]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/postreload.c
re PR tree-optimization/81573 (wrong code at -O3 on x86_64-linux-gnu)
[thirdparty/gcc.git] / gcc / postreload.c
CommitLineData
15e35479 1/* Perform simple optimizations to clean up the result of reload.
cbe34bb5 2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
15e35479
KH
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
15e35479
KH
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
15e35479
KH
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
c7131fb2 23#include "backend.h"
957060b5 24#include "target.h"
15e35479 25#include "rtl.h"
957060b5
AM
26#include "tree.h"
27#include "predict.h"
c7131fb2 28#include "df.h"
4d0cdd0c 29#include "memmodel.h"
15e35479 30#include "tm_p.h"
957060b5
AM
31#include "optabs.h"
32#include "regs.h"
33#include "emit-rtl.h"
34#include "recog.h"
957060b5 35
60393bbc
AM
36#include "cfgrtl.h"
37#include "cfgbuild.h"
38#include "cfgcleanup.h"
15e35479 39#include "reload.h"
15e35479 40#include "cselib.h"
ef330312 41#include "tree-pass.h"
6fb5fa3c 42#include "dbgcnt.h"
15e35479 43
0c20a65f 44static int reload_cse_noop_set_p (rtx);
f90af2e0 45static bool reload_cse_simplify (rtx_insn *, rtx);
3a15c2cf 46static void reload_cse_regs_1 (void);
f90af2e0
DM
47static int reload_cse_simplify_set (rtx, rtx_insn *);
48static int reload_cse_simplify_operands (rtx_insn *, rtx);
15e35479 49
0c20a65f 50static void reload_combine (void);
f90af2e0 51static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
7bc980e1 52static void reload_combine_note_store (rtx, const_rtx, void *);
15e35479 53
f90af2e0 54static bool reload_cse_move2add (rtx_insn *);
7bc980e1 55static void move2add_note_store (rtx, const_rtx, void *);
15e35479
KH
56
57/* Call cse / combine like post-reload optimization phases.
58 FIRST is the first instruction. */
8bb91f49
SB
59
60static void
f90af2e0 61reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
15e35479 62{
dc0d5a57 63 bool moves_converted;
3a15c2cf 64 reload_cse_regs_1 ();
15e35479 65 reload_combine ();
dc0d5a57 66 moves_converted = reload_cse_move2add (first);
15e35479 67 if (flag_expensive_optimizations)
dc0d5a57
BS
68 {
69 if (moves_converted)
70 reload_combine ();
3a15c2cf 71 reload_cse_regs_1 ();
dc0d5a57 72 }
15e35479
KH
73}
74
75/* See whether a single set SET is a noop. */
76static int
0c20a65f 77reload_cse_noop_set_p (rtx set)
15e35479
KH
78{
79 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
80 return 0;
81
82 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
83}
84
3a15c2cf
SB
85/* Try to simplify INSN. Return true if the CFG may have changed. */
86static bool
f90af2e0 87reload_cse_simplify (rtx_insn *insn, rtx testreg)
15e35479
KH
88{
89 rtx body = PATTERN (insn);
3a15c2cf
SB
90 basic_block insn_bb = BLOCK_FOR_INSN (insn);
91 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
15e35479 92
d5a752eb
AV
93 /* If NO_FUNCTION_CSE has been set by the target, then we should not try
94 to cse function calls. */
95 if (NO_FUNCTION_CSE && CALL_P (insn))
96 return false;
97
15e35479
KH
98 if (GET_CODE (body) == SET)
99 {
100 int count = 0;
101
102 /* Simplify even if we may think it is a no-op.
103 We may think a memory load of a value smaller than WORD_SIZE
104 is redundant because we haven't taken into account possible
105 implicit extension. reload_cse_simplify_set() will bring
106 this out, so it's safer to simplify before we delete. */
107 count += reload_cse_simplify_set (body, insn);
108
109 if (!count && reload_cse_noop_set_p (body))
110 {
9e582b1d
JR
111 if (check_for_inc_dec (insn))
112 delete_insn_and_edges (insn);
3a15c2cf
SB
113 /* We're done with this insn. */
114 goto done;
15e35479
KH
115 }
116
117 if (count > 0)
118 apply_change_group ();
119 else
120 reload_cse_simplify_operands (insn, testreg);
121 }
122 else if (GET_CODE (body) == PARALLEL)
123 {
124 int i;
125 int count = 0;
126 rtx value = NULL_RTX;
127
0d87c765
RH
128 /* Registers mentioned in the clobber list for an asm cannot be reused
129 within the body of the asm. Invalidate those registers now so that
130 we don't try to substitute values for them. */
131 if (asm_noperands (body) >= 0)
132 {
133 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
134 {
135 rtx part = XVECEXP (body, 0, i);
136 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
137 cselib_invalidate_rtx (XEXP (part, 0));
138 }
139 }
140
15e35479
KH
141 /* If every action in a PARALLEL is a noop, we can delete
142 the entire PARALLEL. */
143 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
144 {
145 rtx part = XVECEXP (body, 0, i);
146 if (GET_CODE (part) == SET)
147 {
148 if (! reload_cse_noop_set_p (part))
149 break;
150 if (REG_P (SET_DEST (part))
151 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
152 {
153 if (value)
154 break;
155 value = SET_DEST (part);
156 }
157 }
c6a26179
JH
158 else if (GET_CODE (part) != CLOBBER
159 && GET_CODE (part) != USE)
15e35479
KH
160 break;
161 }
162
163 if (i < 0)
164 {
9e582b1d
JR
165 if (check_for_inc_dec (insn))
166 delete_insn_and_edges (insn);
15e35479 167 /* We're done with this insn. */
3a15c2cf 168 goto done;
15e35479
KH
169 }
170
171 /* It's not a no-op, but we can try to simplify it. */
172 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
173 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
174 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
175
176 if (count > 0)
177 apply_change_group ();
178 else
179 reload_cse_simplify_operands (insn, testreg);
180 }
3a15c2cf
SB
181
182done:
183 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
15e35479
KH
184}
185
186/* Do a very simple CSE pass over the hard registers.
187
188 This function detects no-op moves where we happened to assign two
189 different pseudo-registers to the same hard register, and then
190 copied one to the other. Reload will generate a useless
191 instruction copying a register to itself.
192
193 This function also detects cases where we load a value from memory
194 into two different registers, and (if memory is more expensive than
195 registers) changes it to simply copy the first register into the
196 second register.
197
198 Another optimization is performed that scans the operands of each
199 instruction to see whether the value is already available in a
200 hard register. It then replaces the operand with the hard register
201 if possible, much like an optional reload would. */
202
203static void
3a15c2cf 204reload_cse_regs_1 (void)
15e35479 205{
3a15c2cf
SB
206 bool cfg_changed = false;
207 basic_block bb;
f90af2e0 208 rtx_insn *insn;
c3dc5e66 209 rtx testreg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
15e35479 210
457eeaae 211 cselib_init (CSELIB_RECORD_MEMORY);
15e35479
KH
212 init_alias_analysis ();
213
11cd3bed 214 FOR_EACH_BB_FN (bb, cfun)
3a15c2cf
SB
215 FOR_BB_INSNS (bb, insn)
216 {
217 if (INSN_P (insn))
218 cfg_changed |= reload_cse_simplify (insn, testreg);
15e35479 219
3a15c2cf
SB
220 cselib_process_insn (insn);
221 }
15e35479
KH
222
223 /* Clean up. */
224 end_alias_analysis ();
225 cselib_finish ();
3a15c2cf
SB
226 if (cfg_changed)
227 cleanup_cfg (0);
15e35479
KH
228}
229
230/* Try to simplify a single SET instruction. SET is the set pattern.
231 INSN is the instruction it came from.
232 This function only handles one case: if we set a register to a value
233 which is not a register, we try to find that value in some other register
234 and change the set into a register copy. */
235
236static int
f90af2e0 237reload_cse_simplify_set (rtx set, rtx_insn *insn)
15e35479
KH
238{
239 int did_change = 0;
240 int dreg;
241 rtx src;
6f76a878 242 reg_class_t dclass;
15e35479
KH
243 int old_cost;
244 cselib_val *val;
245 struct elt_loc_list *l;
f822d252 246 enum rtx_code extend_op = UNKNOWN;
f40751dd 247 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
15e35479
KH
248
249 dreg = true_regnum (SET_DEST (set));
250 if (dreg < 0)
251 return 0;
252
253 src = SET_SRC (set);
254 if (side_effects_p (src) || true_regnum (src) >= 0)
255 return 0;
256
257 dclass = REGNO_REG_CLASS (dreg);
258
15e35479
KH
259 /* When replacing a memory with a register, we need to honor assumptions
260 that combine made wrt the contents of sign bits. We'll do this by
261 generating an extend instruction instead of a reg->reg copy. Thus
262 the destination must be a register that we can widen. */
3c0cb5de 263 if (MEM_P (src)
3712c7a3 264 && (extend_op = load_extend_op (GET_MODE (src))) != UNKNOWN
f8cfc6aa 265 && !REG_P (SET_DEST (set)))
15e35479 266 return 0;
15e35479 267
4deef538 268 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
b2948a2c
KH
269 if (! val)
270 return 0;
271
15e35479 272 /* If memory loads are cheaper than register copies, don't change them. */
3c0cb5de 273 if (MEM_P (src))
f5c21ef3 274 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
f8cfc6aa 275 else if (REG_P (src))
de8f4b07 276 old_cost = register_move_cost (GET_MODE (src),
15e35479
KH
277 REGNO_REG_CLASS (REGNO (src)), dclass);
278 else
e548c9df 279 old_cost = set_src_cost (src, GET_MODE (SET_DEST (set)), speed);
15e35479 280
15e35479
KH
281 for (l = val->locs; l; l = l->next)
282 {
283 rtx this_rtx = l->loc;
284 int this_cost;
285
286 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
287 {
f822d252 288 if (extend_op != UNKNOWN)
15e35479 289 {
807e902e 290 wide_int result;
15e35479 291
807e902e 292 if (!CONST_SCALAR_INT_P (this_rtx))
15e35479
KH
293 continue;
294
15e35479
KH
295 switch (extend_op)
296 {
297 case ZERO_EXTEND:
f079167a
RS
298 result = wide_int::from (rtx_mode_t (this_rtx,
299 GET_MODE (src)),
807e902e 300 BITS_PER_WORD, UNSIGNED);
15e35479
KH
301 break;
302 case SIGN_EXTEND:
f079167a
RS
303 result = wide_int::from (rtx_mode_t (this_rtx,
304 GET_MODE (src)),
807e902e
KZ
305 BITS_PER_WORD, SIGNED);
306 break;
15e35479 307 default:
e16acfcd 308 gcc_unreachable ();
15e35479 309 }
807e902e 310 this_rtx = immed_wide_int_const (result, word_mode);
15e35479 311 }
f1657f05 312
e548c9df 313 this_cost = set_src_cost (this_rtx, GET_MODE (SET_DEST (set)), speed);
15e35479 314 }
f8cfc6aa 315 else if (REG_P (this_rtx))
15e35479 316 {
f822d252 317 if (extend_op != UNKNOWN)
15e35479
KH
318 {
319 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
e548c9df 320 this_cost = set_src_cost (this_rtx, word_mode, speed);
15e35479
KH
321 }
322 else
de8f4b07 323 this_cost = register_move_cost (GET_MODE (this_rtx),
15e35479
KH
324 REGNO_REG_CLASS (REGNO (this_rtx)),
325 dclass);
326 }
327 else
328 continue;
329
330 /* If equal costs, prefer registers over anything else. That
331 tends to lead to smaller instructions on some machines. */
332 if (this_cost < old_cost
333 || (this_cost == old_cost
f8cfc6aa
JQ
334 && REG_P (this_rtx)
335 && !REG_P (SET_SRC (set))))
15e35479 336 {
3712c7a3 337 if (extend_op != UNKNOWN
15e35479
KH
338#ifdef CANNOT_CHANGE_MODE_CLASS
339 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
340 word_mode,
341 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
342#endif
343 )
344 {
345 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
346 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
347 validate_change (insn, &SET_DEST (set), wide_dest, 1);
348 }
15e35479 349
95e88efd 350 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
15e35479
KH
351 old_cost = this_cost, did_change = 1;
352 }
353 }
354
355 return did_change;
356}
357
358/* Try to replace operands in INSN with equivalent values that are already
359 in registers. This can be viewed as optional reloading.
