47f3
PE
4366 }
4367
77c9c6c2
RK
4368 /* If we are about to do some arithmetic to correct for an
4369 unsigned operand, do it in a pseudo-register. */
4370
c95c47f3 4371 if (GET_MODE (to) != fmode
70864443 4372 || GET_CODE (to) != REG || REGNO (to) < FIRST_PSEUDO_REGISTER)
c95c47f3 4373 target = gen_reg_rtx (fmode);
77c9c6c2
RK
4374
4375 /* Convert as signed integer to floating. */
4376 expand_float (target, from, 0);
4377
4378 /* If FROM is negative (and therefore TO is negative),
4379 correct its value by 2**bitwidth. */
4380
4381 do_pending_stack_adjust ();
c5d5d461 4382 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
a06ef755 4383 0, label);
70864443 4384
77c9c6c2
RK
4385 /* On SCO 3.2.1, ldexp rejects values outside [0.5, 1).
4386 Rather than setting up a dconst_dot_5, let's hope SCO
4387 fixes the bug. */
4388 offset = REAL_VALUE_LDEXP (dconst1, GET_MODE_BITSIZE (GET_MODE (from)));
c95c47f3 4389 temp = expand_binop (fmode, add_optab, target,
30d88916 4390 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
77c9c6c2
RK
4391 target, 0, OPTAB_LIB_WIDEN);
4392 if (temp != target)
4393 emit_move_insn (target, temp);
a48fb61b 4394
77c9c6c2
RK
4395 do_pending_stack_adjust ();
4396 emit_label (label);
70864443 4397 goto done;
77c9c6c2 4398 }
77c9c6c2 4399
560f3f8a 4400 /* No hardware instruction available; call a library routine to convert from
b092b471 4401 SImode, DImode, or TImode into SFmode, DFmode, XFmode, or TFmode. */
77c9c6c2 4402 {
6bce1b78 4403 rtx libfcn;
77c9c6c2 4404 rtx insns;
9a7f678c 4405 rtx value;
77c9c6c2
RK
4406
4407 to = protect_from_queue (to, 1);
06e40b26 4408 from = protect_from_queue (from, 0);
77c9c6c2
RK
4409
4410 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
4411 from = convert_to_mode (SImode, from, unsignedp);
77c9c6c2
RK
4412
4413 if (flag_force_mem)
4414 from = force_not_mem (from);
4415
4416 if (GET_MODE (to) == SFmode)
4417 {
4418 if (GET_MODE (from) == SImode)
6bce1b78 4419 libfcn = floatsisf_libfunc;
77c9c6c2 4420 else if (GET_MODE (from) == DImode)
6bce1b78 4421 libfcn = floatdisf_libfunc;
b092b471
JW
4422 else if (GET_MODE (from) == TImode)
4423 libfcn = floattisf_libfunc;
77c9c6c2
RK
4424 else
4425 abort ();
4426 }
4427 else if (GET_MODE (to) == DFmode)
4428 {
4429 if (GET_MODE (from) == SImode)
6bce1b78 4430 libfcn = floatsidf_libfunc;
77c9c6c2 4431 else if (GET_MODE (from) == DImode)
6bce1b78 4432 libfcn = floatdidf_libfunc;
b092b471
JW
4433 else if (GET_MODE (from) == TImode)
4434 libfcn = floattidf_libfunc;
4435 else
4436 abort ();
4437 }
4438 else if (GET_MODE (to) == XFmode)
4439 {
4440 if (GET_MODE (from) == SImode)
4441 libfcn = floatsixf_libfunc;
4442 else if (GET_MODE (from) == DImode)
4443 libfcn = floatdixf_libfunc;
4444 else if (GET_MODE (from) == TImode)
4445 libfcn = floattixf_libfunc;
4446 else
4447 abort ();
4448 }
4449 else if (GET_MODE (to) == TFmode)
4450 {
4451 if (GET_MODE (from) == SImode)
4452 libfcn = floatsitf_libfunc;
4453 else if (GET_MODE (from) == DImode)
4454 libfcn = floatditf_libfunc;
4455 else if (GET_MODE (from) == TImode)
4456 libfcn = floattitf_libfunc;
77c9c6c2
RK
4457 else
4458 abort ();
4459 }
4460 else
4461 abort ();
4462
4463 start_sequence ();
4464
ebb1b59a
BS
4465 value = emit_library_call_value (libfcn, NULL_RTX, LCT_CONST,
4466 GET_MODE (to), 1, from,
4467 GET_MODE (from));
77c9c6c2
RK
4468 insns = get_insns ();
4469 end_sequence ();
4470
9a7f678c 4471 emit_libcall_block (insns, target, value,
9e6a5703 4472 gen_rtx_FLOAT (GET_MODE (to), from));
77c9c6c2
RK
4473 }
4474
a48fb61b
RK
4475 done:
4476
77c9c6c2
RK
4477 /* Copy result to requested destination
4478 if we have been computing in a temp location. */
4479
4480 if (target != to)
4481 {
4482 if (GET_MODE (target) == GET_MODE (to))
4483 emit_move_insn (to, target);
4484 else
4485 convert_move (to, target, 0);
4486 }
4487}
4488\f
4489/* expand_fix: generate code to convert FROM to fixed point
4490 and store in TO. FROM must be floating point. */
4491
4492static rtx
4493ftruncify (x)
4494 rtx x;
4495{
4496 rtx temp = gen_reg_rtx (GET_MODE (x));
4497 return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0);
4498}
4499
4500void
4501expand_fix (to, from, unsignedp)
b3694847 4502 rtx to, from;
77c9c6c2
RK
4503 int unsignedp;
4504{
4505 enum insn_code icode;
b3694847 4506 rtx target = to;
77c9c6c2
RK
4507 enum machine_mode fmode, imode;
4508 int must_trunc = 0;
6bce1b78 4509 rtx libfcn = 0;
77c9c6c2
RK
4510
