]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/postreload.c
always define HAVE_cc0
[thirdparty/gcc.git] / gcc / postreload.c
CommitLineData
8f8cadbc 1/* Perform simple optimizations to clean up the result of reload.
d353bf18 2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
8f8cadbc 3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8c4c00c1 8Software Foundation; either version 3, or (at your option) any later
8f8cadbc 9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
8f8cadbc 19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
24
25#include "machmode.h"
26#include "hard-reg-set.h"
27#include "rtl.h"
28#include "tm_p.h"
29#include "obstack.h"
30#include "insn-config.h"
31#include "flags.h"
a3020f2f 32#include "hashtab.h"
33#include "hash-set.h"
34#include "vec.h"
35#include "input.h"
8f8cadbc 36#include "function.h"
b20a8bb4 37#include "symtab.h"
d53441c8 38#include "statistics.h"
39#include "double-int.h"
40#include "real.h"
41#include "fixed-value.h"
42#include "alias.h"
43#include "wide-int.h"
44#include "inchash.h"
45#include "tree.h"
46#include "expmed.h"
47#include "dojump.h"
48#include "explow.h"
49#include "calls.h"
50#include "emit-rtl.h"
51#include "varasm.h"
52#include "stmt.h"
8f8cadbc 53#include "expr.h"
34517c64 54#include "insn-codes.h"
8f8cadbc 55#include "optabs.h"
56#include "regs.h"
94ea8568 57#include "predict.h"
58#include "dominance.h"
59#include "cfg.h"
60#include "cfgrtl.h"
61#include "cfgbuild.h"
62#include "cfgcleanup.h"
8f8cadbc 63#include "basic-block.h"
64#include "reload.h"
65#include "recog.h"
8f8cadbc 66#include "cselib.h"
0b205f4c 67#include "diagnostic-core.h"
8f8cadbc 68#include "except.h"
727047d0 69#include "target.h"
77fce4cd 70#include "tree-pass.h"
3072d30e 71#include "df.h"
72#include "dbgcnt.h"
8f8cadbc 73
3ad4992f 74static int reload_cse_noop_set_p (rtx);
3aeaa53f 75static bool reload_cse_simplify (rtx_insn *, rtx);
26709122 76static void reload_cse_regs_1 (void);
3aeaa53f 77static int reload_cse_simplify_set (rtx, rtx_insn *);
78static int reload_cse_simplify_operands (rtx_insn *, rtx);
8f8cadbc 79
3ad4992f 80static void reload_combine (void);
3aeaa53f 81static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
81a410b1 82static void reload_combine_note_store (rtx, const_rtx, void *);
8f8cadbc 83
3aeaa53f 84static bool reload_cse_move2add (rtx_insn *);
81a410b1 85static void move2add_note_store (rtx, const_rtx, void *);
8f8cadbc 86
87/* Call cse / combine like post-reload optimization phases.
88 FIRST is the first instruction. */
98799adc 89
90static void
3aeaa53f 91reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
8f8cadbc 92{
d83ccc81 93 bool moves_converted;
26709122 94 reload_cse_regs_1 ();
8f8cadbc 95 reload_combine ();
d83ccc81 96 moves_converted = reload_cse_move2add (first);
8f8cadbc 97 if (flag_expensive_optimizations)
d83ccc81 98 {
99 if (moves_converted)
100 reload_combine ();
26709122 101 reload_cse_regs_1 ();
d83ccc81 102 }
8f8cadbc 103}
104
105/* See whether a single set SET is a noop. */
106static int
3ad4992f 107reload_cse_noop_set_p (rtx set)
8f8cadbc 108{
109 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
110 return 0;
111
112 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
113}
114
26709122 115/* Try to simplify INSN. Return true if the CFG may have changed. */
116static bool
3aeaa53f 117reload_cse_simplify (rtx_insn *insn, rtx testreg)
8f8cadbc 118{
119 rtx body = PATTERN (insn);
26709122 120 basic_block insn_bb = BLOCK_FOR_INSN (insn);
121 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
8f8cadbc 122
123 if (GET_CODE (body) == SET)
124 {
125 int count = 0;
126
127 /* Simplify even if we may think it is a no-op.
128 We may think a memory load of a value smaller than WORD_SIZE
129 is redundant because we haven't taken into account possible
130 implicit extension. reload_cse_simplify_set() will bring
131 this out, so it's safer to simplify before we delete. */
132 count += reload_cse_simplify_set (body, insn);
133
134 if (!count && reload_cse_noop_set_p (body))
135 {
136 rtx value = SET_DEST (body);
137 if (REG_P (value)
138 && ! REG_FUNCTION_VALUE_P (value))
139 value = 0;
5a9ecd4a 140 if (check_for_inc_dec (insn))
141 delete_insn_and_edges (insn);
26709122 142 /* We're done with this insn. */
143 goto done;
8f8cadbc 144 }
145
146 if (count > 0)
147 apply_change_group ();
148 else
149 reload_cse_simplify_operands (insn, testreg);
150 }
151 else if (GET_CODE (body) == PARALLEL)
152 {
153 int i;
154 int count = 0;
155 rtx value = NULL_RTX;
156
17883489 157 /* Registers mentioned in the clobber list for an asm cannot be reused
158 within the body of the asm. Invalidate those registers now so that
159 we don't try to substitute values for them. */
160 if (asm_noperands (body) >= 0)
161 {
162 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
163 {
164 rtx part = XVECEXP (body, 0, i);
165 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
166 cselib_invalidate_rtx (XEXP (part, 0));
167 }
168 }
169
8f8cadbc 170 /* If every action in a PARALLEL is a noop, we can delete
171 the entire PARALLEL. */
172 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
173 {
174 rtx part = XVECEXP (body, 0, i);
175 if (GET_CODE (part) == SET)
176 {
177 if (! reload_cse_noop_set_p (part))
178 break;
179 if (REG_P (SET_DEST (part))
180 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
181 {
182 if (value)
183 break;
184 value = SET_DEST (part);
185 }
186 }
187 else if (GET_CODE (part) != CLOBBER)
188 break;
189 }
190
191 if (i < 0)
192 {
5a9ecd4a 193 if (check_for_inc_dec (insn))
194 delete_insn_and_edges (insn);
8f8cadbc 195 /* We're done with this insn. */
26709122 196 goto done;
8f8cadbc 197 }
198
199 /* It's not a no-op, but we can try to simplify it. */
200 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
201 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
202 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
203
204 if (count > 0)
205 apply_change_group ();
206 else
207 reload_cse_simplify_operands (insn, testreg);
208 }
26709122 209
210done:
211 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
8f8cadbc 212}
213
214/* Do a very simple CSE pass over the hard registers.
215
216 This function detects no-op moves where we happened to assign two
217 different pseudo-registers to the same hard register, and then
218 copied one to the other. Reload will generate a useless
219 instruction copying a register to itself.
220
221 This function also detects cases where we load a value from memory
222 into two different registers, and (if memory is more expensive than
223 registers) changes it to simply copy the first register into the
224 second register.
225
226 Another optimization is performed that scans the operands of each
227 instruction to see whether the value is already available in a
228 hard register. It then replaces the operand with the hard register
229 if possible, much like an optional reload would. */
230
231static void
26709122 232reload_cse_regs_1 (void)
8f8cadbc 233{
26709122 234 bool cfg_changed = false;
235 basic_block bb;
3aeaa53f 236 rtx_insn *insn;
8f8cadbc 237 rtx testreg = gen_rtx_REG (VOIDmode, -1);
238
35af0188 239 cselib_init (CSELIB_RECORD_MEMORY);
8f8cadbc 240 init_alias_analysis ();
241
fc00614f 242 FOR_EACH_BB_FN (bb, cfun)
26709122 243 FOR_BB_INSNS (bb, insn)
244 {
245 if (INSN_P (insn))
246 cfg_changed |= reload_cse_simplify (insn, testreg);
8f8cadbc 247
26709122 248 cselib_process_insn (insn);
249 }
8f8cadbc 250
251 /* Clean up. */
252 end_alias_analysis ();
253 cselib_finish ();
26709122 254 if (cfg_changed)
255 cleanup_cfg (0);
8f8cadbc 256}
257
258/* Try to simplify a single SET instruction. SET is the set pattern.
