]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/postreload.c
[AArch64] Temporarily remove aarch64_gimple_fold_builtin code for reduction operations
[thirdparty/gcc.git] / gcc / postreload.c
CommitLineData
8f8cadbc 1/* Perform simple optimizations to clean up the result of reload.
3aea1f79 2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
8f8cadbc 3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8c4c00c1 8Software Foundation; either version 3, or (at your option) any later
8f8cadbc 9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
8f8cadbc 19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
24
25#include "machmode.h"
26#include "hard-reg-set.h"
27#include "rtl.h"
28#include "tm_p.h"
29#include "obstack.h"
30#include "insn-config.h"
31#include "flags.h"
a3020f2f 32#include "hashtab.h"
33#include "hash-set.h"
34#include "vec.h"
35#include "input.h"
8f8cadbc 36#include "function.h"
37#include "expr.h"
38#include "optabs.h"
39#include "regs.h"
40#include "basic-block.h"
41#include "reload.h"
42#include "recog.h"
8f8cadbc 43#include "cselib.h"
0b205f4c 44#include "diagnostic-core.h"
8f8cadbc 45#include "except.h"
46#include "tree.h"
727047d0 47#include "target.h"
77fce4cd 48#include "tree-pass.h"
3072d30e 49#include "df.h"
50#include "dbgcnt.h"
8f8cadbc 51
3ad4992f 52static int reload_cse_noop_set_p (rtx);
3aeaa53f 53static bool reload_cse_simplify (rtx_insn *, rtx);
26709122 54static void reload_cse_regs_1 (void);
3aeaa53f 55static int reload_cse_simplify_set (rtx, rtx_insn *);
56static int reload_cse_simplify_operands (rtx_insn *, rtx);
8f8cadbc 57
3ad4992f 58static void reload_combine (void);
3aeaa53f 59static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
81a410b1 60static void reload_combine_note_store (rtx, const_rtx, void *);
8f8cadbc 61
3aeaa53f 62static bool reload_cse_move2add (rtx_insn *);
81a410b1 63static void move2add_note_store (rtx, const_rtx, void *);
8f8cadbc 64
65/* Call cse / combine like post-reload optimization phases.
66 FIRST is the first instruction. */
98799adc 67
68static void
3aeaa53f 69reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
8f8cadbc 70{
d83ccc81 71 bool moves_converted;
26709122 72 reload_cse_regs_1 ();
8f8cadbc 73 reload_combine ();
d83ccc81 74 moves_converted = reload_cse_move2add (first);
8f8cadbc 75 if (flag_expensive_optimizations)
d83ccc81 76 {
77 if (moves_converted)
78 reload_combine ();
26709122 79 reload_cse_regs_1 ();
d83ccc81 80 }
8f8cadbc 81}
82
83/* See whether a single set SET is a noop. */
84static int
3ad4992f 85reload_cse_noop_set_p (rtx set)
8f8cadbc 86{
87 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
88 return 0;
89
90 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
91}
92
26709122 93/* Try to simplify INSN. Return true if the CFG may have changed. */
94static bool
3aeaa53f 95reload_cse_simplify (rtx_insn *insn, rtx testreg)
8f8cadbc 96{
97 rtx body = PATTERN (insn);
26709122 98 basic_block insn_bb = BLOCK_FOR_INSN (insn);
99 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
8f8cadbc 100
101 if (GET_CODE (body) == SET)
102 {
103 int count = 0;
104
105 /* Simplify even if we may think it is a no-op.
106 We may think a memory load of a value smaller than WORD_SIZE
107 is redundant because we haven't taken into account possible
108 implicit extension. reload_cse_simplify_set() will bring
109 this out, so it's safer to simplify before we delete. */
110 count += reload_cse_simplify_set (body, insn);
111
112 if (!count && reload_cse_noop_set_p (body))
113 {
114 rtx value = SET_DEST (body);
115 if (REG_P (value)
116 && ! REG_FUNCTION_VALUE_P (value))
117 value = 0;
5a9ecd4a 118 if (check_for_inc_dec (insn))
119 delete_insn_and_edges (insn);
26709122 120 /* We're done with this insn. */
121 goto done;
8f8cadbc 122 }
123
124 if (count > 0)
125 apply_change_group ();
126 else
127 reload_cse_simplify_operands (insn, testreg);
128 }
129 else if (GET_CODE (body) == PARALLEL)
130 {
131 int i;
132 int count = 0;
133 rtx value = NULL_RTX;
134
17883489 135 /* Registers mentioned in the clobber list for an asm cannot be reused
136 within the body of the asm. Invalidate those registers now so that
137 we don't try to substitute values for them. */
138 if (asm_noperands (body) >= 0)
139 {
140 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
141 {
142 rtx part = XVECEXP (body, 0, i);
143 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
144 cselib_invalidate_rtx (XEXP (part, 0));
145 }
146 }
147
8f8cadbc 148 /* If every action in a PARALLEL is a noop, we can delete
149 the entire PARALLEL. */
150 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
151 {
152 rtx part = XVECEXP (body, 0, i);
153 if (GET_CODE (part) == SET)
154 {
155 if (! reload_cse_noop_set_p (part))
156 break;
157 if (REG_P (SET_DEST (part))
158 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
159 {
160 if (value)
161 break;
162 value = SET_DEST (part);
163 }
164 }
165 else if (GET_CODE (part) != CLOBBER)
166 break;
167 }
168
169 if (i < 0)
170 {
5a9ecd4a 171 if (check_for_inc_dec (insn))
172 delete_insn_and_edges (insn);
8f8cadbc 173 /* We're done with this insn. */
26709122 174 goto done;
8f8cadbc 175 }
176
177 /* It's not a no-op, but we can try to simplify it. */
178 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
179 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
180 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
181
182 if (count > 0)
183 apply_change_group ();
184 else
185 reload_cse_simplify_operands (insn, testreg);
186 }
26709122 187
188done:
189 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
8f8cadbc 190}
191
192/* Do a very simple CSE pass over the hard registers.
193
194 This function detects no-op moves where we happened to assign two
195 different pseudo-registers to the same hard register, and then
196 copied one to the other. Reload will generate a useless
197 instruction copying a register to itself.
198
199 This function also detects cases where we load a value from memory
200 into two different registers, and (if memory is more expensive than
201 registers) changes it to simply copy the first register into the
202 second register.
203
204 Another optimization is performed that scans the operands of each
205 instruction to see whether the value is already available in a
206 hard register. It then replaces the operand with the hard register
207 if possible, much like an optional reload would. */
208
209static void
26709122 210reload_cse_regs_1 (void)
8f8cadbc 211{
26709122 212 bool cfg_changed = false;
213 basic_block bb;
3aeaa53f 214 rtx_insn *insn;
8f8cadbc 215 rtx testreg = gen_rtx_REG (VOIDmode, -1);
216
35af0188 217 cselib_init (CSELIB_RECORD_MEMORY);
8f8cadbc 218 init_alias_analysis ();
219
fc00614f 220 FOR_EACH_BB_FN (bb, cfun)
26709122 221 FOR_BB_INSNS (bb, insn)
222 {
223 if (INSN_P (insn))
224 cfg_changed |= reload_cse_simplify (insn, testreg);
8f8cadbc 225
26709122 226 cselib_process_insn (insn);
227 }
8f8cadbc 228
229 /* Clean up. */
230 end_alias_analysis ();
231 cselib_finish ();
26709122 232 if (cfg_changed)
233 cleanup_cfg (0);
8f8cadbc 234}
235
236/* Try to simplify a single SET instruction. SET is the set pattern.
237 INSN is the instruction it came from.
238 This function only handles one case: if we set a register to a value
239 which is not a register, we try to find that value in some other register
240 and change the set into a register copy. */
241
242static int
3aeaa53f 243reload_cse_simplify_set (rtx set, rtx_insn *insn)
8f8cadbc 244{
245 int did_change = 0;
246 int dreg;
247 rtx src;
ade444a4 248 reg_class_t dclass;
8f8cadbc 249 int old_cost;
250 cselib_val *val;
251 struct elt_loc_list *l;
252#ifdef LOAD_EXTEND_OP
21f1e711 253 enum rtx_code extend_op = UNKNOWN;
8f8cadbc 254#endif
f529eb25 255 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
8f8cadbc 256
257 dreg = true_regnum (SET_DEST (set));
258 if (dreg < 0)
259 return 0;
260
261 src = SET_SRC (set);
262 if (side_effects_p (src) || true_regnum (src) >= 0)
263 return 0;
264
265 dclass = REGNO_REG_CLASS (dreg);
266
267#ifdef LOAD_EXTEND_OP
268 /* When replacing a memory with a register, we need to honor assumptions
269 that combine made wrt the contents of sign bits. We'll do this by
270 generating an extend instruction instead of a reg->reg copy. Thus
271 the destination must be a register that we can widen. */
e16ceb8e 272 if (MEM_P (src)
8f8cadbc 273 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
21f1e711 274 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
8ad4c111 275 && !REG_P (SET_DEST (set)))
8f8cadbc 276 return 0;
277#endif
278
1f864115 279 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
3be01943 280 if (! val)
281 return 0;
282
8f8cadbc 283 /* If memory loads are cheaper than register copies, don't change them. */
e16ceb8e 284 if (MEM_P (src))
251a613e 285 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
8ad4c111 286 else if (REG_P (src))
e6078fbb 287 old_cost = register_move_cost (GET_MODE (src),
8f8cadbc 288 REGNO_REG_CLASS (REGNO (src)), dclass);
289 else
7013e87c 290 old_cost = set_src_cost (src, speed);
8f8cadbc 291
8f8cadbc 292 for (l = val->locs; l; l = l->next)
293 {
294 rtx this_rtx = l->loc;
295 int this_cost;
296
297 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
298 {
299#ifdef LOAD_EXTEND_OP
21f1e711 300 if (extend_op != UNKNOWN)
8f8cadbc 301 {
e913b5cd 302 wide_int result;
8f8cadbc 303
e913b5cd 304 if (!CONST_SCALAR_INT_P (this_rtx))
8f8cadbc 305 continue;
306
8f8cadbc 307 switch (extend_op)
308 {
309 case ZERO_EXTEND:
ecc41f48 310 result = wide_int::from (std::make_pair (this_rtx,
311 GET_MODE (src)),
312 BITS_PER_WORD, UNSIGNED);
8f8cadbc 313 break;
314 case SIGN_EXTEND:
ecc41f48 315 result = wide_int::from (std::make_pair (this_rtx,
316 GET_MODE (src)),
317 BITS_PER_WORD, SIGNED);
e913b5cd 318 break;
8f8cadbc 319 default:
876760f6 320 gcc_unreachable ();
8f8cadbc 321 }
ecc41f48 322 this_rtx = immed_wide_int_const (result, word_mode);
8f8cadbc 323 }
324#endif
7013e87c 325 this_cost = set_src_cost (this_rtx, speed);
8f8cadbc 326 }
8ad4c111 327 else if (REG_P (this_rtx))
8f8cadbc 328 {
329#ifdef LOAD_EXTEND_OP
21f1e711 330 if (extend_op != UNKNOWN)
8f8cadbc 331 {
332 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
7013e87c 333 this_cost = set_src_cost (this_rtx, speed);
8f8cadbc 334 }
335 else
336#endif
e6078fbb 337 this_cost = register_move_cost (GET_MODE (this_rtx),
8f8cadbc 338 REGNO_REG_CLASS (REGNO (this_rtx)),
339 dclass);
340 }
341 else
342 continue;
343
344 /* If equal costs, prefer registers over anything else. That
345 tends to lead to smaller instructions on some machines. */
346 if (this_cost < old_cost
347 || (this_cost == old_cost
8ad4c111 348 && REG_P (this_rtx)
349 && !REG_P (SET_SRC (set))))
8f8cadbc 350 {
351#ifdef LOAD_EXTEND_OP
352 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
21f1e711 353 && extend_op != UNKNOWN
8f8cadbc 354#ifdef CANNOT_CHANGE_MODE_CLASS
355 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
356 word_mode,
357 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
358#endif
359 )
360 {
361 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
362 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
363 validate_change (insn, &SET_DEST (set), wide_dest, 1);
364 }
365#endif
366
11d686e2 367 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
8f8cadbc 368 old_cost = this_cost, did_change = 1;
369 }
370 }
371
372 return did_change;
373}
374
375/* Try to replace operands in INSN with equivalent values that are already
376 in registers. This can be viewed as optional reloading.
