]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/predict.c
Put the CL into the right dir.
[thirdparty/gcc.git] / gcc / predict.c
CommitLineData
59423b59 1/* Branch prediction routines for the GNU compiler.
fbd26352 2 Copyright (C) 2000-2019 Free Software Foundation, Inc.
59423b59 3
e6751e9a 4This file is part of GCC.
59423b59 5
e6751e9a 6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8c4c00c1 8Software Foundation; either version 3, or (at your option) any later
e6751e9a 9version.
59423b59 10
e6751e9a 11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
59423b59 15
e6751e9a 16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
59423b59 19
20/* References:
21
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
04641143 27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
59423b59 28
29
30#include "config.h"
31#include "system.h"
805e22b2 32#include "coretypes.h"
9ef16211 33#include "backend.h"
7c29e30e 34#include "rtl.h"
59423b59 35#include "tree.h"
9ef16211 36#include "gimple.h"
7c29e30e 37#include "cfghooks.h"
38#include "tree-pass.h"
9ef16211 39#include "ssa.h"
ad7b10a2 40#include "memmodel.h"
7c29e30e 41#include "emit-rtl.h"
7c29e30e 42#include "cgraph.h"
43#include "coverage.h"
44#include "diagnostic-core.h"
45#include "gimple-predict.h"
b20a8bb4 46#include "fold-const.h"
9ed99284 47#include "calls.h"
94ea8568 48#include "cfganal.h"
886c1262 49#include "profile.h"
e9d7220b 50#include "sreal.h"
429fa7fa 51#include "params.h"
862be747 52#include "cfgloop.h"
dcf1a1ec 53#include "gimple-iterator.h"
073c1fd5 54#include "tree-cfg.h"
05d9c18a 55#include "tree-ssa-loop-niter.h"
073c1fd5 56#include "tree-ssa-loop.h"
d27b0b64 57#include "tree-scalar-evolution.h"
89beffc9 58#include "ipa-utils.h"
cbcc4297 59#include "gimple-pretty-print.h"
71e39b3b 60#include "selftest.h"
720cfc43 61#include "cfgrtl.h"
30a86690 62#include "stringpool.h"
63#include "attribs.h"
56ff4880 64
3f76cceb 65/* Enum with reasons why a predictor is ignored. */
66
67enum predictor_reason
68{
abb2c3fe 69 REASON_NONE,
70 REASON_IGNORED,
71 REASON_SINGLE_EDGE_DUPLICATE,
72 REASON_EDGE_PAIR_DUPLICATE
3f76cceb 73};
74
75/* String messages for the aforementioned enum. */
76
77static const char *reason_messages[] = {"", " (ignored)",
78 " (single edge duplicate)", " (edge pair duplicate)"};
79
2e3c56e8 80/* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
81 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
8201d1f6 82static sreal real_almost_one, real_br_prob_base,
e9d7220b 83 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
59423b59 84
ee5f6585 85static void combine_predictions_for_insn (rtx_insn *, basic_block);
3f76cceb 86static void dump_prediction (FILE *, enum br_predictor, int, basic_block,
87 enum predictor_reason, edge);
e09883e4 88static void predict_paths_leading_to (basic_block, enum br_predictor,
89 enum prediction,
2e966e2a 90 class loop *in_loop = NULL);
e09883e4 91static void predict_paths_leading_to_edge (edge, enum br_predictor,
92 enum prediction,
2e966e2a 93 class loop *in_loop = NULL);
ee5f6585 94static bool can_predict_insn_p (const rtx_insn *);
01107f42 95static HOST_WIDE_INT get_predictor_value (br_predictor, HOST_WIDE_INT);
63c3361d 96static void determine_unlikely_bbs ();
5e96f51e 97
13488c51 98/* Information we hold about each branch predictor.
99 Filled using information from predict.def. */
e6751e9a 100
13488c51 101struct predictor_info
5e96f51e 102{
e99c3a1d 103 const char *const name; /* Name used in the debugging dumps. */
104 const int hitrate; /* Expected hitrate used by
105 predict_insn_def call. */
106 const int flags;
13488c51 107};
5e96f51e 108
eb429644 109/* Use given predictor without Dempster-Shaffer theory if it matches
110 using first_match heuristics. */
111#define PRED_FLAG_FIRST_MATCH 1
112
113/* Recompute hitrate in percent to our representation. */
114
e6751e9a 115#define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
eb429644 116
117#define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
e6751e9a 118static const struct predictor_info predictor_info[]= {
13488c51 119#include "predict.def"
120
aa40f561 121 /* Upper bound on predictors. */
eb429644 122 {NULL, 0, 0}
13488c51 123};
124#undef DEF_PREDICTOR
429fa7fa 125
9e179a64 126static gcov_type min_count = -1;
127
128/* Determine the threshold for hot BB counts. */
129
130gcov_type
131get_hot_bb_threshold ()
132{
9e179a64 133 if (min_count == -1)
134 {
13293fb2 135 const int hot_frac = PARAM_VALUE (HOT_BB_COUNT_FRACTION);
136 const gcov_type min_hot_count
137 = hot_frac
138 ? profile_info->sum_max / hot_frac
139 : (gcov_type)profile_count::max_count;
140 set_hot_bb_threshold (min_hot_count);
56621355 141 if (dump_file)
142 fprintf (dump_file, "Setting hotness threshold to %" PRId64 ".\n",
13293fb2 143 min_hot_count);
9e179a64 144 }
145 return min_count;
146}
147
148/* Set the threshold for hot BB counts. */
149
150void
151set_hot_bb_threshold (gcov_type min)
152{
153 min_count = min;
154}
155
8070b8d5 156/* Return TRUE if COUNT is considered to be hot in function FUN. */
f29b326e 157
94bed7c3 158bool
205ce1aa 159maybe_hot_count_p (struct function *fun, profile_count count)
f29b326e 160{
db9cef39 161 if (!count.initialized_p ())
f29b326e 162 return true;
205ce1aa 163 if (count.ipa () == profile_count::zero ())
164 return false;
688b6bc6 165 if (!count.ipa_p ())
166 {
167 struct cgraph_node *node = cgraph_node::get (fun->decl);
168 if (!profile_info || profile_status_for_fn (fun) != PROFILE_READ)
169 {
170 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
171 return false;
172 if (node->frequency == NODE_FREQUENCY_HOT)
173 return true;
174 }
175 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
176 return true;
177 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
178 && count < (ENTRY_BLOCK_PTR_FOR_FN (fun)->count.apply_scale (2, 3)))
179 return false;
688b6bc6 180 if (count.apply_scale (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION), 1)
181 < ENTRY_BLOCK_PTR_FOR_FN (fun)->count)
182 return false;
183 return true;
184 }
f29b326e 185 /* Code executed at most once is not hot. */
db9cef39 186 if (count <= MAX (profile_info ? profile_info->runs : 1, 1))
f29b326e 187 return false;
db9cef39 188 return (count.to_gcov_type () >= get_hot_bb_threshold ());
f29b326e 189}
190
8070b8d5 191/* Return true if basic block BB of function FUN can be CPU intensive
192 and should thus be optimized for maximum performance. */
429fa7fa 193
194bool
8d672d12 195maybe_hot_bb_p (struct function *fun, const_basic_block bb)
429fa7fa 196{
8d672d12 197 gcc_checking_assert (fun);
205ce1aa 198 return maybe_hot_count_p (fun, bb->count);
eb7df8c2 199}
200
8070b8d5 201/* Return true if edge E can be CPU intensive and should thus be optimized
202 for maximum performance. */
eb7df8c2 203
204bool
205maybe_hot_edge_p (edge e)
206{
205ce1aa 207 return maybe_hot_count_p (cfun, e->count ());
429fa7fa 208}
209
8070b8d5 210/* Return true if COUNT is considered to be never executed in function FUN
211 or if function FUN is considered so in the static profile. */
dcc9b351 212
213static bool
8070b8d5 214probably_never_executed (struct function *fun, profile_count count)
429fa7fa 215{
8d672d12 216 gcc_checking_assert (fun);
5b94633f 217 if (count.ipa () == profile_count::zero ())
f08c22c4 218 return true;
f12452a9 219 /* Do not trust adjusted counts. This will make us to drop int cold section
220 code with low execution count as a result of inlining. These low counts
221 are not safe even with read profile and may lead us to dropping
222 code which actually gets executed into cold section of binary that is not
223 desirable. */
224 if (count.precise_p () && profile_status_for_fn (fun) == PROFILE_READ)
4befb9f4 225 {
8070b8d5 226 const int unlikely_frac = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
227 if (count.apply_scale (unlikely_frac, 1) >= profile_info->runs)
4befb9f4 228 return false;
4befb9f4 229 return true;
230 }
a74a34e6 231 if ((!profile_info || profile_status_for_fn (fun) != PROFILE_READ)
415d1b9a 232 && (cgraph_node::get (fun->decl)->frequency
fd6a3c41 233 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
5de92639 234 return true;
429fa7fa 235 return false;
236}
237
8070b8d5 238/* Return true if basic block BB of function FUN is probably never executed. */
dcc9b351 239
240bool
241probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
242{
205ce1aa 243 return probably_never_executed (fun, bb->count);
dcc9b351 244}
245
8070b8d5 246/* Return true if edge E is unlikely executed for obvious reasons. */
655af1f9 247
248static bool
249unlikely_executed_edge_p (edge e)
250{
ea5d3981 251 return (e->count () == profile_count::zero ()
ca69b069 252 || e->probability == profile_probability::never ())
655af1f9 253 || (e->flags & (EDGE_EH | EDGE_FAKE));
254}
255
8070b8d5 256/* Return true if edge E of function FUN is probably never executed. */
80adc5a6 257
258bool
259probably_never_executed_edge_p (struct function *fun, edge e)
429fa7fa 260{
ca69b069 261 if (unlikely_executed_edge_p (e))
262 return true;
205ce1aa 263 return probably_never_executed (fun, e->count ());
429fa7fa 264}
265
8070b8d5 266/* Return true if function FUN should always be optimized for size. */
cf262be9 267
268bool
269optimize_function_for_size_p (struct function *fun)
270{
cf262be9 271 if (!fun || !fun->decl)
69ad6a32 272 return optimize_size;
415d1b9a 273 cgraph_node *n = cgraph_node::get (fun->decl);
274 return n && n->optimize_for_size_p ();
cf262be9 275}
276
8070b8d5 277/* Return true if function FUN should always be optimized for speed. */
533af0db 278
279bool
280optimize_function_for_speed_p (struct function *fun)
281{
282 return !optimize_function_for_size_p (fun);
7dfb44a0 283}
284
8070b8d5 285/* Return the optimization type that should be used for function FUN. */
acdfe9e0 286
287optimization_type
288function_optimization_type (struct function *fun)
289{
290 return (optimize_function_for_speed_p (fun)
291 ? OPTIMIZE_FOR_SPEED
292 : OPTIMIZE_FOR_SIZE);
293}
294
8070b8d5 295/* Return TRUE if basic block BB should be optimized for size. */
7dfb44a0 296
297bool
94ba1cf1 298optimize_bb_for_size_p (const_basic_block bb)
7dfb44a0 299{
b9ea678c 300 return (optimize_function_for_size_p (cfun)
301 || (bb && !maybe_hot_bb_p (cfun, bb)));
7dfb44a0 302}
303
8070b8d5 304/* Return TRUE if basic block BB should be optimized for speed. */
7dfb44a0 305
306bool
94ba1cf1 307optimize_bb_for_speed_p (const_basic_block bb)
7dfb44a0 308{
309 return !optimize_bb_for_size_p (bb);
310}
311
8070b8d5 312/* Return the optimization type that should be used for basic block BB. */
acdfe9e0 313
314optimization_type
315bb_optimization_type (const_basic_block bb)
316{
317 return (optimize_bb_for_speed_p (bb)
318 ? OPTIMIZE_FOR_SPEED
319 : OPTIMIZE_FOR_SIZE);
320}
321
8070b8d5 322/* Return TRUE if edge E should be optimized for size. */
7dfb44a0 323
324bool
325optimize_edge_for_size_p (edge e)
326{
533af0db 327 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
7dfb44a0 328}
329
8070b8d5 330/* Return TRUE if edge E should be optimized for speed. */
7dfb44a0 331
332bool
333optimize_edge_for_speed_p (edge e)
334{
335 return !optimize_edge_for_size_p (e);
336}
337
8070b8d5 338/* Return TRUE if the current function is optimized for size. */
7dfb44a0 339
340bool
341optimize_insn_for_size_p (void)
342{
533af0db 343 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
7dfb44a0 344}
345
8070b8d5 346/* Return TRUE if the current function is optimized for speed. */
7dfb44a0 347
348bool
349optimize_insn_for_speed_p (void)
350{
351 return !optimize_insn_for_size_p ();
352}
353
8070b8d5 354/* Return TRUE if LOOP should be optimized for size. */
94ba1cf1 355
356bool
2e966e2a 357optimize_loop_for_size_p (class loop *loop)
94ba1cf1 358{
359 return optimize_bb_for_size_p (loop->header);
360}
361
8070b8d5 362/* Return TRUE if LOOP should be optimized for speed. */
94ba1cf1 363
364bool
2e966e2a 365optimize_loop_for_speed_p (class loop *loop)
94ba1cf1 366{
367 return optimize_bb_for_speed_p (loop->header);
368}
369
8070b8d5 370/* Return TRUE if nest rooted at LOOP should be optimized for speed. */
0bfd8d5c 371
372bool
2e966e2a 373optimize_loop_nest_for_speed_p (class loop *loop)
0bfd8d5c 374{
2e966e2a 375 class loop *l = loop;
0bfd8d5c 376 if (optimize_loop_for_speed_p (loop))
377 return true;
378 l = loop->inner;
53be41ae 379 while (l && l != loop)
0bfd8d5c 380 {
381 if (optimize_loop_for_speed_p (l))
382 return true;
383 if (l->inner)
384 l = l->inner;
385 else if (l->next)
386 l = l->next;
387 else
7baffbd3 388 {
389 while (l != loop && !l->next)
390 l = loop_outer (l);
391 if (l != loop)
392 l = l->next;
393 }
0bfd8d5c 394 }
395 return false;
396}
397
8070b8d5 398/* Return TRUE if nest rooted at LOOP should be optimized for size. */
0bfd8d5c 399
400bool
2e966e2a 401optimize_loop_nest_for_size_p (class loop *loop)
0bfd8d5c 402{
403 return !optimize_loop_nest_for_speed_p (loop);
404}
405
8070b8d5 406/* Return true if edge E is likely to be well predictable by branch
4a9d7ef7 407 predictor. */
408
409bool
410predictable_edge_p (edge e)
411{
720cfc43 412 if (!e->probability.initialized_p ())
4a9d7ef7 413 return false;
720cfc43 414 if ((e->probability.to_reg_br_prob_base ()
4a9d7ef7 415 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
720cfc43 416 || (REG_BR_PROB_BASE - e->probability.to_reg_br_prob_base ()
4a9d7ef7 417 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
418 return true;
419 return false;
420}
421
422
7dfb44a0 423/* Set RTL expansion for BB profile. */
424
425void
426rtl_profile_for_bb (basic_block bb)
427{
8d672d12 428 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
7dfb44a0 429}
430
431/* Set RTL expansion for edge profile. */
432
433void
434rtl_profile_for_edge (edge e)
435{
436 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
437}
438
439/* Set RTL expansion to default mode (i.e. when profile info is not known). */
440void
441default_rtl_profile (void)
442{
443 crtl->maybe_hot_insn_p = true;
444}
445
cd0fe062 446/* Return true if the one of outgoing edges is already predicted by
447 PREDICTOR. */
448
4ee9c684 449bool
5493cb9a 450rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
cd0fe062 451{
452 rtx note;
5496dbfc 453 if (!INSN_P (BB_END (bb)))
cd0fe062 454 return false;
5496dbfc 455 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
cd0fe062 456 if (REG_NOTE_KIND (note) == REG_BR_PRED
457 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
458 return true;
459 return false;
460}
5e96f51e 461
eeb030c4 462/* Structure representing predictions in tree level. */
463
464struct edge_prediction {
465 struct edge_prediction *ep_next;
466 edge ep_edge;
467 enum br_predictor ep_predictor;
468 int ep_probability;
469};
470
06ecf488 471/* This map contains for a basic block the list of predictions for the
472 outgoing edges. */
473
474static hash_map<const_basic_block, edge_prediction *> *bb_predictions;
475
4ee9c684 476/* Return true if the one of outgoing edges is already predicted by
477 PREDICTOR. */
478
479bool
75a70cf9 480gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
4ee9c684 481{
7ea47fbd 482 struct edge_prediction *i;
06ecf488 483 edge_prediction **preds = bb_predictions->get (bb);
b3723726 484
485 if (!preds)
486 return false;
48e1416a 487
06ecf488 488 for (i = *preds; i; i = i->ep_next)
f45e9182 489 if (i->ep_predictor == predictor)
4ee9c684 490 return true;
491 return false;
492}
493
f6e0b8d0 494/* Return true if the one of outgoing edges is already predicted by
495 PREDICTOR for edge E predicted as TAKEN. */
496
497bool
498edge_predicted_by_p (edge e, enum br_predictor predictor, bool taken)
499{
500 struct edge_prediction *i;
501 basic_block bb = e->src;
502 edge_prediction **preds = bb_predictions->get (bb);
503 if (!preds)
504 return false;
505
506 int probability = predictor_info[(int) predictor].hitrate;
507
508 if (taken != TAKEN)
509 probability = REG_BR_PROB_BASE - probability;
510
511 for (i = *preds; i; i = i->ep_next)
512 if (i->ep_predictor == predictor
513 && i->ep_edge == e
514 && i->ep_probability == probability)
515 return true;
516 return false;
517}
518
b41438e5 519/* Same predicate as above, working on edges. */
520bool
7ecb5bb2 521edge_probability_reliable_p (const_edge e)
b41438e5 522{
61cb1816 523 return e->probability.probably_reliable_p ();
b41438e5 524}
525
526/* Same predicate as edge_probability_reliable_p, working on notes. */
527bool
7ecb5bb2 528br_prob_note_reliable_p (const_rtx note)
b41438e5 529{
530 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
61cb1816 531 return profile_probability::from_reg_br_prob_note
532 (XINT (note, 0)).probably_reliable_p ();
b41438e5 533}
534
aa157ca4 535static void
ee5f6585 536predict_insn (rtx_insn *insn, enum br_predictor predictor, int probability)
13488c51 537{
876760f6 538 gcc_assert (any_condjump_p (insn));
b28bedce 539 if (!flag_guess_branch_prob)
540 return;
e6751e9a 541
a1ddb869 542 add_reg_note (insn, REG_BR_PRED,
543 gen_rtx_CONCAT (VOIDmode,
544 GEN_INT ((int) predictor),
545 GEN_INT ((int) probability)));
13488c51 546}
547
548/* Predict insn by given predictor. */
e6751e9a 549
13488c51 550void
ee5f6585 551predict_insn_def (rtx_insn *insn, enum br_predictor predictor,
d598ad0d 552 enum prediction taken)
13488c51 553{
554 int probability = predictor_info[(int) predictor].hitrate;
8d7738e1 555 gcc_assert (probability != PROB_UNINITIALIZED);
e6751e9a 556
13488c51 557 if (taken != TAKEN)
558 probability = REG_BR_PROB_BASE - probability;
e6751e9a 559
13488c51 560 predict_insn (insn, predictor, probability);
5e96f51e 561}
562
563/* Predict edge E with given probability if possible. */
e6751e9a 564
13488c51 565void
4ee9c684 566rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
5e96f51e 567{
ee5f6585 568 rtx_insn *last_insn;
5496dbfc 569 last_insn = BB_END (e->src);
5e96f51e 570
571 /* We can store the branch prediction information only about
572 conditional jumps. */
573 if (!any_condjump_p (last_insn))
574 return;
575
576 /* We always store probability of branching. */
577 if (e->flags & EDGE_FALLTHRU)
578 probability = REG_BR_PROB_BASE - probability;
579
13488c51 580 predict_insn (last_insn, predictor, probability);
581}
582
4ee9c684 583/* Predict edge E with the given PROBABILITY. */
584void
75a70cf9 585gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
4ee9c684 586{
2d9e68f0 587 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
588 && EDGE_COUNT (e->src->succs) > 1
589 && flag_guess_branch_prob
590 && optimize)
ebd65d12 591 {
b3723726 592 struct edge_prediction *i = XNEW (struct edge_prediction);
06ecf488 593 edge_prediction *&preds = bb_predictions->get_or_insert (e->src);
4ee9c684 594
06ecf488 595 i->ep_next = preds;
596 preds = i;
f45e9182 597 i->ep_probability = probability;
598 i->ep_predictor = predictor;
599 i->ep_edge = e;
ebd65d12 600 }
4ee9c684 601}
602
3651d60e 603/* Filter edge predictions PREDS by a function FILTER. DATA are passed
604 to the filter function. */
605
631fa7de 606void
3651d60e 607filter_predictions (edge_prediction **preds,
608 bool (*filter) (edge_prediction *, void *), void *data)
631fa7de 609{
b3723726 610 if (!bb_predictions)
611 return;
612
b3723726 613 if (preds)
631fa7de 614 {
06ecf488 615 struct edge_prediction **prediction = preds;
b3723726 616 struct edge_prediction *next;
617
631fa7de 618 while (*prediction)
619 {
3651d60e 620 if ((*filter) (*prediction, data))
621 prediction = &((*prediction)->ep_next);
622 else
b3723726 623 {
624 next = (*prediction)->ep_next;
625 free (*prediction);
626 *prediction = next;
627 }
631fa7de 628 }
629 }
630}
631
3651d60e 632/* Filter function predicate that returns true for a edge predicate P
633 if its edge is equal to DATA. */
634
635bool
636equal_edge_p (edge_prediction *p, void *data)
637{
638 return p->ep_edge == (edge)data;
639}
640
641/* Remove all predictions on given basic block that are attached
642 to edge E. */
643void
644remove_predictions_associated_with_edge (edge e)
645{
646 if (!bb_predictions)
647 return;
648
649 edge_prediction **preds = bb_predictions->get (e->src);
650 filter_predictions (preds, equal_edge_p, e);
651}
652
b3723726 653/* Clears the list of predictions stored for BB. */
654
655static void
656clear_bb_predictions (basic_block bb)
657{
06ecf488 658 edge_prediction **preds = bb_predictions->get (bb);
b3723726 659 struct edge_prediction *pred, *next;
660
661 if (!preds)
662 return;
663
06ecf488 664 for (pred = *preds; pred; pred = next)
b3723726 665 {
666 next = pred->ep_next;
667 free (pred);
668 }
669 *preds = NULL;
670}
671
1a12dac4 672/* Return true when we can store prediction on insn INSN.