259 INSN is the instruction it came from.
260 This function only handles one case: if we set a register to a value
261 which is not a register, we try to find that value in some other register
262 and change the set into a register copy. */
263
264static int
3aeaa53f 265reload_cse_simplify_set (rtx set, rtx_insn *insn)
8f8cadbc 266{
267 int did_change = 0;
268 int dreg;
269 rtx src;
ade444a4 270 reg_class_t dclass;
8f8cadbc 271 int old_cost;
272 cselib_val *val;
273 struct elt_loc_list *l;
274#ifdef LOAD_EXTEND_OP
21f1e711 275 enum rtx_code extend_op = UNKNOWN;
8f8cadbc 276#endif
f529eb25 277 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
8f8cadbc 278
279 dreg = true_regnum (SET_DEST (set));
280 if (dreg < 0)
281 return 0;
282
283 src = SET_SRC (set);
284 if (side_effects_p (src) || true_regnum (src) >= 0)
285 return 0;
286
287 dclass = REGNO_REG_CLASS (dreg);
288
289#ifdef LOAD_EXTEND_OP
290 /* When replacing a memory with a register, we need to honor assumptions
291 that combine made wrt the contents of sign bits. We'll do this by
292 generating an extend instruction instead of a reg->reg copy. Thus
293 the destination must be a register that we can widen. */
e16ceb8e 294 if (MEM_P (src)
8f8cadbc 295 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
21f1e711 296 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
8ad4c111 297 && !REG_P (SET_DEST (set)))
8f8cadbc 298 return 0;
299#endif
300
1f864115 301 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
3be01943 302 if (! val)
303 return 0;
304
8f8cadbc 305 /* If memory loads are cheaper than register copies, don't change them. */
e16ceb8e 306 if (MEM_P (src))
251a613e 307 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
8ad4c111 308 else if (REG_P (src))
e6078fbb 309 old_cost = register_move_cost (GET_MODE (src),
8f8cadbc 310 REGNO_REG_CLASS (REGNO (src)), dclass);
311 else
7013e87c 312 old_cost = set_src_cost (src, speed);
8f8cadbc 313
8f8cadbc 314 for (l = val->locs; l; l = l->next)
315 {
316 rtx this_rtx = l->loc;
317 int this_cost;
318
319 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
320 {
321#ifdef LOAD_EXTEND_OP
21f1e711 322 if (extend_op != UNKNOWN)
8f8cadbc 323 {
e913b5cd 324 wide_int result;
8f8cadbc 325
e913b5cd 326 if (!CONST_SCALAR_INT_P (this_rtx))
8f8cadbc 327 continue;
328
8f8cadbc 329 switch (extend_op)
330 {
331 case ZERO_EXTEND:
ecc41f48 332 result = wide_int::from (std::make_pair (this_rtx,
333 GET_MODE (src)),
334 BITS_PER_WORD, UNSIGNED);
8f8cadbc 335 break;
336 case SIGN_EXTEND:
ecc41f48 337 result = wide_int::from (std::make_pair (this_rtx,
338 GET_MODE (src)),
339 BITS_PER_WORD, SIGNED);
e913b5cd 340 break;
8f8cadbc 341 default:
876760f6 342 gcc_unreachable ();
8f8cadbc 343 }
ecc41f48 344 this_rtx = immed_wide_int_const (result, word_mode);
8f8cadbc 345 }
346#endif
7013e87c 347 this_cost = set_src_cost (this_rtx, speed);
8f8cadbc 348 }
8ad4c111 349 else if (REG_P (this_rtx))
8f8cadbc 350 {
351#ifdef LOAD_EXTEND_OP
21f1e711 352 if (extend_op != UNKNOWN)
8f8cadbc 353 {
354 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
7013e87c 355 this_cost = set_src_cost (this_rtx, speed);
8f8cadbc 356 }
357 else
358#endif
e6078fbb 359 this_cost = register_move_cost (GET_MODE (this_rtx),
8f8cadbc 360 REGNO_REG_CLASS (REGNO (this_rtx)),
361 dclass);
362 }
363 else
364 continue;
365
366 /* If equal costs, prefer registers over anything else. That
367 tends to lead to smaller instructions on some machines. */
368 if (this_cost < old_cost
369 || (this_cost == old_cost
8ad4c111 370 && REG_P (this_rtx)
371 && !REG_P (SET_SRC (set))))
8f8cadbc 372 {
373#ifdef LOAD_EXTEND_OP
374 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
21f1e711 375 && extend_op != UNKNOWN
8f8cadbc 376#ifdef CANNOT_CHANGE_MODE_CLASS
377 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
378 word_mode,
379 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
380#endif
381 )
382 {
383 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
384 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
385 validate_change (insn, &SET_DEST (set), wide_dest, 1);
386 }
387#endif
388
11d686e2 389 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
8f8cadbc 390 old_cost = this_cost, did_change = 1;
391 }
392 }
393
394 return did_change;
395}
396
397/* Try to replace operands in INSN with equivalent values that are already
398 in registers. This can be viewed as optional reloading.
399
400 For each non-register operand in the insn, see if any hard regs are
401 known to be equivalent to that operand. Record the alternatives which
402 can accept these hard registers. Among all alternatives, select the
403 ones which are better or equal to the one currently matching, where
404 "better" is in terms of '?' and '!' constraints. Among the remaining
405 alternatives, select the one which replaces most operands with
406 hard registers. */
407
408static int
3aeaa53f 409reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
8f8cadbc 410{
411 int i, j;
412
413 /* For each operand, all registers that are equivalent to it. */
414 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
415
416 const char *constraints[MAX_RECOG_OPERANDS];
417
418 /* Vector recording how bad an alternative is. */
419 int *alternative_reject;
420 /* Vector recording how many registers can be introduced by choosing
421 this alternative. */
422 int *alternative_nregs;
423 /* Array of vectors recording, for each operand and each alternative,
424 which hard register to substitute, or -1 if the operand should be
425 left as it is. */
426 int *op_alt_regno[MAX_RECOG_OPERANDS];
427 /* Array of alternatives, sorted in order of decreasing desirability. */
428 int *alternative_order;
429
835b8178 430 extract_constrain_insn (insn);
8f8cadbc 431
432 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
433 return 0;
434
4077bf7a 435 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
436 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
437 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
f0af5a88 438 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
439 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
8f8cadbc 440
441 /* For each operand, find out which regs are equivalent. */
442 for (i = 0; i < recog_data.n_operands; i++)
443 {
444 cselib_val *v;
445 struct elt_loc_list *l;
9d9e3c81 446 rtx op;
8f8cadbc 447
448 CLEAR_HARD_REG_SET (equiv_regs[i]);
449
450 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
451 right, so avoid the problem here. Likewise if we have a constant
452 and the insn pattern doesn't tell us the mode we need. */
6d7dc5b9 453 if (LABEL_P (recog_data.operand[i])
8f8cadbc 454 || (CONSTANT_P (recog_data.operand[i])
455 && recog_data.operand_mode[i] == VOIDmode))
456 continue;
457
9d9e3c81 458 op = recog_data.operand[i];
9d9e3c81 459#ifdef LOAD_EXTEND_OP
e16ceb8e 460 if (MEM_P (op)
f018d957 461 && GET_MODE_BITSIZE (GET_MODE (op)) < BITS_PER_WORD
462 && LOAD_EXTEND_OP (GET_MODE (op)) != UNKNOWN)
9d9e3c81 463 {
464 rtx set = single_set (insn);
465
4885b286 466 /* We might have multiple sets, some of which do implicit
9d9e3c81 467 extension. Punt on this for now. */
468 if (! set)
469 continue;
86481e89 470 /* If the destination is also a MEM or a STRICT_LOW_PART, no
9d9e3c81 471 extension applies.
472 Also, if there is an explicit extension, we don't have to
473 worry about an implicit one. */
e16ceb8e 474 else if (MEM_P (SET_DEST (set))
9d9e3c81 475 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
476 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
477 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
478 ; /* Continue ordinary processing. */
a091e4f5 479#ifdef CANNOT_CHANGE_MODE_CLASS
480 /* If the register cannot change mode to word_mode, it follows that
481 it cannot have been used in word_mode. */
8ad4c111 482 else if (REG_P (SET_DEST (set))
a091e4f5 483 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
484 word_mode,
485 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
486 ; /* Continue ordinary processing. */
487#endif
9d9e3c81 488 /* If this is a straight load, make the extension explicit. */
8ad4c111 489 else if (REG_P (SET_DEST (set))
9d9e3c81 490 && recog_data.n_operands == 2
491 && SET_SRC (set) == op
492 && SET_DEST (set) == recog_data.operand[1-i])
493 {
494 validate_change (insn, recog_data.operand_loc[i],
f018d957 495 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op)),
9d9e3c81 496 word_mode, op),
497 1);
498 validate_change (insn, recog_data.operand_loc[1-i],
499 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
500 1);
501 if (! apply_change_group ())
502 return 0;
503 return reload_cse_simplify_operands (insn, testreg);
504 }
505 else
506 /* ??? There might be arithmetic operations with memory that are
507 safe to optimize, but is it worth the trouble? */
508 continue;
509 }
510#endif /* LOAD_EXTEND_OP */
017b7047 511 if (side_effects_p (op))
512 continue;
1f864115 513 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
8f8cadbc 514 if (! v)
515 continue;
516
517 for (l = v->locs; l; l = l->next)
8ad4c111 518 if (REG_P (l->loc))
8f8cadbc 519 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
520 }
521
e1a797ad 522 alternative_mask preferred = get_preferred_alternatives (insn);
8f8cadbc 523 for (i = 0; i < recog_data.n_operands; i++)
524 {
3754d046 525 machine_mode mode;
8f8cadbc 526 int regno;
527 const char *p;
528
4077bf7a 529 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
8f8cadbc 530 for (j = 0; j < recog_data.n_alternatives; j++)
531 op_alt_regno[i][j] = -1;
532
533 p = constraints[i] = recog_data.constraints[i];
534 mode = recog_data.operand_mode[i];
535
536 /* Add the reject values for each alternative given by the constraints
537 for this operand. */
538 j = 0;
539 while (*p != '\0')
540 {
541 char c = *p++;
542 if (c == ',')
543 j++;
544 else if (c == '?')
545 alternative_reject[j] += 3;
546 else if (c == '!')
