]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/postreload.c
RISC-V: Preserve arch version info during normalizing arch string
[thirdparty/gcc.git] / gcc / postreload.c
CommitLineData
15e35479 1/* Perform simple optimizations to clean up the result of reload.
8d9254fc 2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
15e35479
KH
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
15e35479
KH
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
15e35479
KH
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
c7131fb2 23#include "backend.h"
957060b5 24#include "target.h"
15e35479 25#include "rtl.h"
957060b5
AM
26#include "tree.h"
27#include "predict.h"
c7131fb2 28#include "df.h"
4d0cdd0c 29#include "memmodel.h"
15e35479 30#include "tm_p.h"
957060b5
AM
31#include "optabs.h"
32#include "regs.h"
33#include "emit-rtl.h"
34#include "recog.h"
957060b5 35
60393bbc
AM
36#include "cfgrtl.h"
37#include "cfgbuild.h"
38#include "cfgcleanup.h"
15e35479 39#include "reload.h"
15e35479 40#include "cselib.h"
ef330312 41#include "tree-pass.h"
6fb5fa3c 42#include "dbgcnt.h"
5a5a3bc5 43#include "function-abi.h"
70b55b25 44#include "rtl-iter.h"
15e35479 45
0c20a65f 46static int reload_cse_noop_set_p (rtx);
f90af2e0 47static bool reload_cse_simplify (rtx_insn *, rtx);
3a15c2cf 48static void reload_cse_regs_1 (void);
f90af2e0
DM
49static int reload_cse_simplify_set (rtx, rtx_insn *);
50static int reload_cse_simplify_operands (rtx_insn *, rtx);
15e35479 51
0c20a65f 52static void reload_combine (void);
f90af2e0 53static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
7bc980e1 54static void reload_combine_note_store (rtx, const_rtx, void *);
15e35479 55
f90af2e0 56static bool reload_cse_move2add (rtx_insn *);
7bc980e1 57static void move2add_note_store (rtx, const_rtx, void *);
15e35479
KH
58
59/* Call cse / combine like post-reload optimization phases.
60 FIRST is the first instruction. */
8bb91f49
SB
61
62static void
f90af2e0 63reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
15e35479 64{
dc0d5a57 65 bool moves_converted;
3a15c2cf 66 reload_cse_regs_1 ();
15e35479 67 reload_combine ();
dc0d5a57 68 moves_converted = reload_cse_move2add (first);
15e35479 69 if (flag_expensive_optimizations)
dc0d5a57
BS
70 {
71 if (moves_converted)
72 reload_combine ();
3a15c2cf 73 reload_cse_regs_1 ();
dc0d5a57 74 }
15e35479
KH
75}
76
77/* See whether a single set SET is a noop. */
78static int
0c20a65f 79reload_cse_noop_set_p (rtx set)
15e35479
KH
80{
81 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
82 return 0;
83
84 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
85}
86
3a15c2cf
SB
87/* Try to simplify INSN. Return true if the CFG may have changed. */
88static bool
f90af2e0 89reload_cse_simplify (rtx_insn *insn, rtx testreg)
15e35479
KH
90{
91 rtx body = PATTERN (insn);
3a15c2cf
SB
92 basic_block insn_bb = BLOCK_FOR_INSN (insn);
93 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
15e35479 94
d5a752eb
AV
95 /* If NO_FUNCTION_CSE has been set by the target, then we should not try
96 to cse function calls. */
97 if (NO_FUNCTION_CSE && CALL_P (insn))
98 return false;
99
d44f14cc
JJ
100 /* Remember if this insn has been sp += const_int. */
101 rtx sp_set = set_for_reg_notes (insn);
102 rtx sp_addend = NULL_RTX;
103 if (sp_set
104 && SET_DEST (sp_set) == stack_pointer_rtx
105 && GET_CODE (SET_SRC (sp_set)) == PLUS
106 && XEXP (SET_SRC (sp_set), 0) == stack_pointer_rtx
107 && CONST_INT_P (XEXP (SET_SRC (sp_set), 1)))
108 sp_addend = XEXP (SET_SRC (sp_set), 1);
109
15e35479
KH
110 if (GET_CODE (body) == SET)
111 {
112 int count = 0;
113
114 /* Simplify even if we may think it is a no-op.
115 We may think a memory load of a value smaller than WORD_SIZE
116 is redundant because we haven't taken into account possible
117 implicit extension. reload_cse_simplify_set() will bring
118 this out, so it's safer to simplify before we delete. */
119 count += reload_cse_simplify_set (body, insn);
120
121 if (!count && reload_cse_noop_set_p (body))
122 {
9e582b1d
JR
123 if (check_for_inc_dec (insn))
124 delete_insn_and_edges (insn);
3a15c2cf
SB
125 /* We're done with this insn. */
126 goto done;
15e35479
KH
127 }
128
129 if (count > 0)
130 apply_change_group ();
131 else
132 reload_cse_simplify_operands (insn, testreg);
133 }
134 else if (GET_CODE (body) == PARALLEL)
135 {
136 int i;
137 int count = 0;
138 rtx value = NULL_RTX;
139
0d87c765
RH
140 /* Registers mentioned in the clobber list for an asm cannot be reused
141 within the body of the asm. Invalidate those registers now so that
142 we don't try to substitute values for them. */
143 if (asm_noperands (body) >= 0)
144 {
145 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
146 {
147 rtx part = XVECEXP (body, 0, i);
148 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
149 cselib_invalidate_rtx (XEXP (part, 0));
150 }
151 }
152
15e35479
KH
153 /* If every action in a PARALLEL is a noop, we can delete
154 the entire PARALLEL. */
155 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
156 {
157 rtx part = XVECEXP (body, 0, i);
158 if (GET_CODE (part) == SET)
159 {
160 if (! reload_cse_noop_set_p (part))
161 break;
162 if (REG_P (SET_DEST (part))
163 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
164 {
165 if (value)
166 break;
167 value = SET_DEST (part);
168 }
169 }
17d184e5 170 else if (GET_CODE (part) != CLOBBER && GET_CODE (part) != USE)
15e35479
KH
171 break;
172 }
173
174 if (i < 0)
175 {
9e582b1d
JR
176 if (check_for_inc_dec (insn))
177 delete_insn_and_edges (insn);
15e35479 178 /* We're done with this insn. */
3a15c2cf 179 goto done;
15e35479
KH
180 }
181
182 /* It's not a no-op, but we can try to simplify it. */
183 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
184 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
185 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
186
187 if (count > 0)
188 apply_change_group ();
189 else
190 reload_cse_simplify_operands (insn, testreg);
191 }
3a15c2cf 192
d44f14cc
JJ
193 /* If sp += const_int insn is changed into sp = reg;, add REG_EQUAL
194 note so that the stack_adjustments pass can undo it if beneficial. */
195 if (sp_addend
196 && SET_DEST (sp_set) == stack_pointer_rtx
197 && REG_P (SET_SRC (sp_set)))
198 set_dst_reg_note (insn, REG_EQUAL,
199 gen_rtx_PLUS (Pmode, stack_pointer_rtx,
200 sp_addend), stack_pointer_rtx);
201
3a15c2cf
SB
202done:
203 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
15e35479
KH
204}
205
206/* Do a very simple CSE pass over the hard registers.
207
208 This function detects no-op moves where we happened to assign two
209 different pseudo-registers to the same hard register, and then
210 copied one to the other. Reload will generate a useless
211 instruction copying a register to itself.
212
213 This function also detects cases where we load a value from memory
214 into two different registers, and (if memory is more expensive than
215 registers) changes it to simply copy the first register into the
216 second register.
217
218 Another optimization is performed that scans the operands of each
219 instruction to see whether the value is already available in a
220 hard register. It then replaces the operand with the hard register
221 if possible, much like an optional reload would. */
222
223static void
3a15c2cf 224reload_cse_regs_1 (void)
15e35479 225{
3a15c2cf
SB
226 bool cfg_changed = false;
227 basic_block bb;
f90af2e0 228 rtx_insn *insn;
c3dc5e66 229 rtx testreg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
15e35479 230
457eeaae 231 cselib_init (CSELIB_RECORD_MEMORY);
15e35479
KH
232 init_alias_analysis ();
233
11cd3bed 234 FOR_EACH_BB_FN (bb, cfun)
3a15c2cf
SB
235 FOR_BB_INSNS (bb, insn)
236 {
237 if (INSN_P (insn))
238 cfg_changed |= reload_cse_simplify (insn, testreg);
15e35479 239
3a15c2cf
SB
240 cselib_process_insn (insn);
241 }
15e35479
KH
242
243 /* Clean up. */
244 end_alias_analysis ();
245 cselib_finish ();
3a15c2cf
SB
246 if (cfg_changed)
247 cleanup_cfg (0);
15e35479
KH
248}
249
250/* Try to simplify a single SET instruction. SET is the set pattern.