360
361 For each non-register operand in the insn, see if any hard regs are
362 known to be equivalent to that operand. Record the alternatives which
363 can accept these hard registers. Among all alternatives, select the
364 ones which are better or equal to the one currently matching, where
365 "better" is in terms of '?' and '!' constraints. Among the remaining
366 alternatives, select the one which replaces most operands with
367 hard registers. */
368
369static int
f90af2e0 370reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
15e35479
KH
371{
372 int i, j;
373
374 /* For each operand, all registers that are equivalent to it. */
375 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
376
377 const char *constraints[MAX_RECOG_OPERANDS];
378
379 /* Vector recording how bad an alternative is. */
380 int *alternative_reject;
381 /* Vector recording how many registers can be introduced by choosing
382 this alternative. */
383 int *alternative_nregs;
384 /* Array of vectors recording, for each operand and each alternative,
385 which hard register to substitute, or -1 if the operand should be
386 left as it is. */
387 int *op_alt_regno[MAX_RECOG_OPERANDS];
388 /* Array of alternatives, sorted in order of decreasing desirability. */
389 int *alternative_order;
390
75d25a02 391 extract_constrain_insn (insn);
15e35479
KH
392
393 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
394 return 0;
395
d3bfe4de
KG
396 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
397 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
398 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
703ad42b
KG
399 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
400 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
15e35479
KH
401
402 /* For each operand, find out which regs are equivalent. */
403 for (i = 0; i < recog_data.n_operands; i++)
404 {
405 cselib_val *v;
406 struct elt_loc_list *l;
115df136 407 rtx op;
15e35479
KH
408
409 CLEAR_HARD_REG_SET (equiv_regs[i]);
410
411 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
412 right, so avoid the problem here. Likewise if we have a constant
413 and the insn pattern doesn't tell us the mode we need. */
4b4bf941 414 if (LABEL_P (recog_data.operand[i])
15e35479
KH
415 || (CONSTANT_P (recog_data.operand[i])
416 && recog_data.operand_mode[i] == VOIDmode))
417 continue;
418
115df136 419 op = recog_data.operand[i];
3712c7a3 420 if (MEM_P (op) && load_extend_op (GET_MODE (op)) != UNKNOWN)
115df136
R
421 {
422 rtx set = single_set (insn);
423
1f52178b 424 /* We might have multiple sets, some of which do implicit
115df136
R
425 extension. Punt on this for now. */
426 if (! set)
427 continue;
1f838355 428 /* If the destination is also a MEM or a STRICT_LOW_PART, no
115df136
R
429 extension applies.
430 Also, if there is an explicit extension, we don't have to
431 worry about an implicit one. */
3c0cb5de 432 else if (MEM_P (SET_DEST (set))
115df136
R
433 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
434 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
435 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
436 ; /* Continue ordinary processing. */
7be4d808
R
437#ifdef CANNOT_CHANGE_MODE_CLASS
438 /* If the register cannot change mode to word_mode, it follows that
439 it cannot have been used in word_mode. */
f8cfc6aa 440 else if (REG_P (SET_DEST (set))
7be4d808
R
441 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
442 word_mode,
443 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
444 ; /* Continue ordinary processing. */
445#endif
115df136 446 /* If this is a straight load, make the extension explicit. */
f8cfc6aa 447 else if (REG_P (SET_DEST (set))
115df136
R
448 && recog_data.n_operands == 2
449 && SET_SRC (set) == op
450 && SET_DEST (set) == recog_data.operand[1-i])
451 {
452 validate_change (insn, recog_data.operand_loc[i],
3712c7a3 453 gen_rtx_fmt_e (load_extend_op (GET_MODE (op)),
115df136
R
454 word_mode, op),
455 1);
456 validate_change (insn, recog_data.operand_loc[1-i],
457 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
458 1);
459 if (! apply_change_group ())
460 return 0;
461 return reload_cse_simplify_operands (insn, testreg);
462 }
463 else
464 /* ??? There might be arithmetic operations with memory that are
465 safe to optimize, but is it worth the trouble? */
466 continue;
467 }
f1657f05 468
3f82421f
PH
469 if (side_effects_p (op))
470 continue;
4deef538 471 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
15e35479
KH
472 if (! v)
473 continue;
474
475 for (l = v->locs; l; l = l->next)
f8cfc6aa 476 if (REG_P (l->loc))
15e35479
KH
477 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
478 }
479
9840b2fa 480 alternative_mask preferred = get_preferred_alternatives (insn);
15e35479
KH
481 for (i = 0; i < recog_data.n_operands; i++)
482 {
ef4bddc2 483 machine_mode mode;
15e35479
KH
484 int regno;
485 const char *p;
486
d3bfe4de 487 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
15e35479
KH
488 for (j = 0; j < recog_data.n_alternatives; j++)
489 op_alt_regno[i][j] = -1;
490
491 p = constraints[i] = recog_data.constraints[i];
492 mode = recog_data.operand_mode[i];
493
494 /* Add the reject values for each alternative given by the constraints
495 for this operand. */
496 j = 0;
497 while (*p != '\0')
498 {
499 char c = *p++;
500 if (c == ',')
501 j++;
502 else if (c == '?')
503 alternative_reject[j] += 3;
504 else if (c == '!')
505 alternative_reject[j] += 300;
506 }
507
508 /* We won't change operands which are already registers. We
509 also don't want to modify output operands. */
510 regno = true_regnum (recog_data.operand[i]);
511 if (regno >= 0
512 || constraints[i][0] == '='
513 || constraints[i][0] == '+')
514 continue;
515
516 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
517 {
bbbbb16a 518 enum reg_class rclass = NO_REGS;
15e35479
KH
519
520 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
521 continue;
522
8deccbb7 523 set_mode_and_regno (testreg, mode, regno);
15e35479
KH
524
525 /* We found a register equal to this operand. Now look for all
526 alternatives that can accept this register and have not been
527 assigned a register they can use yet. */
528 j = 0;
529 p = constraints[i];
530 for (;;)
531 {
532 char c = *p;
533
534 switch (c)
535 {
8677664e
RS
536 case 'g':
537 rclass = reg_class_subunion[rclass][GENERAL_REGS];
15e35479
KH
538 break;
539
540 default:
d858f359 541 rclass
15e35479 542 = (reg_class_subunion
777e635f
RS
543 [rclass]
544 [reg_class_for_constraint (lookup_constraint (p))]);
15e35479
KH
545 break;
546
547 case ',': case '\0':
548 /* See if REGNO fits this alternative, and set it up as the
549 replacement register if we don't have one for this
550 alternative yet and the operand being replaced is not
551 a cheap CONST_INT. */
552 if (op_alt_regno[i][j] == -1
9840b2fa 553 && TEST_BIT (preferred, j)
d858f359 554 && reg_fits_class_p (testreg, rclass, 0, mode)
481683e1 555 && (!CONST_INT_P (recog_data.operand[i])
e548c9df 556 || (set_src_cost (recog_data.operand[i], mode,
5e8f01f4
RS
557 optimize_bb_for_speed_p
558 (BLOCK_FOR_INSN (insn)))
e548c9df 559 > set_src_cost (testreg, mode,
5e8f01f4
RS
560 optimize_bb_for_speed_p
561 (BLOCK_FOR_INSN (insn))))))
15e35479
KH
562 {
563 alternative_nregs[j]++;
564 op_alt_regno[i][j] = regno;
565 }
566 j++;
bbbbb16a 567 rclass = NO_REGS;
15e35479
KH
568 break;
569 }
570 p += CONSTRAINT_LEN (c, p);
571
572 if (c == '\0')
573 break;
574 }
575 }
576 }
577
578 /* Record all alternatives which are better or equal to the currently
579 matching one in the alternative_order array. */
580 for (i = j = 0; i < recog_data.n_alternatives; i++)
581 if (alternative_reject[i] <= alternative_reject[which_alternative])
582 alternative_order[j++] = i;
583 recog_data.n_alternatives = j;
584
585 /* Sort it. Given a small number of alternatives, a dumb algorithm
586 won't hurt too much. */
587 for (i = 0; i < recog_data.n_alternatives - 1; i++)
588 {
589 int best = i;
590 int best_reject = alternative_reject[alternative_order[i]];
591 int best_nregs = alternative_nregs[alternative_order[i]];
15e35479
KH
592
593 for (j = i + 1; j < recog_data.n_alternatives; j++)
594 {
595 int this_reject = alternative_reject[alternative_order[j]];
596 int this_nregs = alternative_nregs[alternative_order[j]];
597
598 if (this_reject < best_reject
8a4c09c8 599 || (this_reject == best_reject && this_nregs > best_nregs))
15e35479
KH
600 {
601 best = j;
602 best_reject = this_reject;
603 best_nregs = this_nregs;
604 }
605 }
606
fab27f52 607 std::swap (alternative_order[best], alternative_order[i]);
15e35479
KH
608 }
609
610 /* Substitute the operands as determined by op_alt_regno for the best
611 alternative. */
612 j = alternative_order[0];
613
614 for (i = 0; i < recog_data.n_operands; i++)
615 {
ef4bddc2 616 machine_mode mode = recog_data.operand_mode[i];
15e35479
KH
617 if (op_alt_regno[i][j] == -1)
618 continue;
619
620 validate_change (insn, recog_data.operand_loc[i],
621 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
622 }
623
624 for (i = recog_data.n_dups - 1; i >= 0; i--)
625 {
626 int op = recog_data.dup_num[i];
ef4bddc2 627 machine_mode mode = recog_data.operand_mode[op];
15e35479
KH
628
629 if (op_alt_regno[op][j] == -1)
630 continue;
631
632 validate_change (insn, recog_data.dup_loc[i],
633 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
634 }
635
636 return apply_change_group ();
637}
638\f
639/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
640 addressing now.