547 alternative_reject[j] += 300;
548 }
549
550 /* We won't change operands which are already registers. We
551 also don't want to modify output operands. */
552 regno = true_regnum (recog_data.operand[i]);
553 if (regno >= 0
554 || constraints[i][0] == '='
555 || constraints[i][0] == '+')
556 continue;
557
558 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
559 {
b9c74b4d 560 enum reg_class rclass = NO_REGS;
8f8cadbc 561
562 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
563 continue;
564
7f1819d3 565 SET_REGNO_RAW (testreg, regno);
8f8cadbc 566 PUT_MODE (testreg, mode);
567
568 /* We found a register equal to this operand. Now look for all
569 alternatives that can accept this register and have not been
570 assigned a register they can use yet. */
571 j = 0;
572 p = constraints[i];
573 for (;;)
574 {
575 char c = *p;
576
577 switch (c)
578 {
69449463 579 case 'g':
580 rclass = reg_class_subunion[rclass][GENERAL_REGS];
8f8cadbc 581 break;
582
583 default:
6659485c 584 rclass
8f8cadbc 585 = (reg_class_subunion
79bc09fb 586 [rclass]
587 [reg_class_for_constraint (lookup_constraint (p))]);
8f8cadbc 588 break;
589
590 case ',': case '\0':
591 /* See if REGNO fits this alternative, and set it up as the
592 replacement register if we don't have one for this
593 alternative yet and the operand being replaced is not
594 a cheap CONST_INT. */
595 if (op_alt_regno[i][j] == -1
e1a797ad 596 && TEST_BIT (preferred, j)
6659485c 597 && reg_fits_class_p (testreg, rclass, 0, mode)
971ba038 598 && (!CONST_INT_P (recog_data.operand[i])
7013e87c 599 || (set_src_cost (recog_data.operand[i],
600 optimize_bb_for_speed_p
601 (BLOCK_FOR_INSN (insn)))
602 > set_src_cost (testreg,
603 optimize_bb_for_speed_p
604 (BLOCK_FOR_INSN (insn))))))
8f8cadbc 605 {
606 alternative_nregs[j]++;
607 op_alt_regno[i][j] = regno;
608 }
609 j++;
b9c74b4d 610 rclass = NO_REGS;
8f8cadbc 611 break;
612 }
613 p += CONSTRAINT_LEN (c, p);
614
615 if (c == '\0')
616 break;
617 }
618 }
619 }
620
621 /* Record all alternatives which are better or equal to the currently
622 matching one in the alternative_order array. */
623 for (i = j = 0; i < recog_data.n_alternatives; i++)
624 if (alternative_reject[i] <= alternative_reject[which_alternative])
625 alternative_order[j++] = i;
626 recog_data.n_alternatives = j;
627
628 /* Sort it. Given a small number of alternatives, a dumb algorithm
629 won't hurt too much. */
630 for (i = 0; i < recog_data.n_alternatives - 1; i++)
631 {
632 int best = i;
633 int best_reject = alternative_reject[alternative_order[i]];
634 int best_nregs = alternative_nregs[alternative_order[i]];
635 int tmp;
636
637 for (j = i + 1; j < recog_data.n_alternatives; j++)
638 {
639 int this_reject = alternative_reject[alternative_order[j]];
640 int this_nregs = alternative_nregs[alternative_order[j]];
641
642 if (this_reject < best_reject
c2d0cf41 643 || (this_reject == best_reject && this_nregs > best_nregs))
8f8cadbc 644 {
645 best = j;
646 best_reject = this_reject;
647 best_nregs = this_nregs;
648 }
649 }
650
651 tmp = alternative_order[best];
652 alternative_order[best] = alternative_order[i];
653 alternative_order[i] = tmp;
654 }
655
656 /* Substitute the operands as determined by op_alt_regno for the best
657 alternative. */
658 j = alternative_order[0];
659
660 for (i = 0; i < recog_data.n_operands; i++)
661 {
3754d046 662 machine_mode mode = recog_data.operand_mode[i];
8f8cadbc 663 if (op_alt_regno[i][j] == -1)
664 continue;
665
666 validate_change (insn, recog_data.operand_loc[i],
667 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
668 }
669
670 for (i = recog_data.n_dups - 1; i >= 0; i--)
671 {
672 int op = recog_data.dup_num[i];
3754d046 673 machine_mode mode = recog_data.operand_mode[op];
8f8cadbc 674
675 if (op_alt_regno[op][j] == -1)
676 continue;
677
678 validate_change (insn, recog_data.dup_loc[i],
679 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
680 }
681
682 return apply_change_group ();
683}
684\f
685/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
686 addressing now.
687 This code might also be useful when reload gave up on reg+reg addressing
688 because of clashes between the return register and INDEX_REG_CLASS. */
689
690/* The maximum number of uses of a register we can keep track of to
691 replace them with reg+reg addressing. */
d83ccc81 692#define RELOAD_COMBINE_MAX_USES 16
8f8cadbc 693
d83ccc81 694/* Describes a recorded use of a register. */
695struct reg_use
696{
697 /* The insn where a register has been used. */
3aeaa53f 698 rtx_insn *insn;
d83ccc81 699 /* Points to the memory reference enclosing the use, if any, NULL_RTX
700 otherwise. */
701 rtx containing_mem;
9d75589a 702 /* Location of the register within INSN. */
d83ccc81 703 rtx *usep;
704 /* The reverse uid of the insn. */
705 int ruid;
706};
8f8cadbc 707
708/* If the register is used in some unknown fashion, USE_INDEX is negative.
709 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
d83ccc81 710 indicates where it is first set or clobbered.
8f8cadbc 711 Otherwise, USE_INDEX is the index of the last encountered use of the
d83ccc81 712 register (which is first among these we have seen since we scan backwards).
713 USE_RUID indicates the first encountered, i.e. last, of these uses.
714 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
715 with a constant offset; OFFSET contains this constant in that case.
8f8cadbc 716 STORE_RUID is always meaningful if we only want to use a value in a
717 register in a different place: it denotes the next insn in the insn
d83ccc81 718 stream (i.e. the last encountered) that sets or clobbers the register.
719 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
8f8cadbc 720static struct
721 {
722 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
8f8cadbc 723 rtx offset;
d83ccc81 724 int use_index;
8f8cadbc 725 int store_ruid;
d83ccc81 726 int real_store_ruid;
8f8cadbc 727 int use_ruid;
d83ccc81 728 bool all_offsets_match;
8f8cadbc 729 } reg_state[FIRST_PSEUDO_REGISTER];
730
731/* Reverse linear uid. This is increased in reload_combine while scanning
732 the instructions from last to first. It is used to set last_label_ruid
733 and the store_ruid / use_ruid fields in reg_state. */
734static int reload_combine_ruid;
735
fb79f695 736/* The RUID of the last label we encountered in reload_combine. */
737static int last_label_ruid;
738
d83ccc81 739/* The RUID of the last jump we encountered in reload_combine. */
740static int last_jump_ruid;
741
fb79f695 742/* The register numbers of the first and last index register. A value of
743 -1 in LAST_INDEX_REG indicates that we've previously computed these
744 values and found no suitable index registers. */
745static int first_index_reg = -1;
746static int last_index_reg;
747
8f8cadbc 748#define LABEL_LIVE(LABEL) \
749 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
750
d83ccc81 751/* Subroutine of reload_combine_split_ruids, called to fix up a single
752 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
753
754static inline void
755reload_combine_split_one_ruid (int *pruid, int split_ruid)
756{
757 if (*pruid > split_ruid)
758 (*pruid)++;
759}
760
761/* Called when we insert a new insn in a position we've already passed in
762 the scan. Examine all our state, increasing all ruids that are higher
763 than SPLIT_RUID by one in order to make room for a new insn. */
764
765static void
766reload_combine_split_ruids (int split_ruid)
767{
768 unsigned i;
769
770 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
771 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
772 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
773
774 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
775 {
776 int j, idx = reg_state[i].use_index;
777 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
778 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
779 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
780 split_ruid);
781 if (idx < 0)
782 continue;
783 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
784 {
785 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
786 split_ruid);
787 }
788 }
789}
790
791/* Called when we are about to rescan a previously encountered insn with
792 reload_combine_note_use after modifying some part of it. This clears all
793 information about uses in that particular insn. */
794
795static void
3aeaa53f 796reload_combine_purge_insn_uses (rtx_insn *insn)
d83ccc81 797{
798 unsigned i;
799
800 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
801 {
802 int j, k, idx = reg_state[i].use_index;
803 if (idx < 0)
804 continue;
805 j = k = RELOAD_COMBINE_MAX_USES;
806 while (j-- > idx)
807 {
808 if (reg_state[i].reg_use[j].insn != insn)
809 {
810 k--;
811 if (k != j)
812 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
813 }
814 }
815 reg_state[i].use_index = k;
816 }
817}
818
819/* Called when we need to forget about all uses of REGNO after an insn
820 which is identified by RUID. */
821
822static void
823reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
824{
825 int j, k, idx = reg_state[regno].use_index;
826 if (idx < 0)
827 return;
828 j = k = RELOAD_COMBINE_MAX_USES;
829 while (j-- > idx)
830 {
831 if (reg_state[regno].reg_use[j].ruid >= ruid)
832 {
833 k--;
834 if (k != j)
835 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
836 }
837 }
838 reg_state[regno].use_index = k;
839}
840
841/* Find the use of REGNO with the ruid that is highest among those
842 lower than RUID_LIMIT, and return it if it is the only use of this
727047d0 843 reg in the insn. Return NULL otherwise. */
d83ccc81 844
845static struct reg_use *
846reload_combine_closest_single_use (unsigned regno, int ruid_limit)
847{
848 int i, best_ruid = 0;
849 int use_idx = reg_state[regno].use_index;
850 struct reg_use *retval;
851
852 if (use_idx < 0)
853 return NULL;
854 retval = NULL;
855 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
856 {
0ead6a7d 857 struct reg_use *use = reg_state[regno].reg_use + i;
858 int this_ruid = use->ruid;
d83ccc81 859 if (this_ruid >= ruid_limit)
860 continue;
861 if (this_ruid > best_ruid)
862 {
863 best_ruid = this_ruid;
727047d0 864 retval = use;
d83ccc81 865 }
727047d0 866 else if (this_ruid == best_ruid)
d83ccc81 867 retval = NULL;
868 }
869 if (last_label_ruid >= best_ruid)
870 return NULL;
871 return retval;
872}
873
65069495 874/* After we've moved an add insn, fix up any debug insns that occur
875 between the old location of the add and the new location. REG is
876 the destination register of the add insn; REPLACEMENT is the
877 SET_SRC of the add. FROM and TO specify the range in which we
878 should make this change on debug insns. */
0ead6a7d 879
880static void
3aeaa53f 881fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
0ead6a7d 882{
3aeaa53f 883 rtx_insn *insn;
65069495 884 for (insn = from; insn != to; insn = NEXT_INSN (insn))
0ead6a7d 885 {
886 rtx t;
65069495 887
888 if (!DEBUG_INSN_P (insn))
0ead6a7d 889 continue;
65069495 890
891 t = INSN_VAR_LOCATION_LOC (insn);
727047d0 892 t = simplify_replace_rtx (t, reg, replacement);
65069495 893 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
0ead6a7d 894 }
895}
896
692ec7c8 897/* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
898 with SRC in the insn described by USE, taking costs into account. Return
899 true if we made the replacement. */
900
901static bool
902try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
903{
3aeaa53f 904 rtx_insn *use_insn = use->insn;
692ec7c8 905 rtx mem = use->containing_mem;
906 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
907
908 if (mem != NULL_RTX)
909 {
910 addr_space_t as = MEM_ADDR_SPACE (mem);
911 rtx oldaddr = XEXP (mem, 0);
912 rtx newaddr = NULL_RTX;
913 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
914 int new_cost;
915
916 newaddr = simplify_replace_rtx (oldaddr, reg, src);
917 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
918 {
919 XEXP (mem, 0) = newaddr;
920 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
921 XEXP (mem, 0) = oldaddr;
922 if (new_cost <= old_cost
923 && validate_change (use_insn,
924 &XEXP (mem, 0), newaddr, 0))
925 return true;
926 }
927 }
928 else
929 {
930 rtx new_set = single_set (use_insn);
931 if (new_set
932 && REG_P (SET_DEST (new_set))
933 && GET_CODE (SET_SRC (new_set)) == PLUS
934 && REG_P (XEXP (SET_SRC (new_set), 0))
935 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
936 {
937 rtx new_src;
7013e87c 938 int old_cost = set_src_cost (SET_SRC (new_set), speed);
692ec7c8 939
940 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
941 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
942
7013e87c 943 if (set_src_cost (new_src, speed) <= old_cost
692ec7c8 944 && validate_change (use_insn, &SET_SRC (new_set),
945 new_src, 0))
946 return true;
947 }
948 }
949 return false;
950}
951
d83ccc81 952/* Called by reload_combine when scanning INSN. This function tries to detect
953 patterns where a constant is added to a register, and the result is used
954 in an address.
