]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/postreload.c
2014-05-06 Richard Biener <rguenther@suse.de>
[thirdparty/gcc.git] / gcc / postreload.c
CommitLineData
8f8cadbc 1/* Perform simple optimizations to clean up the result of reload.
3aea1f79 2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
8f8cadbc 3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8c4c00c1 8Software Foundation; either version 3, or (at your option) any later
8f8cadbc 9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
8f8cadbc 19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
24
25#include "machmode.h"
26#include "hard-reg-set.h"
27#include "rtl.h"
28#include "tm_p.h"
29#include "obstack.h"
30#include "insn-config.h"
31#include "flags.h"
32#include "function.h"
33#include "expr.h"
34#include "optabs.h"
35#include "regs.h"
36#include "basic-block.h"
37#include "reload.h"
38#include "recog.h"
8f8cadbc 39#include "cselib.h"
0b205f4c 40#include "diagnostic-core.h"
8f8cadbc 41#include "except.h"
42#include "tree.h"
727047d0 43#include "target.h"
77fce4cd 44#include "tree-pass.h"
3072d30e 45#include "df.h"
46#include "dbgcnt.h"
8f8cadbc 47
3ad4992f 48static int reload_cse_noop_set_p (rtx);
26709122 49static bool reload_cse_simplify (rtx, rtx);
50static void reload_cse_regs_1 (void);
3ad4992f 51static int reload_cse_simplify_set (rtx, rtx);
52static int reload_cse_simplify_operands (rtx, rtx);
8f8cadbc 53
3ad4992f 54static void reload_combine (void);
d83ccc81 55static void reload_combine_note_use (rtx *, rtx, int, rtx);
81a410b1 56static void reload_combine_note_store (rtx, const_rtx, void *);
8f8cadbc 57
d83ccc81 58static bool reload_cse_move2add (rtx);
81a410b1 59static void move2add_note_store (rtx, const_rtx, void *);
8f8cadbc 60
61/* Call cse / combine like post-reload optimization phases.
62 FIRST is the first instruction. */
98799adc 63
64static void
3ad4992f 65reload_cse_regs (rtx first ATTRIBUTE_UNUSED)
8f8cadbc 66{
d83ccc81 67 bool moves_converted;
26709122 68 reload_cse_regs_1 ();
8f8cadbc 69 reload_combine ();
d83ccc81 70 moves_converted = reload_cse_move2add (first);
8f8cadbc 71 if (flag_expensive_optimizations)
d83ccc81 72 {
73 if (moves_converted)
74 reload_combine ();
26709122 75 reload_cse_regs_1 ();
d83ccc81 76 }
8f8cadbc 77}
78
79/* See whether a single set SET is a noop. */
80static int
3ad4992f 81reload_cse_noop_set_p (rtx set)
8f8cadbc 82{
83 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
84 return 0;
85
86 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
87}
88
26709122 89/* Try to simplify INSN. Return true if the CFG may have changed. */
90static bool
3ad4992f 91reload_cse_simplify (rtx insn, rtx testreg)
8f8cadbc 92{
93 rtx body = PATTERN (insn);
26709122 94 basic_block insn_bb = BLOCK_FOR_INSN (insn);
95 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
8f8cadbc 96
97 if (GET_CODE (body) == SET)
98 {
99 int count = 0;
100
101 /* Simplify even if we may think it is a no-op.
102 We may think a memory load of a value smaller than WORD_SIZE
103 is redundant because we haven't taken into account possible
104 implicit extension. reload_cse_simplify_set() will bring
105 this out, so it's safer to simplify before we delete. */
106 count += reload_cse_simplify_set (body, insn);
107
108 if (!count && reload_cse_noop_set_p (body))
109 {
110 rtx value = SET_DEST (body);
111 if (REG_P (value)
112 && ! REG_FUNCTION_VALUE_P (value))
113 value = 0;
5a9ecd4a 114 if (check_for_inc_dec (insn))
115 delete_insn_and_edges (insn);
26709122 116 /* We're done with this insn. */
117 goto done;
8f8cadbc 118 }
119
120 if (count > 0)
121 apply_change_group ();
122 else
123 reload_cse_simplify_operands (insn, testreg);
124 }
125 else if (GET_CODE (body) == PARALLEL)
126 {
127 int i;
128 int count = 0;
129 rtx value = NULL_RTX;
130
17883489 131 /* Registers mentioned in the clobber list for an asm cannot be reused
132 within the body of the asm. Invalidate those registers now so that
133 we don't try to substitute values for them. */
134 if (asm_noperands (body) >= 0)
135 {
136 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
137 {
138 rtx part = XVECEXP (body, 0, i);
139 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
140 cselib_invalidate_rtx (XEXP (part, 0));
141 }
142 }
143
8f8cadbc 144 /* If every action in a PARALLEL is a noop, we can delete
145 the entire PARALLEL. */
146 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
147 {
148 rtx part = XVECEXP (body, 0, i);
149 if (GET_CODE (part) == SET)
150 {
151 if (! reload_cse_noop_set_p (part))
152 break;
153 if (REG_P (SET_DEST (part))
154 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
155 {
156 if (value)
157 break;
158 value = SET_DEST (part);
159 }
160 }
161 else if (GET_CODE (part) != CLOBBER)
162 break;
163 }
164
165 if (i < 0)
166 {
5a9ecd4a 167 if (check_for_inc_dec (insn))
168 delete_insn_and_edges (insn);
8f8cadbc 169 /* We're done with this insn. */
26709122 170 goto done;
8f8cadbc 171 }
172
173 /* It's not a no-op, but we can try to simplify it. */
174 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
175 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
176 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
177
178 if (count > 0)
179 apply_change_group ();
180 else
181 reload_cse_simplify_operands (insn, testreg);
182 }
26709122 183
184done:
185 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
8f8cadbc 186}
187
188/* Do a very simple CSE pass over the hard registers.
189
190 This function detects no-op moves where we happened to assign two
191 different pseudo-registers to the same hard register, and then
192 copied one to the other. Reload will generate a useless
193 instruction copying a register to itself.
194
195 This function also detects cases where we load a value from memory
196 into two different registers, and (if memory is more expensive than
197 registers) changes it to simply copy the first register into the
198 second register.
199
200 Another optimization is performed that scans the operands of each
201 instruction to see whether the value is already available in a
202 hard register. It then replaces the operand with the hard register
203 if possible, much like an optional reload would. */
204
205static void
26709122 206reload_cse_regs_1 (void)
8f8cadbc 207{
26709122 208 bool cfg_changed = false;
209 basic_block bb;
201f6961 210 rtx insn;
8f8cadbc 211 rtx testreg = gen_rtx_REG (VOIDmode, -1);
212
35af0188 213 cselib_init (CSELIB_RECORD_MEMORY);
8f8cadbc 214 init_alias_analysis ();
215
fc00614f 216 FOR_EACH_BB_FN (bb, cfun)
26709122 217 FOR_BB_INSNS (bb, insn)
218 {
219 if (INSN_P (insn))
220 cfg_changed |= reload_cse_simplify (insn, testreg);
8f8cadbc 221
26709122 222 cselib_process_insn (insn);
223 }
8f8cadbc 224
225 /* Clean up. */
226 end_alias_analysis ();
227 cselib_finish ();
26709122 228 if (cfg_changed)
229 cleanup_cfg (0);
8f8cadbc 230}
231
232/* Try to simplify a single SET instruction. SET is the set pattern.
233 INSN is the instruction it came from.
234 This function only handles one case: if we set a register to a value
235 which is not a register, we try to find that value in some other register
236 and change the set into a register copy. */
237
238static int
3ad4992f 239reload_cse_simplify_set (rtx set, rtx insn)
8f8cadbc 240{
241 int did_change = 0;
242 int dreg;
243 rtx src;
ade444a4 244 reg_class_t dclass;
8f8cadbc 245 int old_cost;
246 cselib_val *val;
247 struct elt_loc_list *l;
248#ifdef LOAD_EXTEND_OP
21f1e711 249 enum rtx_code extend_op = UNKNOWN;
8f8cadbc 250#endif
f529eb25 251 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
8f8cadbc 252
253 dreg = true_regnum (SET_DEST (set));
254 if (dreg < 0)
255 return 0;
256
257 src = SET_SRC (set);
258 if (side_effects_p (src) || true_regnum (src) >= 0)
259 return 0;
260
261 dclass = REGNO_REG_CLASS (dreg);
262
263#ifdef LOAD_EXTEND_OP
264 /* When replacing a memory with a register, we need to honor assumptions
265 that combine made wrt the contents of sign bits. We'll do this by
266 generating an extend instruction instead of a reg->reg copy. Thus
267 the destination must be a register that we can widen. */
e16ceb8e 268 if (MEM_P (src)
8f8cadbc 269 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
21f1e711 270 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
8ad4c111 271 && !REG_P (SET_DEST (set)))
8f8cadbc 272 return 0;
273#endif
274
1f864115 275 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
3be01943 276 if (! val)
277 return 0;
278
8f8cadbc 279 /* If memory loads are cheaper than register copies, don't change them. */
e16ceb8e 280 if (MEM_P (src))
251a613e 281 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
8ad4c111 282 else if (REG_P (src))
e6078fbb 283 old_cost = register_move_cost (GET_MODE (src),
8f8cadbc 284 REGNO_REG_CLASS (REGNO (src)), dclass);
285 else
7013e87c 286 old_cost = set_src_cost (src, speed);
8f8cadbc 287
8f8cadbc 288 for (l = val->locs; l; l = l->next)
289 {
290 rtx this_rtx = l->loc;
291 int this_cost;
292
293 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
294 {
295#ifdef LOAD_EXTEND_OP
21f1e711 296 if (extend_op != UNKNOWN)
8f8cadbc 297 {
298 HOST_WIDE_INT this_val;
299
300 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
301 constants, such as SYMBOL_REF, cannot be extended. */
971ba038 302 if (!CONST_INT_P (this_rtx))
8f8cadbc 303 continue;
304
305 this_val = INTVAL (this_rtx);
306 switch (extend_op)
307 {
308 case ZERO_EXTEND:
309 this_val &= GET_MODE_MASK (GET_MODE (src));
310 break;
311 case SIGN_EXTEND:
312 /* ??? In theory we're already extended. */
313 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
314 break;
315 default:
876760f6 316 gcc_unreachable ();
8f8cadbc 317 }
318 this_rtx = GEN_INT (this_val);
319 }
320#endif
7013e87c 321 this_cost = set_src_cost (this_rtx, speed);
8f8cadbc 322 }
8ad4c111 323 else if (REG_P (this_rtx))
8f8cadbc 324 {
325#ifdef LOAD_EXTEND_OP
21f1e711 326 if (extend_op != UNKNOWN)
8f8cadbc 327 {
328 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
7013e87c 329 this_cost = set_src_cost (this_rtx, speed);
8f8cadbc 330 }
331 else
332#endif
e6078fbb 333 this_cost = register_move_cost (GET_MODE (this_rtx),
8f8cadbc 334 REGNO_REG_CLASS (REGNO (this_rtx)),
335 dclass);
336 }
337 else
338 continue;
339
340 /* If equal costs, prefer registers over anything else. That
341 tends to lead to smaller instructions on some machines. */
342 if (this_cost < old_cost
343 || (this_cost == old_cost
8ad4c111 344 && REG_P (this_rtx)
345 && !REG_P (SET_SRC (set))))
8f8cadbc 346 {
347#ifdef LOAD_EXTEND_OP
348 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
21f1e711 349 && extend_op != UNKNOWN
8f8cadbc 350#ifdef CANNOT_CHANGE_MODE_CLASS
351 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
352 word_mode,
353 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
354#endif
355 )
356 {
357 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
358 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
359 validate_change (insn, &SET_DEST (set), wide_dest, 1);
360 }
361#endif
362
11d686e2 363 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
8f8cadbc 364 old_cost = this_cost, did_change = 1;
365 }
366 }
367
368 return did_change;
369}
370
371/* Try to replace operands in INSN with equivalent values that are already
372 in registers. This can be viewed as optional reloading.
