]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/postreload-gcse.c
backport: basic-block.h: Include vec.h, errors.h.
[thirdparty/gcc.git] / gcc / postreload-gcse.c
CommitLineData
0516f6fe
SB
1/* Post reload partially redundant load elimination
2 Copyright (C) 2004
3 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
26#include "toplev.h"
27
28#include "rtl.h"
29#include "tree.h"
30#include "tm_p.h"
31#include "regs.h"
32#include "hard-reg-set.h"
33#include "flags.h"
34#include "real.h"
35#include "insn-config.h"
36#include "recog.h"
37#include "basic-block.h"
38#include "output.h"
39#include "function.h"
40#include "expr.h"
41#include "except.h"
42#include "intl.h"
43#include "obstack.h"
44#include "hashtab.h"
45#include "params.h"
46
47/* The following code implements gcse after reload, the purpose of this
48 pass is to cleanup redundant loads generated by reload and other
49 optimizations that come after gcse. It searches for simple inter-block
50 redundancies and tries to eliminate them by adding moves and loads
51 in cold places.
52
53 Perform partially redundant load elimination, try to eliminate redundant
54 loads created by the reload pass. We try to look for full or partial
55 redundant loads fed by one or more loads/stores in predecessor BBs,
56 and try adding loads to make them fully redundant. We also check if
57 it's worth adding loads to be able to delete the redundant load.
58
59 Algorithm:
60 1. Build available expressions hash table:
61 For each load/store instruction, if the loaded/stored memory didn't
62 change until the end of the basic block add this memory expression to
63 the hash table.
64 2. Perform Redundancy elimination:
65 For each load instruction do the following:
66 perform partial redundancy elimination, check if it's worth adding
67 loads to make the load fully redundant. If so add loads and
68 register copies and delete the load.
69 3. Delete instructions made redundant in step 2.
70
71 Future enhancement:
72 If the loaded register is used/defined between load and some store,
73 look for some other free register between load and all its stores,
74 and replace the load with a copy from this register to the loaded
75 register.
76*/
77\f
78
79/* Keep statistics of this pass. */
80static struct
81{
82 int moves_inserted;
83 int copies_inserted;
84 int insns_deleted;
85} stats;
86
87/* We need to keep a hash table of expressions. The table entries are of
88 type 'struct expr', and for each expression there is a single linked
2a7e31df 89 list of occurrences. */
0516f6fe
SB
90
91/* The table itself. */
92static htab_t expr_table;
93
94/* Expression elements in the hash table. */
95struct expr
96{
97 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
98 rtx expr;
99
100 /* The same hash for this entry. */
101 hashval_t hash;
102
103 /* List of available occurrence in basic blocks in the function. */
104 struct occr *avail_occr;
105};
106
107static struct obstack expr_obstack;
108
109/* Occurrence of an expression.
2a7e31df 110 There is at most one occurrence per basic block. If a pattern appears
0516f6fe
SB
111 more than once, the last appearance is used. */
112
113struct occr
114{
115 /* Next occurrence of this expression. */
116 struct occr *next;
117 /* The insn that computes the expression. */
118 rtx insn;
119 /* Nonzero if this [anticipatable] occurrence has been deleted. */
120 char deleted_p;
121};
122
123static struct obstack occr_obstack;
124
125/* The following structure holds the information about the occurrences of
126 the redundant instructions. */
127struct unoccr
128{
129 struct unoccr *next;
130 edge pred;
131 rtx insn;
132};
133
134static struct obstack unoccr_obstack;
135
136/* Array where each element is the CUID if the insn that last set the hard
137 register with the number of the element, since the start of the current
c93320c4
SB
138 basic block.
139
140 This array is used during the building of the hash table (step 1) to
141 determine if a reg is killed before the end of a basic block.
142
143 It is also used when eliminating partial redundancies (step 2) to see
144 if a reg was modified since the start of a basic block. */
0516f6fe
SB
145static int *reg_avail_info;
146
147/* A list of insns that may modify memory within the current basic block. */
148struct modifies_mem
149{
150 rtx insn;
151 struct modifies_mem *next;
152};
153static struct modifies_mem *modifies_mem_list;
154
155/* The modifies_mem structs also go on an obstack, only this obstack is
156 freed each time after completing the analysis or transformations on
157 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
158 object on the obstack to keep track of the bottom of the obstack. */
159static struct obstack modifies_mem_obstack;
160static struct modifies_mem *modifies_mem_obstack_bottom;
161
162/* Mapping of insn UIDs to CUIDs.
