]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/postreload-gcse.c
* alias.c (record_set, memory_modified_1): Constify.
[thirdparty/gcc.git] / gcc / postreload-gcse.c
CommitLineData
78d140c9 1/* Post reload partially redundant load elimination
3072d30e 2 Copyright (C) 2004, 2005, 2006, 2007
78d140c9 3 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
8c4c00c1 9Software Foundation; either version 3, or (at your option) any later
78d140c9 10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
8c4c00c1 18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
78d140c9 20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
25#include "toplev.h"
26
27#include "rtl.h"
28#include "tree.h"
29#include "tm_p.h"
30#include "regs.h"
31#include "hard-reg-set.h"
32#include "flags.h"
33#include "real.h"
34#include "insn-config.h"
35#include "recog.h"
36#include "basic-block.h"
37#include "output.h"
38#include "function.h"
39#include "expr.h"
40#include "except.h"
41#include "intl.h"
42#include "obstack.h"
43#include "hashtab.h"
44#include "params.h"
5ee7391d 45#include "target.h"
77fce4cd 46#include "timevar.h"
47#include "tree-pass.h"
3072d30e 48#include "dbgcnt.h"
78d140c9 49
50/* The following code implements gcse after reload, the purpose of this
51 pass is to cleanup redundant loads generated by reload and other
52 optimizations that come after gcse. It searches for simple inter-block
53 redundancies and tries to eliminate them by adding moves and loads
54 in cold places.
55
56 Perform partially redundant load elimination, try to eliminate redundant
57 loads created by the reload pass. We try to look for full or partial
58 redundant loads fed by one or more loads/stores in predecessor BBs,
59 and try adding loads to make them fully redundant. We also check if
60 it's worth adding loads to be able to delete the redundant load.
61
62 Algorithm:
63 1. Build available expressions hash table:
64 For each load/store instruction, if the loaded/stored memory didn't
65 change until the end of the basic block add this memory expression to
66 the hash table.
67 2. Perform Redundancy elimination:
68 For each load instruction do the following:
69 perform partial redundancy elimination, check if it's worth adding
70 loads to make the load fully redundant. If so add loads and
71 register copies and delete the load.
72 3. Delete instructions made redundant in step 2.
73
74 Future enhancement:
75 If the loaded register is used/defined between load and some store,
76 look for some other free register between load and all its stores,
77 and replace the load with a copy from this register to the loaded
78 register.
79*/
80\f
81
82/* Keep statistics of this pass. */
83static struct
84{
85 int moves_inserted;
86 int copies_inserted;
87 int insns_deleted;
88} stats;
89
90/* We need to keep a hash table of expressions. The table entries are of
91 type 'struct expr', and for each expression there is a single linked
91275768 92 list of occurrences. */
78d140c9 93
94/* The table itself. */
95static htab_t expr_table;
96
97/* Expression elements in the hash table. */
98struct expr
99{
100 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
101 rtx expr;
102
103 /* The same hash for this entry. */
104 hashval_t hash;
105
106 /* List of available occurrence in basic blocks in the function. */
107 struct occr *avail_occr;
108};
109
110static struct obstack expr_obstack;
111
112/* Occurrence of an expression.
91275768 113 There is at most one occurrence per basic block. If a pattern appears
78d140c9 114 more than once, the last appearance is used. */
115
116struct occr
117{
118 /* Next occurrence of this expression. */
119 struct occr *next;
120 /* The insn that computes the expression. */
121 rtx insn;
122 /* Nonzero if this [anticipatable] occurrence has been deleted. */
123 char deleted_p;
124};
125
126static struct obstack occr_obstack;
127
128/* The following structure holds the information about the occurrences of
129 the redundant instructions. */
130struct unoccr
131{
132 struct unoccr *next;
133 edge pred;
134 rtx insn;
135};
136
137static struct obstack unoccr_obstack;
138
139/* Array where each element is the CUID if the insn that last set the hard
140 register with the number of the element, since the start of the current
d447762f 141 basic block.
142
143 This array is used during the building of the hash table (step 1) to
144 determine if a reg is killed before the end of a basic block.
145
146 It is also used when eliminating partial redundancies (step 2) to see
147 if a reg was modified since the start of a basic block. */
78d140c9 148static int *reg_avail_info;
149
150/* A list of insns that may modify memory within the current basic block. */
151struct modifies_mem
152{
153 rtx insn;
154 struct modifies_mem *next;
155};
156static struct modifies_mem *modifies_mem_list;
157
158/* The modifies_mem structs also go on an obstack, only this obstack is
159 freed each time after completing the analysis or transformations on
160 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
161 object on the obstack to keep track of the bottom of the obstack. */
162static struct obstack modifies_mem_obstack;
163static struct modifies_mem *modifies_mem_obstack_bottom;
164
165/* Mapping of insn UIDs to CUIDs.