373
374 For each non-register operand in the insn, see if any hard regs are
375 known to be equivalent to that operand. Record the alternatives which
376 can accept these hard registers. Among all alternatives, select the
377 ones which are better or equal to the one currently matching, where
378 "better" is in terms of '?' and '!' constraints. Among the remaining
379 alternatives, select the one which replaces most operands with
380 hard registers. */
381
382static int
3ad4992f 383reload_cse_simplify_operands (rtx insn, rtx testreg)
8f8cadbc 384{
385 int i, j;
386
387 /* For each operand, all registers that are equivalent to it. */
388 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
389
390 const char *constraints[MAX_RECOG_OPERANDS];
391
392 /* Vector recording how bad an alternative is. */
393 int *alternative_reject;
394 /* Vector recording how many registers can be introduced by choosing
395 this alternative. */
396 int *alternative_nregs;
397 /* Array of vectors recording, for each operand and each alternative,
398 which hard register to substitute, or -1 if the operand should be
399 left as it is. */
400 int *op_alt_regno[MAX_RECOG_OPERANDS];
401 /* Array of alternatives, sorted in order of decreasing desirability. */
402 int *alternative_order;
403
404 extract_insn (insn);
405
406 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
407 return 0;
408
409 /* Figure out which alternative currently matches. */
410 if (! constrain_operands (1))
411 fatal_insn_not_found (insn);
412
4077bf7a 413 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
414 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
415 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
f0af5a88 416 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
417 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
8f8cadbc 418
419 /* For each operand, find out which regs are equivalent. */
420 for (i = 0; i < recog_data.n_operands; i++)
421 {
422 cselib_val *v;
423 struct elt_loc_list *l;
9d9e3c81 424 rtx op;
8f8cadbc 425
426 CLEAR_HARD_REG_SET (equiv_regs[i]);
427
428 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
429 right, so avoid the problem here. Likewise if we have a constant
430 and the insn pattern doesn't tell us the mode we need. */
6d7dc5b9 431 if (LABEL_P (recog_data.operand[i])
8f8cadbc 432 || (CONSTANT_P (recog_data.operand[i])
433 && recog_data.operand_mode[i] == VOIDmode))
434 continue;
435
9d9e3c81 436 op = recog_data.operand[i];
9d9e3c81 437#ifdef LOAD_EXTEND_OP
e16ceb8e 438 if (MEM_P (op)
f018d957 439 && GET_MODE_BITSIZE (GET_MODE (op)) < BITS_PER_WORD
440 && LOAD_EXTEND_OP (GET_MODE (op)) != UNKNOWN)
9d9e3c81 441 {
442 rtx set = single_set (insn);
443
4885b286 444 /* We might have multiple sets, some of which do implicit
9d9e3c81 445 extension. Punt on this for now. */
446 if (! set)
447 continue;
86481e89 448 /* If the destination is also a MEM or a STRICT_LOW_PART, no
9d9e3c81 449 extension applies.
450 Also, if there is an explicit extension, we don't have to
451 worry about an implicit one. */
e16ceb8e 452 else if (MEM_P (SET_DEST (set))
9d9e3c81 453 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
454 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
455 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
456 ; /* Continue ordinary processing. */
a091e4f5 457#ifdef CANNOT_CHANGE_MODE_CLASS
458 /* If the register cannot change mode to word_mode, it follows that
459 it cannot have been used in word_mode. */
8ad4c111 460 else if (REG_P (SET_DEST (set))
a091e4f5 461 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
462 word_mode,
463 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
464 ; /* Continue ordinary processing. */
465#endif
9d9e3c81 466 /* If this is a straight load, make the extension explicit. */
8ad4c111 467 else if (REG_P (SET_DEST (set))
9d9e3c81 468 && recog_data.n_operands == 2
469 && SET_SRC (set) == op
470 && SET_DEST (set) == recog_data.operand[1-i])
471 {
472 validate_change (insn, recog_data.operand_loc[i],
f018d957 473 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op)),
9d9e3c81 474 word_mode, op),
475 1);
476 validate_change (insn, recog_data.operand_loc[1-i],
477 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
478 1);
479 if (! apply_change_group ())
480 return 0;
481 return reload_cse_simplify_operands (insn, testreg);
482 }
483 else
484 /* ??? There might be arithmetic operations with memory that are
485 safe to optimize, but is it worth the trouble? */
486 continue;
487 }
488#endif /* LOAD_EXTEND_OP */
017b7047 489 if (side_effects_p (op))
490 continue;
1f864115 491 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
8f8cadbc 492 if (! v)
493 continue;
494
495 for (l = v->locs; l; l = l->next)
8ad4c111 496 if (REG_P (l->loc))
8f8cadbc 497 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
498 }
499
500 for (i = 0; i < recog_data.n_operands; i++)
501 {
502 enum machine_mode mode;
503 int regno;
504 const char *p;
505
4077bf7a 506 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
8f8cadbc 507 for (j = 0; j < recog_data.n_alternatives; j++)
508 op_alt_regno[i][j] = -1;
509
510 p = constraints[i] = recog_data.constraints[i];
511 mode = recog_data.operand_mode[i];
512
513 /* Add the reject values for each alternative given by the constraints
514 for this operand. */
515 j = 0;
516 while (*p != '\0')
517 {
518 char c = *p++;
519 if (c == ',')
520 j++;
521 else if (c == '?')
522 alternative_reject[j] += 3;
523 else if (c == '!')
524 alternative_reject[j] += 300;
525 }
526
527 /* We won't change operands which are already registers. We
528 also don't want to modify output operands. */
529 regno = true_regnum (recog_data.operand[i]);
530 if (regno >= 0
531 || constraints[i][0] == '='
532 || constraints[i][0] == '+')
533 continue;
534
535 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
536 {
b9c74b4d 537 enum reg_class rclass = NO_REGS;
8f8cadbc 538
539 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
540 continue;
541
7f1819d3 542 SET_REGNO_RAW (testreg, regno);
8f8cadbc 543 PUT_MODE (testreg, mode);
544
545 /* We found a register equal to this operand. Now look for all
546 alternatives that can accept this register and have not been
547 assigned a register they can use yet. */
548 j = 0;
549 p = constraints[i];
550 for (;;)
551 {
552 char c = *p;
553
554 switch (c)
555 {
556 case '=': case '+': case '?':
557 case '#': case '&': case '!':
558 case '*': case '%':
559 case '0': case '1': case '2': case '3': case '4':
560 case '5': case '6': case '7': case '8': case '9':
e9ff93b1 561 case '<': case '>': case 'V': case 'o':
8f8cadbc 562 case 'E': case 'F': case 'G': case 'H':
563 case 's': case 'i': case 'n':
564 case 'I': case 'J': case 'K': case 'L':
565 case 'M': case 'N': case 'O': case 'P':
e9ff93b1 566 case 'p': case 'X': case TARGET_MEM_CONSTRAINT:
8f8cadbc 567 /* These don't say anything we care about. */
568 break;
569
570 case 'g': case 'r':
6659485c 571 rclass = reg_class_subunion[(int) rclass][(int) GENERAL_REGS];
8f8cadbc 572 break;
573
574 default:
6659485c 575 rclass
8f8cadbc 576 = (reg_class_subunion
6659485c 577 [(int) rclass]
8f8cadbc 578 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
579 break;
580
581 case ',': case '\0':
582 /* See if REGNO fits this alternative, and set it up as the
583 replacement register if we don't have one for this
584 alternative yet and the operand being replaced is not
585 a cheap CONST_INT. */
586 if (op_alt_regno[i][j] == -1
620047f0 587 && recog_data.alternative_enabled_p[j]
6659485c 588 && reg_fits_class_p (testreg, rclass, 0, mode)
971ba038 589 && (!CONST_INT_P (recog_data.operand[i])
7013e87c 590 || (set_src_cost (recog_data.operand[i],
591 optimize_bb_for_speed_p
592 (BLOCK_FOR_INSN (insn)))
593 > set_src_cost (testreg,
594 optimize_bb_for_speed_p
595 (BLOCK_FOR_INSN (insn))))))
8f8cadbc 596 {
597 alternative_nregs[j]++;
598 op_alt_regno[i][j] = regno;
599 }
600 j++;
b9c74b4d 601 rclass = NO_REGS;
8f8cadbc 602 break;
603 }
604 p += CONSTRAINT_LEN (c, p);
605
606 if (c == '\0')
607 break;
608 }
609 }
610 }
611
612 /* Record all alternatives which are better or equal to the currently
613 matching one in the alternative_order array. */
614 for (i = j = 0; i < recog_data.n_alternatives; i++)
615 if (alternative_reject[i] <= alternative_reject[which_alternative])
616 alternative_order[j++] = i;
617 recog_data.n_alternatives = j;
618
619 /* Sort it. Given a small number of alternatives, a dumb algorithm
620 won't hurt too much. */
621 for (i = 0; i < recog_data.n_alternatives - 1; i++)
622 {
623 int best = i;
624 int best_reject = alternative_reject[alternative_order[i]];
625 int best_nregs = alternative_nregs[alternative_order[i]];
626 int tmp;
627
628 for (j = i + 1; j < recog_data.n_alternatives; j++)
629 {
630 int this_reject = alternative_reject[alternative_order[j]];
631 int this_nregs = alternative_nregs[alternative_order[j]];
632
633 if (this_reject < best_reject
c2d0cf41 634 || (this_reject == best_reject && this_nregs > best_nregs))
8f8cadbc 635 {
636 best = j;
637 best_reject = this_reject;
638 best_nregs = this_nregs;
639 }
640 }
641
642 tmp = alternative_order[best];
643 alternative_order[best] = alternative_order[i];
644 alternative_order[i] = tmp;
645 }
646
647 /* Substitute the operands as determined by op_alt_regno for the best
648 alternative. */
649 j = alternative_order[0];
650
651 for (i = 0; i < recog_data.n_operands; i++)
652 {
653 enum machine_mode mode = recog_data.operand_mode[i];
654 if (op_alt_regno[i][j] == -1)
655 continue;
656
657 validate_change (insn, recog_data.operand_loc[i],
658 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
659 }
660
661 for (i = recog_data.n_dups - 1; i >= 0; i--)
662 {
663 int op = recog_data.dup_num[i];
664 enum machine_mode mode = recog_data.operand_mode[op];
665
666 if (op_alt_regno[op][j] == -1)
667 continue;
668
669 validate_change (insn, recog_data.dup_loc[i],
670 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
671 }
672
673 return apply_change_group ();
674}
675\f
676/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
677 addressing now.