377
378 For each non-register operand in the insn, see if any hard regs are
379 known to be equivalent to that operand. Record the alternatives which
380 can accept these hard registers. Among all alternatives, select the
381 ones which are better or equal to the one currently matching, where
382 "better" is in terms of '?' and '!' constraints. Among the remaining
383 alternatives, select the one which replaces most operands with
384 hard registers. */
385
386static int
3aeaa53f 387reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
8f8cadbc 388{
389 int i, j;
390
391 /* For each operand, all registers that are equivalent to it. */
392 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
393
394 const char *constraints[MAX_RECOG_OPERANDS];
395
396 /* Vector recording how bad an alternative is. */
397 int *alternative_reject;
398 /* Vector recording how many registers can be introduced by choosing
399 this alternative. */
400 int *alternative_nregs;
401 /* Array of vectors recording, for each operand and each alternative,
402 which hard register to substitute, or -1 if the operand should be
403 left as it is. */
404 int *op_alt_regno[MAX_RECOG_OPERANDS];
405 /* Array of alternatives, sorted in order of decreasing desirability. */
406 int *alternative_order;
407
835b8178 408 extract_constrain_insn (insn);
8f8cadbc 409
410 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
411 return 0;
412
4077bf7a 413 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
414 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
415 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
f0af5a88 416 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
417 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
8f8cadbc 418
419 /* For each operand, find out which regs are equivalent. */
420 for (i = 0; i < recog_data.n_operands; i++)
421 {
422 cselib_val *v;
423 struct elt_loc_list *l;
9d9e3c81 424 rtx op;
8f8cadbc 425
426 CLEAR_HARD_REG_SET (equiv_regs[i]);
427
428 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
429 right, so avoid the problem here. Likewise if we have a constant
430 and the insn pattern doesn't tell us the mode we need. */
6d7dc5b9 431 if (LABEL_P (recog_data.operand[i])
8f8cadbc 432 || (CONSTANT_P (recog_data.operand[i])
433 && recog_data.operand_mode[i] == VOIDmode))
434 continue;
435
9d9e3c81 436 op = recog_data.operand[i];
9d9e3c81 437#ifdef LOAD_EXTEND_OP
e16ceb8e 438 if (MEM_P (op)
f018d957 439 && GET_MODE_BITSIZE (GET_MODE (op)) < BITS_PER_WORD
440 && LOAD_EXTEND_OP (GET_MODE (op)) != UNKNOWN)
9d9e3c81 441 {
442 rtx set = single_set (insn);
443
4885b286 444 /* We might have multiple sets, some of which do implicit
9d9e3c81 445 extension. Punt on this for now. */
446 if (! set)
447 continue;
86481e89 448 /* If the destination is also a MEM or a STRICT_LOW_PART, no
9d9e3c81 449 extension applies.
450 Also, if there is an explicit extension, we don't have to
451 worry about an implicit one. */
e16ceb8e 452 else if (MEM_P (SET_DEST (set))
9d9e3c81 453 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
454 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
455 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
456 ; /* Continue ordinary processing. */
a091e4f5 457#ifdef CANNOT_CHANGE_MODE_CLASS
458 /* If the register cannot change mode to word_mode, it follows that
459 it cannot have been used in word_mode. */
8ad4c111 460 else if (REG_P (SET_DEST (set))
a091e4f5 461 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
462 word_mode,
463 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
464 ; /* Continue ordinary processing. */
465#endif
9d9e3c81 466 /* If this is a straight load, make the extension explicit. */
8ad4c111 467 else if (REG_P (SET_DEST (set))
9d9e3c81 468 && recog_data.n_operands == 2
469 && SET_SRC (set) == op
470 && SET_DEST (set) == recog_data.operand[1-i])
471 {
472 validate_change (insn, recog_data.operand_loc[i],
f018d957 473 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op)),
9d9e3c81 474 word_mode, op),
475 1);
476 validate_change (insn, recog_data.operand_loc[1-i],
477 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
478 1);
479 if (! apply_change_group ())
480 return 0;
481 return reload_cse_simplify_operands (insn, testreg);
482 }
483 else
484 /* ??? There might be arithmetic operations with memory that are
485 safe to optimize, but is it worth the trouble? */
486 continue;
487 }
488#endif /* LOAD_EXTEND_OP */
017b7047 489 if (side_effects_p (op))
490 continue;
1f864115 491 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
8f8cadbc 492 if (! v)
493 continue;
494
495 for (l = v->locs; l; l = l->next)
8ad4c111 496 if (REG_P (l->loc))
8f8cadbc 497 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
498 }
499
e1a797ad 500 alternative_mask preferred = get_preferred_alternatives (insn);
8f8cadbc 501 for (i = 0; i < recog_data.n_operands; i++)
502 {
503 enum machine_mode mode;
504 int regno;
505 const char *p;
506
4077bf7a 507 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
8f8cadbc 508 for (j = 0; j < recog_data.n_alternatives; j++)
509 op_alt_regno[i][j] = -1;
510
511 p = constraints[i] = recog_data.constraints[i];
512 mode = recog_data.operand_mode[i];
513
514 /* Add the reject values for each alternative given by the constraints
515 for this operand. */
516 j = 0;
517 while (*p != '\0')
518 {
519 char c = *p++;
520 if (c == ',')
521 j++;
522 else if (c == '?')
523 alternative_reject[j] += 3;
524 else if (c == '!')
525 alternative_reject[j] += 300;
526 }
527
528 /* We won't change operands which are already registers. We
529 also don't want to modify output operands. */
530 regno = true_regnum (recog_data.operand[i]);
531 if (regno >= 0
532 || constraints[i][0] == '='
533 || constraints[i][0] == '+')
534 continue;
535
536 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
537 {
b9c74b4d 538 enum reg_class rclass = NO_REGS;
8f8cadbc 539
540 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
541 continue;
542
7f1819d3 543 SET_REGNO_RAW (testreg, regno);
8f8cadbc 544 PUT_MODE (testreg, mode);
545
546 /* We found a register equal to this operand. Now look for all
547 alternatives that can accept this register and have not been
548 assigned a register they can use yet. */
549 j = 0;
550 p = constraints[i];
551 for (;;)
552 {
553 char c = *p;
554
555 switch (c)
556 {
69449463 557 case 'g':
558 rclass = reg_class_subunion[rclass][GENERAL_REGS];
8f8cadbc 559 break;
560
561 default:
6659485c 562 rclass
8f8cadbc 563 = (reg_class_subunion
79bc09fb 564 [rclass]
565 [reg_class_for_constraint (lookup_constraint (p))]);
8f8cadbc 566 break;
567
568 case ',': case '\0':
569 /* See if REGNO fits this alternative, and set it up as the
570 replacement register if we don't have one for this
571 alternative yet and the operand being replaced is not
572 a cheap CONST_INT. */
573 if (op_alt_regno[i][j] == -1
e1a797ad 574 && TEST_BIT (preferred, j)
6659485c 575 && reg_fits_class_p (testreg, rclass, 0, mode)
971ba038 576 && (!CONST_INT_P (recog_data.operand[i])
7013e87c 577 || (set_src_cost (recog_data.operand[i],
578 optimize_bb_for_speed_p
579 (BLOCK_FOR_INSN (insn)))
580 > set_src_cost (testreg,
581 optimize_bb_for_speed_p
582 (BLOCK_FOR_INSN (insn))))))
8f8cadbc 583 {
584 alternative_nregs[j]++;
585 op_alt_regno[i][j] = regno;
586 }
587 j++;
b9c74b4d 588 rclass = NO_REGS;
8f8cadbc 589 break;
590 }
591 p += CONSTRAINT_LEN (c, p);
592
593 if (c == '\0')
594 break;
595 }
596 }
597 }
598
599 /* Record all alternatives which are better or equal to the currently
600 matching one in the alternative_order array. */
601 for (i = j = 0; i < recog_data.n_alternatives; i++)
602 if (alternative_reject[i] <= alternative_reject[which_alternative])
603 alternative_order[j++] = i;
604 recog_data.n_alternatives = j;
605
606 /* Sort it. Given a small number of alternatives, a dumb algorithm
607 won't hurt too much. */
608 for (i = 0; i < recog_data.n_alternatives - 1; i++)
609 {
610 int best = i;
611 int best_reject = alternative_reject[alternative_order[i]];
612 int best_nregs = alternative_nregs[alternative_order[i]];
613 int tmp;
614
615 for (j = i + 1; j < recog_data.n_alternatives; j++)
616 {
617 int this_reject = alternative_reject[alternative_order[j]];
618 int this_nregs = alternative_nregs[alternative_order[j]];
619
620 if (this_reject < best_reject
c2d0cf41 621 || (this_reject == best_reject && this_nregs > best_nregs))
8f8cadbc 622 {
623 best = j;
624 best_reject = this_reject;
625 best_nregs = this_nregs;
626 }
627 }
628
629 tmp = alternative_order[best];
630 alternative_order[best] = alternative_order[i];
631 alternative_order[i] = tmp;
632 }
633
634 /* Substitute the operands as determined by op_alt_regno for the best
635 alternative. */
636 j = alternative_order[0];
637
638 for (i = 0; i < recog_data.n_operands; i++)
639 {
640 enum machine_mode mode = recog_data.operand_mode[i];
641 if (op_alt_regno[i][j] == -1)
642 continue;
643
644 validate_change (insn, recog_data.operand_loc[i],
645 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
646 }
647
648 for (i = recog_data.n_dups - 1; i >= 0; i--)
649 {
650 int op = recog_data.dup_num[i];
651 enum machine_mode mode = recog_data.operand_mode[op];
652
653 if (op_alt_regno[op][j] == -1)
654 continue;
655
656 validate_change (insn, recog_data.dup_loc[i],
657 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
658 }
659
660 return apply_change_group ();
661}
662\f
663/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
664 addressing now.
