]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/postreload-gcse.c
pass cfun to pass::execute
[thirdparty/gcc.git] / gcc / postreload-gcse.c
CommitLineData
78d140c9 1/* Post reload partially redundant load elimination
3aea1f79 2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
78d140c9 3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8c4c00c1 8Software Foundation; either version 3, or (at your option) any later
78d140c9 9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
78d140c9 19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
0b205f4c 24#include "diagnostic-core.h"
78d140c9 25
d9dd21a8 26#include "hash-table.h"
78d140c9 27#include "rtl.h"
28#include "tree.h"
29#include "tm_p.h"
30#include "regs.h"
31#include "hard-reg-set.h"
32#include "flags.h"
78d140c9 33#include "insn-config.h"
34#include "recog.h"
35#include "basic-block.h"
78d140c9 36#include "function.h"
37#include "expr.h"
38#include "except.h"
39#include "intl.h"
40#include "obstack.h"
41#include "hashtab.h"
42#include "params.h"
5ee7391d 43#include "target.h"
77fce4cd 44#include "tree-pass.h"
3072d30e 45#include "dbgcnt.h"
78d140c9 46
47/* The following code implements gcse after reload, the purpose of this
48 pass is to cleanup redundant loads generated by reload and other
49 optimizations that come after gcse. It searches for simple inter-block
50 redundancies and tries to eliminate them by adding moves and loads
51 in cold places.
52
53 Perform partially redundant load elimination, try to eliminate redundant
54 loads created by the reload pass. We try to look for full or partial
55 redundant loads fed by one or more loads/stores in predecessor BBs,
56 and try adding loads to make them fully redundant. We also check if
57 it's worth adding loads to be able to delete the redundant load.
58
59 Algorithm:
60 1. Build available expressions hash table:
61 For each load/store instruction, if the loaded/stored memory didn't
62 change until the end of the basic block add this memory expression to
63 the hash table.
64 2. Perform Redundancy elimination:
65 For each load instruction do the following:
66 perform partial redundancy elimination, check if it's worth adding
67 loads to make the load fully redundant. If so add loads and
68 register copies and delete the load.
69 3. Delete instructions made redundant in step 2.
70
71 Future enhancement:
72 If the loaded register is used/defined between load and some store,
73 look for some other free register between load and all its stores,
74 and replace the load with a copy from this register to the loaded
75 register.
76*/
77\f
78
79/* Keep statistics of this pass. */
80static struct
81{
82 int moves_inserted;
83 int copies_inserted;
84 int insns_deleted;
85} stats;
86
87/* We need to keep a hash table of expressions. The table entries are of
88 type 'struct expr', and for each expression there is a single linked
91275768 89 list of occurrences. */
78d140c9 90
78d140c9 91/* Expression elements in the hash table. */
92struct expr
93{
94 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
95 rtx expr;
96
97 /* The same hash for this entry. */
98 hashval_t hash;
99
100 /* List of available occurrence in basic blocks in the function. */
101 struct occr *avail_occr;
102};
103
d9dd21a8 104/* Hashtable helpers. */
105
106struct expr_hasher : typed_noop_remove <expr>
107{
108 typedef expr value_type;
109 typedef expr compare_type;
110 static inline hashval_t hash (const value_type *);
111 static inline bool equal (const value_type *, const compare_type *);
112};
113
114
115/* Hash expression X.
116 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
117 or if the expression contains something we don't want to insert in the
118 table. */
119
120static hashval_t
121hash_expr (rtx x, int *do_not_record_p)
122{
123 *do_not_record_p = 0;
124 return hash_rtx (x, GET_MODE (x), do_not_record_p,
125 NULL, /*have_reg_qty=*/false);
126}
127
128/* Callback for hashtab.
129 Return the hash value for expression EXP. We don't actually hash
130 here, we just return the cached hash value. */
131
132inline hashval_t
133expr_hasher::hash (const value_type *exp)
134{
135 return exp->hash;
136}
137
138/* Callback for hashtab.
139 Return nonzero if exp1 is equivalent to exp2. */
140
141inline bool
142expr_hasher::equal (const value_type *exp1, const compare_type *exp2)
143{
144 int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
145
146 gcc_assert (!equiv_p || exp1->hash == exp2->hash);
147 return equiv_p;
148}
149
150/* The table itself. */
151static hash_table <expr_hasher> expr_table;
152\f
153
78d140c9 154static struct obstack expr_obstack;
155
156/* Occurrence of an expression.
91275768 157 There is at most one occurrence per basic block. If a pattern appears
78d140c9 158 more than once, the last appearance is used. */
159
160struct occr
161{
162 /* Next occurrence of this expression. */
163 struct occr *next;
164 /* The insn that computes the expression. */
165 rtx insn;
166 /* Nonzero if this [anticipatable] occurrence has been deleted. */
167 char deleted_p;
168};
169
170static struct obstack occr_obstack;
171
172/* The following structure holds the information about the occurrences of
173 the redundant instructions. */
174struct unoccr
175{
176 struct unoccr *next;
177 edge pred;
178 rtx insn;
179};
180
181static struct obstack unoccr_obstack;
182
183/* Array where each element is the CUID if the insn that last set the hard
184 register with the number of the element, since the start of the current
d447762f 185 basic block.
186
187 This array is used during the building of the hash table (step 1) to
188 determine if a reg is killed before the end of a basic block.