678 This code might also be useful when reload gave up on reg+reg addressing
679 because of clashes between the return register and INDEX_REG_CLASS. */
680
681/* The maximum number of uses of a register we can keep track of to
682 replace them with reg+reg addressing. */
d83ccc81 683#define RELOAD_COMBINE_MAX_USES 16
8f8cadbc 684
d83ccc81 685/* Describes a recorded use of a register. */
686struct reg_use
687{
688 /* The insn where a register has been used. */
689 rtx insn;
690 /* Points to the memory reference enclosing the use, if any, NULL_RTX
691 otherwise. */
692 rtx containing_mem;
9d75589a 693 /* Location of the register within INSN. */
d83ccc81 694 rtx *usep;
695 /* The reverse uid of the insn. */
696 int ruid;
697};
8f8cadbc 698
699/* If the register is used in some unknown fashion, USE_INDEX is negative.
700 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
d83ccc81 701 indicates where it is first set or clobbered.
8f8cadbc 702 Otherwise, USE_INDEX is the index of the last encountered use of the
d83ccc81 703 register (which is first among these we have seen since we scan backwards).
704 USE_RUID indicates the first encountered, i.e. last, of these uses.
705 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
706 with a constant offset; OFFSET contains this constant in that case.
8f8cadbc 707 STORE_RUID is always meaningful if we only want to use a value in a
708 register in a different place: it denotes the next insn in the insn
d83ccc81 709 stream (i.e. the last encountered) that sets or clobbers the register.
710 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
8f8cadbc 711static struct
712 {
713 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
8f8cadbc 714 rtx offset;
d83ccc81 715 int use_index;
8f8cadbc 716 int store_ruid;
d83ccc81 717 int real_store_ruid;
8f8cadbc 718 int use_ruid;
d83ccc81 719 bool all_offsets_match;
8f8cadbc 720 } reg_state[FIRST_PSEUDO_REGISTER];
721
722/* Reverse linear uid. This is increased in reload_combine while scanning
723 the instructions from last to first. It is used to set last_label_ruid
724 and the store_ruid / use_ruid fields in reg_state. */
725static int reload_combine_ruid;
726
fb79f695 727/* The RUID of the last label we encountered in reload_combine. */
728static int last_label_ruid;
729
d83ccc81 730/* The RUID of the last jump we encountered in reload_combine. */
731static int last_jump_ruid;
732
fb79f695 733/* The register numbers of the first and last index register. A value of
734 -1 in LAST_INDEX_REG indicates that we've previously computed these
735 values and found no suitable index registers. */
736static int first_index_reg = -1;
737static int last_index_reg;
738
8f8cadbc 739#define LABEL_LIVE(LABEL) \
740 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
741
d83ccc81 742/* Subroutine of reload_combine_split_ruids, called to fix up a single
743 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
744
745static inline void
746reload_combine_split_one_ruid (int *pruid, int split_ruid)
747{
748 if (*pruid > split_ruid)
749 (*pruid)++;
750}
751
752/* Called when we insert a new insn in a position we've already passed in
753 the scan. Examine all our state, increasing all ruids that are higher
754 than SPLIT_RUID by one in order to make room for a new insn. */
755
756static void
757reload_combine_split_ruids (int split_ruid)
758{
759 unsigned i;
760
761 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
762 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
763 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
764
765 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
766 {
767 int j, idx = reg_state[i].use_index;
768 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
769 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
770 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
771 split_ruid);
772 if (idx < 0)
773 continue;
774 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
775 {
776 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
777 split_ruid);
778 }
779 }
780}
781
782/* Called when we are about to rescan a previously encountered insn with
783 reload_combine_note_use after modifying some part of it. This clears all
784 information about uses in that particular insn. */
785
786static void
787reload_combine_purge_insn_uses (rtx insn)
788{
789 unsigned i;
790
791 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
792 {
793 int j, k, idx = reg_state[i].use_index;
794 if (idx < 0)
795 continue;
796 j = k = RELOAD_COMBINE_MAX_USES;
797 while (j-- > idx)
798 {
799 if (reg_state[i].reg_use[j].insn != insn)
800 {
801 k--;
802 if (k != j)
803 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
804 }
805 }
806 reg_state[i].use_index = k;
807 }
808}
809
810/* Called when we need to forget about all uses of REGNO after an insn
811 which is identified by RUID. */
812
813static void
814reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
815{
816 int j, k, idx = reg_state[regno].use_index;
817 if (idx < 0)
818 return;
819 j = k = RELOAD_COMBINE_MAX_USES;
820 while (j-- > idx)
821 {
822 if (reg_state[regno].reg_use[j].ruid >= ruid)
823 {
824 k--;
825 if (k != j)
826 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
827 }
828 }
829 reg_state[regno].use_index = k;
830}
831
832/* Find the use of REGNO with the ruid that is highest among those
833 lower than RUID_LIMIT, and return it if it is the only use of this
727047d0 834 reg in the insn. Return NULL otherwise. */
d83ccc81 835
836static struct reg_use *
837reload_combine_closest_single_use (unsigned regno, int ruid_limit)
838{
839 int i, best_ruid = 0;
840 int use_idx = reg_state[regno].use_index;
841 struct reg_use *retval;
842
843 if (use_idx < 0)
844 return NULL;
845 retval = NULL;
846 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
847 {
0ead6a7d 848 struct reg_use *use = reg_state[regno].reg_use + i;
849 int this_ruid = use->ruid;
d83ccc81 850 if (this_ruid >= ruid_limit)
851 continue;
852 if (this_ruid > best_ruid)
853 {
854 best_ruid = this_ruid;
727047d0 855 retval = use;
d83ccc81 856 }
727047d0 857 else if (this_ruid == best_ruid)
d83ccc81 858 retval = NULL;
859 }
860 if (last_label_ruid >= best_ruid)
861 return NULL;
862 return retval;
863}
864
65069495 865/* After we've moved an add insn, fix up any debug insns that occur
866 between the old location of the add and the new location. REG is
867 the destination register of the add insn; REPLACEMENT is the
868 SET_SRC of the add. FROM and TO specify the range in which we
869 should make this change on debug insns. */
0ead6a7d 870
871static void
65069495 872fixup_debug_insns (rtx reg, rtx replacement, rtx from, rtx to)
0ead6a7d 873{
65069495 874 rtx insn;
875 for (insn = from; insn != to; insn = NEXT_INSN (insn))
0ead6a7d 876 {
877 rtx t;
65069495 878
879 if (!DEBUG_INSN_P (insn))
0ead6a7d 880 continue;
65069495 881
882 t = INSN_VAR_LOCATION_LOC (insn);
727047d0 883 t = simplify_replace_rtx (t, reg, replacement);
65069495 884 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
0ead6a7d 885 }
886}
887
692ec7c8 888/* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
889 with SRC in the insn described by USE, taking costs into account. Return
890 true if we made the replacement. */
891
892static bool
893try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
894{
895 rtx use_insn = use->insn;
896 rtx mem = use->containing_mem;
897 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
898
899 if (mem != NULL_RTX)
900 {
901 addr_space_t as = MEM_ADDR_SPACE (mem);
902 rtx oldaddr = XEXP (mem, 0);
903 rtx newaddr = NULL_RTX;
904 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
905 int new_cost;
906
907 newaddr = simplify_replace_rtx (oldaddr, reg, src);
908 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
909 {
910 XEXP (mem, 0) = newaddr;
911 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
912 XEXP (mem, 0) = oldaddr;
913 if (new_cost <= old_cost
914 && validate_change (use_insn,
915 &XEXP (mem, 0), newaddr, 0))
916 return true;
917 }
918 }
919 else
920 {
921 rtx new_set = single_set (use_insn);
922 if (new_set
923 && REG_P (SET_DEST (new_set))
924 && GET_CODE (SET_SRC (new_set)) == PLUS
925 && REG_P (XEXP (SET_SRC (new_set), 0))
926 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
927 {
928 rtx new_src;
7013e87c 929 int old_cost = set_src_cost (SET_SRC (new_set), speed);
692ec7c8 930
931 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
932 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
933
7013e87c 934 if (set_src_cost (new_src, speed) <= old_cost
692ec7c8 935 && validate_change (use_insn, &SET_SRC (new_set),
936 new_src, 0))
937 return true;
938 }
939 }
940 return false;
941}
942
d83ccc81 943/* Called by reload_combine when scanning INSN. This function tries to detect
944 patterns where a constant is added to a register, and the result is used
945 in an address.