251 INSN is the instruction it came from.
252 This function only handles one case: if we set a register to a value
253 which is not a register, we try to find that value in some other register
254 and change the set into a register copy. */
255
256static int
f90af2e0 257reload_cse_simplify_set (rtx set, rtx_insn *insn)
15e35479
KH
258{
259 int did_change = 0;
260 int dreg;
261 rtx src;
6f76a878 262 reg_class_t dclass;
15e35479
KH
263 int old_cost;
264 cselib_val *val;
265 struct elt_loc_list *l;
f822d252 266 enum rtx_code extend_op = UNKNOWN;
f40751dd 267 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
15e35479
KH
268
269 dreg = true_regnum (SET_DEST (set));
270 if (dreg < 0)
271 return 0;
272
273 src = SET_SRC (set);
274 if (side_effects_p (src) || true_regnum (src) >= 0)
275 return 0;
276
277 dclass = REGNO_REG_CLASS (dreg);
278
15e35479
KH
279 /* When replacing a memory with a register, we need to honor assumptions
280 that combine made wrt the contents of sign bits. We'll do this by
281 generating an extend instruction instead of a reg->reg copy. Thus
282 the destination must be a register that we can widen. */
3c0cb5de 283 if (MEM_P (src)
3712c7a3 284 && (extend_op = load_extend_op (GET_MODE (src))) != UNKNOWN
f8cfc6aa 285 && !REG_P (SET_DEST (set)))
15e35479 286 return 0;
15e35479 287
4deef538 288 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
b2948a2c
KH
289 if (! val)
290 return 0;
291
15e35479 292 /* If memory loads are cheaper than register copies, don't change them. */
3c0cb5de 293 if (MEM_P (src))
f5c21ef3 294 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
f8cfc6aa 295 else if (REG_P (src))
de8f4b07 296 old_cost = register_move_cost (GET_MODE (src),
15e35479
KH
297 REGNO_REG_CLASS (REGNO (src)), dclass);
298 else
e548c9df 299 old_cost = set_src_cost (src, GET_MODE (SET_DEST (set)), speed);
15e35479 300
15e35479
KH
301 for (l = val->locs; l; l = l->next)
302 {
303 rtx this_rtx = l->loc;
304 int this_cost;
305
306 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
307 {
f822d252 308 if (extend_op != UNKNOWN)
15e35479 309 {
807e902e 310 wide_int result;
15e35479 311
807e902e 312 if (!CONST_SCALAR_INT_P (this_rtx))
15e35479
KH
313 continue;
314
15e35479
KH
315 switch (extend_op)
316 {
317 case ZERO_EXTEND:
f079167a
RS
318 result = wide_int::from (rtx_mode_t (this_rtx,
319 GET_MODE (src)),
807e902e 320 BITS_PER_WORD, UNSIGNED);
15e35479
KH
321 break;
322 case SIGN_EXTEND:
f079167a
RS
323 result = wide_int::from (rtx_mode_t (this_rtx,
324 GET_MODE (src)),
807e902e
KZ
325 BITS_PER_WORD, SIGNED);
326 break;
15e35479 327 default:
e16acfcd 328 gcc_unreachable ();
15e35479 329 }
807e902e 330 this_rtx = immed_wide_int_const (result, word_mode);
15e35479 331 }
f1657f05 332
e548c9df 333 this_cost = set_src_cost (this_rtx, GET_MODE (SET_DEST (set)), speed);
15e35479 334 }
f8cfc6aa 335 else if (REG_P (this_rtx))
15e35479 336 {
f822d252 337 if (extend_op != UNKNOWN)
15e35479
KH
338 {
339 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
e548c9df 340 this_cost = set_src_cost (this_rtx, word_mode, speed);
15e35479
KH
341 }
342 else
de8f4b07 343 this_cost = register_move_cost (GET_MODE (this_rtx),
15e35479
KH
344 REGNO_REG_CLASS (REGNO (this_rtx)),
345 dclass);
346 }
347 else
348 continue;
349
350 /* If equal costs, prefer registers over anything else. That
351 tends to lead to smaller instructions on some machines. */
352 if (this_cost < old_cost
353 || (this_cost == old_cost
f8cfc6aa
JQ
354 && REG_P (this_rtx)
355 && !REG_P (SET_SRC (set))))
15e35479 356 {
3712c7a3 357 if (extend_op != UNKNOWN
0d803030
RS
358 && REG_CAN_CHANGE_MODE_P (REGNO (SET_DEST (set)),
359 GET_MODE (SET_DEST (set)), word_mode))
15e35479
KH
360 {
361 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
362 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
363 validate_change (insn, &SET_DEST (set), wide_dest, 1);
364 }
15e35479 365
95e88efd 366 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
15e35479
KH
367 old_cost = this_cost, did_change = 1;
368 }
369 }
370
371 return did_change;
372}
373
374/* Try to replace operands in INSN with equivalent values that are already
375 in registers. This can be viewed as optional reloading.
376
377 For each non-register operand in the insn, see if any hard regs are
378 known to be equivalent to that operand. Record the alternatives which
379 can accept these hard registers. Among all alternatives, select the
380 ones which are better or equal to the one currently matching, where
381 "better" is in terms of '?' and '!' constraints. Among the remaining
382 alternatives, select the one which replaces most operands with
383 hard registers. */
384
385static int
f90af2e0 386reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
15e35479
KH
387{
388 int i, j;
389
390 /* For each operand, all registers that are equivalent to it. */
391 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
392
393 const char *constraints[MAX_RECOG_OPERANDS];
394
395 /* Vector recording how bad an alternative is. */
396 int *alternative_reject;
397 /* Vector recording how many registers can be introduced by choosing
398 this alternative. */
399 int *alternative_nregs;
400 /* Array of vectors recording, for each operand and each alternative,
401 which hard register to substitute, or -1 if the operand should be
402 left as it is. */
403 int *op_alt_regno[MAX_RECOG_OPERANDS];
404 /* Array of alternatives, sorted in order of decreasing desirability. */
405 int *alternative_order;
406
75d25a02 407 extract_constrain_insn (insn);
15e35479
KH
408
409 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
410 return 0;
411
d3bfe4de
KG
412 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
413 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
414 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
703ad42b
KG
415 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
416 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
15e35479
KH
417
418 /* For each operand, find out which regs are equivalent. */
419 for (i = 0; i < recog_data.n_operands; i++)
420 {
421 cselib_val *v;
422 struct elt_loc_list *l;
115df136 423 rtx op;
15e35479
KH
424
425 CLEAR_HARD_REG_SET (equiv_regs[i]);
426
427 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
854dde43
JJ
428 right, so avoid the problem here. Similarly NOTE_INSN_DELETED_LABEL.
429 Likewise if we have a constant and the insn pattern doesn't tell us
430 the mode we need. */
4b4bf941 431 if (LABEL_P (recog_data.operand[i])
854dde43
JJ
432 || (NOTE_P (recog_data.operand[i])
433 && NOTE_KIND (recog_data.operand[i]) == NOTE_INSN_DELETED_LABEL)
15e35479
KH
434 || (CONSTANT_P (recog_data.operand[i])
435 && recog_data.operand_mode[i] == VOIDmode))
436 continue;
437
115df136 438 op = recog_data.operand[i];
3712c7a3 439 if (MEM_P (op) && load_extend_op (GET_MODE (op)) != UNKNOWN)
115df136
R
440 {
441 rtx set = single_set (insn);
442
1f52178b 443 /* We might have multiple sets, some of which do implicit
115df136
R
444 extension. Punt on this for now. */
445 if (! set)
446 continue;
1f838355 447 /* If the destination is also a MEM or a STRICT_LOW_PART, no
115df136
R
448 extension applies.
449 Also, if there is an explicit extension, we don't have to
450 worry about an implicit one. */
3c0cb5de 451 else if (MEM_P (SET_DEST (set))
115df136
R
452 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
453 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
454 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
455 ; /* Continue ordinary processing. */
7be4d808
R
456 /* If the register cannot change mode to word_mode, it follows that
457 it cannot have been used in word_mode. */
f8cfc6aa 458 else if (REG_P (SET_DEST (set))
0d803030
RS
459 && !REG_CAN_CHANGE_MODE_P (REGNO (SET_DEST (set)),
460 GET_MODE (SET_DEST (set)),
461 word_mode))
7be4d808 462 ; /* Continue ordinary processing. */
115df136 463 /* If this is a straight load, make the extension explicit. */
f8cfc6aa 464 else if (REG_P (SET_DEST (set))
115df136
R
465 && recog_data.n_operands == 2
466 && SET_SRC (set) == op
467 && SET_DEST (set) == recog_data.operand[1-i])
468 {
469 validate_change (insn, recog_data.operand_loc[i],
3712c7a3 470 gen_rtx_fmt_e (load_extend_op (GET_MODE (op)),
115df136
R
471 word_mode, op),
472 1);
473 validate_change (insn, recog_data.operand_loc[1-i],
474 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
475 1);
476 if (! apply_change_group ())
477 return 0;
478 return reload_cse_simplify_operands (insn, testreg);
479 }
480 else
481 /* ??? There might be arithmetic operations with memory that are
482 safe to optimize, but is it worth the trouble? */
483 continue;
484 }
f1657f05 485
3f82421f
PH
486 if (side_effects_p (op))
487 continue;
4deef538 488 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
15e35479
KH
489 if (! v)
490 continue;
491
492 for (l = v->locs; l; l = l->next)
f8cfc6aa 493 if (REG_P (l->loc))
15e35479
KH
494 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
495 }
496
9840b2fa 497 alternative_mask preferred = get_preferred_alternatives (insn);
15e35479
KH
498 for (i = 0; i < recog_data.n_operands; i++)
499 {
ef4bddc2 500 machine_mode mode;
15e35479
KH
501 int regno;
502 const char *p;
503
d3bfe4de 504 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
15e35479
KH
505 for (j = 0; j < recog_data.n_alternatives; j++)
506 op_alt_regno[i][j] = -1;
507
508 p = constraints[i] = recog_data.constraints[i];
509 mode = recog_data.operand_mode[i];
510
511 /* Add the reject values for each alternative given by the constraints
512 for this operand. */
513 j = 0;
514 while (*p != '\0')
515 {
516 char c = *p++;
517 if (c == ',')
518 j++;
519 else if (c == '?')
520 alternative_reject[j] += 3;
521 else if (c == '!')
522 alternative_reject[j] += 300;
523 }
524
525 /* We won't change operands which are already registers. We
526 also don't want to modify output operands. */
527 regno = true_regnum (recog_data.operand[i]);
528 if (regno >= 0
529 || constraints[i][0] == '='
530 || constraints[i][0] == '+')
531 continue;
532
533 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
534 {
bbbbb16a 535 enum reg_class rclass = NO_REGS;
15e35479
KH
536
537 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
538 continue;
539
8deccbb7 540 set_mode_and_regno (testreg, mode, regno);
15e35479
KH
541
542 /* We found a register equal to this operand. Now look for all
543 alternatives that can accept this register and have not been
544 assigned a register they can use yet. */
545 j = 0;
546 p = constraints[i];
547 for (;;)
548 {
549 char c = *p;
550
551 switch (c)
552 {
8677664e
RS
553 case 'g':
554 rclass = reg_class_subunion[rclass][GENERAL_REGS];
15e35479
KH
555 break;
556
557 default:
d858f359 558 rclass
15e35479 559 = (reg_class_subunion
777e635f
RS
560 [rclass]
561 [reg_class_for_constraint (lookup_constraint (p))]);
15e35479
KH
562 break;
563
564 case ',': case '\0':
565 /* See if REGNO fits this alternative, and set it up as the
566 replacement register if we don't have one for this
567 alternative yet and the operand being replaced is not
568 a cheap CONST_INT. */
569 if (op_alt_regno[i][j] == -1
9840b2fa 570 && TEST_BIT (preferred, j)
d858f359 571 && reg_fits_class_p (testreg, rclass, 0, mode)
481683e1 572 && (!CONST_INT_P (recog_data.operand[i])
e548c9df 573 || (set_src_cost (recog_data.operand[i], mode,
5e8f01f4
RS
574 optimize_bb_for_speed_p
575 (BLOCK_FOR_INSN (insn)))
e548c9df 576 > set_src_cost (testreg, mode,
5e8f01f4
RS
577 optimize_bb_for_speed_p
578 (BLOCK_FOR_INSN (insn))))))
15e35479
KH
579 {
580 alternative_nregs[j]++;
581 op_alt_regno[i][j] = regno;
582 }
583 j++;
bbbbb16a 584 rclass = NO_REGS;
15e35479
KH
585 break;
586 }
587 p += CONSTRAINT_LEN (c, p);
588
589 if (c == '\0')
590 break;
591 }
592 }
593 }
594
c1057cc0
MS
595 /* The loop below sets alternative_order[0] but -Wmaybe-uninitialized
596 can't know that. Clear it here to avoid the warning. */
597 alternative_order[0] = 0;
598 gcc_assert (!recog_data.n_alternatives
599 || (which_alternative >= 0
600 && which_alternative < recog_data.n_alternatives));
601
15e35479
KH
602 /* Record all alternatives which are better or equal to the currently
603 matching one in the alternative_order array. */
604 for (i = j = 0; i < recog_data.n_alternatives; i++)
605 if (alternative_reject[i] <= alternative_reject[which_alternative])
606 alternative_order[j++] = i;
607 recog_data.n_alternatives = j;
608
609 /* Sort it. Given a small number of alternatives, a dumb algorithm
610 won't hurt too much. */
611 for (i = 0; i < recog_data.n_alternatives - 1; i++)
612 {
613 int best = i;
614 int best_reject = alternative_reject[alternative_order[i]];
615 int best_nregs = alternative_nregs[alternative_order[i]];
15e35479
KH
616
617 for (j = i + 1; j < recog_data.n_alternatives; j++)
618 {
619 int this_reject = alternative_reject[alternative_order[j]];
620 int this_nregs = alternative_nregs[alternative_order[j]];
621
622 if (this_reject < best_reject
8a4c09c8 623 || (this_reject == best_reject && this_nregs > best_nregs))
15e35479
KH
624 {
625 best = j;
626 best_reject = this_reject;
627 best_nregs = this_nregs;
628 }
629 }
630
fab27f52 631 std::swap (alternative_order[best], alternative_order[i]);
15e35479
KH
632 }
633
634 /* Substitute the operands as determined by op_alt_regno for the best
635 alternative. */
636 j = alternative_order[0];
637
638 for (i = 0; i < recog_data.n_operands; i++)
639 {
ef4bddc2 640 machine_mode mode = recog_data.operand_mode[i];
15e35479
KH
641 if (op_alt_regno[i][j] == -1)
642 continue;
643
644 validate_change (insn, recog_data.operand_loc[i],
645 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
646 }
647
648 for (i = recog_data.n_dups - 1; i >= 0; i--)
649 {
650 int op = recog_data.dup_num[i];
ef4bddc2 651 machine_mode mode = recog_data.operand_mode[op];
15e35479
KH
652
653 if (op_alt_regno[op][j] == -1)
654 continue;
655
656 validate_change (insn, recog_data.dup_loc[i],
657 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
658 }
659
660 return apply_change_group ();
661}
662\f
663/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
664 addressing now.