665 This code might also be useful when reload gave up on reg+reg addressing
666 because of clashes between the return register and INDEX_REG_CLASS. */
667
668/* The maximum number of uses of a register we can keep track of to
669 replace them with reg+reg addressing. */
d83ccc81 670#define RELOAD_COMBINE_MAX_USES 16
8f8cadbc 671
d83ccc81 672/* Describes a recorded use of a register. */
673struct reg_use
674{
675 /* The insn where a register has been used. */
3aeaa53f 676 rtx_insn *insn;
d83ccc81 677 /* Points to the memory reference enclosing the use, if any, NULL_RTX
678 otherwise. */
679 rtx containing_mem;
9d75589a 680 /* Location of the register within INSN. */
d83ccc81 681 rtx *usep;
682 /* The reverse uid of the insn. */
683 int ruid;
684};
8f8cadbc 685
686/* If the register is used in some unknown fashion, USE_INDEX is negative.
687 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
d83ccc81 688 indicates where it is first set or clobbered.
8f8cadbc 689 Otherwise, USE_INDEX is the index of the last encountered use of the
d83ccc81 690 register (which is first among these we have seen since we scan backwards).
691 USE_RUID indicates the first encountered, i.e. last, of these uses.
692 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
693 with a constant offset; OFFSET contains this constant in that case.
8f8cadbc 694 STORE_RUID is always meaningful if we only want to use a value in a
695 register in a different place: it denotes the next insn in the insn
d83ccc81 696 stream (i.e. the last encountered) that sets or clobbers the register.
697 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
8f8cadbc 698static struct
699 {
700 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
8f8cadbc 701 rtx offset;
d83ccc81 702 int use_index;
8f8cadbc 703 int store_ruid;
d83ccc81 704 int real_store_ruid;
8f8cadbc 705 int use_ruid;
d83ccc81 706 bool all_offsets_match;
8f8cadbc 707 } reg_state[FIRST_PSEUDO_REGISTER];
708
709/* Reverse linear uid. This is increased in reload_combine while scanning
710 the instructions from last to first. It is used to set last_label_ruid
711 and the store_ruid / use_ruid fields in reg_state. */
712static int reload_combine_ruid;
713
fb79f695 714/* The RUID of the last label we encountered in reload_combine. */
715static int last_label_ruid;
716
d83ccc81 717/* The RUID of the last jump we encountered in reload_combine. */
718static int last_jump_ruid;
719
fb79f695 720/* The register numbers of the first and last index register. A value of
721 -1 in LAST_INDEX_REG indicates that we've previously computed these
722 values and found no suitable index registers. */
723static int first_index_reg = -1;
724static int last_index_reg;
725
8f8cadbc 726#define LABEL_LIVE(LABEL) \
727 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
728
d83ccc81 729/* Subroutine of reload_combine_split_ruids, called to fix up a single
730 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
731
732static inline void
733reload_combine_split_one_ruid (int *pruid, int split_ruid)
734{
735 if (*pruid > split_ruid)
736 (*pruid)++;
737}
738
739/* Called when we insert a new insn in a position we've already passed in
740 the scan. Examine all our state, increasing all ruids that are higher
741 than SPLIT_RUID by one in order to make room for a new insn. */
742
743static void
744reload_combine_split_ruids (int split_ruid)
745{
746 unsigned i;
747
748 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
749 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
750 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
751
752 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
753 {
754 int j, idx = reg_state[i].use_index;
755 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
756 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
757 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
758 split_ruid);
759 if (idx < 0)
760 continue;
761 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
762 {
763 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
764 split_ruid);
765 }
766 }
767}
768
769/* Called when we are about to rescan a previously encountered insn with
770 reload_combine_note_use after modifying some part of it. This clears all
771 information about uses in that particular insn. */
772
773static void
3aeaa53f 774reload_combine_purge_insn_uses (rtx_insn *insn)
d83ccc81 775{
776 unsigned i;
777
778 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
779 {
780 int j, k, idx = reg_state[i].use_index;
781 if (idx < 0)
782 continue;
783 j = k = RELOAD_COMBINE_MAX_USES;
784 while (j-- > idx)
785 {
786 if (reg_state[i].reg_use[j].insn != insn)
787 {
788 k--;
789 if (k != j)
790 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
791 }
792 }
793 reg_state[i].use_index = k;
794 }
795}
796
797/* Called when we need to forget about all uses of REGNO after an insn
798 which is identified by RUID. */
799
800static void
801reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
802{
803 int j, k, idx = reg_state[regno].use_index;
804 if (idx < 0)
805 return;
806 j = k = RELOAD_COMBINE_MAX_USES;
807 while (j-- > idx)
808 {
809 if (reg_state[regno].reg_use[j].ruid >= ruid)
810 {
811 k--;
812 if (k != j)
813 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
814 }
815 }
816 reg_state[regno].use_index = k;
817}
818
819/* Find the use of REGNO with the ruid that is highest among those
820 lower than RUID_LIMIT, and return it if it is the only use of this
727047d0 821 reg in the insn. Return NULL otherwise. */
d83ccc81 822
823static struct reg_use *
824reload_combine_closest_single_use (unsigned regno, int ruid_limit)
825{
826 int i, best_ruid = 0;
827 int use_idx = reg_state[regno].use_index;
828 struct reg_use *retval;
829
830 if (use_idx < 0)
831 return NULL;
832 retval = NULL;
833 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
834 {
0ead6a7d 835 struct reg_use *use = reg_state[regno].reg_use + i;
836 int this_ruid = use->ruid;
d83ccc81 837 if (this_ruid >= ruid_limit)
838 continue;
839 if (this_ruid > best_ruid)
840 {
841 best_ruid = this_ruid;
727047d0 842 retval = use;
d83ccc81 843 }
727047d0 844 else if (this_ruid == best_ruid)
d83ccc81 845 retval = NULL;
846 }
847 if (last_label_ruid >= best_ruid)
848 return NULL;
849 return retval;
850}
851
65069495 852/* After we've moved an add insn, fix up any debug insns that occur
853 between the old location of the add and the new location. REG is
854 the destination register of the add insn; REPLACEMENT is the
855 SET_SRC of the add. FROM and TO specify the range in which we
856 should make this change on debug insns. */
0ead6a7d 857
858static void
3aeaa53f 859fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
0ead6a7d 860{
3aeaa53f 861 rtx_insn *insn;
65069495 862 for (insn = from; insn != to; insn = NEXT_INSN (insn))
0ead6a7d 863 {
864 rtx t;
65069495 865
866 if (!DEBUG_INSN_P (insn))
0ead6a7d 867 continue;
65069495 868
869 t = INSN_VAR_LOCATION_LOC (insn);
727047d0 870 t = simplify_replace_rtx (t, reg, replacement);
65069495 871 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
0ead6a7d 872 }
873}
874
692ec7c8 875/* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
876 with SRC in the insn described by USE, taking costs into account. Return
877 true if we made the replacement. */
878
879static bool
880try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
881{
3aeaa53f 882 rtx_insn *use_insn = use->insn;
692ec7c8 883 rtx mem = use->containing_mem;
884 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
885
886 if (mem != NULL_RTX)
887 {
888 addr_space_t as = MEM_ADDR_SPACE (mem);
889 rtx oldaddr = XEXP (mem, 0);
890 rtx newaddr = NULL_RTX;
891 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
892 int new_cost;
893
894 newaddr = simplify_replace_rtx (oldaddr, reg, src);
895 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
896 {
897 XEXP (mem, 0) = newaddr;
898 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
899 XEXP (mem, 0) = oldaddr;
900 if (new_cost <= old_cost
901 && validate_change (use_insn,
902 &XEXP (mem, 0), newaddr, 0))
903 return true;
904 }
905 }
906 else
907 {
908 rtx new_set = single_set (use_insn);
909 if (new_set
910 && REG_P (SET_DEST (new_set))
911 && GET_CODE (SET_SRC (new_set)) == PLUS
912 && REG_P (XEXP (SET_SRC (new_set), 0))
913 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
914 {
915 rtx new_src;
7013e87c 916 int old_cost = set_src_cost (SET_SRC (new_set), speed);
692ec7c8 917
918 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
919 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
920
7013e87c 921 if (set_src_cost (new_src, speed) <= old_cost
692ec7c8 922 && validate_change (use_insn, &SET_SRC (new_set),
923 new_src, 0))
924 return true;
925 }
926 }
927 return false;
928}
929
d83ccc81 930/* Called by reload_combine when scanning INSN. This function tries to detect
931 patterns where a constant is added to a register, and the result is used
932 in an address.