673 At the moment we represent predictions only on conditional
674 jumps, not at computed jump or other complicated cases. */
675static bool
ee5f6585 676can_predict_insn_p (const rtx_insn *insn)
1a12dac4 677{
6d7dc5b9 678 return (JUMP_P (insn)
1a12dac4 679 && any_condjump_p (insn)
cd665a06 680 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
1a12dac4 681}
682
13488c51 683/* Predict edge E by given predictor if possible. */
e6751e9a 684
13488c51 685void
d598ad0d 686predict_edge_def (edge e, enum br_predictor predictor,
687 enum prediction taken)
13488c51 688{
689 int probability = predictor_info[(int) predictor].hitrate;
690
691 if (taken != TAKEN)
692 probability = REG_BR_PROB_BASE - probability;
e6751e9a 693
13488c51 694 predict_edge (e, predictor, probability);
695}
696
697/* Invert all branch predictions or probability notes in the INSN. This needs
698 to be done each time we invert the condition used by the jump. */
e6751e9a 699
13488c51 700void
d598ad0d 701invert_br_probabilities (rtx insn)
13488c51 702{
e6751e9a 703 rtx note;
704
705 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
706 if (REG_NOTE_KIND (note) == REG_BR_PROB)
61cb1816 707 XINT (note, 0) = profile_probability::from_reg_br_prob_note
708 (XINT (note, 0)).invert ().to_reg_br_prob_note ();
e6751e9a 709 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
710 XEXP (XEXP (note, 0), 1)
711 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
13488c51 712}
713
714/* Dump information about the branch prediction to the output file. */
e6751e9a 715
13488c51 716static void
4ee9c684 717dump_prediction (FILE *file, enum br_predictor predictor, int probability,
abb2c3fe 718 basic_block bb, enum predictor_reason reason = REASON_NONE,
3f76cceb 719 edge ep_edge = NULL)
13488c51 720{
3f76cceb 721 edge e = ep_edge;
cd665a06 722 edge_iterator ei;
13488c51 723
4ee9c684 724 if (!file)
13488c51 725 return;
726
3f76cceb 727 if (e == NULL)
728 FOR_EACH_EDGE (e, ei, bb->succs)
729 if (! (e->flags & EDGE_FALLTHRU))
730 break;
731
732 char edge_info_str[128];
733 if (ep_edge)
734 sprintf (edge_info_str, " of edge %d->%d", ep_edge->src->index,
735 ep_edge->dest->index);
736 else
737 edge_info_str[0] = '\0';
13488c51 738
cc647a3c 739 fprintf (file, " %s heuristics%s%s: %.2f%%",
13488c51 740 predictor_info[predictor].name,
3f76cceb 741 edge_info_str, reason_messages[reason],
742 probability * 100.0 / REG_BR_PROB_BASE);
13488c51 743
db9cef39 744 if (bb->count.initialized_p ())
17a81216 745 {
db9cef39 746 fprintf (file, " exec ");
747 bb->count.dump (file);
12c94d25 748 if (e)
749 {
db9cef39 750 fprintf (file, " hit ");
ea5d3981 751 e->count ().dump (file);
752 fprintf (file, " (%.1f%%)", e->count ().to_gcov_type() * 100.0
db9cef39 753 / bb->count.to_gcov_type ());
12c94d25 754 }
17a81216 755 }
e6751e9a 756
4ee9c684 757 fprintf (file, "\n");
041d9b52 758
759 /* Print output that be easily read by analyze_brprob.py script. We are
760 interested only in counts that are read from GCDA files. */
761 if (dump_file && (dump_flags & TDF_DETAILS)
762 && bb->count.precise_p ()
763 && reason == REASON_NONE)
764 {
765 gcc_assert (e->count ().precise_p ());
766 fprintf (file, ";;heuristics;%s;%" PRId64 ";%" PRId64 ";%.1f;\n",
767 predictor_info[predictor].name,
768 bb->count.to_gcov_type (), e->count ().to_gcov_type (),
769 probability * 100.0 / REG_BR_PROB_BASE);
770 }
13488c51 771}
772
f08c22c4 773/* Return true if STMT is known to be unlikely executed. */
774
775static bool
776unlikely_executed_stmt_p (gimple *stmt)
777{
778 if (!is_gimple_call (stmt))
779 return false;
23653b72 780 /* NORETURN attribute alone is not strong enough: exit() may be quite
f08c22c4 781 likely executed once during program run. */
782 if (gimple_call_fntype (stmt)
783 && lookup_attribute ("cold",
784 TYPE_ATTRIBUTES (gimple_call_fntype (stmt)))
785 && !lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl)))
786 return true;
787 tree decl = gimple_call_fndecl (stmt);
788 if (!decl)
789 return false;
790 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl))
791 && !lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl)))
792 return true;
793
794 cgraph_node *n = cgraph_node::get (decl);
795 if (!n)
796 return false;
1ccb310e 797
798 availability avail;
f08c22c4 799 n = n->ultimate_alias_target (&avail);
800 if (avail < AVAIL_AVAILABLE)
1ccb310e 801 return false;
f08c22c4 802 if (!n->analyzed
803 || n->decl == current_function_decl)
804 return false;
805 return n->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED;
806}
807
808/* Return true if BB is unlikely executed. */
809
810static bool
811unlikely_executed_bb_p (basic_block bb)
812{
813 if (bb->count == profile_count::zero ())
814 return true;
815 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun) || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
816 return false;
817 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
818 !gsi_end_p (gsi); gsi_next (&gsi))
819 {
820 if (unlikely_executed_stmt_p (gsi_stmt (gsi)))
821 return true;
822 if (stmt_can_terminate_bb_p (gsi_stmt (gsi)))
823 return false;
824 }
825 return false;
826}
827
f4d3c071 828/* We cannot predict the probabilities of outgoing edges of bb. Set them
3989f1fe 829 evenly and hope for the best. If UNLIKELY_EDGES is not null, distribute
830 even probability for all edges not mentioned in the set. These edges
44b41fe7 831 are given PROB_VERY_UNLIKELY probability. Similarly for LIKELY_EDGES,
832 if we have exactly one likely edge, make the other edges predicted
833 as not probable. */
3989f1fe 834
83c8a977 835static void
3989f1fe 836set_even_probabilities (basic_block bb,
44b41fe7 837 hash_set<edge> *unlikely_edges = NULL,
838 hash_set<edge_prediction *> *likely_edges = NULL)
83c8a977 839{
c7a0aa22 840 unsigned nedges = 0, unlikely_count = 0;
1cda36f6 841 edge e = NULL;
cd665a06 842 edge_iterator ei;
c7a0aa22 843 profile_probability all = profile_probability::always ();
83c8a977 844
cd665a06 845 FOR_EACH_EDGE (e, ei, bb->succs)
c7a0aa22 846 if (e->probability.initialized_p ())
847 all -= e->probability;
848 else if (!unlikely_executed_edge_p (e))
849 {
44b41fe7 850 nedges++;
c7a0aa22 851 if (unlikely_edges != NULL && unlikely_edges->contains (e))
852 {
853 all -= profile_probability::very_unlikely ();
854 unlikely_count++;
855 }
856 }
3989f1fe 857
858 /* Make the distribution even if all edges are unlikely. */
44b41fe7 859 unsigned likely_count = likely_edges ? likely_edges->elements () : 0;
3989f1fe 860 if (unlikely_count == nedges)
861 {
862 unlikely_edges = NULL;
863 unlikely_count = 0;
864 }
865
44b41fe7 866 /* If we have one likely edge, then use its probability and distribute
867 remaining probabilities as even. */
868 if (likely_count == 1)
869 {
870 FOR_EACH_EDGE (e, ei, bb->succs)
871 if (e->probability.initialized_p ())
872 ;
873 else if (!unlikely_executed_edge_p (e))
874 {
875 edge_prediction *prediction = *likely_edges->begin ();
876 int p = prediction->ep_probability;
877 profile_probability prob
878 = profile_probability::from_reg_br_prob_base (p);
44b41fe7 879
880 if (prediction->ep_edge == e)
881 e->probability = prob;
c914d1b3 882 else if (unlikely_edges != NULL && unlikely_edges->contains (e))
883 e->probability = profile_probability::very_unlikely ();
44b41fe7 884 else
79cbb1a8 885 {
886 profile_probability remainder = prob.invert ();
887 remainder -= profile_probability::very_unlikely ()
888 .apply_scale (unlikely_count, 1);
889 int count = nedges - unlikely_count - 1;
890 gcc_assert (count >= 0);
891
892 e->probability = remainder.apply_scale (1, count);
893 }
44b41fe7 894 }
3989f1fe 895 else
44b41fe7 896 e->probability = profile_probability::never ();
897 }
898 else
899 {
900 /* Make all unlikely edges unlikely and the rest will have even
901 probability. */
902 unsigned scale = nedges - unlikely_count;
903 FOR_EACH_EDGE (e, ei, bb->succs)
904 if (e->probability.initialized_p ())
905 ;
906 else if (!unlikely_executed_edge_p (e))
907 {
908 if (unlikely_edges != NULL && unlikely_edges->contains (e))
909 e->probability = profile_probability::very_unlikely ();
910 else
911 e->probability = all.apply_scale (1, scale);
912 }
913 else
914 e->probability = profile_probability::never ();
915 }
83c8a977 916}
917
61cb1816 918/* Add REG_BR_PROB note to JUMP with PROB. */
919
920void
921add_reg_br_prob_note (rtx_insn *jump, profile_probability prob)
922{
923 gcc_checking_assert (JUMP_P (jump) && !find_reg_note (jump, REG_BR_PROB, 0));
924 add_int_reg_note (jump, REG_BR_PROB, prob.to_reg_br_prob_note ());
925}
926
13488c51 927/* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
928 note if not already present. Remove now useless REG_BR_PRED notes. */
e6751e9a 929
13488c51 930static void
ee5f6585 931combine_predictions_for_insn (rtx_insn *insn, basic_block bb)
13488c51 932{
83c8a977 933 rtx prob_note;
934 rtx *pnote;
e6751e9a 935 rtx note;
13488c51 936 int best_probability = PROB_EVEN;
b9c74b4d 937 enum br_predictor best_predictor = END_PREDICTORS;
eb429644 938 int combined_probability = REG_BR_PROB_BASE / 2;
939 int d;
49d7c0db 940 bool first_match = false;
941 bool found = false;
13488c51 942
83c8a977 943 if (!can_predict_insn_p (insn))
944 {
945 set_even_probabilities (bb);
946 return;
947 }
948
949 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
950 pnote = &REG_NOTES (insn);
450d042a 951 if (dump_file)
952 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
b3d6de89 953 bb->index);
13488c51 954
955 /* We implement "first match" heuristics and use probability guessed
4ee9c684 956 by predictor with smallest index. */
e6751e9a 957 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
958 if (REG_NOTE_KIND (note) == REG_BR_PRED)
959 {
bc620c5c 960 enum br_predictor predictor = ((enum br_predictor)
961 INTVAL (XEXP (XEXP (note, 0), 0)));
e6751e9a 962 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
963
964 found = true;
19109630 965 if (best_predictor > predictor
966 && predictor_info[predictor].flags & PRED_FLAG_FIRST_MATCH)
e6751e9a 967 best_probability = probability, best_predictor = predictor;
968
969 d = (combined_probability * probability
970 + (REG_BR_PROB_BASE - combined_probability)
971 * (REG_BR_PROB_BASE - probability));
972
973 /* Use FP math to avoid overflows of 32bit integers. */
c4a616f2 974 if (d == 0)
975 /* If one probability is 0% and one 100%, avoid division by zero. */
976 combined_probability = REG_BR_PROB_BASE / 2;
977 else
978 combined_probability = (((double) combined_probability) * probability
979 * REG_BR_PROB_BASE / d + 0.5);
e6751e9a 980 }
981
982 /* Decide which heuristic to use. In case we didn't match anything,
983 use no_prediction heuristic, in case we did match, use either
49d7c0db 984 first match or Dempster-Shaffer theory depending on the flags. */
985
19109630 986 if (best_predictor != END_PREDICTORS)
49d7c0db 987 first_match = true;
988
989 if (!found)
4ee9c684 990 dump_prediction (dump_file, PRED_NO_PREDICTION,
3f76cceb 991 combined_probability, bb);
49d7c0db 992 else
993 {
19109630 994 if (!first_match)
995 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
996 bb, !first_match ? REASON_NONE : REASON_IGNORED);
997 else
998 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
999 bb, first_match ? REASON_NONE : REASON_IGNORED);
49d7c0db 1000 }
1001
1002 if (first_match)
eb429644 1003 combined_probability = best_probability;
3f76cceb 1004 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb);
49d7c0db 1005
1006 while (*pnote)
1007 {
1008 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
1009 {
bc620c5c 1010 enum br_predictor predictor = ((enum br_predictor)
1011 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
49d7c0db 1012 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
1013
4ee9c684 1014 dump_prediction (dump_file, predictor, probability, bb,
3f76cceb 1015 (!first_match || best_predictor == predictor)
abb2c3fe 1016 ? REASON_NONE : REASON_IGNORED);
195731ad 1017 *pnote = XEXP (*pnote, 1);
49d7c0db 1018 }
1019 else
195731ad 1020 pnote = &XEXP (*pnote, 1);
49d7c0db 1021 }
e6751e9a 1022
13488c51 1023 if (!prob_note)
1024 {
61cb1816 1025 profile_probability p
1026 = profile_probability::from_reg_br_prob_base (combined_probability);
1027 add_reg_br_prob_note (insn, p);
e6751e9a 1028
eb429644 1029 /* Save the prediction into CFG in case we are seeing non-degenerated
1030 conditional jump. */
ea091dfd 1031 if (!single_succ_p (bb))
eb429644 1032 {
61cb1816 1033 BRANCH_EDGE (bb)->probability = p;
e6751e9a 1034 FALLTHRU_EDGE (bb)->probability
720cfc43 1035 = BRANCH_EDGE (bb)->probability.invert ();
eb429644 1036 }
13488c51 1037 }
ea091dfd 1038 else if (!single_succ_p (bb))
d8c70625 1039 {
61cb1816 1040 profile_probability prob = profile_probability::from_reg_br_prob_note
1041 (XINT (prob_note, 0));
d8c70625 1042
61cb1816 1043 BRANCH_EDGE (bb)->probability = prob;
1044 FALLTHRU_EDGE (bb)->probability = prob.invert ();
d8c70625 1045 }
1046 else
720cfc43 1047 single_succ_edge (bb)->probability = profile_probability::always ();
5e96f51e 1048}
1049
3f76cceb 1050/* Edge prediction hash traits. */
1051
1052struct predictor_hash: pointer_hash <edge_prediction>
1053{
1054
1055 static inline hashval_t hash (const edge_prediction *);
1056 static inline bool equal (const edge_prediction *, const edge_prediction *);
1057};
1058
1059/* Calculate hash value of an edge prediction P based on predictor and
1060 normalized probability. */
1061
1062inline hashval_t
1063predictor_hash::hash (const edge_prediction *p)
1064{
1065 inchash::hash hstate;
1066 hstate.add_int (p->ep_predictor);
1067
1068 int prob = p->ep_probability;
1069 if (prob > REG_BR_PROB_BASE / 2)
1070 prob = REG_BR_PROB_BASE - prob;
1071
1072 hstate.add_int (prob);
1073
1074 return hstate.end ();
1075}
1076
1077/* Return true whether edge predictions P1 and P2 use the same predictor and
1078 have equal (or opposed probability). */
1079
1080inline bool
1081predictor_hash::equal (const edge_prediction *p1, const edge_prediction *p2)
1082{
1083 return (p1->ep_predictor == p2->ep_predictor
1084 && (p1->ep_probability == p2->ep_probability
1085 || p1->ep_probability == REG_BR_PROB_BASE - p2->ep_probability));
1086}
1087
1088struct predictor_hash_traits: predictor_hash,
1089 typed_noop_remove <edge_prediction *> {};
1090
1091/* Return true if edge prediction P is not in DATA hash set. */
1092
1093static bool
1094not_removed_prediction_p (edge_prediction *p, void *data)
1095{
1096 hash_set<edge_prediction *> *remove = (hash_set<edge_prediction *> *) data;
1097 return !remove->contains (p);
1098}
1099
1100/* Prune predictions for a basic block BB. Currently we do following
1101 clean-up steps:
1102
1103 1) remove duplicate prediction that is guessed with the same probability
1104 (different than 1/2) to both edge
1105 2) remove duplicates for a prediction that belongs with the same probability
1106 to a single edge
1107
1108 */
1109
1110static void
1111prune_predictions_for_bb (basic_block bb)
1112{
1113 edge_prediction **preds = bb_predictions->get (bb);
1114
1115 if (preds)
1116 {
1117 hash_table <predictor_hash_traits> s (13);
1118 hash_set <edge_prediction *> remove;
1119
1120 /* Step 1: identify predictors that should be removed. */
1121 for (edge_prediction *pred = *preds; pred; pred = pred->ep_next)
1122 {
1123 edge_prediction *existing = s.find (pred);
1124 if (existing)
1125 {
1126 if (pred->ep_edge == existing->ep_edge
1127 && pred->ep_probability == existing->ep_probability)
1128 {
1129 /* Remove a duplicate predictor. */
1130 dump_prediction (dump_file, pred->ep_predictor,
1131 pred->ep_probability, bb,
abb2c3fe 1132 REASON_SINGLE_EDGE_DUPLICATE, pred->ep_edge);
3f76cceb 1133
1134 remove.add (pred);
1135 }
1136 else if (pred->ep_edge != existing->ep_edge
1137 && pred->ep_probability == existing->ep_probability
1138 && pred->ep_probability != REG_BR_PROB_BASE / 2)
1139 {
1140 /* Remove both predictors as they predict the same
1141 for both edges. */
1142 dump_prediction (dump_file, existing->ep_predictor,
1143 pred->ep_probability, bb,
abb2c3fe 1144 REASON_EDGE_PAIR_DUPLICATE,
3f76cceb 1145 existing->ep_edge);
1146 dump_prediction (dump_file, pred->ep_predictor,
1147 pred->ep_probability, bb,
abb2c3fe 1148 REASON_EDGE_PAIR_DUPLICATE,
3f76cceb 1149 pred->ep_edge);
1150
1151 remove.add (existing);
1152 remove.add (pred);
1153 }
1154 }
1155
1156 edge_prediction **slot2 = s.find_slot (pred, INSERT);
1157 *slot2 = pred;
1158 }
1159
1160 /* Step 2: Remove predictors. */
1161 filter_predictions (preds, not_removed_prediction_p, &remove);
1162 }
1163}
1164
4ee9c684 1165/* Combine predictions into single probability and store them into CFG.
5a5f50e9 1166 Remove now useless prediction entries.
1167 If DRY_RUN is set, only produce dumps and do not modify profile. */
59423b59 1168
4ee9c684 1169static void
5a5f50e9 1170combine_predictions_for_bb (basic_block bb, bool dry_run)
59423b59 1171{
4ee9c684 1172 int best_probability = PROB_EVEN;
b9c74b4d 1173 enum br_predictor best_predictor = END_PREDICTORS;
4ee9c684 1174 int combined_probability = REG_BR_PROB_BASE / 2;
1175 int d;
1176 bool first_match = false;
1177 bool found = false;
1178 struct edge_prediction *pred;
1179 int nedges = 0;
1180 edge e, first = NULL, second = NULL;
cd665a06 1181 edge_iterator ei;
3f9a545c 1182 int nzero = 0;
1183 int nunknown = 0;
59423b59 1184
cd665a06 1185 FOR_EACH_EDGE (e, ei, bb->succs)
3f9a545c 1186 {
1187 if (!unlikely_executed_edge_p (e))
1188 {
1189 nedges ++;
1190 if (first && !second)
1191 second = e;
1192 if (!first)
1193 first = e;
1194 }
1195 else if (!e->probability.initialized_p ())
1196 e->probability = profile_probability::never ();
1197 if (!e->probability.initialized_p ())
1198 nunknown++;
1199 else if (e->probability == profile_probability::never ())
1200 nzero++;
1201 }
4ee9c684 1202
48e1416a 1203 /* When there is no successor or only one choice, prediction is easy.