163 CUIDs are like UIDs except they increase monotonically in each basic
164 block, have no gaps, and only apply to real insns. */
165static int *uid_cuid;
166#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
167\f
168
169/* Helpers for memory allocation/freeing. */
170static void alloc_mem (void);
171static void free_mem (void);
172
173/* Support for hash table construction and transformations. */
174static bool oprs_unchanged_p (rtx, rtx, bool);
175static void record_last_reg_set_info (rtx, int);
176static void record_last_mem_set_info (rtx);
177static void record_last_set_info (rtx, rtx, void *);
c93320c4 178static void record_opr_changes (rtx);
0516f6fe
SB
179
180static void find_mem_conflicts (rtx, rtx, void *);
181static int load_killed_in_block_p (int, rtx, bool);
182static void reset_opr_set_tables (void);
183
184/* Hash table support. */
185static hashval_t hash_expr (rtx, int *);
186static hashval_t hash_expr_for_htab (const void *);
187static int expr_equiv_p (const void *, const void *);
188static void insert_expr_in_table (rtx, rtx);
189static struct expr *lookup_expr_in_table (rtx);
190static int dump_hash_table_entry (void **, void *);
191static void dump_hash_table (FILE *);
192
193/* Helpers for eliminate_partially_redundant_load. */
194static bool reg_killed_on_edge (rtx, edge);
195static bool reg_used_on_edge (rtx, edge);
196
197static rtx reg_set_between_after_reload_p (rtx, rtx, rtx);
198static rtx reg_used_between_after_reload_p (rtx, rtx, rtx);
199static rtx get_avail_load_store_reg (rtx);
200
201static bool bb_has_well_behaved_predecessors (basic_block);
202static struct occr* get_bb_avail_insn (basic_block, struct occr *);
203static void hash_scan_set (rtx);
204static void compute_hash_table (void);
205
206/* The work horses of this pass. */
207static void eliminate_partially_redundant_load (basic_block,
208 rtx,
209 struct expr *);
210static void eliminate_partially_redundant_loads (void);
211\f
212
213/* Allocate memory for the CUID mapping array and register/memory
214 tracking tables. */
215
216static void
217alloc_mem (void)
218{
219 int i;
220 basic_block bb;
221 rtx insn;
222
223 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
224 uid_cuid = xcalloc (get_max_uid () + 1, sizeof (int));
225 i = 0;
226 FOR_EACH_BB (bb)
227 FOR_BB_INSNS (bb, insn)
228 {
229 if (INSN_P (insn))
230 uid_cuid[INSN_UID (insn)] = i++;
231 else
232 uid_cuid[INSN_UID (insn)] = i;
233 }
234
235 /* Allocate the available expressions hash table. We don't want to
236 make the hash table too small, but unnecessarily making it too large
237 also doesn't help. The i/4 is a gcse.c relic, and seems like a
238 reasonable choice. */
239 expr_table = htab_create (MAX (i / 4, 13),
240 hash_expr_for_htab, expr_equiv_p, NULL);
241
242 /* We allocate everything on obstacks because we often can roll back
243 the whole obstack to some point. Freeing obstacks is very fast. */
244 gcc_obstack_init (&expr_obstack);
245 gcc_obstack_init (&occr_obstack);
246 gcc_obstack_init (&unoccr_obstack);
247 gcc_obstack_init (&modifies_mem_obstack);
248
249 /* Working array used to track the last set for each register
250 in the current block. */
251 reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
252
253 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
254 can roll it back in reset_opr_set_tables. */
255 modifies_mem_obstack_bottom =
256 (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
257 sizeof (struct modifies_mem));
258}
259
260/* Free memory allocated by alloc_mem. */
261
262static void
263free_mem (void)
264{
265 free (uid_cuid);
266
267 htab_delete (expr_table);
268
269 obstack_free (&expr_obstack, NULL);
270 obstack_free (&occr_obstack, NULL);
271 obstack_free (&unoccr_obstack, NULL);
272 obstack_free (&modifies_mem_obstack, NULL);
273
274 free (reg_avail_info);
275}
276\f
277
278/* Hash expression X.
279 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
280 or if the expression contains something we don't want to insert in the
281 table. */
282
283static hashval_t
284hash_expr (rtx x, int *do_not_record_p)
285{
286 *do_not_record_p = 0;
287 return hash_rtx (x, GET_MODE (x), do_not_record_p,
288 NULL, /*have_reg_qty=*/false);
289}
290
291/* Callback for hashtab.
292 Return the hash value for expression EXP. We don't actually hash
293 here, we just return the cached hash value. */
294
295static hashval_t
296hash_expr_for_htab (const void *expp)
297{
298 struct expr *exp = (struct expr *) expp;
299 return exp->hash;
300}
301
302/* Callbach for hashtab.
303 Return nonzero if exp1 is equivalent to exp2. */
304
305static int
306expr_equiv_p (const void *exp1p, const void *exp2p)
307{
308 struct expr *exp1 = (struct expr *) exp1p;
309 struct expr *exp2 = (struct expr *) exp2p;
310 int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
8127d0e0
NS
311 if (equiv_p
312 && exp1->hash != exp2->hash)
313 abort ();
0516f6fe
SB
314 return equiv_p;
315}
316\f
317
318/* Insert expression X in INSN in the hash TABLE.
319 If it is already present, record it as the last occurrence in INSN's
320 basic block. */
321
322static void
323insert_expr_in_table (rtx x, rtx insn)
324{
325 int do_not_record_p;
326 hashval_t hash;
327 struct expr *cur_expr, **slot;
328 struct occr *avail_occr, *last_occr = NULL;
329
330 hash = hash_expr (x, &do_not_record_p);
331
332 /* Do not insert expression in the table if it contains volatile operands,
333 or if hash_expr determines the expression is something we don't want
334 to or can't handle. */
335 if (do_not_record_p)
336 return;
337
338 /* We anticipate that redundant expressions are rare, so for convenience
339 allocate a new hash table element here already and set its fields.