946 Return true if no further processing is needed on INSN; false if it wasn't
947 recognized and should be handled normally. */
948
949static bool
950reload_combine_recognize_const_pattern (rtx insn)
951{
952 int from_ruid = reload_combine_ruid;
953 rtx set, pat, reg, src, addreg;
954 unsigned int regno;
955 struct reg_use *use;
956 bool must_move_add;
957 rtx add_moved_after_insn = NULL_RTX;
958 int add_moved_after_ruid = 0;
959 int clobbered_regno = -1;
960
961 set = single_set (insn);
962 if (set == NULL_RTX)
963 return false;
964
965 reg = SET_DEST (set);
966 src = SET_SRC (set);
967 if (!REG_P (reg)
968 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1
969 || GET_MODE (reg) != Pmode
970 || reg == stack_pointer_rtx)
971 return false;
972
973 regno = REGNO (reg);
974
975 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
976 uses of REG1 inside an address, or inside another add insn. If
977 possible and profitable, merge the addition into subsequent
978 uses. */
979 if (GET_CODE (src) != PLUS
980 || !REG_P (XEXP (src, 0))
981 || !CONSTANT_P (XEXP (src, 1)))
982 return false;
983
984 addreg = XEXP (src, 0);
985 must_move_add = rtx_equal_p (reg, addreg);
986
987 pat = PATTERN (insn);
988 if (must_move_add && set != pat)
989 {
990 /* We have to be careful when moving the add; apart from the
991 single_set there may also be clobbers. Recognize one special
992 case, that of one clobber alongside the set (likely a clobber
993 of the CC register). */
994 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
995 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
996 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
997 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
998 return false;
999 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
1000 }
1001
1002 do
1003 {
1004 use = reload_combine_closest_single_use (regno, from_ruid);
1005
1006 if (use)
1007 /* Start the search for the next use from here. */
1008 from_ruid = use->ruid;
1009
1010 if (use && GET_MODE (*use->usep) == Pmode)
1011 {
692ec7c8 1012 bool delete_add = false;
d83ccc81 1013 rtx use_insn = use->insn;
1014 int use_ruid = use->ruid;
d83ccc81 1015
1016 /* Avoid moving the add insn past a jump. */
0ead6a7d 1017 if (must_move_add && use_ruid <= last_jump_ruid)
d83ccc81 1018 break;
1019
1020 /* If the add clobbers another hard reg in parallel, don't move
1021 it past a real set of this hard reg. */
1022 if (must_move_add && clobbered_regno >= 0
1023 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
1024 break;
1025
33b7314b 1026#ifdef HAVE_cc0
1027 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
1028 if (must_move_add && sets_cc0_p (PATTERN (use_insn)))
1029 break;
1030#endif
1031
6aba0ea1 1032 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1033 /* Avoid moving a use of ADDREG past a point where it is stored. */
692ec7c8 1034 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
d83ccc81 1035 break;
1036
692ec7c8 1037 /* We also must not move the addition past an insn that sets
1038 the same register, unless we can combine two add insns. */
1039 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
d83ccc81 1040 {
692ec7c8 1041 if (use->containing_mem == NULL_RTX)
1042 delete_add = true;
1043 else
1044 break;
d83ccc81 1045 }
d83ccc81 1046
692ec7c8 1047 if (try_replace_in_use (use, reg, src))
1048 {
1049 reload_combine_purge_insn_uses (use_insn);
1050 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1051 use_ruid, NULL_RTX);
d83ccc81 1052
692ec7c8 1053 if (delete_add)
1054 {
1055 fixup_debug_insns (reg, src, insn, use_insn);
1056 delete_insn (insn);
1057 return true;
1058 }
1059 if (must_move_add)
1060 {
1061 add_moved_after_insn = use_insn;
1062 add_moved_after_ruid = use_ruid;
d83ccc81 1063 }
692ec7c8 1064 continue;
d83ccc81 1065 }
d83ccc81 1066 }
6aba0ea1 1067 /* If we get here, we couldn't handle this use. */
1068 if (must_move_add)
1069 break;
d83ccc81 1070 }
1071 while (use);
1072
1073 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1074 /* Process the add normally. */
1075 return false;
1076
65069495 1077 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1078
d83ccc81 1079 reorder_insns (insn, insn, add_moved_after_insn);
1080 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1081 reload_combine_split_ruids (add_moved_after_ruid - 1);
1082 reload_combine_note_use (&PATTERN (insn), insn,
1083 add_moved_after_ruid, NULL_RTX);
1084 reg_state[regno].store_ruid = add_moved_after_ruid;
1085
1086 return true;
1087}
1088
fb79f695 1089/* Called by reload_combine when scanning INSN. Try to detect a pattern we
1090 can handle and improve. Return true if no further processing is needed on
1091 INSN; false if it wasn't recognized and should be handled normally. */
1092
1093static bool
1094reload_combine_recognize_pattern (rtx insn)
1095{
1096 rtx set, reg, src;
1097 unsigned int regno;
1098
d83ccc81 1099 set = single_set (insn);
1100 if (set == NULL_RTX)
1101 return false;
1102
1103 reg = SET_DEST (set);
1104 src = SET_SRC (set);
1105 if (!REG_P (reg)
1106 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1)
1107 return false;
1108
1109 regno = REGNO (reg);
1110
fb79f695 1111 /* Look for (set (REGX) (CONST_INT))
1112 (set (REGX) (PLUS (REGX) (REGY)))
1113 ...
1114 ... (MEM (REGX)) ...
1115 and convert it to
1116 (set (REGZ) (CONST_INT))
1117 ...
1118 ... (MEM (PLUS (REGZ) (REGY)))... .
1119
1120 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1121 and that we know all uses of REGX before it dies.
1122 Also, explicitly check that REGX != REGY; our life information
1123 does not yet show whether REGY changes in this insn. */
fb79f695 1124
1125 if (GET_CODE (src) == PLUS
d83ccc81 1126 && reg_state[regno].all_offsets_match
1127 && last_index_reg != -1
fb79f695 1128 && REG_P (XEXP (src, 1))
1129 && rtx_equal_p (XEXP (src, 0), reg)
1130 && !rtx_equal_p (XEXP (src, 1), reg)
727047d0 1131 && reg_state[regno].use_index >= 0
1132 && reg_state[regno].use_index < RELOAD_COMBINE_MAX_USES
fb79f695 1133 && last_label_ruid < reg_state[regno].use_ruid)
1134 {
1135 rtx base = XEXP (src, 1);
5b8537a8 1136 rtx prev = prev_nonnote_nondebug_insn (insn);
fb79f695 1137 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1138 rtx index_reg = NULL_RTX;
1139 rtx reg_sum = NULL_RTX;
1140 int i;
1141
1142 /* Now we need to set INDEX_REG to an index register (denoted as
1143 REGZ in the illustration above) and REG_SUM to the expression
1144 register+register that we want to use to substitute uses of REG
1145 (typically in MEMs) with. First check REG and BASE for being
1146 index registers; we can use them even if they are not dead. */
1147 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1148 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1149 REGNO (base)))
1150 {
1151 index_reg = reg;
1152 reg_sum = src;
1153 }
1154 else
1155 {
1156 /* Otherwise, look for a free index register. Since we have
1157 checked above that neither REG nor BASE are index registers,
1158 if we find anything at all, it will be different from these
1159 two registers. */
1160 for (i = first_index_reg; i <= last_index_reg; i++)
1161 {
1162 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1163 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1164 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
727047d0 1165 && (call_used_regs[i] || df_regs_ever_live_p (i))
1166 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1167 && !fixed_regs[i] && !global_regs[i]
1168 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1169 && targetm.hard_regno_scratch_ok (i))
fb79f695 1170 {
1171 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1172 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1173 break;
1174 }
1175 }
1176 }
1177
1178 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1179 (REGY), i.e. BASE, is not clobbered before the last use we'll
1180 create. */
1181 if (reg_sum
1182 && prev_set
1183 && CONST_INT_P (SET_SRC (prev_set))
1184 && rtx_equal_p (SET_DEST (prev_set), reg)
fb79f695 1185 && (reg_state[REGNO (base)].store_ruid
1186 <= reg_state[regno].use_ruid))
1187 {
1188 /* Change destination register and, if necessary, the constant
1189 value in PREV, the constant loading instruction. */
1190 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1191 if (reg_state[regno].offset != const0_rtx)
1192 validate_change (prev,
1193 &SET_SRC (prev_set),
1194 GEN_INT (INTVAL (SET_SRC (prev_set))
1195 + INTVAL (reg_state[regno].offset)),
1196 1);
1197
1198 /* Now for every use of REG that we have recorded, replace REG
1199 with REG_SUM. */
1200 for (i = reg_state[regno].use_index;
1201 i < RELOAD_COMBINE_MAX_USES; i++)
1202 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1203 reg_state[regno].reg_use[i].usep,
1204 /* Each change must have its own
1205 replacement. */
1206 reg_sum, 1);
1207
1208 if (apply_change_group ())
1209 {
65069495 1210 struct reg_use *lowest_ruid = NULL;
1211
fb79f695 1212 /* For every new use of REG_SUM, we have to record the use
1213 of BASE therein, i.e. operand 1. */
1214 for (i = reg_state[regno].use_index;
1215 i < RELOAD_COMBINE_MAX_USES; i++)
65069495 1216 {
1217 struct reg_use *use = reg_state[regno].reg_use + i;
1218 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1219 use->ruid, use->containing_mem);
1220 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1221 lowest_ruid = use;
1222 }
1223
