]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/postreload.c
* output.h (__gcc_host_wide_int__): Move to hwint.h.
[thirdparty/gcc.git] / gcc / postreload.c
CommitLineData
8f8cadbc 1/* Perform simple optimizations to clean up the result of reload.
3072d30e 2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
35af0188 3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
fd813641 4 2010, 2011 Free Software Foundation, Inc.
8f8cadbc 5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
8c4c00c1 10Software Foundation; either version 3, or (at your option) any later
8f8cadbc 11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
8c4c00c1 19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
8f8cadbc 21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
26
27#include "machmode.h"
28#include "hard-reg-set.h"
29#include "rtl.h"
30#include "tm_p.h"
31#include "obstack.h"
32#include "insn-config.h"
33#include "flags.h"
34#include "function.h"
35#include "expr.h"
36#include "optabs.h"
37#include "regs.h"
38#include "basic-block.h"
39#include "reload.h"
40#include "recog.h"
8f8cadbc 41#include "cselib.h"
0b205f4c 42#include "diagnostic-core.h"
8f8cadbc 43#include "except.h"
44#include "tree.h"
727047d0 45#include "target.h"
77fce4cd 46#include "timevar.h"
47#include "tree-pass.h"
3072d30e 48#include "df.h"
49#include "dbgcnt.h"
8f8cadbc 50
3ad4992f 51static int reload_cse_noop_set_p (rtx);
52static void reload_cse_simplify (rtx, rtx);
53static void reload_cse_regs_1 (rtx);
54static int reload_cse_simplify_set (rtx, rtx);
55static int reload_cse_simplify_operands (rtx, rtx);
8f8cadbc 56
3ad4992f 57static void reload_combine (void);
d83ccc81 58static void reload_combine_note_use (rtx *, rtx, int, rtx);
81a410b1 59static void reload_combine_note_store (rtx, const_rtx, void *);
8f8cadbc 60
d83ccc81 61static bool reload_cse_move2add (rtx);
81a410b1 62static void move2add_note_store (rtx, const_rtx, void *);
8f8cadbc 63
64/* Call cse / combine like post-reload optimization phases.
65 FIRST is the first instruction. */
98799adc 66
67static void
3ad4992f 68reload_cse_regs (rtx first ATTRIBUTE_UNUSED)
8f8cadbc 69{
d83ccc81 70 bool moves_converted;
8f8cadbc 71 reload_cse_regs_1 (first);
72 reload_combine ();
d83ccc81 73 moves_converted = reload_cse_move2add (first);
8f8cadbc 74 if (flag_expensive_optimizations)
d83ccc81 75 {
76 if (moves_converted)
77 reload_combine ();
78 reload_cse_regs_1 (first);
79 }
8f8cadbc 80}
81
82/* See whether a single set SET is a noop. */
83static int
3ad4992f 84reload_cse_noop_set_p (rtx set)
8f8cadbc 85{
86 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
87 return 0;
88
89 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
90}
91
92/* Try to simplify INSN. */
93static void
3ad4992f 94reload_cse_simplify (rtx insn, rtx testreg)
8f8cadbc 95{
96 rtx body = PATTERN (insn);
97
98 if (GET_CODE (body) == SET)
99 {
100 int count = 0;
101
102 /* Simplify even if we may think it is a no-op.
103 We may think a memory load of a value smaller than WORD_SIZE
104 is redundant because we haven't taken into account possible
105 implicit extension. reload_cse_simplify_set() will bring
106 this out, so it's safer to simplify before we delete. */
107 count += reload_cse_simplify_set (body, insn);
108
109 if (!count && reload_cse_noop_set_p (body))
110 {
111 rtx value = SET_DEST (body);
112 if (REG_P (value)
113 && ! REG_FUNCTION_VALUE_P (value))
114 value = 0;
5a9ecd4a 115 if (check_for_inc_dec (insn))
116 delete_insn_and_edges (insn);
8f8cadbc 117 return;
118 }
119
120 if (count > 0)
121 apply_change_group ();
122 else
123 reload_cse_simplify_operands (insn, testreg);
124 }
125 else if (GET_CODE (body) == PARALLEL)
126 {
127 int i;
128 int count = 0;
129 rtx value = NULL_RTX;
130
17883489 131 /* Registers mentioned in the clobber list for an asm cannot be reused
132 within the body of the asm. Invalidate those registers now so that
133 we don't try to substitute values for them. */
134 if (asm_noperands (body) >= 0)
135 {
136 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
137 {
138 rtx part = XVECEXP (body, 0, i);
139 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
140 cselib_invalidate_rtx (XEXP (part, 0));
141 }
142 }
143
8f8cadbc 144 /* If every action in a PARALLEL is a noop, we can delete
145 the entire PARALLEL. */
146 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
147 {
148 rtx part = XVECEXP (body, 0, i);
149 if (GET_CODE (part) == SET)
150 {
151 if (! reload_cse_noop_set_p (part))
152 break;
153 if (REG_P (SET_DEST (part))
154 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
155 {
156 if (value)
157 break;
158 value = SET_DEST (part);
159 }
160 }
161 else if (GET_CODE (part) != CLOBBER)
162 break;
163 }
164
165 if (i < 0)
166 {
5a9ecd4a 167 if (check_for_inc_dec (insn))
168 delete_insn_and_edges (insn);
8f8cadbc 169 /* We're done with this insn. */
170 return;
171 }
172
173 /* It's not a no-op, but we can try to simplify it. */
174 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
175 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
176 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
177
178 if (count > 0)
179 apply_change_group ();
180 else
181 reload_cse_simplify_operands (insn, testreg);
182 }
183}
184
185/* Do a very simple CSE pass over the hard registers.
186
187 This function detects no-op moves where we happened to assign two
188 different pseudo-registers to the same hard register, and then
189 copied one to the other. Reload will generate a useless
190 instruction copying a register to itself.
191
192 This function also detects cases where we load a value from memory
193 into two different registers, and (if memory is more expensive than
194 registers) changes it to simply copy the first register into the
195 second register.
196
197 Another optimization is performed that scans the operands of each
198 instruction to see whether the value is already available in a
199 hard register. It then replaces the operand with the hard register
200 if possible, much like an optional reload would. */
201
202static void
3ad4992f 203reload_cse_regs_1 (rtx first)
8f8cadbc 204{
201f6961 205 rtx insn;
8f8cadbc 206 rtx testreg = gen_rtx_REG (VOIDmode, -1);
207
35af0188 208 cselib_init (CSELIB_RECORD_MEMORY);
8f8cadbc 209 init_alias_analysis ();
210
201f6961 211 for (insn = first; insn; insn = NEXT_INSN (insn))
8f8cadbc 212 {
213 if (INSN_P (insn))
214 reload_cse_simplify (insn, testreg);
215
216 cselib_process_insn (insn);
217 }
218
219 /* Clean up. */
220 end_alias_analysis ();
221 cselib_finish ();
222}
223
224/* Try to simplify a single SET instruction. SET is the set pattern.
225 INSN is the instruction it came from.
226 This function only handles one case: if we set a register to a value
227 which is not a register, we try to find that value in some other register
228 and change the set into a register copy. */
229
230static int
3ad4992f 231reload_cse_simplify_set (rtx set, rtx insn)
8f8cadbc 232{
233 int did_change = 0;
234 int dreg;
235 rtx src;
ade444a4 236 reg_class_t dclass;
8f8cadbc 237 int old_cost;
238 cselib_val *val;
239 struct elt_loc_list *l;
240#ifdef LOAD_EXTEND_OP
21f1e711 241 enum rtx_code extend_op = UNKNOWN;
8f8cadbc 242#endif
f529eb25 243 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
8f8cadbc 244
245 dreg = true_regnum (SET_DEST (set));
246 if (dreg < 0)
247 return 0;
248
249 src = SET_SRC (set);
250 if (side_effects_p (src) || true_regnum (src) >= 0)
251 return 0;
252
253 dclass = REGNO_REG_CLASS (dreg);
254
255#ifdef LOAD_EXTEND_OP
256 /* When replacing a memory with a register, we need to honor assumptions
257 that combine made wrt the contents of sign bits. We'll do this by
258 generating an extend instruction instead of a reg->reg copy. Thus
259 the destination must be a register that we can widen. */
e16ceb8e 260 if (MEM_P (src)
8f8cadbc 261 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
21f1e711 262 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
8ad4c111 263 && !REG_P (SET_DEST (set)))
8f8cadbc 264 return 0;
265#endif
266
1f864115 267 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
3be01943 268 if (! val)
269 return 0;
270
8f8cadbc 271 /* If memory loads are cheaper than register copies, don't change them. */
e16ceb8e 272 if (MEM_P (src))
251a613e 273 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
8ad4c111 274 else if (REG_P (src))
e6078fbb 275 old_cost = register_move_cost (GET_MODE (src),
8f8cadbc 276 REGNO_REG_CLASS (REGNO (src)), dclass);
277 else
7013e87c 278 old_cost = set_src_cost (src, speed);
8f8cadbc 279
8f8cadbc 280 for (l = val->locs; l; l = l->next)
281 {
282 rtx this_rtx = l->loc;
283 int this_cost;
284
285 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
286 {
287#ifdef LOAD_EXTEND_OP
21f1e711 288 if (extend_op != UNKNOWN)
8f8cadbc 289 {
290 HOST_WIDE_INT this_val;
291
292 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
293 constants, such as SYMBOL_REF, cannot be extended. */
971ba038 294 if (!CONST_INT_P (this_rtx))
8f8cadbc 295 continue;
296
297 this_val = INTVAL (this_rtx);
298 switch (extend_op)
299 {
300 case ZERO_EXTEND:
301 this_val &= GET_MODE_MASK (GET_MODE (src));
302 break;
303 case SIGN_EXTEND:
304 /* ??? In theory we're already extended. */
305 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
306 break;
307 default:
876760f6 308 gcc_unreachable ();
8f8cadbc 309 }
310 this_rtx = GEN_INT (this_val);
311 }
312#endif
7013e87c 313 this_cost = set_src_cost (this_rtx, speed);
8f8cadbc 314 }
8ad4c111 315 else if (REG_P (this_rtx))
8f8cadbc 316 {
317#ifdef LOAD_EXTEND_OP
21f1e711 318 if (extend_op != UNKNOWN)
8f8cadbc 319 {
320 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
7013e87c 321 this_cost = set_src_cost (this_rtx, speed);
8f8cadbc 322 }
323 else
324#endif
e6078fbb 325 this_cost = register_move_cost (GET_MODE (this_rtx),
8f8cadbc 326 REGNO_REG_CLASS (REGNO (this_rtx)),
327 dclass);
328 }
329 else
330 continue;
331
332 /* If equal costs, prefer registers over anything else. That
333 tends to lead to smaller instructions on some machines. */
334 if (this_cost < old_cost
335 || (this_cost == old_cost
8ad4c111 336 && REG_P (this_rtx)
337 && !REG_P (SET_SRC (set))))
8f8cadbc 338 {
339#ifdef LOAD_EXTEND_OP
340 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
21f1e711 341 && extend_op != UNKNOWN
8f8cadbc 342#ifdef CANNOT_CHANGE_MODE_CLASS
343 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
344 word_mode,
345 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
346#endif
347 )
348 {
349 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
350 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
351 validate_change (insn, &SET_DEST (set), wide_dest, 1);
352 }
353#endif
354
11d686e2 355 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
8f8cadbc 356 old_cost = this_cost, did_change = 1;
357 }
358 }
359
360 return did_change;
361}
362
363/* Try to replace operands in INSN with equivalent values that are already
364 in registers. This can be viewed as optional reloading.