4511 /* We first try to find a pair of modes, one real and one integer, at
4512 least as wide as FROM and TO, respectively, in which we can open-code
4513 this conversion. If the integer mode is wider than the mode of TO,
4514 we can do the conversion either signed or unsigned. */
4515
3987b9db
JH
4516 for (fmode = GET_MODE (from); fmode != VOIDmode;
4517 fmode = GET_MODE_WIDER_MODE (fmode))
4518 for (imode = GET_MODE (to); imode != VOIDmode;
4519 imode = GET_MODE_WIDER_MODE (imode))
77c9c6c2
RK
4520 {
4521 int doing_unsigned = unsignedp;
4522
4523 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
4524 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
4525 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
4526
4527 if (icode != CODE_FOR_nothing)
4528 {
4529 to = protect_from_queue (to, 1);
06e40b26 4530 from = protect_from_queue (from, 0);
77c9c6c2
RK
4531
4532 if (fmode != GET_MODE (from))
4533 from = convert_to_mode (fmode, from, 0);
77c9c6c2
RK
4534
4535 if (must_trunc)
4536 from = ftruncify (from);
4537
4538 if (imode != GET_MODE (to))
4539 target = gen_reg_rtx (imode);
4540
4541 emit_unop_insn (icode, target, from,
4542 doing_unsigned ? UNSIGNED_FIX : FIX);
4543 if (target != to)
4544 convert_move (to, target, unsignedp);
4545 return;
4546 }
4547 }
4548
77c9c6c2
RK
4549 /* For an unsigned conversion, there is one more way to do it.
4550 If we have a signed conversion, we generate code that compares
4551 the real value to the largest representable positive number. If if
4552 is smaller, the conversion is done normally. Otherwise, subtract
4553 one plus the highest signed number, convert, and add it back.
4554
4555 We only need to check all real modes, since we know we didn't find
6dc42e49 4556 anything with a wider integer mode. */
77c9c6c2 4557
b1ec3c92 4558 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
77c9c6c2
RK
4559 for (fmode = GET_MODE (from); fmode != VOIDmode;
4560 fmode = GET_MODE_WIDER_MODE (fmode))
4561 /* Make sure we won't lose significant bits doing this. */
4562 if (GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to))
4563 && CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
4564 &must_trunc))
4565 {
e9f7ae44
RS
4566 int bitsize;
4567 REAL_VALUE_TYPE offset;
4568 rtx limit, lab1, lab2, insn;
4569
4570 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
4571 offset = REAL_VALUE_LDEXP (dconst1, bitsize - 1);
30d88916 4572 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
e9f7ae44
RS
4573 lab1 = gen_label_rtx ();
4574 lab2 = gen_label_rtx ();
77c9c6c2
RK
4575
4576 emit_queue ();
4577 to = protect_from_queue (to, 1);
4578 from = protect_from_queue (from, 0);
4579
4580 if (flag_force_mem)
4581 from = force_not_mem (from);
4582
4583 if (fmode != GET_MODE (from))
4584 from = convert_to_mode (fmode, from, 0);
4585
4586 /* See if we need to do the subtraction. */
4587 do_pending_stack_adjust ();
c5d5d461 4588 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
a06ef755 4589 0, lab1);
77c9c6c2
RK
4590
4591 /* If not, do the signed "fix" and branch around fixup code. */
4592 expand_fix (to, from, 0);
4593 emit_jump_insn (gen_jump (lab2));
4594 emit_barrier ();
4595
4596 /* Otherwise, subtract 2**(N-1), convert to signed number,
4597 then add 2**(N-1). Do the addition using XOR since this
4598 will often generate better code. */
4599 emit_label (lab1);
4600 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
b1ec3c92 4601 NULL_RTX, 0, OPTAB_LIB_WIDEN);
77c9c6c2
RK
4602 expand_fix (to, target, 0);
4603 target = expand_binop (GET_MODE (to), xor_optab, to,
2496c7bd
LB
4604 gen_int_mode
4605 ((HOST_WIDE_INT) 1 << (bitsize - 1),
4606 GET_MODE (to)),
77c9c6c2
RK
4607 to, 1, OPTAB_LIB_WIDEN);
4608
4609 if (target != to)
4610 emit_move_insn (to, target);
4611
4612 emit_label (lab2);
4613
02214a5c
RK
4614 if (mov_optab->handlers[(int) GET_MODE (to)].insn_code
4615 != CODE_FOR_nothing)
4616 {
4617 /* Make a place for a REG_NOTE and add it. */
4618 insn = emit_move_insn (to, to);
5fa671cf
AM
4619 set_unique_reg_note (insn,
4620 REG_EQUAL,
4621 gen_rtx_fmt_e (UNSIGNED_FIX,
4622 GET_MODE (to),
4623 copy_rtx (from)));
02214a5c 4624 }
c5c76735 4625
77c9c6c2
RK
4626 return;
4627 }
77c9c6c2
RK
4628
4629 /* We can't do it with an insn, so use a library call. But first ensure
4630 that the mode of TO is at least as wide as SImode, since those are the
4631 only library calls we know about. */
4632
4633 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