189
190 It is also used when eliminating partial redundancies (step 2) to see
191 if a reg was modified since the start of a basic block. */
78d140c9 192static int *reg_avail_info;
193
194/* A list of insns that may modify memory within the current basic block. */
195struct modifies_mem
196{
197 rtx insn;
198 struct modifies_mem *next;
199};
200static struct modifies_mem *modifies_mem_list;
201
202/* The modifies_mem structs also go on an obstack, only this obstack is
203 freed each time after completing the analysis or transformations on
204 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
205 object on the obstack to keep track of the bottom of the obstack. */
206static struct obstack modifies_mem_obstack;
207static struct modifies_mem *modifies_mem_obstack_bottom;
208
209/* Mapping of insn UIDs to CUIDs.
210 CUIDs are like UIDs except they increase monotonically in each basic
211 block, have no gaps, and only apply to real insns. */
212static int *uid_cuid;
213#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
214\f
215
216/* Helpers for memory allocation/freeing. */
217static void alloc_mem (void);
218static void free_mem (void);
219
220/* Support for hash table construction and transformations. */
221static bool oprs_unchanged_p (rtx, rtx, bool);
ce53880e 222static void record_last_reg_set_info (rtx, rtx);
223static void record_last_reg_set_info_regno (rtx, int);
78d140c9 224static void record_last_mem_set_info (rtx);
81a410b1 225static void record_last_set_info (rtx, const_rtx, void *);
d447762f 226static void record_opr_changes (rtx);
78d140c9 227
81a410b1 228static void find_mem_conflicts (rtx, const_rtx, void *);
78d140c9 229static int load_killed_in_block_p (int, rtx, bool);
230static void reset_opr_set_tables (void);
231
232/* Hash table support. */
233static hashval_t hash_expr (rtx, int *);
78d140c9 234static void insert_expr_in_table (rtx, rtx);
235static struct expr *lookup_expr_in_table (rtx);
78d140c9 236static void dump_hash_table (FILE *);
237
238/* Helpers for eliminate_partially_redundant_load. */
239static bool reg_killed_on_edge (rtx, edge);
240static bool reg_used_on_edge (rtx, edge);
241
78d140c9 242static rtx get_avail_load_store_reg (rtx);
243
244static bool bb_has_well_behaved_predecessors (basic_block);
245static struct occr* get_bb_avail_insn (basic_block, struct occr *);
246static void hash_scan_set (rtx);
247static void compute_hash_table (void);
248
249/* The work horses of this pass. */
250static void eliminate_partially_redundant_load (basic_block,
251 rtx,
252 struct expr *);
253static void eliminate_partially_redundant_loads (void);
254\f
255
256/* Allocate memory for the CUID mapping array and register/memory
257 tracking tables. */
258
259static void
260alloc_mem (void)
261{
262 int i;
263 basic_block bb;
264 rtx insn;
265
266 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
4c36ffe6 267 uid_cuid = XCNEWVEC (int, get_max_uid () + 1);
1539153f 268 i = 1;
fc00614f 269 FOR_EACH_BB_FN (bb, cfun)
78d140c9 270 FOR_BB_INSNS (bb, insn)
271 {
272 if (INSN_P (insn))
273 uid_cuid[INSN_UID (insn)] = i++;
274 else
275 uid_cuid[INSN_UID (insn)] = i;
276 }
277
278 /* Allocate the available expressions hash table. We don't want to
279 make the hash table too small, but unnecessarily making it too large
280 also doesn't help. The i/4 is a gcse.c relic, and seems like a
281 reasonable choice. */
d9dd21a8 282 expr_table.create (MAX (i / 4, 13));
78d140c9 283
284 /* We allocate everything on obstacks because we often can roll back
285 the whole obstack to some point. Freeing obstacks is very fast. */
286 gcc_obstack_init (&expr_obstack);
287 gcc_obstack_init (&occr_obstack);
288 gcc_obstack_init (&unoccr_obstack);
289 gcc_obstack_init (&modifies_mem_obstack);
290
291 /* Working array used to track the last set for each register
292 in the current block. */
293 reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
294
295 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
296 can roll it back in reset_opr_set_tables. */
297 modifies_mem_obstack_bottom =
298 (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
299 sizeof (struct modifies_mem));
300}
301
302/* Free memory allocated by alloc_mem. */
303
304static void
305free_mem (void)
306{
307 free (uid_cuid);
308
d9dd21a8 309 expr_table.dispose ();
78d140c9 310
311 obstack_free (&expr_obstack, NULL);
312 obstack_free (&occr_obstack, NULL);
313 obstack_free (&unoccr_obstack, NULL);
314 obstack_free (&modifies_mem_obstack, NULL);
315
316 free (reg_avail_info);
317}
318\f
319
78d140c9 320/* Insert expression X in INSN in the hash TABLE.
321 If it is already present, record it as the last occurrence in INSN's
322 basic block. */
323
324static void
325insert_expr_in_table (rtx x, rtx insn)
326{
327 int do_not_record_p;
328 hashval_t hash;
329 struct expr *cur_expr, **slot;
330 struct occr *avail_occr, *last_occr = NULL;
331
332 hash = hash_expr (x, &do_not_record_p);
333
334 /* Do not insert expression in the table if it contains volatile operands,
335 or if hash_expr determines the expression is something we don't want
336 to or can't handle. */
337 if (do_not_record_p)
338 return;
339
340 /* We anticipate that redundant expressions are rare, so for convenience
341 allocate a new hash table element here already and set its fields.
