]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/postreload.c
* gcc.target/powerpc/dimode-1.c: Update syntax on scan-assembler
[thirdparty/gcc.git] / gcc / postreload.c
CommitLineData
8f8cadbc 1/* Perform simple optimizations to clean up the result of reload.
f1717362 2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
8f8cadbc 3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8c4c00c1 8Software Foundation; either version 3, or (at your option) any later
8f8cadbc 9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
8f8cadbc 19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
9ef16211 23#include "backend.h"
7c29e30e 24#include "target.h"
8f8cadbc 25#include "rtl.h"
7c29e30e 26#include "tree.h"
27#include "predict.h"
9ef16211 28#include "df.h"
ad7b10a2 29#include "memmodel.h"
8f8cadbc 30#include "tm_p.h"
7c29e30e 31#include "optabs.h"
32#include "regs.h"
33#include "emit-rtl.h"
34#include "recog.h"
7c29e30e 35
94ea8568 36#include "cfgrtl.h"
37#include "cfgbuild.h"
38#include "cfgcleanup.h"
8f8cadbc 39#include "reload.h"
8f8cadbc 40#include "cselib.h"
77fce4cd 41#include "tree-pass.h"
3072d30e 42#include "dbgcnt.h"
8f8cadbc 43
3ad4992f 44static int reload_cse_noop_set_p (rtx);
3aeaa53f 45static bool reload_cse_simplify (rtx_insn *, rtx);
26709122 46static void reload_cse_regs_1 (void);
3aeaa53f 47static int reload_cse_simplify_set (rtx, rtx_insn *);
48static int reload_cse_simplify_operands (rtx_insn *, rtx);
8f8cadbc 49
3ad4992f 50static void reload_combine (void);
3aeaa53f 51static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
81a410b1 52static void reload_combine_note_store (rtx, const_rtx, void *);
8f8cadbc 53
3aeaa53f 54static bool reload_cse_move2add (rtx_insn *);
81a410b1 55static void move2add_note_store (rtx, const_rtx, void *);
8f8cadbc 56
57/* Call cse / combine like post-reload optimization phases.
58 FIRST is the first instruction. */
98799adc 59
60static void
3aeaa53f 61reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
8f8cadbc 62{
d83ccc81 63 bool moves_converted;
26709122 64 reload_cse_regs_1 ();
8f8cadbc 65 reload_combine ();
d83ccc81 66 moves_converted = reload_cse_move2add (first);
8f8cadbc 67 if (flag_expensive_optimizations)
d83ccc81 68 {
69 if (moves_converted)
70 reload_combine ();
26709122 71 reload_cse_regs_1 ();
d83ccc81 72 }
8f8cadbc 73}
74
75/* See whether a single set SET is a noop. */
76static int
3ad4992f 77reload_cse_noop_set_p (rtx set)
8f8cadbc 78{
79 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
80 return 0;
81
82 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
83}
84
26709122 85/* Try to simplify INSN. Return true if the CFG may have changed. */
86static bool
3aeaa53f 87reload_cse_simplify (rtx_insn *insn, rtx testreg)
8f8cadbc 88{
89 rtx body = PATTERN (insn);
26709122 90 basic_block insn_bb = BLOCK_FOR_INSN (insn);
91 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
8f8cadbc 92
93 if (GET_CODE (body) == SET)
94 {
95 int count = 0;
96
97 /* Simplify even if we may think it is a no-op.
98 We may think a memory load of a value smaller than WORD_SIZE
99 is redundant because we haven't taken into account possible
100 implicit extension. reload_cse_simplify_set() will bring
101 this out, so it's safer to simplify before we delete. */
102 count += reload_cse_simplify_set (body, insn);
103
104 if (!count && reload_cse_noop_set_p (body))
105 {
5a9ecd4a 106 if (check_for_inc_dec (insn))
107 delete_insn_and_edges (insn);
26709122 108 /* We're done with this insn. */
109 goto done;
8f8cadbc 110 }
111
112 if (count > 0)
113 apply_change_group ();
114 else
115 reload_cse_simplify_operands (insn, testreg);
116 }
117 else if (GET_CODE (body) == PARALLEL)
118 {
119 int i;
120 int count = 0;
121 rtx value = NULL_RTX;
122
17883489 123 /* Registers mentioned in the clobber list for an asm cannot be reused
124 within the body of the asm. Invalidate those registers now so that
125 we don't try to substitute values for them. */
126 if (asm_noperands (body) >= 0)
127 {
128 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
129 {
130 rtx part = XVECEXP (body, 0, i);
131 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
132 cselib_invalidate_rtx (XEXP (part, 0));
133 }
134 }
135
8f8cadbc 136 /* If every action in a PARALLEL is a noop, we can delete
137 the entire PARALLEL. */
138 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
139 {
140 rtx part = XVECEXP (body, 0, i);
141 if (GET_CODE (part) == SET)
142 {
143 if (! reload_cse_noop_set_p (part))
144 break;
145 if (REG_P (SET_DEST (part))
146 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
147 {
148 if (value)
149 break;
150 value = SET_DEST (part);
151 }
152 }
430d0b16 153 else if (GET_CODE (part) != CLOBBER
154 && GET_CODE (part) != USE)
8f8cadbc 155 break;
156 }
157
158 if (i < 0)
159 {
5a9ecd4a 160 if (check_for_inc_dec (insn))
161 delete_insn_and_edges (insn);
8f8cadbc 162 /* We're done with this insn. */
26709122 163 goto done;
8f8cadbc 164 }
165
166 /* It's not a no-op, but we can try to simplify it. */
167 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
168 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
169 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
170
171 if (count > 0)
172 apply_change_group ();
173 else
174 reload_cse_simplify_operands (insn, testreg);
175 }
26709122 176
177done:
178 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
8f8cadbc 179}
180
181/* Do a very simple CSE pass over the hard registers.
182
183 This function detects no-op moves where we happened to assign two
184 different pseudo-registers to the same hard register, and then
185 copied one to the other. Reload will generate a useless
186 instruction copying a register to itself.
187
188 This function also detects cases where we load a value from memory
189 into two different registers, and (if memory is more expensive than
190 registers) changes it to simply copy the first register into the
191 second register.
192
193 Another optimization is performed that scans the operands of each
194 instruction to see whether the value is already available in a
195 hard register. It then replaces the operand with the hard register
196 if possible, much like an optional reload would. */
197
198static void
26709122 199reload_cse_regs_1 (void)
8f8cadbc 200{
26709122 201 bool cfg_changed = false;
202 basic_block bb;
3aeaa53f 203 rtx_insn *insn;
dcd6d0f4 204 rtx testreg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
8f8cadbc 205
35af0188 206 cselib_init (CSELIB_RECORD_MEMORY);
8f8cadbc 207 init_alias_analysis ();
208
fc00614f 209 FOR_EACH_BB_FN (bb, cfun)
26709122 210 FOR_BB_INSNS (bb, insn)
211 {
212 if (INSN_P (insn))
213 cfg_changed |= reload_cse_simplify (insn, testreg);
8f8cadbc 214
26709122 215 cselib_process_insn (insn);
216 }
8f8cadbc 217
218 /* Clean up. */
219 end_alias_analysis ();
220 cselib_finish ();
26709122 221 if (cfg_changed)
222 cleanup_cfg (0);
8f8cadbc 223}
224
225/* Try to simplify a single SET instruction. SET is the set pattern.
226 INSN is the instruction it came from.
227 This function only handles one case: if we set a register to a value
228 which is not a register, we try to find that value in some other register
229 and change the set into a register copy. */
230
231static int
3aeaa53f 232reload_cse_simplify_set (rtx set, rtx_insn *insn)
8f8cadbc 233{
234 int did_change = 0;
235 int dreg;
236 rtx src;
ade444a4 237 reg_class_t dclass;
8f8cadbc 238 int old_cost;
239 cselib_val *val;
240 struct elt_loc_list *l;
21f1e711 241 enum rtx_code extend_op = UNKNOWN;
f529eb25 242 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
8f8cadbc 243
244 dreg = true_regnum (SET_DEST (set));
245 if (dreg < 0)
246 return 0;
247
248 src = SET_SRC (set);
249 if (side_effects_p (src) || true_regnum (src) >= 0)
250 return 0;
251
252 dclass = REGNO_REG_CLASS (dreg);
253
8f8cadbc 254 /* When replacing a memory with a register, we need to honor assumptions
255 that combine made wrt the contents of sign bits. We'll do this by
256 generating an extend instruction instead of a reg->reg copy. Thus
257 the destination must be a register that we can widen. */
e16ceb8e 258 if (MEM_P (src)
e73fe78f 259 && (extend_op = load_extend_op (GET_MODE (src))) != UNKNOWN
8ad4c111 260 && !REG_P (SET_DEST (set)))
8f8cadbc 261 return 0;
8f8cadbc 262
1f864115 263 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
3be01943 264 if (! val)
265 return 0;
266
8f8cadbc 267 /* If memory loads are cheaper than register copies, don't change them. */
e16ceb8e 268 if (MEM_P (src))
251a613e 269 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
8ad4c111 270 else if (REG_P (src))
e6078fbb 271 old_cost = register_move_cost (GET_MODE (src),
8f8cadbc 272 REGNO_REG_CLASS (REGNO (src)), dclass);
273 else
5ae4887d 274 old_cost = set_src_cost (src, GET_MODE (SET_DEST (set)), speed);
8f8cadbc 275
8f8cadbc 276 for (l = val->locs; l; l = l->next)
277 {
278 rtx this_rtx = l->loc;
279 int this_cost;
280
281 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
282 {
21f1e711 283 if (extend_op != UNKNOWN)
8f8cadbc 284 {
e913b5cd 285 wide_int result;
8f8cadbc 286
e913b5cd 287 if (!CONST_SCALAR_INT_P (this_rtx))
8f8cadbc 288 continue;
289
8f8cadbc 290 switch (extend_op)
291 {
292 case ZERO_EXTEND:
c67875ad 293 result = wide_int::from (rtx_mode_t (this_rtx,
294 GET_MODE (src)),
ecc41f48 295 BITS_PER_WORD, UNSIGNED);
8f8cadbc 296 break;
297 case SIGN_EXTEND:
c67875ad 298 result = wide_int::from (rtx_mode_t (this_rtx,
299 GET_MODE (src)),
ecc41f48 300 BITS_PER_WORD, SIGNED);
e913b5cd 301 break;
8f8cadbc 302 default:
876760f6 303 gcc_unreachable ();
8f8cadbc 304 }
ecc41f48 305 this_rtx = immed_wide_int_const (result, word_mode);
8f8cadbc 306 }
5fe18e78 307
5ae4887d 308 this_cost = set_src_cost (this_rtx, GET_MODE (SET_DEST (set)), speed);
8f8cadbc 309 }
8ad4c111 310 else if (REG_P (this_rtx))
8f8cadbc 311 {
21f1e711 312 if (extend_op != UNKNOWN)
8f8cadbc 313 {
314 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
5ae4887d 315 this_cost = set_src_cost (this_rtx, word_mode, speed);
8f8cadbc 316 }
317 else
e6078fbb 318 this_cost = register_move_cost (GET_MODE (this_rtx),
8f8cadbc 319 REGNO_REG_CLASS (REGNO (this_rtx)),
320 dclass);
321 }
322 else
323 continue;
324
325 /* If equal costs, prefer registers over anything else. That
326 tends to lead to smaller instructions on some machines. */
327 if (this_cost < old_cost
328 || (this_cost == old_cost
8ad4c111 329 && REG_P (this_rtx)
330 && !REG_P (SET_SRC (set))))
8f8cadbc 331 {
e73fe78f 332 if (extend_op != UNKNOWN
8f8cadbc 333#ifdef CANNOT_CHANGE_MODE_CLASS
334 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
335 word_mode,
336 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
337#endif
338 )
339 {
340 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
341 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
342 validate_change (insn, &SET_DEST (set), wide_dest, 1);
343 }
8f8cadbc 344
11d686e2 345 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
8f8cadbc 346 old_cost = this_cost, did_change = 1;
347 }
348 }
349
350 return did_change;
351}
352
353/* Try to replace operands in INSN with equivalent values that are already
354 in registers. This can be viewed as optional reloading.