933 Return true if no further processing is needed on INSN; false if it wasn't
934 recognized and should be handled normally. */
935
936static bool
3aeaa53f 937reload_combine_recognize_const_pattern (rtx_insn *insn)
d83ccc81 938{
939 int from_ruid = reload_combine_ruid;
940 rtx set, pat, reg, src, addreg;
941 unsigned int regno;
942 struct reg_use *use;
943 bool must_move_add;
3aeaa53f 944 rtx_insn *add_moved_after_insn = NULL;
d83ccc81 945 int add_moved_after_ruid = 0;
946 int clobbered_regno = -1;
947
948 set = single_set (insn);
949 if (set == NULL_RTX)
950 return false;
951
952 reg = SET_DEST (set);
953 src = SET_SRC (set);
954 if (!REG_P (reg)
955 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1
956 || GET_MODE (reg) != Pmode
957 || reg == stack_pointer_rtx)
958 return false;
959
960 regno = REGNO (reg);
961
962 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
963 uses of REG1 inside an address, or inside another add insn. If
964 possible and profitable, merge the addition into subsequent
965 uses. */
966 if (GET_CODE (src) != PLUS
967 || !REG_P (XEXP (src, 0))
968 || !CONSTANT_P (XEXP (src, 1)))
969 return false;
970
971 addreg = XEXP (src, 0);
972 must_move_add = rtx_equal_p (reg, addreg);
973
974 pat = PATTERN (insn);
975 if (must_move_add && set != pat)
976 {
977 /* We have to be careful when moving the add; apart from the
978 single_set there may also be clobbers. Recognize one special
979 case, that of one clobber alongside the set (likely a clobber
980 of the CC register). */
981 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
982 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
983 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
984 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
985 return false;
986 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
987 }
988
989 do
990 {
991 use = reload_combine_closest_single_use (regno, from_ruid);
992
993 if (use)
994 /* Start the search for the next use from here. */
995 from_ruid = use->ruid;
996
997 if (use && GET_MODE (*use->usep) == Pmode)
998 {
692ec7c8 999 bool delete_add = false;
3aeaa53f 1000 rtx_insn *use_insn = use->insn;
d83ccc81 1001 int use_ruid = use->ruid;
d83ccc81 1002
1003 /* Avoid moving the add insn past a jump. */
0ead6a7d 1004 if (must_move_add && use_ruid <= last_jump_ruid)
d83ccc81 1005 break;
1006
1007 /* If the add clobbers another hard reg in parallel, don't move
1008 it past a real set of this hard reg. */
1009 if (must_move_add && clobbered_regno >= 0
1010 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
1011 break;
1012
33b7314b 1013#ifdef HAVE_cc0
1014 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
1015 if (must_move_add && sets_cc0_p (PATTERN (use_insn)))
1016 break;
1017#endif
1018
6aba0ea1 1019 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1020 /* Avoid moving a use of ADDREG past a point where it is stored. */
692ec7c8 1021 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
d83ccc81 1022 break;
1023
692ec7c8 1024 /* We also must not move the addition past an insn that sets
1025 the same register, unless we can combine two add insns. */
1026 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
d83ccc81 1027 {
692ec7c8 1028 if (use->containing_mem == NULL_RTX)
1029 delete_add = true;
1030 else
1031 break;
d83ccc81 1032 }
d83ccc81 1033
692ec7c8 1034 if (try_replace_in_use (use, reg, src))
1035 {
1036 reload_combine_purge_insn_uses (use_insn);
1037 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1038 use_ruid, NULL_RTX);
d83ccc81 1039
692ec7c8 1040 if (delete_add)
1041 {
1042 fixup_debug_insns (reg, src, insn, use_insn);
1043 delete_insn (insn);
1044 return true;
1045 }
1046 if (must_move_add)
1047 {
1048 add_moved_after_insn = use_insn;
1049 add_moved_after_ruid = use_ruid;
d83ccc81 1050 }
692ec7c8 1051 continue;
d83ccc81 1052 }
d83ccc81 1053 }
6aba0ea1 1054 /* If we get here, we couldn't handle this use. */
1055 if (must_move_add)
1056 break;
d83ccc81 1057 }
1058 while (use);
1059
1060 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1061 /* Process the add normally. */
1062 return false;
1063
65069495 1064 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1065
d83ccc81 1066 reorder_insns (insn, insn, add_moved_after_insn);
1067 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1068 reload_combine_split_ruids (add_moved_after_ruid - 1);
1069 reload_combine_note_use (&PATTERN (insn), insn,
1070 add_moved_after_ruid, NULL_RTX);
1071 reg_state[regno].store_ruid = add_moved_after_ruid;
1072
1073 return true;
1074}
1075
fb79f695 1076/* Called by reload_combine when scanning INSN. Try to detect a pattern we
1077 can handle and improve. Return true if no further processing is needed on
1078 INSN; false if it wasn't recognized and should be handled normally. */
1079
1080static bool
3aeaa53f 1081reload_combine_recognize_pattern (rtx_insn *insn)
fb79f695 1082{
1083 rtx set, reg, src;
1084 unsigned int regno;
1085
d83ccc81 1086 set = single_set (insn);
1087 if (set == NULL_RTX)
1088 return false;
1089
1090 reg = SET_DEST (set);
1091 src = SET_SRC (set);
1092 if (!REG_P (reg)
1093 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1)
1094 return false;
1095
1096 regno = REGNO (reg);
1097
fb79f695 1098 /* Look for (set (REGX) (CONST_INT))
1099 (set (REGX) (PLUS (REGX) (REGY)))
1100 ...
1101 ... (MEM (REGX)) ...
1102 and convert it to
1103 (set (REGZ) (CONST_INT))
1104 ...
1105 ... (MEM (PLUS (REGZ) (REGY)))... .
1106
1107 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1108 and that we know all uses of REGX before it dies.
1109 Also, explicitly check that REGX != REGY; our life information
1110 does not yet show whether REGY changes in this insn. */
fb79f695 1111
1112 if (GET_CODE (src) == PLUS
d83ccc81 1113 && reg_state[regno].all_offsets_match
1114 && last_index_reg != -1
fb79f695 1115 && REG_P (XEXP (src, 1))
1116 && rtx_equal_p (XEXP (src, 0), reg)
1117 && !rtx_equal_p (XEXP (src, 1), reg)
727047d0 1118 && reg_state[regno].use_index >= 0
1119 && reg_state[regno].use_index < RELOAD_COMBINE_MAX_USES
fb79f695 1120 && last_label_ruid < reg_state[regno].use_ruid)
1121 {
1122 rtx base = XEXP (src, 1);
3aeaa53f 1123 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
fb79f695 1124 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1125 rtx index_reg = NULL_RTX;
1126 rtx reg_sum = NULL_RTX;
1127 int i;
1128
1129 /* Now we need to set INDEX_REG to an index register (denoted as
1130 REGZ in the illustration above) and REG_SUM to the expression
1131 register+register that we want to use to substitute uses of REG
1132 (typically in MEMs) with. First check REG and BASE for being
1133 index registers; we can use them even if they are not dead. */
1134 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1135 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1136 REGNO (base)))
1137 {
1138 index_reg = reg;
1139 reg_sum = src;
1140 }
1141 else
1142 {
1143 /* Otherwise, look for a free index register. Since we have
1144 checked above that neither REG nor BASE are index registers,
1145 if we find anything at all, it will be different from these
1146 two registers. */
1147 for (i = first_index_reg; i <= last_index_reg; i++)
1148 {
1149 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1150 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1151 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
727047d0 1152 && (call_used_regs[i] || df_regs_ever_live_p (i))
1153 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1154 && !fixed_regs[i] && !global_regs[i]
1155 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1156 && targetm.hard_regno_scratch_ok (i))
fb79f695 1157 {
1158 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1159 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1160 break;
1161 }
1162 }
1163 }
1164
1165 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1166 (REGY), i.e. BASE, is not clobbered before the last use we'll
1167 create. */
1168 if (reg_sum
1169 && prev_set
1170 && CONST_INT_P (SET_SRC (prev_set))
1171 && rtx_equal_p (SET_DEST (prev_set), reg)
fb79f695 1172 && (reg_state[REGNO (base)].store_ruid
1173 <= reg_state[regno].use_ruid))
1174 {
1175 /* Change destination register and, if necessary, the constant
1176 value in PREV, the constant loading instruction. */
1177 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1178 if (reg_state[regno].offset != const0_rtx)
1179 validate_change (prev,
1180 &SET_SRC (prev_set),
1181 GEN_INT (INTVAL (SET_SRC (prev_set))
1182 + INTVAL (reg_state[regno].offset)),
1183 1);
1184
1185 /* Now for every use of REG that we have recorded, replace REG
1186 with REG_SUM. */
1187 for (i = reg_state[regno].use_index;
1188 i < RELOAD_COMBINE_MAX_USES; i++)
1189 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1190 reg_state[regno].reg_use[i].usep,
1191 /* Each change must have its own
1192 replacement. */
1193 reg_sum, 1);
1194
1195 if (apply_change_group ())
1196 {
65069495 1197 struct reg_use *lowest_ruid = NULL;
1198
fb79f695 1199 /* For every new use of REG_SUM, we have to record the use
1200 of BASE therein, i.e. operand 1. */
1201 for (i = reg_state[regno].use_index;
1202 i < RELOAD_COMBINE_MAX_USES; i++)
65069495 1203 {
1204 struct reg_use *use = reg_state[regno].reg_use + i;
1205 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1206 use->ruid, use->containing_mem);
1207 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1208 lowest_ruid = use;
