]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/predict.c
Merger of git branch "gimple-classes-v2-option-3"
[thirdparty/gcc.git] / gcc / predict.c
CommitLineData
59423b59 1/* Branch prediction routines for the GNU compiler.
3aea1f79 2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
59423b59 3
e6751e9a 4This file is part of GCC.
59423b59 5
e6751e9a 6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8c4c00c1 8Software Foundation; either version 3, or (at your option) any later
e6751e9a 9version.
59423b59 10
e6751e9a 11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
59423b59 15
e6751e9a 16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
59423b59 19
20/* References:
21
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
04641143 27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
59423b59 28
29
30#include "config.h"
31#include "system.h"
805e22b2 32#include "coretypes.h"
33#include "tm.h"
59423b59 34#include "tree.h"
9ed99284 35#include "calls.h"
59423b59 36#include "rtl.h"
37#include "tm_p.h"
d6cb6164 38#include "hard-reg-set.h"
94ea8568 39#include "predict.h"
40#include "vec.h"
a3020f2f 41#include "hashtab.h"
42#include "hash-set.h"
a3020f2f 43#include "machmode.h"
44#include "input.h"
59423b59 45#include "function.h"
94ea8568 46#include "dominance.h"
47#include "cfg.h"
48#include "cfganal.h"
49#include "basic-block.h"
50#include "insn-config.h"
51#include "regs.h"
52#include "flags.h"
886c1262 53#include "profile.h"
59423b59 54#include "except.h"
0b205f4c 55#include "diagnostic-core.h"
59423b59 56#include "recog.h"
59423b59 57#include "expr.h"
e9fb8a64 58#include "coverage.h"
e9d7220b 59#include "sreal.h"
429fa7fa 60#include "params.h"
61#include "target.h"
862be747 62#include "cfgloop.h"
06ecf488 63#include "hash-map.h"
bc61cadb 64#include "tree-ssa-alias.h"
65#include "internal-fn.h"
66#include "gimple-expr.h"
67#include "is-a.h"
073c1fd5 68#include "gimple.h"
dcf1a1ec 69#include "gimple-iterator.h"
073c1fd5 70#include "gimple-ssa.h"
1140c305 71#include "plugin-api.h"
72#include "ipa-ref.h"
073c1fd5 73#include "cgraph.h"
74#include "tree-cfg.h"
75#include "tree-phinodes.h"
76#include "ssa-iterators.h"
05d9c18a 77#include "tree-ssa-loop-niter.h"
073c1fd5 78#include "tree-ssa-loop.h"
4ee9c684 79#include "tree-pass.h"
d27b0b64 80#include "tree-scalar-evolution.h"
81#include "cfgloop.h"
56ff4880 82
2e3c56e8 83/* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
84 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
e9d7220b 85static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
86 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
59423b59 87
ee5f6585 88static void combine_predictions_for_insn (rtx_insn *, basic_block);
4ee9c684 89static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
d704ea82 90static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
5707768a 91static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
ee5f6585 92static bool can_predict_insn_p (const rtx_insn *);
5e96f51e 93
13488c51 94/* Information we hold about each branch predictor.