955 Return true if no further processing is needed on INSN; false if it wasn't
956 recognized and should be handled normally. */
957
958static bool
3aeaa53f 959reload_combine_recognize_const_pattern (rtx_insn *insn)
d83ccc81 960{
961 int from_ruid = reload_combine_ruid;
962 rtx set, pat, reg, src, addreg;
963 unsigned int regno;
964 struct reg_use *use;
965 bool must_move_add;
3aeaa53f 966 rtx_insn *add_moved_after_insn = NULL;
d83ccc81 967 int add_moved_after_ruid = 0;
968 int clobbered_regno = -1;
969
970 set = single_set (insn);
971 if (set == NULL_RTX)
972 return false;
973
974 reg = SET_DEST (set);
975 src = SET_SRC (set);
976 if (!REG_P (reg)
977 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1
978 || GET_MODE (reg) != Pmode
979 || reg == stack_pointer_rtx)
980 return false;
981
982 regno = REGNO (reg);
983
984 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
985 uses of REG1 inside an address, or inside another add insn. If
986 possible and profitable, merge the addition into subsequent
987 uses. */
988 if (GET_CODE (src) != PLUS
989 || !REG_P (XEXP (src, 0))
990 || !CONSTANT_P (XEXP (src, 1)))
991 return false;
992
993 addreg = XEXP (src, 0);
994 must_move_add = rtx_equal_p (reg, addreg);
995
996 pat = PATTERN (insn);
997 if (must_move_add && set != pat)
998 {
999 /* We have to be careful when moving the add; apart from the
1000 single_set there may also be clobbers. Recognize one special
1001 case, that of one clobber alongside the set (likely a clobber
1002 of the CC register). */
1003 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
1004 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
1005 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
1006 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
1007 return false;
1008 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
1009 }
1010
1011 do
1012 {
1013 use = reload_combine_closest_single_use (regno, from_ruid);
1014
1015 if (use)
1016 /* Start the search for the next use from here. */
1017 from_ruid = use->ruid;
1018
1019 if (use && GET_MODE (*use->usep) == Pmode)
1020 {
692ec7c8 1021 bool delete_add = false;
3aeaa53f 1022 rtx_insn *use_insn = use->insn;
d83ccc81 1023 int use_ruid = use->ruid;
d83ccc81 1024
1025 /* Avoid moving the add insn past a jump. */
0ead6a7d 1026 if (must_move_add && use_ruid <= last_jump_ruid)
d83ccc81 1027 break;
1028
1029 /* If the add clobbers another hard reg in parallel, don't move
1030 it past a real set of this hard reg. */
1031 if (must_move_add && clobbered_regno >= 0
1032 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
1033 break;
1034
27a6f97d 1035#if HAVE_cc0
33b7314b 1036 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
1037 if (must_move_add && sets_cc0_p (PATTERN (use_insn)))
1038 break;
1039#endif
1040
6aba0ea1 1041 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1042 /* Avoid moving a use of ADDREG past a point where it is stored. */
692ec7c8 1043 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
d83ccc81 1044 break;
1045
692ec7c8 1046 /* We also must not move the addition past an insn that sets
1047 the same register, unless we can combine two add insns. */
1048 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
d83ccc81 1049 {
692ec7c8 1050 if (use->containing_mem == NULL_RTX)
1051 delete_add = true;
1052 else
1053 break;
d83ccc81 1054 }
d83ccc81 1055
692ec7c8 1056 if (try_replace_in_use (use, reg, src))
1057 {
1058 reload_combine_purge_insn_uses (use_insn);
1059 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1060 use_ruid, NULL_RTX);
d83ccc81 1061
692ec7c8 1062 if (delete_add)
1063 {
1064 fixup_debug_insns (reg, src, insn, use_insn);
1065 delete_insn (insn);
1066 return true;
1067 }
1068 if (must_move_add)
1069 {
1070 add_moved_after_insn = use_insn;
1071 add_moved_after_ruid = use_ruid;
d83ccc81 1072 }
692ec7c8 1073 continue;
d83ccc81 1074 }
d83ccc81 1075 }
6aba0ea1 1076 /* If we get here, we couldn't handle this use. */
1077 if (must_move_add)
1078 break;
d83ccc81 1079 }
1080 while (use);
1081
1082 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1083 /* Process the add normally. */
1084 return false;
1085
65069495 1086 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1087
d83ccc81 1088 reorder_insns (insn, insn, add_moved_after_insn);
1089 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1090 reload_combine_split_ruids (add_moved_after_ruid - 1);
1091 reload_combine_note_use (&PATTERN (insn), insn,
1092 add_moved_after_ruid, NULL_RTX);
1093 reg_state[regno].store_ruid = add_moved_after_ruid;
1094
1095 return true;
1096}
1097
fb79f695 1098/* Called by reload_combine when scanning INSN. Try to detect a pattern we
1099 can handle and improve. Return true if no further processing is needed on
1100 INSN; false if it wasn't recognized and should be handled normally. */
1101
1102static bool
3aeaa53f 1103reload_combine_recognize_pattern (rtx_insn *insn)
fb79f695 1104{
1105 rtx set, reg, src;
1106 unsigned int regno;
1107
d83ccc81 1108 set = single_set (insn);
1109 if (set == NULL_RTX)
1110 return false;
1111
1112 reg = SET_DEST (set);
1113 src = SET_SRC (set);
1114 if (!REG_P (reg)
1115 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1)
1116 return false;
1117
1118 regno = REGNO (reg);
1119
fb79f695 1120 /* Look for (set (REGX) (CONST_INT))
1121 (set (REGX) (PLUS (REGX) (REGY)))
1122 ...
1123 ... (MEM (REGX)) ...
1124 and convert it to
1125 (set (REGZ) (CONST_INT))
1126 ...
1127 ... (MEM (PLUS (REGZ) (REGY)))... .
1128
1129 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1130 and that we know all uses of REGX before it dies.
1131 Also, explicitly check that REGX != REGY; our life information
1132 does not yet show whether REGY changes in this insn. */
fb79f695 1133
1134 if (GET_CODE (src) == PLUS
d83ccc81 1135 && reg_state[regno].all_offsets_match
1136 && last_index_reg != -1
fb79f695 1137 && REG_P (XEXP (src, 1))
1138 && rtx_equal_p (XEXP (src, 0), reg)
1139 && !rtx_equal_p (XEXP (src, 1), reg)
727047d0 1140 && reg_state[regno].use_index >= 0
1141 && reg_state[regno].use_index < RELOAD_COMBINE_MAX_USES
fb79f695 1142 && last_label_ruid < reg_state[regno].use_ruid)
1143 {
1144 rtx base = XEXP (src, 1);
3aeaa53f 1145 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
fb79f695 1146 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1147 rtx index_reg = NULL_RTX;
1148 rtx reg_sum = NULL_RTX;
1149 int i;
1150
1151 /* Now we need to set INDEX_REG to an index register (denoted as
1152 REGZ in the illustration above) and REG_SUM to the expression
1153 register+register that we want to use to substitute uses of REG
1154 (typically in MEMs) with. First check REG and BASE for being
1155 index registers; we can use them even if they are not dead. */
1156 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1157 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1158 REGNO (base)))
1159 {
1160 index_reg = reg;
1161 reg_sum = src;
1162 }
1163 else
1164 {
1165 /* Otherwise, look for a free index register. Since we have
1166 checked above that neither REG nor BASE are index registers,
1167 if we find anything at all, it will be different from these
1168 two registers. */
1169 for (i = first_index_reg; i <= last_index_reg; i++)
1170 {
1171 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1172 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1173 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
727047d0 1174 && (call_used_regs[i] || df_regs_ever_live_p (i))
1175 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1176 && !fixed_regs[i] && !global_regs[i]
1177 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1178 && targetm.hard_regno_scratch_ok (i))
fb79f695 1179 {
1180 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1181 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1182 break;
1183 }
1184 }
1185 }
1186
1187 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1188 (REGY), i.e. BASE, is not clobbered before the last use we'll
1189 create. */
1190 if (reg_sum
1191 && prev_set
1192 && CONST_INT_P (SET_SRC (prev_set))
1193 && rtx_equal_p (SET_DEST (prev_set), reg)
fb79f695 1194 && (reg_state[REGNO (base)].store_ruid
1195 <= reg_state[regno].use_ruid))
1196 {
1197 /* Change destination register and, if necessary, the constant
1198 value in PREV, the constant loading instruction. */
1199 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1200 if (reg_state[regno].offset != const0_rtx)
1201 validate_change (prev,
1202 &SET_SRC (prev_set),
1203 GEN_INT (INTVAL (SET_SRC (prev_set))
1204 + INTVAL (reg_state[regno].offset)),
1205 1);
1206
1207 /* Now for every use of REG that we have recorded, replace REG
1208 with REG_SUM. */
1209 for (i = reg_state[regno].use_index;
1210 i < RELOAD_COMBINE_MAX_USES; i++)
1211 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1212 reg_state[regno].reg_use[i].usep,
1213 /* Each change must have its own
1214 replacement. */
1215 reg_sum, 1);
1216
1217 if (apply_change_group ())
1218 {
65069495 1219 struct reg_use *lowest_ruid = NULL;
1220
fb79f695 1221 /* For every new use of REG_SUM, we have to record the use
1222 of BASE therein, i.e. operand 1. */
1223 for (i = reg_state[regno].use_index;
1224 i < RELOAD_COMBINE_MAX_USES; i++)
65069495 1225 {
1226 struct reg_use *use = reg_state[regno].reg_use + i;
1227 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1228 use->ruid, use->containing_mem);
1229 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1230 lowest_ruid = use;