641 This code might also be useful when reload gave up on reg+reg addressing
642 because of clashes between the return register and INDEX_REG_CLASS. */
643
644/* The maximum number of uses of a register we can keep track of to
645 replace them with reg+reg addressing. */
dc0d5a57 646#define RELOAD_COMBINE_MAX_USES 16
15e35479 647
dc0d5a57
BS
648/* Describes a recorded use of a register. */
649struct reg_use
650{
651 /* The insn where a register has been used. */
f90af2e0 652 rtx_insn *insn;
dc0d5a57
BS
653 /* Points to the memory reference enclosing the use, if any, NULL_RTX
654 otherwise. */
655 rtx containing_mem;
073a8998 656 /* Location of the register within INSN. */
dc0d5a57
BS
657 rtx *usep;
658 /* The reverse uid of the insn. */
659 int ruid;
660};
15e35479
KH
661
662/* If the register is used in some unknown fashion, USE_INDEX is negative.
663 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
dc0d5a57 664 indicates where it is first set or clobbered.
15e35479 665 Otherwise, USE_INDEX is the index of the last encountered use of the
dc0d5a57
BS
666 register (which is first among these we have seen since we scan backwards).
667 USE_RUID indicates the first encountered, i.e. last, of these uses.
668 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
669 with a constant offset; OFFSET contains this constant in that case.
15e35479
KH
670 STORE_RUID is always meaningful if we only want to use a value in a
671 register in a different place: it denotes the next insn in the insn
dc0d5a57
BS
672 stream (i.e. the last encountered) that sets or clobbers the register.
673 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
15e35479
KH
674static struct
675 {
676 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
15e35479 677 rtx offset;
dc0d5a57 678 int use_index;
15e35479 679 int store_ruid;
dc0d5a57 680 int real_store_ruid;
15e35479 681 int use_ruid;
dc0d5a57 682 bool all_offsets_match;
15e35479
KH
683 } reg_state[FIRST_PSEUDO_REGISTER];
684
685/* Reverse linear uid. This is increased in reload_combine while scanning
686 the instructions from last to first. It is used to set last_label_ruid
687 and the store_ruid / use_ruid fields in reg_state. */
688static int reload_combine_ruid;
689
67bb0206
BS
690/* The RUID of the last label we encountered in reload_combine. */
691static int last_label_ruid;
692
dc0d5a57
BS
693/* The RUID of the last jump we encountered in reload_combine. */
694static int last_jump_ruid;
695
67bb0206
BS
696/* The register numbers of the first and last index register. A value of
697 -1 in LAST_INDEX_REG indicates that we've previously computed these
698 values and found no suitable index registers. */
699static int first_index_reg = -1;
700static int last_index_reg;
701
15e35479
KH
702#define LABEL_LIVE(LABEL) \
703 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
704
dc0d5a57
BS
705/* Subroutine of reload_combine_split_ruids, called to fix up a single
706 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
707
708static inline void
709reload_combine_split_one_ruid (int *pruid, int split_ruid)
710{
711 if (*pruid > split_ruid)
712 (*pruid)++;
713}
714
715/* Called when we insert a new insn in a position we've already passed in
716 the scan. Examine all our state, increasing all ruids that are higher
717 than SPLIT_RUID by one in order to make room for a new insn. */
718
719static void
720reload_combine_split_ruids (int split_ruid)
721{
722 unsigned i;
723
724 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
725 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
726 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
727
728 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
729 {
730 int j, idx = reg_state[i].use_index;
731 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
732 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
733 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
734 split_ruid);
735 if (idx < 0)
736 continue;
737 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
738 {
739 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
740 split_ruid);
741 }
742 }
743}
744
745/* Called when we are about to rescan a previously encountered insn with
746 reload_combine_note_use after modifying some part of it. This clears all
747 information about uses in that particular insn. */
748
749static void
f90af2e0 750reload_combine_purge_insn_uses (rtx_insn *insn)
dc0d5a57
BS
751{
752 unsigned i;
753
754 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
755 {
756 int j, k, idx = reg_state[i].use_index;
757 if (idx < 0)
758 continue;
759 j = k = RELOAD_COMBINE_MAX_USES;
760 while (j-- > idx)
761 {
762 if (reg_state[i].reg_use[j].insn != insn)
763 {
764 k--;
765 if (k != j)
766 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
767 }
768 }
769 reg_state[i].use_index = k;
770 }
771}
772
773/* Called when we need to forget about all uses of REGNO after an insn
774 which is identified by RUID. */
775
776static void
777reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
778{
779 int j, k, idx = reg_state[regno].use_index;
780 if (idx < 0)
781 return;
782 j = k = RELOAD_COMBINE_MAX_USES;
783 while (j-- > idx)
784 {
785 if (reg_state[regno].reg_use[j].ruid >= ruid)
786 {
787 k--;
788 if (k != j)
789 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
790 }
791 }
792 reg_state[regno].use_index = k;
793}
794
795/* Find the use of REGNO with the ruid that is highest among those
796 lower than RUID_LIMIT, and return it if it is the only use of this
08bd6876 797 reg in the insn. Return NULL otherwise. */
dc0d5a57
BS
798
799static struct reg_use *
800reload_combine_closest_single_use (unsigned regno, int ruid_limit)
801{
802 int i, best_ruid = 0;
803 int use_idx = reg_state[regno].use_index;
804 struct reg_use *retval;
805
806 if (use_idx < 0)
807 return NULL;
808 retval = NULL;
809 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
810 {
b1d5eee8
BS
811 struct reg_use *use = reg_state[regno].reg_use + i;
812 int this_ruid = use->ruid;
dc0d5a57
BS
813 if (this_ruid >= ruid_limit)
814 continue;
815 if (this_ruid > best_ruid)
816 {
817 best_ruid = this_ruid;
08bd6876 818 retval = use;
dc0d5a57 819 }
08bd6876 820 else if (this_ruid == best_ruid)
dc0d5a57
BS
821 retval = NULL;
822 }
823 if (last_label_ruid >= best_ruid)
824 return NULL;
825 return retval;
826}
827
caa4a250
BS
828/* After we've moved an add insn, fix up any debug insns that occur
829 between the old location of the add and the new location. REG is
830 the destination register of the add insn; REPLACEMENT is the
831 SET_SRC of the add. FROM and TO specify the range in which we
832 should make this change on debug insns. */
b1d5eee8
BS
833
834static void
f90af2e0 835fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
b1d5eee8 836{
f90af2e0 837 rtx_insn *insn;
caa4a250 838 for (insn = from; insn != to; insn = NEXT_INSN (insn))
b1d5eee8
BS
839 {
840 rtx t;
caa4a250
BS
841
842 if (!DEBUG_INSN_P (insn))
b1d5eee8 843 continue;
caa4a250
BS
844
845 t = INSN_VAR_LOCATION_LOC (insn);
08bd6876 846 t = simplify_replace_rtx (t, reg, replacement);
caa4a250 847 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
b1d5eee8
BS
848 }
849}
850
a78e242c
BS
851/* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
852 with SRC in the insn described by USE, taking costs into account. Return
853 true if we made the replacement. */
854
855static bool
856try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
857{
f90af2e0 858 rtx_insn *use_insn = use->insn;
a78e242c
BS
859 rtx mem = use->containing_mem;
860 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
861
862 if (mem != NULL_RTX)
863 {
864 addr_space_t as = MEM_ADDR_SPACE (mem);
865 rtx oldaddr = XEXP (mem, 0);
866 rtx newaddr = NULL_RTX;
867 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
868 int new_cost;
869
870 newaddr = simplify_replace_rtx (oldaddr, reg, src);
871 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
872 {
873 XEXP (mem, 0) = newaddr;
874 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
875 XEXP (mem, 0) = oldaddr;
876 if (new_cost <= old_cost
877 && validate_change (use_insn,
878 &XEXP (mem, 0), newaddr, 0))
879 return true;
880 }
881 }
882 else
883 {
884 rtx new_set = single_set (use_insn);
885 if (new_set
886 && REG_P (SET_DEST (new_set))
887 && GET_CODE (SET_SRC (new_set)) == PLUS
888 && REG_P (XEXP (SET_SRC (new_set), 0))
889 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
890 {
891 rtx new_src;
e548c9df
AM
892 machine_mode mode = GET_MODE (SET_DEST (new_set));
893 int old_cost = set_src_cost (SET_SRC (new_set), mode, speed);
a78e242c
BS
894
895 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
896 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
897
e548c9df 898 if (set_src_cost (new_src, mode, speed) <= old_cost
a78e242c
BS
899 && validate_change (use_insn, &SET_SRC (new_set),
900 new_src, 0))
901 return true;
902 }
903 }
904 return false;
905}
906
dc0d5a57
BS
907/* Called by reload_combine when scanning INSN. This function tries to detect
908 patterns where a constant is added to a register, and the result is used
909 in an address.