342 If we don't do this, we need a hack with a static struct expr. Anyway,
343 obstack_free is really fast and one more obstack_alloc doesn't hurt if
344 we're going to see more expressions later on. */
345 cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
346 sizeof (struct expr));
347 cur_expr->expr = x;
348 cur_expr->hash = hash;
349 cur_expr->avail_occr = NULL;
350
d9dd21a8 351 slot = expr_table.find_slot_with_hash (cur_expr, hash, INSERT);
48e1416a 352
78d140c9 353 if (! (*slot))
354 /* The expression isn't found, so insert it. */
355 *slot = cur_expr;
356 else
357 {
358 /* The expression is already in the table, so roll back the
359 obstack and use the existing table entry. */
360 obstack_free (&expr_obstack, cur_expr);
361 cur_expr = *slot;
362 }
363
364 /* Search for another occurrence in the same basic block. */
365 avail_occr = cur_expr->avail_occr;
90bd219d 366 while (avail_occr
367 && BLOCK_FOR_INSN (avail_occr->insn) != BLOCK_FOR_INSN (insn))
78d140c9 368 {
369 /* If an occurrence isn't found, save a pointer to the end of
370 the list. */
371 last_occr = avail_occr;
372 avail_occr = avail_occr->next;
373 }
374
375 if (avail_occr)
376 /* Found another instance of the expression in the same basic block.
377 Prefer this occurrence to the currently recorded one. We want
378 the last one in the block and the block is scanned from start
379 to end. */
380 avail_occr->insn = insn;
381 else
382 {
383 /* First occurrence of this expression in this basic block. */
384 avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
385 sizeof (struct occr));
386
387 /* First occurrence of this expression in any block? */
388 if (cur_expr->avail_occr == NULL)
389 cur_expr->avail_occr = avail_occr;
390 else
391 last_occr->next = avail_occr;
392
393 avail_occr->insn = insn;
394 avail_occr->next = NULL;
395 avail_occr->deleted_p = 0;
396 }
397}
398\f
399
400/* Lookup pattern PAT in the expression hash table.
401 The result is a pointer to the table entry, or NULL if not found. */
402
403static struct expr *
404lookup_expr_in_table (rtx pat)
405{
406 int do_not_record_p;
407 struct expr **slot, *tmp_expr;
408 hashval_t hash = hash_expr (pat, &do_not_record_p);
409
410 if (do_not_record_p)
411 return NULL;
412
413 tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
414 sizeof (struct expr));
415 tmp_expr->expr = pat;
416 tmp_expr->hash = hash;
417 tmp_expr->avail_occr = NULL;
418
d9dd21a8 419 slot = expr_table.find_slot_with_hash (tmp_expr, hash, INSERT);
78d140c9 420 obstack_free (&expr_obstack, tmp_expr);
421
422 if (!slot)
423 return NULL;
424 else
425 return (*slot);
426}
427\f
428
91275768 429/* Dump all expressions and occurrences that are currently in the
78d140c9 430 expression hash table to FILE. */
431
432/* This helper is called via htab_traverse. */
d9dd21a8 433int
434dump_expr_hash_table_entry (expr **slot, FILE *file)
78d140c9 435{
d9dd21a8 436 struct expr *exprs = *slot;
78d140c9 437 struct occr *occr;
438
439 fprintf (file, "expr: ");
d9dd21a8 440 print_rtl (file, exprs->expr);
441 fprintf (file,"\nhashcode: %u\n", exprs->hash);
4133d091 442 fprintf (file,"list of occurrences:\n");
d9dd21a8 443 occr = exprs->avail_occr;
78d140c9 444 while (occr)
445 {
446 rtx insn = occr->insn;
447 print_rtl_single (file, insn);
448 fprintf (file, "\n");
449 occr = occr->next;
450 }
451 fprintf (file, "\n");
452 return 1;
453}
454
455static void
456dump_hash_table (FILE *file)
457{
458 fprintf (file, "\n\nexpression hash table\n");
459 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
d9dd21a8 460 (long) expr_table.size (),
461 (long) expr_table.elements (),
462 expr_table.collisions ());
463 if (expr_table.elements () > 0)
78d140c9 464 {
465 fprintf (file, "\n\ntable entries:\n");
d9dd21a8 466 expr_table.traverse <FILE *, dump_expr_hash_table_entry> (file);
78d140c9 467 }
468 fprintf (file, "\n");
469}
470\f
20128b13 471/* Return true if register X is recorded as being set by an instruction
472 whose CUID is greater than the one given. */
473
474static bool
475reg_changed_after_insn_p (rtx x, int cuid)
476{
477 unsigned int regno, end_regno;
478
479 regno = REGNO (x);
480 end_regno = END_HARD_REGNO (x);
481 do
482 if (reg_avail_info[regno] > cuid)
483 return true;
484 while (++regno < end_regno);
485 return false;
486}
78d140c9 487
d447762f 488/* Return nonzero if the operands of expression X are unchanged
489 1) from the start of INSN's basic block up to but not including INSN
490 if AFTER_INSN is false, or
491 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
78d140c9 492
493static bool
494oprs_unchanged_p (rtx x, rtx insn, bool after_insn)
495{
496 int i, j;
497 enum rtx_code code;
498 const char *fmt;
499
500 if (x == 0)
501 return 1;
502
503 code = GET_CODE (x);
504 switch (code)
505 {
506 case REG:
78d140c9 507 /* We are called after register allocation. */
876760f6 508 gcc_assert (REGNO (x) < FIRST_PSEUDO_REGISTER);
78d140c9 509 if (after_insn)
20128b13 510 return !reg_changed_after_insn_p (x, INSN_CUID (insn) - 1);
78d140c9 511 else
20128b13 512 return !reg_changed_after_insn_p (x, 0);
78d140c9 513
514 case MEM:
515 if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
516 return 0;
517 else
518 return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
519
520 case PC:
521 case CC0: /*FIXME*/
522 case CONST:
0349edce 523 CASE_CONST_ANY:
78d140c9 524 case SYMBOL_REF:
525 case LABEL_REF:
526 case ADDR_VEC:
527 case ADDR_DIFF_VEC:
528 return 1;
529
530 case PRE_DEC:
531 case PRE_INC:
532 case POST_DEC:
533 case POST_INC:
534 case PRE_MODIFY:
535 case POST_MODIFY:
536 if (after_insn)
537 return 0;
538 break;
539
540 default:
541 break;
542 }
543
544 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
545 {
546 if (fmt[i] == 'e')
547 {
548 if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
549 return 0;
550 }
551 else if (fmt[i] == 'E')
552 for (j = 0; j < XVECLEN (x, i); j++)
553 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
554 return 0;
555 }
556
557 return 1;
558}
559\f
560
561/* Used for communication between find_mem_conflicts and
562 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
563 conflict between two memory references.
