]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/postreload.c
* dojump.c (do_jump <unordered_bcc>): Do not recursively call
[thirdparty/gcc.git] / gcc / postreload.c
CommitLineData
8f8cadbc 1/* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
a8349c62 3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
8f8cadbc 4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
26
27#include "machmode.h"
28#include "hard-reg-set.h"
29#include "rtl.h"
30#include "tm_p.h"
31#include "obstack.h"
32#include "insn-config.h"
33#include "flags.h"
34#include "function.h"
35#include "expr.h"
36#include "optabs.h"
37#include "regs.h"
38#include "basic-block.h"
39#include "reload.h"
40#include "recog.h"
41#include "output.h"
42#include "cselib.h"
43#include "real.h"
44#include "toplev.h"
45#include "except.h"
46#include "tree.h"
47
3ad4992f 48static int reload_cse_noop_set_p (rtx);
49static void reload_cse_simplify (rtx, rtx);
50static void reload_cse_regs_1 (rtx);
51static int reload_cse_simplify_set (rtx, rtx);
52static int reload_cse_simplify_operands (rtx, rtx);
8f8cadbc 53
3ad4992f 54static void reload_combine (void);
55static void reload_combine_note_use (rtx *, rtx);
56static void reload_combine_note_store (rtx, rtx, void *);
8f8cadbc 57
3ad4992f 58static void reload_cse_move2add (rtx);
59static void move2add_note_store (rtx, rtx, void *);
8f8cadbc 60
61/* Call cse / combine like post-reload optimization phases.
62 FIRST is the first instruction. */
63void
3ad4992f 64reload_cse_regs (rtx first ATTRIBUTE_UNUSED)
8f8cadbc 65{
66 reload_cse_regs_1 (first);
67 reload_combine ();
68 reload_cse_move2add (first);
69 if (flag_expensive_optimizations)
70 reload_cse_regs_1 (first);
71}
72
73/* See whether a single set SET is a noop. */
74static int
3ad4992f 75reload_cse_noop_set_p (rtx set)
8f8cadbc 76{
77 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
78 return 0;
79
80 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
81}
82
83/* Try to simplify INSN. */
84static void
3ad4992f 85reload_cse_simplify (rtx insn, rtx testreg)
8f8cadbc 86{
87 rtx body = PATTERN (insn);
88
89 if (GET_CODE (body) == SET)
90 {
91 int count = 0;
92
93 /* Simplify even if we may think it is a no-op.
94 We may think a memory load of a value smaller than WORD_SIZE
95 is redundant because we haven't taken into account possible
96 implicit extension. reload_cse_simplify_set() will bring
97 this out, so it's safer to simplify before we delete. */
98 count += reload_cse_simplify_set (body, insn);
99
100 if (!count && reload_cse_noop_set_p (body))
101 {
102 rtx value = SET_DEST (body);
103 if (REG_P (value)
104 && ! REG_FUNCTION_VALUE_P (value))
105 value = 0;
106 delete_insn_and_edges (insn);
107 return;
108 }
109
110 if (count > 0)
111 apply_change_group ();
112 else
113 reload_cse_simplify_operands (insn, testreg);
114 }
115 else if (GET_CODE (body) == PARALLEL)
116 {
117 int i;
118 int count = 0;
119 rtx value = NULL_RTX;
120
121 /* If every action in a PARALLEL is a noop, we can delete
122 the entire PARALLEL. */
123 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
124 {
125 rtx part = XVECEXP (body, 0, i);
126 if (GET_CODE (part) == SET)
127 {
128 if (! reload_cse_noop_set_p (part))
129 break;
130 if (REG_P (SET_DEST (part))
131 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
132 {
133 if (value)
134 break;
135 value = SET_DEST (part);
136 }
137 }
138 else if (GET_CODE (part) != CLOBBER)
139 break;
140 }
141
142 if (i < 0)
143 {
144 delete_insn_and_edges (insn);
145 /* We're done with this insn. */
146 return;
147 }
148
149 /* It's not a no-op, but we can try to simplify it. */
150 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
151 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
152 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
153
154 if (count > 0)
155 apply_change_group ();
156 else
157 reload_cse_simplify_operands (insn, testreg);
158 }
159}
160
161/* Do a very simple CSE pass over the hard registers.
162
163 This function detects no-op moves where we happened to assign two
164 different pseudo-registers to the same hard register, and then
165 copied one to the other. Reload will generate a useless
166 instruction copying a register to itself.
167
168 This function also detects cases where we load a value from memory
169 into two different registers, and (if memory is more expensive than
170 registers) changes it to simply copy the first register into the
171 second register.
172
173 Another optimization is performed that scans the operands of each
174 instruction to see whether the value is already available in a
175 hard register. It then replaces the operand with the hard register
176 if possible, much like an optional reload would. */
177
178static void
3ad4992f 179reload_cse_regs_1 (rtx first)
8f8cadbc 180{
181 rtx insn;
182 rtx testreg = gen_rtx_REG (VOIDmode, -1);
183
53622482 184 cselib_init (true);
8f8cadbc 185 init_alias_analysis ();
186
187 for (insn = first; insn; insn = NEXT_INSN (insn))
188 {
189 if (INSN_P (insn))
190 reload_cse_simplify (insn, testreg);
191
192 cselib_process_insn (insn);
193 }
194
195 /* Clean up. */
196 end_alias_analysis ();
197 cselib_finish ();
198}
199
200/* Try to simplify a single SET instruction. SET is the set pattern.