910 Return true if no further processing is needed on INSN; false if it wasn't
911 recognized and should be handled normally. */
912
913static bool
f90af2e0 914reload_combine_recognize_const_pattern (rtx_insn *insn)
dc0d5a57
BS
915{
916 int from_ruid = reload_combine_ruid;
917 rtx set, pat, reg, src, addreg;
918 unsigned int regno;
919 struct reg_use *use;
920 bool must_move_add;
f90af2e0 921 rtx_insn *add_moved_after_insn = NULL;
dc0d5a57
BS
922 int add_moved_after_ruid = 0;
923 int clobbered_regno = -1;
924
925 set = single_set (insn);
926 if (set == NULL_RTX)
927 return false;
928
929 reg = SET_DEST (set);
930 src = SET_SRC (set);
931 if (!REG_P (reg)
dc8afb70 932 || REG_NREGS (reg) != 1
dc0d5a57
BS
933 || GET_MODE (reg) != Pmode
934 || reg == stack_pointer_rtx)
935 return false;
936
937 regno = REGNO (reg);
938
939 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
940 uses of REG1 inside an address, or inside another add insn. If
941 possible and profitable, merge the addition into subsequent
942 uses. */
943 if (GET_CODE (src) != PLUS
944 || !REG_P (XEXP (src, 0))
945 || !CONSTANT_P (XEXP (src, 1)))
946 return false;
947
948 addreg = XEXP (src, 0);
949 must_move_add = rtx_equal_p (reg, addreg);
950
951 pat = PATTERN (insn);
952 if (must_move_add && set != pat)
953 {
954 /* We have to be careful when moving the add; apart from the
955 single_set there may also be clobbers. Recognize one special
956 case, that of one clobber alongside the set (likely a clobber
957 of the CC register). */
958 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
959 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
960 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
961 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
962 return false;
963 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
964 }
965
966 do
967 {
968 use = reload_combine_closest_single_use (regno, from_ruid);
969
970 if (use)
971 /* Start the search for the next use from here. */
972 from_ruid = use->ruid;
973
974 if (use && GET_MODE (*use->usep) == Pmode)
975 {
a78e242c 976 bool delete_add = false;
f90af2e0 977 rtx_insn *use_insn = use->insn;
dc0d5a57 978 int use_ruid = use->ruid;
dc0d5a57
BS
979
980 /* Avoid moving the add insn past a jump. */
b1d5eee8 981 if (must_move_add && use_ruid <= last_jump_ruid)
dc0d5a57
BS
982 break;
983
984 /* If the add clobbers another hard reg in parallel, don't move
985 it past a real set of this hard reg. */
986 if (must_move_add && clobbered_regno >= 0
987 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
988 break;
989
3b8ff89f 990 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
058eb3b0 991 if (HAVE_cc0 && must_move_add && sets_cc0_p (PATTERN (use_insn)))
3b8ff89f 992 break;
3b8ff89f 993
62036819
BS
994 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
995 /* Avoid moving a use of ADDREG past a point where it is stored. */
a78e242c 996 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
dc0d5a57
BS
997 break;
998
a78e242c
BS
999 /* We also must not move the addition past an insn that sets
1000 the same register, unless we can combine two add insns. */
1001 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
dc0d5a57 1002 {
a78e242c
BS
1003 if (use->containing_mem == NULL_RTX)
1004 delete_add = true;
1005 else
1006 break;
dc0d5a57 1007 }
dc0d5a57 1008
a78e242c
BS
1009 if (try_replace_in_use (use, reg, src))
1010 {
1011 reload_combine_purge_insn_uses (use_insn);
1012 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1013 use_ruid, NULL_RTX);
dc0d5a57 1014
a78e242c
BS
1015 if (delete_add)
1016 {
1017 fixup_debug_insns (reg, src, insn, use_insn);
1018 delete_insn (insn);
1019 return true;
1020 }
1021 if (must_move_add)
1022 {
1023 add_moved_after_insn = use_insn;
1024 add_moved_after_ruid = use_ruid;
dc0d5a57 1025 }
a78e242c 1026 continue;
dc0d5a57 1027 }
dc0d5a57 1028 }
62036819
BS
1029 /* If we get here, we couldn't handle this use. */
1030 if (must_move_add)
1031 break;
dc0d5a57
BS
1032 }
1033 while (use);
1034
1035 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1036 /* Process the add normally. */
1037 return false;
1038
caa4a250
BS
1039 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1040
dc0d5a57
BS
1041 reorder_insns (insn, insn, add_moved_after_insn);
1042 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1043 reload_combine_split_ruids (add_moved_after_ruid - 1);
1044 reload_combine_note_use (&PATTERN (insn), insn,
1045 add_moved_after_ruid, NULL_RTX);
1046 reg_state[regno].store_ruid = add_moved_after_ruid;
1047
1048 return true;
1049}
1050
67bb0206
BS
1051/* Called by reload_combine when scanning INSN. Try to detect a pattern we
1052 can handle and improve. Return true if no further processing is needed on
1053 INSN; false if it wasn't recognized and should be handled normally. */
1054
1055static bool
f90af2e0 1056reload_combine_recognize_pattern (rtx_insn *insn)
67bb0206
BS
1057{
1058 rtx set, reg, src;
67bb0206 1059
dc0d5a57
BS
1060 set = single_set (insn);
1061 if (set == NULL_RTX)
1062 return false;
1063
1064 reg = SET_DEST (set);
1065 src = SET_SRC (set);
dc8afb70 1066 if (!REG_P (reg) || REG_NREGS (reg) != 1)
dc0d5a57
BS
1067 return false;
1068
201d49e9
BS
1069 unsigned int regno = REGNO (reg);
1070 machine_mode mode = GET_MODE (reg);
1071
1072 if (reg_state[regno].use_index < 0
1073 || reg_state[regno].use_index >= RELOAD_COMBINE_MAX_USES)
1074 return false;
1075
1076 for (int i = reg_state[regno].use_index;
1077 i < RELOAD_COMBINE_MAX_USES; i++)
1078 {
1079 struct reg_use *use = reg_state[regno].reg_use + i;
1080 if (GET_MODE (*use->usep) != mode)
1081 return false;
1082 }
dc0d5a57 1083
67bb0206
BS
1084 /* Look for (set (REGX) (CONST_INT))
1085 (set (REGX) (PLUS (REGX) (REGY)))
1086 ...
1087 ... (MEM (REGX)) ...
1088 and convert it to
1089 (set (REGZ) (CONST_INT))
1090 ...
1091 ... (MEM (PLUS (REGZ) (REGY)))... .
1092
1093 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1094 and that we know all uses of REGX before it dies.
1095 Also, explicitly check that REGX != REGY; our life information
1096 does not yet show whether REGY changes in this insn. */
67bb0206
BS
1097
1098 if (GET_CODE (src) == PLUS
dc0d5a57
BS
1099 && reg_state[regno].all_offsets_match
1100 && last_index_reg != -1
67bb0206
BS
1101 && REG_P (XEXP (src, 1))
1102 && rtx_equal_p (XEXP (src, 0), reg)
1103 && !rtx_equal_p (XEXP (src, 1), reg)
1104 && last_label_ruid < reg_state[regno].use_ruid)
1105 {
1106 rtx base = XEXP (src, 1);
f90af2e0 1107 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
67bb0206
BS
1108 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1109 rtx index_reg = NULL_RTX;
1110 rtx reg_sum = NULL_RTX;
1111 int i;
1112
1113 /* Now we need to set INDEX_REG to an index register (denoted as
1114 REGZ in the illustration above) and REG_SUM to the expression
1115 register+register that we want to use to substitute uses of REG
1116 (typically in MEMs) with. First check REG and BASE for being
1117 index registers; we can use them even if they are not dead. */
1118 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1119 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1120 REGNO (base)))
1121 {
1122 index_reg = reg;
1123 reg_sum = src;
1124 }
1125 else
1126 {
1127 /* Otherwise, look for a free index register. Since we have
1128 checked above that neither REG nor BASE are index registers,
1129 if we find anything at all, it will be different from these
1130 two registers. */
1131 for (i = first_index_reg; i <= last_index_reg; i++)
1132 {
1133 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1134 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1135 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
08bd6876
BS
1136 && (call_used_regs[i] || df_regs_ever_live_p (i))
1137 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1138 && !fixed_regs[i] && !global_regs[i]
1139 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1140 && targetm.hard_regno_scratch_ok (i))
67bb0206
BS
1141 {
1142 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1143 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1144 break;
1145 }
1146 }
1147 }
1148
1149 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1150 (REGY), i.e. BASE, is not clobbered before the last use we'll
1151 create. */
1152 if (reg_sum
1153 && prev_set
1154 && CONST_INT_P (SET_SRC (prev_set))
1155 && rtx_equal_p (SET_DEST (prev_set), reg)
67bb0206
BS
1156 && (reg_state[REGNO (base)].store_ruid
1157 <= reg_state[regno].use_ruid))
1158 {
1159 /* Change destination register and, if necessary, the constant
1160 value in PREV, the constant loading instruction. */
1161 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1162 if (reg_state[regno].offset != const0_rtx)
1163 validate_change (prev,
1164 &SET_SRC (prev_set),
1165 GEN_INT (INTVAL (SET_SRC (prev_set))
1166 + INTVAL (reg_state[regno].offset)),
1167 1);
1168
1169 /* Now for every use of REG that we have recorded, replace REG
1170 with REG_SUM. */
1171 for (i = reg_state[regno].use_index;
1172 i < RELOAD_COMBINE_MAX_USES; i++)
1173 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1174 reg_state[regno].reg_use[i].usep,
1175 /* Each change must have its own
1176 replacement. */
1177 reg_sum, 1);
1178
1179 if (apply_change_group ())
1180 {
caa4a250
BS
1181 struct reg_use *lowest_ruid = NULL;
1182
67bb0206
BS
1183 /* For every new use of REG_SUM, we have to record the use
1184 of BASE therein, i.e. operand 1. */
1185 for (i = reg_state[regno].use_index;
1186 i < RELOAD_COMBINE_MAX_USES; i++)
caa4a250
BS
1187 {
1188 struct reg_use *use = reg_state[regno].reg_use + i;
1189 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1190 use->ruid, use->containing_mem);
1191 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1192 lowest_ruid = use;
1193 }
1194
1195 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
67bb0206 1196
67bb0206
BS
1197 /* Delete the reg-reg addition. */
1198 delete_insn (insn);
1199
a5a4add7
JJ
1200 if (reg_state[regno].offset != const0_rtx
1201 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1202 are now invalid. */
1203 && remove_reg_equal_equiv_notes (prev))
1204 df_notes_rescan (prev);
67bb0206
BS
1205
1206 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
67bb0206
BS
1207 return true;
1208 }
1209 }
1210 }
1211 return false;
1212}
1213
15e35479 1214static void
0c20a65f 1215reload_combine (void)
15e35479 1216{
f90af2e0 1217 rtx_insn *insn, *prev;
15e35479
KH
1218 basic_block bb;
1219 unsigned int r;
15e35479
KH
1220 int min_labelno, n_labels;
1221 HARD_REG_SET ever_live_at_start, *label_live;
1222
15e35479
KH
1223 /* To avoid wasting too much time later searching for an index register,
1224 determine the minimum and maximum index register numbers. */
67bb0206
BS