355
356 For each non-register operand in the insn, see if any hard regs are
357 known to be equivalent to that operand. Record the alternatives which
358 can accept these hard registers. Among all alternatives, select the
359 ones which are better or equal to the one currently matching, where
360 "better" is in terms of '?' and '!' constraints. Among the remaining
361 alternatives, select the one which replaces most operands with
362 hard registers. */
363
364static int
3aeaa53f 365reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
8f8cadbc 366{
367 int i, j;
368
369 /* For each operand, all registers that are equivalent to it. */
370 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
371
372 const char *constraints[MAX_RECOG_OPERANDS];
373
374 /* Vector recording how bad an alternative is. */
375 int *alternative_reject;
376 /* Vector recording how many registers can be introduced by choosing
377 this alternative. */
378 int *alternative_nregs;
379 /* Array of vectors recording, for each operand and each alternative,
380 which hard register to substitute, or -1 if the operand should be
381 left as it is. */
382 int *op_alt_regno[MAX_RECOG_OPERANDS];
383 /* Array of alternatives, sorted in order of decreasing desirability. */
384 int *alternative_order;
385
835b8178 386 extract_constrain_insn (insn);
8f8cadbc 387
388 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
389 return 0;
390
4077bf7a 391 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
392 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
393 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
f0af5a88 394 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
395 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
8f8cadbc 396
397 /* For each operand, find out which regs are equivalent. */
398 for (i = 0; i < recog_data.n_operands; i++)
399 {
400 cselib_val *v;
401 struct elt_loc_list *l;
9d9e3c81 402 rtx op;
8f8cadbc 403
404 CLEAR_HARD_REG_SET (equiv_regs[i]);
405
406 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
407 right, so avoid the problem here. Likewise if we have a constant
408 and the insn pattern doesn't tell us the mode we need. */
6d7dc5b9 409 if (LABEL_P (recog_data.operand[i])
8f8cadbc 410 || (CONSTANT_P (recog_data.operand[i])
411 && recog_data.operand_mode[i] == VOIDmode))
412 continue;
413
9d9e3c81 414 op = recog_data.operand[i];
e73fe78f 415 if (MEM_P (op) && load_extend_op (GET_MODE (op)) != UNKNOWN)
9d9e3c81 416 {
417 rtx set = single_set (insn);
418
4885b286 419 /* We might have multiple sets, some of which do implicit
9d9e3c81 420 extension. Punt on this for now. */
421 if (! set)
422 continue;
86481e89 423 /* If the destination is also a MEM or a STRICT_LOW_PART, no
9d9e3c81 424 extension applies.
425 Also, if there is an explicit extension, we don't have to
426 worry about an implicit one. */
e16ceb8e 427 else if (MEM_P (SET_DEST (set))
9d9e3c81 428 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
429 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
430 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
431 ; /* Continue ordinary processing. */
a091e4f5 432#ifdef CANNOT_CHANGE_MODE_CLASS
433 /* If the register cannot change mode to word_mode, it follows that
434 it cannot have been used in word_mode. */
8ad4c111 435 else if (REG_P (SET_DEST (set))
a091e4f5 436 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
437 word_mode,
438 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
439 ; /* Continue ordinary processing. */
440#endif
9d9e3c81 441 /* If this is a straight load, make the extension explicit. */
8ad4c111 442 else if (REG_P (SET_DEST (set))
9d9e3c81 443 && recog_data.n_operands == 2
444 && SET_SRC (set) == op
445 && SET_DEST (set) == recog_data.operand[1-i])
446 {
447 validate_change (insn, recog_data.operand_loc[i],
e73fe78f 448 gen_rtx_fmt_e (load_extend_op (GET_MODE (op)),
9d9e3c81 449 word_mode, op),
450 1);
451 validate_change (insn, recog_data.operand_loc[1-i],
452 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
453 1);
454 if (! apply_change_group ())
455 return 0;
456 return reload_cse_simplify_operands (insn, testreg);
457 }
458 else
459 /* ??? There might be arithmetic operations with memory that are
460 safe to optimize, but is it worth the trouble? */
461 continue;
462 }
5fe18e78 463
017b7047 464 if (side_effects_p (op))
465 continue;
1f864115 466 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
8f8cadbc 467 if (! v)
468 continue;
469
470 for (l = v->locs; l; l = l->next)
8ad4c111 471 if (REG_P (l->loc))
8f8cadbc 472 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
473 }
474
e1a797ad 475 alternative_mask preferred = get_preferred_alternatives (insn);
8f8cadbc 476 for (i = 0; i < recog_data.n_operands; i++)
477 {
3754d046 478 machine_mode mode;
8f8cadbc 479 int regno;
480 const char *p;
481
4077bf7a 482 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
8f8cadbc 483 for (j = 0; j < recog_data.n_alternatives; j++)
484 op_alt_regno[i][j] = -1;
485
486 p = constraints[i] = recog_data.constraints[i];
487 mode = recog_data.operand_mode[i];
488
489 /* Add the reject values for each alternative given by the constraints
490 for this operand. */
491 j = 0;
492 while (*p != '\0')
493 {
494 char c = *p++;
495 if (c == ',')
496 j++;
497 else if (c == '?')
498 alternative_reject[j] += 3;
499 else if (c == '!')
500 alternative_reject[j] += 300;
501 }
502
503 /* We won't change operands which are already registers. We
504 also don't want to modify output operands. */
505 regno = true_regnum (recog_data.operand[i]);
506 if (regno >= 0
507 || constraints[i][0] == '='
508 || constraints[i][0] == '+')
509 continue;
510
511 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
512 {
b9c74b4d 513 enum reg_class rclass = NO_REGS;
8f8cadbc 514
515 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
516 continue;
517
937ca48e 518 set_mode_and_regno (testreg, mode, regno);
8f8cadbc 519
520 /* We found a register equal to this operand. Now look for all
521 alternatives that can accept this register and have not been
522 assigned a register they can use yet. */
523 j = 0;
524 p = constraints[i];
525 for (;;)
526 {
527 char c = *p;
528
529 switch (c)
530 {
69449463 531 case 'g':
532 rclass = reg_class_subunion[rclass][GENERAL_REGS];
8f8cadbc 533 break;
534
535 default:
6659485c 536 rclass
8f8cadbc 537 = (reg_class_subunion
79bc09fb 538 [rclass]
539 [reg_class_for_constraint (lookup_constraint (p))]);
8f8cadbc 540 break;
541
542 case ',': case '\0':
543 /* See if REGNO fits this alternative, and set it up as the
544 replacement register if we don't have one for this
545 alternative yet and the operand being replaced is not
546 a cheap CONST_INT. */
547 if (op_alt_regno[i][j] == -1
e1a797ad 548 && TEST_BIT (preferred, j)
6659485c 549 && reg_fits_class_p (testreg, rclass, 0, mode)
971ba038 550 && (!CONST_INT_P (recog_data.operand[i])
5ae4887d 551 || (set_src_cost (recog_data.operand[i], mode,
7013e87c 552 optimize_bb_for_speed_p
553 (BLOCK_FOR_INSN (insn)))
5ae4887d 554 > set_src_cost (testreg, mode,
7013e87c 555 optimize_bb_for_speed_p
556 (BLOCK_FOR_INSN (insn))))))
8f8cadbc 557 {
558 alternative_nregs[j]++;
559 op_alt_regno[i][j] = regno;
560 }
561 j++;
b9c74b4d 562 rclass = NO_REGS;
8f8cadbc 563 break;
564 }
565 p += CONSTRAINT_LEN (c, p);
566
567 if (c == '\0')
568 break;
569 }
570 }
571 }
572
573 /* Record all alternatives which are better or equal to the currently
574 matching one in the alternative_order array. */
575 for (i = j = 0; i < recog_data.n_alternatives; i++)
576 if (alternative_reject[i] <= alternative_reject[which_alternative])
577 alternative_order[j++] = i;
578 recog_data.n_alternatives = j;
579
580 /* Sort it. Given a small number of alternatives, a dumb algorithm
581 won't hurt too much. */
582 for (i = 0; i < recog_data.n_alternatives - 1; i++)
583 {
584 int best = i;
585 int best_reject = alternative_reject[alternative_order[i]];
586 int best_nregs = alternative_nregs[alternative_order[i]];
8f8cadbc 587
588 for (j = i + 1; j < recog_data.n_alternatives; j++)
589 {
590 int this_reject = alternative_reject[alternative_order[j]];
591 int this_nregs = alternative_nregs[alternative_order[j]];
592
593 if (this_reject < best_reject
c2d0cf41 594 || (this_reject == best_reject && this_nregs > best_nregs))
8f8cadbc 595 {
596 best = j;
597 best_reject = this_reject;
598 best_nregs = this_nregs;
599 }
600 }
601
dfcf26a5 602 std::swap (alternative_order[best], alternative_order[i]);
8f8cadbc 603 }
604
605 /* Substitute the operands as determined by op_alt_regno for the best
606 alternative. */
607 j = alternative_order[0];
608
609 for (i = 0; i < recog_data.n_operands; i++)
610 {
3754d046 611 machine_mode mode = recog_data.operand_mode[i];
8f8cadbc 612 if (op_alt_regno[i][j] == -1)
613 continue;
614
615 validate_change (insn, recog_data.operand_loc[i],
616 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
617 }
618
619 for (i = recog_data.n_dups - 1; i >= 0; i--)
620 {
621 int op = recog_data.dup_num[i];
3754d046 622 machine_mode mode = recog_data.operand_mode[op];
8f8cadbc 623
624 if (op_alt_regno[op][j] == -1)
625 continue;
626
627 validate_change (insn, recog_data.dup_loc[i],
628 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
629 }
630
631 return apply_change_group ();
632}
633\f
634/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
635 addressing now.