4634 {
4635 target = gen_reg_rtx (SImode);
4636
4637 expand_fix (target, from, unsignedp);
4638 }
4639 else if (GET_MODE (from) == SFmode)
4640 {
4641 if (GET_MODE (to) == SImode)
6bce1b78 4642 libfcn = unsignedp ? fixunssfsi_libfunc : fixsfsi_libfunc;
77c9c6c2 4643 else if (GET_MODE (to) == DImode)
6bce1b78 4644 libfcn = unsignedp ? fixunssfdi_libfunc : fixsfdi_libfunc;
b092b471
JW
4645 else if (GET_MODE (to) == TImode)
4646 libfcn = unsignedp ? fixunssfti_libfunc : fixsfti_libfunc;
77c9c6c2
RK
4647 else
4648 abort ();
4649 }
4650 else if (GET_MODE (from) == DFmode)
4651 {
4652 if (GET_MODE (to) == SImode)
6bce1b78 4653 libfcn = unsignedp ? fixunsdfsi_libfunc : fixdfsi_libfunc;
77c9c6c2 4654 else if (GET_MODE (to) == DImode)
6bce1b78 4655 libfcn = unsignedp ? fixunsdfdi_libfunc : fixdfdi_libfunc;
b092b471
JW
4656 else if (GET_MODE (to) == TImode)
4657 libfcn = unsignedp ? fixunsdfti_libfunc : fixdfti_libfunc;
4658 else
4659 abort ();
4660 }
4661 else if (GET_MODE (from) == XFmode)
4662 {
4663 if (GET_MODE (to) == SImode)
4664 libfcn = unsignedp ? fixunsxfsi_libfunc : fixxfsi_libfunc;
4665 else if (GET_MODE (to) == DImode)
4666 libfcn = unsignedp ? fixunsxfdi_libfunc : fixxfdi_libfunc;
4667 else if (GET_MODE (to) == TImode)
4668 libfcn = unsignedp ? fixunsxfti_libfunc : fixxfti_libfunc;
4669 else
4670 abort ();
4671 }
4672 else if (GET_MODE (from) == TFmode)
4673 {
4674 if (GET_MODE (to) == SImode)
4675 libfcn = unsignedp ? fixunstfsi_libfunc : fixtfsi_libfunc;
4676 else if (GET_MODE (to) == DImode)
4677 libfcn = unsignedp ? fixunstfdi_libfunc : fixtfdi_libfunc;
4678 else if (GET_MODE (to) == TImode)
4679 libfcn = unsignedp ? fixunstfti_libfunc : fixtfti_libfunc;
77c9c6c2
RK
4680 else
4681 abort ();
4682 }
4683 else
4684 abort ();
4685
6bce1b78 4686 if (libfcn)
77c9c6c2
RK
4687 {
4688 rtx insns;
560f3f8a 4689 rtx value;
77c9c6c2
RK
4690
4691 to = protect_from_queue (to, 1);
4692 from = protect_from_queue (from, 0);
4693
4694 if (flag_force_mem)
4695 from = force_not_mem (from);
4696
4697 start_sequence ();
4698
ebb1b59a
BS
4699 value = emit_library_call_value (libfcn, NULL_RTX, LCT_CONST,
4700 GET_MODE (to), 1, from,
4701 GET_MODE (from));
77c9c6c2
RK
4702 insns = get_insns ();
4703 end_sequence ();
4704
560f3f8a 4705 emit_libcall_block (insns, target, value,
9e6a5703
JC
4706 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
4707 GET_MODE (to), from));
77c9c6c2
RK
4708 }
4709
3e53ea48
RK
4710 if (target != to)
4711 {
4712 if (GET_MODE (to) == GET_MODE (target))
4713 emit_move_insn (to, target);
4714 else
4715 convert_move (to, target, 0);
4716 }
77c9c6c2
RK
4717}
4718\f
ef89d648
ZW
4719/* Report whether we have an instruction to perform the operation
4720 specified by CODE on operands of mode MODE. */
4721int
4722have_insn_for (code, mode)
77c9c6c2 4723 enum rtx_code code;
ef89d648
ZW
4724 enum machine_mode mode;
4725{
4726 return (code_to_optab[(int) code] != 0
4727 && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
4728 != CODE_FOR_nothing));
4729}
4730
4731/* Create a blank optab. */
4732static optab
4733new_optab ()
77c9c6c2
RK
4734{
4735 int i;
e2500fed 4736 optab op = (optab) ggc_alloc (sizeof (struct optab));
77c9c6c2
RK
4737 for (i = 0; i < NUM_MACHINE_MODES; i++)
4738 {
4739 op->handlers[i].insn_code = CODE_FOR_nothing;
4740 op->handlers[i].libfunc = 0;
4741 }
377017c4 4742
ef89d648
ZW
4743 return op;
4744}
377017c4 4745
ef89d648
ZW
4746/* Same, but fill in its code as CODE, and write it into the
4747 code_to_optab table. */
4748static inline optab
4749init_optab (code)
4750 enum rtx_code code;
4751{
4752 optab op = new_optab ();
4753 op->code = code;
4754 code_to_optab[(int) code] = op;
4755 return op;
4756}
4757
4758/* Same, but fill in its code as CODE, and do _not_ write it into
4759 the code_to_optab table. */
4760static inline optab
4761init_optabv (code)
4762 enum rtx_code code;
4763{
4764 optab op = new_optab ();
4765 op->code = code;
77c9c6c2
RK
4766 return op;
4767}
4768
b092b471
JW
4769/* Initialize the libfunc fields of an entire group of entries in some
4770 optab. Each entry is set equal to a string consisting of a leading
4771 pair of underscores followed by a generic operation name followed by
4772 a mode name (downshifted to lower case) followed by a single character
4773 representing the number of operands for the given operation (which is
4774 usually one of the characters '2', '3', or '4').