1225 if (INDEX_REG_CLASS == NO_REGS)
1226 last_index_reg = -1;
1227 else if (first_index_reg == -1 && last_index_reg == 0)
1228 {
1229 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1230 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1231 {
1232 if (first_index_reg == -1)
1233 first_index_reg = r;
1234
1235 last_index_reg = r;
1236 }
1237
1238 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1239 to -1 so we'll know to quit early the next time we get here. */
1240 if (first_index_reg == -1)
1241 {
1242 last_index_reg = -1;
1243 return;
1244 }
1245 }
15e35479 1246
15e35479
KH
1247 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1248 information is a bit fuzzy immediately after reload, but it's
1249 still good enough to determine which registers are live at a jump
1250 destination. */
1251 min_labelno = get_first_label_num ();
1252 n_labels = max_label_num () - min_labelno;
5ed6ace5 1253 label_live = XNEWVEC (HARD_REG_SET, n_labels);
15e35479
KH
1254 CLEAR_HARD_REG_SET (ever_live_at_start);
1255
4f42035e 1256 FOR_EACH_BB_REVERSE_FN (bb, cfun)
15e35479 1257 {
a813c111 1258 insn = BB_HEAD (bb);
4b4bf941 1259 if (LABEL_P (insn))
15e35479
KH
1260 {
1261 HARD_REG_SET live;
89a95777 1262 bitmap live_in = df_get_live_in (bb);
15e35479 1263
89a95777
KZ
1264 REG_SET_TO_HARD_REG_SET (live, live_in);
1265 compute_use_by_pseudos (&live, live_in);
15e35479
KH
1266 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1267 IOR_HARD_REG_SET (ever_live_at_start, live);
1268 }
1269 }
1270
1271 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
dc0d5a57 1272 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
15e35479
KH
1273 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1274 {
dc0d5a57
BS
1275 reg_state[r].store_ruid = 0;
1276 reg_state[r].real_store_ruid = 0;
15e35479
KH
1277 if (fixed_regs[r])
1278 reg_state[r].use_index = -1;
1279 else
1280 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1281 }
1282
dc0d5a57 1283 for (insn = get_last_insn (); insn; insn = prev)
15e35479 1284 {
7ad93142 1285 bool control_flow_insn;
15e35479
KH
1286 rtx note;
1287
dc0d5a57
BS
1288 prev = PREV_INSN (insn);
1289
15e35479
KH
1290 /* We cannot do our optimization across labels. Invalidating all the use
1291 information we have would be costly, so we just note where the label
1292 is and then later disable any optimization that would cross it. */
4b4bf941 1293 if (LABEL_P (insn))
15e35479 1294 last_label_ruid = reload_combine_ruid;
2195c9be
AK
1295 else if (BARRIER_P (insn))
1296 {
1297 /* Crossing a barrier resets all the use information. */
1298 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1299 if (! fixed_regs[r])
15e35479 1300 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
2195c9be
AK
1301 }
1302 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1303 /* Optimizations across insns being marked as volatile must be
1304 prevented. All the usage information is invalidated
1305 here. */
1306 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1307 if (! fixed_regs[r]
1308 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1309 reg_state[r].use_index = -1;
15e35479 1310
caa4a250 1311 if (! NONDEBUG_INSN_P (insn))
15e35479
KH
1312 continue;
1313
1314 reload_combine_ruid++;
1315
7ad93142
EB
1316 control_flow_insn = control_flow_insn_p (insn);
1317 if (control_flow_insn)
dc0d5a57
BS
1318 last_jump_ruid = reload_combine_ruid;
1319
1320 if (reload_combine_recognize_const_pattern (insn)
1321 || reload_combine_recognize_pattern (insn))
67bb0206 1322 continue;
15e35479
KH
1323
1324 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1325
4b4bf941 1326 if (CALL_P (insn))
15e35479
KH
1327 {
1328 rtx link;
97ded4cd
TV
1329 HARD_REG_SET used_regs;
1330
1331 get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
15e35479
KH
1332
1333 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
97ded4cd 1334 if (TEST_HARD_REG_BIT (used_regs, r))
15e35479
KH
1335 {
1336 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1337 reg_state[r].store_ruid = reload_combine_ruid;
1338 }
1339
1340 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1341 link = XEXP (link, 1))
1342 {
e384e6b5
BS
1343 rtx setuse = XEXP (link, 0);
1344 rtx usage_rtx = XEXP (setuse, 0);
1345 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1346 && REG_P (usage_rtx))
15e35479 1347 {
53d1bae9
RS
1348 unsigned int end_regno = END_REGNO (usage_rtx);
1349 for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
15e35479
KH
1350 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1351 {
1352 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1353 reg_state[i].store_ruid = reload_combine_ruid;
1354 }
1355 else
1356 reg_state[i].use_index = -1;
1357 }
1358 }
15e35479 1359 }
18c33e03 1360
57895947 1361 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
15e35479
KH
1362 {
1363 /* Non-spill registers might be used at the call destination in
1364 some unknown fashion, so we have to mark the unknown use. */
1365 HARD_REG_SET *live;
1366
1367 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1368 && JUMP_LABEL (insn))
57895947
EB
1369 {
1370 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1371 live = NULL;
1372 else
1373 live = &LABEL_LIVE (JUMP_LABEL (insn));
1374 }
15e35479
KH
1375 else
1376 live = &ever_live_at_start;
1377
57895947
EB
1378 if (live)
1379 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1380 if (TEST_HARD_REG_BIT (*live, r))
1381 reg_state[r].use_index = -1;
15e35479
KH
1382 }
1383
7ad93142
EB
1384 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1385 NULL_RTX);
1386
15e35479
KH
1387 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1388 {
7ad93142 1389 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
15e35479
KH
1390 {
1391 int regno = REGNO (XEXP (note, 0));
15e35479 1392 reg_state[regno].store_ruid = reload_combine_ruid;
dc0d5a57 1393 reg_state[regno].real_store_ruid = reload_combine_ruid;
15e35479
KH
1394 reg_state[regno].use_index = -1;
1395 }
1396 }
1397 }
1398
1399 free (label_live);
1400}
1401
1402/* Check if DST is a register or a subreg of a register; if it is,
dc0d5a57
BS
1403 update store_ruid, real_store_ruid and use_index in the reg_state
1404 structure accordingly. Called via note_stores from reload_combine. */
15e35479
KH
1405
1406static void
7bc980e1 1407reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
15e35479
KH
1408{
1409 int regno = 0;
1410 int i;
ef4bddc2 1411 machine_mode mode = GET_MODE (dst);
15e35479
KH
1412
1413 if (GET_CODE (dst) == SUBREG)
1414 {
1415 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1416 GET_MODE (SUBREG_REG (dst)),
1417 SUBREG_BYTE (dst),
1418 GET_MODE (dst));
1419 dst = SUBREG_REG (dst);
1420 }
12c2b0ad
JL
1421
1422 /* Some targets do argument pushes without adding REG_INC notes. */
1423
1424 if (MEM_P (dst))
1425 {
1426 dst = XEXP (dst, 0);
1427 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
96676a5d
JJ
1428 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1429 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
12c2b0ad 1430 {
53d1bae9
RS
1431 unsigned int end_regno = END_REGNO (XEXP (dst, 0));
1432 for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
12c2b0ad
JL
1433 {
1434 /* We could probably do better, but for now mark the register
1435 as used in an unknown fashion and set/clobbered at this
1436 insn. */
1437 reg_state[i].use_index = -1;
1438 reg_state[i].store_ruid = reload_combine_ruid;
1439 reg_state[i].real_store_ruid = reload_combine_ruid;
1440 }
1441 }
1442 else
1443 return;
1444 }
1445
f8cfc6aa 1446 if (!REG_P (dst))
15e35479
KH
1447 return;
1448 regno += REGNO (dst);
1449
1450 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1451 careful with registers / register parts that are not full words.
46d096a3 1452 Similarly for ZERO_EXTRACT. */
dc0d5a57 1453 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
15e35479
KH
1454 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1455 {
66fd46b6 1456 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
15e35479
KH
1457 {
1458 reg_state[i].use_index = -1;
1459 reg_state[i].store_ruid = reload_combine_ruid;
dc0d5a57 1460 reg_state[i].real_store_ruid = reload_combine_ruid;
15e35479
KH
1461 }
1462 }
1463 else
1464 {
66fd46b6 1465 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
15e35479
KH
1466 {
1467 reg_state[i].store_ruid = reload_combine_ruid;
dc0d5a57
BS
1468 if (GET_CODE (set) == SET)
1469 reg_state[i].real_store_ruid = reload_combine_ruid;
15e35479
KH
1470 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1471 }
1472 }
1473}
1474
1475/* XP points to a piece of rtl that has to be checked for any uses of
1476 registers.
1477 *XP is the pattern of INSN, or a part of it.
1478 Called from reload_combine, and recursively by itself. */
1479static void
f90af2e0 1480reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
15e35479
KH
1481{
1482 rtx x = *xp;
1483 enum rtx_code code = x->code;
1484 const char *fmt;
1485 int i, j;
1486 rtx offset = const0_rtx; /* For the REG case below. */
1487
1488 switch (code)
1489 {
1490 case SET:
f8cfc6aa 1491 if (REG_P (SET_DEST (x)))
15e35479 1492 {
dc0d5a57 1493 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
15e35479
KH
1494 return;
1495 }
1496 break;
1497
1498 case USE:
1499 /* If this is the USE of a return value, we can't change it. */
f8cfc6aa 1500 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
15e35479 1501 {
53d1bae9 1502 /* Mark the return register as used in an unknown fashion. */
15e35479 1503 rtx reg = XEXP (x, 0);
53d1bae9
RS
1504 unsigned int end_regno = END_REGNO (reg);
1505 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
1506 reg_state[regno].use_index = -1;
15e35479
KH
1507 return;
1508 }
1509 break;
1510
1511 case CLOBBER:
f8cfc6aa 1512 if (REG_P (SET_DEST (x)))
15e35479
KH
1513 {
1514 /* No spurious CLOBBERs of pseudo registers may remain. */
e16acfcd 1515 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
15e35479
KH
1516 return;
1517 }
1518 break;
1519
1520 case PLUS:
1521 /* We are interested in (plus (reg) (const_int)) . */
f8cfc6aa 1522 if (!REG_P (XEXP (x, 0))
481683e1 1523 || !CONST_INT_P (XEXP (x, 1)))
15e35479
KH
1524 break;
1525 offset = XEXP (x, 1);
1526 x = XEXP (x, 0);
1527 /* Fall through. */
1528 case REG:
1529 {
1530 int regno = REGNO (x);
1531 int use_index;
1532 int nregs;
1533
1534 /* No spurious USEs of pseudo registers may remain. */
e16acfcd 1535 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
15e35479 1536
dc8afb70 1537 nregs = REG_NREGS (x);
15e35479
KH
1538
1539 /* We can't substitute into multi-hard-reg uses. */
1540 if (nregs > 1)
1541 {
1542 while (--nregs >= 0)
1543 reg_state[regno + nregs].use_index = -1;
1544 return;
1545 }
1546
08bd6876
BS
1547 /* We may be called to update uses in previously seen insns.