665 This code might also be useful when reload gave up on reg+reg addressing
666 because of clashes between the return register and INDEX_REG_CLASS. */
667
668/* The maximum number of uses of a register we can keep track of to
669 replace them with reg+reg addressing. */
dc0d5a57 670#define RELOAD_COMBINE_MAX_USES 16
15e35479 671
dc0d5a57
BS
672/* Describes a recorded use of a register. */
673struct reg_use
674{
675 /* The insn where a register has been used. */
f90af2e0 676 rtx_insn *insn;
dc0d5a57
BS
677 /* Points to the memory reference enclosing the use, if any, NULL_RTX
678 otherwise. */
679 rtx containing_mem;
073a8998 680 /* Location of the register within INSN. */
dc0d5a57
BS
681 rtx *usep;
682 /* The reverse uid of the insn. */
683 int ruid;
684};
15e35479
KH
685
686/* If the register is used in some unknown fashion, USE_INDEX is negative.
687 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
dc0d5a57 688 indicates where it is first set or clobbered.
15e35479 689 Otherwise, USE_INDEX is the index of the last encountered use of the
dc0d5a57
BS
690 register (which is first among these we have seen since we scan backwards).
691 USE_RUID indicates the first encountered, i.e. last, of these uses.
692 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
693 with a constant offset; OFFSET contains this constant in that case.
15e35479
KH
694 STORE_RUID is always meaningful if we only want to use a value in a
695 register in a different place: it denotes the next insn in the insn
dc0d5a57 696 stream (i.e. the last encountered) that sets or clobbers the register.
8df47bdf
AH
697 REAL_STORE_RUID is similar, but clobbers are ignored when updating it.
698 EXPR is the expression used when storing the register. */
15e35479
KH
699static struct
700 {
701 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
15e35479 702 rtx offset;
dc0d5a57 703 int use_index;
15e35479 704 int store_ruid;
dc0d5a57 705 int real_store_ruid;
15e35479 706 int use_ruid;
dc0d5a57 707 bool all_offsets_match;
8df47bdf 708 rtx expr;
15e35479
KH
709 } reg_state[FIRST_PSEUDO_REGISTER];
710
711/* Reverse linear uid. This is increased in reload_combine while scanning
712 the instructions from last to first. It is used to set last_label_ruid
713 and the store_ruid / use_ruid fields in reg_state. */
714static int reload_combine_ruid;
715
67bb0206
BS
716/* The RUID of the last label we encountered in reload_combine. */
717static int last_label_ruid;
718
dc0d5a57
BS
719/* The RUID of the last jump we encountered in reload_combine. */
720static int last_jump_ruid;
721
67bb0206
BS
722/* The register numbers of the first and last index register. A value of
723 -1 in LAST_INDEX_REG indicates that we've previously computed these
724 values and found no suitable index registers. */
725static int first_index_reg = -1;
726static int last_index_reg;
727
15e35479
KH
728#define LABEL_LIVE(LABEL) \
729 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
730
dc0d5a57
BS
731/* Subroutine of reload_combine_split_ruids, called to fix up a single
732 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
733
734static inline void
735reload_combine_split_one_ruid (int *pruid, int split_ruid)
736{
737 if (*pruid > split_ruid)
738 (*pruid)++;
739}
740
741/* Called when we insert a new insn in a position we've already passed in
742 the scan. Examine all our state, increasing all ruids that are higher
743 than SPLIT_RUID by one in order to make room for a new insn. */
744
745static void
746reload_combine_split_ruids (int split_ruid)
747{
748 unsigned i;
749
750 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
751 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
752 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
753
754 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
755 {
756 int j, idx = reg_state[i].use_index;
757 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
758 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
759 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
760 split_ruid);
761 if (idx < 0)
762 continue;
763 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
764 {
765 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
766 split_ruid);
767 }
768 }
769}
770
771/* Called when we are about to rescan a previously encountered insn with
772 reload_combine_note_use after modifying some part of it. This clears all
773 information about uses in that particular insn. */
774
775static void
f90af2e0 776reload_combine_purge_insn_uses (rtx_insn *insn)
dc0d5a57
BS
777{
778 unsigned i;
779
780 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
781 {
782 int j, k, idx = reg_state[i].use_index;
783 if (idx < 0)
784 continue;
785 j = k = RELOAD_COMBINE_MAX_USES;
786 while (j-- > idx)
787 {
788 if (reg_state[i].reg_use[j].insn != insn)
789 {
790 k--;
791 if (k != j)
792 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
793 }
794 }
795 reg_state[i].use_index = k;
796 }
797}
798
799/* Called when we need to forget about all uses of REGNO after an insn
800 which is identified by RUID. */
801
802static void
803reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
804{
805 int j, k, idx = reg_state[regno].use_index;
806 if (idx < 0)
807 return;
808 j = k = RELOAD_COMBINE_MAX_USES;
809 while (j-- > idx)
810 {
811 if (reg_state[regno].reg_use[j].ruid >= ruid)
812 {
813 k--;
814 if (k != j)
815 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
816 }
817 }
818 reg_state[regno].use_index = k;
819}
820
821/* Find the use of REGNO with the ruid that is highest among those
822 lower than RUID_LIMIT, and return it if it is the only use of this
08bd6876 823 reg in the insn. Return NULL otherwise. */
dc0d5a57
BS
824
825static struct reg_use *
826reload_combine_closest_single_use (unsigned regno, int ruid_limit)
827{
828 int i, best_ruid = 0;
829 int use_idx = reg_state[regno].use_index;
830 struct reg_use *retval;
831
832 if (use_idx < 0)
833 return NULL;
834 retval = NULL;
835 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
836 {
b1d5eee8
BS
837 struct reg_use *use = reg_state[regno].reg_use + i;
838 int this_ruid = use->ruid;
dc0d5a57
BS
839 if (this_ruid >= ruid_limit)
840 continue;
841 if (this_ruid > best_ruid)
842 {
843 best_ruid = this_ruid;
08bd6876 844 retval = use;
dc0d5a57 845 }
08bd6876 846 else if (this_ruid == best_ruid)
dc0d5a57
BS
847 retval = NULL;
848 }
849 if (last_label_ruid >= best_ruid)
850 return NULL;
851 return retval;
852}
853
caa4a250
BS
854/* After we've moved an add insn, fix up any debug insns that occur
855 between the old location of the add and the new location. REG is
856 the destination register of the add insn; REPLACEMENT is the
857 SET_SRC of the add. FROM and TO specify the range in which we
858 should make this change on debug insns. */
b1d5eee8
BS
859
860static void
f90af2e0 861fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
b1d5eee8 862{
f90af2e0 863 rtx_insn *insn;
caa4a250 864 for (insn = from; insn != to; insn = NEXT_INSN (insn))
b1d5eee8
BS
865 {
866 rtx t;
caa4a250 867
65f4b875 868 if (!DEBUG_BIND_INSN_P (insn))
b1d5eee8 869 continue;
caa4a250
BS
870
871 t = INSN_VAR_LOCATION_LOC (insn);
08bd6876 872 t = simplify_replace_rtx (t, reg, replacement);
caa4a250 873 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
b1d5eee8
BS
874 }
875}
876
a78e242c
BS
877/* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
878 with SRC in the insn described by USE, taking costs into account. Return
879 true if we made the replacement. */
880
881static bool
882try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
883{
f90af2e0 884 rtx_insn *use_insn = use->insn;
a78e242c
BS
885 rtx mem = use->containing_mem;
886 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
887
888 if (mem != NULL_RTX)
889 {
890 addr_space_t as = MEM_ADDR_SPACE (mem);
891 rtx oldaddr = XEXP (mem, 0);
892 rtx newaddr = NULL_RTX;
893 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
894 int new_cost;
895
896 newaddr = simplify_replace_rtx (oldaddr, reg, src);
897 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
898 {
899 XEXP (mem, 0) = newaddr;
900 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
901 XEXP (mem, 0) = oldaddr;
902 if (new_cost <= old_cost
903 && validate_change (use_insn,
904 &XEXP (mem, 0), newaddr, 0))
905 return true;
906 }
907 }
908 else
909 {
910 rtx new_set = single_set (use_insn);
911 if (new_set
912 && REG_P (SET_DEST (new_set))
913 && GET_CODE (SET_SRC (new_set)) == PLUS
914 && REG_P (XEXP (SET_SRC (new_set), 0))
915 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
916 {
917 rtx new_src;
e548c9df
AM
918 machine_mode mode = GET_MODE (SET_DEST (new_set));
919 int old_cost = set_src_cost (SET_SRC (new_set), mode, speed);
a78e242c
BS
920
921 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
922 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
923
e548c9df 924 if (set_src_cost (new_src, mode, speed) <= old_cost
a78e242c
BS
925 && validate_change (use_insn, &SET_SRC (new_set),
926 new_src, 0))
927 return true;
928 }
929 }
930 return false;
931}
932
dc0d5a57
BS
933/* Called by reload_combine when scanning INSN. This function tries to detect
934 patterns where a constant is added to a register, and the result is used
935 in an address.