564 This is a bit of a hack to work around the limitations of note_stores. */
565static int mems_conflict_p;
566
567/* DEST is the output of an instruction. If it is a memory reference, and
568 possibly conflicts with the load found in DATA, then set mems_conflict_p
569 to a nonzero value. */
570
571static void
81a410b1 572find_mem_conflicts (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
78d140c9 573 void *data)
574{
575 rtx mem_op = (rtx) data;
576
577 while (GET_CODE (dest) == SUBREG
578 || GET_CODE (dest) == ZERO_EXTRACT
78d140c9 579 || GET_CODE (dest) == STRICT_LOW_PART)
580 dest = XEXP (dest, 0);
581
582 /* If DEST is not a MEM, then it will not conflict with the load. Note
583 that function calls are assumed to clobber memory, but are handled
584 elsewhere. */
585 if (! MEM_P (dest))
586 return;
587
376a287d 588 if (true_dependence (dest, GET_MODE (dest), mem_op))
78d140c9 589 mems_conflict_p = 1;
590}
591\f
592
593/* Return nonzero if the expression in X (a memory reference) is killed
d447762f 594 in the current basic block before (if AFTER_INSN is false) or after
595 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
596
597 This function assumes that the modifies_mem table is flushed when
598 the hash table construction or redundancy elimination phases start
599 processing a new basic block. */
78d140c9 600
601static int
602load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
603{
604 struct modifies_mem *list_entry = modifies_mem_list;
605
606 while (list_entry)
607 {
608 rtx setter = list_entry->insn;
609
610 /* Ignore entries in the list that do not apply. */
611 if ((after_insn
612 && INSN_CUID (setter) < uid_limit)
613 || (! after_insn
614 && INSN_CUID (setter) > uid_limit))
615 {
616 list_entry = list_entry->next;
617 continue;
618 }
619
620 /* If SETTER is a call everything is clobbered. Note that calls
621 to pure functions are never put on the list, so we need not
622 worry about them. */
623 if (CALL_P (setter))
624 return 1;
625
626 /* SETTER must be an insn of some kind that sets memory. Call
627 note_stores to examine each hunk of memory that is modified.
628 It will set mems_conflict_p to nonzero if there may be a
629 conflict between X and SETTER. */
630 mems_conflict_p = 0;
631 note_stores (PATTERN (setter), find_mem_conflicts, x);
632 if (mems_conflict_p)
633 return 1;
634
635 list_entry = list_entry->next;
636 }
637 return 0;
638}
639\f
640
641/* Record register first/last/block set information for REGNO in INSN. */
642
d447762f 643static inline void
ce53880e 644record_last_reg_set_info (rtx insn, rtx reg)
645{
646 unsigned int regno, end_regno;
647
648 regno = REGNO (reg);
649 end_regno = END_HARD_REGNO (reg);
650 do
651 reg_avail_info[regno] = INSN_CUID (insn);
652 while (++regno < end_regno);
653}
654
655static inline void
656record_last_reg_set_info_regno (rtx insn, int regno)
78d140c9 657{
658 reg_avail_info[regno] = INSN_CUID (insn);
659}
660
661
662/* Record memory modification information for INSN. We do not actually care
663 about the memory location(s) that are set, or even how they are set (consider
664 a CALL_INSN). We merely need to record which insns modify memory. */
665
666static void
667record_last_mem_set_info (rtx insn)
668{
669 struct modifies_mem *list_entry;
670
671 list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
672 sizeof (struct modifies_mem));
673 list_entry->insn = insn;
674 list_entry->next = modifies_mem_list;
675 modifies_mem_list = list_entry;
676}
677
678/* Called from compute_hash_table via note_stores to handle one
679 SET or CLOBBER in an insn. DATA is really the instruction in which
680 the SET is taking place. */
681
682static void
81a410b1 683record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
78d140c9 684{
685 rtx last_set_insn = (rtx) data;
686
687 if (GET_CODE (dest) == SUBREG)
688 dest = SUBREG_REG (dest);
689
690 if (REG_P (dest))
ce53880e 691 record_last_reg_set_info (last_set_insn, dest);
5630a23e 692 else if (MEM_P (dest))
693 {
694 /* Ignore pushes, they don't clobber memory. They may still
695 clobber the stack pointer though. Some targets do argument
696 pushes without adding REG_INC notes. See e.g. PR25196,
697 where a pushsi2 on i386 doesn't have REG_INC notes. Note
698 such changes here too. */
699 if (! push_operand (dest, GET_MODE (dest)))
700 record_last_mem_set_info (last_set_insn);
701 else
ce53880e 702 record_last_reg_set_info_regno (last_set_insn, STACK_POINTER_REGNUM);
5630a23e 703 }
78d140c9 704}
d447762f 705
78d140c9 706
707/* Reset tables used to keep track of what's still available since the
708 start of the block. */
709
710static void
711reset_opr_set_tables (void)
712{
713 memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
714 obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
715 modifies_mem_list = NULL;
716}
d447762f 717\f
78d140c9 718
719/* Record things set by INSN.