4775
4776 OPTABLE is the table in which libfunc fields are to be initialized.
4777 FIRST_MODE is the first machine mode index in the given optab to
4778 initialize.
4779 LAST_MODE is the last machine mode index in the given optab to
4780 initialize.
4781 OPNAME is the generic (string) name of the operation.
4782 SUFFIX is the character which specifies the number of operands for
4783 the given generic operation.
4784*/
4785
4786static void
4787init_libfuncs (optable, first_mode, last_mode, opname, suffix)
b3694847
SS
4788 optab optable;
4789 int first_mode;
4790 int last_mode;
4791 const char *opname;
4792 int suffix;
b092b471 4793{
b3694847
SS
4794 int mode;
4795 unsigned opname_len = strlen (opname);
b092b471 4796
fe0035ff
RS
4797 for (mode = first_mode; (int) mode <= (int) last_mode;
4798 mode = (enum machine_mode) ((int) mode + 1))
b092b471 4799 {
b3694847
SS
4800 const char *mname = GET_MODE_NAME(mode);
4801 unsigned mname_len = strlen (mname);
4802 char *libfunc_name = alloca (2 + opname_len + mname_len + 1 + 1);
4803 char *p;
4804 const char *q;
b092b471
JW
4805
4806 p = libfunc_name;
4807 *p++ = '_';
4808 *p++ = '_';
4809 for (q = opname; *q; )
4810 *p++ = *q++;
4811 for (q = mname; *q; q++)
92a438d1 4812 *p++ = TOLOWER (*q);
b092b471 4813 *p++ = suffix;
520a57c8 4814 *p = '\0';
76095e2f 4815
b092b471 4816 optable->handlers[(int) mode].libfunc
520a57c8
ZW
4817 = gen_rtx_SYMBOL_REF (Pmode, ggc_alloc_string (libfunc_name,
4818 p - libfunc_name));
b092b471
JW
4819 }
4820}
4821
4822/* Initialize the libfunc fields of an entire group of entries in some
4823 optab which correspond to all integer mode operations. The parameters
4824 have the same meaning as similarly named ones for the `init_libfuncs'
4825 routine. (See above). */
4826
4827static void
4828init_integral_libfuncs (optable, opname, suffix)
b3694847
SS
4829 optab optable;
4830 const char *opname;
4831 int suffix;
b092b471
JW
4832{
4833 init_libfuncs (optable, SImode, TImode, opname, suffix);
4834}
4835
4836/* Initialize the libfunc fields of an entire group of entries in some
4837 optab which correspond to all real mode operations. The parameters
4838 have the same meaning as similarly named ones for the `init_libfuncs'
4839 routine. (See above). */
4840
4841static void
4842init_floating_libfuncs (optable, opname, suffix)
b3694847
SS
4843 optab optable;
4844 const char *opname;
4845 int suffix;
b092b471
JW
4846{
4847 init_libfuncs (optable, SFmode, TFmode, opname, suffix);
4848}
4849
76095e2f
RH
4850rtx
4851init_one_libfunc (name)
b3694847 4852 const char *name;
76095e2f 4853{
fb49053f
RH
4854 /* Create a FUNCTION_DECL that can be passed to
4855 targetm.encode_section_info. */
ee1315aa 4856 /* ??? We don't have any type information except for this is
9c2f7166 4857 a function. Pretend this is "int foo()". */
ee1315aa 4858 tree decl = build_decl (FUNCTION_DECL, get_identifier (name),
9c2f7166 4859 build_function_type (integer_type_node, NULL_TREE));
ee1315aa
RH
4860 DECL_ARTIFICIAL (decl) = 1;
4861 DECL_EXTERNAL (decl) = 1;
4862 TREE_PUBLIC (decl) = 1;
4863
4864 /* Return the symbol_ref from the mem rtx. */
4865 return XEXP (DECL_RTL (decl), 0);
76095e2f
RH
4866}
4867
77c9c6c2
RK
4868/* Call this once to initialize the contents of the optabs
4869 appropriately for the current target machine. */
4870
4871void
4872init_optabs ()
4873{
b6a1cbae 4874 unsigned int i, j, k;
77c9c6c2 4875
5d81dc5b 4876 /* Start by initializing all tables to contain CODE_FOR_nothing. */
77c9c6c2 4877
b6a1cbae
GM
4878 for (i = 0; i < ARRAY_SIZE (fixtab); i++)
4879 for (j = 0; j < ARRAY_SIZE (fixtab[0]); j++)
4880 for (k = 0; k < ARRAY_SIZE (fixtab[0][0]); k++)
4881 fixtab[i][j][k] = CODE_FOR_nothing;
4882
4883 for (i = 0; i < ARRAY_SIZE (fixtrunctab); i++)
4884 for (j = 0; j < ARRAY_SIZE (fixtrunctab[0]); j++)
4885 for (k = 0; k < ARRAY_SIZE (fixtrunctab[0][0]); k++)
4886 fixtrunctab[i][j][k] = CODE_FOR_nothing;
4887
4888 for (i = 0; i < ARRAY_SIZE (floattab); i++)