1548 Don't add uses beyond the last store we saw. */
1549 if (ruid < reg_state[regno].store_ruid)
1550 return;
1551
15e35479
KH
1552 /* If this register is already used in some unknown fashion, we
1553 can't do anything.
1554 If we decrement the index from zero to -1, we can't store more
1555 uses, so this register becomes used in an unknown fashion. */
1556 use_index = --reg_state[regno].use_index;
1557 if (use_index < 0)
1558 return;
1559
dc0d5a57 1560 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
15e35479
KH
1561 {
1562 /* This is the first use of this register we have seen since we
1563 marked it as dead. */
1564 reg_state[regno].offset = offset;
dc0d5a57
BS
1565 reg_state[regno].all_offsets_match = true;
1566 reg_state[regno].use_ruid = ruid;
15e35479 1567 }
b1d5eee8
BS
1568 else
1569 {
1570 if (reg_state[regno].use_ruid > ruid)
1571 reg_state[regno].use_ruid = ruid;
1572
1573 if (! rtx_equal_p (offset, reg_state[regno].offset))
1574 reg_state[regno].all_offsets_match = false;
1575 }
dc0d5a57 1576
15e35479 1577 reg_state[regno].reg_use[use_index].insn = insn;
dc0d5a57
BS
1578 reg_state[regno].reg_use[use_index].ruid = ruid;
1579 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
15e35479
KH
1580 reg_state[regno].reg_use[use_index].usep = xp;
1581 return;
1582 }
1583
dc0d5a57
BS
1584 case MEM:
1585 containing_mem = x;
1586 break;
1587
15e35479
KH
1588 default:
1589 break;
1590 }
1591
1592 /* Recursively process the components of X. */
1593 fmt = GET_RTX_FORMAT (code);
1594 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1595 {
1596 if (fmt[i] == 'e')
dc0d5a57 1597 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
15e35479
KH
1598 else if (fmt[i] == 'E')
1599 {
1600 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
dc0d5a57
BS
1601 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1602 containing_mem);
15e35479
KH
1603 }
1604 }
1605}
1606\f
1607/* See if we can reduce the cost of a constant by replacing a move
1608 with an add. We track situations in which a register is set to a
1609 constant or to a register plus a constant. */
1610/* We cannot do our optimization across labels. Invalidating all the
1611 information about register contents we have would be costly, so we
1612 use move2add_last_label_luid to note where the label is and then
1613 later disable any optimization that would cross it.
7beb0596
JZ
1614 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1615 are only valid if reg_set_luid[n] is greater than
7894bc6b
JR
1616 move2add_last_label_luid.
1617 For a set that established a new (potential) base register with
1618 non-constant value, we use move2add_luid from the place where the
1619 setting insn is encountered; registers based off that base then
1620 get the same reg_set_luid. Constants all get
1621 move2add_last_label_luid + 1 as their reg_set_luid. */
15e35479
KH
1622static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1623
1624/* If reg_base_reg[n] is negative, register n has been set to
7beb0596 1625 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
15e35479
KH
1626 If reg_base_reg[n] is non-negative, register n has been set to the
1627 sum of reg_offset[n] and the value of register reg_base_reg[n]
7894bc6b
JR
1628 before reg_set_luid[n], calculated in mode reg_mode[n] .
1629 For multi-hard-register registers, all but the first one are
1630 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1631 marks it as invalid. */
15e35479
KH
1632static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1633static int reg_base_reg[FIRST_PSEUDO_REGISTER];
7beb0596 1634static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
ef4bddc2 1635static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
15e35479
KH
1636
1637/* move2add_luid is linearly increased while scanning the instructions
1638 from first to last. It is used to set reg_set_luid in
1639 reload_cse_move2add and move2add_note_store. */
1640static int move2add_luid;
1641
1642/* move2add_last_label_luid is set whenever a label is found. Labels
1643 invalidate all previously collected reg_offset data. */
1644static int move2add_last_label_luid;
1645
1646/* ??? We don't know how zero / sign extension is handled, hence we
1647 can't go from a narrower to a wider mode. */
1648#define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1649 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1650 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
d0edd768 1651 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
15e35479 1652
7894bc6b
JR
1653/* Record that REG is being set to a value with the mode of REG. */
1654
1655static void
1656move2add_record_mode (rtx reg)
1657{
1658 int regno, nregs;
ef4bddc2 1659 machine_mode mode = GET_MODE (reg);
7894bc6b
JR
1660
1661 if (GET_CODE (reg) == SUBREG)
1662 {
1663 regno = subreg_regno (reg);
1664 nregs = subreg_nregs (reg);
1665 }
1666 else if (REG_P (reg))
1667 {
1668 regno = REGNO (reg);
dc8afb70 1669 nregs = REG_NREGS (reg);
7894bc6b
JR
1670 }
1671 else
1672 gcc_unreachable ();
1673 for (int i = nregs - 1; i > 0; i--)
1674 reg_mode[regno + i] = BLKmode;
1675 reg_mode[regno] = mode;
1676}
1677
1678/* Record that REG is being set to the sum of SYM and OFF. */
1679
1680static void
1681move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1682{
1683 int regno = REGNO (reg);
1684
1685 move2add_record_mode (reg);
1686 reg_set_luid[regno] = move2add_luid;
1687 reg_base_reg[regno] = -1;
1688 reg_symbol_ref[regno] = sym;
1689 reg_offset[regno] = INTVAL (off);
1690}
1691
1692/* Check if REGNO contains a valid value in MODE. */
1693
1694static bool
ef4bddc2 1695move2add_valid_value_p (int regno, machine_mode mode)
7894bc6b 1696{
ca035367 1697 if (reg_set_luid[regno] <= move2add_last_label_luid)
7894bc6b
JR
1698 return false;
1699
ca035367
JR
1700 if (mode != reg_mode[regno])
1701 {
1702 if (!MODES_OK_FOR_MOVE2ADD (mode, reg_mode[regno]))
1703 return false;
1704 /* The value loaded into regno in reg_mode[regno] is also valid in
1705 mode after truncation only if (REG:mode regno) is the lowpart of
1706 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1707 regno of the lowpart might be different. */
1708 int s_off = subreg_lowpart_offset (mode, reg_mode[regno]);
1709 s_off = subreg_regno_offset (regno, reg_mode[regno], s_off, mode);
1710 if (s_off != 0)
1711 /* We could in principle adjust regno, check reg_mode[regno] to be
1712 BLKmode, and return s_off to the caller (vs. -1 for failure),
1713 but we currently have no callers that could make use of this
1714 information. */
1715 return false;
1716 }
1717
7894bc6b
JR
1718 for (int i = hard_regno_nregs[regno][mode] - 1; i > 0; i--)
1719 if (reg_mode[regno + i] != BLKmode)
1720 return false;
1721 return true;
1722}
1723
7beb0596
JZ
1724/* This function is called with INSN that sets REG to (SYM + OFF),
1725 while REG is known to already have value (SYM + offset).
1726 This function tries to change INSN into an add instruction
1727 (set (REG) (plus (REG) (OFF - offset))) using the known value.
dc0d5a57
BS
1728 It also updates the information about REG's known value.
1729 Return true if we made a change. */
7beb0596 1730
dc0d5a57 1731static bool
f90af2e0 1732move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
7beb0596
JZ
1733{
1734 rtx pat = PATTERN (insn);
1735 rtx src = SET_SRC (pat);
1736 int regno = REGNO (reg);
e15eb172 1737 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno],
7beb0596
JZ
1738 GET_MODE (reg));
1739 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
dc0d5a57 1740 bool changed = false;
7beb0596
JZ
1741
1742 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1743 use (set (reg) (reg)) instead.
1744 We don't delete this insn, nor do we convert it into a
1745 note, to avoid losing register notes or the return
1746 value flag. jump2 already knows how to get rid of
1747 no-op moves. */
1748 if (new_src == const0_rtx)
1749 {
1750 /* If the constants are different, this is a
1751 truncation, that, if turned into (set (reg)
1752 (reg)), would be discarded. Maybe we should
1753 try a truncMN pattern? */
1754 if (INTVAL (off) == reg_offset [regno])
dc0d5a57 1755 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
7beb0596 1756 }
22939744 1757 else
7beb0596 1758 {
22939744 1759 struct full_rtx_costs oldcst, newcst;
7beb0596 1760 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
22939744 1761
d51102f3 1762 get_full_set_rtx_cost (pat, &oldcst);
22939744 1763 SET_SRC (pat) = tem;
d51102f3 1764 get_full_set_rtx_cost (pat, &newcst);
22939744
BS
1765 SET_SRC (pat) = src;
1766
1767 if (costs_lt_p (&newcst, &oldcst, speed)
1768 && have_add2_insn (reg, new_src))
1769 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1770 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
7beb0596 1771 {
ef4bddc2 1772 machine_mode narrow_mode;
22939744
BS
1773 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1774 narrow_mode != VOIDmode
1775 && narrow_mode != GET_MODE (reg);
1776 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
7beb0596 1777 {
22939744
BS
1778 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1779 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1780 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1781 {
b49eefa5 1782 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
22939744
BS
1783 rtx narrow_src = gen_int_mode (INTVAL (off),
1784 narrow_mode);
1785 rtx new_set
f7df4a84 1786 = gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
22939744
BS
1787 narrow_reg),
1788 narrow_src);
a0f37b26
AS
1789 get_full_set_rtx_cost (new_set, &newcst);
1790 if (costs_lt_p (&newcst, &oldcst, speed))
1791 {
1792 changed = validate_change (insn, &PATTERN (insn),
1793 new_set, 0);
1794 if (changed)
1795 break;
1796 }
22939744 1797 }
7beb0596
JZ
1798 }
1799 }
1800 }
7894bc6b 1801 move2add_record_sym_value (reg, sym, off);
dc0d5a57 1802 return changed;