636 This code might also be useful when reload gave up on reg+reg addressing
637 because of clashes between the return register and INDEX_REG_CLASS. */
638
639/* The maximum number of uses of a register we can keep track of to
640 replace them with reg+reg addressing. */
d83ccc81 641#define RELOAD_COMBINE_MAX_USES 16
8f8cadbc 642
d83ccc81 643/* Describes a recorded use of a register. */
644struct reg_use
645{
646 /* The insn where a register has been used. */
3aeaa53f 647 rtx_insn *insn;
d83ccc81 648 /* Points to the memory reference enclosing the use, if any, NULL_RTX
649 otherwise. */
650 rtx containing_mem;
9d75589a 651 /* Location of the register within INSN. */
d83ccc81 652 rtx *usep;
653 /* The reverse uid of the insn. */
654 int ruid;
655};
8f8cadbc 656
657/* If the register is used in some unknown fashion, USE_INDEX is negative.
658 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
d83ccc81 659 indicates where it is first set or clobbered.
8f8cadbc 660 Otherwise, USE_INDEX is the index of the last encountered use of the
d83ccc81 661 register (which is first among these we have seen since we scan backwards).
662 USE_RUID indicates the first encountered, i.e. last, of these uses.
663 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
664 with a constant offset; OFFSET contains this constant in that case.
8f8cadbc 665 STORE_RUID is always meaningful if we only want to use a value in a
666 register in a different place: it denotes the next insn in the insn
d83ccc81 667 stream (i.e. the last encountered) that sets or clobbers the register.
668 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
8f8cadbc 669static struct
670 {
671 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
8f8cadbc 672 rtx offset;
d83ccc81 673 int use_index;
8f8cadbc 674 int store_ruid;
d83ccc81 675 int real_store_ruid;
8f8cadbc 676 int use_ruid;
d83ccc81 677 bool all_offsets_match;
8f8cadbc 678 } reg_state[FIRST_PSEUDO_REGISTER];
679
680/* Reverse linear uid. This is increased in reload_combine while scanning
681 the instructions from last to first. It is used to set last_label_ruid
682 and the store_ruid / use_ruid fields in reg_state. */
683static int reload_combine_ruid;
684
fb79f695 685/* The RUID of the last label we encountered in reload_combine. */
686static int last_label_ruid;
687
d83ccc81 688/* The RUID of the last jump we encountered in reload_combine. */
689static int last_jump_ruid;
690
fb79f695 691/* The register numbers of the first and last index register. A value of
692 -1 in LAST_INDEX_REG indicates that we've previously computed these
693 values and found no suitable index registers. */
694static int first_index_reg = -1;
695static int last_index_reg;
696
8f8cadbc 697#define LABEL_LIVE(LABEL) \
698 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
699
d83ccc81 700/* Subroutine of reload_combine_split_ruids, called to fix up a single
701 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
702
703static inline void
704reload_combine_split_one_ruid (int *pruid, int split_ruid)
705{
706 if (*pruid > split_ruid)
707 (*pruid)++;
708}
709
710/* Called when we insert a new insn in a position we've already passed in
711 the scan. Examine all our state, increasing all ruids that are higher
712 than SPLIT_RUID by one in order to make room for a new insn. */
713
714static void
715reload_combine_split_ruids (int split_ruid)
716{
717 unsigned i;
718
719 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
720 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
721 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
722
723 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
724 {
725 int j, idx = reg_state[i].use_index;
726 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
727 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
728 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
729 split_ruid);
730 if (idx < 0)
731 continue;
732 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
733 {
734 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
735 split_ruid);
736 }
737 }
738}
739
740/* Called when we are about to rescan a previously encountered insn with
741 reload_combine_note_use after modifying some part of it. This clears all
742 information about uses in that particular insn. */
743
744static void
3aeaa53f 745reload_combine_purge_insn_uses (rtx_insn *insn)
d83ccc81 746{
747 unsigned i;
748
749 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
750 {
751 int j, k, idx = reg_state[i].use_index;
752 if (idx < 0)
753 continue;
754 j = k = RELOAD_COMBINE_MAX_USES;
755 while (j-- > idx)
756 {
757 if (reg_state[i].reg_use[j].insn != insn)
758 {
759 k--;
760 if (k != j)
761 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
762 }
763 }
764 reg_state[i].use_index = k;
765 }
766}
767
768/* Called when we need to forget about all uses of REGNO after an insn
769 which is identified by RUID. */
770
771static void
772reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
773{
774 int j, k, idx = reg_state[regno].use_index;
775 if (idx < 0)
776 return;
777 j = k = RELOAD_COMBINE_MAX_USES;
778 while (j-- > idx)
779 {
780 if (reg_state[regno].reg_use[j].ruid >= ruid)
781 {
782 k--;
783 if (k != j)
784 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
785 }
786 }
787 reg_state[regno].use_index = k;
788}
789
790/* Find the use of REGNO with the ruid that is highest among those
791 lower than RUID_LIMIT, and return it if it is the only use of this
727047d0 792 reg in the insn. Return NULL otherwise. */
d83ccc81 793
794static struct reg_use *
795reload_combine_closest_single_use (unsigned regno, int ruid_limit)
796{
797 int i, best_ruid = 0;
798 int use_idx = reg_state[regno].use_index;
799 struct reg_use *retval;
800
801 if (use_idx < 0)
802 return NULL;
803 retval = NULL;
804 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
805 {
0ead6a7d 806 struct reg_use *use = reg_state[regno].reg_use + i;
807 int this_ruid = use->ruid;
d83ccc81 808 if (this_ruid >= ruid_limit)
809 continue;
810 if (this_ruid > best_ruid)
811 {
812 best_ruid = this_ruid;
727047d0 813 retval = use;
d83ccc81 814 }
727047d0 815 else if (this_ruid == best_ruid)
d83ccc81 816 retval = NULL;
817 }
818 if (last_label_ruid >= best_ruid)
819 return NULL;
820 return retval;
821}
822
65069495 823/* After we've moved an add insn, fix up any debug insns that occur
824 between the old location of the add and the new location. REG is
825 the destination register of the add insn; REPLACEMENT is the
826 SET_SRC of the add. FROM and TO specify the range in which we
827 should make this change on debug insns. */
0ead6a7d 828
829static void
3aeaa53f 830fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
0ead6a7d 831{
3aeaa53f 832 rtx_insn *insn;
65069495 833 for (insn = from; insn != to; insn = NEXT_INSN (insn))
0ead6a7d 834 {
835 rtx t;
65069495 836
837 if (!DEBUG_INSN_P (insn))
0ead6a7d 838 continue;
65069495 839
840 t = INSN_VAR_LOCATION_LOC (insn);
727047d0 841 t = simplify_replace_rtx (t, reg, replacement);
65069495 842 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
0ead6a7d 843 }
844}
845
692ec7c8 846/* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
847 with SRC in the insn described by USE, taking costs into account. Return
848 true if we made the replacement. */
849
850static bool
851try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
852{
3aeaa53f 853 rtx_insn *use_insn = use->insn;
692ec7c8 854 rtx mem = use->containing_mem;
855 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
856
857 if (mem != NULL_RTX)
858 {
859 addr_space_t as = MEM_ADDR_SPACE (mem);
860 rtx oldaddr = XEXP (mem, 0);
861 rtx newaddr = NULL_RTX;
862 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
863 int new_cost;
864
865 newaddr = simplify_replace_rtx (oldaddr, reg, src);
866 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
867 {
868 XEXP (mem, 0) = newaddr;
869 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
870 XEXP (mem, 0) = oldaddr;
871 if (new_cost <= old_cost
872 && validate_change (use_insn,
873 &XEXP (mem, 0), newaddr, 0))
874 return true;
875 }
876 }
877 else
878 {
879 rtx new_set = single_set (use_insn);
880 if (new_set
881 && REG_P (SET_DEST (new_set))
882 && GET_CODE (SET_SRC (new_set)) == PLUS
883 && REG_P (XEXP (SET_SRC (new_set), 0))
884 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
885 {
886 rtx new_src;
5ae4887d 887 machine_mode mode = GET_MODE (SET_DEST (new_set));
888 int old_cost = set_src_cost (SET_SRC (new_set), mode, speed);
692ec7c8 889
890 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
891 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
892
5ae4887d 893 if (set_src_cost (new_src, mode, speed) <= old_cost
692ec7c8 894 && validate_change (use_insn, &SET_SRC (new_set),
895 new_src, 0))
896 return true;
897 }
898 }
899 return false;
900}
901
d83ccc81 902/* Called by reload_combine when scanning INSN. This function tries to detect
903 patterns where a constant is added to a register, and the result is used
904 in an address.