365
366 For each non-register operand in the insn, see if any hard regs are
367 known to be equivalent to that operand. Record the alternatives which
368 can accept these hard registers. Among all alternatives, select the
369 ones which are better or equal to the one currently matching, where
370 "better" is in terms of '?' and '!' constraints. Among the remaining
371 alternatives, select the one which replaces most operands with
372 hard registers. */
373
374static int
3ad4992f 375reload_cse_simplify_operands (rtx insn, rtx testreg)
8f8cadbc 376{
377 int i, j;
378
379 /* For each operand, all registers that are equivalent to it. */
380 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
381
382 const char *constraints[MAX_RECOG_OPERANDS];
383
384 /* Vector recording how bad an alternative is. */
385 int *alternative_reject;
386 /* Vector recording how many registers can be introduced by choosing
387 this alternative. */
388 int *alternative_nregs;
389 /* Array of vectors recording, for each operand and each alternative,
390 which hard register to substitute, or -1 if the operand should be
391 left as it is. */
392 int *op_alt_regno[MAX_RECOG_OPERANDS];
393 /* Array of alternatives, sorted in order of decreasing desirability. */
394 int *alternative_order;
395
396 extract_insn (insn);
397
398 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
399 return 0;
400
401 /* Figure out which alternative currently matches. */
402 if (! constrain_operands (1))
403 fatal_insn_not_found (insn);
404
4077bf7a 405 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
406 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
407 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
f0af5a88 408 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
409 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
8f8cadbc 410
411 /* For each operand, find out which regs are equivalent. */
412 for (i = 0; i < recog_data.n_operands; i++)
413 {
414 cselib_val *v;
415 struct elt_loc_list *l;
9d9e3c81 416 rtx op;
8f8cadbc 417
418 CLEAR_HARD_REG_SET (equiv_regs[i]);
419
420 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
421 right, so avoid the problem here. Likewise if we have a constant
422 and the insn pattern doesn't tell us the mode we need. */
6d7dc5b9 423 if (LABEL_P (recog_data.operand[i])
8f8cadbc 424 || (CONSTANT_P (recog_data.operand[i])
425 && recog_data.operand_mode[i] == VOIDmode))
426 continue;
427
9d9e3c81 428 op = recog_data.operand[i];
9d9e3c81 429#ifdef LOAD_EXTEND_OP
e16ceb8e 430 if (MEM_P (op)
f018d957 431 && GET_MODE_BITSIZE (GET_MODE (op)) < BITS_PER_WORD
432 && LOAD_EXTEND_OP (GET_MODE (op)) != UNKNOWN)
9d9e3c81 433 {
434 rtx set = single_set (insn);
435
4885b286 436 /* We might have multiple sets, some of which do implicit
9d9e3c81 437 extension. Punt on this for now. */
438 if (! set)
439 continue;
86481e89 440 /* If the destination is also a MEM or a STRICT_LOW_PART, no
9d9e3c81 441 extension applies.
442 Also, if there is an explicit extension, we don't have to
443 worry about an implicit one. */
e16ceb8e 444 else if (MEM_P (SET_DEST (set))
9d9e3c81 445 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
446 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
447 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
448 ; /* Continue ordinary processing. */
a091e4f5 449#ifdef CANNOT_CHANGE_MODE_CLASS
450 /* If the register cannot change mode to word_mode, it follows that
451 it cannot have been used in word_mode. */
8ad4c111 452 else if (REG_P (SET_DEST (set))
a091e4f5 453 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
454 word_mode,
455 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
456 ; /* Continue ordinary processing. */
457#endif
9d9e3c81 458 /* If this is a straight load, make the extension explicit. */
8ad4c111 459 else if (REG_P (SET_DEST (set))
9d9e3c81 460 && recog_data.n_operands == 2
461 && SET_SRC (set) == op
462 && SET_DEST (set) == recog_data.operand[1-i])
463 {
464 validate_change (insn, recog_data.operand_loc[i],
f018d957 465 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op)),
9d9e3c81 466 word_mode, op),
467 1);
468 validate_change (insn, recog_data.operand_loc[1-i],
469 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
470 1);
471 if (! apply_change_group ())
472 return 0;
473 return reload_cse_simplify_operands (insn, testreg);
474 }
475 else
476 /* ??? There might be arithmetic operations with memory that are
477 safe to optimize, but is it worth the trouble? */
478 continue;
479 }
480#endif /* LOAD_EXTEND_OP */
017b7047 481 if (side_effects_p (op))
482 continue;
1f864115 483 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
8f8cadbc 484 if (! v)
485 continue;
486
487 for (l = v->locs; l; l = l->next)
8ad4c111 488 if (REG_P (l->loc))
8f8cadbc 489 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
490 }
491
492 for (i = 0; i < recog_data.n_operands; i++)
493 {
494 enum machine_mode mode;
495 int regno;
496 const char *p;
497
4077bf7a 498 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
8f8cadbc 499 for (j = 0; j < recog_data.n_alternatives; j++)
500 op_alt_regno[i][j] = -1;
501
502 p = constraints[i] = recog_data.constraints[i];
503 mode = recog_data.operand_mode[i];
504
505 /* Add the reject values for each alternative given by the constraints
506 for this operand. */
507 j = 0;
508 while (*p != '\0')
509 {
510 char c = *p++;
511 if (c == ',')
512 j++;
513 else if (c == '?')
514 alternative_reject[j] += 3;
515 else if (c == '!')
516 alternative_reject[j] += 300;
517 }
518
519 /* We won't change operands which are already registers. We
520 also don't want to modify output operands. */
521 regno = true_regnum (recog_data.operand[i]);
522 if (regno >= 0
523 || constraints[i][0] == '='
524 || constraints[i][0] == '+')
525 continue;
526
527 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
528 {
b9c74b4d 529 enum reg_class rclass = NO_REGS;
8f8cadbc 530
531 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
532 continue;
533
7f1819d3 534 SET_REGNO_RAW (testreg, regno);
8f8cadbc 535 PUT_MODE (testreg, mode);
536
537 /* We found a register equal to this operand. Now look for all
538 alternatives that can accept this register and have not been
539 assigned a register they can use yet. */
540 j = 0;
541 p = constraints[i];
542 for (;;)
543 {
544 char c = *p;
545
546 switch (c)
547 {
548 case '=': case '+': case '?':
549 case '#': case '&': case '!':
550 case '*': case '%':
551 case '0': case '1': case '2': case '3': case '4':
552 case '5': case '6': case '7': case '8': case '9':
e9ff93b1 553 case '<': case '>': case 'V': case 'o':
8f8cadbc 554 case 'E': case 'F': case 'G': case 'H':
555 case 's': case 'i': case 'n':
556 case 'I': case 'J': case 'K': case 'L':
557 case 'M': case 'N': case 'O': case 'P':
e9ff93b1 558 case 'p': case 'X': case TARGET_MEM_CONSTRAINT:
8f8cadbc 559 /* These don't say anything we care about. */
560 break;
561
562 case 'g': case 'r':
6659485c 563 rclass = reg_class_subunion[(int) rclass][(int) GENERAL_REGS];
8f8cadbc 564 break;
565
566 default:
6659485c 567 rclass
8f8cadbc 568 = (reg_class_subunion
6659485c 569 [(int) rclass]
8f8cadbc 570 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
571 break;
572
573 case ',': case '\0':
574 /* See if REGNO fits this alternative, and set it up as the
575 replacement register if we don't have one for this
576 alternative yet and the operand being replaced is not
577 a cheap CONST_INT. */
578 if (op_alt_regno[i][j] == -1
620047f0 579 && recog_data.alternative_enabled_p[j]
6659485c 580 && reg_fits_class_p (testreg, rclass, 0, mode)
971ba038 581 && (!CONST_INT_P (recog_data.operand[i])
7013e87c 582 || (set_src_cost (recog_data.operand[i],
583 optimize_bb_for_speed_p
584 (BLOCK_FOR_INSN (insn)))
585 > set_src_cost (testreg,
586 optimize_bb_for_speed_p
587 (BLOCK_FOR_INSN (insn))))))
8f8cadbc 588 {
589 alternative_nregs[j]++;
590 op_alt_regno[i][j] = regno;
591 }
592 j++;
b9c74b4d 593 rclass = NO_REGS;
8f8cadbc 594 break;
595 }
596 p += CONSTRAINT_LEN (c, p);
597
598 if (c == '\0')
599 break;
600 }
601 }
602 }
603
604 /* Record all alternatives which are better or equal to the currently
605 matching one in the alternative_order array. */
606 for (i = j = 0; i < recog_data.n_alternatives; i++)
607 if (alternative_reject[i] <= alternative_reject[which_alternative])
608 alternative_order[j++] = i;
609 recog_data.n_alternatives = j;
610
611 /* Sort it. Given a small number of alternatives, a dumb algorithm
612 won't hurt too much. */
613 for (i = 0; i < recog_data.n_alternatives - 1; i++)
614 {
615 int best = i;
616 int best_reject = alternative_reject[alternative_order[i]];
617 int best_nregs = alternative_nregs[alternative_order[i]];
618 int tmp;
619
620 for (j = i + 1; j < recog_data.n_alternatives; j++)
621 {
622 int this_reject = alternative_reject[alternative_order[j]];
623 int this_nregs = alternative_nregs[alternative_order[j]];
624
625 if (this_reject < best_reject
c2d0cf41 626 || (this_reject == best_reject && this_nregs > best_nregs))
8f8cadbc 627 {
628 best = j;
629 best_reject = this_reject;
630 best_nregs = this_nregs;
631 }
632 }
633
634 tmp = alternative_order[best];
635 alternative_order[best] = alternative_order[i];
636 alternative_order[i] = tmp;
637 }
638
639 /* Substitute the operands as determined by op_alt_regno for the best
640 alternative. */
641 j = alternative_order[0];
642
643 for (i = 0; i < recog_data.n_operands; i++)
644 {
645 enum machine_mode mode = recog_data.operand_mode[i];
646 if (op_alt_regno[i][j] == -1)
647 continue;
648
649 validate_change (insn, recog_data.operand_loc[i],
650 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
651 }
652
653 for (i = recog_data.n_dups - 1; i >= 0; i--)
654 {
655 int op = recog_data.dup_num[i];
656 enum machine_mode mode = recog_data.operand_mode[op];
657
658 if (op_alt_regno[op][j] == -1)
659 continue;
660
661 validate_change (insn, recog_data.dup_loc[i],
662 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
663 }
664
665 return apply_change_group ();
666}
667\f
668/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
669 addressing now.