201 INSN is the instruction it came from.
202 This function only handles one case: if we set a register to a value
203 which is not a register, we try to find that value in some other register
204 and change the set into a register copy. */
205
206static int
3ad4992f 207reload_cse_simplify_set (rtx set, rtx insn)
8f8cadbc 208{
209 int did_change = 0;
210 int dreg;
211 rtx src;
212 enum reg_class dclass;
213 int old_cost;
214 cselib_val *val;
215 struct elt_loc_list *l;
216#ifdef LOAD_EXTEND_OP
217 enum rtx_code extend_op = NIL;
218#endif
219
220 dreg = true_regnum (SET_DEST (set));
221 if (dreg < 0)
222 return 0;
223
224 src = SET_SRC (set);
225 if (side_effects_p (src) || true_regnum (src) >= 0)
226 return 0;
227
228 dclass = REGNO_REG_CLASS (dreg);
229
230#ifdef LOAD_EXTEND_OP
231 /* When replacing a memory with a register, we need to honor assumptions
232 that combine made wrt the contents of sign bits. We'll do this by
233 generating an extend instruction instead of a reg->reg copy. Thus
234 the destination must be a register that we can widen. */
e16ceb8e 235 if (MEM_P (src)
8f8cadbc 236 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
237 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != NIL
8ad4c111 238 && !REG_P (SET_DEST (set)))
8f8cadbc 239 return 0;
240#endif
241
3be01943 242 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
243 if (! val)
244 return 0;
245
8f8cadbc 246 /* If memory loads are cheaper than register copies, don't change them. */
e16ceb8e 247 if (MEM_P (src))
8f8cadbc 248 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
8ad4c111 249 else if (REG_P (src))
8f8cadbc 250 old_cost = REGISTER_MOVE_COST (GET_MODE (src),
251 REGNO_REG_CLASS (REGNO (src)), dclass);
252 else
8f8cadbc 253 old_cost = rtx_cost (src, SET);
254
8f8cadbc 255 for (l = val->locs; l; l = l->next)
256 {
257 rtx this_rtx = l->loc;
258 int this_cost;
259
260 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
261 {
262#ifdef LOAD_EXTEND_OP
263 if (extend_op != NIL)
264 {
265 HOST_WIDE_INT this_val;
266
267 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
268 constants, such as SYMBOL_REF, cannot be extended. */
269 if (GET_CODE (this_rtx) != CONST_INT)
270 continue;
271
272 this_val = INTVAL (this_rtx);
273 switch (extend_op)
274 {
275 case ZERO_EXTEND:
276 this_val &= GET_MODE_MASK (GET_MODE (src));
277 break;
278 case SIGN_EXTEND:
279 /* ??? In theory we're already extended. */
280 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
281 break;
282 default:
283 abort ();
284 }
285 this_rtx = GEN_INT (this_val);
286 }
287#endif
288 this_cost = rtx_cost (this_rtx, SET);
289 }
8ad4c111 290 else if (REG_P (this_rtx))
8f8cadbc 291 {
292#ifdef LOAD_EXTEND_OP
293 if (extend_op != NIL)
294 {
295 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
296 this_cost = rtx_cost (this_rtx, SET);
297 }
298 else
299#endif
300 this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
301 REGNO_REG_CLASS (REGNO (this_rtx)),
302 dclass);
303 }
304 else
305 continue;
306
307 /* If equal costs, prefer registers over anything else. That
308 tends to lead to smaller instructions on some machines. */
309 if (this_cost < old_cost
310 || (this_cost == old_cost
8ad4c111 311 && REG_P (this_rtx)
312 && !REG_P (SET_SRC (set))))
8f8cadbc 313 {
314#ifdef LOAD_EXTEND_OP
315 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
316 && extend_op != NIL
317#ifdef CANNOT_CHANGE_MODE_CLASS
318 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
319 word_mode,
320 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
321#endif
322 )
323 {
324 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
325 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
326 validate_change (insn, &SET_DEST (set), wide_dest, 1);
327 }
328#endif
329
330 validate_change (insn, &SET_SRC (set), copy_rtx (this_rtx), 1);
331 old_cost = this_cost, did_change = 1;
332 }
333 }
334
335 return did_change;
336}
337
338/* Try to replace operands in INSN with equivalent values that are already
339 in registers. This can be viewed as optional reloading.
340
341 For each non-register operand in the insn, see if any hard regs are
342 known to be equivalent to that operand. Record the alternatives which
343 can accept these hard registers. Among all alternatives, select the
344 ones which are better or equal to the one currently matching, where
345 "better" is in terms of '?' and '!' constraints. Among the remaining
346 alternatives, select the one which replaces most operands with
347 hard registers. */
348
349static int
3ad4992f 350reload_cse_simplify_operands (rtx insn, rtx testreg)
8f8cadbc 351{
352 int i, j;
353
354 /* For each operand, all registers that are equivalent to it. */
355 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
356
357 const char *constraints[MAX_RECOG_OPERANDS];
358
359 /* Vector recording how bad an alternative is. */
360 int *alternative_reject;
361 /* Vector recording how many registers can be introduced by choosing
362 this alternative. */
363 int *alternative_nregs;
364 /* Array of vectors recording, for each operand and each alternative,
365 which hard register to substitute, or -1 if the operand should be
366 left as it is. */
367 int *op_alt_regno[MAX_RECOG_OPERANDS];
368 /* Array of alternatives, sorted in order of decreasing desirability. */
369 int *alternative_order;
370
371 extract_insn (insn);
372
373 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
374 return 0;
375
376 /* Figure out which alternative currently matches. */
377 if (! constrain_operands (1))
378 fatal_insn_not_found (insn);
379
f0af5a88 380 alternative_reject = alloca (recog_data.n_alternatives * sizeof (int));
381 alternative_nregs = alloca (recog_data.n_alternatives * sizeof (int));
382 alternative_order = alloca (recog_data.n_alternatives * sizeof (int));
383 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
384 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
8f8cadbc 385
386 /* For each operand, find out which regs are equivalent. */
387 for (i = 0; i < recog_data.n_operands; i++)
388 {
389 cselib_val *v;
390 struct elt_loc_list *l;
9d9e3c81 391 rtx op;
392 enum machine_mode mode;
8f8cadbc 393
394 CLEAR_HARD_REG_SET (equiv_regs[i]);
395
396 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
397 right, so avoid the problem here. Likewise if we have a constant
398 and the insn pattern doesn't tell us the mode we need. */
6d7dc5b9 399 if (LABEL_P (recog_data.operand[i])
8f8cadbc 400 || (CONSTANT_P (recog_data.operand[i])
401 && recog_data.operand_mode[i] == VOIDmode))
402 continue;
403
9d9e3c81 404 op = recog_data.operand[i];
405 mode = GET_MODE (op);
406#ifdef LOAD_EXTEND_OP
e16ceb8e 407 if (MEM_P (op)
9d9e3c81 408 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
409 && LOAD_EXTEND_OP (mode) != NIL)
410 {
411 rtx set = single_set (insn);
412
4885b286 413 /* We might have multiple sets, some of which do implicit
9d9e3c81 414 extension. Punt on this for now. */
415 if (! set)
416 continue;
417 /* If the destination is a also MEM or a STRICT_LOW_PART, no
418 extension applies.