936 Return true if no further processing is needed on INSN; false if it wasn't
937 recognized and should be handled normally. */
938
939static bool
f90af2e0 940reload_combine_recognize_const_pattern (rtx_insn *insn)
dc0d5a57
BS
941{
942 int from_ruid = reload_combine_ruid;
943 rtx set, pat, reg, src, addreg;
944 unsigned int regno;
945 struct reg_use *use;
946 bool must_move_add;
f90af2e0 947 rtx_insn *add_moved_after_insn = NULL;
dc0d5a57
BS
948 int add_moved_after_ruid = 0;
949 int clobbered_regno = -1;
950
951 set = single_set (insn);
952 if (set == NULL_RTX)
953 return false;
954
955 reg = SET_DEST (set);
956 src = SET_SRC (set);
957 if (!REG_P (reg)
dc8afb70 958 || REG_NREGS (reg) != 1
dc0d5a57
BS
959 || GET_MODE (reg) != Pmode
960 || reg == stack_pointer_rtx)
961 return false;
962
963 regno = REGNO (reg);
964
965 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
966 uses of REG1 inside an address, or inside another add insn. If
967 possible and profitable, merge the addition into subsequent
968 uses. */
969 if (GET_CODE (src) != PLUS
970 || !REG_P (XEXP (src, 0))
971 || !CONSTANT_P (XEXP (src, 1)))
972 return false;
973
974 addreg = XEXP (src, 0);
975 must_move_add = rtx_equal_p (reg, addreg);
976
977 pat = PATTERN (insn);
978 if (must_move_add && set != pat)
979 {
980 /* We have to be careful when moving the add; apart from the
981 single_set there may also be clobbers. Recognize one special
982 case, that of one clobber alongside the set (likely a clobber
983 of the CC register). */
984 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
985 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
986 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
987 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
988 return false;
989 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
990 }
991
992 do
993 {
994 use = reload_combine_closest_single_use (regno, from_ruid);
995
996 if (use)
997 /* Start the search for the next use from here. */
998 from_ruid = use->ruid;
999
1000 if (use && GET_MODE (*use->usep) == Pmode)
1001 {
a78e242c 1002 bool delete_add = false;
f90af2e0 1003 rtx_insn *use_insn = use->insn;
dc0d5a57 1004 int use_ruid = use->ruid;
dc0d5a57
BS
1005
1006 /* Avoid moving the add insn past a jump. */
b1d5eee8 1007 if (must_move_add && use_ruid <= last_jump_ruid)
dc0d5a57
BS
1008 break;
1009
1010 /* If the add clobbers another hard reg in parallel, don't move
1011 it past a real set of this hard reg. */
1012 if (must_move_add && clobbered_regno >= 0
1013 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
1014 break;
1015
3b8ff89f 1016 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
058eb3b0 1017 if (HAVE_cc0 && must_move_add && sets_cc0_p (PATTERN (use_insn)))
3b8ff89f 1018 break;
3b8ff89f 1019
62036819
BS
1020 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1021 /* Avoid moving a use of ADDREG past a point where it is stored. */
a78e242c 1022 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
dc0d5a57
BS
1023 break;
1024
a78e242c
BS
1025 /* We also must not move the addition past an insn that sets
1026 the same register, unless we can combine two add insns. */
1027 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
dc0d5a57 1028 {
a78e242c
BS
1029 if (use->containing_mem == NULL_RTX)
1030 delete_add = true;
1031 else
1032 break;
dc0d5a57 1033 }
dc0d5a57 1034
a78e242c
BS
1035 if (try_replace_in_use (use, reg, src))
1036 {
1037 reload_combine_purge_insn_uses (use_insn);
1038 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1039 use_ruid, NULL_RTX);
dc0d5a57 1040
a78e242c
BS
1041 if (delete_add)
1042 {
1043 fixup_debug_insns (reg, src, insn, use_insn);
1044 delete_insn (insn);
1045 return true;
1046 }
1047 if (must_move_add)
1048 {
1049 add_moved_after_insn = use_insn;
1050 add_moved_after_ruid = use_ruid;
dc0d5a57 1051 }
a78e242c 1052 continue;
dc0d5a57 1053 }
dc0d5a57 1054 }
62036819
BS
1055 /* If we get here, we couldn't handle this use. */
1056 if (must_move_add)
1057 break;
dc0d5a57
BS
1058 }
1059 while (use);
1060
1061 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1062 /* Process the add normally. */
1063 return false;
1064
caa4a250
BS
1065 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1066
dc0d5a57
BS
1067 reorder_insns (insn, insn, add_moved_after_insn);
1068 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1069 reload_combine_split_ruids (add_moved_after_ruid - 1);
1070 reload_combine_note_use (&PATTERN (insn), insn,
1071 add_moved_after_ruid, NULL_RTX);
1072 reg_state[regno].store_ruid = add_moved_after_ruid;
1073
1074 return true;
1075}
1076
67bb0206
BS
1077/* Called by reload_combine when scanning INSN. Try to detect a pattern we
1078 can handle and improve. Return true if no further processing is needed on
1079 INSN; false if it wasn't recognized and should be handled normally. */
1080
1081static bool
f90af2e0 1082reload_combine_recognize_pattern (rtx_insn *insn)
67bb0206
BS
1083{
1084 rtx set, reg, src;
67bb0206 1085
dc0d5a57
BS
1086 set = single_set (insn);
1087 if (set == NULL_RTX)
1088 return false;
1089
1090 reg = SET_DEST (set);
1091 src = SET_SRC (set);
dc8afb70 1092 if (!REG_P (reg) || REG_NREGS (reg) != 1)
dc0d5a57
BS
1093 return false;
1094
201d49e9
BS
1095 unsigned int regno = REGNO (reg);
1096 machine_mode mode = GET_MODE (reg);
1097
1098 if (reg_state[regno].use_index < 0
1099 || reg_state[regno].use_index >= RELOAD_COMBINE_MAX_USES)
1100 return false;
1101
1102 for (int i = reg_state[regno].use_index;
1103 i < RELOAD_COMBINE_MAX_USES; i++)
1104 {
1105 struct reg_use *use = reg_state[regno].reg_use + i;
1106 if (GET_MODE (*use->usep) != mode)
1107 return false;
32667e04
JJ
1108 /* Don't try to adjust (use (REGX)). */
1109 if (GET_CODE (PATTERN (use->insn)) == USE
1110 && &XEXP (PATTERN (use->insn), 0) == use->usep)
1111 return false;
201d49e9 1112 }
dc0d5a57 1113
67bb0206
BS
1114 /* Look for (set (REGX) (CONST_INT))
1115 (set (REGX) (PLUS (REGX) (REGY)))
1116 ...
1117 ... (MEM (REGX)) ...
1118 and convert it to
1119 (set (REGZ) (CONST_INT))
1120 ...
1121 ... (MEM (PLUS (REGZ) (REGY)))... .
1122
1123 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1124 and that we know all uses of REGX before it dies.
1125 Also, explicitly check that REGX != REGY; our life information
1126 does not yet show whether REGY changes in this insn. */
67bb0206
BS
1127
1128 if (GET_CODE (src) == PLUS
dc0d5a57
BS
1129 && reg_state[regno].all_offsets_match
1130 && last_index_reg != -1
67bb0206
BS
1131 && REG_P (XEXP (src, 1))
1132 && rtx_equal_p (XEXP (src, 0), reg)
1133 && !rtx_equal_p (XEXP (src, 1), reg)
1134 && last_label_ruid < reg_state[regno].use_ruid)
1135 {
1136 rtx base = XEXP (src, 1);
f90af2e0 1137 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
67bb0206
BS
1138 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1139 rtx index_reg = NULL_RTX;
1140 rtx reg_sum = NULL_RTX;
1141 int i;
1142
1143 /* Now we need to set INDEX_REG to an index register (denoted as
1144 REGZ in the illustration above) and REG_SUM to the expression
1145 register+register that we want to use to substitute uses of REG
1146 (typically in MEMs) with. First check REG and BASE for being
1147 index registers; we can use them even if they are not dead. */
1148 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1149 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1150 REGNO (base)))
1151 {
1152 index_reg = reg;
1153 reg_sum = src;
1154 }
1155 else
1156 {
1157 /* Otherwise, look for a free index register. Since we have
1158 checked above that neither REG nor BASE are index registers,
1159 if we find anything at all, it will be different from these
1160 two registers. */
1161 for (i = first_index_reg; i <= last_index_reg; i++)
1162 {
1163 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1164 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1165 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
3df28f00
RS
1166 && (crtl->abi->clobbers_full_reg_p (i)
1167 || df_regs_ever_live_p (i))
08bd6876
BS
1168 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1169 && !fixed_regs[i] && !global_regs[i]
ad474626 1170 && hard_regno_nregs (i, GET_MODE (reg)) == 1
08bd6876 1171 && targetm.hard_regno_scratch_ok (i))
67bb0206
BS
1172 {
1173 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1174 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1175 break;
1176 }
1177 }
1178 }
1179
1180 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1181 (REGY), i.e. BASE, is not clobbered before the last use we'll
1182 create. */
1183 if (reg_sum
1184 && prev_set
1185 && CONST_INT_P (SET_SRC (prev_set))
1186 && rtx_equal_p (SET_DEST (prev_set), reg)
67bb0206
BS
1187 && (reg_state[REGNO (base)].store_ruid
1188 <= reg_state[regno].use_ruid))
1189 {
1190 /* Change destination register and, if necessary, the constant
1191 value in PREV, the constant loading instruction. */
1192 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1193 if (reg_state[regno].offset != const0_rtx)
927fb0bc
JJ
1194 {
1195 HOST_WIDE_INT c
1196 = trunc_int_for_mode (UINTVAL (SET_SRC (prev_set))
1197 + UINTVAL (reg_state[regno].offset),
1198 GET_MODE (index_reg));
1199 validate_change (prev, &SET_SRC (prev_set), GEN_INT (c), 1);
1200 }
67bb0206
BS
1201
1202 /* Now for every use of REG that we have recorded, replace REG
1203 with REG_SUM. */
1204 for (i = reg_state[regno].use_index;
1205 i < RELOAD_COMBINE_MAX_USES; i++)
1206 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1207 reg_state[regno].reg_use[i].usep,
1208 /* Each change must have its own
1209 replacement. */
1210 reg_sum, 1);
1211
1212 if (apply_change_group ())
1213 {
caa4a250
BS
1214 struct reg_use *lowest_ruid = NULL;
1215
67bb0206
BS
1216 /* For every new use of REG_SUM, we have to record the use