720 This data is used by oprs_unchanged_p. */
721
722static void
d447762f 723record_opr_changes (rtx insn)
78d140c9 724{
d447762f 725 rtx note;
78d140c9 726
d447762f 727 /* Find all stores and record them. */
728 note_stores (PATTERN (insn), record_last_set_info, insn);
78d140c9 729
d447762f 730 /* Also record autoincremented REGs for this insn as changed. */
731 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
732 if (REG_NOTE_KIND (note) == REG_INC)
ce53880e 733 record_last_reg_set_info (insn, XEXP (note, 0));
78d140c9 734
d447762f 735 /* Finally, if this is a call, record all call clobbers. */
736 if (CALL_P (insn))
737 {
ce53880e 738 unsigned int regno;
20128b13 739 rtx link, x;
24ec6636 740 hard_reg_set_iterator hrsi;
741 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
742 record_last_reg_set_info_regno (insn, regno);
78d140c9 743
20128b13 744 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
745 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
746 {
747 x = XEXP (XEXP (link, 0), 0);
748 if (REG_P (x))
749 {
750 gcc_assert (HARD_REGISTER_P (x));
ce53880e 751 record_last_reg_set_info (insn, x);
20128b13 752 }
753 }
754
9c2a0c05 755 if (! RTL_CONST_OR_PURE_CALL_P (insn))
d447762f 756 record_last_mem_set_info (insn);
757 }
78d140c9 758}
759\f
760
761/* Scan the pattern of INSN and add an entry to the hash TABLE.
762 After reload we are interested in loads/stores only. */
763
764static void
765hash_scan_set (rtx insn)
766{
767 rtx pat = PATTERN (insn);
768 rtx src = SET_SRC (pat);
769 rtx dest = SET_DEST (pat);
770
771 /* We are only interested in loads and stores. */
772 if (! MEM_P (src) && ! MEM_P (dest))
773 return;
774
775 /* Don't mess with jumps and nops. */
776 if (JUMP_P (insn) || set_noop_p (pat))
777 return;
778
78d140c9 779 if (REG_P (dest))
780 {
d447762f 781 if (/* Don't CSE something if we can't do a reg/reg copy. */
78d140c9 782 can_copy_p (GET_MODE (dest))
783 /* Is SET_SRC something we want to gcse? */
784 && general_operand (src, GET_MODE (src))
868e8f12 785#ifdef STACK_REGS
786 /* Never consider insns touching the register stack. It may
787 create situations that reg-stack cannot handle (e.g. a stack
788 register live across an abnormal edge). */
789 && (REGNO (dest) < FIRST_STACK_REG || REGNO (dest) > LAST_STACK_REG)
790#endif
78d140c9 791 /* An expression is not available if its operands are
792 subsequently modified, including this insn. */
793 && oprs_unchanged_p (src, insn, true))
794 {
795 insert_expr_in_table (src, insn);
796 }
797 }
798 else if (REG_P (src))
799 {
800 /* Only record sets of pseudo-regs in the hash table. */
d447762f 801 if (/* Don't CSE something if we can't do a reg/reg copy. */
78d140c9 802 can_copy_p (GET_MODE (src))
803 /* Is SET_DEST something we want to gcse? */
804 && general_operand (dest, GET_MODE (dest))
868e8f12 805#ifdef STACK_REGS
806 /* As above for STACK_REGS. */
807 && (REGNO (src) < FIRST_STACK_REG || REGNO (src) > LAST_STACK_REG)
808#endif
78d140c9 809 && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
810 /* Check if the memory expression is killed after insn. */
811 && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
812 && oprs_unchanged_p (XEXP (dest, 0), insn, true))
813 {
814 insert_expr_in_table (dest, insn);
815 }
816 }
817}
818\f
d447762f 819
78d140c9 820/* Create hash table of memory expressions available at end of basic
d447762f 821 blocks. Basically you should think of this hash table as the
822 representation of AVAIL_OUT. This is the set of expressions that
823 is generated in a basic block and not killed before the end of the
824 same basic block. Notice that this is really a local computation. */
78d140c9 825
826static void
827compute_hash_table (void)
828{
829 basic_block bb;
830
fc00614f 831 FOR_EACH_BB_FN (bb, cfun)
78d140c9 832 {
833 rtx insn;
78d140c9 834
835 /* First pass over the instructions records information used to
d447762f 836 determine when registers and memory are last set.
837 Since we compute a "local" AVAIL_OUT, reset the tables that
838 help us keep track of what has been modified since the start
839 of the block. */
840 reset_opr_set_tables ();
78d140c9 841 FOR_BB_INSNS (bb, insn)
842 {
d447762f 843 if (INSN_P (insn))
844 record_opr_changes (insn);
845 }
78d140c9 846
d447762f 847 /* The next pass actually builds the hash table. */
78d140c9 848 FOR_BB_INSNS (bb, insn)
849 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
850 hash_scan_set (insn);
851 }
852}
853\f
854
855/* Check if register REG is killed in any insn waiting to be inserted on
856 edge E. This function is required to check that our data flow analysis
857 is still valid prior to commit_edge_insertions. */
858
859static bool
860reg_killed_on_edge (rtx reg, edge e)
861{
862 rtx insn;
863
864 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
865 if (INSN_P (insn) && reg_set_p (reg, insn))
866 return true;
867
868 return false;
869}
870
871/* Similar to above - check if register REG is used in any insn waiting
872 to be inserted on edge E.