419 Also, if there is an explicit extension, we don't have to
420 worry about an implicit one. */
e16ceb8e 421 else if (MEM_P (SET_DEST (set))
9d9e3c81 422 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
423 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
424 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
425 ; /* Continue ordinary processing. */
a091e4f5 426#ifdef CANNOT_CHANGE_MODE_CLASS
427 /* If the register cannot change mode to word_mode, it follows that
428 it cannot have been used in word_mode. */
8ad4c111 429 else if (REG_P (SET_DEST (set))
a091e4f5 430 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
431 word_mode,
432 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
433 ; /* Continue ordinary processing. */
434#endif
9d9e3c81 435 /* If this is a straight load, make the extension explicit. */
8ad4c111 436 else if (REG_P (SET_DEST (set))
9d9e3c81 437 && recog_data.n_operands == 2
438 && SET_SRC (set) == op
439 && SET_DEST (set) == recog_data.operand[1-i])
440 {
441 validate_change (insn, recog_data.operand_loc[i],
442 gen_rtx_fmt_e (LOAD_EXTEND_OP (mode),
443 word_mode, op),
444 1);
445 validate_change (insn, recog_data.operand_loc[1-i],
446 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
447 1);
448 if (! apply_change_group ())
449 return 0;
450 return reload_cse_simplify_operands (insn, testreg);
451 }
452 else
453 /* ??? There might be arithmetic operations with memory that are
454 safe to optimize, but is it worth the trouble? */
455 continue;
456 }
457#endif /* LOAD_EXTEND_OP */
458 v = cselib_lookup (op, recog_data.operand_mode[i], 0);
8f8cadbc 459 if (! v)
460 continue;
461
462 for (l = v->locs; l; l = l->next)
8ad4c111 463 if (REG_P (l->loc))
8f8cadbc 464 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
465 }
466
467 for (i = 0; i < recog_data.n_operands; i++)
468 {
469 enum machine_mode mode;
470 int regno;
471 const char *p;
472
f0af5a88 473 op_alt_regno[i] = alloca (recog_data.n_alternatives * sizeof (int));
8f8cadbc 474 for (j = 0; j < recog_data.n_alternatives; j++)
475 op_alt_regno[i][j] = -1;
476
477 p = constraints[i] = recog_data.constraints[i];
478 mode = recog_data.operand_mode[i];
479
480 /* Add the reject values for each alternative given by the constraints
481 for this operand. */
482 j = 0;
483 while (*p != '\0')
484 {
485 char c = *p++;
486 if (c == ',')
487 j++;
488 else if (c == '?')
489 alternative_reject[j] += 3;
490 else if (c == '!')
491 alternative_reject[j] += 300;
492 }
493
494 /* We won't change operands which are already registers. We
495 also don't want to modify output operands. */
496 regno = true_regnum (recog_data.operand[i]);
497 if (regno >= 0
498 || constraints[i][0] == '='
499 || constraints[i][0] == '+')
500 continue;
501
502 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
503 {
504 int class = (int) NO_REGS;
505
506 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
507 continue;
508
509 REGNO (testreg) = regno;
510 PUT_MODE (testreg, mode);
511
512 /* We found a register equal to this operand. Now look for all
513 alternatives that can accept this register and have not been
514 assigned a register they can use yet. */
515 j = 0;
516 p = constraints[i];
517 for (;;)
518 {
519 char c = *p;
520
521 switch (c)
522 {
523 case '=': case '+': case '?':
524 case '#': case '&': case '!':
525 case '*': case '%':
526 case '0': case '1': case '2': case '3': case '4':
527 case '5': case '6': case '7': case '8': case '9':
528 case 'm': case '<': case '>': case 'V': case 'o':
529 case 'E': case 'F': case 'G': case 'H':
530 case 's': case 'i': case 'n':
531 case 'I': case 'J': case 'K': case 'L':
532 case 'M': case 'N': case 'O': case 'P':
533 case 'p': case 'X':
534 /* These don't say anything we care about. */
535 break;
536
537 case 'g': case 'r':
538 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
539 break;
540
541 default:
542 class
543 = (reg_class_subunion
544 [(int) class]
545 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
546 break;
547
548 case ',': case '\0':
549 /* See if REGNO fits this alternative, and set it up as the
550 replacement register if we don't have one for this
551 alternative yet and the operand being replaced is not
552 a cheap CONST_INT. */
553 if (op_alt_regno[i][j] == -1
554 && reg_fits_class_p (testreg, class, 0, mode)
555 && (GET_CODE (recog_data.operand[i]) != CONST_INT
556 || (rtx_cost (recog_data.operand[i], SET)
557 > rtx_cost (testreg, SET))))
558 {
559 alternative_nregs[j]++;
560 op_alt_regno[i][j] = regno;
561 }
562 j++;
563 break;
564 }
565 p += CONSTRAINT_LEN (c, p);
566
567 if (c == '\0')
568 break;
569 }
570 }
571 }
572
573 /* Record all alternatives which are better or equal to the currently
574 matching one in the alternative_order array. */
575 for (i = j = 0; i < recog_data.n_alternatives; i++)
576 if (alternative_reject[i] <= alternative_reject[which_alternative])
577 alternative_order[j++] = i;
578 recog_data.n_alternatives = j;
579
580 /* Sort it. Given a small number of alternatives, a dumb algorithm
581 won't hurt too much. */
582 for (i = 0; i < recog_data.n_alternatives - 1; i++)
583 {
584 int best = i;
585 int best_reject = alternative_reject[alternative_order[i]];
586 int best_nregs = alternative_nregs[alternative_order[i]];
587 int tmp;
588
589 for (j = i + 1; j < recog_data.n_alternatives; j++)
590 {
591 int this_reject = alternative_reject[alternative_order[j]];
592 int this_nregs = alternative_nregs[alternative_order[j]];
593
594 if (this_reject < best_reject
595 || (this_reject == best_reject && this_nregs < best_nregs))
596 {
597 best = j;
598 best_reject = this_reject;
599 best_nregs = this_nregs;
600 }
601 }
602
603 tmp = alternative_order[best];
604 alternative_order[best] = alternative_order[i];
605 alternative_order[i] = tmp;
606 }
607
608 /* Substitute the operands as determined by op_alt_regno for the best
609 alternative. */
610 j = alternative_order[0];
611
612 for (i = 0; i < recog_data.n_operands; i++)
613 {
614 enum machine_mode mode = recog_data.operand_mode[i];
615 if (op_alt_regno[i][j] == -1)
616 continue;
617
618 validate_change (insn, recog_data.operand_loc[i],
619 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
620 }
621
622 for (i = recog_data.n_dups - 1; i >= 0; i--)
623 {
624 int op = recog_data.dup_num[i];
625 enum machine_mode mode = recog_data.operand_mode[op];
626
627 if (op_alt_regno[op][j] == -1)
628 continue;
629
630 validate_change (insn, recog_data.dup_loc[i],
631 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
632 }
633
634 return apply_change_group ();
635}
636\f
637/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
638 addressing now.