1209 }
1210
1211 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
fb79f695 1212
fb79f695 1213 /* Delete the reg-reg addition. */
1214 delete_insn (insn);
1215
1216 if (reg_state[regno].offset != const0_rtx)
1217 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1218 are now invalid. */
1219 remove_reg_equal_equiv_notes (prev);
1220
1221 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
fb79f695 1222 return true;
1223 }
1224 }
1225 }
1226 return false;
1227}
1228
8f8cadbc 1229static void
3ad4992f 1230reload_combine (void)
8f8cadbc 1231{
3aeaa53f 1232 rtx_insn *insn, *prev;
8f8cadbc 1233 basic_block bb;
1234 unsigned int r;
8f8cadbc 1235 int min_labelno, n_labels;
1236 HARD_REG_SET ever_live_at_start, *label_live;
1237
8f8cadbc 1238 /* To avoid wasting too much time later searching for an index register,
1239 determine the minimum and maximum index register numbers. */
fb79f695 1240 if (INDEX_REG_CLASS == NO_REGS)
1241 last_index_reg = -1;
1242 else if (first_index_reg == -1 && last_index_reg == 0)
1243 {
1244 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1245 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1246 {
1247 if (first_index_reg == -1)
1248 first_index_reg = r;
1249
1250 last_index_reg = r;
1251 }
1252
1253 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1254 to -1 so we'll know to quit early the next time we get here. */
1255 if (first_index_reg == -1)
1256 {
1257 last_index_reg = -1;
1258 return;
1259 }
1260 }
8f8cadbc 1261
8f8cadbc 1262 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1263 information is a bit fuzzy immediately after reload, but it's
1264 still good enough to determine which registers are live at a jump
1265 destination. */
1266 min_labelno = get_first_label_num ();
1267 n_labels = max_label_num () - min_labelno;
4c36ffe6 1268 label_live = XNEWVEC (HARD_REG_SET, n_labels);
8f8cadbc 1269 CLEAR_HARD_REG_SET (ever_live_at_start);
1270
7a46197b 1271 FOR_EACH_BB_REVERSE_FN (bb, cfun)
8f8cadbc 1272 {
5496dbfc 1273 insn = BB_HEAD (bb);
6d7dc5b9 1274 if (LABEL_P (insn))
8f8cadbc 1275 {
1276 HARD_REG_SET live;
deb2741b 1277 bitmap live_in = df_get_live_in (bb);
8f8cadbc 1278
deb2741b 1279 REG_SET_TO_HARD_REG_SET (live, live_in);
1280 compute_use_by_pseudos (&live, live_in);
8f8cadbc 1281 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1282 IOR_HARD_REG_SET (ever_live_at_start, live);
1283 }
1284 }
1285
1286 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
d83ccc81 1287 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
8f8cadbc 1288 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1289 {
d83ccc81 1290 reg_state[r].store_ruid = 0;
1291 reg_state[r].real_store_ruid = 0;
8f8cadbc 1292 if (fixed_regs[r])
1293 reg_state[r].use_index = -1;
1294 else
1295 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1296 }
1297
d83ccc81 1298 for (insn = get_last_insn (); insn; insn = prev)
8f8cadbc 1299 {
8b52f64e 1300 bool control_flow_insn;
8f8cadbc 1301 rtx note;
1302
d83ccc81 1303 prev = PREV_INSN (insn);
1304
8f8cadbc 1305 /* We cannot do our optimization across labels. Invalidating all the use
1306 information we have would be costly, so we just note where the label
1307 is and then later disable any optimization that would cross it. */
6d7dc5b9 1308 if (LABEL_P (insn))
8f8cadbc 1309 last_label_ruid = reload_combine_ruid;
19f69355 1310 else if (BARRIER_P (insn))
1311 {
1312 /* Crossing a barrier resets all the use information. */
1313 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1314 if (! fixed_regs[r])
8f8cadbc 1315 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
19f69355 1316 }
1317 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1318 /* Optimizations across insns being marked as volatile must be
1319 prevented. All the usage information is invalidated
1320 here. */
1321 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1322 if (! fixed_regs[r]
1323 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1324 reg_state[r].use_index = -1;
8f8cadbc 1325
65069495 1326 if (! NONDEBUG_INSN_P (insn))
8f8cadbc 1327 continue;
1328
1329 reload_combine_ruid++;
1330
8b52f64e 1331 control_flow_insn = control_flow_insn_p (insn);
1332 if (control_flow_insn)
d83ccc81 1333 last_jump_ruid = reload_combine_ruid;
1334
1335 if (reload_combine_recognize_const_pattern (insn)
1336 || reload_combine_recognize_pattern (insn))
fb79f695 1337 continue;
8f8cadbc 1338
1339 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1340
6d7dc5b9 1341 if (CALL_P (insn))
8f8cadbc 1342 {
1343 rtx link;
1344
1345 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1346 if (call_used_regs[r])
1347 {
1348 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1349 reg_state[r].store_ruid = reload_combine_ruid;
1350 }
1351
1352 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1353 link = XEXP (link, 1))
1354 {
c8010b80 1355 rtx setuse = XEXP (link, 0);
1356 rtx usage_rtx = XEXP (setuse, 0);
1357 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1358 && REG_P (usage_rtx))
8f8cadbc 1359 {
1360 unsigned int i;
1361 unsigned int start_reg = REGNO (usage_rtx);
8b52f64e 1362 unsigned int num_regs
1363 = hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
1364 unsigned int end_reg = start_reg + num_regs - 1;
8f8cadbc 1365 for (i = start_reg; i <= end_reg; i++)
1366 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1367 {
1368 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1369 reg_state[i].store_ruid = reload_combine_ruid;
1370 }
1371 else
1372 reg_state[i].use_index = -1;
1373 }
1374 }
8f8cadbc 1375 }
f4979459 1376
7777a939 1377 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
8f8cadbc 1378 {
1379 /* Non-spill registers might be used at the call destination in
1380 some unknown fashion, so we have to mark the unknown use. */
1381 HARD_REG_SET *live;
1382
1383 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1384 && JUMP_LABEL (insn))
7777a939 1385 {
1386 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1387 live = NULL;
1388 else
1389 live = &LABEL_LIVE (JUMP_LABEL (insn));
1390 }
8f8cadbc 1391 else
1392 live = &ever_live_at_start;
1393
7777a939 1394 if (live)
1395 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1396 if (TEST_HARD_REG_BIT (*live, r))
1397 reg_state[r].use_index = -1;
8f8cadbc 1398 }
1399
8b52f64e 1400 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1401 NULL_RTX);
1402
8f8cadbc 1403 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1404 {
8b52f64e 1405 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
8f8cadbc 1406 {
1407 int regno = REGNO (XEXP (note, 0));
8f8cadbc 1408 reg_state[regno].store_ruid = reload_combine_ruid;
d83ccc81 1409 reg_state[regno].real_store_ruid = reload_combine_ruid;
8f8cadbc 1410 reg_state[regno].use_index = -1;
1411 }
1412 }
1413 }
1414
1415 free (label_live);
1416}
1417
1418/* Check if DST is a register or a subreg of a register; if it is,
d83ccc81 1419 update store_ruid, real_store_ruid and use_index in the reg_state
1420 structure accordingly. Called via note_stores from reload_combine. */
8f8cadbc 1421
1422static void
81a410b1 1423reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
8f8cadbc 1424{
1425 int regno = 0;
1426 int i;
1427 enum machine_mode mode = GET_MODE (dst);
1428
1429 if (GET_CODE (dst) == SUBREG)
1430 {
1431 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1432 GET_MODE (SUBREG_REG (dst)),
1433 SUBREG_BYTE (dst),
1434 GET_MODE (dst));
1435 dst = SUBREG_REG (dst);
1436 }
fe6524b0 1437
1438 /* Some targets do argument pushes without adding REG_INC notes. */
1439
1440 if (MEM_P (dst))
1441 {
1442 dst = XEXP (dst, 0);
1443 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
a5dda0b9 1444 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1445 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
fe6524b0 1446 {
1447 regno = REGNO (XEXP (dst, 0));
1448 mode = GET_MODE (XEXP (dst, 0));
1449 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1450 {
1451 /* We could probably do better, but for now mark the register
1452 as used in an unknown fashion and set/clobbered at this
1453 insn. */
1454 reg_state[i].use_index = -1;
1455 reg_state[i].store_ruid = reload_combine_ruid;
1456 reg_state[i].real_store_ruid = reload_combine_ruid;
1457 }
1458 }
1459 else
1460 return;
1461 }
1462
8ad4c111 1463 if (!REG_P (dst))
8f8cadbc 1464 return;
1465 regno += REGNO (dst);
1466
1467 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1468 careful with registers / register parts that are not full words.
476d094d 1469 Similarly for ZERO_EXTRACT. */
d83ccc81 1470 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
8f8cadbc 1471 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1472 {
67d6c12b 1473 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
8f8cadbc 1474 {
1475 reg_state[i].use_index = -1;
1476 reg_state[i].store_ruid = reload_combine_ruid;
d83ccc81 1477 reg_state[i].real_store_ruid = reload_combine_ruid;
8f8cadbc 1478 }
1479 }
1480 else
1481 {
67d6c12b 1482 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
8f8cadbc 1483 {
1484 reg_state[i].store_ruid = reload_combine_ruid;
d83ccc81 1485 if (GET_CODE (set) == SET)
1486 reg_state[i].real_store_ruid = reload_combine_ruid;
8f8cadbc 1487 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1488 }
1489 }
1490}
1491
1492/* XP points to a piece of rtl that has to be checked for any uses of
1493 registers.
1494 *XP is the pattern of INSN, or a part of it.