1224 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
fb79f695 1225
fb79f695 1226 /* Delete the reg-reg addition. */
1227 delete_insn (insn);
1228
1229 if (reg_state[regno].offset != const0_rtx)
1230 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1231 are now invalid. */
1232 remove_reg_equal_equiv_notes (prev);
1233
1234 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
fb79f695 1235 return true;
1236 }
1237 }
1238 }
1239 return false;
1240}
1241
8f8cadbc 1242static void
3ad4992f 1243reload_combine (void)
8f8cadbc 1244{
d83ccc81 1245 rtx insn, prev;
8f8cadbc 1246 basic_block bb;
1247 unsigned int r;
8f8cadbc 1248 int min_labelno, n_labels;
1249 HARD_REG_SET ever_live_at_start, *label_live;
1250
8f8cadbc 1251 /* To avoid wasting too much time later searching for an index register,
1252 determine the minimum and maximum index register numbers. */
fb79f695 1253 if (INDEX_REG_CLASS == NO_REGS)
1254 last_index_reg = -1;
1255 else if (first_index_reg == -1 && last_index_reg == 0)
1256 {
1257 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1258 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1259 {
1260 if (first_index_reg == -1)
1261 first_index_reg = r;
1262
1263 last_index_reg = r;
1264 }
1265
1266 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1267 to -1 so we'll know to quit early the next time we get here. */
1268 if (first_index_reg == -1)
1269 {
1270 last_index_reg = -1;
1271 return;
1272 }
1273 }
8f8cadbc 1274
8f8cadbc 1275 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1276 information is a bit fuzzy immediately after reload, but it's
1277 still good enough to determine which registers are live at a jump
1278 destination. */
1279 min_labelno = get_first_label_num ();
1280 n_labels = max_label_num () - min_labelno;
4c36ffe6 1281 label_live = XNEWVEC (HARD_REG_SET, n_labels);
8f8cadbc 1282 CLEAR_HARD_REG_SET (ever_live_at_start);
1283
7a46197b 1284 FOR_EACH_BB_REVERSE_FN (bb, cfun)
8f8cadbc 1285 {
5496dbfc 1286 insn = BB_HEAD (bb);
6d7dc5b9 1287 if (LABEL_P (insn))
8f8cadbc 1288 {
1289 HARD_REG_SET live;
deb2741b 1290 bitmap live_in = df_get_live_in (bb);
8f8cadbc 1291
deb2741b 1292 REG_SET_TO_HARD_REG_SET (live, live_in);
1293 compute_use_by_pseudos (&live, live_in);
8f8cadbc 1294 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1295 IOR_HARD_REG_SET (ever_live_at_start, live);
1296 }
1297 }
1298
1299 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
d83ccc81 1300 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
8f8cadbc 1301 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1302 {
d83ccc81 1303 reg_state[r].store_ruid = 0;
1304 reg_state[r].real_store_ruid = 0;
8f8cadbc 1305 if (fixed_regs[r])
1306 reg_state[r].use_index = -1;
1307 else
1308 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1309 }
1310
d83ccc81 1311 for (insn = get_last_insn (); insn; insn = prev)
8f8cadbc 1312 {
8b52f64e 1313 bool control_flow_insn;
8f8cadbc 1314 rtx note;
1315
d83ccc81 1316 prev = PREV_INSN (insn);
1317
8f8cadbc 1318 /* We cannot do our optimization across labels. Invalidating all the use
1319 information we have would be costly, so we just note where the label
1320 is and then later disable any optimization that would cross it. */
6d7dc5b9 1321 if (LABEL_P (insn))
8f8cadbc 1322 last_label_ruid = reload_combine_ruid;
19f69355 1323 else if (BARRIER_P (insn))
1324 {
1325 /* Crossing a barrier resets all the use information. */
1326 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1327 if (! fixed_regs[r])
8f8cadbc 1328 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
19f69355 1329 }
1330 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1331 /* Optimizations across insns being marked as volatile must be
1332 prevented. All the usage information is invalidated
1333 here. */
1334 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1335 if (! fixed_regs[r]
1336 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1337 reg_state[r].use_index = -1;
8f8cadbc 1338
65069495 1339 if (! NONDEBUG_INSN_P (insn))
8f8cadbc 1340 continue;
1341
1342 reload_combine_ruid++;
1343
8b52f64e 1344 control_flow_insn = control_flow_insn_p (insn);
1345 if (control_flow_insn)
d83ccc81 1346 last_jump_ruid = reload_combine_ruid;
1347
1348 if (reload_combine_recognize_const_pattern (insn)
1349 || reload_combine_recognize_pattern (insn))
fb79f695 1350 continue;
8f8cadbc 1351
1352 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1353
6d7dc5b9 1354 if (CALL_P (insn))
8f8cadbc 1355 {
1356 rtx link;
1357
1358 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1359 if (call_used_regs[r])
1360 {
1361 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1362 reg_state[r].store_ruid = reload_combine_ruid;
1363 }
1364
1365 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1366 link = XEXP (link, 1))
1367 {
c8010b80 1368 rtx setuse = XEXP (link, 0);
1369 rtx usage_rtx = XEXP (setuse, 0);
1370 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1371 && REG_P (usage_rtx))
8f8cadbc 1372 {
1373 unsigned int i;
1374 unsigned int start_reg = REGNO (usage_rtx);
8b52f64e 1375 unsigned int num_regs
1376 = hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
1377 unsigned int end_reg = start_reg + num_regs - 1;
8f8cadbc 1378 for (i = start_reg; i <= end_reg; i++)
1379 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1380 {
1381 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1382 reg_state[i].store_ruid = reload_combine_ruid;
1383 }
1384 else
1385 reg_state[i].use_index = -1;
1386 }
1387 }
8f8cadbc 1388 }
f4979459 1389
7777a939 1390 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
8f8cadbc 1391 {
1392 /* Non-spill registers might be used at the call destination in
1393 some unknown fashion, so we have to mark the unknown use. */
1394 HARD_REG_SET *live;
1395
1396 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1397 && JUMP_LABEL (insn))
7777a939 1398 {
1399 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1400 live = NULL;
1401 else
1402 live = &LABEL_LIVE (JUMP_LABEL (insn));
1403 }
8f8cadbc 1404 else
1405 live = &ever_live_at_start;
1406
7777a939 1407 if (live)
1408 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1409 if (TEST_HARD_REG_BIT (*live, r))
1410 reg_state[r].use_index = -1;
8f8cadbc 1411 }
1412
8b52f64e 1413 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1414 NULL_RTX);
1415
8f8cadbc 1416 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1417 {
8b52f64e 1418 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
8f8cadbc 1419 {
1420 int regno = REGNO (XEXP (note, 0));
8f8cadbc 1421 reg_state[regno].store_ruid = reload_combine_ruid;
d83ccc81 1422 reg_state[regno].real_store_ruid = reload_combine_ruid;
8f8cadbc 1423 reg_state[regno].use_index = -1;
1424 }
1425 }
1426 }
1427
1428 free (label_live);
1429}
1430
1431/* Check if DST is a register or a subreg of a register; if it is,
d83ccc81 1432 update store_ruid, real_store_ruid and use_index in the reg_state
1433 structure accordingly. Called via note_stores from reload_combine. */
8f8cadbc 1434
1435static void
81a410b1 1436reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
8f8cadbc 1437{
1438 int regno = 0;
1439 int i;
1440 enum machine_mode mode = GET_MODE (dst);
1441
1442 if (GET_CODE (dst) == SUBREG)
1443 {
1444 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1445 GET_MODE (SUBREG_REG (dst)),
1446 SUBREG_BYTE (dst),
1447 GET_MODE (dst));
1448 dst = SUBREG_REG (dst);
1449 }
fe6524b0 1450
1451 /* Some targets do argument pushes without adding REG_INC notes. */
1452
1453 if (MEM_P (dst))
1454 {
1455 dst = XEXP (dst, 0);
1456 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
a5dda0b9 1457 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1458 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
fe6524b0 1459 {
1460 regno = REGNO (XEXP (dst, 0));
1461 mode = GET_MODE (XEXP (dst, 0));
1462 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1463 {
1464 /* We could probably do better, but for now mark the register
1465 as used in an unknown fashion and set/clobbered at this
1466 insn. */
1467 reg_state[i].use_index = -1;
1468 reg_state[i].store_ruid = reload_combine_ruid;
1469 reg_state[i].real_store_ruid = reload_combine_ruid;
1470 }
1471 }
1472 else
1473 return;
1474 }
1475
8ad4c111 1476 if (!REG_P (dst))
8f8cadbc 1477 return;
1478 regno += REGNO (dst);
1479
1480 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1481 careful with registers / register parts that are not full words.
476d094d 1482 Similarly for ZERO_EXTRACT. */
d83ccc81 1483 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
8f8cadbc 1484 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1485 {
67d6c12b 1486 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
8f8cadbc 1487 {
1488 reg_state[i].use_index = -1;
1489 reg_state[i].store_ruid = reload_combine_ruid;
d83ccc81 1490 reg_state[i].real_store_ruid = reload_combine_ruid;
8f8cadbc 1491 }
1492 }
1493 else
1494 {
67d6c12b 1495 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
8f8cadbc 1496 {
1497 reg_state[i].store_ruid = reload_combine_ruid;
d83ccc81 1498 if (GET_CODE (set) == SET)
1499 reg_state[i].real_store_ruid = reload_combine_ruid;
8f8cadbc 1500 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1501 }
1502 }
1503}
1504
1505/* XP points to a piece of rtl that has to be checked for any uses of
1506 registers.
1507 *XP is the pattern of INSN, or a part of it.