670 This code might also be useful when reload gave up on reg+reg addressing
671 because of clashes between the return register and INDEX_REG_CLASS. */
672
673/* The maximum number of uses of a register we can keep track of to
674 replace them with reg+reg addressing. */
d83ccc81 675#define RELOAD_COMBINE_MAX_USES 16
8f8cadbc 676
d83ccc81 677/* Describes a recorded use of a register. */
678struct reg_use
679{
680 /* The insn where a register has been used. */
681 rtx insn;
682 /* Points to the memory reference enclosing the use, if any, NULL_RTX
683 otherwise. */
684 rtx containing_mem;
9d75589a 685 /* Location of the register within INSN. */
d83ccc81 686 rtx *usep;
687 /* The reverse uid of the insn. */
688 int ruid;
689};
8f8cadbc 690
691/* If the register is used in some unknown fashion, USE_INDEX is negative.
692 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
d83ccc81 693 indicates where it is first set or clobbered.
8f8cadbc 694 Otherwise, USE_INDEX is the index of the last encountered use of the
d83ccc81 695 register (which is first among these we have seen since we scan backwards).
696 USE_RUID indicates the first encountered, i.e. last, of these uses.
697 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
698 with a constant offset; OFFSET contains this constant in that case.
8f8cadbc 699 STORE_RUID is always meaningful if we only want to use a value in a
700 register in a different place: it denotes the next insn in the insn
d83ccc81 701 stream (i.e. the last encountered) that sets or clobbers the register.
702 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
8f8cadbc 703static struct
704 {
705 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
8f8cadbc 706 rtx offset;
d83ccc81 707 int use_index;
8f8cadbc 708 int store_ruid;
d83ccc81 709 int real_store_ruid;
8f8cadbc 710 int use_ruid;
d83ccc81 711 bool all_offsets_match;
8f8cadbc 712 } reg_state[FIRST_PSEUDO_REGISTER];
713
714/* Reverse linear uid. This is increased in reload_combine while scanning
715 the instructions from last to first. It is used to set last_label_ruid
716 and the store_ruid / use_ruid fields in reg_state. */
717static int reload_combine_ruid;
718
fb79f695 719/* The RUID of the last label we encountered in reload_combine. */
720static int last_label_ruid;
721
d83ccc81 722/* The RUID of the last jump we encountered in reload_combine. */
723static int last_jump_ruid;
724
fb79f695 725/* The register numbers of the first and last index register. A value of
726 -1 in LAST_INDEX_REG indicates that we've previously computed these
727 values and found no suitable index registers. */
728static int first_index_reg = -1;
729static int last_index_reg;
730
8f8cadbc 731#define LABEL_LIVE(LABEL) \
732 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
733
d83ccc81 734/* Subroutine of reload_combine_split_ruids, called to fix up a single
735 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
736
737static inline void
738reload_combine_split_one_ruid (int *pruid, int split_ruid)
739{
740 if (*pruid > split_ruid)
741 (*pruid)++;
742}
743
744/* Called when we insert a new insn in a position we've already passed in
745 the scan. Examine all our state, increasing all ruids that are higher
746 than SPLIT_RUID by one in order to make room for a new insn. */
747
748static void
749reload_combine_split_ruids (int split_ruid)
750{
751 unsigned i;
752
753 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
754 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
755 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
756
757 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
758 {
759 int j, idx = reg_state[i].use_index;
760 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
761 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
762 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
763 split_ruid);
764 if (idx < 0)
765 continue;
766 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
767 {
768 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
769 split_ruid);
770 }
771 }
772}
773
774/* Called when we are about to rescan a previously encountered insn with
775 reload_combine_note_use after modifying some part of it. This clears all
776 information about uses in that particular insn. */
777
778static void
779reload_combine_purge_insn_uses (rtx insn)
780{
781 unsigned i;
782
783 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
784 {
785 int j, k, idx = reg_state[i].use_index;
786 if (idx < 0)
787 continue;
788 j = k = RELOAD_COMBINE_MAX_USES;
789 while (j-- > idx)
790 {
791 if (reg_state[i].reg_use[j].insn != insn)
792 {
793 k--;
794 if (k != j)
795 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
796 }
797 }
798 reg_state[i].use_index = k;
799 }
800}
801
802/* Called when we need to forget about all uses of REGNO after an insn
803 which is identified by RUID. */
804
805static void
806reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
807{
808 int j, k, idx = reg_state[regno].use_index;
809 if (idx < 0)
810 return;
811 j = k = RELOAD_COMBINE_MAX_USES;
812 while (j-- > idx)
813 {
814 if (reg_state[regno].reg_use[j].ruid >= ruid)
815 {
816 k--;
817 if (k != j)
818 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
819 }
820 }
821 reg_state[regno].use_index = k;
822}
823
824/* Find the use of REGNO with the ruid that is highest among those
825 lower than RUID_LIMIT, and return it if it is the only use of this
727047d0 826 reg in the insn. Return NULL otherwise. */
d83ccc81 827
828static struct reg_use *
829reload_combine_closest_single_use (unsigned regno, int ruid_limit)
830{
831 int i, best_ruid = 0;
832 int use_idx = reg_state[regno].use_index;
833 struct reg_use *retval;
834
835 if (use_idx < 0)
836 return NULL;
837 retval = NULL;
838 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
839 {
0ead6a7d 840 struct reg_use *use = reg_state[regno].reg_use + i;
841 int this_ruid = use->ruid;
d83ccc81 842 if (this_ruid >= ruid_limit)
843 continue;
844 if (this_ruid > best_ruid)
845 {
846 best_ruid = this_ruid;
727047d0 847 retval = use;
d83ccc81 848 }
727047d0 849 else if (this_ruid == best_ruid)
d83ccc81 850 retval = NULL;
851 }
852 if (last_label_ruid >= best_ruid)
853 return NULL;
854 return retval;
855}
856
65069495 857/* After we've moved an add insn, fix up any debug insns that occur
858 between the old location of the add and the new location. REG is
859 the destination register of the add insn; REPLACEMENT is the
860 SET_SRC of the add. FROM and TO specify the range in which we
861 should make this change on debug insns. */
0ead6a7d 862
863static void
65069495 864fixup_debug_insns (rtx reg, rtx replacement, rtx from, rtx to)
0ead6a7d 865{
65069495 866 rtx insn;
867 for (insn = from; insn != to; insn = NEXT_INSN (insn))
0ead6a7d 868 {
869 rtx t;
65069495 870
871 if (!DEBUG_INSN_P (insn))
0ead6a7d 872 continue;
65069495 873
874 t = INSN_VAR_LOCATION_LOC (insn);
727047d0 875 t = simplify_replace_rtx (t, reg, replacement);
65069495 876 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
0ead6a7d 877 }
878}
879
692ec7c8 880/* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
881 with SRC in the insn described by USE, taking costs into account. Return
882 true if we made the replacement. */
883
884static bool
885try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
886{
887 rtx use_insn = use->insn;
888 rtx mem = use->containing_mem;
889 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
890
891 if (mem != NULL_RTX)
892 {
893 addr_space_t as = MEM_ADDR_SPACE (mem);
894 rtx oldaddr = XEXP (mem, 0);
895 rtx newaddr = NULL_RTX;
896 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
897 int new_cost;
898
899 newaddr = simplify_replace_rtx (oldaddr, reg, src);
900 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
901 {
902 XEXP (mem, 0) = newaddr;
903 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
904 XEXP (mem, 0) = oldaddr;
905 if (new_cost <= old_cost
906 && validate_change (use_insn,
907 &XEXP (mem, 0), newaddr, 0))
908 return true;
909 }
910 }
911 else
912 {
913 rtx new_set = single_set (use_insn);
914 if (new_set
915 && REG_P (SET_DEST (new_set))
916 && GET_CODE (SET_SRC (new_set)) == PLUS
917 && REG_P (XEXP (SET_SRC (new_set), 0))
918 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
919 {
920 rtx new_src;
7013e87c 921 int old_cost = set_src_cost (SET_SRC (new_set), speed);
692ec7c8 922
923 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
924 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
925
7013e87c 926 if (set_src_cost (new_src, speed) <= old_cost
692ec7c8 927 && validate_change (use_insn, &SET_SRC (new_set),
928 new_src, 0))
929 return true;
930 }
931 }
932 return false;
933}
934
d83ccc81 935/* Called by reload_combine when scanning INSN. This function tries to detect
936 patterns where a constant is added to a register, and the result is used
937 in an address.