166 CUIDs are like UIDs except they increase monotonically in each basic
167 block, have no gaps, and only apply to real insns. */
168static int *uid_cuid;
169#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
170\f
171
172/* Helpers for memory allocation/freeing. */
173static void alloc_mem (void);
174static void free_mem (void);
175
176/* Support for hash table construction and transformations. */
177static bool oprs_unchanged_p (rtx, rtx, bool);
178static void record_last_reg_set_info (rtx, int);
179static void record_last_mem_set_info (rtx);
81a410b1 180static void record_last_set_info (rtx, const_rtx, void *);
d447762f 181static void record_opr_changes (rtx);
78d140c9 182
81a410b1 183static void find_mem_conflicts (rtx, const_rtx, void *);
78d140c9 184static int load_killed_in_block_p (int, rtx, bool);
185static void reset_opr_set_tables (void);
186
187/* Hash table support. */
188static hashval_t hash_expr (rtx, int *);
189static hashval_t hash_expr_for_htab (const void *);
190static int expr_equiv_p (const void *, const void *);
191static void insert_expr_in_table (rtx, rtx);
192static struct expr *lookup_expr_in_table (rtx);
193static int dump_hash_table_entry (void **, void *);
194static void dump_hash_table (FILE *);
195
196/* Helpers for eliminate_partially_redundant_load. */
197static bool reg_killed_on_edge (rtx, edge);
198static bool reg_used_on_edge (rtx, edge);
199
78d140c9 200static rtx get_avail_load_store_reg (rtx);
201
202static bool bb_has_well_behaved_predecessors (basic_block);
203static struct occr* get_bb_avail_insn (basic_block, struct occr *);
204static void hash_scan_set (rtx);
205static void compute_hash_table (void);
206
207/* The work horses of this pass. */
208static void eliminate_partially_redundant_load (basic_block,
209 rtx,
210 struct expr *);
211static void eliminate_partially_redundant_loads (void);
212\f
213
214/* Allocate memory for the CUID mapping array and register/memory
215 tracking tables. */
216
217static void
218alloc_mem (void)
219{
220 int i;
221 basic_block bb;
222 rtx insn;
223
224 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
4c36ffe6 225 uid_cuid = XCNEWVEC (int, get_max_uid () + 1);
1539153f 226 i = 1;
78d140c9 227 FOR_EACH_BB (bb)
228 FOR_BB_INSNS (bb, insn)
229 {
230 if (INSN_P (insn))
231 uid_cuid[INSN_UID (insn)] = i++;
232 else
233 uid_cuid[INSN_UID (insn)] = i;
234 }
235
236 /* Allocate the available expressions hash table. We don't want to
237 make the hash table too small, but unnecessarily making it too large
238 also doesn't help. The i/4 is a gcse.c relic, and seems like a
239 reasonable choice. */
240 expr_table = htab_create (MAX (i / 4, 13),
241 hash_expr_for_htab, expr_equiv_p, NULL);
242
243 /* We allocate everything on obstacks because we often can roll back
244 the whole obstack to some point. Freeing obstacks is very fast. */
245 gcc_obstack_init (&expr_obstack);
246 gcc_obstack_init (&occr_obstack);
247 gcc_obstack_init (&unoccr_obstack);
248 gcc_obstack_init (&modifies_mem_obstack);
249
250 /* Working array used to track the last set for each register
251 in the current block. */
252 reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
253
254 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
255 can roll it back in reset_opr_set_tables. */
256 modifies_mem_obstack_bottom =
257 (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
258 sizeof (struct modifies_mem));
259}
260
261/* Free memory allocated by alloc_mem. */
262
263static void
264free_mem (void)
265{
266 free (uid_cuid);
267
268 htab_delete (expr_table);
269
270 obstack_free (&expr_obstack, NULL);
271 obstack_free (&occr_obstack, NULL);
272 obstack_free (&unoccr_obstack, NULL);
273 obstack_free (&modifies_mem_obstack, NULL);
274
275 free (reg_avail_info);
276}
277\f
278
279/* Hash expression X.
280 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
281 or if the expression contains something we don't want to insert in the
282 table. */
283
284static hashval_t
285hash_expr (rtx x, int *do_not_record_p)
286{
287 *do_not_record_p = 0;
288 return hash_rtx (x, GET_MODE (x), do_not_record_p,
289 NULL, /*have_reg_qty=*/false);
290}
291
292/* Callback for hashtab.
293 Return the hash value for expression EXP. We don't actually hash
294 here, we just return the cached hash value. */
295
296static hashval_t
297hash_expr_for_htab (const void *expp)
298{
aae87fc3 299 const struct expr *const exp = (const struct expr *) expp;
78d140c9 300 return exp->hash;
301}
302
06b27565 303/* Callback for hashtab.
78d140c9 304 Return nonzero if exp1 is equivalent to exp2. */
305
306static int
307expr_equiv_p (const void *exp1p, const void *exp2p)
308{
aae87fc3 309 const struct expr *const exp1 = (const struct expr *) exp1p;
310 const struct expr *const exp2 = (const struct expr *) exp2p;
78d140c9 311 int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
876760f6 312
313 gcc_assert (!equiv_p || exp1->hash == exp2->hash);
78d140c9 314 return equiv_p;
315}
316\f
317
318/* Insert expression X in INSN in the hash TABLE.
319 If it is already present, record it as the last occurrence in INSN's
320 basic block. */
321
322static void
323insert_expr_in_table (rtx x, rtx insn)
324{
325 int do_not_record_p;
326 hashval_t hash;
327 struct expr *cur_expr, **slot;
328 struct occr *avail_occr, *last_occr = NULL;
329
330 hash = hash_expr (x, &do_not_record_p);
331
332 /* Do not insert expression in the table if it contains volatile operands,
333 or if hash_expr determines the expression is something we don't want
334 to or can't handle. */
335 if (do_not_record_p)
336 return;
337
338 /* We anticipate that redundant expressions are rare, so for convenience
339 allocate a new hash table element here already and set its fields.