340 If we don't do this, we need a hack with a static struct expr. Anyway,
341 obstack_free is really fast and one more obstack_alloc doesn't hurt if
342 we're going to see more expressions later on. */
343 cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
344 sizeof (struct expr));
345 cur_expr->expr = x;
346 cur_expr->hash = hash;
347 cur_expr->avail_occr = NULL;
348
349 slot = (struct expr **) htab_find_slot_with_hash (expr_table, cur_expr,
350 hash, INSERT);
351
352 if (! (*slot))
353 /* The expression isn't found, so insert it. */
354 *slot = cur_expr;
355 else
356 {
357 /* The expression is already in the table, so roll back the
358 obstack and use the existing table entry. */
359 obstack_free (&expr_obstack, cur_expr);
360 cur_expr = *slot;
361 }
362
363 /* Search for another occurrence in the same basic block. */
364 avail_occr = cur_expr->avail_occr;
365 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
366 {
367 /* If an occurrence isn't found, save a pointer to the end of
368 the list. */
369 last_occr = avail_occr;
370 avail_occr = avail_occr->next;
371 }
372
373 if (avail_occr)
374 /* Found another instance of the expression in the same basic block.
375 Prefer this occurrence to the currently recorded one. We want
376 the last one in the block and the block is scanned from start
377 to end. */
378 avail_occr->insn = insn;
379 else
380 {
381 /* First occurrence of this expression in this basic block. */
382 avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
383 sizeof (struct occr));
384
385 /* First occurrence of this expression in any block? */
386 if (cur_expr->avail_occr == NULL)
387 cur_expr->avail_occr = avail_occr;
388 else
389 last_occr->next = avail_occr;
390
391 avail_occr->insn = insn;
392 avail_occr->next = NULL;
393 avail_occr->deleted_p = 0;
394 }
395}
396\f
397
398/* Lookup pattern PAT in the expression hash table.
399 The result is a pointer to the table entry, or NULL if not found. */
400
401static struct expr *
402lookup_expr_in_table (rtx pat)
403{
404 int do_not_record_p;
405 struct expr **slot, *tmp_expr;
406 hashval_t hash = hash_expr (pat, &do_not_record_p);
407
408 if (do_not_record_p)
409 return NULL;
410
411 tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
412 sizeof (struct expr));
413 tmp_expr->expr = pat;
414 tmp_expr->hash = hash;
415 tmp_expr->avail_occr = NULL;
416
417 slot = (struct expr **) htab_find_slot_with_hash (expr_table, tmp_expr,
418 hash, INSERT);
419 obstack_free (&expr_obstack, tmp_expr);
420
421 if (!slot)
422 return NULL;
423 else
424 return (*slot);
425}
426\f
427
2a7e31df 428/* Dump all expressions and occurrences that are currently in the
0516f6fe
SB
429 expression hash table to FILE. */
430
431/* This helper is called via htab_traverse. */
432static int
433dump_hash_table_entry (void **slot, void *filep)
434{
435 struct expr *expr = (struct expr *) *slot;
436 FILE *file = (FILE *) filep;
437 struct occr *occr;
438
439 fprintf (file, "expr: ");
440 print_rtl (file, expr->expr);
441 fprintf (file,"\nhashcode: %u\n", expr->hash);
442 fprintf (file,"list of occurences:\n");
443 occr = expr->avail_occr;
444 while (occr)
445 {
446 rtx insn = occr->insn;
447 print_rtl_single (file, insn);
448 fprintf (file, "\n");
449 occr = occr->next;
450 }
451 fprintf (file, "\n");
452 return 1;
453}
454
455static void
456dump_hash_table (FILE *file)
457{
458 fprintf (file, "\n\nexpression hash table\n");
459 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
460 (long) htab_size (expr_table),
461 (long) htab_elements (expr_table),
462 htab_collisions (expr_table));
463 if (htab_elements (expr_table) > 0)
464 {
465 fprintf (file, "\n\ntable entries:\n");
466 htab_traverse (expr_table, dump_hash_table_entry, file);
467 }
468 fprintf (file, "\n");
469}
470\f
471
c93320c4
SB
472/* Return nonzero if the operands of expression X are unchanged
473 1) from the start of INSN's basic block up to but not including INSN
474 if AFTER_INSN is false, or
475 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
0516f6fe
SB
476
477static bool
478oprs_unchanged_p (rtx x, rtx insn, bool after_insn)
479{
480 int i, j;
481 enum rtx_code code;
482 const char *fmt;
483
484 if (x == 0)
485 return 1;
486
487 code = GET_CODE (x);
488 switch (code)
489 {
490 case REG:
8127d0e0 491#ifdef ENABLE_CHECKING
0516f6fe 492 /* We are called after register allocation. */
8127d0e0
NS
493 if (REGNO (x) >= FIRST_PSEUDO_REGISTER)
494 abort ();
495#endif
0516f6fe
SB
496 if (after_insn)
497 /* If the last CUID setting the insn is less than the CUID of
498 INSN, then reg X is not changed in or after INSN. */
499 return reg_avail_info[REGNO (x)] < INSN_CUID (insn);
500 else
501 /* Reg X is not set before INSN in the current basic block if
502 we have not yet recorded the CUID of an insn that touches
503 the reg. */
504 return reg_avail_info[REGNO (x)] == 0;
505
506 case MEM:
507 if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
508 return 0;
509 else
510 return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
511
512 case PC:
513 case CC0: /*FIXME*/
514 case CONST:
515 case CONST_INT:
516 case CONST_DOUBLE:
517 case CONST_VECTOR:
518 case SYMBOL_REF:
519 case LABEL_REF:
520 case ADDR_VEC:
521 case ADDR_DIFF_VEC:
522 return 1;
523
524 case PRE_DEC:
525 case PRE_INC:
526 case POST_DEC:
527 case POST_INC:
528 case PRE_MODIFY:
529 case POST_MODIFY:
530 if (after_insn)
531 return 0;
532 break;
533
534 default:
535 break;
536 }
537
538 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
539 {
540 if (fmt[i] == 'e')
541 {
542 if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
543 return 0;
544 }
545 else if (fmt[i] == 'E')
546 for (j = 0; j < XVECLEN (x, i); j++)
547 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
548 return 0;
549 }
550
551 return 1;
552}
553\f
554
555/* Used for communication between find_mem_conflicts and
556 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
557 conflict between two memory references.