1508 Called from reload_combine, and recursively by itself. */
1509static void
d83ccc81 1510reload_combine_note_use (rtx *xp, rtx insn, int ruid, rtx containing_mem)
8f8cadbc 1511{
1512 rtx x = *xp;
1513 enum rtx_code code = x->code;
1514 const char *fmt;
1515 int i, j;
1516 rtx offset = const0_rtx; /* For the REG case below. */
1517
1518 switch (code)
1519 {
1520 case SET:
8ad4c111 1521 if (REG_P (SET_DEST (x)))
8f8cadbc 1522 {
d83ccc81 1523 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
8f8cadbc 1524 return;
1525 }
1526 break;
1527
1528 case USE:
1529 /* If this is the USE of a return value, we can't change it. */
8ad4c111 1530 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8f8cadbc 1531 {
1532 /* Mark the return register as used in an unknown fashion. */
1533 rtx reg = XEXP (x, 0);
1534 int regno = REGNO (reg);
67d6c12b 1535 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8f8cadbc 1536
1537 while (--nregs >= 0)
1538 reg_state[regno + nregs].use_index = -1;
1539 return;
1540 }
1541 break;
1542
1543 case CLOBBER:
8ad4c111 1544 if (REG_P (SET_DEST (x)))
8f8cadbc 1545 {
1546 /* No spurious CLOBBERs of pseudo registers may remain. */
876760f6 1547 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
8f8cadbc 1548 return;
1549 }
1550 break;
1551
1552 case PLUS:
1553 /* We are interested in (plus (reg) (const_int)) . */
8ad4c111 1554 if (!REG_P (XEXP (x, 0))
971ba038 1555 || !CONST_INT_P (XEXP (x, 1)))
8f8cadbc 1556 break;
1557 offset = XEXP (x, 1);
1558 x = XEXP (x, 0);
1559 /* Fall through. */
1560 case REG:
1561 {
1562 int regno = REGNO (x);
1563 int use_index;
1564 int nregs;
1565
1566 /* No spurious USEs of pseudo registers may remain. */
876760f6 1567 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8f8cadbc 1568
67d6c12b 1569 nregs = hard_regno_nregs[regno][GET_MODE (x)];
8f8cadbc 1570
1571 /* We can't substitute into multi-hard-reg uses. */
1572 if (nregs > 1)
1573 {
1574 while (--nregs >= 0)
1575 reg_state[regno + nregs].use_index = -1;
1576 return;
1577 }
1578
727047d0 1579 /* We may be called to update uses in previously seen insns.
1580 Don't add uses beyond the last store we saw. */
1581 if (ruid < reg_state[regno].store_ruid)
1582 return;
1583
8f8cadbc 1584 /* If this register is already used in some unknown fashion, we
1585 can't do anything.
1586 If we decrement the index from zero to -1, we can't store more
1587 uses, so this register becomes used in an unknown fashion. */
1588 use_index = --reg_state[regno].use_index;
1589 if (use_index < 0)
1590 return;
1591
d83ccc81 1592 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
8f8cadbc 1593 {
1594 /* This is the first use of this register we have seen since we
1595 marked it as dead. */
1596 reg_state[regno].offset = offset;
d83ccc81 1597 reg_state[regno].all_offsets_match = true;
1598 reg_state[regno].use_ruid = ruid;
8f8cadbc 1599 }
0ead6a7d 1600 else
1601 {
1602 if (reg_state[regno].use_ruid > ruid)
1603 reg_state[regno].use_ruid = ruid;
1604
1605 if (! rtx_equal_p (offset, reg_state[regno].offset))
1606 reg_state[regno].all_offsets_match = false;
1607 }
d83ccc81 1608
8f8cadbc 1609 reg_state[regno].reg_use[use_index].insn = insn;
d83ccc81 1610 reg_state[regno].reg_use[use_index].ruid = ruid;
1611 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
8f8cadbc 1612 reg_state[regno].reg_use[use_index].usep = xp;
1613 return;
1614 }
1615
d83ccc81 1616 case MEM:
1617 containing_mem = x;
1618 break;
1619
8f8cadbc 1620 default:
1621 break;
1622 }
1623
1624 /* Recursively process the components of X. */
1625 fmt = GET_RTX_FORMAT (code);
1626 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1627 {
1628 if (fmt[i] == 'e')
d83ccc81 1629 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
8f8cadbc 1630 else if (fmt[i] == 'E')
1631 {
1632 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
d83ccc81 1633 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1634 containing_mem);
8f8cadbc 1635 }
1636 }
1637}
1638\f
1639/* See if we can reduce the cost of a constant by replacing a move
1640 with an add. We track situations in which a register is set to a
1641 constant or to a register plus a constant. */
1642/* We cannot do our optimization across labels. Invalidating all the
1643 information about register contents we have would be costly, so we
1644 use move2add_last_label_luid to note where the label is and then
1645 later disable any optimization that would cross it.
6132c0d0 1646 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1647 are only valid if reg_set_luid[n] is greater than
b6b86e87 1648 move2add_last_label_luid.
1649 For a set that established a new (potential) base register with
1650 non-constant value, we use move2add_luid from the place where the
1651 setting insn is encountered; registers based off that base then
1652 get the same reg_set_luid. Constants all get
1653 move2add_last_label_luid + 1 as their reg_set_luid. */
8f8cadbc 1654static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1655
1656/* If reg_base_reg[n] is negative, register n has been set to
6132c0d0 1657 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
8f8cadbc 1658 If reg_base_reg[n] is non-negative, register n has been set to the
1659 sum of reg_offset[n] and the value of register reg_base_reg[n]
b6b86e87 1660 before reg_set_luid[n], calculated in mode reg_mode[n] .
1661 For multi-hard-register registers, all but the first one are
1662 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1663 marks it as invalid. */
8f8cadbc 1664static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1665static int reg_base_reg[FIRST_PSEUDO_REGISTER];
6132c0d0 1666static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
8f8cadbc 1667static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1668
1669/* move2add_luid is linearly increased while scanning the instructions
1670 from first to last. It is used to set reg_set_luid in
1671 reload_cse_move2add and move2add_note_store. */
1672static int move2add_luid;
1673
1674/* move2add_last_label_luid is set whenever a label is found. Labels
1675 invalidate all previously collected reg_offset data. */
1676static int move2add_last_label_luid;
1677
1678/* ??? We don't know how zero / sign extension is handled, hence we
1679 can't go from a narrower to a wider mode. */
1680#define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1681 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1682 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
396f2130 1683 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
8f8cadbc 1684
b6b86e87 1685/* Record that REG is being set to a value with the mode of REG. */
1686
1687static void
1688move2add_record_mode (rtx reg)
1689{
1690 int regno, nregs;
1691 enum machine_mode mode = GET_MODE (reg);
1692
1693 if (GET_CODE (reg) == SUBREG)
1694 {
1695 regno = subreg_regno (reg);
1696 nregs = subreg_nregs (reg);
1697 }
1698 else if (REG_P (reg))
1699 {
1700 regno = REGNO (reg);
1701 nregs = hard_regno_nregs[regno][mode];
1702 }
1703 else
1704 gcc_unreachable ();
1705 for (int i = nregs - 1; i > 0; i--)
1706 reg_mode[regno + i] = BLKmode;
1707 reg_mode[regno] = mode;
1708}
1709
1710/* Record that REG is being set to the sum of SYM and OFF. */
1711
1712static void
1713move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1714{
1715 int regno = REGNO (reg);
1716
1717 move2add_record_mode (reg);
1718 reg_set_luid[regno] = move2add_luid;
1719 reg_base_reg[regno] = -1;
1720 reg_symbol_ref[regno] = sym;
1721 reg_offset[regno] = INTVAL (off);
1722}
1723
1724/* Check if REGNO contains a valid value in MODE. */
1725
1726static bool
1727move2add_valid_value_p (int regno, enum machine_mode mode)
1728{
5bea3269 1729 if (reg_set_luid[regno] <= move2add_last_label_luid)
b6b86e87 1730 return false;
1731
5bea3269 1732 if (mode != reg_mode[regno])
1733 {
1734 if (!MODES_OK_FOR_MOVE2ADD (mode, reg_mode[regno]))
1735 return false;
1736 /* The value loaded into regno in reg_mode[regno] is also valid in
1737 mode after truncation only if (REG:mode regno) is the lowpart of
1738 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1739 regno of the lowpart might be different. */
1740 int s_off = subreg_lowpart_offset (mode, reg_mode[regno]);
1741 s_off = subreg_regno_offset (regno, reg_mode[regno], s_off, mode);
1742 if (s_off != 0)
1743 /* We could in principle adjust regno, check reg_mode[regno] to be
1744 BLKmode, and return s_off to the caller (vs. -1 for failure),
1745 but we currently have no callers that could make use of this
1746 information. */
1747 return false;
1748 }
1749
b6b86e87 1750 for (int i = hard_regno_nregs[regno][mode] - 1; i > 0; i--)
1751 if (reg_mode[regno + i] != BLKmode)
1752 return false;
1753 return true;
1754}
1755
6132c0d0 1756/* This function is called with INSN that sets REG to (SYM + OFF),
1757 while REG is known to already have value (SYM + offset).
1758 This function tries to change INSN into an add instruction
1759 (set (REG) (plus (REG) (OFF - offset))) using the known value.
d83ccc81 1760 It also updates the information about REG's known value.
1761 Return true if we made a change. */
6132c0d0 1762
d83ccc81 1763static bool
6132c0d0 1764move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx insn)
1765{
1766 rtx pat = PATTERN (insn);
1767 rtx src = SET_SRC (pat);
1768 int regno = REGNO (reg);
60141df0 1769 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno],
6132c0d0 1770 GET_MODE (reg));
1771 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
d83ccc81 1772 bool changed = false;
6132c0d0 1773
1774 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1775 use (set (reg) (reg)) instead.