340 If we don't do this, we need a hack with a static struct expr. Anyway,
341 obstack_free is really fast and one more obstack_alloc doesn't hurt if
342 we're going to see more expressions later on. */
343 cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
344 sizeof (struct expr));
345 cur_expr->expr = x;
346 cur_expr->hash = hash;
347 cur_expr->avail_occr = NULL;
348
349 slot = (struct expr **) htab_find_slot_with_hash (expr_table, cur_expr,
350 hash, INSERT);
351
352 if (! (*slot))
353 /* The expression isn't found, so insert it. */
354 *slot = cur_expr;
355 else
356 {
357 /* The expression is already in the table, so roll back the
358 obstack and use the existing table entry. */
359 obstack_free (&expr_obstack, cur_expr);
360 cur_expr = *slot;
361 }
362
363 /* Search for another occurrence in the same basic block. */
364 avail_occr = cur_expr->avail_occr;
365 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
366 {
367 /* If an occurrence isn't found, save a pointer to the end of
368 the list. */
369 last_occr = avail_occr;
370 avail_occr = avail_occr->next;
371 }
372
373 if (avail_occr)
374 /* Found another instance of the expression in the same basic block.
375 Prefer this occurrence to the currently recorded one. We want
376 the last one in the block and the block is scanned from start
377 to end. */
378 avail_occr->insn = insn;
379 else
380 {
381 /* First occurrence of this expression in this basic block. */
382 avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
383 sizeof (struct occr));
384
385 /* First occurrence of this expression in any block? */
386 if (cur_expr->avail_occr == NULL)
387 cur_expr->avail_occr = avail_occr;
388 else
389 last_occr->next = avail_occr;
390
391 avail_occr->insn = insn;
392 avail_occr->next = NULL;
393 avail_occr->deleted_p = 0;
394 }
395}
396\f
397
398/* Lookup pattern PAT in the expression hash table.
399 The result is a pointer to the table entry, or NULL if not found. */
400
401static struct expr *
402lookup_expr_in_table (rtx pat)
403{
404 int do_not_record_p;
405 struct expr **slot, *tmp_expr;
406 hashval_t hash = hash_expr (pat, &do_not_record_p);
407
408 if (do_not_record_p)
409 return NULL;
410
411 tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
412 sizeof (struct expr));
413 tmp_expr->expr = pat;
414 tmp_expr->hash = hash;
415 tmp_expr->avail_occr = NULL;
416
417 slot = (struct expr **) htab_find_slot_with_hash (expr_table, tmp_expr,
418 hash, INSERT);
419 obstack_free (&expr_obstack, tmp_expr);
420
421 if (!slot)
422 return NULL;
423 else
424 return (*slot);
425}
426\f
427
91275768 428/* Dump all expressions and occurrences that are currently in the
78d140c9 429 expression hash table to FILE. */
430
431/* This helper is called via htab_traverse. */
432static int
433dump_hash_table_entry (void **slot, void *filep)
434{
435 struct expr *expr = (struct expr *) *slot;
436 FILE *file = (FILE *) filep;
437 struct occr *occr;
438
439 fprintf (file, "expr: ");
440 print_rtl (file, expr->expr);
441 fprintf (file,"\nhashcode: %u\n", expr->hash);
4133d091 442 fprintf (file,"list of occurrences:\n");
78d140c9 443 occr = expr->avail_occr;
444 while (occr)
445 {
446 rtx insn = occr->insn;
447 print_rtl_single (file, insn);
448 fprintf (file, "\n");
449 occr = occr->next;
450 }
451 fprintf (file, "\n");
452 return 1;
453}
454
455static void
456dump_hash_table (FILE *file)
457{
458 fprintf (file, "\n\nexpression hash table\n");
459 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
460 (long) htab_size (expr_table),
461 (long) htab_elements (expr_table),
462 htab_collisions (expr_table));
463 if (htab_elements (expr_table) > 0)
464 {
465 fprintf (file, "\n\ntable entries:\n");
466 htab_traverse (expr_table, dump_hash_table_entry, file);
467 }
468 fprintf (file, "\n");
469}
470\f
20128b13 471/* Return true if register X is recorded as being set by an instruction
472 whose CUID is greater than the one given. */
473
474static bool
475reg_changed_after_insn_p (rtx x, int cuid)
476{
477 unsigned int regno, end_regno;
478
479 regno = REGNO (x);
480 end_regno = END_HARD_REGNO (x);
481 do
482 if (reg_avail_info[regno] > cuid)
483 return true;
484 while (++regno < end_regno);
485 return false;
486}
78d140c9 487
d447762f 488/* Return nonzero if the operands of expression X are unchanged
489 1) from the start of INSN's basic block up to but not including INSN
490 if AFTER_INSN is false, or
491 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
78d140c9 492
493static bool
494oprs_unchanged_p (rtx x, rtx insn, bool after_insn)
495{
496 int i, j;
497 enum rtx_code code;
498 const char *fmt;
499
500 if (x == 0)
501 return 1;
502
503 code = GET_CODE (x);
504 switch (code)
505 {
506 case REG:
78d140c9 507 /* We are called after register allocation. */
876760f6 508 gcc_assert (REGNO (x) < FIRST_PSEUDO_REGISTER);
78d140c9 509 if (after_insn)
20128b13 510 return !reg_changed_after_insn_p (x, INSN_CUID (insn) - 1);
78d140c9 511 else
20128b13 512 return !reg_changed_after_insn_p (x, 0);
78d140c9 513
514 case MEM:
515 if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
516 return 0;
517 else
518 return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
519
520 case PC:
521 case CC0: /*FIXME*/
522 case CONST:
523 case CONST_INT:
524 case CONST_DOUBLE:
525 case CONST_VECTOR:
526 case SYMBOL_REF:
527 case LABEL_REF:
528 case ADDR_VEC:
529 case ADDR_DIFF_VEC:
530 return 1;
531
532 case PRE_DEC:
533 case PRE_INC:
534 case POST_DEC:
535 case POST_INC:
536 case PRE_MODIFY:
537 case POST_MODIFY:
538 if (after_insn)
539 return 0;
540 break;
541
542 default:
543 break;
544 }
545
546 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
547 {
548 if (fmt[i] == 'e')
549 {
550 if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
551 return 0;
552 }
553 else if (fmt[i] == 'E')
554 for (j = 0; j < XVECLEN (x, i); j++)
555 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
556 return 0;
557 }
558
559 return 1;
560}
561\f
562
563/* Used for communication between find_mem_conflicts and
564 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
565 conflict between two memory references.