1217 of BASE therein, i.e. operand 1. */
1218 for (i = reg_state[regno].use_index;
1219 i < RELOAD_COMBINE_MAX_USES; i++)
caa4a250
BS
1220 {
1221 struct reg_use *use = reg_state[regno].reg_use + i;
1222 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1223 use->ruid, use->containing_mem);
1224 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1225 lowest_ruid = use;
1226 }
1227
1228 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
67bb0206 1229
67bb0206
BS
1230 /* Delete the reg-reg addition. */
1231 delete_insn (insn);
1232
af1634f1
JJ
1233 if (reg_state[regno].offset != const0_rtx)
1234 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1235 are now invalid. */
1236 remove_reg_equal_equiv_notes (prev);
67bb0206
BS
1237
1238 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
67bb0206
BS
1239 return true;
1240 }
1241 }
1242 }
1243 return false;
1244}
1245
15e35479 1246static void
0c20a65f 1247reload_combine (void)
15e35479 1248{
f90af2e0 1249 rtx_insn *insn, *prev;
15e35479
KH
1250 basic_block bb;
1251 unsigned int r;
15e35479
KH
1252 int min_labelno, n_labels;
1253 HARD_REG_SET ever_live_at_start, *label_live;
1254
15e35479
KH
1255 /* To avoid wasting too much time later searching for an index register,
1256 determine the minimum and maximum index register numbers. */
67bb0206
BS
1257 if (INDEX_REG_CLASS == NO_REGS)
1258 last_index_reg = -1;
1259 else if (first_index_reg == -1 && last_index_reg == 0)
1260 {
1261 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1262 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1263 {
1264 if (first_index_reg == -1)
1265 first_index_reg = r;
1266
1267 last_index_reg = r;
1268 }
1269
1270 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1271 to -1 so we'll know to quit early the next time we get here. */
1272 if (first_index_reg == -1)
1273 {
1274 last_index_reg = -1;
1275 return;
1276 }
1277 }
15e35479 1278
15e35479
KH
1279 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1280 information is a bit fuzzy immediately after reload, but it's
1281 still good enough to determine which registers are live at a jump
1282 destination. */
1283 min_labelno = get_first_label_num ();
1284 n_labels = max_label_num () - min_labelno;
5ed6ace5 1285 label_live = XNEWVEC (HARD_REG_SET, n_labels);
15e35479
KH
1286 CLEAR_HARD_REG_SET (ever_live_at_start);
1287
4f42035e 1288 FOR_EACH_BB_REVERSE_FN (bb, cfun)
15e35479 1289 {
a813c111 1290 insn = BB_HEAD (bb);
4b4bf941 1291 if (LABEL_P (insn))
15e35479
KH
1292 {
1293 HARD_REG_SET live;
89a95777 1294 bitmap live_in = df_get_live_in (bb);
15e35479 1295
89a95777
KZ
1296 REG_SET_TO_HARD_REG_SET (live, live_in);
1297 compute_use_by_pseudos (&live, live_in);
6576d245 1298 LABEL_LIVE (insn) = live;
44942965 1299 ever_live_at_start |= live;
15e35479
KH
1300 }
1301 }
1302
1303 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
dc0d5a57 1304 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
15e35479
KH
1305 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1306 {
dc0d5a57
BS
1307 reg_state[r].store_ruid = 0;
1308 reg_state[r].real_store_ruid = 0;
15e35479
KH
1309 if (fixed_regs[r])
1310 reg_state[r].use_index = -1;
1311 else
1312 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1313 }
1314
dc0d5a57 1315 for (insn = get_last_insn (); insn; insn = prev)
15e35479 1316 {
7ad93142 1317 bool control_flow_insn;
15e35479
KH
1318 rtx note;
1319
dc0d5a57
BS
1320 prev = PREV_INSN (insn);
1321
15e35479
KH
1322 /* We cannot do our optimization across labels. Invalidating all the use
1323 information we have would be costly, so we just note where the label
1324 is and then later disable any optimization that would cross it. */
4b4bf941 1325 if (LABEL_P (insn))
15e35479 1326 last_label_ruid = reload_combine_ruid;
2195c9be
AK
1327 else if (BARRIER_P (insn))
1328 {
1329 /* Crossing a barrier resets all the use information. */
1330 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1331 if (! fixed_regs[r])
15e35479 1332 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
2195c9be
AK
1333 }
1334 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1335 /* Optimizations across insns being marked as volatile must be
1336 prevented. All the usage information is invalidated
1337 here. */
1338 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1339 if (! fixed_regs[r]
1340 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1341 reg_state[r].use_index = -1;
15e35479 1342
caa4a250 1343 if (! NONDEBUG_INSN_P (insn))
15e35479
KH
1344 continue;
1345
1346 reload_combine_ruid++;
1347
7ad93142
EB
1348 control_flow_insn = control_flow_insn_p (insn);
1349 if (control_flow_insn)
dc0d5a57
BS
1350 last_jump_ruid = reload_combine_ruid;
1351
1352 if (reload_combine_recognize_const_pattern (insn)
1353 || reload_combine_recognize_pattern (insn))
67bb0206 1354 continue;
15e35479 1355
e8448ba5 1356 note_stores (insn, reload_combine_note_store, NULL);
15e35479 1357
4b4bf941 1358 if (CALL_P (insn))
15e35479
KH
1359 {
1360 rtx link;
5a5a3bc5 1361 HARD_REG_SET used_regs = insn_callee_abi (insn).full_reg_clobbers ();
15e35479
KH
1362
1363 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
97ded4cd 1364 if (TEST_HARD_REG_BIT (used_regs, r))
15e35479
KH
1365 {
1366 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1367 reg_state[r].store_ruid = reload_combine_ruid;
1368 }
1369
1370 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1371 link = XEXP (link, 1))
1372 {
e384e6b5
BS
1373 rtx setuse = XEXP (link, 0);
1374 rtx usage_rtx = XEXP (setuse, 0);
8df47bdf 1375
e8448ba5 1376 if (GET_CODE (setuse) == USE && REG_P (usage_rtx))
15e35479 1377 {
53d1bae9
RS
1378 unsigned int end_regno = END_REGNO (usage_rtx);
1379 for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
e8448ba5 1380 reg_state[i].use_index = -1;
15e35479
KH
1381 }
1382 }
15e35479 1383 }
18c33e03 1384
57895947 1385 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
15e35479
KH
1386 {
1387 /* Non-spill registers might be used at the call destination in
1388 some unknown fashion, so we have to mark the unknown use. */
1389 HARD_REG_SET *live;
1390
1391 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1392 && JUMP_LABEL (insn))
57895947
EB
1393 {
1394 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1395 live = NULL;
1396 else
1397 live = &LABEL_LIVE (JUMP_LABEL (insn));
1398 }
15e35479
KH
1399 else
1400 live = &ever_live_at_start;
1401
57895947
EB
1402 if (live)
1403 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1404 if (TEST_HARD_REG_BIT (*live, r))
1405 reg_state[r].use_index = -1;
15e35479
KH
1406 }
1407
7ad93142
EB
1408 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1409 NULL_RTX);
1410
15e35479
KH
1411 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1412 {
7ad93142 1413 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
15e35479
KH
1414 {
1415 int regno = REGNO (XEXP (note, 0));
15e35479 1416 reg_state[regno].store_ruid = reload_combine_ruid;
dc0d5a57 1417 reg_state[regno].real_store_ruid = reload_combine_ruid;
15e35479
KH
1418 reg_state[regno].use_index = -1;
1419 }
1420 }
1421 }
1422
1423 free (label_live);
1424}
1425
1426/* Check if DST is a register or a subreg of a register; if it is,
dc0d5a57
BS
1427 update store_ruid, real_store_ruid and use_index in the reg_state
1428 structure accordingly. Called via note_stores from reload_combine. */
15e35479
KH
1429
1430static void
7bc980e1 1431reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
15e35479
KH
1432{
1433 int regno = 0;
1434 int i;
ef4bddc2 1435 machine_mode mode = GET_MODE (dst);
15e35479
KH
1436
1437 if (GET_CODE (dst) == SUBREG)
1438 {
1439 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1440 GET_MODE (SUBREG_REG (dst)),
1441 SUBREG_BYTE (dst),
1442 GET_MODE (dst));
1443 dst = SUBREG_REG (dst);
1444 }
12c2b0ad
JL
1445
1446 /* Some targets do argument pushes without adding REG_INC notes. */
1447
1448 if (MEM_P (dst))
1449 {
1450 dst = XEXP (dst, 0);
1451 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
96676a5d
JJ
1452 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1453 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
12c2b0ad 1454 {
53d1bae9
RS
1455 unsigned int end_regno = END_REGNO (XEXP (dst, 0));
1456 for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
12c2b0ad
JL
1457 {
1458 /* We could probably do better, but for now mark the register
1459 as used in an unknown fashion and set/clobbered at this
1460 insn. */
1461 reg_state[i].use_index = -1;
1462 reg_state[i].store_ruid = reload_combine_ruid;
1463 reg_state[i].real_store_ruid = reload_combine_ruid;
1464 }
1465 }
1466 else
1467 return;
1468 }
1469
f8cfc6aa 1470 if (!REG_P (dst))
15e35479
KH
1471 return;
1472 regno += REGNO (dst);
1473
1474 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1475 careful with registers / register parts that are not full words.
46d096a3 1476 Similarly for ZERO_EXTRACT. */
dc0d5a57 1477 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
15e35479
KH
1478 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1479 {
4edd6298 1480 for (i = end_hard_regno (mode, regno) - 1; i >= regno; i--)
15e35479
KH
1481 {
1482 reg_state[i].use_index = -1;
1483 reg_state[i].store_ruid = reload_combine_ruid;
dc0d5a57 1484 reg_state[i].real_store_ruid = reload_combine_ruid;
15e35479
KH
1485 }
1486 }
1487 else
1488 {
4edd6298 1489 for (i = end_hard_regno (mode, regno) - 1; i >= regno; i--)
15e35479
KH
1490 {
1491 reg_state[i].store_ruid = reload_combine_ruid;
dc0d5a57
BS
1492 if (GET_CODE (set) == SET)
1493 reg_state[i].real_store_ruid = reload_combine_ruid;
15e35479
KH
1494 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1495 }
1496 }
1497}
1498
1499/* XP points to a piece of rtl that has to be checked for any uses of
1500 registers.
1501 *XP is the pattern of INSN, or a part of it.