4ee9c684 1204
3989f1fe 1205 When we have a basic block with more than 2 successors, the situation
1206 is more complicated as DS theory cannot be used literally.
1207 More precisely, let's assume we predicted edge e1 with probability p1,
1208 thus: m1({b1}) = p1. As we're going to combine more than 2 edges, we
1209 need to find probability of e.g. m1({b2}), which we don't know.
1210 The only approximation is to equally distribute 1-p1 to all edges
1211 different from b1.
1212
1213 According to numbers we've got from SPEC2006 benchark, there's only
1214 one interesting reliable predictor (noreturn call), which can be
1215 handled with a bit easier approach. */
4ee9c684 1216 if (nedges != 2)
1217 {
3989f1fe 1218 hash_set<edge> unlikely_edges (4);
44b41fe7 1219 hash_set<edge_prediction *> likely_edges (4);
3989f1fe 1220
1221 /* Identify all edges that have a probability close to very unlikely.
1222 Doing the approach for very unlikely doesn't worth for doing as
1223 there's no such probability in SPEC2006 benchmark. */
1224 edge_prediction **preds = bb_predictions->get (bb);
1225 if (preds)
1226 for (pred = *preds; pred; pred = pred->ep_next)
44b41fe7 1227 {
c914d1b3 1228 if (pred->ep_probability <= PROB_VERY_UNLIKELY
1229 || pred->ep_predictor == PRED_COLD_LABEL)
44b41fe7 1230 unlikely_edges.add (pred->ep_edge);
99e80969 1231 else if (pred->ep_probability >= PROB_VERY_LIKELY
1232 || pred->ep_predictor == PRED_BUILTIN_EXPECT
1233 || pred->ep_predictor == PRED_HOT_LABEL)
44b41fe7 1234 likely_edges.add (pred);
1235 }
3989f1fe 1236
99e80969 1237 /* It can happen that an edge is both in likely_edges and unlikely_edges.
1238 Clear both sets in that situation. */
1239 for (hash_set<edge_prediction *>::iterator it = likely_edges.begin ();
1240 it != likely_edges.end (); ++it)
1241 if (unlikely_edges.contains ((*it)->ep_edge))
1242 {
1243 likely_edges.empty ();
1244 unlikely_edges.empty ();
1245 break;
1246 }
1247
c7a0aa22 1248 if (!dry_run)
44b41fe7 1249 set_even_probabilities (bb, &unlikely_edges, &likely_edges);
b3723726 1250 clear_bb_predictions (bb);
3f5be5f4 1251 if (dump_file)
3989f1fe 1252 {
1253 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
9a78b979 1254 if (unlikely_edges.is_empty ())
3989f1fe 1255 fprintf (dump_file,
1256 "%i edges in bb %i predicted to even probabilities\n",
1257 nedges, bb->index);
1258 else
1259 {
1260 fprintf (dump_file,
1261 "%i edges in bb %i predicted with some unlikely edges\n",
1262 nedges, bb->index);
1263 FOR_EACH_EDGE (e, ei, bb->succs)
f08c22c4 1264 if (!unlikely_executed_edge_p (e))
720cfc43 1265 dump_prediction (dump_file, PRED_COMBINED,
1266 e->probability.to_reg_br_prob_base (), bb, REASON_NONE, e);
3989f1fe 1267 }
1268 }
4ee9c684 1269 return;
1270 }
1271
3f5be5f4 1272 if (dump_file)
1273 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
4ee9c684 1274
3f76cceb 1275 prune_predictions_for_bb (bb);
1276
06ecf488 1277 edge_prediction **preds = bb_predictions->get (bb);
3f76cceb 1278
b3723726 1279 if (preds)
4ee9c684 1280 {
b3723726 1281 /* We implement "first match" heuristics and use probability guessed
1282 by predictor with smallest index. */
06ecf488 1283 for (pred = *preds; pred; pred = pred->ep_next)
b3723726 1284 {
b9c74b4d 1285 enum br_predictor predictor = pred->ep_predictor;
b3723726 1286 int probability = pred->ep_probability;
4ee9c684 1287
b3723726 1288 if (pred->ep_edge != first)
1289 probability = REG_BR_PROB_BASE - probability;
4ee9c684 1290
b3723726 1291 found = true;
9f694a82 1292 /* First match heuristics would be widly confused if we predicted
1293 both directions. */
19109630 1294 if (best_predictor > predictor
1295 && predictor_info[predictor].flags & PRED_FLAG_FIRST_MATCH)
9f694a82 1296 {
1297 struct edge_prediction *pred2;
1298 int prob = probability;
1299
c83059be 1300 for (pred2 = (struct edge_prediction *) *preds;
1301 pred2; pred2 = pred2->ep_next)
9f694a82 1302 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
1303 {
9ae89a4e 1304 int probability2 = pred2->ep_probability;
9f694a82 1305
1306 if (pred2->ep_edge != first)
1307 probability2 = REG_BR_PROB_BASE - probability2;
1308
48e1416a 1309 if ((probability < REG_BR_PROB_BASE / 2) !=
9f694a82 1310 (probability2 < REG_BR_PROB_BASE / 2))
1311 break;
1312
1313 /* If the same predictor later gave better result, go for it! */
1314 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
1315 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
1316 prob = probability2;
1317 }
1318 if (!pred2)
1319 best_probability = prob, best_predictor = predictor;
1320 }
4ee9c684 1321
b3723726 1322 d = (combined_probability * probability
1323 + (REG_BR_PROB_BASE - combined_probability)
1324 * (REG_BR_PROB_BASE - probability));
4ee9c684 1325
b3723726 1326 /* Use FP math to avoid overflows of 32bit integers. */
1327 if (d == 0)
1328 /* If one probability is 0% and one 100%, avoid division by zero. */
1329 combined_probability = REG_BR_PROB_BASE / 2;
1330 else
1331 combined_probability = (((double) combined_probability)
1332 * probability
1333 * REG_BR_PROB_BASE / d + 0.5);
1334 }
4ee9c684 1335 }
1336
1337 /* Decide which heuristic to use. In case we didn't match anything,
1338 use no_prediction heuristic, in case we did match, use either
1339 first match or Dempster-Shaffer theory depending on the flags. */
1340
19109630 1341 if (best_predictor != END_PREDICTORS)
4ee9c684 1342 first_match = true;
1343
1344 if (!found)
3f76cceb 1345 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb);
4ee9c684 1346 else
1347 {
19109630 1348 if (!first_match)
1349 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
1350 !first_match ? REASON_NONE : REASON_IGNORED);
1351 else
1352 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
1353 first_match ? REASON_NONE : REASON_IGNORED);
4ee9c684 1354 }
1355
1356 if (first_match)
1357 combined_probability = best_probability;
3f76cceb 1358 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb);
4ee9c684 1359
b3723726 1360 if (preds)
4ee9c684 1361 {
4077bf7a 1362 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
b3723726 1363 {
b9c74b4d 1364 enum br_predictor predictor = pred->ep_predictor;
b3723726 1365 int probability = pred->ep_probability;
4ee9c684 1366
b3723726 1367 dump_prediction (dump_file, predictor, probability, bb,
3f76cceb 1368 (!first_match || best_predictor == predictor)
abb2c3fe 1369 ? REASON_NONE : REASON_IGNORED, pred->ep_edge);
b3723726 1370 }
4ee9c684 1371 }
b3723726 1372 clear_bb_predictions (bb);
4ee9c684 1373
3f9a545c 1374
1375 /* If we have only one successor which is unknown, we can compute missing
1376 probablity. */
1377 if (nunknown == 1)
1378 {
1379 profile_probability prob = profile_probability::always ();
1380 edge missing = NULL;
1381
1382 FOR_EACH_EDGE (e, ei, bb->succs)
1383 if (e->probability.initialized_p ())
1384 prob -= e->probability;
1385 else if (missing == NULL)
1386 missing = e;
1387 else
1388 gcc_unreachable ();
1389 missing->probability = prob;
1390 }
1391 /* If nothing is unknown, we have nothing to update. */
1392 else if (!nunknown && nzero != (int)EDGE_COUNT (bb->succs))
1393 ;
1394 else if (!dry_run)
83c8a977 1395 {
720cfc43 1396 first->probability
1397 = profile_probability::from_reg_br_prob_base (combined_probability);
1398 second->probability = first->probability.invert ();
83c8a977 1399 }
4ee9c684 1400}
1401
fd757b76 1402/* Check if T1 and T2 satisfy the IV_COMPARE condition.
1403 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1404
1405 T1 and T2 should be one of the following cases:
1406 1. T1 is SSA_NAME, T2 is NULL
1407 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1408 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1409
1410static tree
1411strips_small_constant (tree t1, tree t2)
1412{
1413 tree ret = NULL;
1414 int value = 0;
1415
1416 if (!t1)
1417 return NULL;
1418 else if (TREE_CODE (t1) == SSA_NAME)
1419 ret = t1;
e913b5cd 1420 else if (tree_fits_shwi_p (t1))
1421 value = tree_to_shwi (t1);
fd757b76 1422 else
1423 return NULL;
1424
1425 if (!t2)
1426 return ret;
e913b5cd 1427 else if (tree_fits_shwi_p (t2))
1428 value = tree_to_shwi (t2);
fd757b76 1429 else if (TREE_CODE (t2) == SSA_NAME)
1430 {
1431 if (ret)
1432 return NULL;
1433 else
1434 ret = t2;
1435 }
1436
1437 if (value <= 4 && value >= -4)
1438 return ret;
1439 else
1440 return NULL;
1441}
1442
1443/* Return the SSA_NAME in T or T's operands.
1444 Return NULL if SSA_NAME cannot be found. */
1445
1446static tree
1447get_base_value (tree t)
1448{
1449 if (TREE_CODE (t) == SSA_NAME)
1450 return t;
1451
1452 if (!BINARY_CLASS_P (t))
1453 return NULL;
1454
1455 switch (TREE_OPERAND_LENGTH (t))
1456 {
1457 case 1:
1458 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1459 case 2:
1460 return strips_small_constant (TREE_OPERAND (t, 0),
1461 TREE_OPERAND (t, 1));
1462 default:
1463 return NULL;
1464 }
1465}
1466
1467/* Check the compare STMT in LOOP. If it compares an induction
1468 variable to a loop invariant, return true, and save
1469 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1470 Otherwise return false and set LOOP_INVAIANT to NULL. */
1471
1472static bool
2e966e2a 1473is_comparison_with_loop_invariant_p (gcond *stmt, class loop *loop,
fd757b76 1474 tree *loop_invariant,
1475 enum tree_code *compare_code,
b3269f54 1476 tree *loop_step,
fd757b76 1477 tree *loop_iv_base)
1478{
1479 tree op0, op1, bound, base;
1480 affine_iv iv0, iv1;
1481 enum tree_code code;
b3269f54 1482 tree step;
fd757b76 1483
1484 code = gimple_cond_code (stmt);
1485 *loop_invariant = NULL;
1486
1487 switch (code)
1488 {
1489 case GT_EXPR:
1490 case GE_EXPR:
1491 case NE_EXPR:
1492 case LT_EXPR:
1493 case LE_EXPR:
1494 case EQ_EXPR:
1495 break;
1496
1497 default:
1498 return false;
1499 }
1500
1501 op0 = gimple_cond_lhs (stmt);
1502 op1 = gimple_cond_rhs (stmt);
1503
1504 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1505 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1506 return false;
1507 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1508 return false;
1509 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1510 return false;
1511 if (TREE_CODE (iv0.step) != INTEGER_CST
1512 || TREE_CODE (iv1.step) != INTEGER_CST)
1513 return false;
1514 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1515 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1516 return false;
1517
1518 if (integer_zerop (iv0.step))
1519 {
1520 if (code != NE_EXPR && code != EQ_EXPR)
1521 code = invert_tree_comparison (code, false);
1522 bound = iv0.base;
1523 base = iv1.base;
e913b5cd 1524 if (tree_fits_shwi_p (iv1.step))
b3269f54 1525 step = iv1.step;
fd757b76 1526 else
1527 return false;
1528 }
1529 else
1530 {
1531 bound = iv1.base;
1532 base = iv0.base;
e913b5cd 1533 if (tree_fits_shwi_p (iv0.step))
b3269f54 1534 step = iv0.step;
fd757b76 1535 else
1536 return false;
1537 }
1538
1539 if (TREE_CODE (bound) != INTEGER_CST)
1540 bound = get_base_value (bound);
1541 if (!bound)
1542 return false;
1543 if (TREE_CODE (base) != INTEGER_CST)
1544 base = get_base_value (base);
1545 if (!base)
1546 return false;
1547
1548 *loop_invariant = bound;
1549 *compare_code = code;
1550 *loop_step = step;
1551 *loop_iv_base = base;
1552 return true;
1553}
1554
1555/* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1556
1557static bool
1558expr_coherent_p (tree t1, tree t2)
1559{
42acab1c 1560 gimple *stmt;
fd757b76 1561 tree ssa_name_1 = NULL;
1562 tree ssa_name_2 = NULL;
1563
1564 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1565 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1566
1567 if (t1 == t2)
1568 return true;
1569
1570 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1571 return true;
1572 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1573 return false;
1574
1575 /* Check to see if t1 is expressed/defined with t2. */
1576 stmt = SSA_NAME_DEF_STMT (t1);
1577 gcc_assert (stmt != NULL);
1578 if (is_gimple_assign (stmt))
1579 {
1580 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1581 if (ssa_name_1 && ssa_name_1 == t2)
1582 return true;
1583 }
1584
1585 /* Check to see if t2 is expressed/defined with t1. */
1586 stmt = SSA_NAME_DEF_STMT (t2);
1587 gcc_assert (stmt != NULL);
1588 if (is_gimple_assign (stmt))
1589 {
1590 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1591 if (ssa_name_2 && ssa_name_2 == t1)
1592 return true;
1593 }
1594
1595 /* Compare if t1 and t2's def_stmts are identical. */
1596 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1597 return true;
1598 else
1599 return false;
1600}
1601
d07b2b6f 1602/* Return true if E is predicted by one of loop heuristics. */
1603
1604static bool
1605predicted_by_loop_heuristics_p (basic_block bb)
1606{
1607 struct edge_prediction *i;
1608 edge_prediction **preds = bb_predictions->get (bb);
1609
1610 if (!preds)
1611 return false;
1612
1613 for (i = *preds; i; i = i->ep_next)
1614 if (i->ep_predictor == PRED_LOOP_ITERATIONS_GUESSED
1615 || i->ep_predictor == PRED_LOOP_ITERATIONS_MAX
1616 || i->ep_predictor == PRED_LOOP_ITERATIONS
1617 || i->ep_predictor == PRED_LOOP_EXIT
cbcc4297 1618 || i->ep_predictor == PRED_LOOP_EXIT_WITH_RECURSION
d07b2b6f 1619 || i->ep_predictor == PRED_LOOP_EXTRA_EXIT)
1620 return true;
1621 return false;
1622}
1623
fd757b76 1624/* Predict branch probability of BB when BB contains a branch that compares
1625 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1626 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1627
1628 E.g.
1629 for (int i = 0; i < bound; i++) {
1630 if (i < bound - 2)
1631 computation_1();
1632 else
1633 computation_2();
1634 }
1635
1636 In this loop, we will predict the branch inside the loop to be taken. */
1637
1638static void
2e966e2a 1639predict_iv_comparison (class loop *loop, basic_block bb,
fd757b76 1640 tree loop_bound_var,
1641 tree loop_iv_base_var,
1642 enum tree_code loop_bound_code,
1643 int loop_bound_step)
1644{
42acab1c 1645 gimple *stmt;
fd757b76 1646 tree compare_var, compare_base;
1647 enum tree_code compare_code;
b3269f54 1648 tree compare_step_var;
fd757b76 1649 edge then_edge;
1650 edge_iterator ei;
1651
d07b2b6f 1652 if (predicted_by_loop_heuristics_p (bb))
fd757b76 1653 return;
1654
1655 stmt = last_stmt (bb);
1656 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1657 return;
1a91d914 1658 if (!is_comparison_with_loop_invariant_p (as_a <gcond *> (stmt),
1659 loop, &compare_var,
fd757b76 1660 &compare_code,
b3269f54 1661 &compare_step_var,
fd757b76 1662 &compare_base))
1663 return;
1664
1665 /* Find the taken edge. */
1666 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1667 if (then_edge->flags & EDGE_TRUE_VALUE)
1668 break;
1669
1670 /* When comparing an IV to a loop invariant, NE is more likely to be
1671 taken while EQ is more likely to be not-taken. */
1672 if (compare_code == NE_EXPR)
1673 {
1674 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1675 return;
1676 }
1677 else if (compare_code == EQ_EXPR)
1678 {
1679 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1680 return;
1681 }
1682
1683 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1684 return;
1685
1686 /* If loop bound, base and compare bound are all constants, we can
1687 calculate the probability directly. */
e913b5cd 1688 if (tree_fits_shwi_p (loop_bound_var)
1689 && tree_fits_shwi_p (compare_var)
1690 && tree_fits_shwi_p (compare_base))
fd757b76 1691 {
1692 int probability;
30b5769f 1693 wi::overflow_type overflow;
1694 bool overall_overflow = false;
ab2c1de8 1695 widest_int compare_count, tem;
b3269f54 1696
b3269f54 1697 /* (loop_bound - base) / compare_step */
c311b856 1698 tem = wi::sub (wi::to_widest (loop_bound_var),
1699 wi::to_widest (compare_base), SIGNED, &overflow);
e913b5cd 1700 overall_overflow |= overflow;
c311b856 1701 widest_int loop_count = wi::div_trunc (tem,
1702 wi::to_widest (compare_step_var),
1703 SIGNED, &overflow);
e913b5cd 1704 overall_overflow |= overflow;
1705
c311b856 1706 if (!wi::neg_p (wi::to_widest (compare_step_var))
fd757b76 1707 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
b3269f54 1708 {
1709 /* (loop_bound - compare_bound) / compare_step */
c311b856 1710 tem = wi::sub (wi::to_widest (loop_bound_var),
1711 wi::to_widest (compare_var), SIGNED, &overflow);
e913b5cd 1712 overall_overflow |= overflow;
c311b856 1713 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1714 SIGNED, &overflow);
e913b5cd 1715 overall_overflow |= overflow;
b3269f54 1716 }
fd757b76 1717 else
b3269f54 1718 {
1719 /* (compare_bound - base) / compare_step */
c311b856 1720 tem = wi::sub (wi::to_widest (compare_var),
1721 wi::to_widest (compare_base), SIGNED, &overflow);
e913b5cd 1722 overall_overflow |= overflow;
c311b856 1723 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1724 SIGNED, &overflow);
e913b5cd 1725 overall_overflow |= overflow;
b3269f54 1726 }
fd757b76 1727 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
b3269f54 1728 ++compare_count;
fd757b76 1729 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
b3269f54 1730 ++loop_count;
796b6678 1731 if (wi::neg_p (compare_count))
e913b5cd 1732 compare_count = 0;
796b6678 1733 if (wi::neg_p (loop_count))
e913b5cd 1734 loop_count = 0;
796b6678 1735 if (loop_count == 0)
fd757b76 1736 probability = 0;
796b6678 1737 else if (wi::cmps (compare_count, loop_count) == 1)
fd757b76 1738 probability = REG_BR_PROB_BASE;
1739 else
b3269f54 1740 {
e913b5cd 1741 tem = compare_count * REG_BR_PROB_BASE;
796b6678 1742 tem = wi::udiv_trunc (tem, loop_count);
b3269f54 1743 probability = tem.to_uhwi ();
1744 }
1745
d3cb49c9 1746 /* FIXME: The branch prediction seems broken. It has only 20% hitrate. */
e913b5cd 1747 if (!overall_overflow)
b3269f54 1748 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1749
fd757b76 1750 return;
1751 }
1752
1753 if (expr_coherent_p (loop_bound_var, compare_var))
1754 {
1755 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1756 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1757 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1758 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1759 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1760 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1761 else if (loop_bound_code == NE_EXPR)
1762 {
1763 /* If the loop backedge condition is "(i != bound)", we do
1764 the comparison based on the step of IV:
1765 * step < 0 : backedge condition is like (i > bound)
1766 * step > 0 : backedge condition is like (i < bound) */
1767 gcc_assert (loop_bound_step != 0);
1768 if (loop_bound_step > 0
1769 && (compare_code == LT_EXPR
1770 || compare_code == LE_EXPR))
1771 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1772 else if (loop_bound_step < 0
1773 && (compare_code == GT_EXPR
1774 || compare_code == GE_EXPR))
1775 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1776 else
1777 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1778 }
1779 else
1780 /* The branch is predicted not-taken if loop_bound_code is
1781 opposite with compare_code. */
1782 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1783 }
1784 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1785 {
1786 /* For cases like:
1787 for (i = s; i < h; i++)
1788 if (i > s + 2) ....