1231 }
1232
1233 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
fb79f695 1234
fb79f695 1235 /* Delete the reg-reg addition. */
1236 delete_insn (insn);
1237
1238 if (reg_state[regno].offset != const0_rtx)
1239 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1240 are now invalid. */
1241 remove_reg_equal_equiv_notes (prev);
1242
1243 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
fb79f695 1244 return true;
1245 }
1246 }
1247 }
1248 return false;
1249}
1250
8f8cadbc 1251static void
3ad4992f 1252reload_combine (void)
8f8cadbc 1253{
3aeaa53f 1254 rtx_insn *insn, *prev;
8f8cadbc 1255 basic_block bb;
1256 unsigned int r;
8f8cadbc 1257 int min_labelno, n_labels;
1258 HARD_REG_SET ever_live_at_start, *label_live;
1259
8f8cadbc 1260 /* To avoid wasting too much time later searching for an index register,
1261 determine the minimum and maximum index register numbers. */
fb79f695 1262 if (INDEX_REG_CLASS == NO_REGS)
1263 last_index_reg = -1;
1264 else if (first_index_reg == -1 && last_index_reg == 0)
1265 {
1266 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1267 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1268 {
1269 if (first_index_reg == -1)
1270 first_index_reg = r;
1271
1272 last_index_reg = r;
1273 }
1274
1275 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1276 to -1 so we'll know to quit early the next time we get here. */
1277 if (first_index_reg == -1)
1278 {
1279 last_index_reg = -1;
1280 return;
1281 }
1282 }
8f8cadbc 1283
8f8cadbc 1284 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1285 information is a bit fuzzy immediately after reload, but it's
1286 still good enough to determine which registers are live at a jump
1287 destination. */
1288 min_labelno = get_first_label_num ();
1289 n_labels = max_label_num () - min_labelno;
4c36ffe6 1290 label_live = XNEWVEC (HARD_REG_SET, n_labels);
8f8cadbc 1291 CLEAR_HARD_REG_SET (ever_live_at_start);
1292
7a46197b 1293 FOR_EACH_BB_REVERSE_FN (bb, cfun)
8f8cadbc 1294 {
5496dbfc 1295 insn = BB_HEAD (bb);
6d7dc5b9 1296 if (LABEL_P (insn))
8f8cadbc 1297 {
1298 HARD_REG_SET live;
deb2741b 1299 bitmap live_in = df_get_live_in (bb);
8f8cadbc 1300
deb2741b 1301 REG_SET_TO_HARD_REG_SET (live, live_in);
1302 compute_use_by_pseudos (&live, live_in);
8f8cadbc 1303 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1304 IOR_HARD_REG_SET (ever_live_at_start, live);
1305 }
1306 }
1307
1308 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
d83ccc81 1309 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
8f8cadbc 1310 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1311 {
d83ccc81 1312 reg_state[r].store_ruid = 0;
1313 reg_state[r].real_store_ruid = 0;
8f8cadbc 1314 if (fixed_regs[r])
1315 reg_state[r].use_index = -1;
1316 else
1317 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1318 }
1319
d83ccc81 1320 for (insn = get_last_insn (); insn; insn = prev)
8f8cadbc 1321 {
8b52f64e 1322 bool control_flow_insn;
8f8cadbc 1323 rtx note;
1324
d83ccc81 1325 prev = PREV_INSN (insn);
1326
8f8cadbc 1327 /* We cannot do our optimization across labels. Invalidating all the use
1328 information we have would be costly, so we just note where the label
1329 is and then later disable any optimization that would cross it. */
6d7dc5b9 1330 if (LABEL_P (insn))
8f8cadbc 1331 last_label_ruid = reload_combine_ruid;
19f69355 1332 else if (BARRIER_P (insn))
1333 {
1334 /* Crossing a barrier resets all the use information. */
1335 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1336 if (! fixed_regs[r])
8f8cadbc 1337 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
19f69355 1338 }
1339 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1340 /* Optimizations across insns being marked as volatile must be
1341 prevented. All the usage information is invalidated
1342 here. */
1343 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1344 if (! fixed_regs[r]
1345 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1346 reg_state[r].use_index = -1;
8f8cadbc 1347
65069495 1348 if (! NONDEBUG_INSN_P (insn))
8f8cadbc 1349 continue;
1350
1351 reload_combine_ruid++;
1352
8b52f64e 1353 control_flow_insn = control_flow_insn_p (insn);
1354 if (control_flow_insn)
d83ccc81 1355 last_jump_ruid = reload_combine_ruid;
1356
1357 if (reload_combine_recognize_const_pattern (insn)
1358 || reload_combine_recognize_pattern (insn))
fb79f695 1359 continue;
8f8cadbc 1360
1361 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1362
6d7dc5b9 1363 if (CALL_P (insn))
8f8cadbc 1364 {
1365 rtx link;
1366
1367 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1368 if (call_used_regs[r])
1369 {
1370 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1371 reg_state[r].store_ruid = reload_combine_ruid;
1372 }
1373
1374 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1375 link = XEXP (link, 1))
1376 {
c8010b80 1377 rtx setuse = XEXP (link, 0);
1378 rtx usage_rtx = XEXP (setuse, 0);
1379 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1380 && REG_P (usage_rtx))
8f8cadbc 1381 {
1382 unsigned int i;
1383 unsigned int start_reg = REGNO (usage_rtx);
8b52f64e 1384 unsigned int num_regs
1385 = hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
1386 unsigned int end_reg = start_reg + num_regs - 1;
8f8cadbc 1387 for (i = start_reg; i <= end_reg; i++)
1388 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1389 {
1390 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1391 reg_state[i].store_ruid = reload_combine_ruid;
1392 }
1393 else
1394 reg_state[i].use_index = -1;
1395 }
1396 }
8f8cadbc 1397 }
f4979459 1398
7777a939 1399 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
8f8cadbc 1400 {
1401 /* Non-spill registers might be used at the call destination in
1402 some unknown fashion, so we have to mark the unknown use. */
1403 HARD_REG_SET *live;
1404
1405 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1406 && JUMP_LABEL (insn))
7777a939 1407 {
1408 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1409 live = NULL;
1410 else
1411 live = &LABEL_LIVE (JUMP_LABEL (insn));
1412 }
8f8cadbc 1413 else
1414 live = &ever_live_at_start;
1415
7777a939 1416 if (live)
1417 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1418 if (TEST_HARD_REG_BIT (*live, r))
1419 reg_state[r].use_index = -1;
8f8cadbc 1420 }
1421
8b52f64e 1422 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1423 NULL_RTX);
1424
8f8cadbc 1425 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1426 {
8b52f64e 1427 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
8f8cadbc 1428 {
1429 int regno = REGNO (XEXP (note, 0));
8f8cadbc 1430 reg_state[regno].store_ruid = reload_combine_ruid;
d83ccc81 1431 reg_state[regno].real_store_ruid = reload_combine_ruid;
8f8cadbc 1432 reg_state[regno].use_index = -1;
1433 }
1434 }
1435 }
1436
1437 free (label_live);
1438}
1439
1440/* Check if DST is a register or a subreg of a register; if it is,
d83ccc81 1441 update store_ruid, real_store_ruid and use_index in the reg_state
1442 structure accordingly. Called via note_stores from reload_combine. */
8f8cadbc 1443
1444static void
81a410b1 1445reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
8f8cadbc 1446{
1447 int regno = 0;
1448 int i;
3754d046 1449 machine_mode mode = GET_MODE (dst);
8f8cadbc 1450
1451 if (GET_CODE (dst) == SUBREG)
1452 {
1453 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1454 GET_MODE (SUBREG_REG (dst)),
1455 SUBREG_BYTE (dst),
1456 GET_MODE (dst));
1457 dst = SUBREG_REG (dst);
1458 }
fe6524b0 1459
1460 /* Some targets do argument pushes without adding REG_INC notes. */
1461
1462 if (MEM_P (dst))
1463 {
1464 dst = XEXP (dst, 0);
1465 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
a5dda0b9 1466 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1467 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
fe6524b0 1468 {
1469 regno = REGNO (XEXP (dst, 0));
1470 mode = GET_MODE (XEXP (dst, 0));
1471 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1472 {
1473 /* We could probably do better, but for now mark the register
1474 as used in an unknown fashion and set/clobbered at this
1475 insn. */
1476 reg_state[i].use_index = -1;
1477 reg_state[i].store_ruid = reload_combine_ruid;
1478 reg_state[i].real_store_ruid = reload_combine_ruid;
1479 }
1480 }
1481 else
1482 return;
1483 }
1484
8ad4c111 1485 if (!REG_P (dst))
8f8cadbc 1486 return;
1487 regno += REGNO (dst);
1488
1489 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1490 careful with registers / register parts that are not full words.
476d094d 1491 Similarly for ZERO_EXTRACT. */
d83ccc81 1492 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
8f8cadbc 1493 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1494 {
67d6c12b 1495 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
8f8cadbc 1496 {
1497 reg_state[i].use_index = -1;
1498 reg_state[i].store_ruid = reload_combine_ruid;
d83ccc81 1499 reg_state[i].real_store_ruid = reload_combine_ruid;
8f8cadbc 1500 }
1501 }
1502 else
1503 {
67d6c12b 1504 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
8f8cadbc 1505 {
1506 reg_state[i].store_ruid = reload_combine_ruid;
d83ccc81 1507 if (GET_CODE (set) == SET)
1508 reg_state[i].real_store_ruid = reload_combine_ruid;
8f8cadbc 1509 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1510 }
1511 }
1512}
1513
1514/* XP points to a piece of rtl that has to be checked for any uses of
1515 registers.
1516 *XP is the pattern of INSN, or a part of it.