938 Return true if no further processing is needed on INSN; false if it wasn't
939 recognized and should be handled normally. */
940
941static bool
942reload_combine_recognize_const_pattern (rtx insn)
943{
944 int from_ruid = reload_combine_ruid;
945 rtx set, pat, reg, src, addreg;
946 unsigned int regno;
947 struct reg_use *use;
948 bool must_move_add;
949 rtx add_moved_after_insn = NULL_RTX;
950 int add_moved_after_ruid = 0;
951 int clobbered_regno = -1;
952
953 set = single_set (insn);
954 if (set == NULL_RTX)
955 return false;
956
957 reg = SET_DEST (set);
958 src = SET_SRC (set);
959 if (!REG_P (reg)
960 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1
961 || GET_MODE (reg) != Pmode
962 || reg == stack_pointer_rtx)
963 return false;
964
965 regno = REGNO (reg);
966
967 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
968 uses of REG1 inside an address, or inside another add insn. If
969 possible and profitable, merge the addition into subsequent
970 uses. */
971 if (GET_CODE (src) != PLUS
972 || !REG_P (XEXP (src, 0))
973 || !CONSTANT_P (XEXP (src, 1)))
974 return false;
975
976 addreg = XEXP (src, 0);
977 must_move_add = rtx_equal_p (reg, addreg);
978
979 pat = PATTERN (insn);
980 if (must_move_add && set != pat)
981 {
982 /* We have to be careful when moving the add; apart from the
983 single_set there may also be clobbers. Recognize one special
984 case, that of one clobber alongside the set (likely a clobber
985 of the CC register). */
986 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
987 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
988 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
989 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
990 return false;
991 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
992 }
993
994 do
995 {
996 use = reload_combine_closest_single_use (regno, from_ruid);
997
998 if (use)
999 /* Start the search for the next use from here. */
1000 from_ruid = use->ruid;
1001
1002 if (use && GET_MODE (*use->usep) == Pmode)
1003 {
692ec7c8 1004 bool delete_add = false;
d83ccc81 1005 rtx use_insn = use->insn;
1006 int use_ruid = use->ruid;
d83ccc81 1007
1008 /* Avoid moving the add insn past a jump. */
0ead6a7d 1009 if (must_move_add && use_ruid <= last_jump_ruid)
d83ccc81 1010 break;
1011
1012 /* If the add clobbers another hard reg in parallel, don't move
1013 it past a real set of this hard reg. */
1014 if (must_move_add && clobbered_regno >= 0
1015 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
1016 break;
1017
33b7314b 1018#ifdef HAVE_cc0
1019 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
1020 if (must_move_add && sets_cc0_p (PATTERN (use_insn)))
1021 break;
1022#endif
1023
6aba0ea1 1024 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1025 /* Avoid moving a use of ADDREG past a point where it is stored. */
692ec7c8 1026 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
d83ccc81 1027 break;
1028
692ec7c8 1029 /* We also must not move the addition past an insn that sets
1030 the same register, unless we can combine two add insns. */
1031 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
d83ccc81 1032 {
692ec7c8 1033 if (use->containing_mem == NULL_RTX)
1034 delete_add = true;
1035 else
1036 break;
d83ccc81 1037 }
d83ccc81 1038
692ec7c8 1039 if (try_replace_in_use (use, reg, src))
1040 {
1041 reload_combine_purge_insn_uses (use_insn);
1042 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1043 use_ruid, NULL_RTX);
d83ccc81 1044
692ec7c8 1045 if (delete_add)
1046 {
1047 fixup_debug_insns (reg, src, insn, use_insn);
1048 delete_insn (insn);
1049 return true;
1050 }
1051 if (must_move_add)
1052 {
1053 add_moved_after_insn = use_insn;
1054 add_moved_after_ruid = use_ruid;
d83ccc81 1055 }
692ec7c8 1056 continue;
d83ccc81 1057 }
d83ccc81 1058 }
6aba0ea1 1059 /* If we get here, we couldn't handle this use. */
1060 if (must_move_add)
1061 break;
d83ccc81 1062 }
1063 while (use);
1064
1065 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1066 /* Process the add normally. */
1067 return false;
1068
65069495 1069 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1070
d83ccc81 1071 reorder_insns (insn, insn, add_moved_after_insn);
1072 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1073 reload_combine_split_ruids (add_moved_after_ruid - 1);
1074 reload_combine_note_use (&PATTERN (insn), insn,
1075 add_moved_after_ruid, NULL_RTX);
1076 reg_state[regno].store_ruid = add_moved_after_ruid;
1077
1078 return true;
1079}
1080
fb79f695 1081/* Called by reload_combine when scanning INSN. Try to detect a pattern we
1082 can handle and improve. Return true if no further processing is needed on
1083 INSN; false if it wasn't recognized and should be handled normally. */
1084
1085static bool
1086reload_combine_recognize_pattern (rtx insn)
1087{
1088 rtx set, reg, src;
1089 unsigned int regno;
1090
d83ccc81 1091 set = single_set (insn);
1092 if (set == NULL_RTX)
1093 return false;
1094
1095 reg = SET_DEST (set);
1096 src = SET_SRC (set);
1097 if (!REG_P (reg)
1098 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1)
1099 return false;
1100
1101 regno = REGNO (reg);
1102
fb79f695 1103 /* Look for (set (REGX) (CONST_INT))
1104 (set (REGX) (PLUS (REGX) (REGY)))
1105 ...
1106 ... (MEM (REGX)) ...
1107 and convert it to
1108 (set (REGZ) (CONST_INT))
1109 ...
1110 ... (MEM (PLUS (REGZ) (REGY)))... .
1111
1112 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1113 and that we know all uses of REGX before it dies.
1114 Also, explicitly check that REGX != REGY; our life information
1115 does not yet show whether REGY changes in this insn. */
fb79f695 1116
1117 if (GET_CODE (src) == PLUS
d83ccc81 1118 && reg_state[regno].all_offsets_match
1119 && last_index_reg != -1
fb79f695 1120 && REG_P (XEXP (src, 1))
1121 && rtx_equal_p (XEXP (src, 0), reg)
1122 && !rtx_equal_p (XEXP (src, 1), reg)
727047d0 1123 && reg_state[regno].use_index >= 0
1124 && reg_state[regno].use_index < RELOAD_COMBINE_MAX_USES
fb79f695 1125 && last_label_ruid < reg_state[regno].use_ruid)
1126 {
1127 rtx base = XEXP (src, 1);
5b8537a8 1128 rtx prev = prev_nonnote_nondebug_insn (insn);
fb79f695 1129 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1130 rtx index_reg = NULL_RTX;
1131 rtx reg_sum = NULL_RTX;
1132 int i;
1133
1134 /* Now we need to set INDEX_REG to an index register (denoted as
1135 REGZ in the illustration above) and REG_SUM to the expression
1136 register+register that we want to use to substitute uses of REG
1137 (typically in MEMs) with. First check REG and BASE for being
1138 index registers; we can use them even if they are not dead. */
1139 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1140 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1141 REGNO (base)))
1142 {
1143 index_reg = reg;
1144 reg_sum = src;
1145 }
1146 else
1147 {
1148 /* Otherwise, look for a free index register. Since we have
1149 checked above that neither REG nor BASE are index registers,
1150 if we find anything at all, it will be different from these
1151 two registers. */
1152 for (i = first_index_reg; i <= last_index_reg; i++)
1153 {
1154 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1155 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1156 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
727047d0 1157 && (call_used_regs[i] || df_regs_ever_live_p (i))
1158 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1159 && !fixed_regs[i] && !global_regs[i]
1160 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1161 && targetm.hard_regno_scratch_ok (i))
fb79f695 1162 {
1163 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1164 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1165 break;
1166 }
1167 }
1168 }
1169
1170 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1171 (REGY), i.e. BASE, is not clobbered before the last use we'll
1172 create. */
1173 if (reg_sum
1174 && prev_set
1175 && CONST_INT_P (SET_SRC (prev_set))
1176 && rtx_equal_p (SET_DEST (prev_set), reg)
fb79f695 1177 && (reg_state[REGNO (base)].store_ruid
1178 <= reg_state[regno].use_ruid))
1179 {
1180 /* Change destination register and, if necessary, the constant
1181 value in PREV, the constant loading instruction. */
1182 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1183 if (reg_state[regno].offset != const0_rtx)
1184 validate_change (prev,
1185 &SET_SRC (prev_set),
1186 GEN_INT (INTVAL (SET_SRC (prev_set))
1187 + INTVAL (reg_state[regno].offset)),
1188 1);
1189
1190 /* Now for every use of REG that we have recorded, replace REG
1191 with REG_SUM. */
1192 for (i = reg_state[regno].use_index;
1193 i < RELOAD_COMBINE_MAX_USES; i++)
1194 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1195 reg_state[regno].reg_use[i].usep,
1196 /* Each change must have its own
1197 replacement. */
1198 reg_sum, 1);
1199
1200 if (apply_change_group ())
1201 {
65069495 1202 struct reg_use *lowest_ruid = NULL;
1203
fb79f695 1204 /* For every new use of REG_SUM, we have to record the use
1205 of BASE therein, i.e. operand 1. */
1206 for (i = reg_state[regno].use_index;
1207 i < RELOAD_COMBINE_MAX_USES; i++)
65069495 1208 {
1209 struct reg_use *use = reg_state[regno].reg_use + i;
1210 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1211 use->ruid, use->containing_mem);