905 Return true if no further processing is needed on INSN; false if it wasn't
906 recognized and should be handled normally. */
907
908static bool
3aeaa53f 909reload_combine_recognize_const_pattern (rtx_insn *insn)
d83ccc81 910{
911 int from_ruid = reload_combine_ruid;
912 rtx set, pat, reg, src, addreg;
913 unsigned int regno;
914 struct reg_use *use;
915 bool must_move_add;
3aeaa53f 916 rtx_insn *add_moved_after_insn = NULL;
d83ccc81 917 int add_moved_after_ruid = 0;
918 int clobbered_regno = -1;
919
920 set = single_set (insn);
921 if (set == NULL_RTX)
922 return false;
923
924 reg = SET_DEST (set);
925 src = SET_SRC (set);
926 if (!REG_P (reg)
0933f1d9 927 || REG_NREGS (reg) != 1
d83ccc81 928 || GET_MODE (reg) != Pmode
929 || reg == stack_pointer_rtx)
930 return false;
931
932 regno = REGNO (reg);
933
934 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
935 uses of REG1 inside an address, or inside another add insn. If
936 possible and profitable, merge the addition into subsequent
937 uses. */
938 if (GET_CODE (src) != PLUS
939 || !REG_P (XEXP (src, 0))
940 || !CONSTANT_P (XEXP (src, 1)))
941 return false;
942
943 addreg = XEXP (src, 0);
944 must_move_add = rtx_equal_p (reg, addreg);
945
946 pat = PATTERN (insn);
947 if (must_move_add && set != pat)
948 {
949 /* We have to be careful when moving the add; apart from the
950 single_set there may also be clobbers. Recognize one special
951 case, that of one clobber alongside the set (likely a clobber
952 of the CC register). */
953 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
954 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
955 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
956 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
957 return false;
958 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
959 }
960
961 do
962 {
963 use = reload_combine_closest_single_use (regno, from_ruid);
964
965 if (use)
966 /* Start the search for the next use from here. */
967 from_ruid = use->ruid;
968
969 if (use && GET_MODE (*use->usep) == Pmode)
970 {
692ec7c8 971 bool delete_add = false;
3aeaa53f 972 rtx_insn *use_insn = use->insn;
d83ccc81 973 int use_ruid = use->ruid;
d83ccc81 974
975 /* Avoid moving the add insn past a jump. */
0ead6a7d 976 if (must_move_add && use_ruid <= last_jump_ruid)
d83ccc81 977 break;
978
979 /* If the add clobbers another hard reg in parallel, don't move
980 it past a real set of this hard reg. */
981 if (must_move_add && clobbered_regno >= 0
982 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
983 break;
984
33b7314b 985 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
ff900b8e 986 if (HAVE_cc0 && must_move_add && sets_cc0_p (PATTERN (use_insn)))
33b7314b 987 break;
33b7314b 988
6aba0ea1 989 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
990 /* Avoid moving a use of ADDREG past a point where it is stored. */
692ec7c8 991 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
d83ccc81 992 break;
993
692ec7c8 994 /* We also must not move the addition past an insn that sets
995 the same register, unless we can combine two add insns. */
996 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
d83ccc81 997 {
692ec7c8 998 if (use->containing_mem == NULL_RTX)
999 delete_add = true;
1000 else
1001 break;
d83ccc81 1002 }
d83ccc81 1003
692ec7c8 1004 if (try_replace_in_use (use, reg, src))
1005 {
1006 reload_combine_purge_insn_uses (use_insn);
1007 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1008 use_ruid, NULL_RTX);
d83ccc81 1009
692ec7c8 1010 if (delete_add)
1011 {
1012 fixup_debug_insns (reg, src, insn, use_insn);
1013 delete_insn (insn);
1014 return true;
1015 }
1016 if (must_move_add)
1017 {
1018 add_moved_after_insn = use_insn;
1019 add_moved_after_ruid = use_ruid;
d83ccc81 1020 }
692ec7c8 1021 continue;
d83ccc81 1022 }
d83ccc81 1023 }
6aba0ea1 1024 /* If we get here, we couldn't handle this use. */
1025 if (must_move_add)
1026 break;
d83ccc81 1027 }
1028 while (use);
1029
1030 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1031 /* Process the add normally. */
1032 return false;
1033
65069495 1034 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1035
d83ccc81 1036 reorder_insns (insn, insn, add_moved_after_insn);
1037 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1038 reload_combine_split_ruids (add_moved_after_ruid - 1);
1039 reload_combine_note_use (&PATTERN (insn), insn,
1040 add_moved_after_ruid, NULL_RTX);
1041 reg_state[regno].store_ruid = add_moved_after_ruid;
1042
1043 return true;
1044}
1045
fb79f695 1046/* Called by reload_combine when scanning INSN. Try to detect a pattern we
1047 can handle and improve. Return true if no further processing is needed on
1048 INSN; false if it wasn't recognized and should be handled normally. */
1049
1050static bool
3aeaa53f 1051reload_combine_recognize_pattern (rtx_insn *insn)
fb79f695 1052{
1053 rtx set, reg, src;
fb79f695 1054
d83ccc81 1055 set = single_set (insn);
1056 if (set == NULL_RTX)
1057 return false;
1058
1059 reg = SET_DEST (set);
1060 src = SET_SRC (set);
0933f1d9 1061 if (!REG_P (reg) || REG_NREGS (reg) != 1)
d83ccc81 1062 return false;
1063
d8ec06ae 1064 unsigned int regno = REGNO (reg);
1065 machine_mode mode = GET_MODE (reg);
1066
1067 if (reg_state[regno].use_index < 0
1068 || reg_state[regno].use_index >= RELOAD_COMBINE_MAX_USES)
1069 return false;
1070
1071 for (int i = reg_state[regno].use_index;
1072 i < RELOAD_COMBINE_MAX_USES; i++)
1073 {
1074 struct reg_use *use = reg_state[regno].reg_use + i;
1075 if (GET_MODE (*use->usep) != mode)
1076 return false;
1077 }
d83ccc81 1078
fb79f695 1079 /* Look for (set (REGX) (CONST_INT))
1080 (set (REGX) (PLUS (REGX) (REGY)))
1081 ...
1082 ... (MEM (REGX)) ...
1083 and convert it to
1084 (set (REGZ) (CONST_INT))
1085 ...
1086 ... (MEM (PLUS (REGZ) (REGY)))... .
1087
1088 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1089 and that we know all uses of REGX before it dies.
1090 Also, explicitly check that REGX != REGY; our life information
1091 does not yet show whether REGY changes in this insn. */
fb79f695 1092
1093 if (GET_CODE (src) == PLUS
d83ccc81 1094 && reg_state[regno].all_offsets_match
1095 && last_index_reg != -1
fb79f695 1096 && REG_P (XEXP (src, 1))
1097 && rtx_equal_p (XEXP (src, 0), reg)
1098 && !rtx_equal_p (XEXP (src, 1), reg)
1099 && last_label_ruid < reg_state[regno].use_ruid)
1100 {
1101 rtx base = XEXP (src, 1);
3aeaa53f 1102 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
fb79f695 1103 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1104 rtx index_reg = NULL_RTX;
1105 rtx reg_sum = NULL_RTX;
1106 int i;
1107
1108 /* Now we need to set INDEX_REG to an index register (denoted as
1109 REGZ in the illustration above) and REG_SUM to the expression
1110 register+register that we want to use to substitute uses of REG
1111 (typically in MEMs) with. First check REG and BASE for being
1112 index registers; we can use them even if they are not dead. */
1113 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1114 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1115 REGNO (base)))
1116 {
1117 index_reg = reg;
1118 reg_sum = src;
1119 }
1120 else
1121 {
1122 /* Otherwise, look for a free index register. Since we have
1123 checked above that neither REG nor BASE are index registers,
1124 if we find anything at all, it will be different from these
1125 two registers. */
1126 for (i = first_index_reg; i <= last_index_reg; i++)
1127 {
1128 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1129 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1130 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
727047d0 1131 && (call_used_regs[i] || df_regs_ever_live_p (i))
1132 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1133 && !fixed_regs[i] && !global_regs[i]
1134 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1135 && targetm.hard_regno_scratch_ok (i))
fb79f695 1136 {
1137 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1138 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1139 break;
1140 }
1141 }
1142 }
1143
1144 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1145 (REGY), i.e. BASE, is not clobbered before the last use we'll
1146 create. */
1147 if (reg_sum
1148 && prev_set
1149 && CONST_INT_P (SET_SRC (prev_set))
1150 && rtx_equal_p (SET_DEST (prev_set), reg)
fb79f695 1151 && (reg_state[REGNO (base)].store_ruid
1152 <= reg_state[regno].use_ruid))
1153 {
1154 /* Change destination register and, if necessary, the constant
1155 value in PREV, the constant loading instruction. */
1156 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1157 if (reg_state[regno].offset != const0_rtx)
1158 validate_change (prev,
1159 &SET_SRC (prev_set),
1160 GEN_INT (INTVAL (SET_SRC (prev_set))
1161 + INTVAL (reg_state[regno].offset)),
1162 1);
1163
1164 /* Now for every use of REG that we have recorded, replace REG
1165 with REG_SUM. */
1166 for (i = reg_state[regno].use_index;
1167 i < RELOAD_COMBINE_MAX_USES; i++)
1168 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1169 reg_state[regno].reg_use[i].usep,
1170 /* Each change must have its own
1171 replacement. */
1172 reg_sum, 1);
1173
1174 if (apply_change_group ())
1175 {
65069495 1176 struct reg_use *lowest_ruid = NULL;
1177
fb79f695 1178 /* For every new use of REG_SUM, we have to record the use
1179 of BASE therein, i.e. operand 1. */
1180 for (i = reg_state[regno].use_index;
1181 i < RELOAD_COMBINE_MAX_USES; i++)
65069495 1182 {
1183 struct reg_use *use = reg_state[regno].reg_use + i;
1184 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1185 use->ruid, use->containing_mem);
1186 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1187 lowest_ruid = use;
1188 }
1189
1190 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
fb79f695 1191
fb79f695 1192 /* Delete the reg-reg addition. */
1193 delete_insn (insn);
1194
d20ae451 1195 if (reg_state[regno].offset != const0_rtx
1196 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1197 are now invalid. */
1198 && remove_reg_equal_equiv_notes (prev))
1199 df_notes_rescan (prev);
fb79f695 1200
1201 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
fb79f695 1202 return true;
1203 }
1204 }
1205 }
1206 return false;
1207}
1208
8f8cadbc 1209static void
3ad4992f 1210reload_combine (void)
8f8cadbc 1211{
3aeaa53f 1212 rtx_insn *insn, *prev;
8f8cadbc 1213 basic_block bb;
1214 unsigned int r;
8f8cadbc 1215 int min_labelno, n_labels;
1216 HARD_REG_SET ever_live_at_start, *label_live;
1217
8f8cadbc 1218 /* To avoid wasting too much time later searching for an index register,
1219 determine the minimum and maximum index register numbers. */