566 This is a bit of a hack to work around the limitations of note_stores. */
567static int mems_conflict_p;
568
569/* DEST is the output of an instruction. If it is a memory reference, and
570 possibly conflicts with the load found in DATA, then set mems_conflict_p
571 to a nonzero value. */
572
573static void
81a410b1 574find_mem_conflicts (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
78d140c9 575 void *data)
576{
577 rtx mem_op = (rtx) data;
578
579 while (GET_CODE (dest) == SUBREG
580 || GET_CODE (dest) == ZERO_EXTRACT
78d140c9 581 || GET_CODE (dest) == STRICT_LOW_PART)
582 dest = XEXP (dest, 0);
583
584 /* If DEST is not a MEM, then it will not conflict with the load. Note
585 that function calls are assumed to clobber memory, but are handled
586 elsewhere. */
587 if (! MEM_P (dest))
588 return;
589
590 if (true_dependence (dest, GET_MODE (dest), mem_op,
591 rtx_addr_varies_p))
592 mems_conflict_p = 1;
593}
594\f
595
596/* Return nonzero if the expression in X (a memory reference) is killed
d447762f 597 in the current basic block before (if AFTER_INSN is false) or after
598 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
599
600 This function assumes that the modifies_mem table is flushed when
601 the hash table construction or redundancy elimination phases start
602 processing a new basic block. */
78d140c9 603
604static int
605load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
606{
607 struct modifies_mem *list_entry = modifies_mem_list;
608
609 while (list_entry)
610 {
611 rtx setter = list_entry->insn;
612
613 /* Ignore entries in the list that do not apply. */
614 if ((after_insn
615 && INSN_CUID (setter) < uid_limit)
616 || (! after_insn
617 && INSN_CUID (setter) > uid_limit))
618 {
619 list_entry = list_entry->next;
620 continue;
621 }
622
623 /* If SETTER is a call everything is clobbered. Note that calls
624 to pure functions are never put on the list, so we need not
625 worry about them. */
626 if (CALL_P (setter))
627 return 1;
628
629 /* SETTER must be an insn of some kind that sets memory. Call
630 note_stores to examine each hunk of memory that is modified.
631 It will set mems_conflict_p to nonzero if there may be a
632 conflict between X and SETTER. */
633 mems_conflict_p = 0;
634 note_stores (PATTERN (setter), find_mem_conflicts, x);
635 if (mems_conflict_p)
636 return 1;
637
638 list_entry = list_entry->next;
639 }
640 return 0;
641}
642\f
643
644/* Record register first/last/block set information for REGNO in INSN. */
645
d447762f 646static inline void
78d140c9 647record_last_reg_set_info (rtx insn, int regno)
648{
649 reg_avail_info[regno] = INSN_CUID (insn);
650}
651
652
653/* Record memory modification information for INSN. We do not actually care
654 about the memory location(s) that are set, or even how they are set (consider
655 a CALL_INSN). We merely need to record which insns modify memory. */
656
657static void
658record_last_mem_set_info (rtx insn)
659{
660 struct modifies_mem *list_entry;
661
662 list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
663 sizeof (struct modifies_mem));
664 list_entry->insn = insn;
665 list_entry->next = modifies_mem_list;
666 modifies_mem_list = list_entry;
667}
668
669/* Called from compute_hash_table via note_stores to handle one
670 SET or CLOBBER in an insn. DATA is really the instruction in which
671 the SET is taking place. */
672
673static void
81a410b1 674record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
78d140c9 675{
676 rtx last_set_insn = (rtx) data;
677
678 if (GET_CODE (dest) == SUBREG)
679 dest = SUBREG_REG (dest);
680
681 if (REG_P (dest))
682 record_last_reg_set_info (last_set_insn, REGNO (dest));
5630a23e 683 else if (MEM_P (dest))
684 {
685 /* Ignore pushes, they don't clobber memory. They may still
686 clobber the stack pointer though. Some targets do argument
687 pushes without adding REG_INC notes. See e.g. PR25196,
688 where a pushsi2 on i386 doesn't have REG_INC notes. Note
689 such changes here too. */
690 if (! push_operand (dest, GET_MODE (dest)))
691 record_last_mem_set_info (last_set_insn);
692 else
693 record_last_reg_set_info (last_set_insn, STACK_POINTER_REGNUM);
694 }
78d140c9 695}
d447762f 696
78d140c9 697
698/* Reset tables used to keep track of what's still available since the
699 start of the block. */
700
701static void
702reset_opr_set_tables (void)
703{
704 memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
705 obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
706 modifies_mem_list = NULL;
707}
d447762f 708\f
78d140c9 709
710/* Record things set by INSN.