1212 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1213 lowest_ruid = use;
1214 }
1215
1216 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
fb79f695 1217
fb79f695 1218 /* Delete the reg-reg addition. */
1219 delete_insn (insn);
1220
1221 if (reg_state[regno].offset != const0_rtx)
1222 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1223 are now invalid. */
1224 remove_reg_equal_equiv_notes (prev);
1225
1226 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
fb79f695 1227 return true;
1228 }
1229 }
1230 }
1231 return false;
1232}
1233
8f8cadbc 1234static void
3ad4992f 1235reload_combine (void)
8f8cadbc 1236{
d83ccc81 1237 rtx insn, prev;
8f8cadbc 1238 basic_block bb;
1239 unsigned int r;
8f8cadbc 1240 int min_labelno, n_labels;
1241 HARD_REG_SET ever_live_at_start, *label_live;
1242
8f8cadbc 1243 /* To avoid wasting too much time later searching for an index register,
1244 determine the minimum and maximum index register numbers. */
fb79f695 1245 if (INDEX_REG_CLASS == NO_REGS)
1246 last_index_reg = -1;
1247 else if (first_index_reg == -1 && last_index_reg == 0)
1248 {
1249 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1250 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1251 {
1252 if (first_index_reg == -1)
1253 first_index_reg = r;
1254
1255 last_index_reg = r;
1256 }
1257
1258 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1259 to -1 so we'll know to quit early the next time we get here. */
1260 if (first_index_reg == -1)
1261 {
1262 last_index_reg = -1;
1263 return;
1264 }
1265 }
8f8cadbc 1266
8f8cadbc 1267 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1268 information is a bit fuzzy immediately after reload, but it's
1269 still good enough to determine which registers are live at a jump
1270 destination. */
1271 min_labelno = get_first_label_num ();
1272 n_labels = max_label_num () - min_labelno;
4c36ffe6 1273 label_live = XNEWVEC (HARD_REG_SET, n_labels);
8f8cadbc 1274 CLEAR_HARD_REG_SET (ever_live_at_start);
1275
1276 FOR_EACH_BB_REVERSE (bb)
1277 {
5496dbfc 1278 insn = BB_HEAD (bb);
6d7dc5b9 1279 if (LABEL_P (insn))
8f8cadbc 1280 {
1281 HARD_REG_SET live;
deb2741b 1282 bitmap live_in = df_get_live_in (bb);
8f8cadbc 1283
deb2741b 1284 REG_SET_TO_HARD_REG_SET (live, live_in);
1285 compute_use_by_pseudos (&live, live_in);
8f8cadbc 1286 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1287 IOR_HARD_REG_SET (ever_live_at_start, live);
1288 }
1289 }
1290
1291 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
d83ccc81 1292 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
8f8cadbc 1293 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1294 {
d83ccc81 1295 reg_state[r].store_ruid = 0;
1296 reg_state[r].real_store_ruid = 0;
8f8cadbc 1297 if (fixed_regs[r])
1298 reg_state[r].use_index = -1;
1299 else
1300 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1301 }
1302
d83ccc81 1303 for (insn = get_last_insn (); insn; insn = prev)
8f8cadbc 1304 {
8b52f64e 1305 bool control_flow_insn;
8f8cadbc 1306 rtx note;
1307
d83ccc81 1308 prev = PREV_INSN (insn);
1309
8f8cadbc 1310 /* We cannot do our optimization across labels. Invalidating all the use
1311 information we have would be costly, so we just note where the label
1312 is and then later disable any optimization that would cross it. */
6d7dc5b9 1313 if (LABEL_P (insn))
8f8cadbc 1314 last_label_ruid = reload_combine_ruid;
19f69355 1315 else if (BARRIER_P (insn))
1316 {
1317 /* Crossing a barrier resets all the use information. */
1318 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1319 if (! fixed_regs[r])
8f8cadbc 1320 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
19f69355 1321 }
1322 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1323 /* Optimizations across insns being marked as volatile must be
1324 prevented. All the usage information is invalidated
1325 here. */
1326 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1327 if (! fixed_regs[r]
1328 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1329 reg_state[r].use_index = -1;
8f8cadbc 1330
65069495 1331 if (! NONDEBUG_INSN_P (insn))
8f8cadbc 1332 continue;
1333
1334 reload_combine_ruid++;
1335
8b52f64e 1336 control_flow_insn = control_flow_insn_p (insn);
1337 if (control_flow_insn)
d83ccc81 1338 last_jump_ruid = reload_combine_ruid;
1339
1340 if (reload_combine_recognize_const_pattern (insn)
1341 || reload_combine_recognize_pattern (insn))
fb79f695 1342 continue;
8f8cadbc 1343
1344 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1345
6d7dc5b9 1346 if (CALL_P (insn))
8f8cadbc 1347 {
1348 rtx link;
1349
1350 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1351 if (call_used_regs[r])
1352 {
1353 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1354 reg_state[r].store_ruid = reload_combine_ruid;
1355 }
1356
1357 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1358 link = XEXP (link, 1))
1359 {
c8010b80 1360 rtx setuse = XEXP (link, 0);
1361 rtx usage_rtx = XEXP (setuse, 0);
1362 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1363 && REG_P (usage_rtx))
8f8cadbc 1364 {
1365 unsigned int i;
1366 unsigned int start_reg = REGNO (usage_rtx);
8b52f64e 1367 unsigned int num_regs
1368 = hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
1369 unsigned int end_reg = start_reg + num_regs - 1;
8f8cadbc 1370 for (i = start_reg; i <= end_reg; i++)
1371 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1372 {
1373 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1374 reg_state[i].store_ruid = reload_combine_ruid;
1375 }
1376 else
1377 reg_state[i].use_index = -1;
1378 }
1379 }
8f8cadbc 1380 }
f4979459 1381
8b52f64e 1382 if (control_flow_insn && GET_CODE (PATTERN (insn)) != RETURN)
8f8cadbc 1383 {
1384 /* Non-spill registers might be used at the call destination in
1385 some unknown fashion, so we have to mark the unknown use. */
1386 HARD_REG_SET *live;
1387
1388 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1389 && JUMP_LABEL (insn))
1390 live = &LABEL_LIVE (JUMP_LABEL (insn));
1391 else
1392 live = &ever_live_at_start;
1393
8b52f64e 1394 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1395 if (TEST_HARD_REG_BIT (*live, r))
1396 reg_state[r].use_index = -1;
8f8cadbc 1397 }
1398
8b52f64e 1399 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1400 NULL_RTX);
1401
8f8cadbc 1402 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1403 {
8b52f64e 1404 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
8f8cadbc 1405 {
1406 int regno = REGNO (XEXP (note, 0));
8f8cadbc 1407 reg_state[regno].store_ruid = reload_combine_ruid;
d83ccc81 1408 reg_state[regno].real_store_ruid = reload_combine_ruid;
8f8cadbc 1409 reg_state[regno].use_index = -1;
1410 }
1411 }
1412 }
1413
1414 free (label_live);
1415}
1416
1417/* Check if DST is a register or a subreg of a register; if it is,
d83ccc81 1418 update store_ruid, real_store_ruid and use_index in the reg_state
1419 structure accordingly. Called via note_stores from reload_combine. */
8f8cadbc 1420
1421static void
81a410b1 1422reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
8f8cadbc 1423{
1424 int regno = 0;
1425 int i;
1426 enum machine_mode mode = GET_MODE (dst);
1427
1428 if (GET_CODE (dst) == SUBREG)
1429 {
1430 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1431 GET_MODE (SUBREG_REG (dst)),
1432 SUBREG_BYTE (dst),
1433 GET_MODE (dst));
1434 dst = SUBREG_REG (dst);
1435 }
fe6524b0 1436
1437 /* Some targets do argument pushes without adding REG_INC notes. */
1438
1439 if (MEM_P (dst))
1440 {
1441 dst = XEXP (dst, 0);
1442 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
a5dda0b9 1443 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1444 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
fe6524b0 1445 {
1446 regno = REGNO (XEXP (dst, 0));
1447 mode = GET_MODE (XEXP (dst, 0));
1448 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1449 {
1450 /* We could probably do better, but for now mark the register
1451 as used in an unknown fashion and set/clobbered at this
1452 insn. */
1453 reg_state[i].use_index = -1;
1454 reg_state[i].store_ruid = reload_combine_ruid;
1455 reg_state[i].real_store_ruid = reload_combine_ruid;
1456 }
1457 }
1458 else
1459 return;
1460 }
1461
8ad4c111 1462 if (!REG_P (dst))
8f8cadbc 1463 return;
1464 regno += REGNO (dst);
1465
1466 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1467 careful with registers / register parts that are not full words.
476d094d 1468 Similarly for ZERO_EXTRACT. */
d83ccc81 1469 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
8f8cadbc 1470 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1471 {
67d6c12b 1472 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
8f8cadbc 1473 {
1474 reg_state[i].use_index = -1;
1475 reg_state[i].store_ruid = reload_combine_ruid;
d83ccc81 1476 reg_state[i].real_store_ruid = reload_combine_ruid;
8f8cadbc 1477 }
1478 }
1479 else
1480 {
67d6c12b 1481 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
8f8cadbc 1482 {
1483 reg_state[i].store_ruid = reload_combine_ruid;
d83ccc81 1484 if (GET_CODE (set) == SET)
1485 reg_state[i].real_store_ruid = reload_combine_ruid;
8f8cadbc 1486 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1487 }
1488 }
1489}
1490
1491/* XP points to a piece of rtl that has to be checked for any uses of
1492 registers.