fb79f695 1220 if (INDEX_REG_CLASS == NO_REGS)
1221 last_index_reg = -1;
1222 else if (first_index_reg == -1 && last_index_reg == 0)
1223 {
1224 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1225 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1226 {
1227 if (first_index_reg == -1)
1228 first_index_reg = r;
1229
1230 last_index_reg = r;
1231 }
1232
1233 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1234 to -1 so we'll know to quit early the next time we get here. */
1235 if (first_index_reg == -1)
1236 {
1237 last_index_reg = -1;
1238 return;
1239 }
1240 }
8f8cadbc 1241
8f8cadbc 1242 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1243 information is a bit fuzzy immediately after reload, but it's
1244 still good enough to determine which registers are live at a jump
1245 destination. */
1246 min_labelno = get_first_label_num ();
1247 n_labels = max_label_num () - min_labelno;
4c36ffe6 1248 label_live = XNEWVEC (HARD_REG_SET, n_labels);
8f8cadbc 1249 CLEAR_HARD_REG_SET (ever_live_at_start);
1250
7a46197b 1251 FOR_EACH_BB_REVERSE_FN (bb, cfun)
8f8cadbc 1252 {
5496dbfc 1253 insn = BB_HEAD (bb);
6d7dc5b9 1254 if (LABEL_P (insn))
8f8cadbc 1255 {
1256 HARD_REG_SET live;
deb2741b 1257 bitmap live_in = df_get_live_in (bb);
8f8cadbc 1258
deb2741b 1259 REG_SET_TO_HARD_REG_SET (live, live_in);
1260 compute_use_by_pseudos (&live, live_in);
8f8cadbc 1261 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1262 IOR_HARD_REG_SET (ever_live_at_start, live);
1263 }
1264 }
1265
1266 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
d83ccc81 1267 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
8f8cadbc 1268 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1269 {
d83ccc81 1270 reg_state[r].store_ruid = 0;
1271 reg_state[r].real_store_ruid = 0;
8f8cadbc 1272 if (fixed_regs[r])
1273 reg_state[r].use_index = -1;
1274 else
1275 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1276 }
1277
d83ccc81 1278 for (insn = get_last_insn (); insn; insn = prev)
8f8cadbc 1279 {
8b52f64e 1280 bool control_flow_insn;
8f8cadbc 1281 rtx note;
1282
d83ccc81 1283 prev = PREV_INSN (insn);
1284
8f8cadbc 1285 /* We cannot do our optimization across labels. Invalidating all the use
1286 information we have would be costly, so we just note where the label
1287 is and then later disable any optimization that would cross it. */
6d7dc5b9 1288 if (LABEL_P (insn))
8f8cadbc 1289 last_label_ruid = reload_combine_ruid;
19f69355 1290 else if (BARRIER_P (insn))
1291 {
1292 /* Crossing a barrier resets all the use information. */
1293 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1294 if (! fixed_regs[r])
8f8cadbc 1295 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
19f69355 1296 }
1297 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1298 /* Optimizations across insns being marked as volatile must be
1299 prevented. All the usage information is invalidated
1300 here. */
1301 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1302 if (! fixed_regs[r]
1303 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1304 reg_state[r].use_index = -1;
8f8cadbc 1305
65069495 1306 if (! NONDEBUG_INSN_P (insn))
8f8cadbc 1307 continue;
1308
1309 reload_combine_ruid++;
1310
8b52f64e 1311 control_flow_insn = control_flow_insn_p (insn);
1312 if (control_flow_insn)
d83ccc81 1313 last_jump_ruid = reload_combine_ruid;
1314
1315 if (reload_combine_recognize_const_pattern (insn)
1316 || reload_combine_recognize_pattern (insn))
fb79f695 1317 continue;
8f8cadbc 1318
1319 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1320
6d7dc5b9 1321 if (CALL_P (insn))
8f8cadbc 1322 {
1323 rtx link;
30326fda 1324 HARD_REG_SET used_regs;
1325
1326 get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
8f8cadbc 1327
1328 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
30326fda 1329 if (TEST_HARD_REG_BIT (used_regs, r))
8f8cadbc 1330 {
1331 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1332 reg_state[r].store_ruid = reload_combine_ruid;
1333 }
1334
1335 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1336 link = XEXP (link, 1))
1337 {
c8010b80 1338 rtx setuse = XEXP (link, 0);
1339 rtx usage_rtx = XEXP (setuse, 0);
1340 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1341 && REG_P (usage_rtx))
8f8cadbc 1342 {
6a298741 1343 unsigned int end_regno = END_REGNO (usage_rtx);
1344 for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
8f8cadbc 1345 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1346 {
1347 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1348 reg_state[i].store_ruid = reload_combine_ruid;
1349 }
1350 else
1351 reg_state[i].use_index = -1;
1352 }
1353 }
8f8cadbc 1354 }
f4979459 1355
7777a939 1356 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
8f8cadbc 1357 {
1358 /* Non-spill registers might be used at the call destination in
1359 some unknown fashion, so we have to mark the unknown use. */
1360 HARD_REG_SET *live;
1361
1362 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1363 && JUMP_LABEL (insn))
7777a939 1364 {
1365 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1366 live = NULL;
1367 else
1368 live = &LABEL_LIVE (JUMP_LABEL (insn));
1369 }
8f8cadbc 1370 else
1371 live = &ever_live_at_start;
1372
7777a939 1373 if (live)
1374 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1375 if (TEST_HARD_REG_BIT (*live, r))
1376 reg_state[r].use_index = -1;
8f8cadbc 1377 }
1378
8b52f64e 1379 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1380 NULL_RTX);
1381
8f8cadbc 1382 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1383 {
8b52f64e 1384 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
8f8cadbc 1385 {
1386 int regno = REGNO (XEXP (note, 0));
8f8cadbc 1387 reg_state[regno].store_ruid = reload_combine_ruid;
d83ccc81 1388 reg_state[regno].real_store_ruid = reload_combine_ruid;
8f8cadbc 1389 reg_state[regno].use_index = -1;
1390 }
1391 }
1392 }
1393
1394 free (label_live);
1395}
1396
1397/* Check if DST is a register or a subreg of a register; if it is,
d83ccc81 1398 update store_ruid, real_store_ruid and use_index in the reg_state
1399 structure accordingly. Called via note_stores from reload_combine. */
8f8cadbc 1400
1401static void
81a410b1 1402reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
8f8cadbc 1403{
1404 int regno = 0;
1405 int i;
3754d046 1406 machine_mode mode = GET_MODE (dst);
8f8cadbc 1407
1408 if (GET_CODE (dst) == SUBREG)
1409 {
1410 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1411 GET_MODE (SUBREG_REG (dst)),
1412 SUBREG_BYTE (dst),
1413 GET_MODE (dst));
1414 dst = SUBREG_REG (dst);
1415 }
fe6524b0 1416
1417 /* Some targets do argument pushes without adding REG_INC notes. */
1418
1419 if (MEM_P (dst))
1420 {
1421 dst = XEXP (dst, 0);
1422 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
a5dda0b9 1423 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1424 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
fe6524b0 1425 {
6a298741 1426 unsigned int end_regno = END_REGNO (XEXP (dst, 0));
1427 for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
fe6524b0 1428 {
1429 /* We could probably do better, but for now mark the register
1430 as used in an unknown fashion and set/clobbered at this
1431 insn. */
1432 reg_state[i].use_index = -1;
1433 reg_state[i].store_ruid = reload_combine_ruid;
1434 reg_state[i].real_store_ruid = reload_combine_ruid;
1435 }
1436 }
1437 else
1438 return;
1439 }
1440
8ad4c111 1441 if (!REG_P (dst))
8f8cadbc 1442 return;
1443 regno += REGNO (dst);
1444
1445 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1446 careful with registers / register parts that are not full words.
476d094d 1447 Similarly for ZERO_EXTRACT. */
d83ccc81 1448 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
8f8cadbc 1449 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1450 {
67d6c12b 1451 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
8f8cadbc 1452 {
1453 reg_state[i].use_index = -1;
1454 reg_state[i].store_ruid = reload_combine_ruid;
d83ccc81 1455 reg_state[i].real_store_ruid = reload_combine_ruid;
8f8cadbc 1456 }
1457 }
1458 else
1459 {
67d6c12b 1460 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
8f8cadbc 1461 {
1462 reg_state[i].store_ruid = reload_combine_ruid;
d83ccc81 1463 if (GET_CODE (set) == SET)
1464 reg_state[i].real_store_ruid = reload_combine_ruid;
8f8cadbc 1465 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1466 }
1467 }
1468}
1469
1470/* XP points to a piece of rtl that has to be checked for any uses of
1471 registers.
1472 *XP is the pattern of INSN, or a part of it.
1473 Called from reload_combine, and recursively by itself. */
1474static void
3aeaa53f 1475reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
8f8cadbc 1476{
1477 rtx x = *xp;
1478 enum rtx_code code = x->code;
1479 const char *fmt;
1480 int i, j;
1481 rtx offset = const0_rtx; /* For the REG case below. */
1482
1483 switch (code)
1484 {
1485 case SET:
8ad4c111 1486 if (REG_P (SET_DEST (x)))
8f8cadbc 1487 {
d83ccc81 1488 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
8f8cadbc 1489 return;
1490 }
1491 break;
1492
1493 case USE:
1494 /* If this is the USE of a return value, we can't change it. */
8ad4c111 1495 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8f8cadbc 1496 {
6a298741 1497 /* Mark the return register as used in an unknown fashion. */
8f8cadbc 1498 rtx reg = XEXP (x, 0);
6a298741 1499 unsigned int end_regno = END_REGNO (reg);
1500 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
1501 reg_state[regno].use_index = -1;
8f8cadbc 1502 return;
1503 }
1504 break;
1505
1506 case CLOBBER:
8ad4c111 1507 if (REG_P (SET_DEST (x)))
8f8cadbc 1508 {
1509 /* No spurious CLOBBERs of pseudo registers may remain. */
876760f6 1510 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
8f8cadbc 1511 return;
1512 }
1513 break;
1514
1515 case PLUS:
1516 /* We are interested in (plus (reg) (const_int)) . */
8ad4c111 1517 if (!REG_P (XEXP (x, 0))
971ba038 1518 || !CONST_INT_P (XEXP (x, 1)))
8f8cadbc 1519 break;
1520 offset = XEXP (x, 1);
1521 x = XEXP (x, 0);
1522 /* Fall through. */
1523 case REG:
1524 {
1525 int regno = REGNO (x);
1526 int use_index;
1527 int nregs;
1528
1529 /* No spurious USEs of pseudo registers may remain. */
876760f6 1530 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8f8cadbc 1531
0933f1d9 1532 nregs = REG_NREGS (x);
8f8cadbc 1533
1534 /* We can't substitute into multi-hard-reg uses. */
1535 if (nregs > 1)
1536 {
1537 while (--nregs >= 0)
1538 reg_state[regno + nregs].use_index = -1;
1539 return;
1540 }
1541
727047d0 1542 /* We may be called to update uses in previously seen insns.