1789 The branch should be predicted taken. */
1790 if (loop_bound_step > 0
1791 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1792 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1793 else if (loop_bound_step < 0
1794 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1795 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1796 else
1797 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1798 }
1799}
4ca17abf 1800
1801/* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1802 exits are resulted from short-circuit conditions that will generate an
1803 if_tmp. E.g.:
1804
1805 if (foo() || global > 10)
1806 break;
1807
1808 This will be translated into:
1809
1810 BB3:
1811 loop header...
1812 BB4:
1813 if foo() goto BB6 else goto BB5
1814 BB5:
1815 if global > 10 goto BB6 else goto BB7
1816 BB6:
1817 goto BB7
1818 BB7:
1819 iftmp = (PHI 0(BB5), 1(BB6))
1820 if iftmp == 1 goto BB8 else goto BB3
1821 BB8:
1822 outside of the loop...
1823
1824 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1825 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1826 exits. This function takes BB7->BB8 as input, and finds out the extra loop
76f8f901 1827 exits to predict them using PRED_LOOP_EXTRA_EXIT. */
4ca17abf 1828
1829static void
1830predict_extra_loop_exits (edge exit_edge)
1831{
1832 unsigned i;
1833 bool check_value_one;
42acab1c 1834 gimple *lhs_def_stmt;
1a91d914 1835 gphi *phi_stmt;
4ca17abf 1836 tree cmp_rhs, cmp_lhs;
42acab1c 1837 gimple *last;
1a91d914 1838 gcond *cmp_stmt;
4ca17abf 1839
1a91d914 1840 last = last_stmt (exit_edge->src);
1841 if (!last)
1842 return;
1843 cmp_stmt = dyn_cast <gcond *> (last);
1844 if (!cmp_stmt)
4ca17abf 1845 return;
1a91d914 1846
4ca17abf 1847 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1848 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1849 if (!TREE_CONSTANT (cmp_rhs)
1850 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1851 return;
1852 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1853 return;
1854
1855 /* If check_value_one is true, only the phi_args with value '1' will lead
1856 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1857 loop exit. */
1858 check_value_one = (((integer_onep (cmp_rhs))
1859 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1860 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1861
1a91d914 1862 lhs_def_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1863 if (!lhs_def_stmt)
1864 return;
1865
1866 phi_stmt = dyn_cast <gphi *> (lhs_def_stmt);
1867 if (!phi_stmt)
4ca17abf 1868 return;
1869
1870 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1871 {
1872 edge e1;
1873 edge_iterator ei;
1874 tree val = gimple_phi_arg_def (phi_stmt, i);
1875 edge e = gimple_phi_arg_edge (phi_stmt, i);
1876
1877 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1878 continue;
1879 if ((check_value_one ^ integer_onep (val)) == 1)
1880 continue;
1881 if (EDGE_COUNT (e->src->succs) != 1)
1882 {
76f8f901 1883 predict_paths_leading_to_edge (e, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN);
4ca17abf 1884 continue;
1885 }
1886
1887 FOR_EACH_EDGE (e1, ei, e->src->preds)
76f8f901 1888 predict_paths_leading_to_edge (e1, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN);
4ca17abf 1889 }
1890}
1891
d07b2b6f 1892
7194de72 1893/* Predict edge probabilities by exploiting loop structure. */
1894
4ee9c684 1895static void
7194de72 1896predict_loops (void)
4ee9c684 1897{
2e966e2a 1898 class loop *loop;
cbcc4297 1899 basic_block bb;
2e966e2a 1900 hash_set <class loop *> with_recursion(10);
cbcc4297 1901
1902 FOR_EACH_BB_FN (bb, cfun)
1903 {
1904 gimple_stmt_iterator gsi;
1905 tree decl;
1906
1907 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1908 if (is_gimple_call (gsi_stmt (gsi))
1909 && (decl = gimple_call_fndecl (gsi_stmt (gsi))) != NULL
1910 && recursive_call_p (current_function_decl, decl))
1911 {
1912 loop = bb->loop_father;
1913 while (loop && !with_recursion.add (loop))
1914 loop = loop_outer (loop);
1915 }
1916 }
c12f2fcb 1917
7fcadf62 1918 /* Try to predict out blocks in a loop that are not part of a
1919 natural loop. */
d07b2b6f 1920 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
59423b59 1921 {
7fb12188 1922 basic_block bb, *bbs;
d07b2b6f 1923 unsigned j, n_exits = 0;
f1f41a6c 1924 vec<edge> exits;
2e966e2a 1925 class tree_niter_desc niter_desc;
749ea85f 1926 edge ex;
2e966e2a 1927 class nb_iter_bound *nb_iter;
fd757b76 1928 enum tree_code loop_bound_code = ERROR_MARK;
b3269f54 1929 tree loop_bound_step = NULL;
fd757b76 1930 tree loop_bound_var = NULL;
1931 tree loop_iv_base = NULL;
1a91d914 1932 gcond *stmt = NULL;
cbcc4297 1933 bool recursion = with_recursion.contains (loop);
59423b59 1934
749ea85f 1935 exits = get_loop_exit_edges (loop);
d07b2b6f 1936 FOR_EACH_VEC_ELT (exits, j, ex)
f08c22c4 1937 if (!unlikely_executed_edge_p (ex) && !(ex->flags & EDGE_ABNORMAL_CALL))
d07b2b6f 1938 n_exits ++;
5d865361 1939 if (!n_exits)
1940 {
f1f41a6c 1941 exits.release ();
5d865361 1942 continue;
1943 }
ba38e12b 1944
cbcc4297 1945 if (dump_file && (dump_flags & TDF_DETAILS))
1946 fprintf (dump_file, "Predicting loop %i%s with %i exits.\n",
1947 loop->num, recursion ? " (with recursion)":"", n_exits);
1948 if (dump_file && (dump_flags & TDF_DETAILS)
1949 && max_loop_iterations_int (loop) >= 0)
1950 {
1951 fprintf (dump_file,
1952 "Loop %d iterates at most %i times.\n", loop->num,
1953 (int)max_loop_iterations_int (loop));
1954 }
1955 if (dump_file && (dump_flags & TDF_DETAILS)
1956 && likely_max_loop_iterations_int (loop) >= 0)
1957 {
1958 fprintf (dump_file, "Loop %d likely iterates at most %i times.\n",
1959 loop->num, (int)likely_max_loop_iterations_int (loop));
1960 }
1961
f1f41a6c 1962 FOR_EACH_VEC_ELT (exits, j, ex)
d27b0b64 1963 {
3b0b2309 1964 tree niter = NULL;
d500fef3 1965 HOST_WIDE_INT nitercst;
1966 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1967 int probability;
1968 enum br_predictor predictor;
d07b2b6f 1969 widest_int nit;
d27b0b64 1970
f08c22c4 1971 if (unlikely_executed_edge_p (ex)
1972 || (ex->flags & EDGE_ABNORMAL_CALL))
d07b2b6f 1973 continue;
1974 /* Loop heuristics do not expect exit conditional to be inside
1975 inner loop. We predict from innermost to outermost loop. */
1976 if (predicted_by_loop_heuristics_p (ex->src))
cbcc4297 1977 {
1978 if (dump_file && (dump_flags & TDF_DETAILS))
1979 fprintf (dump_file, "Skipping exit %i->%i because "
1980 "it is already predicted.\n",
1981 ex->src->index, ex->dest->index);
1982 continue;
1983 }
4ca17abf 1984 predict_extra_loop_exits (ex);
1985
3f78e715 1986 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
3b0b2309 1987 niter = niter_desc.niter;
1988 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
749ea85f 1989 niter = loop_niter_by_eval (loop, ex);
cbcc4297 1990 if (dump_file && (dump_flags & TDF_DETAILS)
1991 && TREE_CODE (niter) == INTEGER_CST)
1992 {
1993 fprintf (dump_file, "Exit %i->%i %d iterates ",
1994 ex->src->index, ex->dest->index,
1995 loop->num);
1996 print_generic_expr (dump_file, niter, TDF_SLIM);
1997 fprintf (dump_file, " times.\n");
1998 }
d27b0b64 1999
3b0b2309 2000 if (TREE_CODE (niter) == INTEGER_CST)
2001 {
e913b5cd 2002 if (tree_fits_uhwi_p (niter)
ed60f27f 2003 && max
2004 && compare_tree_int (niter, max - 1) == -1)
e913b5cd 2005 nitercst = tree_to_uhwi (niter) + 1;
3b0b2309 2006 else
d500fef3 2007 nitercst = max;
2008 predictor = PRED_LOOP_ITERATIONS;
2009 }
2010 /* If we have just one exit and we can derive some information about
2011 the number of iterations of the loop from the statements inside
2012 the loop, use it to predict this exit. */
d07b2b6f 2013 else if (n_exits == 1
2014 && estimated_stmt_executions (loop, &nit))
d500fef3 2015 {
d07b2b6f 2016 if (wi::gtu_p (nit, max))
d500fef3 2017 nitercst = max;
d07b2b6f 2018 else
2019 nitercst = nit.to_shwi ();
d500fef3 2020 predictor = PRED_LOOP_ITERATIONS_GUESSED;
3b0b2309 2021 }
d07b2b6f 2022 /* If we have likely upper bound, trust it for very small iteration
2023 counts. Such loops would otherwise get mispredicted by standard
2024 LOOP_EXIT heuristics. */
2025 else if (n_exits == 1
2026 && likely_max_stmt_executions (loop, &nit)
2027 && wi::ltu_p (nit,
2028 RDIV (REG_BR_PROB_BASE,
2029 REG_BR_PROB_BASE
2030 - predictor_info
cbcc4297 2031 [recursion
2032 ? PRED_LOOP_EXIT_WITH_RECURSION
2033 : PRED_LOOP_EXIT].hitrate)))
d07b2b6f 2034 {
2035 nitercst = nit.to_shwi ();
2036 predictor = PRED_LOOP_ITERATIONS_MAX;
2037 }
d500fef3 2038 else
cbcc4297 2039 {
2040 if (dump_file && (dump_flags & TDF_DETAILS))
2041 fprintf (dump_file, "Nothing known about exit %i->%i.\n",
2042 ex->src->index, ex->dest->index);
2043 continue;
2044 }
d500fef3 2045
cbcc4297 2046 if (dump_file && (dump_flags & TDF_DETAILS))
2047 fprintf (dump_file, "Recording prediction to %i iterations by %s.\n",
2048 (int)nitercst, predictor_info[predictor].name);
afa7ed87 2049 /* If the prediction for number of iterations is zero, do not
2050 predict the exit edges. */
2051 if (nitercst == 0)
2052 continue;
2053
d07b2b6f 2054 probability = RDIV (REG_BR_PROB_BASE, nitercst);
d500fef3 2055 predict_edge (ex, predictor, probability);
d27b0b64 2056 }
f1f41a6c 2057 exits.release ();
862be747 2058
fd757b76 2059 /* Find information about loop bound variables. */
2060 for (nb_iter = loop->bounds; nb_iter;
2061 nb_iter = nb_iter->next)
2062 if (nb_iter->stmt
2063 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
2064 {
1a91d914 2065 stmt = as_a <gcond *> (nb_iter->stmt);
fd757b76 2066 break;
2067 }
2068 if (!stmt && last_stmt (loop->header)
2069 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
1a91d914 2070 stmt = as_a <gcond *> (last_stmt (loop->header));
fd757b76 2071 if (stmt)
2072 is_comparison_with_loop_invariant_p (stmt, loop,
2073 &loop_bound_var,
2074 &loop_bound_code,
2075 &loop_bound_step,
2076 &loop_iv_base);
2077
7fb12188 2078 bbs = get_loop_body (loop);
4ee9c684 2079
7fb12188 2080 for (j = 0; j < loop->num_nodes; j++)
2081 {
7fb12188 2082 edge e;
cd665a06 2083 edge_iterator ei;
7fb12188 2084
2085 bb = bbs[j];
e6751e9a 2086
cd0fe062 2087 /* Bypass loop heuristics on continue statement. These
2088 statements construct loops via "non-loop" constructs
2089 in the source language and are better to be handled
2090 separately. */
3b0b2309 2091 if (predicted_by_p (bb, PRED_CONTINUE))
cbcc4297 2092 {
2093 if (dump_file && (dump_flags & TDF_DETAILS))
2094 fprintf (dump_file, "BB %i predicted by continue.\n",
2095 bb->index);
2096 continue;
2097 }
cd0fe062 2098
cbcc4297 2099 /* If we already used more reliable loop exit predictors, do not
2100 bother with PRED_LOOP_EXIT. */
2101 if (!predicted_by_loop_heuristics_p (bb))
b41438e5 2102 {
2103 /* For loop with many exits we don't want to predict all exits
2104 with the pretty large probability, because if all exits are
2105 considered in row, the loop would be predicted to iterate
2106 almost never. The code to divide probability by number of
2107 exits is very rough. It should compute the number of exits
2108 taken in each patch through function (not the overall number
2109 of exits that might be a lot higher for loops with wide switch
2110 statements in them) and compute n-th square root.
2111
2112 We limit the minimal probability by 2% to avoid
2113 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
2114 as this was causing regression in perl benchmark containing such
2115 a wide loop. */
48e1416a 2116
b41438e5 2117 int probability = ((REG_BR_PROB_BASE
cbcc4297 2118 - predictor_info
2119 [recursion
2120 ? PRED_LOOP_EXIT_WITH_RECURSION
2121 : PRED_LOOP_EXIT].hitrate)
b41438e5 2122 / n_exits);
2123 if (probability < HITRATE (2))
2124 probability = HITRATE (2);
2125 FOR_EACH_EDGE (e, ei, bb->succs)
2126 if (e->dest->index < NUM_FIXED_BLOCKS
2127 || !flow_bb_inside_loop_p (loop, e->dest))
cbcc4297 2128 {
2129 if (dump_file && (dump_flags & TDF_DETAILS))
2130 fprintf (dump_file,
2131 "Predicting exit %i->%i with prob %i.\n",
2132 e->src->index, e->dest->index, probability);
2133 predict_edge (e,
2134 recursion ? PRED_LOOP_EXIT_WITH_RECURSION
2135 : PRED_LOOP_EXIT, probability);
2136 }
b41438e5 2137 }
fd757b76 2138 if (loop_bound_var)
2139 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
2140 loop_bound_code,
e913b5cd 2141 tree_to_shwi (loop_bound_step));
7fb12188 2142 }
48e1416a 2143
e09883e4 2144 /* In the following code
2145 for (loop1)
2146 if (cond)
2147 for (loop2)
2148 body;
2149 guess that cond is unlikely. */
2150 if (loop_outer (loop)->num)
2151 {
2152 basic_block bb = NULL;
2153 edge preheader_edge = loop_preheader_edge (loop);
2154
2155 if (single_pred_p (preheader_edge->src)
2156 && single_succ_p (preheader_edge->src))
2157 preheader_edge = single_pred_edge (preheader_edge->src);
2158
2159 gimple *stmt = last_stmt (preheader_edge->src);
2160 /* Pattern match fortran loop preheader:
2161 _16 = BUILTIN_EXPECT (_15, 1, PRED_FORTRAN_LOOP_PREHEADER);
2162 _17 = (logical(kind=4)) _16;
2163 if (_17 != 0)
2164 goto <bb 11>;
2165 else
2166 goto <bb 13>;
2167
2168 Loop guard branch prediction says nothing about duplicated loop
2169 headers produced by fortran frontend and in this case we want
2170 to predict paths leading to this preheader. */
2171
2172 if (stmt
2173 && gimple_code (stmt) == GIMPLE_COND
2174 && gimple_cond_code (stmt) == NE_EXPR
2175 && TREE_CODE (gimple_cond_lhs (stmt)) == SSA_NAME
2176 && integer_zerop (gimple_cond_rhs (stmt)))
2177 {
2178 gimple *call_stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
2179 if (gimple_code (call_stmt) == GIMPLE_ASSIGN
2180 && gimple_expr_code (call_stmt) == NOP_EXPR
2181 && TREE_CODE (gimple_assign_rhs1 (call_stmt)) == SSA_NAME)
2182 call_stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (call_stmt));
7408cd7d 2183 if (gimple_call_internal_p (call_stmt, IFN_BUILTIN_EXPECT)
e09883e4 2184 && TREE_CODE (gimple_call_arg (call_stmt, 2)) == INTEGER_CST
2185 && tree_fits_uhwi_p (gimple_call_arg (call_stmt, 2))
2186 && tree_to_uhwi (gimple_call_arg (call_stmt, 2))
2187 == PRED_FORTRAN_LOOP_PREHEADER)
2188 bb = preheader_edge->src;
2189 }
2190 if (!bb)
2191 {
2192 if (!dominated_by_p (CDI_DOMINATORS,
2193 loop_outer (loop)->latch, loop->header))
2194 predict_paths_leading_to_edge (loop_preheader_edge (loop),
cbcc4297 2195 recursion
2196 ? PRED_LOOP_GUARD_WITH_RECURSION
2197 : PRED_LOOP_GUARD,
e09883e4 2198 NOT_TAKEN,
2199 loop_outer (loop));
2200 }
2201 else
2202 {
2203 if (!dominated_by_p (CDI_DOMINATORS,
2204 loop_outer (loop)->latch, bb))
2205 predict_paths_leading_to (bb,
cbcc4297 2206 recursion
2207 ? PRED_LOOP_GUARD_WITH_RECURSION
2208 : PRED_LOOP_GUARD,
e09883e4 2209 NOT_TAKEN,
2210 loop_outer (loop));
2211 }
2212 }
2213
21dda4ee 2214 /* Free basic blocks from get_loop_body. */
dcd8fd01 2215 free (bbs);
59423b59 2216 }
4ee9c684 2217}
2218
83c8a977 2219/* Attempt to predict probabilities of BB outgoing edges using local
2220 properties. */
2221static void
2222bb_estimate_probability_locally (basic_block bb)
2223{
ee5f6585 2224 rtx_insn *last_insn = BB_END (bb);
83c8a977 2225 rtx cond;
2226
2227 if (! can_predict_insn_p (last_insn))
2228 return;
2229 cond = get_condition (last_insn, NULL, false, false);
2230 if (! cond)
2231 return;
2232
2233 /* Try "pointer heuristic."
2234 A comparison ptr == 0 is predicted as false.
2235 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2236 if (COMPARISON_P (cond)
2237 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
2238 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
2239 {
2240 if (GET_CODE (cond) == EQ)
2241 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
2242 else if (GET_CODE (cond) == NE)
2243 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
2244 }
2245 else
2246
2247 /* Try "opcode heuristic."