7beb0596
JZ
1803}
1804
1805
1806/* This function is called with INSN that sets REG to (SYM + OFF),
1807 but REG doesn't have known value (SYM + offset). This function
1808 tries to find another register which is known to already have
1809 value (SYM + offset) and change INSN into an add instruction
1810 (set (REG) (plus (the found register) (OFF - offset))) if such
1811 a register is found. It also updates the information about
dc0d5a57
BS
1812 REG's known value.
1813 Return true iff we made a change. */
7beb0596 1814
dc0d5a57 1815static bool
f90af2e0 1816move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
7beb0596
JZ
1817{
1818 rtx pat = PATTERN (insn);
1819 rtx src = SET_SRC (pat);
1820 int regno = REGNO (reg);
5676e87d 1821 int min_regno = 0;
7beb0596
JZ
1822 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1823 int i;
dc0d5a57 1824 bool changed = false;
22939744
BS
1825 struct full_rtx_costs oldcst, newcst, mincst;
1826 rtx plus_expr;
1827
1828 init_costs_to_max (&mincst);
d51102f3 1829 get_full_set_rtx_cost (pat, &oldcst);
22939744
BS
1830
1831 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1832 SET_SRC (pat) = plus_expr;
7beb0596
JZ
1833
1834 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7894bc6b 1835 if (move2add_valid_value_p (i, GET_MODE (reg))
7beb0596
JZ
1836 && reg_base_reg[i] < 0
1837 && reg_symbol_ref[i] != NULL_RTX
1838 && rtx_equal_p (sym, reg_symbol_ref[i]))
1839 {
e15eb172 1840 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
7beb0596
JZ
1841 GET_MODE (reg));
1842 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1843 use (set (reg) (reg)) instead.
1844 We don't delete this insn, nor do we convert it into a
1845 note, to avoid losing register notes or the return
1846 value flag. jump2 already knows how to get rid of
1847 no-op moves. */
1848 if (new_src == const0_rtx)
1849 {
22939744 1850 init_costs_to_zero (&mincst);
7beb0596
JZ
1851 min_regno = i;
1852 break;
1853 }
1854 else
1855 {
22939744 1856 XEXP (plus_expr, 1) = new_src;
d51102f3 1857 get_full_set_rtx_cost (pat, &newcst);
22939744
BS
1858
1859 if (costs_lt_p (&newcst, &mincst, speed))
7beb0596 1860 {
22939744 1861 mincst = newcst;
7beb0596
JZ
1862 min_regno = i;
1863 }
1864 }
1865 }
22939744 1866 SET_SRC (pat) = src;
7beb0596 1867
22939744 1868 if (costs_lt_p (&mincst, &oldcst, speed))
7beb0596
JZ
1869 {
1870 rtx tem;
1871
1872 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1873 if (i != min_regno)
1874 {
e15eb172 1875 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
7beb0596
JZ
1876 GET_MODE (reg));
1877 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1878 }
dc0d5a57
BS
1879 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1880 changed = true;
7beb0596
JZ
1881 }
1882 reg_set_luid[regno] = move2add_luid;
7894bc6b 1883 move2add_record_sym_value (reg, sym, off);
dc0d5a57 1884 return changed;
7beb0596
JZ
1885}
1886
dc0d5a57
BS
1887/* Convert move insns with constant inputs to additions if they are cheaper.
1888 Return true if any changes were made. */
1889static bool
f90af2e0 1890reload_cse_move2add (rtx_insn *first)
15e35479
KH
1891{
1892 int i;
f90af2e0 1893 rtx_insn *insn;
dc0d5a57 1894 bool changed = false;
15e35479
KH
1895
1896 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
7beb0596
JZ
1897 {
1898 reg_set_luid[i] = 0;
1899 reg_offset[i] = 0;
1900 reg_base_reg[i] = 0;
1901 reg_symbol_ref[i] = NULL_RTX;
1902 reg_mode[i] = VOIDmode;
1903 }
15e35479
KH
1904
1905 move2add_last_label_luid = 0;
1906 move2add_luid = 2;
1907 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1908 {
1909 rtx pat, note;
1910
4b4bf941 1911 if (LABEL_P (insn))
15e35479
KH
1912 {
1913 move2add_last_label_luid = move2add_luid;
1914 /* We're going to increment move2add_luid twice after a
1915 label, so that we can use move2add_last_label_luid + 1 as
1916 the luid for constants. */
1917 move2add_luid++;
1918 continue;
1919 }
1920 if (! INSN_P (insn))
1921 continue;
1922 pat = PATTERN (insn);
1923 /* For simplicity, we only perform this optimization on
1924 straightforward SETs. */
1925 if (GET_CODE (pat) == SET
f8cfc6aa 1926 && REG_P (SET_DEST (pat)))
15e35479
KH
1927 {
1928 rtx reg = SET_DEST (pat);
1929 int regno = REGNO (reg);
1930 rtx src = SET_SRC (pat);
1931
1932 /* Check if we have valid information on the contents of this
1933 register in the mode of REG. */
7894bc6b 1934 if (move2add_valid_value_p (regno, GET_MODE (reg))
6fb5fa3c 1935 && dbg_cnt (cse2_move2add))
15e35479
KH
1936 {
1937 /* Try to transform (set (REGX) (CONST_INT A))
1938 ...
1939 (set (REGX) (CONST_INT B))
1940 to
1941 (set (REGX) (CONST_INT A))
1942 ...
1943 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1944 or
1945 (set (REGX) (CONST_INT A))
1946 ...
1947 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1948 */
1949
7beb0596
JZ
1950 if (CONST_INT_P (src)
1951 && reg_base_reg[regno] < 0
1952 && reg_symbol_ref[regno] == NULL_RTX)
15e35479 1953 {
dc0d5a57 1954 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
15e35479
KH
1955 continue;
1956 }
1957
1958 /* Try to transform (set (REGX) (REGY))
1959 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1960 ...
1961 (set (REGX) (REGY))
1962 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1963 to
1964 (set (REGX) (REGY))
1965 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1966 ...
1967 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
f8cfc6aa 1968 else if (REG_P (src)
15e35479
KH
1969 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1970 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
7894bc6b 1971 && move2add_valid_value_p (REGNO (src), GET_MODE (reg)))
15e35479 1972 {
f90af2e0 1973 rtx_insn *next = next_nonnote_nondebug_insn (insn);
15e35479
KH
1974 rtx set = NULL_RTX;
1975 if (next)
1976 set = single_set (next);
1977 if (set
1978 && SET_DEST (set) == reg
1979 && GET_CODE (SET_SRC (set)) == PLUS
1980 && XEXP (SET_SRC (set), 0) == reg
481683e1 1981 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
15e35479
KH
1982 {
1983 rtx src3 = XEXP (SET_SRC (set), 1);
e15eb172 1984 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
15e35479
KH
1985 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1986 HOST_WIDE_INT regno_offset = reg_offset[regno];
1987 rtx new_src =
bb80db7b
KH
1988 gen_int_mode (added_offset
1989 + base_offset
1990 - regno_offset,
1991 GET_MODE (reg));
f40751dd
JH
1992 bool success = false;
1993 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
15e35479
KH
1994
1995 if (new_src == const0_rtx)
1996 /* See above why we create (set (reg) (reg)) here. */
1997 success
1998 = validate_change (next, &SET_SRC (set), reg, 0);
22939744 1999 else
15e35479 2000 {
22939744
BS
2001 rtx old_src = SET_SRC (set);
2002 struct full_rtx_costs oldcst, newcst;
2003 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
2004
d51102f3 2005 get_full_set_rtx_cost (set, &oldcst);
22939744 2006 SET_SRC (set) = tem;
e548c9df 2007 get_full_set_src_cost (tem, GET_MODE (reg), &newcst);
22939744
BS
2008 SET_SRC (set) = old_src;
2009 costs_add_n_insns (&oldcst, 1);
2010
2011 if (costs_lt_p (&newcst, &oldcst, speed)
2012 && have_add2_insn (reg, new_src))
2013 {
f7df4a84 2014 rtx newpat = gen_rtx_SET (reg, tem);
22939744
BS
2015 success
2016 = validate_change (next, &PATTERN (next),
2017 newpat, 0);
2018 }
15e35479
KH
2019 }
2020 if (success)
2021 delete_insn (insn);
dc0d5a57 2022 changed |= success;
15e35479 2023 insn = next;
7894bc6b
JR
2024 move2add_record_mode (reg);
2025 reg_offset[regno]
2026 = trunc_int_for_mode (added_offset + base_offset,
2027 GET_MODE (reg));
15e35479
KH
2028 continue;
2029 }
2030 }
2031 }
7beb0596
JZ
2032
2033 /* Try to transform
2034 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2035 ...
2036 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2037 to
2038 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2039 ...