1543 Don't add uses beyond the last store we saw. */
1544 if (ruid < reg_state[regno].store_ruid)
1545 return;
1546
8f8cadbc 1547 /* If this register is already used in some unknown fashion, we
1548 can't do anything.
1549 If we decrement the index from zero to -1, we can't store more
1550 uses, so this register becomes used in an unknown fashion. */
1551 use_index = --reg_state[regno].use_index;
1552 if (use_index < 0)
1553 return;
1554
d83ccc81 1555 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
8f8cadbc 1556 {
1557 /* This is the first use of this register we have seen since we
1558 marked it as dead. */
1559 reg_state[regno].offset = offset;
d83ccc81 1560 reg_state[regno].all_offsets_match = true;
1561 reg_state[regno].use_ruid = ruid;
8f8cadbc 1562 }
0ead6a7d 1563 else
1564 {
1565 if (reg_state[regno].use_ruid > ruid)
1566 reg_state[regno].use_ruid = ruid;
1567
1568 if (! rtx_equal_p (offset, reg_state[regno].offset))
1569 reg_state[regno].all_offsets_match = false;
1570 }
d83ccc81 1571
8f8cadbc 1572 reg_state[regno].reg_use[use_index].insn = insn;
d83ccc81 1573 reg_state[regno].reg_use[use_index].ruid = ruid;
1574 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
8f8cadbc 1575 reg_state[regno].reg_use[use_index].usep = xp;
1576 return;
1577 }
1578
d83ccc81 1579 case MEM:
1580 containing_mem = x;
1581 break;
1582
8f8cadbc 1583 default:
1584 break;
1585 }
1586
1587 /* Recursively process the components of X. */
1588 fmt = GET_RTX_FORMAT (code);
1589 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1590 {
1591 if (fmt[i] == 'e')
d83ccc81 1592 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
8f8cadbc 1593 else if (fmt[i] == 'E')
1594 {
1595 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
d83ccc81 1596 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1597 containing_mem);
8f8cadbc 1598 }
1599 }
1600}
1601\f
1602/* See if we can reduce the cost of a constant by replacing a move
1603 with an add. We track situations in which a register is set to a
1604 constant or to a register plus a constant. */
1605/* We cannot do our optimization across labels. Invalidating all the
1606 information about register contents we have would be costly, so we
1607 use move2add_last_label_luid to note where the label is and then
1608 later disable any optimization that would cross it.
6132c0d0 1609 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1610 are only valid if reg_set_luid[n] is greater than
b6b86e87 1611 move2add_last_label_luid.
1612 For a set that established a new (potential) base register with
1613 non-constant value, we use move2add_luid from the place where the
1614 setting insn is encountered; registers based off that base then
1615 get the same reg_set_luid. Constants all get
1616 move2add_last_label_luid + 1 as their reg_set_luid. */
8f8cadbc 1617static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1618
1619/* If reg_base_reg[n] is negative, register n has been set to
6132c0d0 1620 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
8f8cadbc 1621 If reg_base_reg[n] is non-negative, register n has been set to the
1622 sum of reg_offset[n] and the value of register reg_base_reg[n]
b6b86e87 1623 before reg_set_luid[n], calculated in mode reg_mode[n] .
1624 For multi-hard-register registers, all but the first one are
1625 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1626 marks it as invalid. */
8f8cadbc 1627static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1628static int reg_base_reg[FIRST_PSEUDO_REGISTER];
6132c0d0 1629static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
3754d046 1630static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
8f8cadbc 1631
1632/* move2add_luid is linearly increased while scanning the instructions
1633 from first to last. It is used to set reg_set_luid in
1634 reload_cse_move2add and move2add_note_store. */
1635static int move2add_luid;
1636
1637/* move2add_last_label_luid is set whenever a label is found. Labels
1638 invalidate all previously collected reg_offset data. */
1639static int move2add_last_label_luid;
1640
1641/* ??? We don't know how zero / sign extension is handled, hence we
1642 can't go from a narrower to a wider mode. */
1643#define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1644 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1645 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
396f2130 1646 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
8f8cadbc 1647
b6b86e87 1648/* Record that REG is being set to a value with the mode of REG. */
1649
1650static void
1651move2add_record_mode (rtx reg)
1652{
1653 int regno, nregs;
3754d046 1654 machine_mode mode = GET_MODE (reg);
b6b86e87 1655
1656 if (GET_CODE (reg) == SUBREG)
1657 {
1658 regno = subreg_regno (reg);
1659 nregs = subreg_nregs (reg);
1660 }
1661 else if (REG_P (reg))
1662 {
1663 regno = REGNO (reg);
0933f1d9 1664 nregs = REG_NREGS (reg);
b6b86e87 1665 }
1666 else
1667 gcc_unreachable ();
1668 for (int i = nregs - 1; i > 0; i--)
1669 reg_mode[regno + i] = BLKmode;
1670 reg_mode[regno] = mode;
1671}
1672
1673/* Record that REG is being set to the sum of SYM and OFF. */
1674
1675static void
1676move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1677{
1678 int regno = REGNO (reg);
1679
1680 move2add_record_mode (reg);
1681 reg_set_luid[regno] = move2add_luid;
1682 reg_base_reg[regno] = -1;
1683 reg_symbol_ref[regno] = sym;
1684 reg_offset[regno] = INTVAL (off);
1685}
1686
1687/* Check if REGNO contains a valid value in MODE. */
1688
1689static bool
3754d046 1690move2add_valid_value_p (int regno, machine_mode mode)
b6b86e87 1691{
5bea3269 1692 if (reg_set_luid[regno] <= move2add_last_label_luid)
b6b86e87 1693 return false;
1694
5bea3269 1695 if (mode != reg_mode[regno])
1696 {
1697 if (!MODES_OK_FOR_MOVE2ADD (mode, reg_mode[regno]))
1698 return false;
1699 /* The value loaded into regno in reg_mode[regno] is also valid in
1700 mode after truncation only if (REG:mode regno) is the lowpart of
1701 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1702 regno of the lowpart might be different. */
1703 int s_off = subreg_lowpart_offset (mode, reg_mode[regno]);
1704 s_off = subreg_regno_offset (regno, reg_mode[regno], s_off, mode);
1705 if (s_off != 0)
1706 /* We could in principle adjust regno, check reg_mode[regno] to be
1707 BLKmode, and return s_off to the caller (vs. -1 for failure),
1708 but we currently have no callers that could make use of this
1709 information. */
1710 return false;
1711 }
1712
b6b86e87 1713 for (int i = hard_regno_nregs[regno][mode] - 1; i > 0; i--)
1714 if (reg_mode[regno + i] != BLKmode)
1715 return false;
1716 return true;
1717}
1718
6132c0d0 1719/* This function is called with INSN that sets REG to (SYM + OFF),
1720 while REG is known to already have value (SYM + offset).
1721 This function tries to change INSN into an add instruction
1722 (set (REG) (plus (REG) (OFF - offset))) using the known value.
d83ccc81 1723 It also updates the information about REG's known value.
1724 Return true if we made a change. */
6132c0d0 1725
d83ccc81 1726static bool
3aeaa53f 1727move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
6132c0d0 1728{
1729 rtx pat = PATTERN (insn);
1730 rtx src = SET_SRC (pat);
1731 int regno = REGNO (reg);
60141df0 1732 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno],
6132c0d0 1733 GET_MODE (reg));
1734 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
d83ccc81 1735 bool changed = false;
6132c0d0 1736
1737 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1738 use (set (reg) (reg)) instead.
1739 We don't delete this insn, nor do we convert it into a
1740 note, to avoid losing register notes or the return
1741 value flag. jump2 already knows how to get rid of
1742 no-op moves. */
1743 if (new_src == const0_rtx)
1744 {
1745 /* If the constants are different, this is a
1746 truncation, that, if turned into (set (reg)
1747 (reg)), would be discarded. Maybe we should
1748 try a truncMN pattern? */
1749 if (INTVAL (off) == reg_offset [regno])
d83ccc81 1750 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
6132c0d0 1751 }
c9a03487 1752 else
6132c0d0 1753 {
c9a03487 1754 struct full_rtx_costs oldcst, newcst;
6132c0d0 1755 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
c9a03487 1756
b72d459f 1757 get_full_set_rtx_cost (pat, &oldcst);
c9a03487 1758 SET_SRC (pat) = tem;
b72d459f 1759 get_full_set_rtx_cost (pat, &newcst);
c9a03487 1760 SET_SRC (pat) = src;
1761
1762 if (costs_lt_p (&newcst, &oldcst, speed)
1763 && have_add2_insn (reg, new_src))
1764 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1765 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
6132c0d0 1766 {
3754d046 1767 machine_mode narrow_mode;
c9a03487 1768 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1769 narrow_mode != VOIDmode
1770 && narrow_mode != GET_MODE (reg);
1771 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
6132c0d0 1772 {
c9a03487 1773 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1774 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1775 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1776 {
17ce39e3 1777 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
c9a03487 1778 rtx narrow_src = gen_int_mode (INTVAL (off),
1779 narrow_mode);
1780 rtx new_set
d1f9b275 1781 = gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
c9a03487 1782 narrow_reg),
1783 narrow_src);
d4177981 1784 get_full_set_rtx_cost (new_set, &newcst);
1785 if (costs_lt_p (&newcst, &oldcst, speed))
1786 {
1787 changed = validate_change (insn, &PATTERN (insn),
1788 new_set, 0);
1789 if (changed)
1790 break;
1791 }
c9a03487 1792 }
6132c0d0 1793 }
1794 }
1795 }
b6b86e87 1796 move2add_record_sym_value (reg, sym, off);
d83ccc81 1797 return changed;
6132c0d0 1798}
1799
1800
1801/* This function is called with INSN that sets REG to (SYM + OFF),
1802 but REG doesn't have known value (SYM + offset). This function
1803 tries to find another register which is known to already have
1804 value (SYM + offset) and change INSN into an add instruction
1805 (set (REG) (plus (the found register) (OFF - offset))) if such
1806 a register is found. It also updates the information about
d83ccc81 1807 REG's known value.