711 This data is used by oprs_unchanged_p. */
712
713static void
d447762f 714record_opr_changes (rtx insn)
78d140c9 715{
d447762f 716 rtx note;
78d140c9 717
d447762f 718 /* Find all stores and record them. */
719 note_stores (PATTERN (insn), record_last_set_info, insn);
78d140c9 720
d447762f 721 /* Also record autoincremented REGs for this insn as changed. */
722 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
723 if (REG_NOTE_KIND (note) == REG_INC)
724 record_last_reg_set_info (insn, REGNO (XEXP (note, 0)));
78d140c9 725
d447762f 726 /* Finally, if this is a call, record all call clobbers. */
727 if (CALL_P (insn))
728 {
20128b13 729 unsigned int regno, end_regno;
730 rtx link, x;
d447762f 731
732 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4fec1d6c 733 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
d447762f 734 record_last_reg_set_info (insn, regno);
78d140c9 735
20128b13 736 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
737 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
738 {
739 x = XEXP (XEXP (link, 0), 0);
740 if (REG_P (x))
741 {
742 gcc_assert (HARD_REGISTER_P (x));
743 regno = REGNO (x);
744 end_regno = END_HARD_REGNO (x);
745 do
746 record_last_reg_set_info (insn, regno);
747 while (++regno < end_regno);
748 }
749 }
750
d447762f 751 if (! CONST_OR_PURE_CALL_P (insn))
752 record_last_mem_set_info (insn);
753 }
78d140c9 754}
755\f
756
757/* Scan the pattern of INSN and add an entry to the hash TABLE.
758 After reload we are interested in loads/stores only. */
759
760static void
761hash_scan_set (rtx insn)
762{
763 rtx pat = PATTERN (insn);
764 rtx src = SET_SRC (pat);
765 rtx dest = SET_DEST (pat);
766
767 /* We are only interested in loads and stores. */
768 if (! MEM_P (src) && ! MEM_P (dest))
769 return;
770
771 /* Don't mess with jumps and nops. */
772 if (JUMP_P (insn) || set_noop_p (pat))
773 return;
774
78d140c9 775 if (REG_P (dest))
776 {
d447762f 777 if (/* Don't CSE something if we can't do a reg/reg copy. */
78d140c9 778 can_copy_p (GET_MODE (dest))
779 /* Is SET_SRC something we want to gcse? */
780 && general_operand (src, GET_MODE (src))
868e8f12 781#ifdef STACK_REGS
782 /* Never consider insns touching the register stack. It may
783 create situations that reg-stack cannot handle (e.g. a stack
784 register live across an abnormal edge). */
785 && (REGNO (dest) < FIRST_STACK_REG || REGNO (dest) > LAST_STACK_REG)
786#endif
78d140c9 787 /* An expression is not available if its operands are
788 subsequently modified, including this insn. */
789 && oprs_unchanged_p (src, insn, true))
790 {
791 insert_expr_in_table (src, insn);
792 }
793 }
794 else if (REG_P (src))
795 {
796 /* Only record sets of pseudo-regs in the hash table. */
d447762f 797 if (/* Don't CSE something if we can't do a reg/reg copy. */
78d140c9 798 can_copy_p (GET_MODE (src))
799 /* Is SET_DEST something we want to gcse? */
800 && general_operand (dest, GET_MODE (dest))
868e8f12 801#ifdef STACK_REGS
802 /* As above for STACK_REGS. */
803 && (REGNO (src) < FIRST_STACK_REG || REGNO (src) > LAST_STACK_REG)
804#endif
78d140c9 805 && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
806 /* Check if the memory expression is killed after insn. */
807 && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
808 && oprs_unchanged_p (XEXP (dest, 0), insn, true))
809 {
810 insert_expr_in_table (dest, insn);
811 }
812 }
813}
814\f
d447762f 815
78d140c9 816/* Create hash table of memory expressions available at end of basic
d447762f 817 blocks. Basically you should think of this hash table as the
818 representation of AVAIL_OUT. This is the set of expressions that
819 is generated in a basic block and not killed before the end of the
820 same basic block. Notice that this is really a local computation. */
78d140c9 821
822static void
823compute_hash_table (void)
824{
825 basic_block bb;
826
827 FOR_EACH_BB (bb)
828 {
829 rtx insn;
78d140c9 830
831 /* First pass over the instructions records information used to
d447762f 832 determine when registers and memory are last set.