1502 Called from reload_combine, and recursively by itself. */
1503static void
f90af2e0 1504reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
15e35479
KH
1505{
1506 rtx x = *xp;
1507 enum rtx_code code = x->code;
1508 const char *fmt;
1509 int i, j;
1510 rtx offset = const0_rtx; /* For the REG case below. */
1511
1512 switch (code)
1513 {
1514 case SET:
f8cfc6aa 1515 if (REG_P (SET_DEST (x)))
15e35479 1516 {
dc0d5a57 1517 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
15e35479
KH
1518 return;
1519 }
1520 break;
1521
1522 case USE:
1523 /* If this is the USE of a return value, we can't change it. */
f8cfc6aa 1524 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
15e35479 1525 {
53d1bae9 1526 /* Mark the return register as used in an unknown fashion. */
15e35479 1527 rtx reg = XEXP (x, 0);
53d1bae9
RS
1528 unsigned int end_regno = END_REGNO (reg);
1529 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
1530 reg_state[regno].use_index = -1;
15e35479
KH
1531 return;
1532 }
1533 break;
1534
1535 case CLOBBER:
f8cfc6aa 1536 if (REG_P (SET_DEST (x)))
15e35479
KH
1537 {
1538 /* No spurious CLOBBERs of pseudo registers may remain. */
e16acfcd 1539 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
15e35479
KH
1540 return;
1541 }
1542 break;
1543
1544 case PLUS:
1545 /* We are interested in (plus (reg) (const_int)) . */
f8cfc6aa 1546 if (!REG_P (XEXP (x, 0))
481683e1 1547 || !CONST_INT_P (XEXP (x, 1)))
15e35479
KH
1548 break;
1549 offset = XEXP (x, 1);
1550 x = XEXP (x, 0);
1551 /* Fall through. */
1552 case REG:
1553 {
1554 int regno = REGNO (x);
1555 int use_index;
1556 int nregs;
1557
1558 /* No spurious USEs of pseudo registers may remain. */
e16acfcd 1559 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
15e35479 1560
dc8afb70 1561 nregs = REG_NREGS (x);
15e35479
KH
1562
1563 /* We can't substitute into multi-hard-reg uses. */
1564 if (nregs > 1)
1565 {
1566 while (--nregs >= 0)
1567 reg_state[regno + nregs].use_index = -1;
1568 return;
1569 }
1570
08bd6876
BS
1571 /* We may be called to update uses in previously seen insns.
1572 Don't add uses beyond the last store we saw. */
1573 if (ruid < reg_state[regno].store_ruid)
1574 return;
1575
15e35479
KH
1576 /* If this register is already used in some unknown fashion, we
1577 can't do anything.
1578 If we decrement the index from zero to -1, we can't store more
1579 uses, so this register becomes used in an unknown fashion. */
1580 use_index = --reg_state[regno].use_index;
1581 if (use_index < 0)
1582 return;
1583
dc0d5a57 1584 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
15e35479
KH
1585 {
1586 /* This is the first use of this register we have seen since we
1587 marked it as dead. */
1588 reg_state[regno].offset = offset;
dc0d5a57
BS
1589 reg_state[regno].all_offsets_match = true;
1590 reg_state[regno].use_ruid = ruid;
15e35479 1591 }
b1d5eee8
BS
1592 else
1593 {
1594 if (reg_state[regno].use_ruid > ruid)
1595 reg_state[regno].use_ruid = ruid;
1596
1597 if (! rtx_equal_p (offset, reg_state[regno].offset))
1598 reg_state[regno].all_offsets_match = false;
1599 }
dc0d5a57 1600
15e35479 1601 reg_state[regno].reg_use[use_index].insn = insn;
dc0d5a57
BS
1602 reg_state[regno].reg_use[use_index].ruid = ruid;
1603 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
15e35479
KH
1604 reg_state[regno].reg_use[use_index].usep = xp;
1605 return;
1606 }
1607
dc0d5a57
BS
1608 case MEM:
1609 containing_mem = x;
1610 break;
1611
15e35479
KH
1612 default:
1613 break;
1614 }
1615
1616 /* Recursively process the components of X. */
1617 fmt = GET_RTX_FORMAT (code);
1618 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1619 {
1620 if (fmt[i] == 'e')
dc0d5a57 1621 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
15e35479
KH
1622 else if (fmt[i] == 'E')
1623 {
1624 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
dc0d5a57
BS
1625 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1626 containing_mem);
15e35479
KH
1627 }
1628 }
1629}
1630\f
1631/* See if we can reduce the cost of a constant by replacing a move
1632 with an add. We track situations in which a register is set to a
1633 constant or to a register plus a constant. */
1634/* We cannot do our optimization across labels. Invalidating all the
1635 information about register contents we have would be costly, so we
1636 use move2add_last_label_luid to note where the label is and then
1637 later disable any optimization that would cross it.
7beb0596
JZ
1638 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1639 are only valid if reg_set_luid[n] is greater than
7894bc6b
JR
1640 move2add_last_label_luid.
1641 For a set that established a new (potential) base register with
1642 non-constant value, we use move2add_luid from the place where the
1643 setting insn is encountered; registers based off that base then
1644 get the same reg_set_luid. Constants all get
1645 move2add_last_label_luid + 1 as their reg_set_luid. */
15e35479
KH
1646static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1647
1648/* If reg_base_reg[n] is negative, register n has been set to
7beb0596 1649 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
15e35479
KH
1650 If reg_base_reg[n] is non-negative, register n has been set to the
1651 sum of reg_offset[n] and the value of register reg_base_reg[n]
7894bc6b
JR
1652 before reg_set_luid[n], calculated in mode reg_mode[n] .
1653 For multi-hard-register registers, all but the first one are
1654 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1655 marks it as invalid. */
15e35479
KH
1656static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1657static int reg_base_reg[FIRST_PSEUDO_REGISTER];
7beb0596 1658static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
ef4bddc2 1659static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
15e35479
KH
1660
1661/* move2add_luid is linearly increased while scanning the instructions
1662 from first to last. It is used to set reg_set_luid in
1663 reload_cse_move2add and move2add_note_store. */
1664static int move2add_luid;
1665
1666/* move2add_last_label_luid is set whenever a label is found. Labels
1667 invalidate all previously collected reg_offset data. */
1668static int move2add_last_label_luid;
1669
1670/* ??? We don't know how zero / sign extension is handled, hence we
1671 can't go from a narrower to a wider mode. */
1672#define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1673 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1674 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
d0edd768 1675 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
15e35479 1676
7894bc6b
JR
1677/* Record that REG is being set to a value with the mode of REG. */
1678
1679static void
1680move2add_record_mode (rtx reg)
1681{
1682 int regno, nregs;
ef4bddc2 1683 machine_mode mode = GET_MODE (reg);
7894bc6b
JR
1684
1685 if (GET_CODE (reg) == SUBREG)
1686 {
1687 regno = subreg_regno (reg);
1688 nregs = subreg_nregs (reg);
1689 }
1690 else if (REG_P (reg))
1691 {
1692 regno = REGNO (reg);
dc8afb70 1693 nregs = REG_NREGS (reg);
7894bc6b
JR
1694 }
1695 else
1696 gcc_unreachable ();
1697 for (int i = nregs - 1; i > 0; i--)
1698 reg_mode[regno + i] = BLKmode;
1699 reg_mode[regno] = mode;
1700}
1701
1702/* Record that REG is being set to the sum of SYM and OFF. */
1703
1704static void
1705move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1706{
1707 int regno = REGNO (reg);
1708
1709 move2add_record_mode (reg);
1710 reg_set_luid[regno] = move2add_luid;
1711 reg_base_reg[regno] = -1;
1712 reg_symbol_ref[regno] = sym;
1713 reg_offset[regno] = INTVAL (off);
1714}
1715
1716/* Check if REGNO contains a valid value in MODE. */
1717
1718static bool
1e047eed 1719move2add_valid_value_p (int regno, scalar_int_mode mode)
7894bc6b 1720{
ca035367 1721 if (reg_set_luid[regno] <= move2add_last_label_luid)
7894bc6b
JR
1722 return false;
1723
ca035367
JR
1724 if (mode != reg_mode[regno])
1725 {
6b9c3dec
RS
1726 scalar_int_mode old_mode;
1727 if (!is_a <scalar_int_mode> (reg_mode[regno], &old_mode)
1728 || !MODES_OK_FOR_MOVE2ADD (mode, old_mode))
ca035367
JR
1729 return false;
1730 /* The value loaded into regno in reg_mode[regno] is also valid in
1731 mode after truncation only if (REG:mode regno) is the lowpart of
1732 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1733 regno of the lowpart might be different. */
91914e56 1734 poly_int64 s_off = subreg_lowpart_offset (mode, old_mode);
6b9c3dec 1735 s_off = subreg_regno_offset (regno, old_mode, s_off, mode);
91914e56 1736 if (maybe_ne (s_off, 0))
ca035367
JR
1737 /* We could in principle adjust regno, check reg_mode[regno] to be
1738 BLKmode, and return s_off to the caller (vs. -1 for failure),
1739 but we currently have no callers that could make use of this
1740 information. */
1741 return false;
1742 }
1743
4edd6298
RS
1744 for (int i = end_hard_regno (mode, regno) - 1; i > regno; i--)
1745 if (reg_mode[i] != BLKmode)
7894bc6b
JR
1746 return false;
1747 return true;
1748}
1749
1e047eed
RS
1750/* This function is called with INSN that sets REG (of mode MODE)
1751 to (SYM + OFF), while REG is known to already have value (SYM + offset).
7beb0596
JZ
1752 This function tries to change INSN into an add instruction
1753 (set (REG) (plus (REG) (OFF - offset))) using the known value.
dc0d5a57
BS
1754 It also updates the information about REG's known value.
1755 Return true if we made a change. */
7beb0596 1756
dc0d5a57 1757static bool
1e047eed
RS
1758move2add_use_add2_insn (scalar_int_mode mode, rtx reg, rtx sym, rtx off,
1759 rtx_insn *insn)
7beb0596
JZ
1760{
1761 rtx pat = PATTERN (insn);
1762 rtx src = SET_SRC (pat);
1763 int regno = REGNO (reg);
1e047eed 1764 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno], mode);
7beb0596 1765 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
dc0d5a57 1766 bool changed = false;
7beb0596
JZ
1767
1768 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1769 use (set (reg) (reg)) instead.