2248 EQ tests are usually false and NE tests are usually true. Also,
2249 most quantities are positive, so we can make the appropriate guesses
2250 about signed comparisons against zero. */
2251 switch (GET_CODE (cond))
2252 {
2253 case CONST_INT:
2254 /* Unconditional branch. */
2255 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
2256 cond == const0_rtx ? NOT_TAKEN : TAKEN);
2257 break;
2258
2259 case EQ:
2260 case UNEQ:
2261 /* Floating point comparisons appears to behave in a very
2262 unpredictable way because of special role of = tests in
2263 FP code. */
2264 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
2265 ;
2266 /* Comparisons with 0 are often used for booleans and there is
2267 nothing useful to predict about them. */
2268 else if (XEXP (cond, 1) == const0_rtx
2269 || XEXP (cond, 0) == const0_rtx)
2270 ;
2271 else
2272 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
2273 break;
2274
2275 case NE:
2276 case LTGT:
2277 /* Floating point comparisons appears to behave in a very
2278 unpredictable way because of special role of = tests in
2279 FP code. */
2280 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
2281 ;
2282 /* Comparisons with 0 are often used for booleans and there is
2283 nothing useful to predict about them. */
2284 else if (XEXP (cond, 1) == const0_rtx
2285 || XEXP (cond, 0) == const0_rtx)
2286 ;
2287 else
2288 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
2289 break;
2290
2291 case ORDERED:
2292 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
2293 break;
2294
2295 case UNORDERED:
2296 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
2297 break;
2298
2299 case LE:
2300 case LT:
2301 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
2302 || XEXP (cond, 1) == constm1_rtx)
2303 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
2304 break;
2305
2306 case GE:
2307 case GT:
2308 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
2309 || XEXP (cond, 1) == constm1_rtx)
2310 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
2311 break;
2312
2313 default:
2314 break;
2315 }
2316}
2317
7edd21a5 2318/* Set edge->probability for each successor edge of BB. */
83c8a977 2319void
2320guess_outgoing_edge_probabilities (basic_block bb)
2321{
2322 bb_estimate_probability_locally (bb);
2323 combine_predictions_for_insn (BB_END (bb), bb);
2324}
4ee9c684 2325\f
01107f42 2326static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor,
2327 HOST_WIDE_INT *probability);
75a70cf9 2328
2329/* Helper function for expr_expected_value. */
42975b1f 2330
2331static tree
2380e91e 2332expr_expected_value_1 (tree type, tree op0, enum tree_code code,
01107f42 2333 tree op1, bitmap visited, enum br_predictor *predictor,
2334 HOST_WIDE_INT *probability)
42975b1f 2335{
42acab1c 2336 gimple *def;
75a70cf9 2337
01107f42 2338 /* Reset returned probability value. */
2339 *probability = -1;
2340 *predictor = PRED_UNCONDITIONAL;
c83059be 2341
75a70cf9 2342 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
42975b1f 2343 {
75a70cf9 2344 if (TREE_CONSTANT (op0))
2345 return op0;
2346
5a5ef659 2347 if (code == IMAGPART_EXPR)
2348 {
2349 if (TREE_CODE (TREE_OPERAND (op0, 0)) == SSA_NAME)
2350 {
2351 def = SSA_NAME_DEF_STMT (TREE_OPERAND (op0, 0));
2352 if (is_gimple_call (def)
2353 && gimple_call_internal_p (def)
2354 && (gimple_call_internal_fn (def)
2355 == IFN_ATOMIC_COMPARE_EXCHANGE))
2356 {
2357 /* Assume that any given atomic operation has low contention,
2358 and thus the compare-and-swap operation succeeds. */
01107f42 2359 *predictor = PRED_COMPARE_AND_SWAP;
5a5ef659 2360 return build_one_cst (TREE_TYPE (op0));
2361 }
2362 }
2363 }
2364
75a70cf9 2365 if (code != SSA_NAME)
2366 return NULL_TREE;
2367
2368 def = SSA_NAME_DEF_STMT (op0);
42975b1f 2369
2370 /* If we were already here, break the infinite cycle. */
6ef9bbe0 2371 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
42975b1f 2372 return NULL;
42975b1f 2373
75a70cf9 2374 if (gimple_code (def) == GIMPLE_PHI)
42975b1f 2375 {
2376 /* All the arguments of the PHI node must have the same constant
2377 length. */
75a70cf9 2378 int i, n = gimple_phi_num_args (def);
42975b1f 2379 tree val = NULL, new_val;
4ee9c684 2380
75a70cf9 2381 for (i = 0; i < n; i++)
42975b1f 2382 {
2383 tree arg = PHI_ARG_DEF (def, i);
c83059be 2384 enum br_predictor predictor2;
42975b1f 2385
2386 /* If this PHI has itself as an argument, we cannot
2387 determine the string length of this argument. However,
86481e89 2388 if we can find an expected constant value for the other
42975b1f 2389 PHI args then we can still be sure that this is
2390 likely a constant. So be optimistic and just
2391 continue with the next argument. */
2392 if (arg == PHI_RESULT (def))
2393 continue;
2394
e431579a 2395 HOST_WIDE_INT probability2;
01107f42 2396 new_val = expr_expected_value (arg, visited, &predictor2,
e431579a 2397 &probability2);
c83059be 2398
2399 /* It is difficult to combine value predictors. Simply assume
2400 that later predictor is weaker and take its prediction. */
01107f42 2401 if (*predictor < predictor2)
e431579a 2402 {
2403 *predictor = predictor2;
2404 *probability = probability2;
2405 }
42975b1f 2406 if (!new_val)
2407 return NULL;
2408 if (!val)
2409 val = new_val;
2410 else if (!operand_equal_p (val, new_val, false))
2411 return NULL;
2412 }
2413 return val;
2414 }
75a70cf9 2415 if (is_gimple_assign (def))
42975b1f 2416 {
75a70cf9 2417 if (gimple_assign_lhs (def) != op0)
2418 return NULL;
42975b1f 2419
75a70cf9 2420 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
2421 gimple_assign_rhs1 (def),
2422 gimple_assign_rhs_code (def),
2423 gimple_assign_rhs2 (def),
01107f42 2424 visited, predictor, probability);
75a70cf9 2425 }
2426
2427 if (is_gimple_call (def))
2428 {
2429 tree decl = gimple_call_fndecl (def);
2430 if (!decl)
c83059be 2431 {
2432 if (gimple_call_internal_p (def)
2433 && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
2434 {
2435 gcc_assert (gimple_call_num_args (def) == 3);
2436 tree val = gimple_call_arg (def, 0);
2437 if (TREE_CONSTANT (val))
2438 return val;
01107f42 2439 tree val2 = gimple_call_arg (def, 2);
2440 gcc_assert (TREE_CODE (val2) == INTEGER_CST
2441 && tree_fits_uhwi_p (val2)
2442 && tree_to_uhwi (val2) < END_PREDICTORS);
2443 *predictor = (enum br_predictor) tree_to_uhwi (val2);
2444 if (*predictor == PRED_BUILTIN_EXPECT)
2445 *probability
2446 = HITRATE (PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY));
c83059be 2447 return gimple_call_arg (def, 1);
2448 }
2449 return NULL;
2450 }
ba9d6f44 2451
92e4277c 2452 if (DECL_IS_MALLOC (decl) || DECL_IS_OPERATOR_NEW_P (decl))
ba9d6f44 2453 {
2454 if (predictor)
2455 *predictor = PRED_MALLOC_NONNULL;
2456 return boolean_true_node;
2457 }
2458
2380e91e 2459 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
2460 switch (DECL_FUNCTION_CODE (decl))
2461 {
2462 case BUILT_IN_EXPECT:
2463 {
2464 tree val;
2465 if (gimple_call_num_args (def) != 2)
2466 return NULL;
2467 val = gimple_call_arg (def, 0);
2468 if (TREE_CONSTANT (val))
2469 return val;
01107f42 2470 *predictor = PRED_BUILTIN_EXPECT;
2471 *probability
2472 = HITRATE (PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY));
2473 return gimple_call_arg (def, 1);
2474 }
2475 case BUILT_IN_EXPECT_WITH_PROBABILITY:
2476 {
2477 tree val;
2478 if (gimple_call_num_args (def) != 3)
2479 return NULL;
2480 val = gimple_call_arg (def, 0);
2481 if (TREE_CONSTANT (val))
2482 return val;
2483 /* Compute final probability as:
2484 probability * REG_BR_PROB_BASE. */
2485 tree prob = gimple_call_arg (def, 2);
2486 tree t = TREE_TYPE (prob);
2487 tree base = build_int_cst (integer_type_node,
2488 REG_BR_PROB_BASE);
2489 base = build_real_from_int_cst (t, base);
e431579a 2490 tree r = fold_build2_initializer_loc (UNKNOWN_LOCATION,
2491 MULT_EXPR, t, prob, base);
26edb6f6 2492 if (TREE_CODE (r) != REAL_CST)
2493 {
2494 error_at (gimple_location (def),
5bebfaa2 2495 "probability %qE must be "
2496 "constant floating-point expression", prob);
26edb6f6 2497 return NULL;
2498 }
01107f42 2499 HOST_WIDE_INT probi
2500 = real_to_integer (TREE_REAL_CST_PTR (r));
2501 if (probi >= 0 && probi <= REG_BR_PROB_BASE)
2502 {
2503 *predictor = PRED_BUILTIN_EXPECT_WITH_PROBABILITY;
2504 *probability = probi;
2505 }
26edb6f6 2506 else
2507 error_at (gimple_location (def),
5bebfaa2 2508 "probability %qE is outside "
2509 "the range [0.0, 1.0]", prob);
26edb6f6 2510
2380e91e 2511 return gimple_call_arg (def, 1);
2512 }
75a70cf9 2513
2380e91e 2514 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
2515 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
2516 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
2517 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
2518 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
2519 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
2520 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
2521 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
2522 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
2523 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
2524 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
2525 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
2526 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
2527 /* Assume that any given atomic operation has low contention,
2528 and thus the compare-and-swap operation succeeds. */
01107f42 2529 *predictor = PRED_COMPARE_AND_SWAP;
2380e91e 2530 return boolean_true_node;
ba9d6f44 2531 case BUILT_IN_REALLOC:
2532 if (predictor)
2533 *predictor = PRED_MALLOC_NONNULL;
2534 return boolean_true_node;
5213d6c9 2535 default:
2536 break;
75a70cf9 2537 }
42975b1f 2538 }
75a70cf9 2539
2540 return NULL;
42975b1f 2541 }
75a70cf9 2542
2543 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
42975b1f 2544 {
75a70cf9 2545 tree res;
c83059be 2546 enum br_predictor predictor2;
01107f42 2547 HOST_WIDE_INT probability2;
2548 op0 = expr_expected_value (op0, visited, predictor, probability);
42975b1f 2549 if (!op0)
2550 return NULL;
01107f42 2551 op1 = expr_expected_value (op1, visited, &predictor2, &probability2);
42975b1f 2552 if (!op1)
2553 return NULL;
75a70cf9 2554 res = fold_build2 (code, type, op0, op1);
01107f42 2555 if (TREE_CODE (res) == INTEGER_CST
2556 && TREE_CODE (op0) == INTEGER_CST
2557 && TREE_CODE (op1) == INTEGER_CST)
2558 {
2559 /* Combine binary predictions. */
2560 if (*probability != -1 || probability2 != -1)
2561 {
2562 HOST_WIDE_INT p1 = get_predictor_value (*predictor, *probability);
2563 HOST_WIDE_INT p2 = get_predictor_value (predictor2, probability2);
2564 *probability = RDIV (p1 * p2, REG_BR_PROB_BASE);
2565 }
2566
2567 if (*predictor < predictor2)
2568 *predictor = predictor2;
2569
2570 return res;
2571 }
42975b1f 2572 return NULL;
2573 }
75a70cf9 2574 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
42975b1f 2575 {
75a70cf9 2576 tree res;
01107f42 2577 op0 = expr_expected_value (op0, visited, predictor, probability);
42975b1f 2578 if (!op0)
2579 return NULL;
75a70cf9 2580 res = fold_build1 (code, type, op0);
42975b1f 2581 if (TREE_CONSTANT (res))
2582 return res;
2583 return NULL;
2584 }
2585 return NULL;
2586}
75a70cf9 2587
48e1416a 2588/* Return constant EXPR will likely have at execution time, NULL if unknown.
75a70cf9 2589 The function is used by builtin_expect branch predictor so the evidence
2590 must come from this construct and additional possible constant folding.
48e1416a 2591
75a70cf9 2592 We may want to implement more involved value guess (such as value range
2593 propagation based prediction), but such tricks shall go to new
2594 implementation. */
2595
2596static tree
c83059be 2597expr_expected_value (tree expr, bitmap visited,
01107f42 2598 enum br_predictor *predictor,
2599 HOST_WIDE_INT *probability)
75a70cf9 2600{
2601 enum tree_code code;
2602 tree op0, op1;
2603
2604 if (TREE_CONSTANT (expr))
c83059be 2605 {
01107f42 2606 *predictor = PRED_UNCONDITIONAL;
2607 *probability = -1;
c83059be 2608 return expr;
2609 }
75a70cf9 2610
2611 extract_ops_from_tree (expr, &code, &op0, &op1);
2612 return expr_expected_value_1 (TREE_TYPE (expr),
01107f42 2613 op0, code, op1, visited, predictor,
2614 probability);
75a70cf9 2615}
42975b1f 2616\f
01107f42 2617
2618/* Return probability of a PREDICTOR. If the predictor has variable
2619 probability return passed PROBABILITY. */
2620
2621static HOST_WIDE_INT
2622get_predictor_value (br_predictor predictor, HOST_WIDE_INT probability)
2623{
2624 switch (predictor)
2625 {
2626 case PRED_BUILTIN_EXPECT:
2627 case PRED_BUILTIN_EXPECT_WITH_PROBABILITY:
2628 gcc_assert (probability != -1);
2629 return probability;
2630 default:
2631 gcc_assert (probability == -1);
2632 return predictor_info[(int) predictor].hitrate;
2633 }
2634}
2635
4ee9c684 2636/* Predict using opcode of the last statement in basic block. */
2637static void
2638tree_predict_by_opcode (basic_block bb)
2639{
42acab1c 2640 gimple *stmt = last_stmt (bb);
4ee9c684 2641 edge then_edge;
75a70cf9 2642 tree op0, op1;
4ee9c684 2643 tree type;
42975b1f 2644 tree val;
75a70cf9 2645 enum tree_code cmp;
cd665a06 2646 edge_iterator ei;
c83059be 2647 enum br_predictor predictor;
01107f42 2648 HOST_WIDE_INT probability;
4ee9c684 2649
44b41fe7 2650 if (!stmt)
2651 return;
2652
2653 if (gswitch *sw = dyn_cast <gswitch *> (stmt))
2654 {
2655 tree index = gimple_switch_index (sw);
2656 tree val = expr_expected_value (index, auto_bitmap (),
2657 &predictor, &probability);
2658 if (val && TREE_CODE (val) == INTEGER_CST)
2659 {
2660 edge e = find_taken_edge_switch_expr (sw, val);
2661 if (predictor == PRED_BUILTIN_EXPECT)
2662 {
2663 int percent = PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY);
2664 gcc_assert (percent >= 0 && percent <= 100);
2665 predict_edge (e, PRED_BUILTIN_EXPECT,
2666 HITRATE (percent));
2667 }
2668 else
2669 predict_edge_def (e, predictor, TAKEN);
2670 }
2671 }
2672
2673 if (gimple_code (stmt) != GIMPLE_COND)
4ee9c684 2674 return;
cd665a06 2675 FOR_EACH_EDGE (then_edge, ei, bb->succs)
4ee9c684 2676 if (then_edge->flags & EDGE_TRUE_VALUE)
cd665a06 2677 break;
75a70cf9 2678 op0 = gimple_cond_lhs (stmt);
2679 op1 = gimple_cond_rhs (stmt);
2680 cmp = gimple_cond_code (stmt);
4ee9c684 2681 type = TREE_TYPE (op0);
035def86 2682 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, auto_bitmap (),
01107f42 2683 &predictor, &probability);
c83059be 2684 if (val && TREE_CODE (val) == INTEGER_CST)
42975b1f 2685 {
01107f42 2686 HOST_WIDE_INT prob = get_predictor_value (predictor, probability);
2687 if (integer_zerop (val))
2688 prob = REG_BR_PROB_BASE - prob;
2689 predict_edge (then_edge, predictor, prob);
42975b1f 2690 }
4ee9c684 2691 /* Try "pointer heuristic."
2692 A comparison ptr == 0 is predicted as false.
2693 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2694 if (POINTER_TYPE_P (type))
2695 {
75a70cf9 2696 if (cmp == EQ_EXPR)
4ee9c684 2697 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
75a70cf9 2698 else if (cmp == NE_EXPR)
4ee9c684 2699 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
2700 }
2701 else
2702
2703 /* Try "opcode heuristic."
2704 EQ tests are usually false and NE tests are usually true. Also,
2705 most quantities are positive, so we can make the appropriate guesses
2706 about signed comparisons against zero. */
75a70cf9 2707 switch (cmp)
4ee9c684 2708 {
2709 case EQ_EXPR:
2710 case UNEQ_EXPR:
2711 /* Floating point comparisons appears to behave in a very
2712 unpredictable way because of special role of = tests in
2713 FP code. */
2714 if (FLOAT_TYPE_P (type))
2715 ;
2716 /* Comparisons with 0 are often used for booleans and there is
2717 nothing useful to predict about them. */
75a70cf9 2718 else if (integer_zerop (op0) || integer_zerop (op1))
4ee9c684 2719 ;
2720 else
2721 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2722 break;
2723
2724 case NE_EXPR:
318a728f 2725 case LTGT_EXPR:
4ee9c684 2726 /* Floating point comparisons appears to behave in a very
2727 unpredictable way because of special role of = tests in
2728 FP code. */
2729 if (FLOAT_TYPE_P (type))
2730 ;
2731 /* Comparisons with 0 are often used for booleans and there is
2732 nothing useful to predict about them. */
2733 else if (integer_zerop (op0)
75a70cf9 2734 || integer_zerop (op1))
4ee9c684 2735 ;
2736 else
2737 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2738 break;
2739
2740 case ORDERED_EXPR:
2741 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2742 break;
2743
2744 case UNORDERED_EXPR:
2745 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2746 break;
2747
2748 case LE_EXPR:
2749 case LT_EXPR:
75a70cf9 2750 if (integer_zerop (op1)
2751 || integer_onep (op1)
2752 || integer_all_onesp (op1)
2753 || real_zerop (op1)
2754 || real_onep (op1)
2755 || real_minus_onep (op1))
4ee9c684 2756 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2757 break;
2758
2759 case GE_EXPR:
2760 case GT_EXPR:
75a70cf9 2761 if (integer_zerop (op1)
2762 || integer_onep (op1)
2763 || integer_all_onesp (op1)
2764 || real_zerop (op1)
2765 || real_onep (op1)
2766 || real_minus_onep (op1))
4ee9c684 2767 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2768 break;
2769
2770 default:
2771 break;
2772 }
2773}
2774
30f2983e 2775/* Returns TRUE if the STMT is exit(0) like statement. */
2776
2777static bool
2778is_exit_with_zero_arg (const gimple *stmt)
2779{
2780 /* This is not exit, _exit or _Exit. */
2781 if (!gimple_call_builtin_p (stmt, BUILT_IN_EXIT)
2782 && !gimple_call_builtin_p (stmt, BUILT_IN__EXIT)
2783 && !gimple_call_builtin_p (stmt, BUILT_IN__EXIT2))
2784 return false;
2785
2786 /* Argument is an interger zero. */
2787 return integer_zerop (gimple_call_arg (stmt, 0));
2788}
2789
f816ec49 2790/* Try to guess whether the value of return means error code. */
75a70cf9 2791
f816ec49 2792static enum br_predictor
2793return_prediction (tree val, enum prediction *prediction)
2794{
2795 /* VOID. */
2796 if (!val)
2797 return PRED_NO_PREDICTION;
2798 /* Different heuristics for pointers and scalars. */
2799 if (POINTER_TYPE_P (TREE_TYPE (val)))
2800 {
2801 /* NULL is usually not returned. */
2802 if (integer_zerop (val))
2803 {
2804 *prediction = NOT_TAKEN;
2805 return PRED_NULL_RETURN;
2806 }
2807 }
2808 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2809 {
2810 /* Negative return values are often used to indicate
2811 errors. */
2812 if (TREE_CODE (val) == INTEGER_CST
2813 && tree_int_cst_sgn (val) < 0)
2814 {
2815 *prediction = NOT_TAKEN;
2816 return PRED_NEGATIVE_RETURN;
2817 }
2818 /* Constant return values seems to be commonly taken.
2819 Zero/one often represent booleans so exclude them from the
2820 heuristics. */
2821 if (TREE_CONSTANT (val)
2822 && (!integer_zerop (val) && !integer_onep (val)))
2823 {
d3cb49c9 2824 *prediction = NOT_TAKEN;
4a4e4487 2825 return PRED_CONST_RETURN;
f816ec49 2826 }
2827 }
2828 return PRED_NO_PREDICTION;
2829}
2830
7c4f5bde 2831/* Return zero if phi result could have values other than -1, 0 or 1,
2832 otherwise return a bitmask, with bits 0, 1 and 2 set if -1, 0 and 1
2833 values are used or likely. */
2834
2835static int
2836zero_one_minusone (gphi *phi, int limit)
2837{
2838 int phi_num_args = gimple_phi_num_args (phi);
2839 int ret = 0;
2840 for (int i = 0; i < phi_num_args; i++)
2841 {
2842 tree t = PHI_ARG_DEF (phi, i);
2843 if (TREE_CODE (t) != INTEGER_CST)
2844 continue;
2845 wide_int w = wi::to_wide (t);
2846 if (w == -1)
2847 ret |= 1;
2848 else if (w == 0)
2849 ret |= 2;
2850 else if (w == 1)
2851 ret |= 4;
2852 else
2853 return 0;
2854 }
2855 for (int i = 0; i < phi_num_args; i++)
2856 {
2857 tree t = PHI_ARG_DEF (phi, i);
2858 if (TREE_CODE (t) == INTEGER_CST)
2859 continue;
2860 if (TREE_CODE (t) != SSA_NAME)
2861 return 0;
2862 gimple *g = SSA_NAME_DEF_STMT (t);
2863 if (gimple_code (g) == GIMPLE_PHI && limit > 0)
2864 if (int r = zero_one_minusone (as_a <gphi *> (g), limit - 1))
2865 {
2866 ret |= r;
2867 continue;
2868 }
2869 if (!is_gimple_assign (g))
2870 return 0;
2871 if (gimple_assign_cast_p (g))
2872 {
2873 tree rhs1 = gimple_assign_rhs1 (g);
2874 if (TREE_CODE (rhs1) != SSA_NAME
2875 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2876 || TYPE_PRECISION (TREE_TYPE (rhs1)) != 1
2877 || !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
2878 return 0;
2879 ret |= (2 | 4);
2880 continue;
2881 }
2882 if (TREE_CODE_CLASS (gimple_assign_rhs_code (g)) != tcc_comparison)
2883 return 0;
2884 ret |= (2 | 4);
2885 }
2886 return ret;
2887}
2888
f816ec49 2889/* Find the basic block with return expression and look up for possible
2890 return value trying to apply RETURN_PREDICTION heuristics. */
2891static void
d704ea82 2892apply_return_prediction (void)
f816ec49 2893{
1a91d914 2894 greturn *return_stmt = NULL;
f816ec49 2895 tree return_val;
2896 edge e;
1a91d914 2897 gphi *phi;
f816ec49 2898 int phi_num_args, i;
2899 enum br_predictor pred;
2900 enum prediction direction;
cd665a06 2901 edge_iterator ei;
f816ec49 2902
34154e27 2903 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
f816ec49 2904 {
42acab1c 2905 gimple *last = last_stmt (e->src);
1a91d914 2906 if (last
2907 && gimple_code (last) == GIMPLE_RETURN)
2908 {
2909 return_stmt = as_a <greturn *> (last);
2910 break;
2911 }
f816ec49 2912 }
2913 if (!e)
2914 return;
75a70cf9 2915 return_val = gimple_return_retval (return_stmt);
f816ec49 2916 if (!return_val)
2917 return;
f816ec49 2918 if (TREE_CODE (return_val) != SSA_NAME
2919 || !SSA_NAME_DEF_STMT (return_val)
75a70cf9 2920 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
f816ec49 2921 return;
1a91d914 2922 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (return_val));
75a70cf9 2923 phi_num_args = gimple_phi_num_args (phi);
f816ec49 2924 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2925
7c4f5bde 2926 /* Avoid the case where the function returns -1, 0 and 1 values and
2927 nothing else. Those could be qsort etc. comparison functions
2928 where the negative return isn't less probable than positive.