4889 for (j = 0; j < ARRAY_SIZE (floattab[0]); j++)
4890 for (k = 0; k < ARRAY_SIZE (floattab[0][0]); k++)
4891 floattab[i][j][k] = CODE_FOR_nothing;
4892
4893 for (i = 0; i < ARRAY_SIZE (extendtab); i++)
4894 for (j = 0; j < ARRAY_SIZE (extendtab[0]); j++)
4895 for (k = 0; k < ARRAY_SIZE (extendtab[0][0]); k++)
4896 extendtab[i][j][k] = CODE_FOR_nothing;
5d81dc5b
RK
4897
4898 for (i = 0; i < NUM_RTX_CODE; i++)
4899 setcc_gen_code[i] = CODE_FOR_nothing;
4900
49c4584c
DE
4901#ifdef HAVE_conditional_move
4902 for (i = 0; i < NUM_MACHINE_MODES; i++)
4903 movcc_gen_code[i] = CODE_FOR_nothing;
4904#endif
4905
5d81dc5b 4906 add_optab = init_optab (PLUS);
ef89d648 4907 addv_optab = init_optabv (PLUS);
5d81dc5b 4908 sub_optab = init_optab (MINUS);
ef89d648 4909 subv_optab = init_optabv (MINUS);
5d81dc5b 4910 smul_optab = init_optab (MULT);
ef89d648 4911 smulv_optab = init_optabv (MULT);
5035bbfe
TG
4912 smul_highpart_optab = init_optab (UNKNOWN);
4913 umul_highpart_optab = init_optab (UNKNOWN);
5d81dc5b
RK
4914 smul_widen_optab = init_optab (UNKNOWN);
4915 umul_widen_optab = init_optab (UNKNOWN);
4916 sdiv_optab = init_optab (DIV);
ef89d648 4917 sdivv_optab = init_optabv (DIV);
5d81dc5b
RK
4918 sdivmod_optab = init_optab (UNKNOWN);
4919 udiv_optab = init_optab (UDIV);
4920 udivmod_optab = init_optab (UNKNOWN);
4921 smod_optab = init_optab (MOD);
4922 umod_optab = init_optab (UMOD);
77c9c6c2
RK
4923 ftrunc_optab = init_optab (UNKNOWN);
4924 and_optab = init_optab (AND);
4925 ior_optab = init_optab (IOR);
4926 xor_optab = init_optab (XOR);
4927 ashl_optab = init_optab (ASHIFT);
4928 ashr_optab = init_optab (ASHIFTRT);
77c9c6c2
RK
4929 lshr_optab = init_optab (LSHIFTRT);
4930 rotl_optab = init_optab (ROTATE);
4931 rotr_optab = init_optab (ROTATERT);
4932 smin_optab = init_optab (SMIN);
4933 smax_optab = init_optab (SMAX);
4934 umin_optab = init_optab (UMIN);
4935 umax_optab = init_optab (UMAX);
ef89d648
ZW
4936
4937 /* These three have codes assigned exclusively for the sake of
4938 have_insn_for. */
4939 mov_optab = init_optab (SET);
4940 movstrict_optab = init_optab (STRICT_LOW_PART);
4941 cmp_optab = init_optab (COMPARE);
4942
77c9c6c2
RK
4943 ucmp_optab = init_optab (UNKNOWN);
4944 tst_optab = init_optab (UNKNOWN);
4945 neg_optab = init_optab (NEG);
ef89d648 4946 negv_optab = init_optabv (NEG);
77c9c6c2 4947 abs_optab = init_optab (ABS);
ef89d648 4948 absv_optab = init_optabv (ABS);
77c9c6c2
RK
4949 one_cmpl_optab = init_optab (NOT);
4950 ffs_optab = init_optab (FFS);
d45cf215 4951 sqrt_optab = init_optab (SQRT);
28cf078d
JVA
4952 sin_optab = init_optab (UNKNOWN);
4953 cos_optab = init_optab (UNKNOWN);
19c3fc24 4954 strlen_optab = init_optab (UNKNOWN);
1c0290ea
BS
4955 cbranch_optab = init_optab (UNKNOWN);
4956 cmov_optab = init_optab (UNKNOWN);
4957 cstore_optab = init_optab (UNKNOWN);
371b8fc0 4958 push_optab = init_optab (UNKNOWN);
77c9c6c2 4959
5d81dc5b
RK
4960 for (i = 0; i < NUM_MACHINE_MODES; i++)
4961 {
4962 movstr_optab[i] = CODE_FOR_nothing;
45169d12 4963 clrstr_optab[i] = CODE_FOR_nothing;
5d81dc5b
RK
4964
4965#ifdef HAVE_SECONDARY_RELOADS
4966 reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
77c9c6c2 4967#endif
5d81dc5b
RK
4968 }
4969
4970 /* Fill in the optabs with the insns we support. */
4971 init_all_optabs ();
4972
4973#ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
4974 /* This flag says the same insns that convert to a signed fixnum
4975 also convert validly to an unsigned one. */
4976 for (i = 0; i < NUM_MACHINE_MODES; i++)
4977 for (j = 0; j < NUM_MACHINE_MODES; j++)
4978 fixtrunctab[i][j][1] = fixtrunctab[i][j][0];
b092b471 4979#endif
5d81dc5b 4980
5d81dc5b 4981 /* Initialize the optabs with the names of the library functions. */
b092b471
JW
4982 init_integral_libfuncs (add_optab, "add", '3');
4983 init_floating_libfuncs (add_optab, "add", '3');
91ce572a
CC
4984 init_integral_libfuncs (addv_optab, "addv", '3');
4985 init_floating_libfuncs (addv_optab, "add", '3');