1808 Return true iff we made a change. */
6132c0d0 1809
d83ccc81 1810static bool
3aeaa53f 1811move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
6132c0d0 1812{
1813 rtx pat = PATTERN (insn);
1814 rtx src = SET_SRC (pat);
1815 int regno = REGNO (reg);
c2130a4b 1816 int min_regno = 0;
6132c0d0 1817 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1818 int i;
d83ccc81 1819 bool changed = false;
c9a03487 1820 struct full_rtx_costs oldcst, newcst, mincst;
1821 rtx plus_expr;
1822
1823 init_costs_to_max (&mincst);
b72d459f 1824 get_full_set_rtx_cost (pat, &oldcst);
c9a03487 1825
1826 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1827 SET_SRC (pat) = plus_expr;
6132c0d0 1828
1829 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
b6b86e87 1830 if (move2add_valid_value_p (i, GET_MODE (reg))
6132c0d0 1831 && reg_base_reg[i] < 0
1832 && reg_symbol_ref[i] != NULL_RTX
1833 && rtx_equal_p (sym, reg_symbol_ref[i]))
1834 {
60141df0 1835 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
6132c0d0 1836 GET_MODE (reg));
1837 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1838 use (set (reg) (reg)) instead.
1839 We don't delete this insn, nor do we convert it into a
1840 note, to avoid losing register notes or the return
1841 value flag. jump2 already knows how to get rid of
1842 no-op moves. */
1843 if (new_src == const0_rtx)
1844 {
c9a03487 1845 init_costs_to_zero (&mincst);
6132c0d0 1846 min_regno = i;
1847 break;
1848 }
1849 else
1850 {
c9a03487 1851 XEXP (plus_expr, 1) = new_src;
b72d459f 1852 get_full_set_rtx_cost (pat, &newcst);
c9a03487 1853
1854 if (costs_lt_p (&newcst, &mincst, speed))
6132c0d0 1855 {
c9a03487 1856 mincst = newcst;
6132c0d0 1857 min_regno = i;
1858 }
1859 }
1860 }
c9a03487 1861 SET_SRC (pat) = src;
6132c0d0 1862
c9a03487 1863 if (costs_lt_p (&mincst, &oldcst, speed))
6132c0d0 1864 {
1865 rtx tem;
1866
1867 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1868 if (i != min_regno)
1869 {
60141df0 1870 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
6132c0d0 1871 GET_MODE (reg));
1872 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1873 }
d83ccc81 1874 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1875 changed = true;
6132c0d0 1876 }
1877 reg_set_luid[regno] = move2add_luid;
b6b86e87 1878 move2add_record_sym_value (reg, sym, off);
d83ccc81 1879 return changed;
6132c0d0 1880}
1881
d83ccc81 1882/* Convert move insns with constant inputs to additions if they are cheaper.
1883 Return true if any changes were made. */
1884static bool
3aeaa53f 1885reload_cse_move2add (rtx_insn *first)
8f8cadbc 1886{
1887 int i;
3aeaa53f 1888 rtx_insn *insn;
d83ccc81 1889 bool changed = false;
8f8cadbc 1890
1891 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
6132c0d0 1892 {
1893 reg_set_luid[i] = 0;
1894 reg_offset[i] = 0;
1895 reg_base_reg[i] = 0;
1896 reg_symbol_ref[i] = NULL_RTX;
1897 reg_mode[i] = VOIDmode;
1898 }
8f8cadbc 1899
1900 move2add_last_label_luid = 0;
1901 move2add_luid = 2;
1902 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1903 {
1904 rtx pat, note;
1905
6d7dc5b9 1906 if (LABEL_P (insn))
8f8cadbc 1907 {
1908 move2add_last_label_luid = move2add_luid;
1909 /* We're going to increment move2add_luid twice after a
1910 label, so that we can use move2add_last_label_luid + 1 as
1911 the luid for constants. */
1912 move2add_luid++;
1913 continue;
1914 }
1915 if (! INSN_P (insn))
1916 continue;
1917 pat = PATTERN (insn);
1918 /* For simplicity, we only perform this optimization on
1919 straightforward SETs. */
1920 if (GET_CODE (pat) == SET
8ad4c111 1921 && REG_P (SET_DEST (pat)))
8f8cadbc 1922 {
1923 rtx reg = SET_DEST (pat);
1924 int regno = REGNO (reg);
1925 rtx src = SET_SRC (pat);
1926
1927 /* Check if we have valid information on the contents of this
1928 register in the mode of REG. */
b6b86e87 1929 if (move2add_valid_value_p (regno, GET_MODE (reg))
3072d30e 1930 && dbg_cnt (cse2_move2add))
8f8cadbc 1931 {
1932 /* Try to transform (set (REGX) (CONST_INT A))
1933 ...
1934 (set (REGX) (CONST_INT B))
1935 to
1936 (set (REGX) (CONST_INT A))
1937 ...
1938 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1939 or
1940 (set (REGX) (CONST_INT A))
1941 ...
1942 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1943 */
1944
6132c0d0 1945 if (CONST_INT_P (src)
1946 && reg_base_reg[regno] < 0
1947 && reg_symbol_ref[regno] == NULL_RTX)
8f8cadbc 1948 {
d83ccc81 1949 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
8f8cadbc 1950 continue;
1951 }
1952
1953 /* Try to transform (set (REGX) (REGY))
1954 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1955 ...
1956 (set (REGX) (REGY))
1957 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1958 to
1959 (set (REGX) (REGY))
1960 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1961 ...
1962 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
8ad4c111 1963 else if (REG_P (src)
8f8cadbc 1964 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1965 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
b6b86e87 1966 && move2add_valid_value_p (REGNO (src), GET_MODE (reg)))
8f8cadbc 1967 {
3aeaa53f 1968 rtx_insn *next = next_nonnote_nondebug_insn (insn);
8f8cadbc 1969 rtx set = NULL_RTX;
1970 if (next)
1971 set = single_set (next);
1972 if (set
1973 && SET_DEST (set) == reg
1974 && GET_CODE (SET_SRC (set)) == PLUS
1975 && XEXP (SET_SRC (set), 0) == reg
971ba038 1976 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
8f8cadbc 1977 {
1978 rtx src3 = XEXP (SET_SRC (set), 1);
60141df0 1979 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
8f8cadbc 1980 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1981 HOST_WIDE_INT regno_offset = reg_offset[regno];
1982 rtx new_src =
69e41517 1983 gen_int_mode (added_offset
1984 + base_offset
1985 - regno_offset,
1986 GET_MODE (reg));
f529eb25 1987 bool success = false;
1988 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
8f8cadbc 1989
1990 if (new_src == const0_rtx)
1991 /* See above why we create (set (reg) (reg)) here. */
1992 success
1993 = validate_change (next, &SET_SRC (set), reg, 0);
c9a03487 1994 else
8f8cadbc 1995 {
c9a03487 1996 rtx old_src = SET_SRC (set);
1997 struct full_rtx_costs oldcst, newcst;
1998 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1999
b72d459f 2000 get_full_set_rtx_cost (set, &oldcst);
c9a03487 2001 SET_SRC (set) = tem;
5ae4887d 2002 get_full_set_src_cost (tem, GET_MODE (reg), &newcst);
c9a03487 2003 SET_SRC (set) = old_src;
2004 costs_add_n_insns (&oldcst, 1);
2005
2006 if (costs_lt_p (&newcst, &oldcst, speed)
2007 && have_add2_insn (reg, new_src))
2008 {
d1f9b275 2009 rtx newpat = gen_rtx_SET (reg, tem);
c9a03487 2010 success
2011 = validate_change (next, &PATTERN (next),
2012 newpat, 0);
2013 }
8f8cadbc 2014 }
2015 if (success)
2016 delete_insn (insn);
d83ccc81 2017 changed |= success;
8f8cadbc 2018 insn = next;
b6b86e87 2019 move2add_record_mode (reg);
2020 reg_offset[regno]
2021 = trunc_int_for_mode (added_offset + base_offset,
2022 GET_MODE (reg));
8f8cadbc 2023 continue;
2024 }
2025 }
2026 }
6132c0d0 2027
2028 /* Try to transform
2029 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2030 ...
2031 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2032 to
2033 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2034 ...