558 This is a bit of a hack to work around the limitations of note_stores. */
559static int mems_conflict_p;
560
561/* DEST is the output of an instruction. If it is a memory reference, and
562 possibly conflicts with the load found in DATA, then set mems_conflict_p
563 to a nonzero value. */
564
565static void
566find_mem_conflicts (rtx dest, rtx setter ATTRIBUTE_UNUSED,
567 void *data)
568{
569 rtx mem_op = (rtx) data;
570
571 while (GET_CODE (dest) == SUBREG
572 || GET_CODE (dest) == ZERO_EXTRACT
573 || GET_CODE (dest) == SIGN_EXTRACT
574 || GET_CODE (dest) == STRICT_LOW_PART)
575 dest = XEXP (dest, 0);
576
577 /* If DEST is not a MEM, then it will not conflict with the load. Note
578 that function calls are assumed to clobber memory, but are handled
579 elsewhere. */
580 if (! MEM_P (dest))
581 return;
582
583 if (true_dependence (dest, GET_MODE (dest), mem_op,
584 rtx_addr_varies_p))
585 mems_conflict_p = 1;
586}
587\f
588
589/* Return nonzero if the expression in X (a memory reference) is killed
c93320c4
SB
590 in the current basic block before (if AFTER_INSN is false) or after
591 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
592
593 This function assumes that the modifies_mem table is flushed when
594 the hash table construction or redundancy elimination phases start
595 processing a new basic block. */
0516f6fe
SB
596
597static int
598load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
599{
600 struct modifies_mem *list_entry = modifies_mem_list;
601
602 while (list_entry)
603 {
604 rtx setter = list_entry->insn;
605
606 /* Ignore entries in the list that do not apply. */
607 if ((after_insn
608 && INSN_CUID (setter) < uid_limit)
609 || (! after_insn
610 && INSN_CUID (setter) > uid_limit))
611 {
612 list_entry = list_entry->next;
613 continue;
614 }
615
616 /* If SETTER is a call everything is clobbered. Note that calls
617 to pure functions are never put on the list, so we need not
618 worry about them. */
619 if (CALL_P (setter))
620 return 1;
621
622 /* SETTER must be an insn of some kind that sets memory. Call
623 note_stores to examine each hunk of memory that is modified.
624 It will set mems_conflict_p to nonzero if there may be a
625 conflict between X and SETTER. */
626 mems_conflict_p = 0;
627 note_stores (PATTERN (setter), find_mem_conflicts, x);
628 if (mems_conflict_p)
629 return 1;
630
631 list_entry = list_entry->next;
632 }
633 return 0;
634}
635\f
636
637/* Record register first/last/block set information for REGNO in INSN. */
638
c93320c4 639static inline void
0516f6fe
SB
640record_last_reg_set_info (rtx insn, int regno)
641{
642 reg_avail_info[regno] = INSN_CUID (insn);
643}
644
645
646/* Record memory modification information for INSN. We do not actually care
647 about the memory location(s) that are set, or even how they are set (consider
648 a CALL_INSN). We merely need to record which insns modify memory. */
649
650static void
651record_last_mem_set_info (rtx insn)
652{
653 struct modifies_mem *list_entry;
654
655 list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
656 sizeof (struct modifies_mem));
657 list_entry->insn = insn;
658 list_entry->next = modifies_mem_list;
659 modifies_mem_list = list_entry;
660}
661
662/* Called from compute_hash_table via note_stores to handle one
663 SET or CLOBBER in an insn. DATA is really the instruction in which
664 the SET is taking place. */
665
666static void
667record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
668{
669 rtx last_set_insn = (rtx) data;
670
671 if (GET_CODE (dest) == SUBREG)
672 dest = SUBREG_REG (dest);
673
674 if (REG_P (dest))
675 record_last_reg_set_info (last_set_insn, REGNO (dest));
676 else if (MEM_P (dest)
677 /* Ignore pushes, they clobber nothing. */
678 && ! push_operand (dest, GET_MODE (dest)))
679 record_last_mem_set_info (last_set_insn);
680}
c93320c4 681
0516f6fe
SB
682
683/* Reset tables used to keep track of what's still available since the
684 start of the block. */
685
686static void
687reset_opr_set_tables (void)
688{
689 memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
690 obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
691 modifies_mem_list = NULL;
692}
c93320c4 693\f
0516f6fe
SB
694
695/* Record things set by INSN.