b092b471
JW
4986 init_integral_libfuncs (sub_optab, "sub", '3');
4987 init_floating_libfuncs (sub_optab, "sub", '3');
91ce572a
CC
4988 init_integral_libfuncs (subv_optab, "subv", '3');
4989 init_floating_libfuncs (subv_optab, "sub", '3');
b092b471
JW
4990 init_integral_libfuncs (smul_optab, "mul", '3');
4991 init_floating_libfuncs (smul_optab, "mul", '3');
91ce572a
CC
4992 init_integral_libfuncs (smulv_optab, "mulv", '3');
4993 init_floating_libfuncs (smulv_optab, "mul", '3');
5d81dc5b 4994 init_integral_libfuncs (sdiv_optab, "div", '3');
ef89d648 4995 init_floating_libfuncs (sdiv_optab, "div", '3');
91ce572a 4996 init_integral_libfuncs (sdivv_optab, "divv", '3');
5d81dc5b
RK
4997 init_integral_libfuncs (udiv_optab, "udiv", '3');
4998 init_integral_libfuncs (sdivmod_optab, "divmod", '4');
4999 init_integral_libfuncs (udivmod_optab, "udivmod", '4');
5000 init_integral_libfuncs (smod_optab, "mod", '3');
5001 init_integral_libfuncs (umod_optab, "umod", '3');
5d81dc5b
RK
5002 init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
5003 init_integral_libfuncs (and_optab, "and", '3');
5004 init_integral_libfuncs (ior_optab, "ior", '3');
5005 init_integral_libfuncs (xor_optab, "xor", '3');
5006 init_integral_libfuncs (ashl_optab, "ashl", '3');
5007 init_integral_libfuncs (ashr_optab, "ashr", '3');
5d81dc5b 5008 init_integral_libfuncs (lshr_optab, "lshr", '3');
5d81dc5b
RK
5009 init_integral_libfuncs (smin_optab, "min", '3');
5010 init_floating_libfuncs (smin_optab, "min", '3');
5011 init_integral_libfuncs (smax_optab, "max", '3');
5012 init_floating_libfuncs (smax_optab, "max", '3');
5013 init_integral_libfuncs (umin_optab, "umin", '3');
5014 init_integral_libfuncs (umax_optab, "umax", '3');
5015 init_integral_libfuncs (neg_optab, "neg", '2');
5016 init_floating_libfuncs (neg_optab, "neg", '2');
91ce572a
CC
5017 init_integral_libfuncs (negv_optab, "negv", '2');
5018 init_floating_libfuncs (negv_optab, "neg", '2');
5d81dc5b
RK
5019 init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
5020 init_integral_libfuncs (ffs_optab, "ffs", '2');
5021
5022 /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */
5023 init_integral_libfuncs (cmp_optab, "cmp", '2');
5024 init_integral_libfuncs (ucmp_optab, "ucmp", '2');
5025 init_floating_libfuncs (cmp_optab, "cmp", '2');
77c9c6c2
RK
5026
5027#ifdef MULSI3_LIBCALL
5028 smul_optab->handlers[(int) SImode].libfunc
76095e2f 5029 = init_one_libfunc (MULSI3_LIBCALL);
77c9c6c2
RK
5030#endif
5031#ifdef MULDI3_LIBCALL
5032 smul_optab->handlers[(int) DImode].libfunc
76095e2f 5033 = init_one_libfunc (MULDI3_LIBCALL);
77c9c6c2 5034#endif
77c9c6c2 5035
77c9c6c2
RK
5036#ifdef DIVSI3_LIBCALL
5037 sdiv_optab->handlers[(int) SImode].libfunc
76095e2f 5038 = init_one_libfunc (DIVSI3_LIBCALL);
77c9c6c2
RK
5039#endif
5040#ifdef DIVDI3_LIBCALL
5041 sdiv_optab->handlers[(int) DImode].libfunc
76095e2f 5042 = init_one_libfunc (DIVDI3_LIBCALL);
b092b471 5043#endif
77c9c6c2 5044
77c9c6c2
RK
5045#ifdef UDIVSI3_LIBCALL
5046 udiv_optab->handlers[(int) SImode].libfunc
76095e2f 5047 = init_one_libfunc (UDIVSI3_LIBCALL);
77c9c6c2
RK
5048#endif
5049#ifdef UDIVDI3_LIBCALL
5050 udiv_optab->handlers[(int) DImode].libfunc
76095e2f 5051 = init_one_libfunc (UDIVDI3_LIBCALL);
b092b471 5052#endif
77c9c6c2
RK
5053
5054#ifdef MODSI3_LIBCALL
5055 smod_optab->handlers[(int) SImode].libfunc
76095e2f 5056 = init_one_libfunc (MODSI3_LIBCALL);
77c9c6c2
RK
5057#endif
5058#ifdef MODDI3_LIBCALL
5059 smod_optab->handlers[(int) DImode].libfunc
76095e2f 5060 = init_one_libfunc (MODDI3_LIBCALL);
b092b471 5061#endif
77c9c6c2
RK
5062
5063#ifdef UMODSI3_LIBCALL
5064 umod_optab->handlers[(int) SImode].libfunc
76095e2f 5065 = init_one_libfunc (UMODSI3_LIBCALL);
77c9c6c2
RK
5066#endif
5067#ifdef UMODDI3_LIBCALL
5068 umod_optab->handlers[(int) DImode].libfunc
76095e2f 5069 = init_one_libfunc (UMODDI3_LIBCALL);
b092b471 5070#endif
4754348d 5071
decdfa82
RS
5072 /* Use cabs for DC complex abs, since systems generally have cabs.