1517 Called from reload_combine, and recursively by itself. */
1518static void
3aeaa53f 1519reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
8f8cadbc 1520{
1521 rtx x = *xp;
1522 enum rtx_code code = x->code;
1523 const char *fmt;
1524 int i, j;
1525 rtx offset = const0_rtx; /* For the REG case below. */
1526
1527 switch (code)
1528 {
1529 case SET:
8ad4c111 1530 if (REG_P (SET_DEST (x)))
8f8cadbc 1531 {
d83ccc81 1532 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
8f8cadbc 1533 return;
1534 }
1535 break;
1536
1537 case USE:
1538 /* If this is the USE of a return value, we can't change it. */
8ad4c111 1539 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8f8cadbc 1540 {
1541 /* Mark the return register as used in an unknown fashion. */
1542 rtx reg = XEXP (x, 0);
1543 int regno = REGNO (reg);
67d6c12b 1544 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8f8cadbc 1545
1546 while (--nregs >= 0)
1547 reg_state[regno + nregs].use_index = -1;
1548 return;
1549 }
1550 break;
1551
1552 case CLOBBER:
8ad4c111 1553 if (REG_P (SET_DEST (x)))
8f8cadbc 1554 {
1555 /* No spurious CLOBBERs of pseudo registers may remain. */
876760f6 1556 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
8f8cadbc 1557 return;
1558 }
1559 break;
1560
1561 case PLUS:
1562 /* We are interested in (plus (reg) (const_int)) . */
8ad4c111 1563 if (!REG_P (XEXP (x, 0))
971ba038 1564 || !CONST_INT_P (XEXP (x, 1)))
8f8cadbc 1565 break;
1566 offset = XEXP (x, 1);
1567 x = XEXP (x, 0);
1568 /* Fall through. */
1569 case REG:
1570 {
1571 int regno = REGNO (x);
1572 int use_index;
1573 int nregs;
1574
1575 /* No spurious USEs of pseudo registers may remain. */
876760f6 1576 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8f8cadbc 1577
67d6c12b 1578 nregs = hard_regno_nregs[regno][GET_MODE (x)];
8f8cadbc 1579
1580 /* We can't substitute into multi-hard-reg uses. */
1581 if (nregs > 1)
1582 {
1583 while (--nregs >= 0)
1584 reg_state[regno + nregs].use_index = -1;
1585 return;
1586 }
1587
727047d0 1588 /* We may be called to update uses in previously seen insns.
1589 Don't add uses beyond the last store we saw. */
1590 if (ruid < reg_state[regno].store_ruid)
1591 return;
1592
8f8cadbc 1593 /* If this register is already used in some unknown fashion, we
1594 can't do anything.
1595 If we decrement the index from zero to -1, we can't store more
1596 uses, so this register becomes used in an unknown fashion. */
1597 use_index = --reg_state[regno].use_index;
1598 if (use_index < 0)
1599 return;
1600
d83ccc81 1601 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
8f8cadbc 1602 {
1603 /* This is the first use of this register we have seen since we
1604 marked it as dead. */
1605 reg_state[regno].offset = offset;
d83ccc81 1606 reg_state[regno].all_offsets_match = true;
1607 reg_state[regno].use_ruid = ruid;
8f8cadbc 1608 }
0ead6a7d 1609 else
1610 {
1611 if (reg_state[regno].use_ruid > ruid)
1612 reg_state[regno].use_ruid = ruid;
1613
1614 if (! rtx_equal_p (offset, reg_state[regno].offset))
1615 reg_state[regno].all_offsets_match = false;
1616 }
d83ccc81 1617
8f8cadbc 1618 reg_state[regno].reg_use[use_index].insn = insn;
d83ccc81 1619 reg_state[regno].reg_use[use_index].ruid = ruid;
1620 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
8f8cadbc 1621 reg_state[regno].reg_use[use_index].usep = xp;
1622 return;
1623 }
1624
d83ccc81 1625 case MEM:
1626 containing_mem = x;
1627 break;
1628
8f8cadbc 1629 default:
1630 break;
1631 }
1632
1633 /* Recursively process the components of X. */
1634 fmt = GET_RTX_FORMAT (code);
1635 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1636 {
1637 if (fmt[i] == 'e')
d83ccc81 1638 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
8f8cadbc 1639 else if (fmt[i] == 'E')
1640 {
1641 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
d83ccc81 1642 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1643 containing_mem);
8f8cadbc 1644 }
1645 }
1646}
1647\f
1648/* See if we can reduce the cost of a constant by replacing a move
1649 with an add. We track situations in which a register is set to a
1650 constant or to a register plus a constant. */
1651/* We cannot do our optimization across labels. Invalidating all the
1652 information about register contents we have would be costly, so we
1653 use move2add_last_label_luid to note where the label is and then
1654 later disable any optimization that would cross it.
6132c0d0 1655 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1656 are only valid if reg_set_luid[n] is greater than
b6b86e87 1657 move2add_last_label_luid.
1658 For a set that established a new (potential) base register with
1659 non-constant value, we use move2add_luid from the place where the
1660 setting insn is encountered; registers based off that base then
1661 get the same reg_set_luid. Constants all get
1662 move2add_last_label_luid + 1 as their reg_set_luid. */
8f8cadbc 1663static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1664
1665/* If reg_base_reg[n] is negative, register n has been set to
6132c0d0 1666 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
8f8cadbc 1667 If reg_base_reg[n] is non-negative, register n has been set to the
1668 sum of reg_offset[n] and the value of register reg_base_reg[n]
b6b86e87 1669 before reg_set_luid[n], calculated in mode reg_mode[n] .
1670 For multi-hard-register registers, all but the first one are
1671 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1672 marks it as invalid. */
8f8cadbc 1673static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1674static int reg_base_reg[FIRST_PSEUDO_REGISTER];
6132c0d0 1675static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
3754d046 1676static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
8f8cadbc 1677
1678/* move2add_luid is linearly increased while scanning the instructions
1679 from first to last. It is used to set reg_set_luid in
1680 reload_cse_move2add and move2add_note_store. */
1681static int move2add_luid;
1682
1683/* move2add_last_label_luid is set whenever a label is found. Labels
1684 invalidate all previously collected reg_offset data. */
1685static int move2add_last_label_luid;
1686
1687/* ??? We don't know how zero / sign extension is handled, hence we
1688 can't go from a narrower to a wider mode. */
1689#define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1690 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1691 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
396f2130 1692 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
8f8cadbc 1693
b6b86e87 1694/* Record that REG is being set to a value with the mode of REG. */
1695
1696static void
1697move2add_record_mode (rtx reg)
1698{
1699 int regno, nregs;
3754d046 1700 machine_mode mode = GET_MODE (reg);
b6b86e87 1701
1702 if (GET_CODE (reg) == SUBREG)
1703 {
1704 regno = subreg_regno (reg);
1705 nregs = subreg_nregs (reg);
1706 }
1707 else if (REG_P (reg))
1708 {
1709 regno = REGNO (reg);
1710 nregs = hard_regno_nregs[regno][mode];
1711 }
1712 else
1713 gcc_unreachable ();
1714 for (int i = nregs - 1; i > 0; i--)
1715 reg_mode[regno + i] = BLKmode;
1716 reg_mode[regno] = mode;
1717}
1718
1719/* Record that REG is being set to the sum of SYM and OFF. */
1720
1721static void
1722move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1723{
1724 int regno = REGNO (reg);
1725
1726 move2add_record_mode (reg);
1727 reg_set_luid[regno] = move2add_luid;
1728 reg_base_reg[regno] = -1;
1729 reg_symbol_ref[regno] = sym;
1730 reg_offset[regno] = INTVAL (off);
1731}
1732
1733/* Check if REGNO contains a valid value in MODE. */
1734
1735static bool
3754d046 1736move2add_valid_value_p (int regno, machine_mode mode)
b6b86e87 1737{
5bea3269 1738 if (reg_set_luid[regno] <= move2add_last_label_luid)
b6b86e87 1739 return false;
1740
5bea3269 1741 if (mode != reg_mode[regno])
1742 {
1743 if (!MODES_OK_FOR_MOVE2ADD (mode, reg_mode[regno]))
1744 return false;
1745 /* The value loaded into regno in reg_mode[regno] is also valid in
1746 mode after truncation only if (REG:mode regno) is the lowpart of
1747 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1748 regno of the lowpart might be different. */
1749 int s_off = subreg_lowpart_offset (mode, reg_mode[regno]);
1750 s_off = subreg_regno_offset (regno, reg_mode[regno], s_off, mode);
1751 if (s_off != 0)
1752 /* We could in principle adjust regno, check reg_mode[regno] to be
1753 BLKmode, and return s_off to the caller (vs. -1 for failure),
1754 but we currently have no callers that could make use of this
1755 information. */
1756 return false;
1757 }
1758
b6b86e87 1759 for (int i = hard_regno_nregs[regno][mode] - 1; i > 0; i--)
1760 if (reg_mode[regno + i] != BLKmode)
1761 return false;
1762 return true;
1763}
1764
6132c0d0 1765/* This function is called with INSN that sets REG to (SYM + OFF),
1766 while REG is known to already have value (SYM + offset).
1767 This function tries to change INSN into an add instruction
1768 (set (REG) (plus (REG) (OFF - offset))) using the known value.
d83ccc81 1769 It also updates the information about REG's known value.
1770 Return true if we made a change. */
6132c0d0 1771
d83ccc81 1772static bool
3aeaa53f 1773move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
6132c0d0 1774{
1775 rtx pat = PATTERN (insn);
1776 rtx src = SET_SRC (pat);
1777 int regno = REGNO (reg);
60141df0 1778 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno],
6132c0d0 1779 GET_MODE (reg));
1780 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
d83ccc81 1781 bool changed = false;
6132c0d0 1782
1783 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1784 use (set (reg) (reg)) instead.