2929 For this require that the function returns at least -1 or 1
2930 or -1 and a boolean value or comparison result, so that functions
2931 returning just -1 and 0 are treated as if -1 represents error value. */
2932 if (INTEGRAL_TYPE_P (TREE_TYPE (return_val))
2933 && !TYPE_UNSIGNED (TREE_TYPE (return_val))
2934 && TYPE_PRECISION (TREE_TYPE (return_val)) > 1)
2935 if (int r = zero_one_minusone (phi, 3))
2936 if ((r & (1 | 4)) == (1 | 4))
2937 return;
2938
f816ec49 2939 /* Avoid the degenerate case where all return values form the function
2940 belongs to same category (ie they are all positive constants)
2941 so we can hardly say something about them. */
2942 for (i = 1; i < phi_num_args; i++)
2943 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2944 break;
2945 if (i != phi_num_args)
2946 for (i = 0; i < phi_num_args; i++)
2947 {
2948 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2949 if (pred != PRED_NO_PREDICTION)
5707768a 2950 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2951 direction);
f816ec49 2952 }
2953}
2954
2955/* Look for basic block that contains unlikely to happen events
2956 (such as noreturn calls) and mark all paths leading to execution
2957 of this basic blocks as unlikely. */
2958
2959static void
2960tree_bb_level_predictions (void)
2961{
2962 basic_block bb;
9f694a82 2963 bool has_return_edges = false;
2964 edge e;
2965 edge_iterator ei;
2966
34154e27 2967 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
f08c22c4 2968 if (!unlikely_executed_edge_p (e) && !(e->flags & EDGE_ABNORMAL_CALL))
9f694a82 2969 {
2970 has_return_edges = true;
2971 break;
2972 }
f816ec49 2973
d704ea82 2974 apply_return_prediction ();
f816ec49 2975
fc00614f 2976 FOR_EACH_BB_FN (bb, cfun)
f816ec49 2977 {
75a70cf9 2978 gimple_stmt_iterator gsi;
f816ec49 2979
1add270f 2980 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
f816ec49 2981 {
42acab1c 2982 gimple *stmt = gsi_stmt (gsi);
5de92639 2983 tree decl;
3ed4a4a1 2984
75a70cf9 2985 if (is_gimple_call (stmt))
f816ec49 2986 {
30f2983e 2987 if (gimple_call_noreturn_p (stmt)
2988 && has_return_edges
2989 && !is_exit_with_zero_arg (stmt))
75a70cf9 2990 predict_paths_leading_to (bb, PRED_NORETURN,
2991 NOT_TAKEN);
2992 decl = gimple_call_fndecl (stmt);
2993 if (decl
2994 && lookup_attribute ("cold",
2995 DECL_ATTRIBUTES (decl)))
2996 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2997 NOT_TAKEN);
89beffc9 2998 if (decl && recursive_call_p (current_function_decl, decl))
2999 predict_paths_leading_to (bb, PRED_RECURSIVE_CALL,
3000 NOT_TAKEN);
f816ec49 3001 }
75a70cf9 3002 else if (gimple_code (stmt) == GIMPLE_PREDICT)
3003 {
3004 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
3005 gimple_predict_outcome (stmt));
1add270f 3006 /* Keep GIMPLE_PREDICT around so early inlining will propagate
3007 hints to callers. */
75a70cf9 3008 }
f816ec49 3009 }
3010 }
f816ec49 3011}
3012
06ecf488 3013/* Callback for hash_map::traverse, asserts that the pointer map is
b3723726 3014 empty. */
3015
06ecf488 3016bool
3017assert_is_empty (const_basic_block const &, edge_prediction *const &value,
3018 void *)
b3723726 3019{
06ecf488 3020 gcc_assert (!value);
b3723726 3021 return false;
3022}
b3723726 3023
fc935416 3024/* Predict branch probabilities and estimate profile for basic block BB.
3025 When LOCAL_ONLY is set do not use any global properties of CFG. */
675d86b2 3026
3027static void
fc935416 3028tree_estimate_probability_bb (basic_block bb, bool local_only)
675d86b2 3029{
3030 edge e;
3031 edge_iterator ei;
675d86b2 3032
3033 FOR_EACH_EDGE (e, ei, bb->succs)
3034 {
675d86b2 3035 /* Look for block we are guarding (ie we dominate it,
3036 but it doesn't postdominate us). */
34154e27 3037 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
fc935416 3038 && !local_only
675d86b2 3039 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
3040 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
3041 {
3042 gimple_stmt_iterator bi;
3043
3044 /* The call heuristic claims that a guarded function call
3045 is improbable. This is because such calls are often used
3046 to signal exceptional situations such as printing error
3047 messages. */
3048 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
3049 gsi_next (&bi))
3050 {
42acab1c 3051 gimple *stmt = gsi_stmt (bi);
675d86b2 3052 if (is_gimple_call (stmt)
89beffc9 3053 && !gimple_inexpensive_call_p (as_a <gcall *> (stmt))
675d86b2 3054 /* Constant and pure calls are hardly used to signalize
3055 something exceptional. */
3056 && gimple_has_side_effects (stmt))
3057 {
1cb6c2eb 3058 if (gimple_call_fndecl (stmt))
3059 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
3060 else if (virtual_method_call_p (gimple_call_fn (stmt)))
1d07104f 3061 predict_edge_def (e, PRED_POLYMORPHIC_CALL, NOT_TAKEN);
1cb6c2eb 3062 else
3063 predict_edge_def (e, PRED_INDIR_CALL, TAKEN);
675d86b2 3064 break;
3065 }
3066 }
3067 }
3068 }
3069 tree_predict_by_opcode (bb);
3070}
3071
3072/* Predict branch probabilities and estimate profile of the tree CFG.
3073 This function can be called from the loop optimizers to recompute
5a5f50e9 3074 the profile information.
3075 If DRY_RUN is set, do not modify CFG and only produce dump files. */
675d86b2 3076
3077void
5a5f50e9 3078tree_estimate_probability (bool dry_run)
4ee9c684 3079{
3080 basic_block bb;
4ee9c684 3081
f816ec49 3082 add_noreturn_fake_exit_edges ();
4ee9c684 3083 connect_infinite_loops_to_exit ();
d8a0d6b8 3084 /* We use loop_niter_by_eval, which requires that the loops have
3085 preheaders. */
3086 create_preheaders (CP_SIMPLE_PREHEADERS);
4ee9c684 3087 calculate_dominance_info (CDI_POST_DOMINATORS);
63c3361d 3088 /* Decide which edges are known to be unlikely. This improves later
3089 branch prediction. */
3090 determine_unlikely_bbs ();
4ee9c684 3091
06ecf488 3092 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
f816ec49 3093 tree_bb_level_predictions ();
d500fef3 3094 record_loop_exits ();
675d86b2 3095
41f75a99 3096 if (number_of_loops (cfun) > 1)
7194de72 3097 predict_loops ();
4ee9c684 3098
fc00614f 3099 FOR_EACH_BB_FN (bb, cfun)
fc935416 3100 tree_estimate_probability_bb (bb, false);
4ee9c684 3101
fc00614f 3102 FOR_EACH_BB_FN (bb, cfun)
5a5f50e9 3103 combine_predictions_for_bb (bb, dry_run);
f81d9f78 3104
382ecba7 3105 if (flag_checking)
3106 bb_predictions->traverse<void *, assert_is_empty> (NULL);
3107
06ecf488 3108 delete bb_predictions;
b3723726 3109 bb_predictions = NULL;
3110
5a5f50e9 3111 if (!dry_run)
3112 estimate_bb_frequencies (false);
4ee9c684 3113 free_dominance_info (CDI_POST_DOMINATORS);
41d24834 3114 remove_fake_exit_edges ();
675d86b2 3115}
fc935416 3116
3117/* Set edge->probability for each successor edge of BB. */
3118void
3119tree_guess_outgoing_edge_probabilities (basic_block bb)
3120{
3121 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
3122 tree_estimate_probability_bb (bb, true);
3123 combine_predictions_for_bb (bb, false);
3124 if (flag_checking)
3125 bb_predictions->traverse<void *, assert_is_empty> (NULL);
3126 delete bb_predictions;
3127 bb_predictions = NULL;
3128}
89cfe6e5 3129\f
f0b5f617 3130/* Predict edges to successors of CUR whose sources are not postdominated by
d704ea82 3131 BB by PRED and recurse to all postdominators. */
f816ec49 3132
3133static void
d704ea82 3134predict_paths_for_bb (basic_block cur, basic_block bb,
3135 enum br_predictor pred,
d3443011 3136 enum prediction taken,
2e966e2a 3137 bitmap visited, class loop *in_loop = NULL)
f816ec49 3138{
3139 edge e;
cd665a06 3140 edge_iterator ei;
d704ea82 3141 basic_block son;
f816ec49 3142
e09883e4 3143 /* If we exited the loop or CUR is unconditional in the loop, there is
3144 nothing to do. */
3145 if (in_loop
3146 && (!flow_bb_inside_loop_p (in_loop, cur)
3147 || dominated_by_p (CDI_DOMINATORS, in_loop->latch, cur)))
3148 return;
3149
d704ea82 3150 /* We are looking for all edges forming edge cut induced by
3151 set of all blocks postdominated by BB. */
3152 FOR_EACH_EDGE (e, ei, cur->preds)
3153 if (e->src->index >= NUM_FIXED_BLOCKS
3154 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
f816ec49 3155 {
f1d5a92b 3156 edge e2;
3157 edge_iterator ei2;
3158 bool found = false;
3159
5707768a 3160 /* Ignore fake edges and eh, we predict them as not taken anyway. */
f08c22c4 3161 if (unlikely_executed_edge_p (e))
f1d5a92b 3162 continue;
d704ea82 3163 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
f1d5a92b 3164
d3443011 3165 /* See if there is an edge from e->src that is not abnormal
e09883e4 3166 and does not lead to BB and does not exit the loop. */
f1d5a92b 3167 FOR_EACH_EDGE (e2, ei2, e->src->succs)
3168 if (e2 != e
f08c22c4 3169 && !unlikely_executed_edge_p (e2)
e09883e4 3170 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb)
3171 && (!in_loop || !loop_exit_edge_p (in_loop, e2)))
f1d5a92b 3172 {
3173 found = true;
3174 break;
3175 }
3176
3177 /* If there is non-abnormal path leaving e->src, predict edge
3178 using predictor. Otherwise we need to look for paths
d3443011 3179 leading to e->src.
3180
3181 The second may lead to infinite loop in the case we are predicitng
3182 regions that are only reachable by abnormal edges. We simply
3183 prevent visiting given BB twice. */
f1d5a92b 3184 if (found)
f6e0b8d0 3185 {
3186 if (!edge_predicted_by_p (e, pred, taken))
3187 predict_edge_def (e, pred, taken);
3188 }
6e3803fb 3189 else if (bitmap_set_bit (visited, e->src->index))
e09883e4 3190 predict_paths_for_bb (e->src, e->src, pred, taken, visited, in_loop);
f816ec49 3191 }
d704ea82 3192 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
3193 son;
3194 son = next_dom_son (CDI_POST_DOMINATORS, son))
e09883e4 3195 predict_paths_for_bb (son, bb, pred, taken, visited, in_loop);
d704ea82 3196}
f816ec49 3197
d704ea82 3198/* Sets branch probabilities according to PREDiction and
3199 FLAGS. */
f816ec49 3200
d704ea82 3201static void
3202predict_paths_leading_to (basic_block bb, enum br_predictor pred,
2e966e2a 3203 enum prediction taken, class loop *in_loop)
d704ea82 3204{
035def86 3205 predict_paths_for_bb (bb, bb, pred, taken, auto_bitmap (), in_loop);
f816ec49 3206}
5707768a 3207
3208/* Like predict_paths_leading_to but take edge instead of basic block. */
3209
3210static void
3211predict_paths_leading_to_edge (edge e, enum br_predictor pred,
2e966e2a 3212 enum prediction taken, class loop *in_loop)
5707768a 3213{
3214 bool has_nonloop_edge = false;
3215 edge_iterator ei;
3216 edge e2;
3217
3218 basic_block bb = e->src;
3219 FOR_EACH_EDGE (e2, ei, bb->succs)
3220 if (e2->dest != e->src && e2->dest != e->dest
f08c22c4 3221 && !unlikely_executed_edge_p (e)
5707768a 3222 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
3223 {
3224 has_nonloop_edge = true;
3225 break;
3226 }
3227 if (!has_nonloop_edge)
d3443011 3228 {
035def86 3229 predict_paths_for_bb (bb, bb, pred, taken, auto_bitmap (), in_loop);
d3443011 3230 }
5707768a 3231 else
3232 predict_edge_def (e, pred, taken);
3233}
cd0fe062 3234\f
e725f898 3235/* This is used to carry information about basic blocks. It is
f81d9f78 3236 attached to the AUX field of the standard CFG block. */
3237
251317e4 3238class block_info
f81d9f78 3239{
251317e4 3240public:
f81d9f78 3241 /* Estimated frequency of execution of basic_block. */
e9d7220b 3242 sreal frequency;
f81d9f78 3243
3244 /* To keep queue of basic blocks to process. */
3245 basic_block next;
3246
4a82352a 3247 /* Number of predecessors we need to visit first. */
4ad72a03 3248 int npredecessors;
9908fe4d 3249};
f81d9f78 3250
3251/* Similar information for edges. */
251317e4 3252class edge_prob_info
f81d9f78 3253{
251317e4 3254public:
77aa6362 3255 /* In case edge is a loopback edge, the probability edge will be reached
f81d9f78 3256 in case header is. Estimated number of iterations of the loop can be
56ff4880 3257 then computed as 1 / (1 - back_edge_prob). */
e9d7220b 3258 sreal back_edge_prob;
77aa6362 3259 /* True if the edge is a loopback edge in the natural loop. */
74cbb553 3260 unsigned int back_edge:1;
9908fe4d 3261};
f81d9f78 3262
9908fe4d 3263#define BLOCK_INFO(B) ((block_info *) (B)->aux)
886c1262 3264#undef EDGE_INFO
9908fe4d 3265#define EDGE_INFO(E) ((edge_prob_info *) (E)->aux)
f81d9f78 3266
3267/* Helper function for estimate_bb_frequencies.
88e6f696 3268 Propagate the frequencies in blocks marked in
3269 TOVISIT, starting in HEAD. */
e6751e9a 3270
f81d9f78 3271static void
88e6f696 3272propagate_freq (basic_block head, bitmap tovisit)
f81d9f78 3273{
4c26117a 3274 basic_block bb;
3275 basic_block last;
9ea83aa5 3276 unsigned i;
f81d9f78 3277 edge e;
3278 basic_block nextbb;
b1bb9b10 3279 bitmap_iterator bi;
312866af 3280
4a82352a 3281 /* For each basic block we need to visit count number of his predecessors
312866af 3282 we need to visit first. */
b1bb9b10 3283 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
312866af 3284 {
b1bb9b10 3285 edge_iterator ei;
3286 int count = 0;
3287
f5a6b05f 3288 bb = BASIC_BLOCK_FOR_FN (cfun, i);
e6751e9a 3289
b1bb9b10 3290 FOR_EACH_EDGE (e, ei, bb->preds)
3291 {
3292 bool visit = bitmap_bit_p (tovisit, e->src->index);
3293
3294 if (visit && !(e->flags & EDGE_DFS_BACK))
3295 count++;
3296 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
3297 fprintf (dump_file,
3298 "Irreducible region hit, ignoring edge to %i->%i\n",
3299 e->src->index, bb->index);
312866af 3300 }
9ea83aa5 3301 BLOCK_INFO (bb)->npredecessors = count;
555e8b05 3302 /* When function never returns, we will never process exit block. */
34154e27 3303 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
205ce1aa 3304 bb->count = profile_count::zero ();
312866af 3305 }
f81d9f78 3306
8201d1f6 3307 BLOCK_INFO (head)->frequency = 1;
4c26117a 3308 last = head;
3309 for (bb = head; bb; bb = nextbb)
f81d9f78 3310 {
cd665a06 3311 edge_iterator ei;
8201d1f6 3312 sreal cyclic_probability = 0;
3313 sreal frequency = 0;
f81d9f78 3314
3315 nextbb = BLOCK_INFO (bb)->next;
3316 BLOCK_INFO (bb)->next = NULL;
3317
3318 /* Compute frequency of basic block. */
3319 if (bb != head)
3320 {
382ecba7 3321 if (flag_checking)
3322 FOR_EACH_EDGE (e, ei, bb->preds)
3323 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
3324 || (e->flags & EDGE_DFS_BACK));
f81d9f78 3325
cd665a06 3326 FOR_EACH_EDGE (e, ei, bb->preds)
f81d9f78 3327 if (EDGE_INFO (e)->back_edge)
56ff4880 3328 {
23a92fc7 3329 cyclic_probability += EDGE_INFO (e)->back_edge_prob;
56ff4880 3330 }
312866af 3331 else if (!(e->flags & EDGE_DFS_BACK))
56ff4880 3332 {
56ff4880 3333 /* frequency += (e->probability
3334 * BLOCK_INFO (e->src)->frequency /
3335 REG_BR_PROB_BASE); */
3336
205ce1aa 3337 /* FIXME: Graphite is producing edges with no profile. Once
3338 this is fixed, drop this. */
3339 sreal tmp = e->probability.initialized_p () ?
3340 e->probability.to_reg_br_prob_base () : 0;
23a92fc7 3341 tmp *= BLOCK_INFO (e->src)->frequency;
3342 tmp *= real_inv_br_prob_base;
3343 frequency += tmp;
56ff4880 3344 }
3345
8201d1f6 3346 if (cyclic_probability == 0)
e9d7220b 3347 {
23a92fc7 3348 BLOCK_INFO (bb)->frequency = frequency;
e9d7220b 3349 }
2e3c56e8 3350 else
3351 {
23a92fc7 3352 if (cyclic_probability > real_almost_one)
3353 cyclic_probability = real_almost_one;
f81d9f78 3354
d598ad0d 3355 /* BLOCK_INFO (bb)->frequency = frequency
e9d7220b 3356 / (1 - cyclic_probability) */
f81d9f78 3357
8201d1f6 3358 cyclic_probability = sreal (1) - cyclic_probability;
23a92fc7 3359 BLOCK_INFO (bb)->frequency = frequency / cyclic_probability;
2e3c56e8 3360 }
f81d9f78 3361 }
3362
b1bb9b10 3363 bitmap_clear_bit (tovisit, bb->index);
f81d9f78 3364
c6356c17 3365 e = find_edge (bb, head);
3366 if (e)
3367 {
c6356c17 3368 /* EDGE_INFO (e)->back_edge_prob
3369 = ((e->probability * BLOCK_INFO (bb)->frequency)
3370 / REG_BR_PROB_BASE); */
48e1416a 3371
205ce1aa 3372 /* FIXME: Graphite is producing edges with no profile. Once
3373 this is fixed, drop this. */
3374 sreal tmp = e->probability.initialized_p () ?