5073 Don't define any libcall for SCmode, so that cabs will be used. */
5074 abs_optab->handlers[(int) DCmode].libfunc
76095e2f 5075 = init_one_libfunc ("cabs");
77c9c6c2 5076
7f7d6d64 5077 /* The ffs function operates on `int'. */
c5c76735 5078 ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)].libfunc
76095e2f
RH
5079 = init_one_libfunc ("ffs");
5080
5081 extendsfdf2_libfunc = init_one_libfunc ("__extendsfdf2");
5082 extendsfxf2_libfunc = init_one_libfunc ("__extendsfxf2");
5083 extendsftf2_libfunc = init_one_libfunc ("__extendsftf2");
5084 extenddfxf2_libfunc = init_one_libfunc ("__extenddfxf2");
5085 extenddftf2_libfunc = init_one_libfunc ("__extenddftf2");
5086
5087 truncdfsf2_libfunc = init_one_libfunc ("__truncdfsf2");
5088 truncxfsf2_libfunc = init_one_libfunc ("__truncxfsf2");
5089 trunctfsf2_libfunc = init_one_libfunc ("__trunctfsf2");
5090 truncxfdf2_libfunc = init_one_libfunc ("__truncxfdf2");
5091 trunctfdf2_libfunc = init_one_libfunc ("__trunctfdf2");
5092
9602f5a0 5093 abort_libfunc = init_one_libfunc ("abort");
76095e2f 5094 memcpy_libfunc = init_one_libfunc ("memcpy");
b215b52e 5095 memmove_libfunc = init_one_libfunc ("memmove");
76095e2f
RH
5096 bcopy_libfunc = init_one_libfunc ("bcopy");
5097 memcmp_libfunc = init_one_libfunc ("memcmp");
5098 bcmp_libfunc = init_one_libfunc ("__gcc_bcmp");
5099 memset_libfunc = init_one_libfunc ("memset");
5100 bzero_libfunc = init_one_libfunc ("bzero");
5101
52a11cbf
RH
5102 unwind_resume_libfunc = init_one_libfunc (USING_SJLJ_EXCEPTIONS
5103 ? "_Unwind_SjLj_Resume"
5104 : "_Unwind_Resume");
6e6a07d2 5105#ifndef DONT_USE_BUILTIN_SETJMP
76095e2f
RH
5106 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
5107 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
27a36778 5108#else
76095e2f
RH
5109 setjmp_libfunc = init_one_libfunc ("setjmp");
5110 longjmp_libfunc = init_one_libfunc ("longjmp");
27a36778 5111#endif
52a11cbf
RH
5112 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
5113 unwind_sjlj_unregister_libfunc
5114 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6adb4e3a 5115
76095e2f
RH
5116 eqhf2_libfunc = init_one_libfunc ("__eqhf2");
5117 nehf2_libfunc = init_one_libfunc ("__nehf2");
5118 gthf2_libfunc = init_one_libfunc ("__gthf2");
5119 gehf2_libfunc = init_one_libfunc ("__gehf2");
5120 lthf2_libfunc = init_one_libfunc ("__lthf2");
5121 lehf2_libfunc = init_one_libfunc ("__lehf2");
1eb8759b 5122 unordhf2_libfunc = init_one_libfunc ("__unordhf2");
76095e2f
RH
5123
5124 eqsf2_libfunc = init_one_libfunc ("__eqsf2");
5125 nesf2_libfunc = init_one_libfunc ("__nesf2");
5126 gtsf2_libfunc = init_one_libfunc ("__gtsf2");
5127 gesf2_libfunc = init_one_libfunc ("__gesf2");
5128 ltsf2_libfunc = init_one_libfunc ("__ltsf2");
5129 lesf2_libfunc = init_one_libfunc ("__lesf2");
1eb8759b 5130 unordsf2_libfunc = init_one_libfunc ("__unordsf2");
76095e2f
RH
5131
5132 eqdf2_libfunc = init_one_libfunc ("__eqdf2");
5133 nedf2_libfunc = init_one_libfunc ("__nedf2");
5134 gtdf2_libfunc = init_one_libfunc ("__gtdf2");
5135 gedf2_libfunc = init_one_libfunc ("__gedf2");
5136 ltdf2_libfunc = init_one_libfunc ("__ltdf2");
5137 ledf2_libfunc = init_one_libfunc ("__ledf2");
1eb8759b 5138 unorddf2_libfunc = init_one_libfunc ("__unorddf2");
76095e2f
RH
5139
5140 eqxf2_libfunc = init_one_libfunc ("__eqxf2");
5141 nexf2_libfunc = init_one_libfunc ("__nexf2");
5142 gtxf2_libfunc = init_one_libfunc ("__gtxf2");
5143 gexf2_libfunc = init_one_libfunc ("__gexf2");
5144 ltxf2_libfunc = init_one_libfunc ("__ltxf2");
5145 lexf2_libfunc = init_one_libfunc ("__lexf2");
1eb8759b 5146 unordxf2_libfunc = init_one_libfunc ("__unordxf2");
76095e2f
RH
5147
5148 eqtf2_libfunc = init_one_libfunc ("__eqtf2");
5149 netf2_libfunc = init_one_libfunc ("__netf2");
5150 gttf2_libfunc = init_one_libfunc ("__gttf2");
5151 getf2_libfunc = init_one_libfunc ("__getf2");
5152 lttf2_libfunc = init_one_libfunc ("__lttf2");
5153 letf2_libfunc = init_one_libfunc ("__letf2");
1eb8759b 5154 unordtf2_libfunc = init_one_libfunc ("__unordtf2");
76095e2f
RH
5155
5156 floatsisf_libfunc = init_one_libfunc ("__floatsisf");
5157 floatdisf_libfunc = init_one_libfunc ("__floatdisf");