1493 *XP is the pattern of INSN, or a part of it.
1494 Called from reload_combine, and recursively by itself. */
1495static void
d83ccc81 1496reload_combine_note_use (rtx *xp, rtx insn, int ruid, rtx containing_mem)
8f8cadbc 1497{
1498 rtx x = *xp;
1499 enum rtx_code code = x->code;
1500 const char *fmt;
1501 int i, j;
1502 rtx offset = const0_rtx; /* For the REG case below. */
1503
1504 switch (code)
1505 {
1506 case SET:
8ad4c111 1507 if (REG_P (SET_DEST (x)))
8f8cadbc 1508 {
d83ccc81 1509 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
8f8cadbc 1510 return;
1511 }
1512 break;
1513
1514 case USE:
1515 /* If this is the USE of a return value, we can't change it. */
8ad4c111 1516 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8f8cadbc 1517 {
1518 /* Mark the return register as used in an unknown fashion. */
1519 rtx reg = XEXP (x, 0);
1520 int regno = REGNO (reg);
67d6c12b 1521 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8f8cadbc 1522
1523 while (--nregs >= 0)
1524 reg_state[regno + nregs].use_index = -1;
1525 return;
1526 }
1527 break;
1528
1529 case CLOBBER:
8ad4c111 1530 if (REG_P (SET_DEST (x)))
8f8cadbc 1531 {
1532 /* No spurious CLOBBERs of pseudo registers may remain. */
876760f6 1533 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
8f8cadbc 1534 return;
1535 }
1536 break;
1537
1538 case PLUS:
1539 /* We are interested in (plus (reg) (const_int)) . */
8ad4c111 1540 if (!REG_P (XEXP (x, 0))
971ba038 1541 || !CONST_INT_P (XEXP (x, 1)))
8f8cadbc 1542 break;
1543 offset = XEXP (x, 1);
1544 x = XEXP (x, 0);
1545 /* Fall through. */
1546 case REG:
1547 {
1548 int regno = REGNO (x);
1549 int use_index;
1550 int nregs;
1551
1552 /* No spurious USEs of pseudo registers may remain. */
876760f6 1553 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8f8cadbc 1554
67d6c12b 1555 nregs = hard_regno_nregs[regno][GET_MODE (x)];
8f8cadbc 1556
1557 /* We can't substitute into multi-hard-reg uses. */
1558 if (nregs > 1)
1559 {
1560 while (--nregs >= 0)
1561 reg_state[regno + nregs].use_index = -1;
1562 return;
1563 }
1564
727047d0 1565 /* We may be called to update uses in previously seen insns.
1566 Don't add uses beyond the last store we saw. */
1567 if (ruid < reg_state[regno].store_ruid)
1568 return;
1569
8f8cadbc 1570 /* If this register is already used in some unknown fashion, we
1571 can't do anything.
1572 If we decrement the index from zero to -1, we can't store more
1573 uses, so this register becomes used in an unknown fashion. */
1574 use_index = --reg_state[regno].use_index;
1575 if (use_index < 0)
1576 return;
1577
d83ccc81 1578 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
8f8cadbc 1579 {
1580 /* This is the first use of this register we have seen since we
1581 marked it as dead. */
1582 reg_state[regno].offset = offset;
d83ccc81 1583 reg_state[regno].all_offsets_match = true;
1584 reg_state[regno].use_ruid = ruid;
8f8cadbc 1585 }
0ead6a7d 1586 else
1587 {
1588 if (reg_state[regno].use_ruid > ruid)
1589 reg_state[regno].use_ruid = ruid;
1590
1591 if (! rtx_equal_p (offset, reg_state[regno].offset))
1592 reg_state[regno].all_offsets_match = false;
1593 }
d83ccc81 1594
8f8cadbc 1595 reg_state[regno].reg_use[use_index].insn = insn;
d83ccc81 1596 reg_state[regno].reg_use[use_index].ruid = ruid;
1597 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
8f8cadbc 1598 reg_state[regno].reg_use[use_index].usep = xp;
1599 return;
1600 }
1601
d83ccc81 1602 case MEM:
1603 containing_mem = x;
1604 break;
1605
8f8cadbc 1606 default:
1607 break;
1608 }
1609
1610 /* Recursively process the components of X. */
1611 fmt = GET_RTX_FORMAT (code);
1612 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1613 {
1614 if (fmt[i] == 'e')
d83ccc81 1615 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
8f8cadbc 1616 else if (fmt[i] == 'E')
1617 {
1618 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
d83ccc81 1619 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1620 containing_mem);
8f8cadbc 1621 }
1622 }
1623}
1624\f
1625/* See if we can reduce the cost of a constant by replacing a move
1626 with an add. We track situations in which a register is set to a
1627 constant or to a register plus a constant. */
1628/* We cannot do our optimization across labels. Invalidating all the
1629 information about register contents we have would be costly, so we
1630 use move2add_last_label_luid to note where the label is and then
1631 later disable any optimization that would cross it.
6132c0d0 1632 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1633 are only valid if reg_set_luid[n] is greater than
1634 move2add_last_label_luid. */
8f8cadbc 1635static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1636
1637/* If reg_base_reg[n] is negative, register n has been set to
6132c0d0 1638 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
8f8cadbc 1639 If reg_base_reg[n] is non-negative, register n has been set to the
1640 sum of reg_offset[n] and the value of register reg_base_reg[n]
1641 before reg_set_luid[n], calculated in mode reg_mode[n] . */
1642static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1643static int reg_base_reg[FIRST_PSEUDO_REGISTER];
6132c0d0 1644static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
8f8cadbc 1645static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1646
1647/* move2add_luid is linearly increased while scanning the instructions
1648 from first to last. It is used to set reg_set_luid in
1649 reload_cse_move2add and move2add_note_store. */
1650static int move2add_luid;
1651
1652/* move2add_last_label_luid is set whenever a label is found. Labels
1653 invalidate all previously collected reg_offset data. */
1654static int move2add_last_label_luid;
1655
1656/* ??? We don't know how zero / sign extension is handled, hence we
1657 can't go from a narrower to a wider mode. */
1658#define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1659 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1660 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
396f2130 1661 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
8f8cadbc 1662
6132c0d0 1663/* This function is called with INSN that sets REG to (SYM + OFF),
1664 while REG is known to already have value (SYM + offset).
1665 This function tries to change INSN into an add instruction
1666 (set (REG) (plus (REG) (OFF - offset))) using the known value.
d83ccc81 1667 It also updates the information about REG's known value.
1668 Return true if we made a change. */
6132c0d0 1669
d83ccc81 1670static bool
6132c0d0 1671move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx insn)
1672{
1673 rtx pat = PATTERN (insn);
1674 rtx src = SET_SRC (pat);
1675 int regno = REGNO (reg);
1676 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[regno],
1677 GET_MODE (reg));
1678 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
d83ccc81 1679 bool changed = false;
6132c0d0 1680
1681 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1682 use (set (reg) (reg)) instead.
1683 We don't delete this insn, nor do we convert it into a
1684 note, to avoid losing register notes or the return
1685 value flag. jump2 already knows how to get rid of
1686 no-op moves. */
1687 if (new_src == const0_rtx)
1688 {
1689 /* If the constants are different, this is a
1690 truncation, that, if turned into (set (reg)
1691 (reg)), would be discarded. Maybe we should
1692 try a truncMN pattern? */
1693 if (INTVAL (off) == reg_offset [regno])
d83ccc81 1694 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
6132c0d0 1695 }
c9a03487 1696 else
6132c0d0 1697 {
c9a03487 1698 struct full_rtx_costs oldcst, newcst;
6132c0d0 1699 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
c9a03487 1700
b72d459f 1701 get_full_set_rtx_cost (pat, &oldcst);
c9a03487 1702 SET_SRC (pat) = tem;
b72d459f 1703 get_full_set_rtx_cost (pat, &newcst);
c9a03487 1704 SET_SRC (pat) = src;
1705
1706 if (costs_lt_p (&newcst, &oldcst, speed)
1707 && have_add2_insn (reg, new_src))
1708 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1709 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
6132c0d0 1710 {
c9a03487 1711 enum machine_mode narrow_mode;
1712 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1713 narrow_mode != VOIDmode
1714 && narrow_mode != GET_MODE (reg);
1715 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
6132c0d0 1716 {
c9a03487 1717 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1718 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1719 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1720 {
1721 rtx narrow_reg = gen_rtx_REG (narrow_mode,
1722 REGNO (reg));
1723 rtx narrow_src = gen_int_mode (INTVAL (off),
1724 narrow_mode);
1725 rtx new_set
1726 = gen_rtx_SET (VOIDmode,
1727 gen_rtx_STRICT_LOW_PART (VOIDmode,
1728 narrow_reg),
1729 narrow_src);
1730 changed = validate_change (insn, &PATTERN (insn),
1731 new_set, 0);
1732 if (changed)
1733 break;
1734 }
6132c0d0 1735 }
1736 }
1737 }
1738 reg_set_luid[regno] = move2add_luid;
1739 reg_base_reg[regno] = -1;
1740 reg_mode[regno] = GET_MODE (reg);
1741 reg_symbol_ref[regno] = sym;
1742 reg_offset[regno] = INTVAL (off);
d83ccc81 1743 return changed;
6132c0d0 1744}
1745
1746
1747/* This function is called with INSN that sets REG to (SYM + OFF),
1748 but REG doesn't have known value (SYM + offset). This function
1749 tries to find another register which is known to already have
1750 value (SYM + offset) and change INSN into an add instruction
1751 (set (REG) (plus (the found register) (OFF - offset))) if such
1752 a register is found. It also updates the information about
d83ccc81 1753 REG's known value.