696 This data is used by oprs_unchanged_p. */
697
698static void
c93320c4 699record_opr_changes (rtx insn)
0516f6fe 700{
c93320c4 701 rtx note;
0516f6fe 702
c93320c4
SB
703 /* Find all stores and record them. */
704 note_stores (PATTERN (insn), record_last_set_info, insn);
0516f6fe 705
c93320c4
SB
706 /* Also record autoincremented REGs for this insn as changed. */
707 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
708 if (REG_NOTE_KIND (note) == REG_INC)
709 record_last_reg_set_info (insn, REGNO (XEXP (note, 0)));
0516f6fe 710
c93320c4
SB
711 /* Finally, if this is a call, record all call clobbers. */
712 if (CALL_P (insn))
713 {
714 unsigned int regno;
715 bool clobbers_all = false;
716
717#ifdef NON_SAVING_SETJMP
718 if (NON_SAVING_SETJMP
719 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
720 clobbers_all = true;
721#endif
722
723 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
724 if (clobbers_all
725 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
726 record_last_reg_set_info (insn, regno);
0516f6fe 727
c93320c4
SB
728 if (! CONST_OR_PURE_CALL_P (insn))
729 record_last_mem_set_info (insn);
730 }
0516f6fe
SB
731}
732\f
733
734/* Scan the pattern of INSN and add an entry to the hash TABLE.
735 After reload we are interested in loads/stores only. */
736
737static void
738hash_scan_set (rtx insn)
739{
740 rtx pat = PATTERN (insn);
741 rtx src = SET_SRC (pat);
742 rtx dest = SET_DEST (pat);
743
744 /* We are only interested in loads and stores. */
745 if (! MEM_P (src) && ! MEM_P (dest))
746 return;
747
748 /* Don't mess with jumps and nops. */
749 if (JUMP_P (insn) || set_noop_p (pat))
750 return;
751
752#ifdef ENABLE_CHEKCING
753 /* We shouldn't have any EH_REGION notes post reload. */
8127d0e0
NS
754 if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
755 abort ();
0516f6fe
SB
756#endif
757
758 if (REG_P (dest))
759 {
c93320c4 760 if (/* Don't CSE something if we can't do a reg/reg copy. */
0516f6fe
SB
761 can_copy_p (GET_MODE (dest))
762 /* Is SET_SRC something we want to gcse? */
763 && general_operand (src, GET_MODE (src))
764 /* An expression is not available if its operands are
765 subsequently modified, including this insn. */
766 && oprs_unchanged_p (src, insn, true))
767 {
768 insert_expr_in_table (src, insn);
769 }
770 }
771 else if (REG_P (src))
772 {
773 /* Only record sets of pseudo-regs in the hash table. */
c93320c4 774 if (/* Don't CSE something if we can't do a reg/reg copy. */
0516f6fe
SB
775 can_copy_p (GET_MODE (src))
776 /* Is SET_DEST something we want to gcse? */
777 && general_operand (dest, GET_MODE (dest))
778 && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
779 /* Check if the memory expression is killed after insn. */
780 && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
781 && oprs_unchanged_p (XEXP (dest, 0), insn, true))
782 {
783 insert_expr_in_table (dest, insn);
784 }
785 }
786}
787\f
c93320c4 788
0516f6fe 789/* Create hash table of memory expressions available at end of basic
c93320c4
SB
790 blocks. Basically you should think of this hash table as the
791 representation of AVAIL_OUT. This is the set of expressions that
792 is generated in a basic block and not killed before the end of the
793 same basic block. Notice that this is really a local computation. */
0516f6fe
SB
794
795static void
796compute_hash_table (void)
797{
798 basic_block bb;
799
800 FOR_EACH_BB (bb)
801 {
802 rtx insn;
0516f6fe
SB
803
804 /* First pass over the instructions records information used to
c93320c4
SB
805 determine when registers and memory are last set.
806 Since we compute a "local" AVAIL_OUT, reset the tables that
807 help us keep track of what has been modified since the start
808 of the block. */
809 reset_opr_set_tables ();
0516f6fe
SB
810 FOR_BB_INSNS (bb, insn)
811 {
c93320c4
SB
812 if (INSN_P (insn))
813 record_opr_changes (insn);
814 }
0516f6fe 815
c93320c4 816 /* The next pass actually builds the hash table. */
0516f6fe
SB
817 FOR_BB_INSNS (bb, insn)
818 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
819 hash_scan_set (insn);
820 }
821}
822\f
823
824/* Check if register REG is killed in any insn waiting to be inserted on
825 edge E. This function is required to check that our data flow analysis
826 is still valid prior to commit_edge_insertions. */
827
828static bool
829reg_killed_on_edge (rtx reg, edge e)
830{
831 rtx insn;
832
833 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
834 if (INSN_P (insn) && reg_set_p (reg, insn))
835 return true;
836
837 return false;
838}
839
840/* Similar to above - check if register REG is used in any insn waiting
841 to be inserted on edge E.