639 This code might also be useful when reload gave up on reg+reg addressing
640 because of clashes between the return register and INDEX_REG_CLASS. */
641
642/* The maximum number of uses of a register we can keep track of to
643 replace them with reg+reg addressing. */
644#define RELOAD_COMBINE_MAX_USES 6
645
646/* INSN is the insn where a register has ben used, and USEP points to the
647 location of the register within the rtl. */
648struct reg_use { rtx insn, *usep; };
649
650/* If the register is used in some unknown fashion, USE_INDEX is negative.
651 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
652 indicates where it becomes live again.
653 Otherwise, USE_INDEX is the index of the last encountered use of the
654 register (which is first among these we have seen since we scan backwards),
655 OFFSET contains the constant offset that is added to the register in
656 all encountered uses, and USE_RUID indicates the first encountered, i.e.
657 last, of these uses.
658 STORE_RUID is always meaningful if we only want to use a value in a
659 register in a different place: it denotes the next insn in the insn
660 stream (i.e. the last encountered) that sets or clobbers the register. */
661static struct
662 {
663 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
664 int use_index;
665 rtx offset;
666 int store_ruid;
667 int use_ruid;
668 } reg_state[FIRST_PSEUDO_REGISTER];
669
670/* Reverse linear uid. This is increased in reload_combine while scanning
671 the instructions from last to first. It is used to set last_label_ruid
672 and the store_ruid / use_ruid fields in reg_state. */
673static int reload_combine_ruid;
674
675#define LABEL_LIVE(LABEL) \
676 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
677
678static void
3ad4992f 679reload_combine (void)
8f8cadbc 680{
681 rtx insn, set;
682 int first_index_reg = -1;
683 int last_index_reg = 0;
684 int i;
685 basic_block bb;
686 unsigned int r;
687 int last_label_ruid;
688 int min_labelno, n_labels;
689 HARD_REG_SET ever_live_at_start, *label_live;
690
691 /* If reg+reg can be used in offsetable memory addresses, the main chunk of
692 reload has already used it where appropriate, so there is no use in
693 trying to generate it now. */
694 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
695 return;
696
697 /* To avoid wasting too much time later searching for an index register,
698 determine the minimum and maximum index register numbers. */
699 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
700 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
701 {
702 if (first_index_reg == -1)
703 first_index_reg = r;
704
705 last_index_reg = r;
706 }
707
708 /* If no index register is available, we can quit now. */
709 if (first_index_reg == -1)
710 return;
711
712 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
713 information is a bit fuzzy immediately after reload, but it's
714 still good enough to determine which registers are live at a jump
715 destination. */
716 min_labelno = get_first_label_num ();
717 n_labels = max_label_num () - min_labelno;
f0af5a88 718 label_live = xmalloc (n_labels * sizeof (HARD_REG_SET));
8f8cadbc 719 CLEAR_HARD_REG_SET (ever_live_at_start);
720
721 FOR_EACH_BB_REVERSE (bb)
722 {
5496dbfc 723 insn = BB_HEAD (bb);
6d7dc5b9 724 if (LABEL_P (insn))
8f8cadbc 725 {
726 HARD_REG_SET live;
727
728 REG_SET_TO_HARD_REG_SET (live,
729 bb->global_live_at_start);
730 compute_use_by_pseudos (&live,
731 bb->global_live_at_start);
732 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
733 IOR_HARD_REG_SET (ever_live_at_start, live);
734 }
735 }
736
737 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
738 last_label_ruid = reload_combine_ruid = 0;
739 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
740 {
741 reg_state[r].store_ruid = reload_combine_ruid;
742 if (fixed_regs[r])
743 reg_state[r].use_index = -1;
744 else
745 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
746 }
747
748 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
749 {
750 rtx note;
751
752 /* We cannot do our optimization across labels. Invalidating all the use
753 information we have would be costly, so we just note where the label
754 is and then later disable any optimization that would cross it. */
6d7dc5b9 755 if (LABEL_P (insn))
8f8cadbc 756 last_label_ruid = reload_combine_ruid;
6d7dc5b9 757 else if (BARRIER_P (insn))
8f8cadbc 758 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
759 if (! fixed_regs[r])
760 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
761
762 if (! INSN_P (insn))
763 continue;
764
765 reload_combine_ruid++;
766
767 /* Look for (set (REGX) (CONST_INT))
768 (set (REGX) (PLUS (REGX) (REGY)))
769 ...
770 ... (MEM (REGX)) ...
771 and convert it to
772 (set (REGZ) (CONST_INT))
773 ...
774 ... (MEM (PLUS (REGZ) (REGY)))... .
775
776 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
6b687974 777 and that we know all uses of REGX before it dies.
778 Also, explicitly check that REGX != REGY; our life information
779 does not yet show whether REGY changes in this insn. */
8f8cadbc 780 set = single_set (insn);
781 if (set != NULL_RTX
8ad4c111 782 && REG_P (SET_DEST (set))
67d6c12b 783 && (hard_regno_nregs[REGNO (SET_DEST (set))]
784 [GET_MODE (SET_DEST (set))]
8f8cadbc 785 == 1)
786 && GET_CODE (SET_SRC (set)) == PLUS
8ad4c111 787 && REG_P (XEXP (SET_SRC (set), 1))
8f8cadbc 788 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
6b687974 789 && !rtx_equal_p (XEXP (SET_SRC (set), 1), SET_DEST (set))
8f8cadbc 790 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
791 {
792 rtx reg = SET_DEST (set);
793 rtx plus = SET_SRC (set);
794 rtx base = XEXP (plus, 1);
795 rtx prev = prev_nonnote_insn (insn);
796 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
797 unsigned int regno = REGNO (reg);
798 rtx const_reg = NULL_RTX;
799 rtx reg_sum = NULL_RTX;
800
801 /* Now, we need an index register.