1495 Called from reload_combine, and recursively by itself. */
1496static void
3aeaa53f 1497reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
8f8cadbc 1498{
1499 rtx x = *xp;
1500 enum rtx_code code = x->code;
1501 const char *fmt;
1502 int i, j;
1503 rtx offset = const0_rtx; /* For the REG case below. */
1504
1505 switch (code)
1506 {
1507 case SET:
8ad4c111 1508 if (REG_P (SET_DEST (x)))
8f8cadbc 1509 {
d83ccc81 1510 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
8f8cadbc 1511 return;
1512 }
1513 break;
1514
1515 case USE:
1516 /* If this is the USE of a return value, we can't change it. */
8ad4c111 1517 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8f8cadbc 1518 {
1519 /* Mark the return register as used in an unknown fashion. */
1520 rtx reg = XEXP (x, 0);
1521 int regno = REGNO (reg);
67d6c12b 1522 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8f8cadbc 1523
1524 while (--nregs >= 0)
1525 reg_state[regno + nregs].use_index = -1;
1526 return;
1527 }
1528 break;
1529
1530 case CLOBBER:
8ad4c111 1531 if (REG_P (SET_DEST (x)))
8f8cadbc 1532 {
1533 /* No spurious CLOBBERs of pseudo registers may remain. */
876760f6 1534 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
8f8cadbc 1535 return;
1536 }
1537 break;
1538
1539 case PLUS:
1540 /* We are interested in (plus (reg) (const_int)) . */
8ad4c111 1541 if (!REG_P (XEXP (x, 0))
971ba038 1542 || !CONST_INT_P (XEXP (x, 1)))
8f8cadbc 1543 break;
1544 offset = XEXP (x, 1);
1545 x = XEXP (x, 0);
1546 /* Fall through. */
1547 case REG:
1548 {
1549 int regno = REGNO (x);
1550 int use_index;
1551 int nregs;
1552
1553 /* No spurious USEs of pseudo registers may remain. */
876760f6 1554 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8f8cadbc 1555
67d6c12b 1556 nregs = hard_regno_nregs[regno][GET_MODE (x)];
8f8cadbc 1557
1558 /* We can't substitute into multi-hard-reg uses. */
1559 if (nregs > 1)
1560 {
1561 while (--nregs >= 0)
1562 reg_state[regno + nregs].use_index = -1;
1563 return;
1564 }
1565
727047d0 1566 /* We may be called to update uses in previously seen insns.
1567 Don't add uses beyond the last store we saw. */
1568 if (ruid < reg_state[regno].store_ruid)
1569 return;
1570
8f8cadbc 1571 /* If this register is already used in some unknown fashion, we
1572 can't do anything.
1573 If we decrement the index from zero to -1, we can't store more
1574 uses, so this register becomes used in an unknown fashion. */
1575 use_index = --reg_state[regno].use_index;
1576 if (use_index < 0)
1577 return;
1578
d83ccc81 1579 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
8f8cadbc 1580 {
1581 /* This is the first use of this register we have seen since we
1582 marked it as dead. */
1583 reg_state[regno].offset = offset;
d83ccc81 1584 reg_state[regno].all_offsets_match = true;
1585 reg_state[regno].use_ruid = ruid;
8f8cadbc 1586 }
0ead6a7d 1587 else
1588 {
1589 if (reg_state[regno].use_ruid > ruid)
1590 reg_state[regno].use_ruid = ruid;
1591
1592 if (! rtx_equal_p (offset, reg_state[regno].offset))
1593 reg_state[regno].all_offsets_match = false;
1594 }
d83ccc81 1595
8f8cadbc 1596 reg_state[regno].reg_use[use_index].insn = insn;
d83ccc81 1597 reg_state[regno].reg_use[use_index].ruid = ruid;
1598 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
8f8cadbc 1599 reg_state[regno].reg_use[use_index].usep = xp;
1600 return;
1601 }
1602
d83ccc81 1603 case MEM:
1604 containing_mem = x;
1605 break;
1606
8f8cadbc 1607 default:
1608 break;
1609 }
1610
1611 /* Recursively process the components of X. */
1612 fmt = GET_RTX_FORMAT (code);
1613 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1614 {
1615 if (fmt[i] == 'e')
d83ccc81 1616 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
8f8cadbc 1617 else if (fmt[i] == 'E')
1618 {
1619 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
d83ccc81 1620 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1621 containing_mem);
8f8cadbc 1622 }
1623 }
1624}
1625\f
1626/* See if we can reduce the cost of a constant by replacing a move
1627 with an add. We track situations in which a register is set to a
1628 constant or to a register plus a constant. */
1629/* We cannot do our optimization across labels. Invalidating all the
1630 information about register contents we have would be costly, so we
1631 use move2add_last_label_luid to note where the label is and then
1632 later disable any optimization that would cross it.
6132c0d0 1633 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1634 are only valid if reg_set_luid[n] is greater than
b6b86e87 1635 move2add_last_label_luid.
1636 For a set that established a new (potential) base register with
1637 non-constant value, we use move2add_luid from the place where the
1638 setting insn is encountered; registers based off that base then
1639 get the same reg_set_luid. Constants all get
1640 move2add_last_label_luid + 1 as their reg_set_luid. */
8f8cadbc 1641static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1642
1643/* If reg_base_reg[n] is negative, register n has been set to
6132c0d0 1644 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
8f8cadbc 1645 If reg_base_reg[n] is non-negative, register n has been set to the
1646 sum of reg_offset[n] and the value of register reg_base_reg[n]
b6b86e87 1647 before reg_set_luid[n], calculated in mode reg_mode[n] .
1648 For multi-hard-register registers, all but the first one are
1649 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1650 marks it as invalid. */
8f8cadbc 1651static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1652static int reg_base_reg[FIRST_PSEUDO_REGISTER];
6132c0d0 1653static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
8f8cadbc 1654static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1655
1656/* move2add_luid is linearly increased while scanning the instructions
1657 from first to last. It is used to set reg_set_luid in
1658 reload_cse_move2add and move2add_note_store. */
1659static int move2add_luid;
1660
1661/* move2add_last_label_luid is set whenever a label is found. Labels
1662 invalidate all previously collected reg_offset data. */
1663static int move2add_last_label_luid;
1664
1665/* ??? We don't know how zero / sign extension is handled, hence we
1666 can't go from a narrower to a wider mode. */
1667#define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1668 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1669 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
396f2130 1670 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
8f8cadbc 1671
b6b86e87 1672/* Record that REG is being set to a value with the mode of REG. */
1673
1674static void
1675move2add_record_mode (rtx reg)
1676{
1677 int regno, nregs;
1678 enum machine_mode mode = GET_MODE (reg);
1679
1680 if (GET_CODE (reg) == SUBREG)
1681 {
1682 regno = subreg_regno (reg);
1683 nregs = subreg_nregs (reg);
1684 }
1685 else if (REG_P (reg))
1686 {
1687 regno = REGNO (reg);
1688 nregs = hard_regno_nregs[regno][mode];
1689 }
1690 else
1691 gcc_unreachable ();
1692 for (int i = nregs - 1; i > 0; i--)
1693 reg_mode[regno + i] = BLKmode;
1694 reg_mode[regno] = mode;
1695}
1696
1697/* Record that REG is being set to the sum of SYM and OFF. */
1698
1699static void
1700move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1701{
1702 int regno = REGNO (reg);
1703
1704 move2add_record_mode (reg);
1705 reg_set_luid[regno] = move2add_luid;
1706 reg_base_reg[regno] = -1;
1707 reg_symbol_ref[regno] = sym;
1708 reg_offset[regno] = INTVAL (off);
1709}
1710
1711/* Check if REGNO contains a valid value in MODE. */
1712
1713static bool
1714move2add_valid_value_p (int regno, enum machine_mode mode)
1715{
5bea3269 1716 if (reg_set_luid[regno] <= move2add_last_label_luid)
b6b86e87 1717 return false;
1718
5bea3269 1719 if (mode != reg_mode[regno])
1720 {
1721 if (!MODES_OK_FOR_MOVE2ADD (mode, reg_mode[regno]))
1722 return false;
1723 /* The value loaded into regno in reg_mode[regno] is also valid in
1724 mode after truncation only if (REG:mode regno) is the lowpart of
1725 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1726 regno of the lowpart might be different. */
1727 int s_off = subreg_lowpart_offset (mode, reg_mode[regno]);
1728 s_off = subreg_regno_offset (regno, reg_mode[regno], s_off, mode);
1729 if (s_off != 0)
1730 /* We could in principle adjust regno, check reg_mode[regno] to be
1731 BLKmode, and return s_off to the caller (vs. -1 for failure),
1732 but we currently have no callers that could make use of this
1733 information. */
1734 return false;
1735 }
1736
b6b86e87 1737 for (int i = hard_regno_nregs[regno][mode] - 1; i > 0; i--)
1738 if (reg_mode[regno + i] != BLKmode)
1739 return false;
1740 return true;
1741}
1742
6132c0d0 1743/* This function is called with INSN that sets REG to (SYM + OFF),
1744 while REG is known to already have value (SYM + offset).
1745 This function tries to change INSN into an add instruction
1746 (set (REG) (plus (REG) (OFF - offset))) using the known value.
d83ccc81 1747 It also updates the information about REG's known value.
1748 Return true if we made a change. */
6132c0d0 1749
d83ccc81 1750static bool
3aeaa53f 1751move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
6132c0d0 1752{
1753 rtx pat = PATTERN (insn);
1754 rtx src = SET_SRC (pat);
1755 int regno = REGNO (reg);
60141df0 1756 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno],
6132c0d0 1757 GET_MODE (reg));
1758 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
d83ccc81 1759 bool changed = false;
6132c0d0 1760
1761 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1762 use (set (reg) (reg)) instead.
1763 We don't delete this insn, nor do we convert it into a
1764 note, to avoid losing register notes or the return
1765 value flag. jump2 already knows how to get rid of
1766 no-op moves. */
1767 if (new_src == const0_rtx)
1768 {
1769 /* If the constants are different, this is a
1770 truncation, that, if turned into (set (reg)
1771 (reg)), would be discarded. Maybe we should
1772 try a truncMN pattern? */
1773 if (INTVAL (off) == reg_offset [regno])
d83ccc81 1774 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
6132c0d0 1775 }
c9a03487 1776 else
6132c0d0 1777 {
c9a03487 1778 struct full_rtx_costs oldcst, newcst;
6132c0d0 1779 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
c9a03487 1780
b72d459f 1781 get_full_set_rtx_cost (pat, &oldcst);
c9a03487 1782 SET_SRC (pat) = tem;
b72d459f 1783 get_full_set_rtx_cost (pat, &newcst);
c9a03487 1784 SET_SRC (pat) = src;
1785
1786 if (costs_lt_p (&newcst, &oldcst, speed)
1787 && have_add2_insn (reg, new_src))
1788 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1789 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
6132c0d0 1790 {
c9a03487 1791 enum machine_mode narrow_mode;
1792 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1793 narrow_mode != VOIDmode
1794 && narrow_mode != GET_MODE (reg);
1795 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
6132c0d0 1796 {
c9a03487 1797 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1798 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1799 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1800 {
17ce39e3 1801 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
c9a03487 1802 rtx narrow_src = gen_int_mode (INTVAL (off),
1803 narrow_mode);
1804 rtx new_set
1805 = gen_rtx_SET (VOIDmode,
1806 gen_rtx_STRICT_LOW_PART (VOIDmode,
1807 narrow_reg),
1808 narrow_src);
d4177981 1809 get_full_set_rtx_cost (new_set, &newcst);
1810 if (costs_lt_p (&newcst, &oldcst, speed))
1811 {
1812 changed = validate_change (insn, &PATTERN (insn),
1813 new_set, 0);
1814 if (changed)
1815 break;
1816 }
c9a03487 1817 }
6132c0d0 1818 }
1819 }
1820 }
b6b86e87 1821 move2add_record_sym_value (reg, sym, off);
d83ccc81 1822 return changed;
6132c0d0 1823}
1824
1825
1826/* This function is called with INSN that sets REG to (SYM + OFF),
1827 but REG doesn't have known value (SYM + offset). This function
1828 tries to find another register which is known to already have
1829 value (SYM + offset) and change INSN into an add instruction
1830 (set (REG) (plus (the found register) (OFF - offset))) if such
1831 a register is found. It also updates the information about
d83ccc81 1832 REG's known value.