873 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
874 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
875
876static bool
877reg_used_on_edge (rtx reg, edge e)
878{
879 rtx insn;
880
881 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
882 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
883 return true;
884
885 return false;
886}
887\f
78d140c9 888/* Return the loaded/stored register of a load/store instruction. */
889
890static rtx
891get_avail_load_store_reg (rtx insn)
892{
876760f6 893 if (REG_P (SET_DEST (PATTERN (insn))))
894 /* A load. */
9af5ce0c 895 return SET_DEST (PATTERN (insn));
876760f6 896 else
897 {
898 /* A store. */
899 gcc_assert (REG_P (SET_SRC (PATTERN (insn))));
900 return SET_SRC (PATTERN (insn));
901 }
78d140c9 902}
903
904/* Return nonzero if the predecessors of BB are "well behaved". */
905
906static bool
907bb_has_well_behaved_predecessors (basic_block bb)
908{
909 edge pred;
cd665a06 910 edge_iterator ei;
78d140c9 911
4c43a998 912 if (EDGE_COUNT (bb->preds) == 0)
78d140c9 913 return false;
914
cd665a06 915 FOR_EACH_EDGE (pred, ei, bb->preds)
78d140c9 916 {
917 if ((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
918 return false;
919
4c43a998 920 if ((pred->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
921 return false;
922
91f71fa3 923 if (tablejump_p (BB_END (pred->src), NULL, NULL))
78d140c9 924 return false;
925 }
926 return true;
927}
928
929
930/* Search for the occurrences of expression in BB. */
931
932static struct occr*
933get_bb_avail_insn (basic_block bb, struct occr *occr)
934{
935 for (; occr != NULL; occr = occr->next)
936 if (BLOCK_FOR_INSN (occr->insn) == bb)
937 return occr;
938 return NULL;
939}
940
941
942/* This handles the case where several stores feed a partially redundant
943 load. It checks if the redundancy elimination is possible and if it's
d447762f 944 worth it.
945
946 Redundancy elimination is possible if,
947 1) None of the operands of an insn have been modified since the start
948 of the current basic block.
949 2) In any predecessor of the current basic block, the same expression
950 is generated.
951
952 See the function body for the heuristics that determine if eliminating
953 a redundancy is also worth doing, assuming it is possible. */
78d140c9 954
955static void
956eliminate_partially_redundant_load (basic_block bb, rtx insn,
957 struct expr *expr)
958{
959 edge pred;
960 rtx avail_insn = NULL_RTX;
961 rtx avail_reg;
962 rtx dest, pat;
963 struct occr *a_occr;
964 struct unoccr *occr, *avail_occrs = NULL;
965 struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
966 int npred_ok = 0;
967 gcov_type ok_count = 0; /* Redundant load execution count. */
968 gcov_type critical_count = 0; /* Execution count of critical edges. */
cd665a06 969 edge_iterator ei;
b0596095 970 bool critical_edge_split = false;
78d140c9 971
972 /* The execution count of the loads to be added to make the
973 load fully redundant. */
974 gcov_type not_ok_count = 0;
975 basic_block pred_bb;
976
977 pat = PATTERN (insn);
978 dest = SET_DEST (pat);
979
980 /* Check that the loaded register is not used, set, or killed from the
981 beginning of the block. */
20128b13 982 if (reg_changed_after_insn_p (dest, 0)
983 || reg_used_between_p (dest, PREV_INSN (BB_HEAD (bb)), insn))
78d140c9 984 return;
985
986 /* Check potential for replacing load with copy for predecessors. */
cd665a06 987 FOR_EACH_EDGE (pred, ei, bb->preds)
78d140c9 988 {
989 rtx next_pred_bb_end;
990
991 avail_insn = NULL_RTX;
b0596095 992 avail_reg = NULL_RTX;
78d140c9 993 pred_bb = pred->src;
994 next_pred_bb_end = NEXT_INSN (BB_END (pred_bb));
995 for (a_occr = get_bb_avail_insn (pred_bb, expr->avail_occr); a_occr;
996 a_occr = get_bb_avail_insn (pred_bb, a_occr->next))
997 {
998 /* Check if the loaded register is not used. */
999 avail_insn = a_occr->insn;
876760f6 1000 avail_reg = get_avail_load_store_reg (avail_insn);
1001 gcc_assert (avail_reg);
48e1416a 1002
78d140c9 1003 /* Make sure we can generate a move from register avail_reg to
1004 dest. */
1005 extract_insn (gen_move_insn (copy_rtx (dest),
1006 copy_rtx (avail_reg)));
1007 if (! constrain_operands (1)
1008 || reg_killed_on_edge (avail_reg, pred)
1009 || reg_used_on_edge (dest, pred))
1010 {
1011 avail_insn = NULL;
1012 continue;
1013 }
20128b13 1014 if (!reg_set_between_p (avail_reg, avail_insn, next_pred_bb_end))
78d140c9 1015 /* AVAIL_INSN remains non-null. */
1016 break;
1017 else
1018 avail_insn = NULL;
1019 }
1020
1021 if (EDGE_CRITICAL_P (pred))
1022 critical_count += pred->count;
1023
1024 if (avail_insn != NULL_RTX)
1025 {
1026 npred_ok++;
1027 ok_count += pred->count;
b0596095 1028 if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest),
1029 copy_rtx (avail_reg)))))
1030 {
1031 /* Check if there is going to be a split. */
1032 if (EDGE_CRITICAL_P (pred))
1033 critical_edge_split = true;
1034 }