1754 Return true iff we made a change. */
6132c0d0 1755
d83ccc81 1756static bool
6132c0d0 1757move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx insn)
1758{
1759 rtx pat = PATTERN (insn);
1760 rtx src = SET_SRC (pat);
1761 int regno = REGNO (reg);
c2130a4b 1762 int min_regno = 0;
6132c0d0 1763 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1764 int i;
d83ccc81 1765 bool changed = false;
c9a03487 1766 struct full_rtx_costs oldcst, newcst, mincst;
1767 rtx plus_expr;
1768
1769 init_costs_to_max (&mincst);
b72d459f 1770 get_full_set_rtx_cost (pat, &oldcst);
c9a03487 1771
1772 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1773 SET_SRC (pat) = plus_expr;
6132c0d0 1774
1775 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1776 if (reg_set_luid[i] > move2add_last_label_luid
1777 && reg_mode[i] == GET_MODE (reg)
1778 && reg_base_reg[i] < 0
1779 && reg_symbol_ref[i] != NULL_RTX
1780 && rtx_equal_p (sym, reg_symbol_ref[i]))
1781 {
1782 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[i],
1783 GET_MODE (reg));
1784 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1785 use (set (reg) (reg)) instead.
1786 We don't delete this insn, nor do we convert it into a
1787 note, to avoid losing register notes or the return
1788 value flag. jump2 already knows how to get rid of
1789 no-op moves. */
1790 if (new_src == const0_rtx)
1791 {
c9a03487 1792 init_costs_to_zero (&mincst);
6132c0d0 1793 min_regno = i;
1794 break;
1795 }
1796 else
1797 {
c9a03487 1798 XEXP (plus_expr, 1) = new_src;
b72d459f 1799 get_full_set_rtx_cost (pat, &newcst);
c9a03487 1800
1801 if (costs_lt_p (&newcst, &mincst, speed))
6132c0d0 1802 {
c9a03487 1803 mincst = newcst;
6132c0d0 1804 min_regno = i;
1805 }
1806 }
1807 }
c9a03487 1808 SET_SRC (pat) = src;
6132c0d0 1809
c9a03487 1810 if (costs_lt_p (&mincst, &oldcst, speed))
6132c0d0 1811 {
1812 rtx tem;
1813
1814 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1815 if (i != min_regno)
1816 {
1817 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[min_regno],
1818 GET_MODE (reg));
1819 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1820 }
d83ccc81 1821 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1822 changed = true;
6132c0d0 1823 }
1824 reg_set_luid[regno] = move2add_luid;
1825 reg_base_reg[regno] = -1;
1826 reg_mode[regno] = GET_MODE (reg);
1827 reg_symbol_ref[regno] = sym;
1828 reg_offset[regno] = INTVAL (off);
d83ccc81 1829 return changed;
6132c0d0 1830}
1831
d83ccc81 1832/* Convert move insns with constant inputs to additions if they are cheaper.
1833 Return true if any changes were made. */
1834static bool
3ad4992f 1835reload_cse_move2add (rtx first)
8f8cadbc 1836{
1837 int i;
1838 rtx insn;
d83ccc81 1839 bool changed = false;
8f8cadbc 1840
1841 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
6132c0d0 1842 {
1843 reg_set_luid[i] = 0;
1844 reg_offset[i] = 0;
1845 reg_base_reg[i] = 0;
1846 reg_symbol_ref[i] = NULL_RTX;
1847 reg_mode[i] = VOIDmode;
1848 }
8f8cadbc 1849
1850 move2add_last_label_luid = 0;
1851 move2add_luid = 2;
1852 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1853 {
1854 rtx pat, note;
1855
6d7dc5b9 1856 if (LABEL_P (insn))
8f8cadbc 1857 {
1858 move2add_last_label_luid = move2add_luid;
1859 /* We're going to increment move2add_luid twice after a
1860 label, so that we can use move2add_last_label_luid + 1 as
1861 the luid for constants. */
1862 move2add_luid++;
1863 continue;
1864 }
1865 if (! INSN_P (insn))
1866 continue;
1867 pat = PATTERN (insn);
1868 /* For simplicity, we only perform this optimization on
1869 straightforward SETs. */
1870 if (GET_CODE (pat) == SET
8ad4c111 1871 && REG_P (SET_DEST (pat)))
8f8cadbc 1872 {
1873 rtx reg = SET_DEST (pat);
1874 int regno = REGNO (reg);
1875 rtx src = SET_SRC (pat);
1876
1877 /* Check if we have valid information on the contents of this
1878 register in the mode of REG. */
1879 if (reg_set_luid[regno] > move2add_last_label_luid
3072d30e 1880 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno])
1881 && dbg_cnt (cse2_move2add))
8f8cadbc 1882 {
1883 /* Try to transform (set (REGX) (CONST_INT A))
1884 ...
1885 (set (REGX) (CONST_INT B))
1886 to
1887 (set (REGX) (CONST_INT A))
1888 ...
1889 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1890 or
1891 (set (REGX) (CONST_INT A))
1892 ...
1893 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1894 */
1895
6132c0d0 1896 if (CONST_INT_P (src)
1897 && reg_base_reg[regno] < 0
1898 && reg_symbol_ref[regno] == NULL_RTX)
8f8cadbc 1899 {
d83ccc81 1900 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
8f8cadbc 1901 continue;
1902 }
1903
1904 /* Try to transform (set (REGX) (REGY))
1905 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1906 ...
1907 (set (REGX) (REGY))
1908 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1909 to
1910 (set (REGX) (REGY))
1911 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1912 ...
1913 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
8ad4c111 1914 else if (REG_P (src)
8f8cadbc 1915 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1916 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1917 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
1918 reg_mode[REGNO (src)]))
1919 {
5b8537a8 1920 rtx next = next_nonnote_nondebug_insn (insn);
8f8cadbc 1921 rtx set = NULL_RTX;
1922 if (next)
1923 set = single_set (next);
1924 if (set
1925 && SET_DEST (set) == reg
1926 && GET_CODE (SET_SRC (set)) == PLUS
1927 && XEXP (SET_SRC (set), 0) == reg
971ba038 1928 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
8f8cadbc 1929 {
1930 rtx src3 = XEXP (SET_SRC (set), 1);
1931 HOST_WIDE_INT added_offset = INTVAL (src3);
1932 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1933 HOST_WIDE_INT regno_offset = reg_offset[regno];
1934 rtx new_src =
69e41517 1935 gen_int_mode (added_offset
1936 + base_offset
1937 - regno_offset,
1938 GET_MODE (reg));
f529eb25 1939 bool success = false;
1940 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
8f8cadbc 1941
1942 if (new_src == const0_rtx)
1943 /* See above why we create (set (reg) (reg)) here. */
1944 success
1945 = validate_change (next, &SET_SRC (set), reg, 0);
c9a03487 1946 else
8f8cadbc 1947 {
c9a03487 1948 rtx old_src = SET_SRC (set);
1949 struct full_rtx_costs oldcst, newcst;
1950 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1951
b72d459f 1952 get_full_set_rtx_cost (set, &oldcst);
c9a03487 1953 SET_SRC (set) = tem;
7013e87c 1954 get_full_set_src_cost (tem, &newcst);
c9a03487 1955 SET_SRC (set) = old_src;
1956 costs_add_n_insns (&oldcst, 1);
1957
1958 if (costs_lt_p (&newcst, &oldcst, speed)
1959 && have_add2_insn (reg, new_src))
1960 {
1961 rtx newpat = gen_rtx_SET (VOIDmode, reg, tem);
1962 success
1963 = validate_change (next, &PATTERN (next),
1964 newpat, 0);
1965 }
8f8cadbc 1966 }
1967 if (success)
1968 delete_insn (insn);
d83ccc81 1969 changed |= success;
8f8cadbc 1970 insn = next;
1971 reg_mode[regno] = GET_MODE (reg);
1972 reg_offset[regno] =
1973 trunc_int_for_mode (added_offset + base_offset,
1974 GET_MODE (reg));
1975 continue;
1976 }
1977 }
1978 }
6132c0d0 1979
1980 /* Try to transform
1981 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
1982 ...
1983 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
1984 to
1985 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
1986 ...
1987 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
1988 if ((GET_CODE (src) == SYMBOL_REF
1989 || (GET_CODE (src) == CONST
1990 && GET_CODE (XEXP (src, 0)) == PLUS
1991 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
1992 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
1993 && dbg_cnt (cse2_move2add))
1994 {
1995 rtx sym, off;
1996
1997 if (GET_CODE (src) == SYMBOL_REF)
1998 {
1999 sym = src;
2000 off = const0_rtx;
2001 }
2002 else
2003 {
2004 sym = XEXP (XEXP (src, 0), 0);
2005 off = XEXP (XEXP (src, 0), 1);
2006 }
2007
2008 /* If the reg already contains the value which is sum of
2009 sym and some constant value, we can use an add2 insn. */
2010 if (reg_set_luid[regno] > move2add_last_label_luid
2011 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno])
2012 && reg_base_reg[regno] < 0
2013 && reg_symbol_ref[regno] != NULL_RTX
2014 && rtx_equal_p (sym, reg_symbol_ref[regno]))
d83ccc81 2015 changed |= move2add_use_add2_insn (reg, sym, off, insn);
6132c0d0 2016
2017 /* Otherwise, we have to find a register whose value is sum
2018 of sym and some constant value. */
2019 else
d83ccc81 2020 changed |= move2add_use_add3_insn (reg, sym, off, insn);
6132c0d0 2021
2022 continue;
2023 }
8f8cadbc 2024 }
2025
2026 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2027 {
2028 if (REG_NOTE_KIND (note) == REG_INC
8ad4c111 2029 && REG_P (XEXP (note, 0)))
8f8cadbc 2030 {
2031 /* Reset the information about this register. */
2032 int regno = REGNO (XEXP (note, 0));
2033 if (regno < FIRST_PSEUDO_REGISTER)
2034 reg_set_luid[regno] = 0;
2035 }
2036 }
6132c0d0 2037 note_stores (PATTERN (insn), move2add_note_store, insn);
8f8cadbc 2038
2039 /* If INSN is a conditional branch, we try to extract an
2040 implicit set out of it. */
f222bc3b 2041 if (any_condjump_p (insn))
8f8cadbc 2042 {
2043 rtx cnd = fis_get_condition (insn);
2044
2045 if (cnd != NULL_RTX
2046 && GET_CODE (cnd) == NE
8ad4c111 2047 && REG_P (XEXP (cnd, 0))
f222bc3b 2048 && !reg_set_p (XEXP (cnd, 0), insn)
8f8cadbc 2049 /* The following two checks, which are also in
2050 move2add_note_store, are intended to reduce the
2051 number of calls to gen_rtx_SET to avoid memory
2052 allocation if possible. */
2053 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
67d6c12b 2054 && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
971ba038 2055 && CONST_INT_P (XEXP (cnd, 1)))
8f8cadbc 2056 {
2057 rtx implicit_set =
2058 gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
6132c0d0 2059 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
8f8cadbc 2060 }
2061 }
2062
2063 /* If this is a CALL_INSN, all call used registers are stored with
2064 unknown values. */
6d7dc5b9 2065 if (CALL_P (insn))
8f8cadbc 2066 {
2067 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2068 {
2069 if (call_used_regs[i])
2070 /* Reset the information about this register. */
2071 reg_set_luid[i] = 0;
2072 }
2073 }
2074 }
d83ccc81 2075 return changed;
8f8cadbc 2076}
2077
6132c0d0 2078/* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2079 contains SET.