833 Since we compute a "local" AVAIL_OUT, reset the tables that
834 help us keep track of what has been modified since the start
835 of the block. */
836 reset_opr_set_tables ();
78d140c9 837 FOR_BB_INSNS (bb, insn)
838 {
d447762f 839 if (INSN_P (insn))
840 record_opr_changes (insn);
841 }
78d140c9 842
d447762f 843 /* The next pass actually builds the hash table. */
78d140c9 844 FOR_BB_INSNS (bb, insn)
845 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
846 hash_scan_set (insn);
847 }
848}
849\f
850
851/* Check if register REG is killed in any insn waiting to be inserted on
852 edge E. This function is required to check that our data flow analysis
853 is still valid prior to commit_edge_insertions. */
854
855static bool
856reg_killed_on_edge (rtx reg, edge e)
857{
858 rtx insn;
859
860 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
861 if (INSN_P (insn) && reg_set_p (reg, insn))
862 return true;
863
864 return false;
865}
866
867/* Similar to above - check if register REG is used in any insn waiting
868 to be inserted on edge E.
869 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
870 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
871
872static bool
873reg_used_on_edge (rtx reg, edge e)
874{
875 rtx insn;
876
877 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
878 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
879 return true;
880
881 return false;
882}
883\f
78d140c9 884/* Return the loaded/stored register of a load/store instruction. */
885
886static rtx
887get_avail_load_store_reg (rtx insn)
888{
876760f6 889 if (REG_P (SET_DEST (PATTERN (insn))))
890 /* A load. */
78d140c9 891 return SET_DEST(PATTERN(insn));
876760f6 892 else
893 {
894 /* A store. */
895 gcc_assert (REG_P (SET_SRC (PATTERN (insn))));
896 return SET_SRC (PATTERN (insn));
897 }
78d140c9 898}
899
900/* Return nonzero if the predecessors of BB are "well behaved". */
901
902static bool
903bb_has_well_behaved_predecessors (basic_block bb)
904{
905 edge pred;
cd665a06 906 edge_iterator ei;
78d140c9 907
cd665a06 908 if (EDGE_COUNT (bb->preds) == 0)
78d140c9 909 return false;
910
cd665a06 911 FOR_EACH_EDGE (pred, ei, bb->preds)
78d140c9 912 {
913 if ((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
914 return false;
915
916 if (JUMP_TABLE_DATA_P (BB_END (pred->src)))
917 return false;
918 }
919 return true;
920}
921
922
923/* Search for the occurrences of expression in BB. */
924
925static struct occr*
926get_bb_avail_insn (basic_block bb, struct occr *occr)
927{
928 for (; occr != NULL; occr = occr->next)
929 if (BLOCK_FOR_INSN (occr->insn) == bb)
930 return occr;
931 return NULL;
932}
933
934
935/* This handles the case where several stores feed a partially redundant
936 load. It checks if the redundancy elimination is possible and if it's
d447762f 937 worth it.
938
939 Redundancy elimination is possible if,
940 1) None of the operands of an insn have been modified since the start
941 of the current basic block.
942 2) In any predecessor of the current basic block, the same expression
943 is generated.
944
945 See the function body for the heuristics that determine if eliminating
946 a redundancy is also worth doing, assuming it is possible. */
78d140c9 947
948static void
949eliminate_partially_redundant_load (basic_block bb, rtx insn,
950 struct expr *expr)
951{
952 edge pred;
953 rtx avail_insn = NULL_RTX;
954 rtx avail_reg;
955 rtx dest, pat;
956 struct occr *a_occr;
957 struct unoccr *occr, *avail_occrs = NULL;
958 struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
959 int npred_ok = 0;
960 gcov_type ok_count = 0; /* Redundant load execution count. */
961 gcov_type critical_count = 0; /* Execution count of critical edges. */
cd665a06 962 edge_iterator ei;
b0596095 963 bool critical_edge_split = false;
78d140c9 964
965 /* The execution count of the loads to be added to make the
966 load fully redundant. */
967 gcov_type not_ok_count = 0;
968 basic_block pred_bb;
969
970 pat = PATTERN (insn);
971 dest = SET_DEST (pat);
972
973 /* Check that the loaded register is not used, set, or killed from the
974 beginning of the block. */
20128b13 975 if (reg_changed_after_insn_p (dest, 0)
976 || reg_used_between_p (dest, PREV_INSN (BB_HEAD (bb)), insn))
78d140c9 977 return;
978
979 /* Check potential for replacing load with copy for predecessors. */
cd665a06 980 FOR_EACH_EDGE (pred, ei, bb->preds)
78d140c9 981 {
982 rtx next_pred_bb_end;
983
984 avail_insn = NULL_RTX;
b0596095 985 avail_reg = NULL_RTX;
78d140c9 986 pred_bb = pred->src;
987 next_pred_bb_end = NEXT_INSN (BB_END (pred_bb));
988 for (a_occr = get_bb_avail_insn (pred_bb, expr->avail_occr); a_occr;
989 a_occr = get_bb_avail_insn (pred_bb, a_occr->next))
990 {
991 /* Check if the loaded register is not used. */
992 avail_insn = a_occr->insn;
876760f6 993 avail_reg = get_avail_load_store_reg (avail_insn);