2040 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2041 if ((GET_CODE (src) == SYMBOL_REF
2042 || (GET_CODE (src) == CONST
2043 && GET_CODE (XEXP (src, 0)) == PLUS
2044 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2045 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2046 && dbg_cnt (cse2_move2add))
2047 {
2048 rtx sym, off;
2049
2050 if (GET_CODE (src) == SYMBOL_REF)
2051 {
2052 sym = src;
2053 off = const0_rtx;
2054 }
2055 else
2056 {
2057 sym = XEXP (XEXP (src, 0), 0);
2058 off = XEXP (XEXP (src, 0), 1);
2059 }
2060
2061 /* If the reg already contains the value which is sum of
2062 sym and some constant value, we can use an add2 insn. */
7894bc6b 2063 if (move2add_valid_value_p (regno, GET_MODE (reg))
7beb0596
JZ
2064 && reg_base_reg[regno] < 0
2065 && reg_symbol_ref[regno] != NULL_RTX
2066 && rtx_equal_p (sym, reg_symbol_ref[regno]))
dc0d5a57 2067 changed |= move2add_use_add2_insn (reg, sym, off, insn);
7beb0596
JZ
2068
2069 /* Otherwise, we have to find a register whose value is sum
2070 of sym and some constant value. */
2071 else
dc0d5a57 2072 changed |= move2add_use_add3_insn (reg, sym, off, insn);
7beb0596
JZ
2073
2074 continue;
2075 }
15e35479
KH
2076 }
2077
2078 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2079 {
2080 if (REG_NOTE_KIND (note) == REG_INC
f8cfc6aa 2081 && REG_P (XEXP (note, 0)))
15e35479
KH
2082 {
2083 /* Reset the information about this register. */
2084 int regno = REGNO (XEXP (note, 0));
2085 if (regno < FIRST_PSEUDO_REGISTER)
7894bc6b
JR
2086 {
2087 move2add_record_mode (XEXP (note, 0));
2088 reg_mode[regno] = VOIDmode;
2089 }
15e35479
KH
2090 }
2091 }
7beb0596 2092 note_stores (PATTERN (insn), move2add_note_store, insn);
15e35479
KH
2093
2094 /* If INSN is a conditional branch, we try to extract an
2095 implicit set out of it. */
c4cdb8e1 2096 if (any_condjump_p (insn))
15e35479
KH
2097 {
2098 rtx cnd = fis_get_condition (insn);
2099
2100 if (cnd != NULL_RTX
2101 && GET_CODE (cnd) == NE
f8cfc6aa 2102 && REG_P (XEXP (cnd, 0))
c4cdb8e1 2103 && !reg_set_p (XEXP (cnd, 0), insn)
15e35479
KH
2104 /* The following two checks, which are also in
2105 move2add_note_store, are intended to reduce the
2106 number of calls to gen_rtx_SET to avoid memory
2107 allocation if possible. */
2108 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
dc8afb70 2109 && REG_NREGS (XEXP (cnd, 0)) == 1
481683e1 2110 && CONST_INT_P (XEXP (cnd, 1)))
15e35479
KH
2111 {
2112 rtx implicit_set =
f7df4a84 2113 gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
7beb0596 2114 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
15e35479
KH
2115 }
2116 }
2117
2118 /* If this is a CALL_INSN, all call used registers are stored with
2119 unknown values. */
4b4bf941 2120 if (CALL_P (insn))
15e35479 2121 {
7a708f68
UB
2122 rtx link;
2123
15e35479
KH
2124 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2125 {
2126 if (call_used_regs[i])
2127 /* Reset the information about this register. */
7894bc6b 2128 reg_mode[i] = VOIDmode;
15e35479 2129 }
7a708f68
UB
2130
2131 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
2132 link = XEXP (link, 1))
2133 {
2134 rtx setuse = XEXP (link, 0);
2135 rtx usage_rtx = XEXP (setuse, 0);
2136 if (GET_CODE (setuse) == CLOBBER
2137 && REG_P (usage_rtx))
2138 {
2139 unsigned int end_regno = END_REGNO (usage_rtx);
2140 for (unsigned int r = REGNO (usage_rtx); r < end_regno; ++r)
2141 /* Reset the information about this register. */
2142 reg_mode[r] = VOIDmode;
2143 }
2144 }
15e35479
KH
2145 }
2146 }
dc0d5a57 2147 return changed;
15e35479
KH
2148}
2149
7beb0596
JZ
2150/* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2151 contains SET.
15e35479
KH
2152 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2153 Called from reload_cse_move2add via note_stores. */
2154
2155static void
7beb0596 2156move2add_note_store (rtx dst, const_rtx set, void *data)
15e35479 2157{
f90af2e0 2158 rtx_insn *insn = (rtx_insn *) data;
15e35479 2159 unsigned int regno = 0;
ef4bddc2 2160 machine_mode mode = GET_MODE (dst);
15e35479 2161
15e35479
KH
2162 /* Some targets do argument pushes without adding REG_INC notes. */
2163
3c0cb5de 2164 if (MEM_P (dst))
15e35479
KH
2165 {
2166 dst = XEXP (dst, 0);
2167 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2168 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
7894bc6b 2169 reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
15e35479
KH
2170 return;
2171 }
15e35479 2172
7894bc6b
JR
2173 if (GET_CODE (dst) == SUBREG)
2174 regno = subreg_regno (dst);
2175 else if (REG_P (dst))
2176 regno = REGNO (dst);
2177 else
2178 return;
15e35479 2179
7894bc6b
JR
2180 if (SCALAR_INT_MODE_P (mode)
2181 && GET_CODE (set) == SET)
7beb0596
JZ
2182 {
2183 rtx note, sym = NULL_RTX;
7894bc6b 2184 rtx off;
7beb0596
JZ
2185
2186 note = find_reg_equal_equiv_note (insn);
2187 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2188 {
2189 sym = XEXP (note, 0);
7894bc6b 2190 off = const0_rtx;
7beb0596
JZ
2191 }
2192 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2193 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2194 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2195 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2196 {
2197 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
7894bc6b 2198 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
7beb0596
JZ
2199 }
2200
2201 if (sym != NULL_RTX)
2202 {
7894bc6b 2203 move2add_record_sym_value (dst, sym, off);
7beb0596
JZ
2204 return;
2205 }
2206 }
2207
7894bc6b
JR
2208 if (SCALAR_INT_MODE_P (mode)
2209 && GET_CODE (set) == SET
15e35479 2210 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
15e35479
KH
2211 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2212 {
2213 rtx src = SET_SRC (set);
2214 rtx base_reg;
e15eb172 2215 unsigned HOST_WIDE_INT offset;
15e35479 2216 int base_regno;
15e35479
KH
2217
2218 switch (GET_CODE (src))
2219 {
2220 case PLUS:
f8cfc6aa 2221 if (REG_P (XEXP (src, 0)))
15e35479
KH
2222 {
2223 base_reg = XEXP (src, 0);
2224
481683e1 2225 if (CONST_INT_P (XEXP (src, 1)))
e15eb172 2226 offset = UINTVAL (XEXP (src, 1));
f8cfc6aa 2227 else if (REG_P (XEXP (src, 1))
7894bc6b 2228 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
15e35479 2229 {
27d5e204
CLT
2230 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2231 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
15e35479
KH
2232 offset = reg_offset[REGNO (XEXP (src, 1))];
2233 /* Maybe the first register is known to be a
2234 constant. */
7894bc6b 2235 else if (move2add_valid_value_p (REGNO (base_reg), mode)
27d5e204
CLT
2236 && reg_base_reg[REGNO (base_reg)] < 0
2237 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
15e35479
KH
2238 {
2239 offset = reg_offset[REGNO (base_reg)];
2240 base_reg = XEXP (src, 1);
2241 }
2242 else
2243 goto invalidate;
2244 }
2245 else
2246 goto invalidate;
2247
2248 break;
2249 }
2250
2251 goto invalidate;
2252
2253 case REG:
2254 base_reg = src;
2255 offset = 0;
2256 break;
2257
2258 case CONST_INT:
2259 /* Start tracking the register as a constant. */
2260 reg_base_reg[regno] = -1;
7beb0596 2261 reg_symbol_ref[regno] = NULL_RTX;
15e35479
KH
2262 reg_offset[regno] = INTVAL (SET_SRC (set));
2263 /* We assign the same luid to all registers set to constants. */
2264 reg_set_luid[regno] = move2add_last_label_luid + 1;
7894bc6b 2265 move2add_record_mode (dst);
15e35479
KH
2266 return;
2267
2268 default:
7894bc6b 2269 goto invalidate;
15e35479
KH
2270 }
2271
2272 base_regno = REGNO (base_reg);
2273 /* If information about the base register is not valid, set it
2274 up as a new base register, pretending its value is known
2275 starting from the current insn. */
7894bc6b 2276 if (!move2add_valid_value_p (base_regno, mode))
15e35479
KH
2277 {
2278 reg_base_reg[base_regno] = base_regno;
7beb0596 2279 reg_symbol_ref[base_regno] = NULL_RTX;
15e35479
KH
2280 reg_offset[base_regno] = 0;
2281 reg_set_luid[base_regno] = move2add_luid;
7894bc6b
JR
2282 gcc_assert (GET_MODE (base_reg) == mode);
2283 move2add_record_mode (base_reg);
15e35479 2284 }
15e35479
KH
2285
2286 /* Copy base information from our base register. */
2287 reg_set_luid[regno] = reg_set_luid[base_regno];
2288 reg_base_reg[regno] = reg_base_reg[base_regno];
7beb0596 2289 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
15e35479
KH
2290
2291 /* Compute the sum of the offsets or constants. */
7894bc6b
JR
2292 reg_offset[regno]
2293 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2294
2295 move2add_record_mode (dst);
15e35479
KH
2296 }
2297 else
2298 {
7894bc6b
JR
2299 invalidate:
2300 /* Invalidate the contents of the register. */
2301 move2add_record_mode (dst);
2302 reg_mode[regno] = VOIDmode;
15e35479
KH
2303 }
2304}
ef330312 2305\f
27a4cd48
DM
2306namespace {
2307
2308const pass_data pass_data_postreload_cse =
ef330312 2309{
27a4cd48
DM
2310 RTL_PASS, /* type */
2311 "postreload", /* name */
2312 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
2313 TV_RELOAD_CSE_REGS, /* tv_id */
2314 0, /* properties_required */
2315 0, /* properties_provided */
2316 0, /* properties_destroyed */
2317 0, /* todo_flags_start */
3bea341f 2318 TODO_df_finish, /* todo_flags_finish */
ef330312 2319};
27a4cd48
DM
2320
2321class pass_postreload_cse : public rtl_opt_pass
2322{
2323public:
c3284718
RS
2324 pass_postreload_cse (gcc::context *ctxt)
2325 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
27a4cd48
DM
2326 {}
2327
2328 /* opt_pass methods: */
1a3d085c
TS
2329 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2330
be55bfe6 2331 virtual unsigned int execute (function *);
27a4cd48
DM
2332
2333}; // class pass_postreload_cse
2334
be55bfe6
TS
2335unsigned int
2336pass_postreload_cse::execute (function *fun)
2337{
2338 if (!dbg_cnt (postreload_cse))
2339 return 0;
2340
2341 /* Do a very simple CSE pass over just the hard registers. */
2342 reload_cse_regs (get_insns ());
2343 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2344 Remove any EH edges associated with them. */
2345 if (fun->can_throw_non_call_exceptions
2346 && purge_all_dead_edges ())
2347 cleanup_cfg (0);
2348
2349 return 0;
2350}
2351
27a4cd48
DM
2352} // anon namespace
2353
2354rtl_opt_pass *
2355make_pass_postreload_cse (gcc::context *ctxt)
2356{
2357 return new pass_postreload_cse (ctxt);
2358}