802 We'll set index_reg to this index register, const_reg to the
803 register that is to be loaded with the constant
804 (denoted as REGZ in the substitution illustration above),
805 and reg_sum to the register-register that we want to use to
806 substitute uses of REG (typically in MEMs) with.
807 First check REG and BASE for being index registers;
808 we can use them even if they are not dead. */
809 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
810 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
811 REGNO (base)))
812 {
813 const_reg = reg;
814 reg_sum = plus;
815 }
816 else
817 {
818 /* Otherwise, look for a free index register. Since we have
f024691d 819 checked above that neither REG nor BASE are index registers,
8f8cadbc 820 if we find anything at all, it will be different from these
821 two registers. */
822 for (i = first_index_reg; i <= last_index_reg; i++)
823 {
824 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
825 i)
826 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
827 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
67d6c12b 828 && hard_regno_nregs[i][GET_MODE (reg)] == 1)
8f8cadbc 829 {
830 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
831
832 const_reg = index_reg;
833 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
834 break;
835 }
836 }
837 }
838
839 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
840 (REGY), i.e. BASE, is not clobbered before the last use we'll
841 create. */
842 if (prev_set != 0
843 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
844 && rtx_equal_p (SET_DEST (prev_set), reg)
845 && reg_state[regno].use_index >= 0
846 && (reg_state[REGNO (base)].store_ruid
847 <= reg_state[regno].use_ruid)
848 && reg_sum != 0)
849 {
850 int i;
851
852 /* Change destination register and, if necessary, the
853 constant value in PREV, the constant loading instruction. */
854 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
855 if (reg_state[regno].offset != const0_rtx)
856 validate_change (prev,
857 &SET_SRC (prev_set),
858 GEN_INT (INTVAL (SET_SRC (prev_set))
859 + INTVAL (reg_state[regno].offset)),
860 1);
861
862 /* Now for every use of REG that we have recorded, replace REG
863 with REG_SUM. */
864 for (i = reg_state[regno].use_index;
865 i < RELOAD_COMBINE_MAX_USES; i++)
866 validate_change (reg_state[regno].reg_use[i].insn,
867 reg_state[regno].reg_use[i].usep,
868 /* Each change must have its own
869 replacement. */
870 copy_rtx (reg_sum), 1);
871
872 if (apply_change_group ())
873 {
874 rtx *np;
875
876 /* Delete the reg-reg addition. */
877 delete_insn (insn);
878
879 if (reg_state[regno].offset != const0_rtx)
880 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
881 are now invalid. */
882 for (np = &REG_NOTES (prev); *np;)
883 {
884 if (REG_NOTE_KIND (*np) == REG_EQUAL
885 || REG_NOTE_KIND (*np) == REG_EQUIV)
886 *np = XEXP (*np, 1);
887 else
888 np = &XEXP (*np, 1);
889 }
890
891 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
892 reg_state[REGNO (const_reg)].store_ruid
893 = reload_combine_ruid;
894 continue;
895 }
896 }
897 }
898
899 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
900
6d7dc5b9 901 if (CALL_P (insn))
8f8cadbc 902 {
903 rtx link;
904
905 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
906 if (call_used_regs[r])
907 {
908 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
909 reg_state[r].store_ruid = reload_combine_ruid;
910 }
911
912 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
913 link = XEXP (link, 1))
914 {
915 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
8ad4c111 916 if (REG_P (usage_rtx))
8f8cadbc 917 {
918 unsigned int i;
919 unsigned int start_reg = REGNO (usage_rtx);
920 unsigned int num_regs =
67d6c12b 921 hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
8f8cadbc 922 unsigned int end_reg = start_reg + num_regs - 1;
923 for (i = start_reg; i <= end_reg; i++)
924 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
925 {
926 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
927 reg_state[i].store_ruid = reload_combine_ruid;
928 }
929 else
930 reg_state[i].use_index = -1;
931 }
932 }
933
934 }
6d7dc5b9 935 else if (JUMP_P (insn)
8f8cadbc 936 && GET_CODE (PATTERN (insn)) != RETURN)
937 {
938 /* Non-spill registers might be used at the call destination in
939 some unknown fashion, so we have to mark the unknown use. */
940 HARD_REG_SET *live;
941
942 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
943 && JUMP_LABEL (insn))
944 live = &LABEL_LIVE (JUMP_LABEL (insn));
945 else
946 live = &ever_live_at_start;
947
948 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
949 if (TEST_HARD_REG_BIT (*live, i))
950 reg_state[i].use_index = -1;
951 }
952
953 reload_combine_note_use (&PATTERN (insn), insn);
954 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
955 {
956 if (REG_NOTE_KIND (note) == REG_INC
8ad4c111 957 && REG_P (XEXP (note, 0)))
8f8cadbc 958 {
959 int regno = REGNO (XEXP (note, 0));
960
961 reg_state[regno].store_ruid = reload_combine_ruid;
962 reg_state[regno].use_index = -1;
963 }
964 }
965 }
966
967 free (label_live);
968}
969
970/* Check if DST is a register or a subreg of a register; if it is,
971 update reg_state[regno].store_ruid and reg_state[regno].use_index
972 accordingly. Called via note_stores from reload_combine. */
973
974static void
3ad4992f 975reload_combine_note_store (rtx dst, rtx set, void *data ATTRIBUTE_UNUSED)
8f8cadbc 976{
977 int regno = 0;
978 int i;
979 enum machine_mode mode = GET_MODE (dst);
980
981 if (GET_CODE (dst) == SUBREG)
982 {
983 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
984 GET_MODE (SUBREG_REG (dst)),
985 SUBREG_BYTE (dst),
986 GET_MODE (dst));
987 dst = SUBREG_REG (dst);
988 }
8ad4c111 989 if (!REG_P (dst))
8f8cadbc 990 return;
991 regno += REGNO (dst);
992
993 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
994 careful with registers / register parts that are not full words.