994 gcc_assert (avail_reg);
995
78d140c9 996 /* Make sure we can generate a move from register avail_reg to
997 dest. */
998 extract_insn (gen_move_insn (copy_rtx (dest),
999 copy_rtx (avail_reg)));
1000 if (! constrain_operands (1)
1001 || reg_killed_on_edge (avail_reg, pred)
1002 || reg_used_on_edge (dest, pred))
1003 {
1004 avail_insn = NULL;
1005 continue;
1006 }
20128b13 1007 if (!reg_set_between_p (avail_reg, avail_insn, next_pred_bb_end))
78d140c9 1008 /* AVAIL_INSN remains non-null. */
1009 break;
1010 else
1011 avail_insn = NULL;
1012 }
1013
1014 if (EDGE_CRITICAL_P (pred))
1015 critical_count += pred->count;
1016
1017 if (avail_insn != NULL_RTX)
1018 {
1019 npred_ok++;
1020 ok_count += pred->count;
b0596095 1021 if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest),
1022 copy_rtx (avail_reg)))))
1023 {
1024 /* Check if there is going to be a split. */
1025 if (EDGE_CRITICAL_P (pred))
1026 critical_edge_split = true;
1027 }
1028 else /* Its a dead move no need to generate. */
1029 continue;
78d140c9 1030 occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
beab9d47 1031 sizeof (struct unoccr));
78d140c9 1032 occr->insn = avail_insn;
1033 occr->pred = pred;
1034 occr->next = avail_occrs;
1035 avail_occrs = occr;
1036 if (! rollback_unoccr)
1037 rollback_unoccr = occr;
1038 }
1039 else
1040 {
7063afc3 1041 /* Adding a load on a critical edge will cause a split. */
b0596095 1042 if (EDGE_CRITICAL_P (pred))
1043 critical_edge_split = true;
78d140c9 1044 not_ok_count += pred->count;
1045 unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1046 sizeof (struct unoccr));
1047 unoccr->insn = NULL_RTX;
1048 unoccr->pred = pred;
1049 unoccr->next = unavail_occrs;
1050 unavail_occrs = unoccr;
1051 if (! rollback_unoccr)
1052 rollback_unoccr = unoccr;
1053 }
1054 }
1055
1056 if (/* No load can be replaced by copy. */
1057 npred_ok == 0
1058 /* Prevent exploding the code. */
b0596095 1059 || (optimize_size && npred_ok > 1)
1060 /* If we don't have profile information we cannot tell if splitting
1061 a critical edge is profitable or not so don't do it. */
1062 || ((! profile_info || ! flag_branch_probabilities
1063 || targetm.cannot_modify_jumps_p ())
1064 && critical_edge_split))
78d140c9 1065 goto cleanup;
1066
1067 /* Check if it's worth applying the partial redundancy elimination. */
1068 if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
1069 goto cleanup;
1070 if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
1071 goto cleanup;
1072
1073 /* Generate moves to the loaded register from where
1074 the memory is available. */
1075 for (occr = avail_occrs; occr; occr = occr->next)
1076 {
1077 avail_insn = occr->insn;
1078 pred = occr->pred;
1079 /* Set avail_reg to be the register having the value of the
1080 memory. */
1081 avail_reg = get_avail_load_store_reg (avail_insn);
876760f6 1082 gcc_assert (avail_reg);
78d140c9 1083
1084 insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
1085 copy_rtx (avail_reg)),
1086 pred);
1087 stats.moves_inserted++;
1088
1089 if (dump_file)
1090 fprintf (dump_file,
1091 "generating move from %d to %d on edge from %d to %d\n",
1092 REGNO (avail_reg),
1093 REGNO (dest),
1094 pred->src->index,
1095 pred->dest->index);
1096 }
1097
1098 /* Regenerate loads where the memory is unavailable. */
1099 for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
1100 {
1101 pred = unoccr->pred;
1102 insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
1103 stats.copies_inserted++;
1104
1105 if (dump_file)
1106 {
1107 fprintf (dump_file,
1108 "generating on edge from %d to %d a copy of load: ",
1109 pred->src->index,
1110 pred->dest->index);
1111 print_rtl (dump_file, PATTERN (insn));
1112 fprintf (dump_file, "\n");
1113 }
1114 }
1115
1116 /* Delete the insn if it is not available in this block and mark it
1117 for deletion if it is available. If insn is available it may help
1118 discover additional redundancies, so mark it for later deletion. */
1119 for (a_occr = get_bb_avail_insn (bb, expr->avail_occr);
1120 a_occr && (a_occr->insn != insn);
1121 a_occr = get_bb_avail_insn (bb, a_occr->next));
1122
1123 if (!a_occr)
b0596095 1124 {
1125 stats.insns_deleted++;
1126
1127 if (dump_file)
1128 {
1129 fprintf (dump_file, "deleting insn:\n");
1130 print_rtl_single (dump_file, insn);
1131 fprintf (dump_file, "\n");
1132 }
1133 delete_insn (insn);
1134 }
78d140c9 1135 else
1136 a_occr->deleted_p = 1;
1137
1138cleanup:
1139 if (rollback_unoccr)
1140 obstack_free (&unoccr_obstack, rollback_unoccr);
1141}
1142
1143/* Performing the redundancy elimination as described before. */
1144
1145static void
1146eliminate_partially_redundant_loads (void)
1147{
1148 rtx insn;
1149 basic_block bb;
1150
1151 /* Note we start at block 1. */
1152
1153 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
1154 return;
1155