842 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
843 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
844
845static bool
846reg_used_on_edge (rtx reg, edge e)
847{
848 rtx insn;
849
850 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
851 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
852 return true;
853
854 return false;
855}
856\f
857
858/* Return the insn that sets register REG or clobbers it in between
859 FROM_INSN and TO_INSN (exclusive of those two).
860 Just like reg_set_between but for hard registers and not pseudos. */
861
862static rtx
863reg_set_between_after_reload_p (rtx reg, rtx from_insn, rtx to_insn)
864{
865 rtx insn;
0516f6fe 866
8127d0e0 867#ifdef ENABLE_CHECKING
0516f6fe 868 /* We are called after register allocation. */
8127d0e0
NS
869 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
870 abort ();
871#endif
0516f6fe
SB
872
873 if (from_insn == to_insn)
874 return NULL_RTX;
875
0516f6fe
SB
876 for (insn = NEXT_INSN (from_insn);
877 insn != to_insn;
878 insn = NEXT_INSN (insn))
c93320c4
SB
879 if (INSN_P (insn))
880 {
881 if (set_of (reg, insn) != NULL_RTX)
882 return insn;
883 if ((CALL_P (insn)
884 && call_used_regs[REGNO (reg)])
885 || find_reg_fusage (insn, CLOBBER, reg))
886 return insn;
887
888 if (FIND_REG_INC_NOTE (insn, reg))
889 return insn;
890 }
0516f6fe
SB
891
892 return NULL_RTX;
893}
894
895/* Return the insn that uses register REG in between FROM_INSN and TO_INSN
896 (exclusive of those two). Similar to reg_used_between but for hard
897 registers and not pseudos. */
898
899static rtx
900reg_used_between_after_reload_p (rtx reg, rtx from_insn, rtx to_insn)
901{
902 rtx insn;
0516f6fe 903
8127d0e0 904#ifdef ENABLE_CHECKING
0516f6fe 905 /* We are called after register allocation. */
8127d0e0
NS
906 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
907 abort ();
908#endif
0516f6fe
SB
909
910 if (from_insn == to_insn)
911 return NULL_RTX;
912
0516f6fe
SB
913 for (insn = NEXT_INSN (from_insn);
914 insn != to_insn;
915 insn = NEXT_INSN (insn))
c93320c4
SB
916 if (INSN_P (insn))
917 {
918 if (reg_overlap_mentioned_p (reg, PATTERN (insn))
0516f6fe 919 || (CALL_P (insn)
c93320c4 920 && call_used_regs[REGNO (reg)])
0516f6fe 921 || find_reg_fusage (insn, USE, reg)
c93320c4
SB
922 || find_reg_fusage (insn, CLOBBER, reg))
923 return insn;
924
925 if (FIND_REG_INC_NOTE (insn, reg))
926 return insn;
927 }
0516f6fe
SB
928
929 return NULL_RTX;
930}
931
932/* Return true if REG is used, set, or killed between the beginning of
933 basic block BB and UP_TO_INSN. Caches the result in reg_avail_info. */
934
935static bool
936reg_set_or_used_since_bb_start (rtx reg, basic_block bb, rtx up_to_insn)
937{
938 rtx insn, start = PREV_INSN (BB_HEAD (bb));
939
940 if (reg_avail_info[REGNO (reg)] != 0)
941 return true;
942
943 insn = reg_used_between_after_reload_p (reg, start, up_to_insn);
944 if (! insn)
945 insn = reg_set_between_after_reload_p (reg, start, up_to_insn);
946
947 if (insn)
948 reg_avail_info[REGNO (reg)] = INSN_CUID (insn);
949
950 return insn != NULL_RTX;
951}
952
953/* Return the loaded/stored register of a load/store instruction. */
954
955static rtx
956get_avail_load_store_reg (rtx insn)
957{
958 if (REG_P (SET_DEST (PATTERN (insn)))) /* A load. */
959 return SET_DEST(PATTERN(insn));
960 if (REG_P (SET_SRC (PATTERN (insn)))) /* A store. */
961 return SET_SRC (PATTERN (insn));
8127d0e0 962 abort ();
0516f6fe
SB
963}
964
965/* Return nonzero if the predecessors of BB are "well behaved". */
966
967static bool
968bb_has_well_behaved_predecessors (basic_block bb)
969{
970 edge pred;
628f6a4e 971 edge_iterator ei;
0516f6fe 972
628f6a4e 973 if (EDGE_COUNT (bb->preds) == 0)
0516f6fe
SB
974 return false;
975
628f6a4e 976 FOR_EACH_EDGE (pred, ei, bb->preds)
0516f6fe
SB
977 {
978 if ((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
979 return false;
980
981 if (JUMP_TABLE_DATA_P (BB_END (pred->src)))
982 return false;
983 }
984 return true;
985}
986
987
988/* Search for the occurrences of expression in BB. */
989
990static struct occr*
991get_bb_avail_insn (basic_block bb, struct occr *occr)
992{
993 for (; occr != NULL; occr = occr->next)
994 if (BLOCK_FOR_INSN (occr->insn) == bb)
995 return occr;
996 return NULL;
997}
998
999
1000/* This handles the case where several stores feed a partially redundant
1001 load. It checks if the redundancy elimination is possible and if it's
c93320c4
SB
1002 worth it.
1003
1004 Redundancy elimination is possible if,
1005 1) None of the operands of an insn have been modified since the start
1006 of the current basic block.
1007 2) In any predecessor of the current basic block, the same expression
1008 is generated.