1776 We don't delete this insn, nor do we convert it into a
1777 note, to avoid losing register notes or the return
1778 value flag. jump2 already knows how to get rid of
1779 no-op moves. */
1780 if (new_src == const0_rtx)
1781 {
1782 /* If the constants are different, this is a
1783 truncation, that, if turned into (set (reg)
1784 (reg)), would be discarded. Maybe we should
1785 try a truncMN pattern? */
1786 if (INTVAL (off) == reg_offset [regno])
d83ccc81 1787 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
6132c0d0 1788 }
c9a03487 1789 else
6132c0d0 1790 {
c9a03487 1791 struct full_rtx_costs oldcst, newcst;
6132c0d0 1792 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
c9a03487 1793
b72d459f 1794 get_full_set_rtx_cost (pat, &oldcst);
c9a03487 1795 SET_SRC (pat) = tem;
b72d459f 1796 get_full_set_rtx_cost (pat, &newcst);
c9a03487 1797 SET_SRC (pat) = src;
1798
1799 if (costs_lt_p (&newcst, &oldcst, speed)
1800 && have_add2_insn (reg, new_src))
1801 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1802 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
6132c0d0 1803 {
c9a03487 1804 enum machine_mode narrow_mode;
1805 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1806 narrow_mode != VOIDmode
1807 && narrow_mode != GET_MODE (reg);
1808 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
6132c0d0 1809 {
c9a03487 1810 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1811 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1812 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1813 {
17ce39e3 1814 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
c9a03487 1815 rtx narrow_src = gen_int_mode (INTVAL (off),
1816 narrow_mode);
1817 rtx new_set
1818 = gen_rtx_SET (VOIDmode,
1819 gen_rtx_STRICT_LOW_PART (VOIDmode,
1820 narrow_reg),
1821 narrow_src);
1822 changed = validate_change (insn, &PATTERN (insn),
1823 new_set, 0);
1824 if (changed)
1825 break;
1826 }
6132c0d0 1827 }
1828 }
1829 }
b6b86e87 1830 move2add_record_sym_value (reg, sym, off);
d83ccc81 1831 return changed;
6132c0d0 1832}
1833
1834
1835/* This function is called with INSN that sets REG to (SYM + OFF),
1836 but REG doesn't have known value (SYM + offset). This function
1837 tries to find another register which is known to already have
1838 value (SYM + offset) and change INSN into an add instruction
1839 (set (REG) (plus (the found register) (OFF - offset))) if such
1840 a register is found. It also updates the information about
d83ccc81 1841 REG's known value.
1842 Return true iff we made a change. */
6132c0d0 1843
d83ccc81 1844static bool
6132c0d0 1845move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx insn)
1846{
1847 rtx pat = PATTERN (insn);
1848 rtx src = SET_SRC (pat);
1849 int regno = REGNO (reg);
c2130a4b 1850 int min_regno = 0;
6132c0d0 1851 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1852 int i;
d83ccc81 1853 bool changed = false;
c9a03487 1854 struct full_rtx_costs oldcst, newcst, mincst;
1855 rtx plus_expr;
1856
1857 init_costs_to_max (&mincst);
b72d459f 1858 get_full_set_rtx_cost (pat, &oldcst);
c9a03487 1859
1860 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1861 SET_SRC (pat) = plus_expr;
6132c0d0 1862
1863 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
b6b86e87 1864 if (move2add_valid_value_p (i, GET_MODE (reg))
6132c0d0 1865 && reg_base_reg[i] < 0
1866 && reg_symbol_ref[i] != NULL_RTX
1867 && rtx_equal_p (sym, reg_symbol_ref[i]))
1868 {
60141df0 1869 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
6132c0d0 1870 GET_MODE (reg));
1871 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1872 use (set (reg) (reg)) instead.
1873 We don't delete this insn, nor do we convert it into a
1874 note, to avoid losing register notes or the return
1875 value flag. jump2 already knows how to get rid of
1876 no-op moves. */
1877 if (new_src == const0_rtx)
1878 {
c9a03487 1879 init_costs_to_zero (&mincst);
6132c0d0 1880 min_regno = i;
1881 break;
1882 }
1883 else
1884 {
c9a03487 1885 XEXP (plus_expr, 1) = new_src;
b72d459f 1886 get_full_set_rtx_cost (pat, &newcst);
c9a03487 1887
1888 if (costs_lt_p (&newcst, &mincst, speed))
6132c0d0 1889 {
c9a03487 1890 mincst = newcst;
6132c0d0 1891 min_regno = i;
1892 }
1893 }
1894 }
c9a03487 1895 SET_SRC (pat) = src;
6132c0d0 1896
c9a03487 1897 if (costs_lt_p (&mincst, &oldcst, speed))
6132c0d0 1898 {
1899 rtx tem;
1900
1901 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1902 if (i != min_regno)
1903 {
60141df0 1904 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
6132c0d0 1905 GET_MODE (reg));
1906 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1907 }
d83ccc81 1908 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1909 changed = true;
6132c0d0 1910 }
1911 reg_set_luid[regno] = move2add_luid;
b6b86e87 1912 move2add_record_sym_value (reg, sym, off);
d83ccc81 1913 return changed;
6132c0d0 1914}
1915
d83ccc81 1916/* Convert move insns with constant inputs to additions if they are cheaper.
1917 Return true if any changes were made. */
1918static bool
3ad4992f 1919reload_cse_move2add (rtx first)
8f8cadbc 1920{
1921 int i;
1922 rtx insn;
d83ccc81 1923 bool changed = false;
8f8cadbc 1924
1925 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
6132c0d0 1926 {
1927 reg_set_luid[i] = 0;
1928 reg_offset[i] = 0;
1929 reg_base_reg[i] = 0;
1930 reg_symbol_ref[i] = NULL_RTX;
1931 reg_mode[i] = VOIDmode;
1932 }
8f8cadbc 1933
1934 move2add_last_label_luid = 0;
1935 move2add_luid = 2;
1936 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1937 {
1938 rtx pat, note;
1939
6d7dc5b9 1940 if (LABEL_P (insn))
8f8cadbc 1941 {
1942 move2add_last_label_luid = move2add_luid;
1943 /* We're going to increment move2add_luid twice after a
1944 label, so that we can use move2add_last_label_luid + 1 as
1945 the luid for constants. */
1946 move2add_luid++;
1947 continue;
1948 }
1949 if (! INSN_P (insn))
1950 continue;
1951 pat = PATTERN (insn);
1952 /* For simplicity, we only perform this optimization on
1953 straightforward SETs. */
1954 if (GET_CODE (pat) == SET
8ad4c111 1955 && REG_P (SET_DEST (pat)))
8f8cadbc 1956 {
1957 rtx reg = SET_DEST (pat);
1958 int regno = REGNO (reg);
1959 rtx src = SET_SRC (pat);
1960
1961 /* Check if we have valid information on the contents of this
1962 register in the mode of REG. */
b6b86e87 1963 if (move2add_valid_value_p (regno, GET_MODE (reg))
3072d30e 1964 && dbg_cnt (cse2_move2add))
8f8cadbc 1965 {
1966 /* Try to transform (set (REGX) (CONST_INT A))
1967 ...
1968 (set (REGX) (CONST_INT B))
1969 to
1970 (set (REGX) (CONST_INT A))
1971 ...
1972 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1973 or
1974 (set (REGX) (CONST_INT A))
1975 ...
1976 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1977 */
1978
6132c0d0 1979 if (CONST_INT_P (src)
1980 && reg_base_reg[regno] < 0
1981 && reg_symbol_ref[regno] == NULL_RTX)
8f8cadbc 1982 {
d83ccc81 1983 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
8f8cadbc 1984 continue;
1985 }
1986
1987 /* Try to transform (set (REGX) (REGY))
1988 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1989 ...
1990 (set (REGX) (REGY))
1991 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1992 to
1993 (set (REGX) (REGY))
1994 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1995 ...
1996 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
8ad4c111 1997 else if (REG_P (src)
8f8cadbc 1998 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1999 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
b6b86e87 2000 && move2add_valid_value_p (REGNO (src), GET_MODE (reg)))
8f8cadbc 2001 {
5b8537a8 2002 rtx next = next_nonnote_nondebug_insn (insn);
8f8cadbc 2003 rtx set = NULL_RTX;
2004 if (next)
2005 set = single_set (next);
2006 if (set
2007 && SET_DEST (set) == reg
2008 && GET_CODE (SET_SRC (set)) == PLUS
2009 && XEXP (SET_SRC (set), 0) == reg
971ba038 2010 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
8f8cadbc 2011 {
2012 rtx src3 = XEXP (SET_SRC (set), 1);
60141df0 2013 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
8f8cadbc 2014 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
2015 HOST_WIDE_INT regno_offset = reg_offset[regno];
2016 rtx new_src =
69e41517 2017 gen_int_mode (added_offset
2018 + base_offset
2019 - regno_offset,
2020 GET_MODE (reg));
f529eb25 2021 bool success = false;
2022 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
8f8cadbc 2023
2024 if (new_src == const0_rtx)
2025 /* See above why we create (set (reg) (reg)) here. */
2026 success
2027 = validate_change (next, &SET_SRC (set), reg, 0);
c9a03487 2028 else
8f8cadbc 2029 {
c9a03487 2030 rtx old_src = SET_SRC (set);
2031 struct full_rtx_costs oldcst, newcst;
2032 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
2033
b72d459f 2034 get_full_set_rtx_cost (set, &oldcst);
c9a03487 2035 SET_SRC (set) = tem;
7013e87c 2036 get_full_set_src_cost (tem, &newcst);
c9a03487 2037 SET_SRC (set) = old_src;
2038 costs_add_n_insns (&oldcst, 1);
2039
2040 if (costs_lt_p (&newcst, &oldcst, speed)
2041 && have_add2_insn (reg, new_src))
2042 {
2043 rtx newpat = gen_rtx_SET (VOIDmode, reg, tem);
2044 success
2045 = validate_change (next, &PATTERN (next),
2046 newpat, 0);
2047 }
8f8cadbc 2048 }
2049 if (success)
2050 delete_insn (insn);
d83ccc81 2051 changed |= success;
8f8cadbc 2052 insn = next;
b6b86e87 2053 move2add_record_mode (reg);
2054 reg_offset[regno]
2055 = trunc_int_for_mode (added_offset + base_offset,
2056 GET_MODE (reg));
8f8cadbc 2057 continue;
2058 }
2059 }
2060 }
6132c0d0 2061
2062 /* Try to transform
2063 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2064 ...
2065 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2066 to
2067 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2068 ...