995
996 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
997 if (GET_CODE (set) != SET
998 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
999 || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
1000 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1001 {
67d6c12b 1002 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
8f8cadbc 1003 {
1004 reg_state[i].use_index = -1;
1005 reg_state[i].store_ruid = reload_combine_ruid;
1006 }
1007 }
1008 else
1009 {
67d6c12b 1010 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
8f8cadbc 1011 {
1012 reg_state[i].store_ruid = reload_combine_ruid;
1013 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1014 }
1015 }
1016}
1017
1018/* XP points to a piece of rtl that has to be checked for any uses of
1019 registers.
1020 *XP is the pattern of INSN, or a part of it.
1021 Called from reload_combine, and recursively by itself. */
1022static void
3ad4992f 1023reload_combine_note_use (rtx *xp, rtx insn)
8f8cadbc 1024{
1025 rtx x = *xp;
1026 enum rtx_code code = x->code;
1027 const char *fmt;
1028 int i, j;
1029 rtx offset = const0_rtx; /* For the REG case below. */
1030
1031 switch (code)
1032 {
1033 case SET:
8ad4c111 1034 if (REG_P (SET_DEST (x)))
8f8cadbc 1035 {
1036 reload_combine_note_use (&SET_SRC (x), insn);
1037 return;
1038 }
1039 break;
1040
1041 case USE:
1042 /* If this is the USE of a return value, we can't change it. */
8ad4c111 1043 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8f8cadbc 1044 {
1045 /* Mark the return register as used in an unknown fashion. */
1046 rtx reg = XEXP (x, 0);
1047 int regno = REGNO (reg);
67d6c12b 1048 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8f8cadbc 1049
1050 while (--nregs >= 0)
1051 reg_state[regno + nregs].use_index = -1;
1052 return;
1053 }
1054 break;
1055
1056 case CLOBBER:
8ad4c111 1057 if (REG_P (SET_DEST (x)))
8f8cadbc 1058 {
1059 /* No spurious CLOBBERs of pseudo registers may remain. */
1060 if (REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER)
1061 abort ();
1062 return;
1063 }
1064 break;
1065
1066 case PLUS:
1067 /* We are interested in (plus (reg) (const_int)) . */
8ad4c111 1068 if (!REG_P (XEXP (x, 0))
8f8cadbc 1069 || GET_CODE (XEXP (x, 1)) != CONST_INT)
1070 break;
1071 offset = XEXP (x, 1);
1072 x = XEXP (x, 0);
1073 /* Fall through. */
1074 case REG:
1075 {
1076 int regno = REGNO (x);
1077 int use_index;
1078 int nregs;
1079
1080 /* No spurious USEs of pseudo registers may remain. */
1081 if (regno >= FIRST_PSEUDO_REGISTER)
1082 abort ();
1083
67d6c12b 1084 nregs = hard_regno_nregs[regno][GET_MODE (x)];
8f8cadbc 1085
1086 /* We can't substitute into multi-hard-reg uses. */
1087 if (nregs > 1)
1088 {
1089 while (--nregs >= 0)
1090 reg_state[regno + nregs].use_index = -1;
1091 return;
1092 }
1093
1094 /* If this register is already used in some unknown fashion, we
1095 can't do anything.
1096 If we decrement the index from zero to -1, we can't store more
1097 uses, so this register becomes used in an unknown fashion. */
1098 use_index = --reg_state[regno].use_index;
1099 if (use_index < 0)
1100 return;
1101
1102 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
1103 {
1104 /* We have found another use for a register that is already
1105 used later. Check if the offsets match; if not, mark the
1106 register as used in an unknown fashion. */
1107 if (! rtx_equal_p (offset, reg_state[regno].offset))
1108 {
1109 reg_state[regno].use_index = -1;
1110 return;
1111 }
1112 }
1113 else
1114 {
1115 /* This is the first use of this register we have seen since we
1116 marked it as dead. */
1117 reg_state[regno].offset = offset;
1118 reg_state[regno].use_ruid = reload_combine_ruid;
1119 }
1120 reg_state[regno].reg_use[use_index].insn = insn;
1121 reg_state[regno].reg_use[use_index].usep = xp;
1122 return;
1123 }
1124
1125 default:
1126 break;
1127 }
1128
1129 /* Recursively process the components of X. */
1130 fmt = GET_RTX_FORMAT (code);
1131 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1132 {
1133 if (fmt[i] == 'e')
1134 reload_combine_note_use (&XEXP (x, i), insn);
1135 else if (fmt[i] == 'E')
1136 {
1137 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1138 reload_combine_note_use (&XVECEXP (x, i, j), insn);
1139 }
1140 }
1141}
1142\f
1143/* See if we can reduce the cost of a constant by replacing a move
1144 with an add. We track situations in which a register is set to a
1145 constant or to a register plus a constant. */
1146/* We cannot do our optimization across labels. Invalidating all the
1147 information about register contents we have would be costly, so we
1148 use move2add_last_label_luid to note where the label is and then
1149 later disable any optimization that would cross it.
1150 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
1151 reg_set_luid[n] is greater than move2add_last_label_luid. */
1152static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1153
1154/* If reg_base_reg[n] is negative, register n has been set to
1155 reg_offset[n] in mode reg_mode[n] .
1156 If reg_base_reg[n] is non-negative, register n has been set to the
1157 sum of reg_offset[n] and the value of register reg_base_reg[n]
1158 before reg_set_luid[n], calculated in mode reg_mode[n] . */
1159static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1160static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1161static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1162
1163/* move2add_luid is linearly increased while scanning the instructions
1164 from first to last. It is used to set reg_set_luid in
1165 reload_cse_move2add and move2add_note_store. */
1166static int move2add_luid;
1167
1168/* move2add_last_label_luid is set whenever a label is found. Labels
1169 invalidate all previously collected reg_offset data. */
1170static int move2add_last_label_luid;
1171
1172/* ??? We don't know how zero / sign extension is handled, hence we
1173 can't go from a narrower to a wider mode. */
1174#define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1175 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1176 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1177 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
1178 GET_MODE_BITSIZE (INMODE))))
1179
1180static void
3ad4992f 1181reload_cse_move2add (rtx first)
8f8cadbc 1182{
1183 int i;
1184 rtx insn;
1185
1186 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1187 reg_set_luid[i] = 0;
1188
1189 move2add_last_label_luid = 0;
1190 move2add_luid = 2;
1191 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1192 {
1193 rtx pat, note;
1194
6d7dc5b9 1195 if (LABEL_P (insn))
8f8cadbc 1196 {
1197 move2add_last_label_luid = move2add_luid;
1198 /* We're going to increment move2add_luid twice after a
1199 label, so that we can use move2add_last_label_luid + 1 as
1200 the luid for constants. */
1201 move2add_luid++;
1202 continue;
1203 }
1204 if (! INSN_P (insn))
1205 continue;
1206 pat = PATTERN (insn);
1207 /* For simplicity, we only perform this optimization on
1208 straightforward SETs. */
1209 if (GET_CODE (pat) == SET
8ad4c111 1210 && REG_P (SET_DEST (pat)))
8f8cadbc 1211 {
1212 rtx reg = SET_DEST (pat);
1213 int regno = REGNO (reg);
1214 rtx src = SET_SRC (pat);
1215
1216 /* Check if we have valid information on the contents of this
1217 register in the mode of REG. */
1218 if (reg_set_luid[regno] > move2add_last_label_luid
1219 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno]))
1220 {
1221 /* Try to transform (set (REGX) (CONST_INT A))
1222 ...