1770 We don't delete this insn, nor do we convert it into a
1771 note, to avoid losing register notes or the return
1772 value flag. jump2 already knows how to get rid of
1773 no-op moves. */
1774 if (new_src == const0_rtx)
1775 {
1776 /* If the constants are different, this is a
1777 truncation, that, if turned into (set (reg)
1778 (reg)), would be discarded. Maybe we should
1779 try a truncMN pattern? */
1780 if (INTVAL (off) == reg_offset [regno])
dc0d5a57 1781 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
7beb0596 1782 }
22939744 1783 else
7beb0596 1784 {
22939744 1785 struct full_rtx_costs oldcst, newcst;
1e047eed 1786 rtx tem = gen_rtx_PLUS (mode, reg, new_src);
22939744 1787
d51102f3 1788 get_full_set_rtx_cost (pat, &oldcst);
22939744 1789 SET_SRC (pat) = tem;
d51102f3 1790 get_full_set_rtx_cost (pat, &newcst);
22939744
BS
1791 SET_SRC (pat) = src;
1792
1793 if (costs_lt_p (&newcst, &oldcst, speed)
1794 && have_add2_insn (reg, new_src))
1795 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1e047eed 1796 else if (sym == NULL_RTX && mode != BImode)
7beb0596 1797 {
1e047eed
RS
1798 scalar_int_mode narrow_mode;
1799 FOR_EACH_MODE_UNTIL (narrow_mode, mode)
7beb0596 1800 {
22939744
BS
1801 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1802 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1803 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1804 {
b49eefa5 1805 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
22939744
BS
1806 rtx narrow_src = gen_int_mode (INTVAL (off),
1807 narrow_mode);
1808 rtx new_set
f7df4a84 1809 = gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
22939744
BS
1810 narrow_reg),
1811 narrow_src);
a0f37b26
AS
1812 get_full_set_rtx_cost (new_set, &newcst);
1813 if (costs_lt_p (&newcst, &oldcst, speed))
1814 {
1815 changed = validate_change (insn, &PATTERN (insn),
1816 new_set, 0);
1817 if (changed)
1818 break;
1819 }
22939744 1820 }
7beb0596
JZ
1821 }
1822 }
1823 }
7894bc6b 1824 move2add_record_sym_value (reg, sym, off);
dc0d5a57 1825 return changed;
7beb0596
JZ
1826}
1827
1828
1e047eed
RS
1829/* This function is called with INSN that sets REG (of mode MODE) to
1830 (SYM + OFF), but REG doesn't have known value (SYM + offset). This
1831 function tries to find another register which is known to already have
7beb0596
JZ
1832 value (SYM + offset) and change INSN into an add instruction
1833 (set (REG) (plus (the found register) (OFF - offset))) if such
1834 a register is found. It also updates the information about
dc0d5a57
BS
1835 REG's known value.
1836 Return true iff we made a change. */
7beb0596 1837
dc0d5a57 1838static bool
1e047eed
RS
1839move2add_use_add3_insn (scalar_int_mode mode, rtx reg, rtx sym, rtx off,
1840 rtx_insn *insn)
7beb0596
JZ
1841{
1842 rtx pat = PATTERN (insn);
1843 rtx src = SET_SRC (pat);
1844 int regno = REGNO (reg);
5676e87d 1845 int min_regno = 0;
7beb0596
JZ
1846 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1847 int i;
dc0d5a57 1848 bool changed = false;
22939744
BS
1849 struct full_rtx_costs oldcst, newcst, mincst;
1850 rtx plus_expr;
1851
1852 init_costs_to_max (&mincst);
d51102f3 1853 get_full_set_rtx_cost (pat, &oldcst);
22939744
BS
1854
1855 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1856 SET_SRC (pat) = plus_expr;
7beb0596
JZ
1857
1858 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1e047eed 1859 if (move2add_valid_value_p (i, mode)
7beb0596
JZ
1860 && reg_base_reg[i] < 0
1861 && reg_symbol_ref[i] != NULL_RTX
1862 && rtx_equal_p (sym, reg_symbol_ref[i]))
1863 {
e15eb172 1864 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
7beb0596
JZ
1865 GET_MODE (reg));
1866 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1867 use (set (reg) (reg)) instead.
1868 We don't delete this insn, nor do we convert it into a
1869 note, to avoid losing register notes or the return
1870 value flag. jump2 already knows how to get rid of
1871 no-op moves. */
1872 if (new_src == const0_rtx)
1873 {
22939744 1874 init_costs_to_zero (&mincst);
7beb0596
JZ
1875 min_regno = i;
1876 break;
1877 }
1878 else
1879 {
22939744 1880 XEXP (plus_expr, 1) = new_src;
d51102f3 1881 get_full_set_rtx_cost (pat, &newcst);
22939744
BS
1882
1883 if (costs_lt_p (&newcst, &mincst, speed))
7beb0596 1884 {
22939744 1885 mincst = newcst;
7beb0596
JZ
1886 min_regno = i;
1887 }
1888 }
1889 }
22939744 1890 SET_SRC (pat) = src;
7beb0596 1891
22939744 1892 if (costs_lt_p (&mincst, &oldcst, speed))
7beb0596
JZ
1893 {
1894 rtx tem;
1895
1896 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1897 if (i != min_regno)
1898 {
e15eb172 1899 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
7beb0596
JZ
1900 GET_MODE (reg));
1901 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1902 }
dc0d5a57
BS
1903 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1904 changed = true;
7beb0596
JZ
1905 }
1906 reg_set_luid[regno] = move2add_luid;
7894bc6b 1907 move2add_record_sym_value (reg, sym, off);
dc0d5a57 1908 return changed;
7beb0596
JZ
1909}
1910
dc0d5a57
BS
1911/* Convert move insns with constant inputs to additions if they are cheaper.
1912 Return true if any changes were made. */
1913static bool
f90af2e0 1914reload_cse_move2add (rtx_insn *first)
15e35479
KH
1915{
1916 int i;
f90af2e0 1917 rtx_insn *insn;
dc0d5a57 1918 bool changed = false;
15e35479
KH
1919
1920 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
7beb0596
JZ
1921 {
1922 reg_set_luid[i] = 0;
1923 reg_offset[i] = 0;
1924 reg_base_reg[i] = 0;
1925 reg_symbol_ref[i] = NULL_RTX;
1926 reg_mode[i] = VOIDmode;
1927 }
15e35479
KH
1928
1929 move2add_last_label_luid = 0;
1930 move2add_luid = 2;
1931 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1932 {
1933 rtx pat, note;
1934
4b4bf941 1935 if (LABEL_P (insn))
15e35479
KH
1936 {
1937 move2add_last_label_luid = move2add_luid;
1938 /* We're going to increment move2add_luid twice after a
1939 label, so that we can use move2add_last_label_luid + 1 as
1940 the luid for constants. */
1941 move2add_luid++;
1942 continue;
1943 }
1944 if (! INSN_P (insn))
1945 continue;
1946 pat = PATTERN (insn);
1947 /* For simplicity, we only perform this optimization on
1948 straightforward SETs. */
1e047eed 1949 scalar_int_mode mode;
15e35479 1950 if (GET_CODE (pat) == SET
1e047eed
RS
1951 && REG_P (SET_DEST (pat))
1952 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (pat)), &mode))
15e35479
KH
1953 {
1954 rtx reg = SET_DEST (pat);
1955 int regno = REGNO (reg);
1956 rtx src = SET_SRC (pat);
1957
1958 /* Check if we have valid information on the contents of this
1959 register in the mode of REG. */
1e047eed 1960 if (move2add_valid_value_p (regno, mode)
6fb5fa3c 1961 && dbg_cnt (cse2_move2add))
15e35479
KH
1962 {
1963 /* Try to transform (set (REGX) (CONST_INT A))
1964 ...
1965 (set (REGX) (CONST_INT B))
1966 to
1967 (set (REGX) (CONST_INT A))
1968 ...
1969 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1970 or
1971 (set (REGX) (CONST_INT A))
1972 ...
1973 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1974 */
1975
7beb0596
JZ
1976 if (CONST_INT_P (src)
1977 && reg_base_reg[regno] < 0
1978 && reg_symbol_ref[regno] == NULL_RTX)
15e35479 1979 {
1e047eed
RS
1980 changed |= move2add_use_add2_insn (mode, reg, NULL_RTX,
1981 src, insn);
15e35479
KH
1982 continue;
1983 }
1984
1985 /* Try to transform (set (REGX) (REGY))
1986 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1987 ...
1988 (set (REGX) (REGY))
1989 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1990 to
1991 (set (REGX) (REGY))
1992 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1993 ...
1994 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
f8cfc6aa 1995 else if (REG_P (src)
15e35479
KH
1996 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1997 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1e047eed 1998 && move2add_valid_value_p (REGNO (src), mode))
15e35479 1999 {
f90af2e0 2000 rtx_insn *next = next_nonnote_nondebug_insn (insn);
15e35479
KH
2001 rtx set = NULL_RTX;
2002 if (next)
2003 set = single_set (next);
2004 if (set
2005 && SET_DEST (set) == reg
2006 && GET_CODE (SET_SRC (set)) == PLUS
2007 && XEXP (SET_SRC (set), 0) == reg
481683e1 2008 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
15e35479
KH
2009 {
2010 rtx src3 = XEXP (SET_SRC (set), 1);
e15eb172 2011 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
15e35479
KH
2012 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
2013 HOST_WIDE_INT regno_offset = reg_offset[regno];
2014 rtx new_src =
bb80db7b
KH
2015 gen_int_mode (added_offset
2016 + base_offset
2017 - regno_offset,
1e047eed 2018 mode);
f40751dd
JH
2019 bool success = false;
2020 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
15e35479
KH
2021
2022 if (new_src == const0_rtx)
2023 /* See above why we create (set (reg) (reg)) here. */
2024 success
2025 = validate_change (next, &SET_SRC (set), reg, 0);
22939744 2026 else
15e35479 2027 {
22939744
BS
2028 rtx old_src = SET_SRC (set);
2029 struct full_rtx_costs oldcst, newcst;
1e047eed 2030 rtx tem = gen_rtx_PLUS (mode, reg, new_src);
22939744 2031
d51102f3 2032 get_full_set_rtx_cost (set, &oldcst);
22939744 2033 SET_SRC (set) = tem;
1e047eed 2034 get_full_set_src_cost (tem, mode, &newcst);
22939744
BS
2035 SET_SRC (set) = old_src;
2036 costs_add_n_insns (&oldcst, 1);
2037
2038 if (costs_lt_p (&newcst, &oldcst, speed)
2039 && have_add2_insn (reg, new_src))
2040 {
f7df4a84 2041 rtx newpat = gen_rtx_SET (reg, tem);
22939744
BS
2042 success
2043 = validate_change (next, &PATTERN (next),
2044 newpat, 0);
2045 }
15e35479
KH
2046 }
2047 if (success)
2048 delete_insn (insn);
dc0d5a57 2049 changed |= success;
15e35479 2050 insn = next;
7894bc6b
JR
2051 move2add_record_mode (reg);
2052 reg_offset[regno]
2053 = trunc_int_for_mode (added_offset + base_offset,
1e047eed 2054 mode);
15e35479
KH
2055 continue;
2056 }
2057 }
2058 }
7beb0596
JZ
2059
2060 /* Try to transform
2061 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2062 ...
2063 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2064 to
2065 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2066 ...