2069 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2070 if ((GET_CODE (src) == SYMBOL_REF
2071 || (GET_CODE (src) == CONST
2072 && GET_CODE (XEXP (src, 0)) == PLUS
2073 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2074 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2075 && dbg_cnt (cse2_move2add))
2076 {
2077 rtx sym, off;
2078
2079 if (GET_CODE (src) == SYMBOL_REF)
2080 {
2081 sym = src;
2082 off = const0_rtx;
2083 }
2084 else
2085 {
2086 sym = XEXP (XEXP (src, 0), 0);
2087 off = XEXP (XEXP (src, 0), 1);
2088 }
2089
2090 /* If the reg already contains the value which is sum of
2091 sym and some constant value, we can use an add2 insn. */
b6b86e87 2092 if (move2add_valid_value_p (regno, GET_MODE (reg))
6132c0d0 2093 && reg_base_reg[regno] < 0
2094 && reg_symbol_ref[regno] != NULL_RTX
2095 && rtx_equal_p (sym, reg_symbol_ref[regno]))
d83ccc81 2096 changed |= move2add_use_add2_insn (reg, sym, off, insn);
6132c0d0 2097
2098 /* Otherwise, we have to find a register whose value is sum
2099 of sym and some constant value. */
2100 else
d83ccc81 2101 changed |= move2add_use_add3_insn (reg, sym, off, insn);
6132c0d0 2102
2103 continue;
2104 }
8f8cadbc 2105 }
2106
2107 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2108 {
2109 if (REG_NOTE_KIND (note) == REG_INC
8ad4c111 2110 && REG_P (XEXP (note, 0)))
8f8cadbc 2111 {
2112 /* Reset the information about this register. */
2113 int regno = REGNO (XEXP (note, 0));
2114 if (regno < FIRST_PSEUDO_REGISTER)
b6b86e87 2115 {
2116 move2add_record_mode (XEXP (note, 0));
2117 reg_mode[regno] = VOIDmode;
2118 }
8f8cadbc 2119 }
2120 }
6132c0d0 2121 note_stores (PATTERN (insn), move2add_note_store, insn);
8f8cadbc 2122
2123 /* If INSN is a conditional branch, we try to extract an
2124 implicit set out of it. */
f222bc3b 2125 if (any_condjump_p (insn))
8f8cadbc 2126 {
2127 rtx cnd = fis_get_condition (insn);
2128
2129 if (cnd != NULL_RTX
2130 && GET_CODE (cnd) == NE
8ad4c111 2131 && REG_P (XEXP (cnd, 0))
f222bc3b 2132 && !reg_set_p (XEXP (cnd, 0), insn)
8f8cadbc 2133 /* The following two checks, which are also in
2134 move2add_note_store, are intended to reduce the
2135 number of calls to gen_rtx_SET to avoid memory
2136 allocation if possible. */
2137 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
67d6c12b 2138 && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
971ba038 2139 && CONST_INT_P (XEXP (cnd, 1)))
8f8cadbc 2140 {
2141 rtx implicit_set =
2142 gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
6132c0d0 2143 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
8f8cadbc 2144 }
2145 }
2146
2147 /* If this is a CALL_INSN, all call used registers are stored with
2148 unknown values. */
6d7dc5b9 2149 if (CALL_P (insn))
8f8cadbc 2150 {
2151 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2152 {
2153 if (call_used_regs[i])
2154 /* Reset the information about this register. */
b6b86e87 2155 reg_mode[i] = VOIDmode;
8f8cadbc 2156 }
2157 }
2158 }
d83ccc81 2159 return changed;
8f8cadbc 2160}
2161
6132c0d0 2162/* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2163 contains SET.
8f8cadbc 2164 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2165 Called from reload_cse_move2add via note_stores. */
2166
2167static void
6132c0d0 2168move2add_note_store (rtx dst, const_rtx set, void *data)
8f8cadbc 2169{
6132c0d0 2170 rtx insn = (rtx) data;
8f8cadbc 2171 unsigned int regno = 0;
8f8cadbc 2172 enum machine_mode mode = GET_MODE (dst);
2173
8f8cadbc 2174 /* Some targets do argument pushes without adding REG_INC notes. */
2175
e16ceb8e 2176 if (MEM_P (dst))
8f8cadbc 2177 {
2178 dst = XEXP (dst, 0);
2179 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2180 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
b6b86e87 2181 reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
8f8cadbc 2182 return;
2183 }
8f8cadbc 2184
b6b86e87 2185 if (GET_CODE (dst) == SUBREG)
2186 regno = subreg_regno (dst);
2187 else if (REG_P (dst))
2188 regno = REGNO (dst);
2189 else
2190 return;
8f8cadbc 2191
b6b86e87 2192 if (SCALAR_INT_MODE_P (mode)
2193 && GET_CODE (set) == SET)
6132c0d0 2194 {
2195 rtx note, sym = NULL_RTX;
b6b86e87 2196 rtx off;
6132c0d0 2197
2198 note = find_reg_equal_equiv_note (insn);
2199 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2200 {
2201 sym = XEXP (note, 0);
b6b86e87 2202 off = const0_rtx;
6132c0d0 2203 }
2204 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2205 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2206 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2207 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2208 {
2209 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
b6b86e87 2210 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
6132c0d0 2211 }
2212
2213 if (sym != NULL_RTX)
2214 {
b6b86e87 2215 move2add_record_sym_value (dst, sym, off);
6132c0d0 2216 return;
2217 }
2218 }
2219
b6b86e87 2220 if (SCALAR_INT_MODE_P (mode)
2221 && GET_CODE (set) == SET
8f8cadbc 2222 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
8f8cadbc 2223 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2224 {
2225 rtx src = SET_SRC (set);
2226 rtx base_reg;
60141df0 2227 unsigned HOST_WIDE_INT offset;
8f8cadbc 2228 int base_regno;
8f8cadbc 2229
2230 switch (GET_CODE (src))
2231 {
2232 case PLUS:
8ad4c111 2233 if (REG_P (XEXP (src, 0)))
8f8cadbc 2234 {
2235 base_reg = XEXP (src, 0);
2236
971ba038 2237 if (CONST_INT_P (XEXP (src, 1)))
60141df0 2238 offset = UINTVAL (XEXP (src, 1));
8ad4c111 2239 else if (REG_P (XEXP (src, 1))
b6b86e87 2240 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
8f8cadbc 2241 {
c389f975 2242 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2243 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
8f8cadbc 2244 offset = reg_offset[REGNO (XEXP (src, 1))];
2245 /* Maybe the first register is known to be a
2246 constant. */
b6b86e87 2247 else if (move2add_valid_value_p (REGNO (base_reg), mode)
c389f975 2248 && reg_base_reg[REGNO (base_reg)] < 0
2249 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
8f8cadbc 2250 {
2251 offset = reg_offset[REGNO (base_reg)];
2252 base_reg = XEXP (src, 1);
2253 }
2254 else
2255 goto invalidate;
2256 }
2257 else
2258 goto invalidate;
2259
2260 break;
2261 }
2262
2263 goto invalidate;
2264
2265 case REG:
2266 base_reg = src;
2267 offset = 0;
2268 break;
2269
2270 case CONST_INT:
2271 /* Start tracking the register as a constant. */
2272 reg_base_reg[regno] = -1;
6132c0d0 2273 reg_symbol_ref[regno] = NULL_RTX;
8f8cadbc 2274 reg_offset[regno] = INTVAL (SET_SRC (set));
2275 /* We assign the same luid to all registers set to constants. */
2276 reg_set_luid[regno] = move2add_last_label_luid + 1;
b6b86e87 2277 move2add_record_mode (dst);
8f8cadbc 2278 return;
2279
2280 default:
b6b86e87 2281 goto invalidate;
8f8cadbc 2282 }
2283
2284 base_regno = REGNO (base_reg);
2285 /* If information about the base register is not valid, set it
2286 up as a new base register, pretending its value is known
2287 starting from the current insn. */
b6b86e87 2288 if (!move2add_valid_value_p (base_regno, mode))
8f8cadbc 2289 {
2290 reg_base_reg[base_regno] = base_regno;
6132c0d0 2291 reg_symbol_ref[base_regno] = NULL_RTX;
8f8cadbc 2292 reg_offset[base_regno] = 0;
2293 reg_set_luid[base_regno] = move2add_luid;
b6b86e87 2294 gcc_assert (GET_MODE (base_reg) == mode);
2295 move2add_record_mode (base_reg);
8f8cadbc 2296 }
8f8cadbc 2297
2298 /* Copy base information from our base register. */
2299 reg_set_luid[regno] = reg_set_luid[base_regno];
2300 reg_base_reg[regno] = reg_base_reg[base_regno];
6132c0d0 2301 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
8f8cadbc 2302
2303 /* Compute the sum of the offsets or constants. */
b6b86e87 2304 reg_offset[regno]
2305 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2306
2307 move2add_record_mode (dst);
8f8cadbc 2308 }
2309 else
2310 {
b6b86e87 2311 invalidate:
2312 /* Invalidate the contents of the register. */
2313 move2add_record_mode (dst);
2314 reg_mode[regno] = VOIDmode;
8f8cadbc 2315 }
2316}
77fce4cd 2317\f
cbe8bda8 2318namespace {
2319
2320const pass_data pass_data_postreload_cse =
77fce4cd 2321{
cbe8bda8 2322 RTL_PASS, /* type */
2323 "postreload", /* name */
2324 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 2325 true, /* has_execute */
2326 TV_RELOAD_CSE_REGS, /* tv_id */
2327 0, /* properties_required */
2328 0, /* properties_provided */
2329 0, /* properties_destroyed */
2330 0, /* todo_flags_start */
2331 ( TODO_df_finish | TODO_verify_rtl_sharing | 0 ), /* todo_flags_finish */
77fce4cd 2332};
cbe8bda8 2333
2334class pass_postreload_cse : public rtl_opt_pass
2335{
2336public:
9af5ce0c 2337 pass_postreload_cse (gcc::context *ctxt)
2338 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
cbe8bda8 2339 {}
2340
2341 /* opt_pass methods: */
31315c24 2342 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2343
65b0537f 2344 virtual unsigned int execute (function *);
cbe8bda8 2345
2346}; // class pass_postreload_cse
2347
65b0537f 2348unsigned int
2349pass_postreload_cse::execute (function *fun)
2350{
2351 if (!dbg_cnt (postreload_cse))
2352 return 0;
2353
2354 /* Do a very simple CSE pass over just the hard registers. */
2355 reload_cse_regs (get_insns ());
2356 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2357 Remove any EH edges associated with them. */
2358 if (fun->can_throw_non_call_exceptions
2359 && purge_all_dead_edges ())
2360 cleanup_cfg (0);
2361
2362 return 0;
2363}
2364
cbe8bda8 2365} // anon namespace
2366
2367rtl_opt_pass *
2368make_pass_postreload_cse (gcc::context *ctxt)
2369{
2370 return new pass_postreload_cse (ctxt);
2371}