1035 else /* Its a dead move no need to generate. */
1036 continue;
78d140c9 1037 occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
beab9d47 1038 sizeof (struct unoccr));
78d140c9 1039 occr->insn = avail_insn;
1040 occr->pred = pred;
1041 occr->next = avail_occrs;
1042 avail_occrs = occr;
1043 if (! rollback_unoccr)
1044 rollback_unoccr = occr;
1045 }
1046 else
1047 {
7063afc3 1048 /* Adding a load on a critical edge will cause a split. */
b0596095 1049 if (EDGE_CRITICAL_P (pred))
1050 critical_edge_split = true;
78d140c9 1051 not_ok_count += pred->count;
1052 unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1053 sizeof (struct unoccr));
1054 unoccr->insn = NULL_RTX;
1055 unoccr->pred = pred;
1056 unoccr->next = unavail_occrs;
1057 unavail_occrs = unoccr;
1058 if (! rollback_unoccr)
1059 rollback_unoccr = unoccr;
1060 }
1061 }
1062
1063 if (/* No load can be replaced by copy. */
1064 npred_ok == 0
48e1416a 1065 /* Prevent exploding the code. */
0bfd8d5c 1066 || (optimize_bb_for_size_p (bb) && npred_ok > 1)
48e1416a 1067 /* If we don't have profile information we cannot tell if splitting
b0596095 1068 a critical edge is profitable or not so don't do it. */
1069 || ((! profile_info || ! flag_branch_probabilities
1070 || targetm.cannot_modify_jumps_p ())
1071 && critical_edge_split))
78d140c9 1072 goto cleanup;
1073
1074 /* Check if it's worth applying the partial redundancy elimination. */
1075 if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
1076 goto cleanup;
1077 if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
1078 goto cleanup;
1079
1080 /* Generate moves to the loaded register from where
1081 the memory is available. */
1082 for (occr = avail_occrs; occr; occr = occr->next)
1083 {
1084 avail_insn = occr->insn;
1085 pred = occr->pred;
1086 /* Set avail_reg to be the register having the value of the
1087 memory. */
1088 avail_reg = get_avail_load_store_reg (avail_insn);
876760f6 1089 gcc_assert (avail_reg);
78d140c9 1090
1091 insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
1092 copy_rtx (avail_reg)),
1093 pred);
1094 stats.moves_inserted++;
1095
1096 if (dump_file)
1097 fprintf (dump_file,
1098 "generating move from %d to %d on edge from %d to %d\n",
1099 REGNO (avail_reg),
1100 REGNO (dest),
1101 pred->src->index,
1102 pred->dest->index);
1103 }
1104
1105 /* Regenerate loads where the memory is unavailable. */
1106 for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
1107 {
1108 pred = unoccr->pred;
1109 insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
1110 stats.copies_inserted++;
1111
1112 if (dump_file)
1113 {
1114 fprintf (dump_file,
1115 "generating on edge from %d to %d a copy of load: ",
1116 pred->src->index,
1117 pred->dest->index);
1118 print_rtl (dump_file, PATTERN (insn));
1119 fprintf (dump_file, "\n");
1120 }
1121 }
1122
1123 /* Delete the insn if it is not available in this block and mark it
1124 for deletion if it is available. If insn is available it may help
1125 discover additional redundancies, so mark it for later deletion. */
1126 for (a_occr = get_bb_avail_insn (bb, expr->avail_occr);
1127 a_occr && (a_occr->insn != insn);
3c802a1e 1128 a_occr = get_bb_avail_insn (bb, a_occr->next))
1129 ;
78d140c9 1130
1131 if (!a_occr)
b0596095 1132 {
1133 stats.insns_deleted++;
1134
1135 if (dump_file)
1136 {
1137 fprintf (dump_file, "deleting insn:\n");
1138 print_rtl_single (dump_file, insn);
1139 fprintf (dump_file, "\n");
1140 }
1141 delete_insn (insn);
1142 }
78d140c9 1143 else
1144 a_occr->deleted_p = 1;
1145
1146cleanup:
1147 if (rollback_unoccr)
1148 obstack_free (&unoccr_obstack, rollback_unoccr);
1149}
1150
1151/* Performing the redundancy elimination as described before. */
1152
1153static void
1154eliminate_partially_redundant_loads (void)
1155{
1156 rtx insn;
1157 basic_block bb;
1158
1159 /* Note we start at block 1. */
1160
34154e27 1161 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
78d140c9 1162 return;
1163
1164 FOR_BB_BETWEEN (bb,
34154e27 1165 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->next_bb,
1166 EXIT_BLOCK_PTR_FOR_FN (cfun),
78d140c9 1167 next_bb)
1168 {
d447762f 1169 /* Don't try anything on basic blocks with strange predecessors. */
78d140c9 1170 if (! bb_has_well_behaved_predecessors (bb))
1171 continue;
1172
d447762f 1173 /* Do not try anything on cold basic blocks. */
f29b326e 1174 if (optimize_bb_for_size_p (bb))
78d140c9 1175 continue;
1176
d447762f 1177 /* Reset the table of things changed since the start of the current
1178 basic block. */
78d140c9 1179 reset_opr_set_tables ();
1180
d447762f 1181 /* Look at all insns in the current basic block and see if there are
1182 any loads in it that we can record. */
78d140c9 1183 FOR_BB_INSNS (bb, insn)
1184 {
1185 /* Is it a load - of the form (set (reg) (mem))? */
1186 if (NONJUMP_INSN_P (insn)
1187 && GET_CODE (PATTERN (insn)) == SET
1188 && REG_P (SET_DEST (PATTERN (insn)))