3375 e->probability.to_reg_br_prob_base () : 0;
23a92fc7 3376 tmp *= BLOCK_INFO (bb)->frequency;
3377 EDGE_INFO (e)->back_edge_prob = tmp * real_inv_br_prob_base;
c6356c17 3378 }
f81d9f78 3379
e725f898 3380 /* Propagate to successor blocks. */
cd665a06 3381 FOR_EACH_EDGE (e, ei, bb->succs)
312866af 3382 if (!(e->flags & EDGE_DFS_BACK)
4ad72a03 3383 && BLOCK_INFO (e->dest)->npredecessors)
f81d9f78 3384 {
4ad72a03 3385 BLOCK_INFO (e->dest)->npredecessors--;
3386 if (!BLOCK_INFO (e->dest)->npredecessors)
312866af 3387 {
3388 if (!nextbb)
3389 nextbb = e->dest;
3390 else
3391 BLOCK_INFO (last)->next = e->dest;
48e1416a 3392
312866af 3393 last = e->dest;
3394 }
cd665a06 3395 }
f81d9f78 3396 }
3397}
3398
5327650f 3399/* Estimate frequencies in loops at same nest level. */
e6751e9a 3400
f81d9f78 3401static void
2e966e2a 3402estimate_loops_at_level (class loop *first_loop)
f81d9f78 3403{
2e966e2a 3404 class loop *loop;
f81d9f78 3405
3406 for (loop = first_loop; loop; loop = loop->next)
3407 {
f81d9f78 3408 edge e;
7fb12188 3409 basic_block *bbs;
862be747 3410 unsigned i;
035def86 3411 auto_bitmap tovisit;
f81d9f78 3412
88e6f696 3413 estimate_loops_at_level (loop->inner);
d598ad0d 3414
88e6f696 3415 /* Find current loop back edge and mark it. */
3416 e = loop_latch_edge (loop);
3417 EDGE_INFO (e)->back_edge = 1;
7fb12188 3418
3419 bbs = get_loop_body (loop);
3420 for (i = 0; i < loop->num_nodes; i++)
b1bb9b10 3421 bitmap_set_bit (tovisit, bbs[i]->index);
7fb12188 3422 free (bbs);
88e6f696 3423 propagate_freq (loop->header, tovisit);
f81d9f78 3424 }
3425}
3426
fa7637bd 3427/* Propagates frequencies through structure of loops. */
88e6f696 3428
3429static void
7194de72 3430estimate_loops (void)
88e6f696 3431{
035def86 3432 auto_bitmap tovisit;
88e6f696 3433 basic_block bb;
3434
3435 /* Start by estimating the frequencies in the loops. */
41f75a99 3436 if (number_of_loops (cfun) > 1)
7194de72 3437 estimate_loops_at_level (current_loops->tree_root->inner);
88e6f696 3438
3439 /* Now propagate the frequencies through all the blocks. */
ed7d889a 3440 FOR_ALL_BB_FN (bb, cfun)
88e6f696 3441 {
3442 bitmap_set_bit (tovisit, bb->index);
3443 }
34154e27 3444 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit);
88e6f696 3445}
3446
38a65d4e 3447/* Drop the profile for NODE to guessed, and update its frequency based on
901d3ddc 3448 whether it is expected to be hot given the CALL_COUNT. */
38a65d4e 3449
3450static void
db9cef39 3451drop_profile (struct cgraph_node *node, profile_count call_count)
38a65d4e 3452{
3453 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
901d3ddc 3454 /* In the case where this was called by another function with a
3455 dropped profile, call_count will be 0. Since there are no
3456 non-zero call counts to this function, we don't know for sure
3457 whether it is hot, and therefore it will be marked normal below. */
3458 bool hot = maybe_hot_count_p (NULL, call_count);
38a65d4e 3459
3460 if (dump_file)
3461 fprintf (dump_file,
0e388735 3462 "Dropping 0 profile for %s. %s based on calls.\n",
3463 node->dump_name (),
3464 hot ? "Function is hot" : "Function is normal");
38a65d4e 3465 /* We only expect to miss profiles for functions that are reached
3466 via non-zero call edges in cases where the function may have
3467 been linked from another module or library (COMDATs and extern
901d3ddc 3468 templates). See the comments below for handle_missing_profiles.
3469 Also, only warn in cases where the missing counts exceed the
3470 number of training runs. In certain cases with an execv followed
3471 by a no-return call the profile for the no-return call is not
3472 dumped and there can be a mismatch. */
3473 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
3474 && call_count > profile_info->runs)
38a65d4e 3475 {
3476 if (flag_profile_correction)
3477 {
3478 if (dump_file)
3479 fprintf (dump_file,
0e388735 3480 "Missing counts for called function %s\n",
3481 node->dump_name ());
38a65d4e 3482 }
3483 else
0e388735 3484 warning (0, "Missing counts for called function %s",
3485 node->dump_name ());
38a65d4e 3486 }
3487
2cbbeb51 3488 basic_block bb;
22af35f6 3489 if (opt_for_fn (node->decl, flag_guess_branch_prob))
205ce1aa 3490 {
3491 bool clear_zeros
22af35f6 3492 = !ENTRY_BLOCK_PTR_FOR_FN (fn)->count.nonzero_p ();
205ce1aa 3493 FOR_ALL_BB_FN (bb, fn)
3494 if (clear_zeros || !(bb->count == profile_count::zero ()))
3495 bb->count = bb->count.guessed_local ();
22af35f6 3496 fn->cfg->count_max = fn->cfg->count_max.guessed_local ();
205ce1aa 3497 }
3498 else
2cbbeb51 3499 {
205ce1aa 3500 FOR_ALL_BB_FN (bb, fn)
3501 bb->count = profile_count::uninitialized ();
22af35f6 3502 fn->cfg->count_max = profile_count::uninitialized ();
2cbbeb51 3503 }
3504
3505 struct cgraph_edge *e;
151b9ff5 3506 for (e = node->callees; e; e = e->next_callee)
3507 e->count = gimple_bb (e->call_stmt)->count;
3508 for (e = node->indirect_calls; e; e = e->next_callee)
3509 e->count = gimple_bb (e->call_stmt)->count;
22af35f6 3510 node->count = ENTRY_BLOCK_PTR_FOR_FN (fn)->count;
2cbbeb51 3511
3bedbae3 3512 profile_status_for_fn (fn)
38a65d4e 3513 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
3514 node->frequency
3515 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
3516}
3517
3518/* In the case of COMDAT routines, multiple object files will contain the same
3519 function and the linker will select one for the binary. In that case
3520 all the other copies from the profile instrument binary will be missing
3521 profile counts. Look for cases where this happened, due to non-zero
3522 call counts going to 0-count functions, and drop the profile to guessed
3523 so that we can use the estimated probabilities and avoid optimizing only
3524 for size.
3525
3526 The other case where the profile may be missing is when the routine
3527 is not going to be emitted to the object file, e.g. for "extern template"
3528 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
3529 all other cases of non-zero calls to 0-count functions. */
3530
3531void
3532handle_missing_profiles (void)
3533{
8070b8d5 3534 const int unlikely_frac = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
38a65d4e 3535 struct cgraph_node *node;
e9258aee 3536 auto_vec<struct cgraph_node *, 64> worklist;
38a65d4e 3537
3538 /* See if 0 count function has non-0 count callers. In this case we
3539 lost some profile. Drop its function profile to PROFILE_GUESSED. */
3540 FOR_EACH_DEFINED_FUNCTION (node)
3541 {
3542 struct cgraph_edge *e;
db9cef39 3543 profile_count call_count = profile_count::zero ();
af48f0b1 3544 gcov_type max_tp_first_run = 0;
38a65d4e 3545 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
3546
22af35f6 3547 if (node->count.ipa ().nonzero_p ())
38a65d4e 3548 continue;
3549 for (e = node->callers; e; e = e->next_caller)
22af35f6 3550 if (e->count.ipa ().initialized_p () && e->count.ipa () > 0)
db9cef39 3551 {
22af35f6 3552 call_count = call_count + e->count.ipa ();
af48f0b1 3553
db9cef39 3554 if (e->caller->tp_first_run > max_tp_first_run)
3555 max_tp_first_run = e->caller->tp_first_run;
3556 }
af48f0b1 3557
3558 /* If time profile is missing, let assign the maximum that comes from
3559 caller functions. */
3560 if (!node->tp_first_run && max_tp_first_run)
3561 node->tp_first_run = max_tp_first_run + 1;
3562
db9cef39 3563 if (call_count > 0
38a65d4e 3564 && fn && fn->cfg
8070b8d5 3565 && call_count.apply_scale (unlikely_frac, 1) >= profile_info->runs)
38a65d4e 3566 {
901d3ddc 3567 drop_profile (node, call_count);
38a65d4e 3568 worklist.safe_push (node);
3569 }
3570 }
3571
3572 /* Propagate the profile dropping to other 0-count COMDATs that are
3573 potentially called by COMDATs we already dropped the profile on. */
3574 while (worklist.length () > 0)
3575 {
3576 struct cgraph_edge *e;
3577
3578 node = worklist.pop ();
3579 for (e = node->callees; e; e = e->next_caller)
3580 {
3581 struct cgraph_node *callee = e->callee;
3582 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
3583
22af35f6 3584 if (!(e->count.ipa () == profile_count::zero ())
3585 && callee->count.ipa ().nonzero_p ())
38a65d4e 3586 continue;
2cbbeb51 3587 if ((DECL_COMDAT (callee->decl) || DECL_EXTERNAL (callee->decl))
3588 && fn && fn->cfg
3bedbae3 3589 && profile_status_for_fn (fn) == PROFILE_READ)
38a65d4e 3590 {
db9cef39 3591 drop_profile (node, profile_count::zero ());
38a65d4e 3592 worklist.safe_push (callee);
3593 }
3594 }
3595 }
38a65d4e 3596}
3597
3f18719c 3598/* Convert counts measured by profile driven feedback to frequencies.
3599 Return nonzero iff there was any nonzero execution count. */
e6751e9a 3600
db9cef39 3601bool
688b6bc6 3602update_max_bb_count (void)
f81d9f78 3603{
205ce1aa 3604 profile_count true_count_max = profile_count::uninitialized ();
4c26117a 3605 basic_block bb;
b3d6de89 3606
34154e27 3607 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
84895d28 3608 true_count_max = true_count_max.max (bb->count);
db9cef39 3609
205ce1aa 3610 cfun->cfg->count_max = true_count_max;
2cbbeb51 3611
688b6bc6 3612 return true_count_max.ipa ().nonzero_p ();
f81d9f78 3613}
3614
e6751e9a 3615/* Return true if function is likely to be expensive, so there is no point to
3616 optimize performance of prologue, epilogue or do inlining at the expense
41a6f238 3617 of code size growth. THRESHOLD is the limit of number of instructions
e6751e9a 3618 function can execute at average to be still considered not expensive. */
3619
f4c0c1a2 3620bool
d598ad0d 3621expensive_function_p (int threshold)
f4c0c1a2 3622{
4c26117a 3623 basic_block bb;
f4c0c1a2 3624
688b6bc6 3625 /* If profile was scaled in a way entry block has count 0, then the function
3626 is deifnitly taking a lot of time. */
3627 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.nonzero_p ())
f4c0c1a2 3628 return true;
195731ad 3629
688b6bc6 3630 profile_count limit = ENTRY_BLOCK_PTR_FOR_FN
3631 (cfun)->count.apply_scale (threshold, 1);
3632 profile_count sum = profile_count::zero ();
fc00614f 3633 FOR_EACH_BB_FN (bb, cfun)
f4c0c1a2 3634 {
ee5f6585 3635 rtx_insn *insn;
f4c0c1a2 3636
688b6bc6 3637 if (!bb->count.initialized_p ())
3638 {
3639 if (dump_file)
3640 fprintf (dump_file, "Function is considered expensive because"
3641 " count of bb %i is not initialized\n", bb->index);
3642 return true;
3643 }
3644
91f71fa3 3645 FOR_BB_INSNS (bb, insn)
e6751e9a 3646 if (active_insn_p (insn))
3647 {
688b6bc6 3648 sum += bb->count;
e6751e9a 3649 if (sum > limit)
3650 return true;
f4c0c1a2 3651 }
3652 }
e6751e9a 3653
f4c0c1a2 3654 return false;
3655}
3656
84242aee 3657/* All basic blocks that are reachable only from unlikely basic blocks are
3658 unlikely. */
3659
3660void
3661propagate_unlikely_bbs_forward (void)
3662{
3663 auto_vec<basic_block, 64> worklist;
3664 basic_block bb;
3665 edge_iterator ei;
3666 edge e;
3667
3668 if (!(ENTRY_BLOCK_PTR_FOR_FN (cfun)->count == profile_count::zero ()))
3669 {
3670 ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux = (void *)(size_t) 1;
3671 worklist.safe_push (ENTRY_BLOCK_PTR_FOR_FN (cfun));
3672
3673 while (worklist.length () > 0)
3674 {
3675 bb = worklist.pop ();
3676 FOR_EACH_EDGE (e, ei, bb->succs)
ea5d3981 3677 if (!(e->count () == profile_count::zero ())
84242aee 3678 && !(e->dest->count == profile_count::zero ())
3679 && !e->dest->aux)
3680 {
3681 e->dest->aux = (void *)(size_t) 1;
3682 worklist.safe_push (e->dest);
3683 }
3684 }
3685 }
3686
3687 FOR_ALL_BB_FN (bb, cfun)
3688 {
3689 if (!bb->aux)
3690 {
3691 if (!(bb->count == profile_count::zero ())
3692 && (dump_file && (dump_flags & TDF_DETAILS)))
3693 fprintf (dump_file,
3694 "Basic block %i is marked unlikely by forward prop\n",
3695 bb->index);
3696 bb->count = profile_count::zero ();
84242aee 3697 }
3698 else
3699 bb->aux = NULL;
3700 }
3701}
3702
f08c22c4 3703/* Determine basic blocks/edges that are known to be unlikely executed and set
3704 their counters to zero.
3705 This is done with first identifying obviously unlikely BBs/edges and then
3706 propagating in both directions. */
3707
3708static void
3709determine_unlikely_bbs ()
3710{
3711 basic_block bb;
3712 auto_vec<basic_block, 64> worklist;
3713 edge_iterator ei;
3714 edge e;
3715
3716 FOR_EACH_BB_FN (bb, cfun)
3717 {
3718 if (!(bb->count == profile_count::zero ())
3719 && unlikely_executed_bb_p (bb))
3720 {
3721 if (dump_file && (dump_flags & TDF_DETAILS))
3722 fprintf (dump_file, "Basic block %i is locally unlikely\n",
3723 bb->index);
3724 bb->count = profile_count::zero ();
3725 }
3726
f08c22c4 3727 FOR_EACH_EDGE (e, ei, bb->succs)
ea5d3981 3728 if (!(e->probability == profile_probability::never ())
f08c22c4 3729 && unlikely_executed_edge_p (e))
3730 {
3731 if (dump_file && (dump_flags & TDF_DETAILS))
3732 fprintf (dump_file, "Edge %i->%i is locally unlikely\n",
3733 bb->index, e->dest->index);
ea5d3981 3734 e->probability = profile_probability::never ();
f08c22c4 3735 }
3736
3737 gcc_checking_assert (!bb->aux);
3738 }
3f9a545c 3739 propagate_unlikely_bbs_forward ();
f08c22c4 3740
f08c22c4 3741 auto_vec<int, 64> nsuccs;
3742 nsuccs.safe_grow_cleared (last_basic_block_for_fn (cfun));
3743 FOR_ALL_BB_FN (bb, cfun)
3744 if (!(bb->count == profile_count::zero ())
3745 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3746 {
3747 nsuccs[bb->index] = 0;
3748 FOR_EACH_EDGE (e, ei, bb->succs)
ea5d3981 3749 if (!(e->probability == profile_probability::never ())
3750 && !(e->dest->count == profile_count::zero ()))
f08c22c4 3751 nsuccs[bb->index]++;
3752 if (!nsuccs[bb->index])
3753 worklist.safe_push (bb);
3754 }
3755 while (worklist.length () > 0)
3756 {
3757 bb = worklist.pop ();
6595f9c7 3758 if (bb->count == profile_count::zero ())
3759 continue;
f08c22c4 3760 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3761 {
3762 bool found = false;
3763 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
3764 !gsi_end_p (gsi); gsi_next (&gsi))
3765 if (stmt_can_terminate_bb_p (gsi_stmt (gsi))
3766 /* stmt_can_terminate_bb_p special cases noreturns because it
3767 assumes that fake edges are created. We want to know that
3768 noreturn alone does not imply BB to be unlikely. */
3769 || (is_gimple_call (gsi_stmt (gsi))
3770 && (gimple_call_flags (gsi_stmt (gsi)) & ECF_NORETURN)))
3771 {
3772 found = true;
3773 break;
3774 }
3775 if (found)
3776 continue;
3777 }
6595f9c7 3778 if (dump_file && (dump_flags & TDF_DETAILS))
f08c22c4 3779 fprintf (dump_file,
3780 "Basic block %i is marked unlikely by backward prop\n",
3781 bb->index);
3782 bb->count = profile_count::zero ();
f08c22c4 3783 FOR_EACH_EDGE (e, ei, bb->preds)
ea5d3981 3784 if (!(e->probability == profile_probability::never ()))
f08c22c4 3785 {
f08c22c4 3786 if (!(e->src->count == profile_count::zero ()))
3787 {
6595f9c7 3788 gcc_checking_assert (nsuccs[e->src->index] > 0);
f08c22c4 3789 nsuccs[e->src->index]--;
3790 if (!nsuccs[e->src->index])
3791 worklist.safe_push (e->src);
3792 }
3793 }
3794 }
3f9a545c 3795 /* Finally all edges from non-0 regions to 0 are unlikely. */
3796 FOR_ALL_BB_FN (bb, cfun)
63c3361d 3797 {
3798 if (!(bb->count == profile_count::zero ()))
3799 FOR_EACH_EDGE (e, ei, bb->succs)
3800 if (!(e->probability == profile_probability::never ())
3801 && e->dest->count == profile_count::zero ())
3802 {
3803 if (dump_file && (dump_flags & TDF_DETAILS))
3804 fprintf (dump_file, "Edge %i->%i is unlikely because "
3805 "it enters unlikely block\n",
3806 bb->index, e->dest->index);
3807 e->probability = profile_probability::never ();
3808 }
3809
3810 edge other = NULL;
3811
3f9a545c 3812 FOR_EACH_EDGE (e, ei, bb->succs)
63c3361d 3813 if (e->probability == profile_probability::never ())
3814 ;
3815 else if (other)
3816 {
3817 other = NULL;
3818 break;
3819 }
3820 else
3821 other = e;
3822 if (other
3823 && !(other->probability == profile_probability::always ()))
3824 {
3825 if (dump_file && (dump_flags & TDF_DETAILS))
3826 fprintf (dump_file, "Edge %i->%i is locally likely\n",
3827 bb->index, other->dest->index);
3828 other->probability = profile_probability::always ();
3829 }
3830 }
7ae0128a 3831 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count == profile_count::zero ())
3832 cgraph_node::get (current_function_decl)->count = profile_count::zero ();
f08c22c4 3833}
3834
5327650f 3835/* Estimate and propagate basic block frequencies using the given branch
3836 probabilities. If FORCE is true, the frequencies are used to estimate
3837 the counts even when there are already non-zero profile counts. */
e6751e9a 3838
4ae20857 3839void
5327650f 3840estimate_bb_frequencies (bool force)
f81d9f78 3841{
4c26117a 3842 basic_block bb;
e9d7220b 3843 sreal freq_max;
56ff4880 3844
f08c22c4 3845 determine_unlikely_bbs ();
3846
3847 if (force || profile_status_for_fn (cfun) != PROFILE_READ
688b6bc6 3848 || !update_max_bb_count ())
429fa7fa 3849 {
31e4010e 3850 static int real_values_initialized = 0;
3851
3852 if (!real_values_initialized)
3853 {
fc22704f 3854 real_values_initialized = 1;
8201d1f6 3855 real_br_prob_base = REG_BR_PROB_BASE;
7ae0128a 3856 /* Scaling frequencies up to maximal profile count may result in
3857 frequent overflows especially when inlining loops.