1009
1010 See the function body for the heuristics that determine if eliminating
1011 a redundancy is also worth doing, assuming it is possible. */
0516f6fe
SB
1012
1013static void
1014eliminate_partially_redundant_load (basic_block bb, rtx insn,
1015 struct expr *expr)
1016{
1017 edge pred;
1018 rtx avail_insn = NULL_RTX;
1019 rtx avail_reg;
1020 rtx dest, pat;
1021 struct occr *a_occr;
1022 struct unoccr *occr, *avail_occrs = NULL;
1023 struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
1024 int npred_ok = 0;
1025 gcov_type ok_count = 0; /* Redundant load execution count. */
1026 gcov_type critical_count = 0; /* Execution count of critical edges. */
628f6a4e 1027 edge_iterator ei;
0516f6fe
SB
1028
1029 /* The execution count of the loads to be added to make the
1030 load fully redundant. */
1031 gcov_type not_ok_count = 0;
1032 basic_block pred_bb;
1033
1034 pat = PATTERN (insn);
1035 dest = SET_DEST (pat);
1036
1037 /* Check that the loaded register is not used, set, or killed from the
1038 beginning of the block. */
1039 if (reg_set_or_used_since_bb_start (dest, bb, insn))
1040 return;
1041
1042 /* Check potential for replacing load with copy for predecessors. */
628f6a4e 1043 FOR_EACH_EDGE (pred, ei, bb->preds)
0516f6fe
SB
1044 {
1045 rtx next_pred_bb_end;
1046
1047 avail_insn = NULL_RTX;
1048 pred_bb = pred->src;
1049 next_pred_bb_end = NEXT_INSN (BB_END (pred_bb));
1050 for (a_occr = get_bb_avail_insn (pred_bb, expr->avail_occr); a_occr;
1051 a_occr = get_bb_avail_insn (pred_bb, a_occr->next))
1052 {
1053 /* Check if the loaded register is not used. */
1054 avail_insn = a_occr->insn;
8127d0e0
NS
1055 if (! (avail_reg = get_avail_load_store_reg (avail_insn)))
1056 abort ();
0516f6fe
SB
1057 /* Make sure we can generate a move from register avail_reg to
1058 dest. */
1059 extract_insn (gen_move_insn (copy_rtx (dest),
1060 copy_rtx (avail_reg)));
1061 if (! constrain_operands (1)
1062 || reg_killed_on_edge (avail_reg, pred)
1063 || reg_used_on_edge (dest, pred))
1064 {
1065 avail_insn = NULL;
1066 continue;
1067 }
1068 if (! reg_set_between_after_reload_p (avail_reg, avail_insn,
1069 next_pred_bb_end))
1070 /* AVAIL_INSN remains non-null. */
1071 break;
1072 else
1073 avail_insn = NULL;
1074 }
1075
1076 if (EDGE_CRITICAL_P (pred))
1077 critical_count += pred->count;
1078
1079 if (avail_insn != NULL_RTX)
1080 {
1081 npred_ok++;
1082 ok_count += pred->count;
1083 occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1084 sizeof (struct occr));
1085 occr->insn = avail_insn;
1086 occr->pred = pred;
1087 occr->next = avail_occrs;
1088 avail_occrs = occr;
1089 if (! rollback_unoccr)
1090 rollback_unoccr = occr;
1091 }
1092 else
1093 {
1094 not_ok_count += pred->count;
1095 unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1096 sizeof (struct unoccr));
1097 unoccr->insn = NULL_RTX;
1098 unoccr->pred = pred;
1099 unoccr->next = unavail_occrs;
1100 unavail_occrs = unoccr;
1101 if (! rollback_unoccr)
1102 rollback_unoccr = unoccr;
1103 }
1104 }
1105
1106 if (/* No load can be replaced by copy. */
1107 npred_ok == 0
1108 /* Prevent exploding the code. */
1109 || (optimize_size && npred_ok > 1))
1110 goto cleanup;
1111
1112 /* Check if it's worth applying the partial redundancy elimination. */
1113 if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
1114 goto cleanup;
1115 if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
1116 goto cleanup;
1117
1118 /* Generate moves to the loaded register from where
1119 the memory is available. */
1120 for (occr = avail_occrs; occr; occr = occr->next)
1121 {
1122 avail_insn = occr->insn;
1123 pred = occr->pred;
1124 /* Set avail_reg to be the register having the value of the
1125 memory. */
1126 avail_reg = get_avail_load_store_reg (avail_insn);
8127d0e0
NS
1127 if (! avail_reg)
1128 abort ();
0516f6fe
SB
1129
1130 insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
1131 copy_rtx (avail_reg)),
1132 pred);
1133 stats.moves_inserted++;
1134
1135 if (dump_file)
1136 fprintf (dump_file,
1137 "generating move from %d to %d on edge from %d to %d\n",
1138 REGNO (avail_reg),
1139 REGNO (dest),
1140 pred->src->index,
1141 pred->dest->index);
1142 }
1143
1144 /* Regenerate loads where the memory is unavailable. */
1145 for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
1146 {
1147 pred = unoccr->pred;
1148 insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
1149 stats.copies_inserted++;
1150
1151 if (dump_file)
1152 {
1153 fprintf (dump_file,
1154 "generating on edge from %d to %d a copy of load: ",
1155 pred->src->index,
1156 pred->dest->index);
1157 print_rtl (dump_file, PATTERN (insn));
1158 fprintf (dump_file, "\n");
1159 }
1160 }
1161
1162 /* Delete the insn if it is not available in this block and mark it