1223 (set (REGX) (CONST_INT B))
1224 to
1225 (set (REGX) (CONST_INT A))
1226 ...
1227 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1228 or
1229 (set (REGX) (CONST_INT A))
1230 ...
1231 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1232 */
1233
1234 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
1235 {
1236 rtx new_src =
1237 GEN_INT (trunc_int_for_mode (INTVAL (src)
1238 - reg_offset[regno],
1239 GET_MODE (reg)));
1240 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1241 use (set (reg) (reg)) instead.
1242 We don't delete this insn, nor do we convert it into a
1243 note, to avoid losing register notes or the return
1244 value flag. jump2 already knows how to get rid of
1245 no-op moves. */
1246 if (new_src == const0_rtx)
1247 {
1248 /* If the constants are different, this is a
1249 truncation, that, if turned into (set (reg)
1250 (reg)), would be discarded. Maybe we should
1251 try a truncMN pattern? */
1252 if (INTVAL (src) == reg_offset [regno])
1253 validate_change (insn, &SET_SRC (pat), reg, 0);
1254 }
1255 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
1256 && have_add2_insn (reg, new_src))
1257 {
f0164c9d 1258 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1259 validate_change (insn, &SET_SRC (pat), tem, 0);
8f8cadbc 1260 }
1261 else
1262 {
1263 enum machine_mode narrow_mode;
1264 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1265 narrow_mode != GET_MODE (reg);
1266 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1267 {
1268 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1269 && ((reg_offset[regno]
1270 & ~GET_MODE_MASK (narrow_mode))
1271 == (INTVAL (src)
1272 & ~GET_MODE_MASK (narrow_mode))))
1273 {
1274 rtx narrow_reg = gen_rtx_REG (narrow_mode,
1275 REGNO (reg));
1276 rtx narrow_src =
1277 GEN_INT (trunc_int_for_mode (INTVAL (src),
1278 narrow_mode));
1279 rtx new_set =
1280 gen_rtx_SET (VOIDmode,
1281 gen_rtx_STRICT_LOW_PART (VOIDmode,
1282 narrow_reg),
1283 narrow_src);
1284 if (validate_change (insn, &PATTERN (insn),
1285 new_set, 0))
1286 break;
1287 }
1288 }
1289 }
1290 reg_set_luid[regno] = move2add_luid;
1291 reg_mode[regno] = GET_MODE (reg);
1292 reg_offset[regno] = INTVAL (src);
1293 continue;
1294 }
1295
1296 /* Try to transform (set (REGX) (REGY))
1297 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1298 ...
1299 (set (REGX) (REGY))
1300 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1301 to
1302 (set (REGX) (REGY))
1303 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1304 ...
1305 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
8ad4c111 1306 else if (REG_P (src)
8f8cadbc 1307 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1308 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1309 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
1310 reg_mode[REGNO (src)]))
1311 {
1312 rtx next = next_nonnote_insn (insn);
1313 rtx set = NULL_RTX;
1314 if (next)
1315 set = single_set (next);
1316 if (set
1317 && SET_DEST (set) == reg
1318 && GET_CODE (SET_SRC (set)) == PLUS
1319 && XEXP (SET_SRC (set), 0) == reg
1320 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
1321 {
1322 rtx src3 = XEXP (SET_SRC (set), 1);
1323 HOST_WIDE_INT added_offset = INTVAL (src3);
1324 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1325 HOST_WIDE_INT regno_offset = reg_offset[regno];
1326 rtx new_src =
1327 GEN_INT (trunc_int_for_mode (added_offset
1328 + base_offset
1329 - regno_offset,
1330 GET_MODE (reg)));
1331 int success = 0;
1332
1333 if (new_src == const0_rtx)
1334 /* See above why we create (set (reg) (reg)) here. */
1335 success
1336 = validate_change (next, &SET_SRC (set), reg, 0);
1337 else if ((rtx_cost (new_src, PLUS)
1338 < COSTS_N_INSNS (1) + rtx_cost (src3, SET))
1339 && have_add2_insn (reg, new_src))
1340 {
df41fe2e 1341 rtx newpat = gen_rtx_SET (VOIDmode,
1342 reg,
1343 gen_rtx_PLUS (GET_MODE (reg),
1344 reg,
1345 new_src));
8f8cadbc 1346 success
1347 = validate_change (next, &PATTERN (next),
1348 newpat, 0);
1349 }
1350 if (success)
1351 delete_insn (insn);
1352 insn = next;
1353 reg_mode[regno] = GET_MODE (reg);
1354 reg_offset[regno] =
1355 trunc_int_for_mode (added_offset + base_offset,
1356 GET_MODE (reg));
1357 continue;
1358 }
1359 }
1360 }
1361 }
1362
1363 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1364 {
1365 if (REG_NOTE_KIND (note) == REG_INC
8ad4c111 1366 && REG_P (XEXP (note, 0)))
8f8cadbc 1367 {
1368 /* Reset the information about this register. */
1369 int regno = REGNO (XEXP (note, 0));
1370 if (regno < FIRST_PSEUDO_REGISTER)
1371 reg_set_luid[regno] = 0;
1372 }
1373 }
1374 note_stores (PATTERN (insn), move2add_note_store, NULL);
1375
1376 /* If INSN is a conditional branch, we try to extract an
1377 implicit set out of it. */
1378 if (any_condjump_p (insn) && onlyjump_p (insn))
1379 {
1380 rtx cnd = fis_get_condition (insn);
1381
1382 if (cnd != NULL_RTX
1383 && GET_CODE (cnd) == NE
8ad4c111 1384 && REG_P (XEXP (cnd, 0))
8f8cadbc 1385 /* The following two checks, which are also in
1386 move2add_note_store, are intended to reduce the
1387 number of calls to gen_rtx_SET to avoid memory
1388 allocation if possible. */
1389 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
67d6c12b 1390 && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
8f8cadbc 1391 && GET_CODE (XEXP (cnd, 1)) == CONST_INT)
1392 {
1393 rtx implicit_set =
1394 gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
1395 move2add_note_store (SET_DEST (implicit_set), implicit_set, 0);
1396 }
1397 }
1398
1399 /* If this is a CALL_INSN, all call used registers are stored with
1400 unknown values. */
6d7dc5b9 1401 if (CALL_P (insn))
8f8cadbc 1402 {
1403 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1404 {
1405 if (call_used_regs[i])
1406 /* Reset the information about this register. */
1407 reg_set_luid[i] = 0;
1408 }
1409 }
1410 }
1411}
1412
1413/* SET is a SET or CLOBBER that sets DST.