1189 && MEM_P (SET_SRC (PATTERN (insn))))
1190 {
1191 rtx pat = PATTERN (insn);
1192 rtx src = SET_SRC (pat);
1193 struct expr *expr;
1194
1195 if (!MEM_VOLATILE_P (src)
1196 && GET_MODE (src) != BLKmode
1197 && general_operand (src, GET_MODE (src))
1198 /* Are the operands unchanged since the start of the
1199 block? */
1200 && oprs_unchanged_p (src, insn, false)
cbeb677e 1201 && !(cfun->can_throw_non_call_exceptions && may_trap_p (src))
78d140c9 1202 && !side_effects_p (src)
1203 /* Is the expression recorded? */
1204 && (expr = lookup_expr_in_table (src)) != NULL)
1205 {
1206 /* We now have a load (insn) and an available memory at
1207 its BB start (expr). Try to remove the loads if it is
1208 redundant. */
1209 eliminate_partially_redundant_load (bb, insn, expr);
1210 }
1211 }
1212
d447762f 1213 /* Keep track of everything modified by this insn, so that we
1214 know what has been modified since the start of the current
1215 basic block. */
78d140c9 1216 if (INSN_P (insn))
d447762f 1217 record_opr_changes (insn);
78d140c9 1218 }
1219 }
1220
1221 commit_edge_insertions ();
1222}
1223
1224/* Go over the expression hash table and delete insns that were
1225 marked for later deletion. */
1226
1227/* This helper is called via htab_traverse. */
d9dd21a8 1228int
1229delete_redundant_insns_1 (expr **slot, void *data ATTRIBUTE_UNUSED)
78d140c9 1230{
d9dd21a8 1231 struct expr *exprs = *slot;
78d140c9 1232 struct occr *occr;
1233
d9dd21a8 1234 for (occr = exprs->avail_occr; occr != NULL; occr = occr->next)
78d140c9 1235 {
3072d30e 1236 if (occr->deleted_p && dbg_cnt (gcse2_delete))
78d140c9 1237 {
1238 delete_insn (occr->insn);
1239 stats.insns_deleted++;
1240
1241 if (dump_file)
1242 {
1243 fprintf (dump_file, "deleting insn:\n");
1244 print_rtl_single (dump_file, occr->insn);
1245 fprintf (dump_file, "\n");
1246 }
1247 }
1248 }
1249
1250 return 1;
1251}
1252
1253static void
1254delete_redundant_insns (void)
1255{
d9dd21a8 1256 expr_table.traverse <void *, delete_redundant_insns_1> (NULL);
78d140c9 1257 if (dump_file)
1258 fprintf (dump_file, "\n");
1259}
1260
1261/* Main entry point of the GCSE after reload - clean some redundant loads
1262 due to spilling. */
1263
7f80955e 1264static void
78d140c9 1265gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
1266{
5ee7391d 1267
78d140c9 1268 memset (&stats, 0, sizeof (stats));
1269
f0b5f617 1270 /* Allocate memory for this pass.
78d140c9 1271 Also computes and initializes the insns' CUIDs. */
1272 alloc_mem ();
1273
1274 /* We need alias analysis. */
1275 init_alias_analysis ();
1276
1277 compute_hash_table ();
1278
1279 if (dump_file)
1280 dump_hash_table (dump_file);
1281
d9dd21a8 1282 if (expr_table.elements () > 0)
78d140c9 1283 {
1284 eliminate_partially_redundant_loads ();
1285 delete_redundant_insns ();
1286
1287 if (dump_file)
1288 {
1289 fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
1290 fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
1291 fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted);
1292 fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted);
1293 fprintf (dump_file, "\n\n");
1294 }
30c4e60d 1295
1296 statistics_counter_event (cfun, "copies inserted",
1297 stats.copies_inserted);
1298 statistics_counter_event (cfun, "moves inserted",
1299 stats.moves_inserted);
1300 statistics_counter_event (cfun, "insns deleted",
1301 stats.insns_deleted);
78d140c9 1302 }
48e1416a 1303
78d140c9 1304 /* We are finished with alias. */
1305 end_alias_analysis ();
1306
1307 free_mem ();
1308}
1309
77fce4cd 1310\f
77fce4cd 1311
2a1990e9 1312static unsigned int
77fce4cd 1313rest_of_handle_gcse2 (void)
1314{
1315 gcse_after_reload_main (get_insns ());
1316 rebuild_jump_labels (get_insns ());
2a1990e9 1317 return 0;
77fce4cd 1318}
1319
cbe8bda8 1320namespace {
1321
1322const pass_data pass_data_gcse2 =
77fce4cd 1323{
cbe8bda8 1324 RTL_PASS, /* type */
1325 "gcse2", /* name */
1326 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 1327 true, /* has_execute */
1328 TV_GCSE_AFTER_RELOAD, /* tv_id */
1329 0, /* properties_required */
1330 0, /* properties_provided */
1331 0, /* properties_destroyed */
1332 0, /* todo_flags_start */
1333 ( TODO_verify_rtl_sharing | TODO_verify_flow ), /* todo_flags_finish */
77fce4cd 1334};
cbe8bda8 1335
1336class pass_gcse2 : public rtl_opt_pass
1337{
1338public:
9af5ce0c 1339 pass_gcse2 (gcc::context *ctxt)
1340 : rtl_opt_pass (pass_data_gcse2, ctxt)
cbe8bda8 1341 {}
1342
1343 /* opt_pass methods: */
31315c24 1344 virtual bool gate (function *fun)
1345 {
1346 return (optimize > 0 && flag_gcse_after_reload
1347 && optimize_function_for_speed_p (fun));
1348 }
1349
65b0537f 1350 virtual unsigned int execute (function *) { return rest_of_handle_gcse2 (); }
cbe8bda8 1351
1352}; // class pass_gcse2
1353
1354} // anon namespace
1355
1356rtl_opt_pass *
1357make_pass_gcse2 (gcc::context *ctxt)
1358{
1359 return new pass_gcse2 (ctxt);
1360}