1163 for deletion if it is available. If insn is available it may help
1164 discover additional redundancies, so mark it for later deletion. */
1165 for (a_occr = get_bb_avail_insn (bb, expr->avail_occr);
1166 a_occr && (a_occr->insn != insn);
1167 a_occr = get_bb_avail_insn (bb, a_occr->next));
1168
1169 if (!a_occr)
1170 delete_insn (insn);
1171 else
1172 a_occr->deleted_p = 1;
1173
1174cleanup:
1175 if (rollback_unoccr)
1176 obstack_free (&unoccr_obstack, rollback_unoccr);
1177}
1178
1179/* Performing the redundancy elimination as described before. */
1180
1181static void
1182eliminate_partially_redundant_loads (void)
1183{
1184 rtx insn;
1185 basic_block bb;
1186
1187 /* Note we start at block 1. */
1188
1189 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
1190 return;
1191
1192 FOR_BB_BETWEEN (bb,
1193 ENTRY_BLOCK_PTR->next_bb->next_bb,
1194 EXIT_BLOCK_PTR,
1195 next_bb)
1196 {
c93320c4 1197 /* Don't try anything on basic blocks with strange predecessors. */
0516f6fe
SB
1198 if (! bb_has_well_behaved_predecessors (bb))
1199 continue;
1200
c93320c4 1201 /* Do not try anything on cold basic blocks. */
0516f6fe
SB
1202 if (probably_cold_bb_p (bb))
1203 continue;
1204
c93320c4
SB
1205 /* Reset the table of things changed since the start of the current
1206 basic block. */
0516f6fe
SB
1207 reset_opr_set_tables ();
1208
c93320c4
SB
1209 /* Look at all insns in the current basic block and see if there are
1210 any loads in it that we can record. */
0516f6fe
SB
1211 FOR_BB_INSNS (bb, insn)
1212 {
1213 /* Is it a load - of the form (set (reg) (mem))? */
1214 if (NONJUMP_INSN_P (insn)
1215 && GET_CODE (PATTERN (insn)) == SET
1216 && REG_P (SET_DEST (PATTERN (insn)))
1217 && MEM_P (SET_SRC (PATTERN (insn))))
1218 {
1219 rtx pat = PATTERN (insn);
1220 rtx src = SET_SRC (pat);
1221 struct expr *expr;
1222
1223 if (!MEM_VOLATILE_P (src)
1224 && GET_MODE (src) != BLKmode
1225 && general_operand (src, GET_MODE (src))
1226 /* Are the operands unchanged since the start of the
1227 block? */
1228 && oprs_unchanged_p (src, insn, false)
1229 && !(flag_non_call_exceptions && may_trap_p (src))
1230 && !side_effects_p (src)
1231 /* Is the expression recorded? */
1232 && (expr = lookup_expr_in_table (src)) != NULL)
1233 {
1234 /* We now have a load (insn) and an available memory at
1235 its BB start (expr). Try to remove the loads if it is
1236 redundant. */
1237 eliminate_partially_redundant_load (bb, insn, expr);
1238 }
1239 }
1240
c93320c4
SB
1241 /* Keep track of everything modified by this insn, so that we
1242 know what has been modified since the start of the current
1243 basic block. */
0516f6fe 1244 if (INSN_P (insn))
c93320c4 1245 record_opr_changes (insn);
0516f6fe
SB
1246 }
1247 }
1248
1249 commit_edge_insertions ();
1250}
1251
1252/* Go over the expression hash table and delete insns that were
1253 marked for later deletion. */
1254
1255/* This helper is called via htab_traverse. */
1256static int
1257delete_redundant_insns_1 (void **slot, void *data ATTRIBUTE_UNUSED)
1258{
1259 struct expr *expr = (struct expr *) *slot;
1260 struct occr *occr;
1261
1262 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1263 {
1264 if (occr->deleted_p)
1265 {
1266 delete_insn (occr->insn);
1267 stats.insns_deleted++;
1268
1269 if (dump_file)
1270 {
1271 fprintf (dump_file, "deleting insn:\n");
1272 print_rtl_single (dump_file, occr->insn);
1273 fprintf (dump_file, "\n");
1274 }
1275 }
1276 }
1277
1278 return 1;
1279}
1280
1281static void
1282delete_redundant_insns (void)
1283{
1284 htab_traverse (expr_table, delete_redundant_insns_1, NULL);
1285 if (dump_file)
1286 fprintf (dump_file, "\n");
1287}
1288
1289/* Main entry point of the GCSE after reload - clean some redundant loads
1290 due to spilling. */
1291
1292void
1293gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
1294{
1295 memset (&stats, 0, sizeof (stats));
1296
1297 /* Allocate ememory for this pass.
1298 Also computes and initializes the insns' CUIDs. */
1299 alloc_mem ();
1300
1301 /* We need alias analysis. */
1302 init_alias_analysis ();
1303
1304 compute_hash_table ();
1305
1306 if (dump_file)
1307 dump_hash_table (dump_file);
1308
1309 if (htab_elements (expr_table) > 0)
1310 {
1311 eliminate_partially_redundant_loads ();
1312 delete_redundant_insns ();
1313
1314 if (dump_file)
1315 {
1316 fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
1317 fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
1318 fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted);
1319 fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted);
1320 fprintf (dump_file, "\n\n");
1321 }
1322 }
1323
1324 /* We are finished with alias. */
1325 end_alias_analysis ();
1326
1327 free_mem ();
1328}
1329