1156 FOR_BB_BETWEEN (bb,
1157 ENTRY_BLOCK_PTR->next_bb->next_bb,
1158 EXIT_BLOCK_PTR,
1159 next_bb)
1160 {
d447762f 1161 /* Don't try anything on basic blocks with strange predecessors. */
78d140c9 1162 if (! bb_has_well_behaved_predecessors (bb))
1163 continue;
1164
d447762f 1165 /* Do not try anything on cold basic blocks. */
78d140c9 1166 if (probably_cold_bb_p (bb))
1167 continue;
1168
d447762f 1169 /* Reset the table of things changed since the start of the current
1170 basic block. */
78d140c9 1171 reset_opr_set_tables ();
1172
d447762f 1173 /* Look at all insns in the current basic block and see if there are
1174 any loads in it that we can record. */
78d140c9 1175 FOR_BB_INSNS (bb, insn)
1176 {
1177 /* Is it a load - of the form (set (reg) (mem))? */
1178 if (NONJUMP_INSN_P (insn)
1179 && GET_CODE (PATTERN (insn)) == SET
1180 && REG_P (SET_DEST (PATTERN (insn)))
1181 && MEM_P (SET_SRC (PATTERN (insn))))
1182 {
1183 rtx pat = PATTERN (insn);
1184 rtx src = SET_SRC (pat);
1185 struct expr *expr;
1186
1187 if (!MEM_VOLATILE_P (src)
1188 && GET_MODE (src) != BLKmode
1189 && general_operand (src, GET_MODE (src))
1190 /* Are the operands unchanged since the start of the
1191 block? */
1192 && oprs_unchanged_p (src, insn, false)
1193 && !(flag_non_call_exceptions && may_trap_p (src))
1194 && !side_effects_p (src)
1195 /* Is the expression recorded? */
1196 && (expr = lookup_expr_in_table (src)) != NULL)
1197 {
1198 /* We now have a load (insn) and an available memory at
1199 its BB start (expr). Try to remove the loads if it is
1200 redundant. */
1201 eliminate_partially_redundant_load (bb, insn, expr);
1202 }
1203 }
1204
d447762f 1205 /* Keep track of everything modified by this insn, so that we
1206 know what has been modified since the start of the current
1207 basic block. */
78d140c9 1208 if (INSN_P (insn))
d447762f 1209 record_opr_changes (insn);
78d140c9 1210 }
1211 }
1212
1213 commit_edge_insertions ();
1214}
1215
1216/* Go over the expression hash table and delete insns that were
1217 marked for later deletion. */
1218
1219/* This helper is called via htab_traverse. */
1220static int
1221delete_redundant_insns_1 (void **slot, void *data ATTRIBUTE_UNUSED)
1222{
1223 struct expr *expr = (struct expr *) *slot;
1224 struct occr *occr;
1225
1226 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1227 {
3072d30e 1228 if (occr->deleted_p && dbg_cnt (gcse2_delete))
78d140c9 1229 {
1230 delete_insn (occr->insn);
1231 stats.insns_deleted++;
1232
1233 if (dump_file)
1234 {
1235 fprintf (dump_file, "deleting insn:\n");
1236 print_rtl_single (dump_file, occr->insn);
1237 fprintf (dump_file, "\n");
1238 }
1239 }
1240 }
1241
1242 return 1;
1243}
1244
1245static void
1246delete_redundant_insns (void)
1247{
1248 htab_traverse (expr_table, delete_redundant_insns_1, NULL);
1249 if (dump_file)
1250 fprintf (dump_file, "\n");
1251}
1252
1253/* Main entry point of the GCSE after reload - clean some redundant loads
1254 due to spilling. */
1255
7f80955e 1256static void
78d140c9 1257gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
1258{
5ee7391d 1259
78d140c9 1260 memset (&stats, 0, sizeof (stats));
1261
1262 /* Allocate ememory for this pass.
1263 Also computes and initializes the insns' CUIDs. */
1264 alloc_mem ();
1265
1266 /* We need alias analysis. */
1267 init_alias_analysis ();
1268
1269 compute_hash_table ();
1270
1271 if (dump_file)
1272 dump_hash_table (dump_file);
1273
1274 if (htab_elements (expr_table) > 0)
1275 {
1276 eliminate_partially_redundant_loads ();
1277 delete_redundant_insns ();
1278
1279 if (dump_file)
1280 {
1281 fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
1282 fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
1283 fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted);
1284 fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted);
1285 fprintf (dump_file, "\n\n");
1286 }
1287 }
1288
1289 /* We are finished with alias. */
1290 end_alias_analysis ();
1291
1292 free_mem ();
1293}
1294
77fce4cd 1295\f
1296static bool
1297gate_handle_gcse2 (void)
1298{
1299 return (optimize > 0 && flag_gcse_after_reload);
1300}
1301
1302
2a1990e9 1303static unsigned int
77fce4cd 1304rest_of_handle_gcse2 (void)
1305{
1306 gcse_after_reload_main (get_insns ());
1307 rebuild_jump_labels (get_insns ());
2a1990e9 1308 return 0;
77fce4cd 1309}
1310
1311struct tree_opt_pass pass_gcse2 =
1312{
1313 "gcse2", /* name */
1314 gate_handle_gcse2, /* gate */
1315 rest_of_handle_gcse2, /* execute */
1316 NULL, /* sub */
1317 NULL, /* next */
1318 0, /* static_pass_number */
1319 TV_GCSE_AFTER_RELOAD, /* tv_id */
1320 0, /* properties_required */
1321 0, /* properties_provided */
1322 0, /* properties_destroyed */
1323 0, /* todo_flags_start */
1324 TODO_dump_func |
1325 TODO_verify_flow | TODO_ggc_collect, /* todo_flags_finish */
1326 'J' /* letter */
1327};
1328