1785 We don't delete this insn, nor do we convert it into a
1786 note, to avoid losing register notes or the return
1787 value flag. jump2 already knows how to get rid of
1788 no-op moves. */
1789 if (new_src == const0_rtx)
1790 {
1791 /* If the constants are different, this is a
1792 truncation, that, if turned into (set (reg)
1793 (reg)), would be discarded. Maybe we should
1794 try a truncMN pattern? */
1795 if (INTVAL (off) == reg_offset [regno])
d83ccc81 1796 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
6132c0d0 1797 }
c9a03487 1798 else
6132c0d0 1799 {
c9a03487 1800 struct full_rtx_costs oldcst, newcst;
6132c0d0 1801 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
c9a03487 1802
b72d459f 1803 get_full_set_rtx_cost (pat, &oldcst);
c9a03487 1804 SET_SRC (pat) = tem;
b72d459f 1805 get_full_set_rtx_cost (pat, &newcst);
c9a03487 1806 SET_SRC (pat) = src;
1807
1808 if (costs_lt_p (&newcst, &oldcst, speed)
1809 && have_add2_insn (reg, new_src))
1810 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1811 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
6132c0d0 1812 {
3754d046 1813 machine_mode narrow_mode;
c9a03487 1814 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1815 narrow_mode != VOIDmode
1816 && narrow_mode != GET_MODE (reg);
1817 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
6132c0d0 1818 {
c9a03487 1819 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1820 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1821 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1822 {
17ce39e3 1823 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
c9a03487 1824 rtx narrow_src = gen_int_mode (INTVAL (off),
1825 narrow_mode);
1826 rtx new_set
1827 = gen_rtx_SET (VOIDmode,
1828 gen_rtx_STRICT_LOW_PART (VOIDmode,
1829 narrow_reg),
1830 narrow_src);
d4177981 1831 get_full_set_rtx_cost (new_set, &newcst);
1832 if (costs_lt_p (&newcst, &oldcst, speed))
1833 {
1834 changed = validate_change (insn, &PATTERN (insn),
1835 new_set, 0);
1836 if (changed)
1837 break;
1838 }
c9a03487 1839 }
6132c0d0 1840 }
1841 }
1842 }
b6b86e87 1843 move2add_record_sym_value (reg, sym, off);
d83ccc81 1844 return changed;
6132c0d0 1845}
1846
1847
1848/* This function is called with INSN that sets REG to (SYM + OFF),
1849 but REG doesn't have known value (SYM + offset). This function
1850 tries to find another register which is known to already have
1851 value (SYM + offset) and change INSN into an add instruction
1852 (set (REG) (plus (the found register) (OFF - offset))) if such
1853 a register is found. It also updates the information about
d83ccc81 1854 REG's known value.
1855 Return true iff we made a change. */
6132c0d0 1856
d83ccc81 1857static bool
3aeaa53f 1858move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
6132c0d0 1859{
1860 rtx pat = PATTERN (insn);
1861 rtx src = SET_SRC (pat);
1862 int regno = REGNO (reg);
c2130a4b 1863 int min_regno = 0;
6132c0d0 1864 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1865 int i;
d83ccc81 1866 bool changed = false;
c9a03487 1867 struct full_rtx_costs oldcst, newcst, mincst;
1868 rtx plus_expr;
1869
1870 init_costs_to_max (&mincst);
b72d459f 1871 get_full_set_rtx_cost (pat, &oldcst);
c9a03487 1872
1873 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1874 SET_SRC (pat) = plus_expr;
6132c0d0 1875
1876 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
b6b86e87 1877 if (move2add_valid_value_p (i, GET_MODE (reg))
6132c0d0 1878 && reg_base_reg[i] < 0
1879 && reg_symbol_ref[i] != NULL_RTX
1880 && rtx_equal_p (sym, reg_symbol_ref[i]))
1881 {
60141df0 1882 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
6132c0d0 1883 GET_MODE (reg));
1884 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1885 use (set (reg) (reg)) instead.
1886 We don't delete this insn, nor do we convert it into a
1887 note, to avoid losing register notes or the return
1888 value flag. jump2 already knows how to get rid of
1889 no-op moves. */
1890 if (new_src == const0_rtx)
1891 {
c9a03487 1892 init_costs_to_zero (&mincst);
6132c0d0 1893 min_regno = i;
1894 break;
1895 }
1896 else
1897 {
c9a03487 1898 XEXP (plus_expr, 1) = new_src;
b72d459f 1899 get_full_set_rtx_cost (pat, &newcst);
c9a03487 1900
1901 if (costs_lt_p (&newcst, &mincst, speed))
6132c0d0 1902 {
c9a03487 1903 mincst = newcst;
6132c0d0 1904 min_regno = i;
1905 }
1906 }
1907 }
c9a03487 1908 SET_SRC (pat) = src;
6132c0d0 1909
c9a03487 1910 if (costs_lt_p (&mincst, &oldcst, speed))
6132c0d0 1911 {
1912 rtx tem;
1913
1914 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1915 if (i != min_regno)
1916 {
60141df0 1917 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
6132c0d0 1918 GET_MODE (reg));
1919 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1920 }
d83ccc81 1921 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1922 changed = true;
6132c0d0 1923 }
1924 reg_set_luid[regno] = move2add_luid;
b6b86e87 1925 move2add_record_sym_value (reg, sym, off);
d83ccc81 1926 return changed;
6132c0d0 1927}
1928
d83ccc81 1929/* Convert move insns with constant inputs to additions if they are cheaper.
1930 Return true if any changes were made. */
1931static bool
3aeaa53f 1932reload_cse_move2add (rtx_insn *first)
8f8cadbc 1933{
1934 int i;
3aeaa53f 1935 rtx_insn *insn;
d83ccc81 1936 bool changed = false;
8f8cadbc 1937
1938 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
6132c0d0 1939 {
1940 reg_set_luid[i] = 0;
1941 reg_offset[i] = 0;
1942 reg_base_reg[i] = 0;
1943 reg_symbol_ref[i] = NULL_RTX;
1944 reg_mode[i] = VOIDmode;
1945 }
8f8cadbc 1946
1947 move2add_last_label_luid = 0;
1948 move2add_luid = 2;
1949 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1950 {
1951 rtx pat, note;
1952
6d7dc5b9 1953 if (LABEL_P (insn))
8f8cadbc 1954 {
1955 move2add_last_label_luid = move2add_luid;
1956 /* We're going to increment move2add_luid twice after a
1957 label, so that we can use move2add_last_label_luid + 1 as
1958 the luid for constants. */
1959 move2add_luid++;
1960 continue;
1961 }
1962 if (! INSN_P (insn))
1963 continue;
1964 pat = PATTERN (insn);
1965 /* For simplicity, we only perform this optimization on
1966 straightforward SETs. */
1967 if (GET_CODE (pat) == SET
8ad4c111 1968 && REG_P (SET_DEST (pat)))
8f8cadbc 1969 {
1970 rtx reg = SET_DEST (pat);
1971 int regno = REGNO (reg);
1972 rtx src = SET_SRC (pat);
1973
1974 /* Check if we have valid information on the contents of this
1975 register in the mode of REG. */
b6b86e87 1976 if (move2add_valid_value_p (regno, GET_MODE (reg))
3072d30e 1977 && dbg_cnt (cse2_move2add))
8f8cadbc 1978 {
1979 /* Try to transform (set (REGX) (CONST_INT A))
1980 ...
1981 (set (REGX) (CONST_INT B))
1982 to
1983 (set (REGX) (CONST_INT A))
1984 ...
1985 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1986 or
1987 (set (REGX) (CONST_INT A))
1988 ...
1989 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1990 */
1991
6132c0d0 1992 if (CONST_INT_P (src)
1993 && reg_base_reg[regno] < 0
1994 && reg_symbol_ref[regno] == NULL_RTX)
8f8cadbc 1995 {
d83ccc81 1996 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
8f8cadbc 1997 continue;
1998 }
1999
2000 /* Try to transform (set (REGX) (REGY))
2001 (set (REGX) (PLUS (REGX) (CONST_INT A)))
2002 ...
2003 (set (REGX) (REGY))
2004 (set (REGX) (PLUS (REGX) (CONST_INT B)))
2005 to
2006 (set (REGX) (REGY))
2007 (set (REGX) (PLUS (REGX) (CONST_INT A)))
2008 ...
2009 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
8ad4c111 2010 else if (REG_P (src)
8f8cadbc 2011 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
2012 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
b6b86e87 2013 && move2add_valid_value_p (REGNO (src), GET_MODE (reg)))
8f8cadbc 2014 {
3aeaa53f 2015 rtx_insn *next = next_nonnote_nondebug_insn (insn);
8f8cadbc 2016 rtx set = NULL_RTX;
2017 if (next)
2018 set = single_set (next);
2019 if (set
2020 && SET_DEST (set) == reg
2021 && GET_CODE (SET_SRC (set)) == PLUS
2022 && XEXP (SET_SRC (set), 0) == reg
971ba038 2023 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
8f8cadbc 2024 {
2025 rtx src3 = XEXP (SET_SRC (set), 1);
60141df0 2026 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
8f8cadbc 2027 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
2028 HOST_WIDE_INT regno_offset = reg_offset[regno];
2029 rtx new_src =
69e41517 2030 gen_int_mode (added_offset
2031 + base_offset
2032 - regno_offset,
2033 GET_MODE (reg));
f529eb25 2034 bool success = false;
2035 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
8f8cadbc 2036
2037 if (new_src == const0_rtx)
2038 /* See above why we create (set (reg) (reg)) here. */
2039 success
2040 = validate_change (next, &SET_SRC (set), reg, 0);
c9a03487 2041 else
8f8cadbc 2042 {
c9a03487 2043 rtx old_src = SET_SRC (set);
2044 struct full_rtx_costs oldcst, newcst;
2045 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
2046
b72d459f 2047 get_full_set_rtx_cost (set, &oldcst);
c9a03487 2048 SET_SRC (set) = tem;
7013e87c 2049 get_full_set_src_cost (tem, &newcst);
c9a03487 2050 SET_SRC (set) = old_src;
2051 costs_add_n_insns (&oldcst, 1);
2052
2053 if (costs_lt_p (&newcst, &oldcst, speed)
2054 && have_add2_insn (reg, new_src))
2055 {
2056 rtx newpat = gen_rtx_SET (VOIDmode, reg, tem);
2057 success
2058 = validate_change (next, &PATTERN (next),
2059 newpat, 0);
2060 }
8f8cadbc 2061 }
2062 if (success)
2063 delete_insn (insn);
d83ccc81 2064 changed |= success;
8f8cadbc 2065 insn = next;
b6b86e87 2066 move2add_record_mode (reg);
2067 reg_offset[regno]
2068 = trunc_int_for_mode (added_offset + base_offset,
2069 GET_MODE (reg));
8f8cadbc 2070 continue;
2071 }
2072 }
2073 }
6132c0d0 2074
2075 /* Try to transform
2076 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2077 ...
2078 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2079 to
2080 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2081 ...