2035 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2036 if ((GET_CODE (src) == SYMBOL_REF
2037 || (GET_CODE (src) == CONST
2038 && GET_CODE (XEXP (src, 0)) == PLUS
2039 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2040 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2041 && dbg_cnt (cse2_move2add))
2042 {
2043 rtx sym, off;
2044
2045 if (GET_CODE (src) == SYMBOL_REF)
2046 {
2047 sym = src;
2048 off = const0_rtx;
2049 }
2050 else
2051 {
2052 sym = XEXP (XEXP (src, 0), 0);
2053 off = XEXP (XEXP (src, 0), 1);
2054 }
2055
2056 /* If the reg already contains the value which is sum of
2057 sym and some constant value, we can use an add2 insn. */
b6b86e87 2058 if (move2add_valid_value_p (regno, GET_MODE (reg))
6132c0d0 2059 && reg_base_reg[regno] < 0
2060 && reg_symbol_ref[regno] != NULL_RTX
2061 && rtx_equal_p (sym, reg_symbol_ref[regno]))
d83ccc81 2062 changed |= move2add_use_add2_insn (reg, sym, off, insn);
6132c0d0 2063
2064 /* Otherwise, we have to find a register whose value is sum
2065 of sym and some constant value. */
2066 else
d83ccc81 2067 changed |= move2add_use_add3_insn (reg, sym, off, insn);
6132c0d0 2068
2069 continue;
2070 }
8f8cadbc 2071 }
2072
2073 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2074 {
2075 if (REG_NOTE_KIND (note) == REG_INC
8ad4c111 2076 && REG_P (XEXP (note, 0)))
8f8cadbc 2077 {
2078 /* Reset the information about this register. */
2079 int regno = REGNO (XEXP (note, 0));
2080 if (regno < FIRST_PSEUDO_REGISTER)
b6b86e87 2081 {
2082 move2add_record_mode (XEXP (note, 0));
2083 reg_mode[regno] = VOIDmode;
2084 }
8f8cadbc 2085 }
2086 }
6132c0d0 2087 note_stores (PATTERN (insn), move2add_note_store, insn);
8f8cadbc 2088
2089 /* If INSN is a conditional branch, we try to extract an
2090 implicit set out of it. */
f222bc3b 2091 if (any_condjump_p (insn))
8f8cadbc 2092 {
2093 rtx cnd = fis_get_condition (insn);
2094
2095 if (cnd != NULL_RTX
2096 && GET_CODE (cnd) == NE
8ad4c111 2097 && REG_P (XEXP (cnd, 0))
f222bc3b 2098 && !reg_set_p (XEXP (cnd, 0), insn)
8f8cadbc 2099 /* The following two checks, which are also in
2100 move2add_note_store, are intended to reduce the
2101 number of calls to gen_rtx_SET to avoid memory
2102 allocation if possible. */
2103 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
0933f1d9 2104 && REG_NREGS (XEXP (cnd, 0)) == 1
971ba038 2105 && CONST_INT_P (XEXP (cnd, 1)))
8f8cadbc 2106 {
2107 rtx implicit_set =
d1f9b275 2108 gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
6132c0d0 2109 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
8f8cadbc 2110 }
2111 }
2112
2113 /* If this is a CALL_INSN, all call used registers are stored with
2114 unknown values. */
6d7dc5b9 2115 if (CALL_P (insn))
8f8cadbc 2116 {
39bde736 2117 rtx link;
2118
8f8cadbc 2119 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2120 {
2121 if (call_used_regs[i])
2122 /* Reset the information about this register. */
b6b86e87 2123 reg_mode[i] = VOIDmode;
8f8cadbc 2124 }
39bde736 2125
2126 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
2127 link = XEXP (link, 1))
2128 {
2129 rtx setuse = XEXP (link, 0);
2130 rtx usage_rtx = XEXP (setuse, 0);
2131 if (GET_CODE (setuse) == CLOBBER
2132 && REG_P (usage_rtx))
2133 {
2134 unsigned int end_regno = END_REGNO (usage_rtx);
2135 for (unsigned int r = REGNO (usage_rtx); r < end_regno; ++r)
2136 /* Reset the information about this register. */
2137 reg_mode[r] = VOIDmode;
2138 }
2139 }
8f8cadbc 2140 }
2141 }
d83ccc81 2142 return changed;
8f8cadbc 2143}
2144
6132c0d0 2145/* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2146 contains SET.
8f8cadbc 2147 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2148 Called from reload_cse_move2add via note_stores. */
2149
2150static void
6132c0d0 2151move2add_note_store (rtx dst, const_rtx set, void *data)
8f8cadbc 2152{
3aeaa53f 2153 rtx_insn *insn = (rtx_insn *) data;
8f8cadbc 2154 unsigned int regno = 0;
3754d046 2155 machine_mode mode = GET_MODE (dst);
8f8cadbc 2156
8f8cadbc 2157 /* Some targets do argument pushes without adding REG_INC notes. */
2158
e16ceb8e 2159 if (MEM_P (dst))
8f8cadbc 2160 {
2161 dst = XEXP (dst, 0);
2162 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2163 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
b6b86e87 2164 reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
8f8cadbc 2165 return;
2166 }
8f8cadbc 2167
b6b86e87 2168 if (GET_CODE (dst) == SUBREG)
2169 regno = subreg_regno (dst);
2170 else if (REG_P (dst))
2171 regno = REGNO (dst);
2172 else
2173 return;
8f8cadbc 2174
b6b86e87 2175 if (SCALAR_INT_MODE_P (mode)
2176 && GET_CODE (set) == SET)
6132c0d0 2177 {
2178 rtx note, sym = NULL_RTX;
b6b86e87 2179 rtx off;
6132c0d0 2180
2181 note = find_reg_equal_equiv_note (insn);
2182 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2183 {
2184 sym = XEXP (note, 0);
b6b86e87 2185 off = const0_rtx;
6132c0d0 2186 }
2187 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2188 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2189 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2190 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2191 {
2192 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
b6b86e87 2193 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
6132c0d0 2194 }
2195
2196 if (sym != NULL_RTX)
2197 {
b6b86e87 2198 move2add_record_sym_value (dst, sym, off);
6132c0d0 2199 return;
2200 }
2201 }
2202
b6b86e87 2203 if (SCALAR_INT_MODE_P (mode)
2204 && GET_CODE (set) == SET
8f8cadbc 2205 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
8f8cadbc 2206 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2207 {
2208 rtx src = SET_SRC (set);
2209 rtx base_reg;
60141df0 2210 unsigned HOST_WIDE_INT offset;
8f8cadbc 2211 int base_regno;
8f8cadbc 2212
2213 switch (GET_CODE (src))
2214 {
2215 case PLUS:
8ad4c111 2216 if (REG_P (XEXP (src, 0)))
8f8cadbc 2217 {
2218 base_reg = XEXP (src, 0);
2219
971ba038 2220 if (CONST_INT_P (XEXP (src, 1)))
60141df0 2221 offset = UINTVAL (XEXP (src, 1));
8ad4c111 2222 else if (REG_P (XEXP (src, 1))
b6b86e87 2223 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
8f8cadbc 2224 {
c389f975 2225 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2226 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
8f8cadbc 2227 offset = reg_offset[REGNO (XEXP (src, 1))];
2228 /* Maybe the first register is known to be a
2229 constant. */
b6b86e87 2230 else if (move2add_valid_value_p (REGNO (base_reg), mode)
c389f975 2231 && reg_base_reg[REGNO (base_reg)] < 0
2232 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
8f8cadbc 2233 {
2234 offset = reg_offset[REGNO (base_reg)];
2235 base_reg = XEXP (src, 1);
2236 }
2237 else
2238 goto invalidate;
2239 }
2240 else
2241 goto invalidate;
2242
2243 break;
2244 }
2245
2246 goto invalidate;
2247
2248 case REG:
2249 base_reg = src;
2250 offset = 0;
2251 break;
2252
2253 case CONST_INT:
2254 /* Start tracking the register as a constant. */
2255 reg_base_reg[regno] = -1;
6132c0d0 2256 reg_symbol_ref[regno] = NULL_RTX;
8f8cadbc 2257 reg_offset[regno] = INTVAL (SET_SRC (set));
2258 /* We assign the same luid to all registers set to constants. */
2259 reg_set_luid[regno] = move2add_last_label_luid + 1;
b6b86e87 2260 move2add_record_mode (dst);
8f8cadbc 2261 return;
2262
2263 default:
b6b86e87 2264 goto invalidate;
8f8cadbc 2265 }
2266
2267 base_regno = REGNO (base_reg);
2268 /* If information about the base register is not valid, set it
2269 up as a new base register, pretending its value is known
2270 starting from the current insn. */
b6b86e87 2271 if (!move2add_valid_value_p (base_regno, mode))
8f8cadbc 2272 {
2273 reg_base_reg[base_regno] = base_regno;
6132c0d0 2274 reg_symbol_ref[base_regno] = NULL_RTX;
8f8cadbc 2275 reg_offset[base_regno] = 0;
2276 reg_set_luid[base_regno] = move2add_luid;
b6b86e87 2277 gcc_assert (GET_MODE (base_reg) == mode);
2278 move2add_record_mode (base_reg);
8f8cadbc 2279 }
8f8cadbc 2280
2281 /* Copy base information from our base register. */
2282 reg_set_luid[regno] = reg_set_luid[base_regno];
2283 reg_base_reg[regno] = reg_base_reg[base_regno];
6132c0d0 2284 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
8f8cadbc 2285
2286 /* Compute the sum of the offsets or constants. */
b6b86e87 2287 reg_offset[regno]
2288 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2289
2290 move2add_record_mode (dst);
8f8cadbc 2291 }
2292 else
2293 {
b6b86e87 2294 invalidate:
2295 /* Invalidate the contents of the register. */
2296 move2add_record_mode (dst);
2297 reg_mode[regno] = VOIDmode;
8f8cadbc 2298 }
2299}
77fce4cd 2300\f
cbe8bda8 2301namespace {
2302
2303const pass_data pass_data_postreload_cse =
77fce4cd 2304{
cbe8bda8 2305 RTL_PASS, /* type */
2306 "postreload", /* name */
2307 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 2308 TV_RELOAD_CSE_REGS, /* tv_id */
2309 0, /* properties_required */
2310 0, /* properties_provided */
2311 0, /* properties_destroyed */
2312 0, /* todo_flags_start */
8b88439e 2313 TODO_df_finish, /* todo_flags_finish */
77fce4cd 2314};
cbe8bda8 2315
2316class pass_postreload_cse : public rtl_opt_pass
2317{
2318public:
9af5ce0c 2319 pass_postreload_cse (gcc::context *ctxt)
2320 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
cbe8bda8 2321 {}
2322
2323 /* opt_pass methods: */
31315c24 2324 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2325
65b0537f 2326 virtual unsigned int execute (function *);
cbe8bda8 2327
2328}; // class pass_postreload_cse
2329
65b0537f 2330unsigned int
2331pass_postreload_cse::execute (function *fun)
2332{
2333 if (!dbg_cnt (postreload_cse))
2334 return 0;
2335
2336 /* Do a very simple CSE pass over just the hard registers. */
2337 reload_cse_regs (get_insns ());
2338 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2339 Remove any EH edges associated with them. */
2340 if (fun->can_throw_non_call_exceptions
2341 && purge_all_dead_edges ())
2342 cleanup_cfg (0);
2343
2344 return 0;
2345}
2346
cbe8bda8 2347} // anon namespace
2348
2349rtl_opt_pass *
2350make_pass_postreload_cse (gcc::context *ctxt)
2351{
2352 return new pass_postreload_cse (ctxt);
2353}