1833 Return true iff we made a change. */
6132c0d0 1834
d83ccc81 1835static bool
3aeaa53f 1836move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
6132c0d0 1837{
1838 rtx pat = PATTERN (insn);
1839 rtx src = SET_SRC (pat);
1840 int regno = REGNO (reg);
c2130a4b 1841 int min_regno = 0;
6132c0d0 1842 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1843 int i;
d83ccc81 1844 bool changed = false;
c9a03487 1845 struct full_rtx_costs oldcst, newcst, mincst;
1846 rtx plus_expr;
1847
1848 init_costs_to_max (&mincst);
b72d459f 1849 get_full_set_rtx_cost (pat, &oldcst);
c9a03487 1850
1851 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1852 SET_SRC (pat) = plus_expr;
6132c0d0 1853
1854 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
b6b86e87 1855 if (move2add_valid_value_p (i, GET_MODE (reg))
6132c0d0 1856 && reg_base_reg[i] < 0
1857 && reg_symbol_ref[i] != NULL_RTX
1858 && rtx_equal_p (sym, reg_symbol_ref[i]))
1859 {
60141df0 1860 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
6132c0d0 1861 GET_MODE (reg));
1862 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1863 use (set (reg) (reg)) instead.
1864 We don't delete this insn, nor do we convert it into a
1865 note, to avoid losing register notes or the return
1866 value flag. jump2 already knows how to get rid of
1867 no-op moves. */
1868 if (new_src == const0_rtx)
1869 {
c9a03487 1870 init_costs_to_zero (&mincst);
6132c0d0 1871 min_regno = i;
1872 break;
1873 }
1874 else
1875 {
c9a03487 1876 XEXP (plus_expr, 1) = new_src;
b72d459f 1877 get_full_set_rtx_cost (pat, &newcst);
c9a03487 1878
1879 if (costs_lt_p (&newcst, &mincst, speed))
6132c0d0 1880 {
c9a03487 1881 mincst = newcst;
6132c0d0 1882 min_regno = i;
1883 }
1884 }
1885 }
c9a03487 1886 SET_SRC (pat) = src;
6132c0d0 1887
c9a03487 1888 if (costs_lt_p (&mincst, &oldcst, speed))
6132c0d0 1889 {
1890 rtx tem;
1891
1892 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1893 if (i != min_regno)
1894 {
60141df0 1895 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
6132c0d0 1896 GET_MODE (reg));
1897 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1898 }
d83ccc81 1899 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1900 changed = true;
6132c0d0 1901 }
1902 reg_set_luid[regno] = move2add_luid;
b6b86e87 1903 move2add_record_sym_value (reg, sym, off);
d83ccc81 1904 return changed;
6132c0d0 1905}
1906
d83ccc81 1907/* Convert move insns with constant inputs to additions if they are cheaper.
1908 Return true if any changes were made. */
1909static bool
3aeaa53f 1910reload_cse_move2add (rtx_insn *first)
8f8cadbc 1911{
1912 int i;
3aeaa53f 1913 rtx_insn *insn;
d83ccc81 1914 bool changed = false;
8f8cadbc 1915
1916 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
6132c0d0 1917 {
1918 reg_set_luid[i] = 0;
1919 reg_offset[i] = 0;
1920 reg_base_reg[i] = 0;
1921 reg_symbol_ref[i] = NULL_RTX;
1922 reg_mode[i] = VOIDmode;
1923 }
8f8cadbc 1924
1925 move2add_last_label_luid = 0;
1926 move2add_luid = 2;
1927 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1928 {
1929 rtx pat, note;
1930
6d7dc5b9 1931 if (LABEL_P (insn))
8f8cadbc 1932 {
1933 move2add_last_label_luid = move2add_luid;
1934 /* We're going to increment move2add_luid twice after a
1935 label, so that we can use move2add_last_label_luid + 1 as
1936 the luid for constants. */
1937 move2add_luid++;
1938 continue;
1939 }
1940 if (! INSN_P (insn))
1941 continue;
1942 pat = PATTERN (insn);
1943 /* For simplicity, we only perform this optimization on
1944 straightforward SETs. */
1945 if (GET_CODE (pat) == SET
8ad4c111 1946 && REG_P (SET_DEST (pat)))
8f8cadbc 1947 {
1948 rtx reg = SET_DEST (pat);
1949 int regno = REGNO (reg);
1950 rtx src = SET_SRC (pat);
1951
1952 /* Check if we have valid information on the contents of this
1953 register in the mode of REG. */
b6b86e87 1954 if (move2add_valid_value_p (regno, GET_MODE (reg))
3072d30e 1955 && dbg_cnt (cse2_move2add))
8f8cadbc 1956 {
1957 /* Try to transform (set (REGX) (CONST_INT A))
1958 ...
1959 (set (REGX) (CONST_INT B))
1960 to
1961 (set (REGX) (CONST_INT A))
1962 ...
1963 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1964 or
1965 (set (REGX) (CONST_INT A))
1966 ...
1967 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1968 */
1969
6132c0d0 1970 if (CONST_INT_P (src)
1971 && reg_base_reg[regno] < 0
1972 && reg_symbol_ref[regno] == NULL_RTX)
8f8cadbc 1973 {
d83ccc81 1974 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
8f8cadbc 1975 continue;
1976 }
1977
1978 /* Try to transform (set (REGX) (REGY))
1979 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1980 ...
1981 (set (REGX) (REGY))
1982 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1983 to
1984 (set (REGX) (REGY))
1985 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1986 ...
1987 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
8ad4c111 1988 else if (REG_P (src)
8f8cadbc 1989 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1990 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
b6b86e87 1991 && move2add_valid_value_p (REGNO (src), GET_MODE (reg)))
8f8cadbc 1992 {
3aeaa53f 1993 rtx_insn *next = next_nonnote_nondebug_insn (insn);
8f8cadbc 1994 rtx set = NULL_RTX;
1995 if (next)
1996 set = single_set (next);
1997 if (set
1998 && SET_DEST (set) == reg
1999 && GET_CODE (SET_SRC (set)) == PLUS
2000 && XEXP (SET_SRC (set), 0) == reg
971ba038 2001 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
8f8cadbc 2002 {
2003 rtx src3 = XEXP (SET_SRC (set), 1);
60141df0 2004 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
8f8cadbc 2005 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
2006 HOST_WIDE_INT regno_offset = reg_offset[regno];
2007 rtx new_src =
69e41517 2008 gen_int_mode (added_offset
2009 + base_offset
2010 - regno_offset,
2011 GET_MODE (reg));
f529eb25 2012 bool success = false;
2013 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
8f8cadbc 2014
2015 if (new_src == const0_rtx)
2016 /* See above why we create (set (reg) (reg)) here. */
2017 success
2018 = validate_change (next, &SET_SRC (set), reg, 0);
c9a03487 2019 else
8f8cadbc 2020 {
c9a03487 2021 rtx old_src = SET_SRC (set);
2022 struct full_rtx_costs oldcst, newcst;
2023 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
2024
b72d459f 2025 get_full_set_rtx_cost (set, &oldcst);
c9a03487 2026 SET_SRC (set) = tem;
7013e87c 2027 get_full_set_src_cost (tem, &newcst);
c9a03487 2028 SET_SRC (set) = old_src;
2029 costs_add_n_insns (&oldcst, 1);
2030
2031 if (costs_lt_p (&newcst, &oldcst, speed)
2032 && have_add2_insn (reg, new_src))
2033 {
2034 rtx newpat = gen_rtx_SET (VOIDmode, reg, tem);
2035 success
2036 = validate_change (next, &PATTERN (next),
2037 newpat, 0);
2038 }
8f8cadbc 2039 }
2040 if (success)
2041 delete_insn (insn);
d83ccc81 2042 changed |= success;
8f8cadbc 2043 insn = next;
b6b86e87 2044 move2add_record_mode (reg);
2045 reg_offset[regno]
2046 = trunc_int_for_mode (added_offset + base_offset,
2047 GET_MODE (reg));
8f8cadbc 2048 continue;
2049 }
2050 }
2051 }
6132c0d0 2052
2053 /* Try to transform
2054 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2055 ...
2056 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2057 to
2058 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2059 ...