2082 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2083 if ((GET_CODE (src) == SYMBOL_REF
2084 || (GET_CODE (src) == CONST
2085 && GET_CODE (XEXP (src, 0)) == PLUS
2086 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2087 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2088 && dbg_cnt (cse2_move2add))
2089 {
2090 rtx sym, off;
2091
2092 if (GET_CODE (src) == SYMBOL_REF)
2093 {
2094 sym = src;
2095 off = const0_rtx;
2096 }
2097 else
2098 {
2099 sym = XEXP (XEXP (src, 0), 0);
2100 off = XEXP (XEXP (src, 0), 1);
2101 }
2102
2103 /* If the reg already contains the value which is sum of
2104 sym and some constant value, we can use an add2 insn. */
b6b86e87 2105 if (move2add_valid_value_p (regno, GET_MODE (reg))
6132c0d0 2106 && reg_base_reg[regno] < 0
2107 && reg_symbol_ref[regno] != NULL_RTX
2108 && rtx_equal_p (sym, reg_symbol_ref[regno]))
d83ccc81 2109 changed |= move2add_use_add2_insn (reg, sym, off, insn);
6132c0d0 2110
2111 /* Otherwise, we have to find a register whose value is sum
2112 of sym and some constant value. */
2113 else
d83ccc81 2114 changed |= move2add_use_add3_insn (reg, sym, off, insn);
6132c0d0 2115
2116 continue;
2117 }
8f8cadbc 2118 }
2119
2120 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2121 {
2122 if (REG_NOTE_KIND (note) == REG_INC
8ad4c111 2123 && REG_P (XEXP (note, 0)))
8f8cadbc 2124 {
2125 /* Reset the information about this register. */
2126 int regno = REGNO (XEXP (note, 0));
2127 if (regno < FIRST_PSEUDO_REGISTER)
b6b86e87 2128 {
2129 move2add_record_mode (XEXP (note, 0));
2130 reg_mode[regno] = VOIDmode;
2131 }
8f8cadbc 2132 }
2133 }
6132c0d0 2134 note_stores (PATTERN (insn), move2add_note_store, insn);
8f8cadbc 2135
2136 /* If INSN is a conditional branch, we try to extract an
2137 implicit set out of it. */
f222bc3b 2138 if (any_condjump_p (insn))
8f8cadbc 2139 {
2140 rtx cnd = fis_get_condition (insn);
2141
2142 if (cnd != NULL_RTX
2143 && GET_CODE (cnd) == NE
8ad4c111 2144 && REG_P (XEXP (cnd, 0))
f222bc3b 2145 && !reg_set_p (XEXP (cnd, 0), insn)
8f8cadbc 2146 /* The following two checks, which are also in
2147 move2add_note_store, are intended to reduce the
2148 number of calls to gen_rtx_SET to avoid memory
2149 allocation if possible. */
2150 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
67d6c12b 2151 && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
971ba038 2152 && CONST_INT_P (XEXP (cnd, 1)))
8f8cadbc 2153 {
2154 rtx implicit_set =
2155 gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
6132c0d0 2156 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
8f8cadbc 2157 }
2158 }
2159
2160 /* If this is a CALL_INSN, all call used registers are stored with
2161 unknown values. */
6d7dc5b9 2162 if (CALL_P (insn))
8f8cadbc 2163 {
2164 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2165 {
2166 if (call_used_regs[i])
2167 /* Reset the information about this register. */
b6b86e87 2168 reg_mode[i] = VOIDmode;
8f8cadbc 2169 }
2170 }
2171 }
d83ccc81 2172 return changed;
8f8cadbc 2173}
2174
6132c0d0 2175/* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2176 contains SET.
8f8cadbc 2177 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2178 Called from reload_cse_move2add via note_stores. */
2179
2180static void
6132c0d0 2181move2add_note_store (rtx dst, const_rtx set, void *data)
8f8cadbc 2182{
3aeaa53f 2183 rtx_insn *insn = (rtx_insn *) data;
8f8cadbc 2184 unsigned int regno = 0;
3754d046 2185 machine_mode mode = GET_MODE (dst);
8f8cadbc 2186
8f8cadbc 2187 /* Some targets do argument pushes without adding REG_INC notes. */
2188
e16ceb8e 2189 if (MEM_P (dst))
8f8cadbc 2190 {
2191 dst = XEXP (dst, 0);
2192 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2193 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
b6b86e87 2194 reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
8f8cadbc 2195 return;
2196 }
8f8cadbc 2197
b6b86e87 2198 if (GET_CODE (dst) == SUBREG)
2199 regno = subreg_regno (dst);
2200 else if (REG_P (dst))
2201 regno = REGNO (dst);
2202 else
2203 return;
8f8cadbc 2204
b6b86e87 2205 if (SCALAR_INT_MODE_P (mode)
2206 && GET_CODE (set) == SET)
6132c0d0 2207 {
2208 rtx note, sym = NULL_RTX;
b6b86e87 2209 rtx off;
6132c0d0 2210
2211 note = find_reg_equal_equiv_note (insn);
2212 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2213 {
2214 sym = XEXP (note, 0);
b6b86e87 2215 off = const0_rtx;
6132c0d0 2216 }
2217 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2218 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2219 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2220 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2221 {
2222 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
b6b86e87 2223 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
6132c0d0 2224 }
2225
2226 if (sym != NULL_RTX)
2227 {
b6b86e87 2228 move2add_record_sym_value (dst, sym, off);
6132c0d0 2229 return;
2230 }
2231 }
2232
b6b86e87 2233 if (SCALAR_INT_MODE_P (mode)
2234 && GET_CODE (set) == SET
8f8cadbc 2235 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
8f8cadbc 2236 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2237 {
2238 rtx src = SET_SRC (set);
2239 rtx base_reg;
60141df0 2240 unsigned HOST_WIDE_INT offset;
8f8cadbc 2241 int base_regno;
8f8cadbc 2242
2243 switch (GET_CODE (src))
2244 {
2245 case PLUS:
8ad4c111 2246 if (REG_P (XEXP (src, 0)))
8f8cadbc 2247 {
2248 base_reg = XEXP (src, 0);
2249
971ba038 2250 if (CONST_INT_P (XEXP (src, 1)))
60141df0 2251 offset = UINTVAL (XEXP (src, 1));
8ad4c111 2252 else if (REG_P (XEXP (src, 1))
b6b86e87 2253 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
8f8cadbc 2254 {
c389f975 2255 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2256 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
8f8cadbc 2257 offset = reg_offset[REGNO (XEXP (src, 1))];
2258 /* Maybe the first register is known to be a
2259 constant. */
b6b86e87 2260 else if (move2add_valid_value_p (REGNO (base_reg), mode)
c389f975 2261 && reg_base_reg[REGNO (base_reg)] < 0
2262 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
8f8cadbc 2263 {
2264 offset = reg_offset[REGNO (base_reg)];
2265 base_reg = XEXP (src, 1);
2266 }
2267 else
2268 goto invalidate;
2269 }
2270 else
2271 goto invalidate;
2272
2273 break;
2274 }
2275
2276 goto invalidate;
2277
2278 case REG:
2279 base_reg = src;
2280 offset = 0;
2281 break;
2282
2283 case CONST_INT:
2284 /* Start tracking the register as a constant. */
2285 reg_base_reg[regno] = -1;
6132c0d0 2286 reg_symbol_ref[regno] = NULL_RTX;
8f8cadbc 2287 reg_offset[regno] = INTVAL (SET_SRC (set));
2288 /* We assign the same luid to all registers set to constants. */
2289 reg_set_luid[regno] = move2add_last_label_luid + 1;
b6b86e87 2290 move2add_record_mode (dst);
8f8cadbc 2291 return;
2292
2293 default:
b6b86e87 2294 goto invalidate;
8f8cadbc 2295 }
2296
2297 base_regno = REGNO (base_reg);
2298 /* If information about the base register is not valid, set it
2299 up as a new base register, pretending its value is known
2300 starting from the current insn. */
b6b86e87 2301 if (!move2add_valid_value_p (base_regno, mode))
8f8cadbc 2302 {
2303 reg_base_reg[base_regno] = base_regno;
6132c0d0 2304 reg_symbol_ref[base_regno] = NULL_RTX;
8f8cadbc 2305 reg_offset[base_regno] = 0;
2306 reg_set_luid[base_regno] = move2add_luid;
b6b86e87 2307 gcc_assert (GET_MODE (base_reg) == mode);
2308 move2add_record_mode (base_reg);
8f8cadbc 2309 }
8f8cadbc 2310
2311 /* Copy base information from our base register. */
2312 reg_set_luid[regno] = reg_set_luid[base_regno];
2313 reg_base_reg[regno] = reg_base_reg[base_regno];
6132c0d0 2314 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
8f8cadbc 2315
2316 /* Compute the sum of the offsets or constants. */
b6b86e87 2317 reg_offset[regno]
2318 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2319
2320 move2add_record_mode (dst);
8f8cadbc 2321 }
2322 else
2323 {
b6b86e87 2324 invalidate:
2325 /* Invalidate the contents of the register. */
2326 move2add_record_mode (dst);
2327 reg_mode[regno] = VOIDmode;
8f8cadbc 2328 }
2329}
77fce4cd 2330\f
cbe8bda8 2331namespace {
2332
2333const pass_data pass_data_postreload_cse =
77fce4cd 2334{
cbe8bda8 2335 RTL_PASS, /* type */
2336 "postreload", /* name */
2337 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 2338 TV_RELOAD_CSE_REGS, /* tv_id */
2339 0, /* properties_required */
2340 0, /* properties_provided */
2341 0, /* properties_destroyed */
2342 0, /* todo_flags_start */
8b88439e 2343 TODO_df_finish, /* todo_flags_finish */
77fce4cd 2344};
cbe8bda8 2345
2346class pass_postreload_cse : public rtl_opt_pass
2347{
2348public:
9af5ce0c 2349 pass_postreload_cse (gcc::context *ctxt)
2350 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
cbe8bda8 2351 {}
2352
2353 /* opt_pass methods: */
31315c24 2354 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2355
65b0537f 2356 virtual unsigned int execute (function *);
cbe8bda8 2357
2358}; // class pass_postreload_cse
2359
65b0537f 2360unsigned int
2361pass_postreload_cse::execute (function *fun)
2362{
2363 if (!dbg_cnt (postreload_cse))
2364 return 0;
2365
2366 /* Do a very simple CSE pass over just the hard registers. */
2367 reload_cse_regs (get_insns ());
2368 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2369 Remove any EH edges associated with them. */
2370 if (fun->can_throw_non_call_exceptions
2371 && purge_all_dead_edges ())
2372 cleanup_cfg (0);
2373
2374 return 0;
2375}
2376
cbe8bda8 2377} // anon namespace
2378
2379rtl_opt_pass *
2380make_pass_postreload_cse (gcc::context *ctxt)
2381{
2382 return new pass_postreload_cse (ctxt);
2383}