3858 Small scalling results in unnecesary precision loss. Stay in
3859 the half of the (exponential) range. */
3860 real_bb_freq_max = (uint64_t)1 << (profile_count::n_bits / 2);
23a92fc7 3861 real_one_half = sreal (1, -1);
8201d1f6 3862 real_inv_br_prob_base = sreal (1) / real_br_prob_base;
3863 real_almost_one = sreal (1) - real_inv_br_prob_base;
31e4010e 3864 }
f81d9f78 3865
429fa7fa 3866 mark_dfs_back_edges ();
429fa7fa 3867
34154e27 3868 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
720cfc43 3869 profile_probability::always ();
429fa7fa 3870
3871 /* Set up block info for each basic block. */
9908fe4d 3872 alloc_aux_for_blocks (sizeof (block_info));
3873 alloc_aux_for_edges (sizeof (edge_prob_info));
34154e27 3874 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
f81d9f78 3875 {
f81d9f78 3876 edge e;
cd665a06 3877 edge_iterator ei;
429fa7fa 3878
cd665a06 3879 FOR_EACH_EDGE (e, ei, bb->succs)
f81d9f78 3880 {
205ce1aa 3881 /* FIXME: Graphite is producing edges with no profile. Once
3882 this is fixed, drop this. */
3883 if (e->probability.initialized_p ())
3884 EDGE_INFO (e)->back_edge_prob
3885 = e->probability.to_reg_br_prob_base ();
3886 else
3887 EDGE_INFO (e)->back_edge_prob = REG_BR_PROB_BASE / 2;
23a92fc7 3888 EDGE_INFO (e)->back_edge_prob *= real_inv_br_prob_base;
f81d9f78 3889 }
f81d9f78 3890 }
e6751e9a 3891
5327650f 3892 /* First compute frequencies locally for each loop from innermost
3893 to outermost to examine frequencies for back edges. */
7194de72 3894 estimate_loops ();
f81d9f78 3895
8201d1f6 3896 freq_max = 0;
fc00614f 3897 FOR_EACH_BB_FN (bb, cfun)
23a92fc7 3898 if (freq_max < BLOCK_INFO (bb)->frequency)
3899 freq_max = BLOCK_INFO (bb)->frequency;
2e3c56e8 3900
23a92fc7 3901 freq_max = real_bb_freq_max / freq_max;
7ae0128a 3902 if (freq_max < 16)
3903 freq_max = 16;
ed0831a9 3904 profile_count ipa_count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa ();
205ce1aa 3905 cfun->cfg->count_max = profile_count::uninitialized ();
34154e27 3906 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
56ff4880 3907 {
23a92fc7 3908 sreal tmp = BLOCK_INFO (bb)->frequency * freq_max + real_one_half;
205ce1aa 3909 profile_count count = profile_count::from_gcov_type (tmp.to_int ());
3910
3911 /* If we have profile feedback in which this function was never
3912 executed, then preserve this info. */
ed0831a9 3913 if (!(bb->count == profile_count::zero ()))
3914 bb->count = count.guessed_local ().combine_with_ipa_count (ipa_count);
205ce1aa 3915 cfun->cfg->count_max = cfun->cfg->count_max.max (bb->count);
429fa7fa 3916 }
e6751e9a 3917
429fa7fa 3918 free_aux_for_blocks ();
3919 free_aux_for_edges ();
3920 }
3921 compute_function_frequency ();
429fa7fa 3922}
f81d9f78 3923
429fa7fa 3924/* Decide whether function is hot, cold or unlikely executed. */
63aab97d 3925void
d598ad0d 3926compute_function_frequency (void)
429fa7fa 3927{
4c26117a 3928 basic_block bb;
415d1b9a 3929 struct cgraph_node *node = cgraph_node::get (current_function_decl);
e27f29dd 3930
0f9fb931 3931 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3932 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
3933 node->only_called_at_startup = true;
3934 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
3935 node->only_called_at_exit = true;
4c26117a 3936
f26d8580 3937 if (profile_status_for_fn (cfun) != PROFILE_READ)
5de92639 3938 {
125b6d78 3939 int flags = flags_from_decl_or_type (current_function_decl);
205ce1aa 3940 if ((ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa_p ()
3941 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa() == profile_count::zero ())
f08c22c4 3942 || lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
3943 != NULL)
60722a03 3944 {
3945 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3946 warn_function_cold (current_function_decl);
3947 }
5de92639 3948 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
3949 != NULL)
125b6d78 3950 node->frequency = NODE_FREQUENCY_HOT;
3951 else if (flags & ECF_NORETURN)
3952 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3953 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
3954 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3955 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3956 || DECL_STATIC_DESTRUCTOR (current_function_decl))
3957 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
5de92639 3958 return;
3959 }
e27f29dd 3960
f12452a9 3961 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3962 warn_function_cold (current_function_decl);
3963 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa() == profile_count::zero ())
3964 return;
fc00614f 3965 FOR_EACH_BB_FN (bb, cfun)
f81d9f78 3966 {
8d672d12 3967 if (maybe_hot_bb_p (cfun, bb))
429fa7fa 3968 {
125b6d78 3969 node->frequency = NODE_FREQUENCY_HOT;
429fa7fa 3970 return;
3971 }
8d672d12 3972 if (!probably_never_executed_bb_p (cfun, bb))
125b6d78 3973 node->frequency = NODE_FREQUENCY_NORMAL;
f81d9f78 3974 }
429fa7fa 3975}
f81d9f78 3976
4a1849e3 3977/* Build PREDICT_EXPR. */
3978tree
3979build_predict_expr (enum br_predictor predictor, enum prediction taken)
3980{
08f62b1b 3981 tree t = build1 (PREDICT_EXPR, void_type_node,
b3d480fb 3982 build_int_cst (integer_type_node, predictor));
b9c74b4d 3983 SET_PREDICT_EXPR_OUTCOME (t, taken);
4a1849e3 3984 return t;
3985}
3986
3987const char *
3988predictor_name (enum br_predictor predictor)
3989{
3990 return predictor_info[predictor].name;
3991}
3992
65b0537f 3993/* Predict branch probabilities and estimate profile of the tree CFG. */
3994
cbe8bda8 3995namespace {
3996
3997const pass_data pass_data_profile =
3998{
3999 GIMPLE_PASS, /* type */
4000 "profile_estimate", /* name */
4001 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 4002 TV_BRANCH_PROB, /* tv_id */
4003 PROP_cfg, /* properties_required */
4004 0, /* properties_provided */
4005 0, /* properties_destroyed */
4006 0, /* todo_flags_start */
8b88439e 4007 0, /* todo_flags_finish */
4ee9c684 4008};
1add270f 4009
cbe8bda8 4010class pass_profile : public gimple_opt_pass
4011{
4012public:
9af5ce0c 4013 pass_profile (gcc::context *ctxt)
4014 : gimple_opt_pass (pass_data_profile, ctxt)
cbe8bda8 4015 {}
4016
4017 /* opt_pass methods: */
31315c24 4018 virtual bool gate (function *) { return flag_guess_branch_prob; }
65b0537f 4019 virtual unsigned int execute (function *);
cbe8bda8 4020
4021}; // class pass_profile
4022
65b0537f 4023unsigned int
4024pass_profile::execute (function *fun)
4025{
4026 unsigned nb_loops;
4027
3a9f48e7 4028 if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
4029 return 0;
4030
65b0537f 4031 loop_optimizer_init (LOOPS_NORMAL);
4032 if (dump_file && (dump_flags & TDF_DETAILS))
4033 flow_loops_dump (dump_file, NULL, 0);
4034
4035 mark_irreducible_loops ();
4036
4037 nb_loops = number_of_loops (fun);
4038 if (nb_loops > 1)
4039 scev_initialize ();
4040
5a5f50e9 4041 tree_estimate_probability (false);
65b0537f 4042
4043 if (nb_loops > 1)
4044 scev_finalize ();
4045
4046 loop_optimizer_finalize ();
4047 if (dump_file && (dump_flags & TDF_DETAILS))
4048 gimple_dump_cfg (dump_file, dump_flags);
4049 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
4050 profile_status_for_fn (fun) = PROFILE_GUESSED;
cbcc4297 4051 if (dump_file && (dump_flags & TDF_DETAILS))
4052 {
2e966e2a 4053 class loop *loop;
cbcc4297 4054 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
205ce1aa 4055 if (loop->header->count.initialized_p ())
cbcc4297 4056 fprintf (dump_file, "Loop got predicted %d to iterate %i times.\n",
4057 loop->num,
4058 (int)expected_loop_iterations_unbounded (loop));
4059 }
65b0537f 4060 return 0;
4061}
4062
cbe8bda8 4063} // anon namespace
4064
4065gimple_opt_pass *
4066make_pass_profile (gcc::context *ctxt)
4067{
4068 return new pass_profile (ctxt);
4069}
4070
c03de6c9 4071/* Return true when PRED predictor should be removed after early
4072 tree passes. Most of the predictors are beneficial to survive
4073 as early inlining can also distribute then into caller's bodies. */
cbe8bda8 4074
c03de6c9 4075static bool
4076strip_predictor_early (enum br_predictor pred)
cbe8bda8 4077{
c03de6c9 4078 switch (pred)
4079 {
4080 case PRED_TREE_EARLY_RETURN:
4081 return true;
4082 default:
4083 return false;
4084 }
4085}
cbe8bda8 4086
65b0537f 4087/* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
c03de6c9 4088 we no longer need. EARLY is set to true when called from early
4089 optimizations. */
4090
65b0537f 4091unsigned int
c03de6c9 4092strip_predict_hints (function *fun, bool early)
65b0537f 4093{
4094 basic_block bb;
42acab1c 4095 gimple *ass_stmt;
65b0537f 4096 tree var;
7349d65b 4097 bool changed = false;
65b0537f 4098
4099 FOR_EACH_BB_FN (bb, fun)
4100 {
4101 gimple_stmt_iterator bi;
4102 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
4103 {
42acab1c 4104 gimple *stmt = gsi_stmt (bi);
65b0537f 4105
4106 if (gimple_code (stmt) == GIMPLE_PREDICT)
4107 {
c03de6c9 4108 if (!early
4109 || strip_predictor_early (gimple_predict_predictor (stmt)))
4110 {
4111 gsi_remove (&bi, true);
4112 changed = true;
4113 continue;
4114 }
65b0537f 4115 }
4116 else if (is_gimple_call (stmt))
4117 {
4118 tree fndecl = gimple_call_fndecl (stmt);
4119
01107f42 4120 if (!early
a0e9bfbb 4121 && ((fndecl != NULL_TREE
4122 && fndecl_built_in_p (fndecl, BUILT_IN_EXPECT)
01107f42 4123 && gimple_call_num_args (stmt) == 2)
a0e9bfbb 4124 || (fndecl != NULL_TREE
4125 && fndecl_built_in_p (fndecl,
4126 BUILT_IN_EXPECT_WITH_PROBABILITY)
01107f42 4127 && gimple_call_num_args (stmt) == 3)
4128 || (gimple_call_internal_p (stmt)
4129 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT)))
65b0537f 4130 {
4131 var = gimple_call_lhs (stmt);
7349d65b 4132 changed = true;
65b0537f 4133 if (var)
4134 {
4135 ass_stmt
4136 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
4137 gsi_replace (&bi, ass_stmt, true);
4138 }
4139 else
4140 {
4141 gsi_remove (&bi, true);
4142 continue;
4143 }
4144 }
4145 }
4146 gsi_next (&bi);
4147 }
4148 }
7349d65b 4149 return changed ? TODO_cleanup_cfg : 0;
65b0537f 4150}
4151
c03de6c9 4152namespace {
4153
4154const pass_data pass_data_strip_predict_hints =
4155{
4156 GIMPLE_PASS, /* type */
4157 "*strip_predict_hints", /* name */
4158 OPTGROUP_NONE, /* optinfo_flags */
4159 TV_BRANCH_PROB, /* tv_id */
4160 PROP_cfg, /* properties_required */
4161 0, /* properties_provided */
4162 0, /* properties_destroyed */
4163 0, /* todo_flags_start */
4164 0, /* todo_flags_finish */
4165};
4166
4167class pass_strip_predict_hints : public gimple_opt_pass
4168{
4169public:
4170 pass_strip_predict_hints (gcc::context *ctxt)
4171 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
4172 {}
4173
4174 /* opt_pass methods: */
4175 opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
4176 void set_pass_param (unsigned int n, bool param)
4177 {
4178 gcc_assert (n == 0);
4179 early_p = param;
4180 }
4181
4182 virtual unsigned int execute (function *);
4183
4184private:
4185 bool early_p;
4186
4187}; // class pass_strip_predict_hints
4188
4189unsigned int
4190pass_strip_predict_hints::execute (function *fun)
4191{
4192 return strip_predict_hints (fun, early_p);
4193}
4194
cbe8bda8 4195} // anon namespace
4196
4197gimple_opt_pass *
4198make_pass_strip_predict_hints (gcc::context *ctxt)
4199{
4200 return new pass_strip_predict_hints (ctxt);
4201}
4202
555e8b05 4203/* Rebuild function frequencies. Passes are in general expected to
4204 maintain profile by hand, however in some cases this is not possible:
4205 for example when inlining several functions with loops freuqencies might run
4206 out of scale and thus needs to be recomputed. */
4207
4208void
4209rebuild_frequencies (void)
4210{
4b366dd3 4211 timevar_push (TV_REBUILD_FREQUENCIES);
5327650f 4212
4213 /* When the max bb count in the function is small, there is a higher
4214 chance that there were truncation errors in the integer scaling
4215 of counts by inlining and other optimizations. This could lead
4216 to incorrect classification of code as being cold when it isn't.
4217 In that case, force the estimation of bb counts/frequencies from the
4218 branch probabilities, rather than computing frequencies from counts,
4219 which may also lead to frequencies incorrectly reduced to 0. There
4220 is less precision in the probabilities, so we only do this for small
4221 max counts. */
205ce1aa 4222 cfun->cfg->count_max = profile_count::uninitialized ();
5327650f 4223 basic_block bb;
34154e27 4224 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
205ce1aa 4225 cfun->cfg->count_max = cfun->cfg->count_max.max (bb->count);
5327650f 4226
205ce1aa 4227 if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
555e8b05 4228 {
4229 loop_optimizer_init (0);
4230 add_noreturn_fake_exit_edges ();
4231 mark_irreducible_loops ();
4232 connect_infinite_loops_to_exit ();
5327650f 4233 estimate_bb_frequencies (true);
555e8b05 4234 remove_fake_exit_edges ();
4235 loop_optimizer_finalize ();
4236 }
f26d8580 4237 else if (profile_status_for_fn (cfun) == PROFILE_READ)
688b6bc6 4238 update_max_bb_count ();
c06305e2 4239 else if (profile_status_for_fn (cfun) == PROFILE_ABSENT
4240 && !flag_guess_branch_prob)
4241 ;
555e8b05 4242 else
4243 gcc_unreachable ();
4b366dd3 4244 timevar_pop (TV_REBUILD_FREQUENCIES);
555e8b05 4245}
5a5f50e9 4246
4247/* Perform a dry run of the branch prediction pass and report comparsion of
4248 the predicted and real profile into the dump file. */
4249
4250void
4251report_predictor_hitrates (void)
4252{
4253 unsigned nb_loops;
4254
4255 loop_optimizer_init (LOOPS_NORMAL);
4256 if (dump_file && (dump_flags & TDF_DETAILS))
4257 flow_loops_dump (dump_file, NULL, 0);
4258
4259 mark_irreducible_loops ();
4260
4261 nb_loops = number_of_loops (cfun);
4262 if (nb_loops > 1)
4263 scev_initialize ();
4264
4265 tree_estimate_probability (true);
4266
4267 if (nb_loops > 1)
4268 scev_finalize ();
4269
4270 loop_optimizer_finalize ();
4271}
4272
eedd711b 4273/* Force edge E to be cold.
4274 If IMPOSSIBLE is true, for edge to have count and probability 0 otherwise
4275 keep low probability to represent possible error in a guess. This is used
4276 i.e. in case we predict loop to likely iterate given number of times but
4277 we are not 100% sure.
4278
4279 This function locally updates profile without attempt to keep global
f4d3c071 4280 consistency which cannot be reached in full generality without full profile
eedd711b 4281 rebuild from probabilities alone. Doing so is not necessarily a good idea
4282 because frequencies and counts may be more realistic then probabilities.
4283
4284 In some cases (such as for elimination of early exits during full loop
4285 unrolling) the caller can ensure that profile will get consistent
4286 afterwards. */
4287
4288void
4289force_edge_cold (edge e, bool impossible)
4290{
db9cef39 4291 profile_count count_sum = profile_count::zero ();
720cfc43 4292 profile_probability prob_sum = profile_probability::never ();
eedd711b 4293 edge_iterator ei;
4294 edge e2;
caa64124 4295 bool uninitialized_exit = false;
eedd711b 4296
1b06efcb 4297 /* When branch probability guesses are not known, then do nothing. */
4298 if (!impossible && !e->count ().initialized_p ())
4299 return;
4300
720cfc43 4301 profile_probability goal = (impossible ? profile_probability::never ()
4302 : profile_probability::very_unlikely ());
4303
eedd711b 4304 /* If edge is already improbably or cold, just return. */
720cfc43 4305 if (e->probability <= goal
ea5d3981 4306 && (!impossible || e->count () == profile_count::zero ()))
eedd711b 4307 return;
4308 FOR_EACH_EDGE (e2, ei, e->src->succs)
4309 if (e2 != e)
4310 {
1b06efcb 4311 if (e->flags & EDGE_FAKE)
4312 continue;
ea5d3981 4313 if (e2->count ().initialized_p ())
4314 count_sum += e2->count ();
720cfc43 4315 if (e2->probability.initialized_p ())
4316 prob_sum += e2->probability;
1b06efcb 4317 else
4318 uninitialized_exit = true;
eedd711b 4319 }
4320
1b06efcb 4321 /* If we are not guessing profiles but have some other edges out,
4322 just assume the control flow goes elsewhere. */
4323 if (uninitialized_exit)
4324 e->probability = goal;
eedd711b 4325 /* If there are other edges out of e->src, redistribute probabilitity
4326 there. */
1b06efcb 4327 else if (prob_sum > profile_probability::never ())
eedd711b 4328 {
720cfc43 4329 if (!(e->probability < goal))
4330 e->probability = goal;
eedd711b 4331
720cfc43 4332 profile_probability prob_comp = prob_sum / e->probability.invert ();
4333
eedd711b 4334 if (dump_file && (dump_flags & TDF_DETAILS))
4335 fprintf (dump_file, "Making edge %i->%i %s by redistributing "
4336 "probability to other edges.\n",
4337 e->src->index, e->dest->index,
7b3e5dc9 4338 impossible ? "impossible" : "cold");
eedd711b 4339 FOR_EACH_EDGE (e2, ei, e->src->succs)
4340 if (e2 != e)
4341 {
720cfc43 4342 e2->probability /= prob_comp;
eedd711b 4343 }
4bb697cd 4344 if (current_ir_type () != IR_GIMPLE
4345 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
720cfc43 4346 update_br_prob_note (e->src);
eedd711b 4347 }
4348 /* If all edges out of e->src are unlikely, the basic block itself
4349 is unlikely. */
4350 else
4351 {
4bb697cd 4352 if (prob_sum == profile_probability::never ())
4353 e->probability = profile_probability::always ();
4354 else
4355 {
4356 if (impossible)
4357 e->probability = profile_probability::never ();
f4d3c071 4358 /* If BB has some edges out that are not impossible, we cannot
4bb697cd 4359 assume that BB itself is. */
4360 impossible = false;
4361 }
4362 if (current_ir_type () != IR_GIMPLE
4363 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
720cfc43 4364 update_br_prob_note (e->src);
caa64124 4365 if (e->src->count == profile_count::zero ())
4366 return;
1b06efcb 4367 if (count_sum == profile_count::zero () && impossible)
caa64124 4368 {
4369 bool found = false;
720cfc43 4370 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
4371 ;
4372 else if (current_ir_type () == IR_GIMPLE)
4373 for (gimple_stmt_iterator gsi = gsi_start_bb (e->src);
4374 !gsi_end_p (gsi); gsi_next (&gsi))
4375 {
4376 if (stmt_can_terminate_bb_p (gsi_stmt (gsi)))
4377 {
4378 found = true;
4379 break;
4380 }
4381 }
4382 /* FIXME: Implement RTL path. */
4383 else
4384 found = true;
caa64124 4385 if (!found)
4386 {
4387 if (dump_file && (dump_flags & TDF_DETAILS))
4388 fprintf (dump_file,
4389 "Making bb %i impossible and dropping count to 0.\n",
4390 e->src->index);
caa64124 4391 e->src->count = profile_count::zero ();
4392 FOR_EACH_EDGE (e2, ei, e->src->preds)
4393 force_edge_cold (e2, impossible);
4394 return;
4395 }
4396 }
eedd711b 4397
4398 /* If we did not adjusting, the source basic block has no likely edeges
4399 leaving other direction. In that case force that bb cold, too.
4400 This in general is difficult task to do, but handle special case when
4401 BB has only one predecestor. This is common case when we are updating
4402 after loop transforms. */
720cfc43 4403 if (!(prob_sum > profile_probability::never ())
4404 && count_sum == profile_count::zero ()
205ce1aa 4405 && single_pred_p (e->src) && e->src->count.to_frequency (cfun)
4406 > (impossible ? 0 : 1))
eedd711b 4407 {
205ce1aa 4408 int old_frequency = e->src->count.to_frequency (cfun);
eedd711b 4409 if (dump_file && (dump_flags & TDF_DETAILS))
4410 fprintf (dump_file, "Making bb %i %s.\n", e->src->index,
7b3e5dc9 4411 impossible ? "impossible" : "cold");
205ce1aa 4412 int new_frequency = MIN (e->src->count.to_frequency (cfun),
4413 impossible ? 0 : 1);
db9cef39 4414 if (impossible)
ea5d3981 4415 e->src->count = profile_count::zero ();
db9cef39 4416 else
205ce1aa 4417 e->src->count = e->count ().apply_scale (new_frequency,
ea5d3981 4418 old_frequency);
eedd711b 4419 force_edge_cold (single_pred_edge (e->src), impossible);
4420 }
4421 else if (dump_file && (dump_flags & TDF_DETAILS)
4422 && maybe_hot_bb_p (cfun, e->src))
4423 fprintf (dump_file, "Giving up on making bb %i %s.\n", e->src->index,
7b3e5dc9 4424 impossible ? "impossible" : "cold");
eedd711b 4425 }
4426}
71e39b3b 4427
4428#if CHECKING_P
4429
4430namespace selftest {
4431
4432/* Test that value range of predictor values defined in predict.def is
4433 within range (50, 100]. */
4434
4435struct branch_predictor
4436{
4437 const char *name;
8d7738e1 4438 int probability;
71e39b3b 4439};
4440
4441#define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) { NAME, HITRATE },
4442
4443static void
4444test_prediction_value_range ()
4445{
4446 branch_predictor predictors[] = {
4447#include "predict.def"
3be5a61d 4448 { NULL, PROB_UNINITIALIZED }
71e39b3b 4449 };
4450
4451 for (unsigned i = 0; predictors[i].name != NULL; i++)
4452 {
8d7738e1 4453 if (predictors[i].probability == PROB_UNINITIALIZED)
4454 continue;
4455
71e39b3b 4456 unsigned p = 100 * predictors[i].probability / REG_BR_PROB_BASE;
3a600fec 4457 ASSERT_TRUE (p >= 50 && p <= 100);
71e39b3b 4458 }
4459}
4460
4461#undef DEF_PREDICTOR
4462
4463/* Run all of the selfests within this file. */
4464
4465void
4466predict_c_tests ()
4467{
4468 test_prediction_value_range ();
4469}
4470
4471} // namespace selftest
4472#endif /* CHECKING_P. */