2060 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2061 if ((GET_CODE (src) == SYMBOL_REF
2062 || (GET_CODE (src) == CONST
2063 && GET_CODE (XEXP (src, 0)) == PLUS
2064 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2065 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2066 && dbg_cnt (cse2_move2add))
2067 {
2068 rtx sym, off;
2069
2070 if (GET_CODE (src) == SYMBOL_REF)
2071 {
2072 sym = src;
2073 off = const0_rtx;
2074 }
2075 else
2076 {
2077 sym = XEXP (XEXP (src, 0), 0);
2078 off = XEXP (XEXP (src, 0), 1);
2079 }
2080
2081 /* If the reg already contains the value which is sum of
2082 sym and some constant value, we can use an add2 insn. */
b6b86e87 2083 if (move2add_valid_value_p (regno, GET_MODE (reg))
6132c0d0 2084 && reg_base_reg[regno] < 0
2085 && reg_symbol_ref[regno] != NULL_RTX
2086 && rtx_equal_p (sym, reg_symbol_ref[regno]))
d83ccc81 2087 changed |= move2add_use_add2_insn (reg, sym, off, insn);
6132c0d0 2088
2089 /* Otherwise, we have to find a register whose value is sum
2090 of sym and some constant value. */
2091 else
d83ccc81 2092 changed |= move2add_use_add3_insn (reg, sym, off, insn);
6132c0d0 2093
2094 continue;
2095 }
8f8cadbc 2096 }
2097
2098 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2099 {
2100 if (REG_NOTE_KIND (note) == REG_INC
8ad4c111 2101 && REG_P (XEXP (note, 0)))
8f8cadbc 2102 {
2103 /* Reset the information about this register. */
2104 int regno = REGNO (XEXP (note, 0));
2105 if (regno < FIRST_PSEUDO_REGISTER)
b6b86e87 2106 {
2107 move2add_record_mode (XEXP (note, 0));
2108 reg_mode[regno] = VOIDmode;
2109 }
8f8cadbc 2110 }
2111 }
6132c0d0 2112 note_stores (PATTERN (insn), move2add_note_store, insn);
8f8cadbc 2113
2114 /* If INSN is a conditional branch, we try to extract an
2115 implicit set out of it. */
f222bc3b 2116 if (any_condjump_p (insn))
8f8cadbc 2117 {
2118 rtx cnd = fis_get_condition (insn);
2119
2120 if (cnd != NULL_RTX
2121 && GET_CODE (cnd) == NE
8ad4c111 2122 && REG_P (XEXP (cnd, 0))
f222bc3b 2123 && !reg_set_p (XEXP (cnd, 0), insn)
8f8cadbc 2124 /* The following two checks, which are also in
2125 move2add_note_store, are intended to reduce the
2126 number of calls to gen_rtx_SET to avoid memory
2127 allocation if possible. */
2128 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
67d6c12b 2129 && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
971ba038 2130 && CONST_INT_P (XEXP (cnd, 1)))
8f8cadbc 2131 {
2132 rtx implicit_set =
2133 gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
6132c0d0 2134 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
8f8cadbc 2135 }
2136 }
2137
2138 /* If this is a CALL_INSN, all call used registers are stored with
2139 unknown values. */
6d7dc5b9 2140 if (CALL_P (insn))
8f8cadbc 2141 {
2142 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2143 {
2144 if (call_used_regs[i])
2145 /* Reset the information about this register. */
b6b86e87 2146 reg_mode[i] = VOIDmode;
8f8cadbc 2147 }
2148 }
2149 }
d83ccc81 2150 return changed;
8f8cadbc 2151}
2152
6132c0d0 2153/* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2154 contains SET.
8f8cadbc 2155 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2156 Called from reload_cse_move2add via note_stores. */
2157
2158static void
6132c0d0 2159move2add_note_store (rtx dst, const_rtx set, void *data)
8f8cadbc 2160{
3aeaa53f 2161 rtx_insn *insn = (rtx_insn *) data;
8f8cadbc 2162 unsigned int regno = 0;
8f8cadbc 2163 enum machine_mode mode = GET_MODE (dst);
2164
8f8cadbc 2165 /* Some targets do argument pushes without adding REG_INC notes. */
2166
e16ceb8e 2167 if (MEM_P (dst))
8f8cadbc 2168 {
2169 dst = XEXP (dst, 0);
2170 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2171 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
b6b86e87 2172 reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
8f8cadbc 2173 return;
2174 }
8f8cadbc 2175
b6b86e87 2176 if (GET_CODE (dst) == SUBREG)
2177 regno = subreg_regno (dst);
2178 else if (REG_P (dst))
2179 regno = REGNO (dst);
2180 else
2181 return;
8f8cadbc 2182
b6b86e87 2183 if (SCALAR_INT_MODE_P (mode)
2184 && GET_CODE (set) == SET)
6132c0d0 2185 {
2186 rtx note, sym = NULL_RTX;
b6b86e87 2187 rtx off;
6132c0d0 2188
2189 note = find_reg_equal_equiv_note (insn);
2190 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2191 {
2192 sym = XEXP (note, 0);
b6b86e87 2193 off = const0_rtx;
6132c0d0 2194 }
2195 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2196 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2197 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2198 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2199 {
2200 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
b6b86e87 2201 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
6132c0d0 2202 }
2203
2204 if (sym != NULL_RTX)
2205 {
b6b86e87 2206 move2add_record_sym_value (dst, sym, off);
6132c0d0 2207 return;
2208 }
2209 }
2210
b6b86e87 2211 if (SCALAR_INT_MODE_P (mode)
2212 && GET_CODE (set) == SET
8f8cadbc 2213 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
8f8cadbc 2214 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2215 {
2216 rtx src = SET_SRC (set);
2217 rtx base_reg;
60141df0 2218 unsigned HOST_WIDE_INT offset;
8f8cadbc 2219 int base_regno;
8f8cadbc 2220
2221 switch (GET_CODE (src))
2222 {
2223 case PLUS:
8ad4c111 2224 if (REG_P (XEXP (src, 0)))
8f8cadbc 2225 {
2226 base_reg = XEXP (src, 0);
2227
971ba038 2228 if (CONST_INT_P (XEXP (src, 1)))
60141df0 2229 offset = UINTVAL (XEXP (src, 1));
8ad4c111 2230 else if (REG_P (XEXP (src, 1))
b6b86e87 2231 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
8f8cadbc 2232 {
c389f975 2233 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2234 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
8f8cadbc 2235 offset = reg_offset[REGNO (XEXP (src, 1))];
2236 /* Maybe the first register is known to be a
2237 constant. */
b6b86e87 2238 else if (move2add_valid_value_p (REGNO (base_reg), mode)
c389f975 2239 && reg_base_reg[REGNO (base_reg)] < 0
2240 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
8f8cadbc 2241 {
2242 offset = reg_offset[REGNO (base_reg)];
2243 base_reg = XEXP (src, 1);
2244 }
2245 else
2246 goto invalidate;
2247 }
2248 else
2249 goto invalidate;
2250
2251 break;
2252 }
2253
2254 goto invalidate;
2255
2256 case REG:
2257 base_reg = src;
2258 offset = 0;
2259 break;
2260
2261 case CONST_INT:
2262 /* Start tracking the register as a constant. */
2263 reg_base_reg[regno] = -1;
6132c0d0 2264 reg_symbol_ref[regno] = NULL_RTX;
8f8cadbc 2265 reg_offset[regno] = INTVAL (SET_SRC (set));
2266 /* We assign the same luid to all registers set to constants. */
2267 reg_set_luid[regno] = move2add_last_label_luid + 1;
b6b86e87 2268 move2add_record_mode (dst);
8f8cadbc 2269 return;
2270
2271 default:
b6b86e87 2272 goto invalidate;
8f8cadbc 2273 }
2274
2275 base_regno = REGNO (base_reg);
2276 /* If information about the base register is not valid, set it
2277 up as a new base register, pretending its value is known
2278 starting from the current insn. */
b6b86e87 2279 if (!move2add_valid_value_p (base_regno, mode))
8f8cadbc 2280 {
2281 reg_base_reg[base_regno] = base_regno;
6132c0d0 2282 reg_symbol_ref[base_regno] = NULL_RTX;
8f8cadbc 2283 reg_offset[base_regno] = 0;
2284 reg_set_luid[base_regno] = move2add_luid;
b6b86e87 2285 gcc_assert (GET_MODE (base_reg) == mode);
2286 move2add_record_mode (base_reg);
8f8cadbc 2287 }
8f8cadbc 2288
2289 /* Copy base information from our base register. */
2290 reg_set_luid[regno] = reg_set_luid[base_regno];
2291 reg_base_reg[regno] = reg_base_reg[base_regno];
6132c0d0 2292 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
8f8cadbc 2293
2294 /* Compute the sum of the offsets or constants. */
b6b86e87 2295 reg_offset[regno]
2296 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2297
2298 move2add_record_mode (dst);
8f8cadbc 2299 }
2300 else
2301 {
b6b86e87 2302 invalidate:
2303 /* Invalidate the contents of the register. */
2304 move2add_record_mode (dst);
2305 reg_mode[regno] = VOIDmode;
8f8cadbc 2306 }
2307}
77fce4cd 2308\f
cbe8bda8 2309namespace {
2310
2311const pass_data pass_data_postreload_cse =
77fce4cd 2312{
cbe8bda8 2313 RTL_PASS, /* type */
2314 "postreload", /* name */
2315 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 2316 TV_RELOAD_CSE_REGS, /* tv_id */
2317 0, /* properties_required */
2318 0, /* properties_provided */
2319 0, /* properties_destroyed */
2320 0, /* todo_flags_start */
8b88439e 2321 TODO_df_finish, /* todo_flags_finish */
77fce4cd 2322};
cbe8bda8 2323
2324class pass_postreload_cse : public rtl_opt_pass
2325{
2326public:
9af5ce0c 2327 pass_postreload_cse (gcc::context *ctxt)
2328 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
cbe8bda8 2329 {}
2330
2331 /* opt_pass methods: */
31315c24 2332 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2333
65b0537f 2334 virtual unsigned int execute (function *);
cbe8bda8 2335
2336}; // class pass_postreload_cse
2337
65b0537f 2338unsigned int
2339pass_postreload_cse::execute (function *fun)
2340{
2341 if (!dbg_cnt (postreload_cse))
2342 return 0;
2343
2344 /* Do a very simple CSE pass over just the hard registers. */
2345 reload_cse_regs (get_insns ());
2346 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2347 Remove any EH edges associated with them. */
2348 if (fun->can_throw_non_call_exceptions
2349 && purge_all_dead_edges ())
2350 cleanup_cfg (0);
2351
2352 return 0;
2353}
2354
cbe8bda8 2355} // anon namespace
2356
2357rtl_opt_pass *
2358make_pass_postreload_cse (gcc::context *ctxt)
2359{
2360 return new pass_postreload_cse (ctxt);
2361}