8f8cadbc 2080 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2081 Called from reload_cse_move2add via note_stores. */
2082
2083static void
6132c0d0 2084move2add_note_store (rtx dst, const_rtx set, void *data)
8f8cadbc 2085{
6132c0d0 2086 rtx insn = (rtx) data;
8f8cadbc 2087 unsigned int regno = 0;
fe2ebfc8 2088 unsigned int nregs = 0;
8f8cadbc 2089 unsigned int i;
2090 enum machine_mode mode = GET_MODE (dst);
2091
2092 if (GET_CODE (dst) == SUBREG)
2093 {
2094 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
2095 GET_MODE (SUBREG_REG (dst)),
2096 SUBREG_BYTE (dst),
2097 GET_MODE (dst));
fe2ebfc8 2098 nregs = subreg_nregs (dst);
8f8cadbc 2099 dst = SUBREG_REG (dst);
2100 }
2101
2102 /* Some targets do argument pushes without adding REG_INC notes. */
2103
e16ceb8e 2104 if (MEM_P (dst))
8f8cadbc 2105 {
2106 dst = XEXP (dst, 0);
2107 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2108 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2109 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
2110 return;
2111 }
8ad4c111 2112 if (!REG_P (dst))
8f8cadbc 2113 return;
2114
2115 regno += REGNO (dst);
fe2ebfc8 2116 if (!nregs)
2117 nregs = hard_regno_nregs[regno][mode];
8f8cadbc 2118
6132c0d0 2119 if (SCALAR_INT_MODE_P (GET_MODE (dst))
2120 && nregs == 1 && GET_CODE (set) == SET)
2121 {
2122 rtx note, sym = NULL_RTX;
2123 HOST_WIDE_INT off;
2124
2125 note = find_reg_equal_equiv_note (insn);
2126 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2127 {
2128 sym = XEXP (note, 0);
2129 off = 0;
2130 }
2131 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2132 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2133 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2134 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2135 {
2136 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2137 off = INTVAL (XEXP (XEXP (XEXP (note, 0), 0), 1));
2138 }
2139
2140 if (sym != NULL_RTX)
2141 {
2142 reg_base_reg[regno] = -1;
2143 reg_symbol_ref[regno] = sym;
2144 reg_offset[regno] = off;
2145 reg_mode[regno] = mode;
2146 reg_set_luid[regno] = move2add_luid;
2147 return;
2148 }
2149 }
2150
a422e68e 2151 if (SCALAR_INT_MODE_P (GET_MODE (dst))
fe2ebfc8 2152 && nregs == 1 && GET_CODE (set) == SET
8f8cadbc 2153 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
8f8cadbc 2154 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2155 {
2156 rtx src = SET_SRC (set);
2157 rtx base_reg;
2158 HOST_WIDE_INT offset;
2159 int base_regno;
2160 /* This may be different from mode, if SET_DEST (set) is a
2161 SUBREG. */
2162 enum machine_mode dst_mode = GET_MODE (dst);
2163
2164 switch (GET_CODE (src))
2165 {
2166 case PLUS:
8ad4c111 2167 if (REG_P (XEXP (src, 0)))
8f8cadbc 2168 {
2169 base_reg = XEXP (src, 0);
2170
971ba038 2171 if (CONST_INT_P (XEXP (src, 1)))
8f8cadbc 2172 offset = INTVAL (XEXP (src, 1));
8ad4c111 2173 else if (REG_P (XEXP (src, 1))
8f8cadbc 2174 && (reg_set_luid[REGNO (XEXP (src, 1))]
2175 > move2add_last_label_luid)
2176 && (MODES_OK_FOR_MOVE2ADD
2177 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
2178 {
c389f975 2179 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2180 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
8f8cadbc 2181 offset = reg_offset[REGNO (XEXP (src, 1))];
2182 /* Maybe the first register is known to be a
2183 constant. */
2184 else if (reg_set_luid[REGNO (base_reg)]
2185 > move2add_last_label_luid
2186 && (MODES_OK_FOR_MOVE2ADD
c389f975 2187 (dst_mode, reg_mode[REGNO (base_reg)]))
2188 && reg_base_reg[REGNO (base_reg)] < 0
2189 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
8f8cadbc 2190 {
2191 offset = reg_offset[REGNO (base_reg)];
2192 base_reg = XEXP (src, 1);
2193 }
2194 else
2195 goto invalidate;
2196 }
2197 else
2198 goto invalidate;
2199
2200 break;
2201 }
2202
2203 goto invalidate;
2204
2205 case REG:
2206 base_reg = src;
2207 offset = 0;
2208 break;
2209
2210 case CONST_INT:
2211 /* Start tracking the register as a constant. */
2212 reg_base_reg[regno] = -1;
6132c0d0 2213 reg_symbol_ref[regno] = NULL_RTX;
8f8cadbc 2214 reg_offset[regno] = INTVAL (SET_SRC (set));
2215 /* We assign the same luid to all registers set to constants. */
2216 reg_set_luid[regno] = move2add_last_label_luid + 1;
2217 reg_mode[regno] = mode;
2218 return;
2219
2220 default:
2221 invalidate:
2222 /* Invalidate the contents of the register. */
2223 reg_set_luid[regno] = 0;
2224 return;
2225 }
2226
2227 base_regno = REGNO (base_reg);
2228 /* If information about the base register is not valid, set it
2229 up as a new base register, pretending its value is known
2230 starting from the current insn. */
2231 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
2232 {
2233 reg_base_reg[base_regno] = base_regno;
6132c0d0 2234 reg_symbol_ref[base_regno] = NULL_RTX;
8f8cadbc 2235 reg_offset[base_regno] = 0;
2236 reg_set_luid[base_regno] = move2add_luid;
2237 reg_mode[base_regno] = mode;
2238 }
2239 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
2240 reg_mode[base_regno]))
2241 goto invalidate;
2242
2243 reg_mode[regno] = mode;
2244
2245 /* Copy base information from our base register. */
2246 reg_set_luid[regno] = reg_set_luid[base_regno];
2247 reg_base_reg[regno] = reg_base_reg[base_regno];
6132c0d0 2248 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
8f8cadbc 2249
2250 /* Compute the sum of the offsets or constants. */
2251 reg_offset[regno] = trunc_int_for_mode (offset
2252 + reg_offset[base_regno],
2253 dst_mode);
2254 }
2255 else
2256 {
fe2ebfc8 2257 unsigned int endregno = regno + nregs;
8f8cadbc 2258
2259 for (i = regno; i < endregno; i++)
2260 /* Reset the information about this register. */
2261 reg_set_luid[i] = 0;
2262 }
2263}
77fce4cd 2264\f
2265static bool
2266gate_handle_postreload (void)
2267{
47dd2e78 2268 return (optimize > 0 && reload_completed);
77fce4cd 2269}
2270
2271
2a1990e9 2272static unsigned int
77fce4cd 2273rest_of_handle_postreload (void)
2274{
3072d30e 2275 if (!dbg_cnt (postreload_cse))
2276 return 0;
2277
77fce4cd 2278 /* Do a very simple CSE pass over just the hard registers. */
2279 reload_cse_regs (get_insns ());
3072d30e 2280 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
77fce4cd 2281 Remove any EH edges associated with them. */
cbeb677e 2282 if (cfun->can_throw_non_call_exceptions)
77fce4cd 2283 purge_all_dead_edges ();
3072d30e 2284
2a1990e9 2285 return 0;
77fce4cd 2286}
2287
20099e35 2288struct rtl_opt_pass pass_postreload_cse =
77fce4cd 2289{
20099e35 2290 {
2291 RTL_PASS,
77fce4cd 2292 "postreload", /* name */
2293 gate_handle_postreload, /* gate */
2294 rest_of_handle_postreload, /* execute */
2295 NULL, /* sub */
2296 NULL, /* next */
2297 0, /* static_pass_number */
2298 TV_RELOAD_CSE_REGS, /* tv_id */
2299 0, /* properties_required */
2300 0, /* properties_provided */
2301 0, /* properties_destroyed */
2302 0, /* todo_flags_start */
0806b508 2303 TODO_df_finish | TODO_verify_rtl_sharing |
771e2890 2304 0 /* todo_flags_finish */
20099e35 2305 }
77fce4cd 2306};