5158 floattisf_libfunc = init_one_libfunc ("__floattisf");
5159
5160 floatsidf_libfunc = init_one_libfunc ("__floatsidf");
5161 floatdidf_libfunc = init_one_libfunc ("__floatdidf");
5162 floattidf_libfunc = init_one_libfunc ("__floattidf");
5163
5164 floatsixf_libfunc = init_one_libfunc ("__floatsixf");
5165 floatdixf_libfunc = init_one_libfunc ("__floatdixf");
5166 floattixf_libfunc = init_one_libfunc ("__floattixf");
5167
5168 floatsitf_libfunc = init_one_libfunc ("__floatsitf");
5169 floatditf_libfunc = init_one_libfunc ("__floatditf");
5170 floattitf_libfunc = init_one_libfunc ("__floattitf");
5171
5172 fixsfsi_libfunc = init_one_libfunc ("__fixsfsi");
5173 fixsfdi_libfunc = init_one_libfunc ("__fixsfdi");
5174 fixsfti_libfunc = init_one_libfunc ("__fixsfti");
5175
5176 fixdfsi_libfunc = init_one_libfunc ("__fixdfsi");
5177 fixdfdi_libfunc = init_one_libfunc ("__fixdfdi");
5178 fixdfti_libfunc = init_one_libfunc ("__fixdfti");
5179
5180 fixxfsi_libfunc = init_one_libfunc ("__fixxfsi");
5181 fixxfdi_libfunc = init_one_libfunc ("__fixxfdi");
5182 fixxfti_libfunc = init_one_libfunc ("__fixxfti");
5183
5184 fixtfsi_libfunc = init_one_libfunc ("__fixtfsi");
5185 fixtfdi_libfunc = init_one_libfunc ("__fixtfdi");
5186 fixtfti_libfunc = init_one_libfunc ("__fixtfti");
5187
5188 fixunssfsi_libfunc = init_one_libfunc ("__fixunssfsi");
5189 fixunssfdi_libfunc = init_one_libfunc ("__fixunssfdi");
5190 fixunssfti_libfunc = init_one_libfunc ("__fixunssfti");
5191
5192 fixunsdfsi_libfunc = init_one_libfunc ("__fixunsdfsi");
5193 fixunsdfdi_libfunc = init_one_libfunc ("__fixunsdfdi");
5194 fixunsdfti_libfunc = init_one_libfunc ("__fixunsdfti");
5195
5196 fixunsxfsi_libfunc = init_one_libfunc ("__fixunsxfsi");
5197 fixunsxfdi_libfunc = init_one_libfunc ("__fixunsxfdi");
5198 fixunsxfti_libfunc = init_one_libfunc ("__fixunsxfti");
5199
5200 fixunstfsi_libfunc = init_one_libfunc ("__fixunstfsi");
5201 fixunstfdi_libfunc = init_one_libfunc ("__fixunstfdi");
5202 fixunstfti_libfunc = init_one_libfunc ("__fixunstfti");
4754348d 5203
07417085
KR
5204 /* For function entry/exit instrumentation. */
5205 profile_function_entry_libfunc
76095e2f 5206 = init_one_libfunc ("__cyg_profile_func_enter");
07417085 5207 profile_function_exit_libfunc
76095e2f 5208 = init_one_libfunc ("__cyg_profile_func_exit");
07417085 5209
e0cd0770
JC
5210#ifdef HAVE_conditional_trap
5211 init_traps ();
5212#endif
5213
159c2aed
DE
5214#ifdef INIT_TARGET_OPTABS
5215 /* Allow the target to add more libcalls or rename some, etc. */
5216 INIT_TARGET_OPTABS;
5217#endif
77c9c6c2 5218}
7e1966ca 5219\f
e2500fed
GK
5220static GTY(()) rtx trap_rtx;
5221
e0cd0770
JC
5222#ifdef HAVE_conditional_trap
5223/* The insn generating function can not take an rtx_code argument.
5224 TRAP_RTX is used as an rtx argument. Its code is replaced with
5225 the code to be used in the trap insn and all other fields are
541b0512 5226 ignored. */
e0cd0770
JC
5227
5228static void
5229init_traps ()
5230{
5231 if (HAVE_conditional_trap)
541b0512
MM
5232 {
5233 trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
541b0512 5234 }
e0cd0770
JC
5235}
5236#endif
5237
5238/* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
5239 CODE. Return 0 on failure. */
5240
5241rtx
5242gen_cond_trap (code, op1, op2, tcode)
c84e2712
KG
5243 enum rtx_code code ATTRIBUTE_UNUSED;
5244 rtx op1, op2 ATTRIBUTE_UNUSED, tcode ATTRIBUTE_UNUSED;
e0cd0770
JC
5245{
5246 enum machine_mode mode = GET_MODE (op1);
e0cd0770
JC
5247
5248 if (mode == VOIDmode)
5249 return 0;
5250
5251#ifdef HAVE_conditional_trap
5252 if (HAVE_conditional_trap
5253 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
5254 {
5255 rtx insn;
a157febd 5256 start_sequence();
e0cd0770
JC
5257 emit_insn (GEN_FCN (cmp_optab->handlers[(int) mode].insn_code) (op1, op2));
5258 PUT_CODE (trap_rtx, code);
5259 insn = gen_conditional_trap (trap_rtx, tcode);
5260 if (insn)
a157febd
GK
5261 {
5262 emit_insn (insn);
5263 insn = gen_sequence ();
5264 }
5265 end_sequence();
5266 return insn;
e0cd0770
JC
5267 }
5268#endif
5269
5270 return 0;
5271}
e2500fed
GK
5272
5273#include "gt-optabs.h"