1414 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
1415 Called from reload_cse_move2add via note_stores. */
1416
1417static void
3ad4992f 1418move2add_note_store (rtx dst, rtx set, void *data ATTRIBUTE_UNUSED)
8f8cadbc 1419{
1420 unsigned int regno = 0;
1421 unsigned int i;
1422 enum machine_mode mode = GET_MODE (dst);
1423
1424 if (GET_CODE (dst) == SUBREG)
1425 {
1426 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1427 GET_MODE (SUBREG_REG (dst)),
1428 SUBREG_BYTE (dst),
1429 GET_MODE (dst));
1430 dst = SUBREG_REG (dst);
1431 }
1432
1433 /* Some targets do argument pushes without adding REG_INC notes. */
1434
e16ceb8e 1435 if (MEM_P (dst))
8f8cadbc 1436 {
1437 dst = XEXP (dst, 0);
1438 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1439 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
1440 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
1441 return;
1442 }
8ad4c111 1443 if (!REG_P (dst))
8f8cadbc 1444 return;
1445
1446 regno += REGNO (dst);
1447
1448 if (SCALAR_INT_MODE_P (mode)
67d6c12b 1449 && hard_regno_nregs[regno][mode] == 1 && GET_CODE (set) == SET
8f8cadbc 1450 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1451 && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
1452 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
1453 {
1454 rtx src = SET_SRC (set);
1455 rtx base_reg;
1456 HOST_WIDE_INT offset;
1457 int base_regno;
1458 /* This may be different from mode, if SET_DEST (set) is a
1459 SUBREG. */
1460 enum machine_mode dst_mode = GET_MODE (dst);
1461
1462 switch (GET_CODE (src))
1463 {
1464 case PLUS:
8ad4c111 1465 if (REG_P (XEXP (src, 0)))
8f8cadbc 1466 {
1467 base_reg = XEXP (src, 0);
1468
1469 if (GET_CODE (XEXP (src, 1)) == CONST_INT)
1470 offset = INTVAL (XEXP (src, 1));
8ad4c111 1471 else if (REG_P (XEXP (src, 1))
8f8cadbc 1472 && (reg_set_luid[REGNO (XEXP (src, 1))]
1473 > move2add_last_label_luid)
1474 && (MODES_OK_FOR_MOVE2ADD
1475 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
1476 {
1477 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
1478 offset = reg_offset[REGNO (XEXP (src, 1))];
1479 /* Maybe the first register is known to be a
1480 constant. */
1481 else if (reg_set_luid[REGNO (base_reg)]
1482 > move2add_last_label_luid
1483 && (MODES_OK_FOR_MOVE2ADD
1484 (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
1485 && reg_base_reg[REGNO (base_reg)] < 0)
1486 {
1487 offset = reg_offset[REGNO (base_reg)];
1488 base_reg = XEXP (src, 1);
1489 }
1490 else
1491 goto invalidate;
1492 }
1493 else
1494 goto invalidate;
1495
1496 break;
1497 }
1498
1499 goto invalidate;
1500
1501 case REG:
1502 base_reg = src;
1503 offset = 0;
1504 break;
1505
1506 case CONST_INT:
1507 /* Start tracking the register as a constant. */
1508 reg_base_reg[regno] = -1;
1509 reg_offset[regno] = INTVAL (SET_SRC (set));
1510 /* We assign the same luid to all registers set to constants. */
1511 reg_set_luid[regno] = move2add_last_label_luid + 1;
1512 reg_mode[regno] = mode;
1513 return;
1514
1515 default:
1516 invalidate:
1517 /* Invalidate the contents of the register. */
1518 reg_set_luid[regno] = 0;
1519 return;
1520 }
1521
1522 base_regno = REGNO (base_reg);
1523 /* If information about the base register is not valid, set it
1524 up as a new base register, pretending its value is known
1525 starting from the current insn. */
1526 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
1527 {
1528 reg_base_reg[base_regno] = base_regno;
1529 reg_offset[base_regno] = 0;
1530 reg_set_luid[base_regno] = move2add_luid;
1531 reg_mode[base_regno] = mode;
1532 }
1533 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
1534 reg_mode[base_regno]))
1535 goto invalidate;
1536
1537 reg_mode[regno] = mode;
1538
1539 /* Copy base information from our base register. */
1540 reg_set_luid[regno] = reg_set_luid[base_regno];
1541 reg_base_reg[regno] = reg_base_reg[base_regno];
1542
1543 /* Compute the sum of the offsets or constants. */
1544 reg_offset[regno] = trunc_int_for_mode (offset
1545 + reg_offset[base_regno],
1546 dst_mode);
1547 }
1548 else
1549 {
67d6c12b 1550 unsigned int endregno = regno + hard_regno_nregs[regno][mode];
8f8cadbc 1551
1552 for (i = regno; i < endregno; i++)
1553 /* Reset the information about this register. */
1554 reg_set_luid[i] = 0;
1555 }
1556}