2067 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2068 if ((GET_CODE (src) == SYMBOL_REF
2069 || (GET_CODE (src) == CONST
2070 && GET_CODE (XEXP (src, 0)) == PLUS
2071 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2072 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2073 && dbg_cnt (cse2_move2add))
2074 {
2075 rtx sym, off;
2076
2077 if (GET_CODE (src) == SYMBOL_REF)
2078 {
2079 sym = src;
2080 off = const0_rtx;
2081 }
2082 else
2083 {
2084 sym = XEXP (XEXP (src, 0), 0);
2085 off = XEXP (XEXP (src, 0), 1);
2086 }
2087
2088 /* If the reg already contains the value which is sum of
2089 sym and some constant value, we can use an add2 insn. */
1e047eed 2090 if (move2add_valid_value_p (regno, mode)
7beb0596
JZ
2091 && reg_base_reg[regno] < 0
2092 && reg_symbol_ref[regno] != NULL_RTX
2093 && rtx_equal_p (sym, reg_symbol_ref[regno]))
1e047eed 2094 changed |= move2add_use_add2_insn (mode, reg, sym, off, insn);
7beb0596
JZ
2095
2096 /* Otherwise, we have to find a register whose value is sum
2097 of sym and some constant value. */
2098 else
1e047eed 2099 changed |= move2add_use_add3_insn (mode, reg, sym, off, insn);
7beb0596
JZ
2100
2101 continue;
2102 }
15e35479
KH
2103 }
2104
2105 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2106 {
2107 if (REG_NOTE_KIND (note) == REG_INC
f8cfc6aa 2108 && REG_P (XEXP (note, 0)))
15e35479
KH
2109 {
2110 /* Reset the information about this register. */
2111 int regno = REGNO (XEXP (note, 0));
2112 if (regno < FIRST_PSEUDO_REGISTER)
7894bc6b
JR
2113 {
2114 move2add_record_mode (XEXP (note, 0));
2115 reg_mode[regno] = VOIDmode;
2116 }
15e35479
KH
2117 }
2118 }
70b55b25
JJ
2119
2120 /* There are no REG_INC notes for SP autoinc. */
2121 subrtx_var_iterator::array_type array;
2122 FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
2123 {
2124 rtx mem = *iter;
2125 if (mem
2126 && MEM_P (mem)
2127 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
2128 {
2129 if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
2130 reg_mode[STACK_POINTER_REGNUM] = VOIDmode;
2131 }
2132 }
2133
e8448ba5 2134 note_stores (insn, move2add_note_store, insn);
15e35479
KH
2135
2136 /* If INSN is a conditional branch, we try to extract an
2137 implicit set out of it. */
c4cdb8e1 2138 if (any_condjump_p (insn))
15e35479
KH
2139 {
2140 rtx cnd = fis_get_condition (insn);
2141
2142 if (cnd != NULL_RTX
2143 && GET_CODE (cnd) == NE
f8cfc6aa 2144 && REG_P (XEXP (cnd, 0))
c4cdb8e1 2145 && !reg_set_p (XEXP (cnd, 0), insn)
15e35479
KH
2146 /* The following two checks, which are also in
2147 move2add_note_store, are intended to reduce the
2148 number of calls to gen_rtx_SET to avoid memory
2149 allocation if possible. */
2150 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
dc8afb70 2151 && REG_NREGS (XEXP (cnd, 0)) == 1
481683e1 2152 && CONST_INT_P (XEXP (cnd, 1)))
15e35479
KH
2153 {
2154 rtx implicit_set =
f7df4a84 2155 gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
7beb0596 2156 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
15e35479
KH
2157 }
2158 }
2159
2160 /* If this is a CALL_INSN, all call used registers are stored with
2161 unknown values. */
4b4bf941 2162 if (CALL_P (insn))
15e35479 2163 {
3df28f00 2164 function_abi callee_abi = insn_callee_abi (insn);
15e35479 2165 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
3df28f00
RS
2166 if (reg_mode[i] != VOIDmode
2167 && reg_mode[i] != BLKmode
2168 && callee_abi.clobbers_reg_p (reg_mode[i], i))
2169 /* Reset the information about this register. */
2170 reg_mode[i] = VOIDmode;
15e35479
KH
2171 }
2172 }
dc0d5a57 2173 return changed;
15e35479
KH
2174}
2175
7beb0596
JZ
2176/* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2177 contains SET.
15e35479
KH
2178 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2179 Called from reload_cse_move2add via note_stores. */
2180
2181static void
7beb0596 2182move2add_note_store (rtx dst, const_rtx set, void *data)
15e35479 2183{
f90af2e0 2184 rtx_insn *insn = (rtx_insn *) data;
15e35479 2185 unsigned int regno = 0;
b0567726 2186 scalar_int_mode mode;
15e35479 2187
7894bc6b
JR
2188 if (GET_CODE (dst) == SUBREG)
2189 regno = subreg_regno (dst);
2190 else if (REG_P (dst))
2191 regno = REGNO (dst);
2192 else
2193 return;
15e35479 2194
b0567726
RS
2195 if (!is_a <scalar_int_mode> (GET_MODE (dst), &mode))
2196 goto invalidate;
2197
2198 if (GET_CODE (set) == SET)
7beb0596
JZ
2199 {
2200 rtx note, sym = NULL_RTX;
7894bc6b 2201 rtx off;
7beb0596
JZ
2202
2203 note = find_reg_equal_equiv_note (insn);
2204 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2205 {
2206 sym = XEXP (note, 0);
7894bc6b 2207 off = const0_rtx;
7beb0596
JZ
2208 }
2209 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2210 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2211 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2212 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2213 {
2214 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
7894bc6b 2215 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
7beb0596
JZ
2216 }
2217
2218 if (sym != NULL_RTX)
2219 {
7894bc6b 2220 move2add_record_sym_value (dst, sym, off);
7beb0596
JZ
2221 return;
2222 }
2223 }
2224
b0567726 2225 if (GET_CODE (set) == SET
15e35479 2226 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
15e35479
KH
2227 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2228 {
2229 rtx src = SET_SRC (set);
2230 rtx base_reg;
e15eb172 2231 unsigned HOST_WIDE_INT offset;
15e35479 2232 int base_regno;
15e35479
KH
2233
2234 switch (GET_CODE (src))
2235 {
2236 case PLUS:
f8cfc6aa 2237 if (REG_P (XEXP (src, 0)))
15e35479
KH
2238 {
2239 base_reg = XEXP (src, 0);
2240
481683e1 2241 if (CONST_INT_P (XEXP (src, 1)))
e15eb172 2242 offset = UINTVAL (XEXP (src, 1));
f8cfc6aa 2243 else if (REG_P (XEXP (src, 1))
7894bc6b 2244 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
15e35479 2245 {
27d5e204
CLT
2246 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2247 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
15e35479
KH
2248 offset = reg_offset[REGNO (XEXP (src, 1))];
2249 /* Maybe the first register is known to be a
2250 constant. */
7894bc6b 2251 else if (move2add_valid_value_p (REGNO (base_reg), mode)
27d5e204
CLT
2252 && reg_base_reg[REGNO (base_reg)] < 0
2253 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
15e35479
KH
2254 {
2255 offset = reg_offset[REGNO (base_reg)];
2256 base_reg = XEXP (src, 1);
2257 }
2258 else
2259 goto invalidate;
2260 }
2261 else
2262 goto invalidate;
2263
2264 break;
2265 }
2266
2267 goto invalidate;
2268
2269 case REG:
2270 base_reg = src;
2271 offset = 0;
2272 break;
2273
2274 case CONST_INT:
2275 /* Start tracking the register as a constant. */
2276 reg_base_reg[regno] = -1;
7beb0596 2277 reg_symbol_ref[regno] = NULL_RTX;
15e35479
KH
2278 reg_offset[regno] = INTVAL (SET_SRC (set));
2279 /* We assign the same luid to all registers set to constants. */
2280 reg_set_luid[regno] = move2add_last_label_luid + 1;
7894bc6b 2281 move2add_record_mode (dst);
15e35479
KH
2282 return;
2283
2284 default:
7894bc6b 2285 goto invalidate;
15e35479
KH
2286 }
2287
2288 base_regno = REGNO (base_reg);
2289 /* If information about the base register is not valid, set it
2290 up as a new base register, pretending its value is known
2291 starting from the current insn. */
7894bc6b 2292 if (!move2add_valid_value_p (base_regno, mode))
15e35479
KH
2293 {
2294 reg_base_reg[base_regno] = base_regno;
7beb0596 2295 reg_symbol_ref[base_regno] = NULL_RTX;
15e35479
KH
2296 reg_offset[base_regno] = 0;
2297 reg_set_luid[base_regno] = move2add_luid;
7894bc6b
JR
2298 gcc_assert (GET_MODE (base_reg) == mode);
2299 move2add_record_mode (base_reg);
15e35479 2300 }
15e35479
KH
2301
2302 /* Copy base information from our base register. */
2303 reg_set_luid[regno] = reg_set_luid[base_regno];
2304 reg_base_reg[regno] = reg_base_reg[base_regno];
7beb0596 2305 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
15e35479
KH
2306
2307 /* Compute the sum of the offsets or constants. */
7894bc6b
JR
2308 reg_offset[regno]
2309 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2310
2311 move2add_record_mode (dst);
15e35479
KH
2312 }
2313 else
2314 {
7894bc6b
JR
2315 invalidate:
2316 /* Invalidate the contents of the register. */
2317 move2add_record_mode (dst);
2318 reg_mode[regno] = VOIDmode;
15e35479
KH
2319 }
2320}
ef330312 2321\f
27a4cd48
DM
2322namespace {
2323
2324const pass_data pass_data_postreload_cse =
ef330312 2325{
27a4cd48
DM
2326 RTL_PASS, /* type */
2327 "postreload", /* name */
2328 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
2329 TV_RELOAD_CSE_REGS, /* tv_id */
2330 0, /* properties_required */
2331 0, /* properties_provided */
2332 0, /* properties_destroyed */
2333 0, /* todo_flags_start */
3bea341f 2334 TODO_df_finish, /* todo_flags_finish */
ef330312 2335};
27a4cd48
DM
2336
2337class pass_postreload_cse : public rtl_opt_pass
2338{
2339public:
c3284718
RS
2340 pass_postreload_cse (gcc::context *ctxt)
2341 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
27a4cd48
DM
2342 {}
2343
2344 /* opt_pass methods: */
1a3d085c
TS
2345 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2346
be55bfe6 2347 virtual unsigned int execute (function *);
27a4cd48
DM
2348
2349}; // class pass_postreload_cse
2350
be55bfe6
TS
2351unsigned int
2352pass_postreload_cse::execute (function *fun)
2353{
2354 if (!dbg_cnt (postreload_cse))
2355 return 0;
2356
2357 /* Do a very simple CSE pass over just the hard registers. */
2358 reload_cse_regs (get_insns ());
2359 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2360 Remove any EH edges associated with them. */
2361 if (fun->can_throw_non_call_exceptions
2362 && purge_all_dead_edges ())
2363 cleanup_cfg (0);
2364
2365 return 0;
2366}
2367
27a4cd48
DM
2368} // anon namespace
2369
2370rtl_opt_pass *
2371make_pass_postreload_cse (gcc::context *ctxt)
2372{
2373 return new pass_postreload_cse (ctxt);
2374}