95 Filled using information from predict.def. */
e6751e9a 96
13488c51 97struct predictor_info
5e96f51e 98{
e99c3a1d 99 const char *const name; /* Name used in the debugging dumps. */
100 const int hitrate; /* Expected hitrate used by
101 predict_insn_def call. */
102 const int flags;
13488c51 103};
5e96f51e 104
eb429644 105/* Use given predictor without Dempster-Shaffer theory if it matches
106 using first_match heuristics. */
107#define PRED_FLAG_FIRST_MATCH 1
108
109/* Recompute hitrate in percent to our representation. */
110
e6751e9a 111#define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
eb429644 112
113#define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
e6751e9a 114static const struct predictor_info predictor_info[]= {
13488c51 115#include "predict.def"
116
aa40f561 117 /* Upper bound on predictors. */
eb429644 118 {NULL, 0, 0}
13488c51 119};
120#undef DEF_PREDICTOR
429fa7fa 121
eb7df8c2 122/* Return TRUE if frequency FREQ is considered to be hot. */
f29b326e 123
124static inline bool
8d672d12 125maybe_hot_frequency_p (struct function *fun, int freq)
eb7df8c2 126{
415d1b9a 127 struct cgraph_node *node = cgraph_node::get (fun->decl);
69ad6a32 128 if (!profile_info
129 || !opt_for_fn (fun->decl, flag_branch_probabilities))
eb7df8c2 130 {
125b6d78 131 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
eb7df8c2 132 return false;
125b6d78 133 if (node->frequency == NODE_FREQUENCY_HOT)
eb7df8c2 134 return true;
135 }
3bedbae3 136 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
aa5f4f32 137 return true;
125b6d78 138 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
34154e27 139 && freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency * 2 / 3))
125b6d78 140 return false;
6040d650 141 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0)
142 return false;
34154e27 143 if (freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency
8d672d12 144 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
eb7df8c2 145 return false;
146 return true;
147}
148
9e179a64 149static gcov_type min_count = -1;
150
151/* Determine the threshold for hot BB counts. */
152
153gcov_type
154get_hot_bb_threshold ()
155{
156 gcov_working_set_t *ws;
157 if (min_count == -1)
158 {
159 ws = find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE));
160 gcc_assert (ws);
161 min_count = ws->min_counter;
162 }
163 return min_count;
164}
165
166/* Set the threshold for hot BB counts. */
167
168void
169set_hot_bb_threshold (gcov_type min)
170{
171 min_count = min;
172}
173
f29b326e 174/* Return TRUE if frequency FREQ is considered to be hot. */
175
94bed7c3 176bool
8d672d12 177maybe_hot_count_p (struct function *fun, gcov_type count)
f29b326e 178{
3bedbae3 179 if (fun && profile_status_for_fn (fun) != PROFILE_READ)
f29b326e 180 return true;
181 /* Code executed at most once is not hot. */
182 if (profile_info->runs >= count)
183 return false;
9e179a64 184 return (count >= get_hot_bb_threshold ());
f29b326e 185}
186
429fa7fa 187/* Return true in case BB can be CPU intensive and should be optimized
41a6f238 188 for maximal performance. */
429fa7fa 189
190bool
8d672d12 191maybe_hot_bb_p (struct function *fun, const_basic_block bb)
429fa7fa 192{
8d672d12 193 gcc_checking_assert (fun);
3bedbae3 194 if (profile_status_for_fn (fun) == PROFILE_READ)
8d672d12 195 return maybe_hot_count_p (fun, bb->count);
196 return maybe_hot_frequency_p (fun, bb->frequency);
eb7df8c2 197}
198
199/* Return true in case BB can be CPU intensive and should be optimized
200 for maximal performance. */
201
202bool
203maybe_hot_edge_p (edge e)
204{
f26d8580 205 if (profile_status_for_fn (cfun) == PROFILE_READ)
8d672d12 206 return maybe_hot_count_p (cfun, e->count);
207 return maybe_hot_frequency_p (cfun, EDGE_FREQUENCY (e));
429fa7fa 208}
209
dcc9b351 210/* Return true if profile COUNT and FREQUENCY, or function FUN static
211 node frequency reflects never being executed. */
212
213static bool
214probably_never_executed (struct function *fun,
215 gcov_type count, int frequency)
429fa7fa 216{
8d672d12 217 gcc_checking_assert (fun);
69ad6a32 218 if (profile_status_for_fn (fun) == PROFILE_READ)
4befb9f4 219 {
c1acf60c 220 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
221 if (count * unlikely_count_fraction >= profile_info->runs)
4befb9f4 222 return false;
dcc9b351 223 if (!frequency)
4befb9f4 224 return true;
69ad6a32 225 if (!ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency)
4befb9f4 226 return false;
69ad6a32 227 if (ENTRY_BLOCK_PTR_FOR_FN (fun)->count)
4befb9f4 228 {
c1acf60c 229 gcov_type computed_count;
230 /* Check for possibility of overflow, in which case entry bb count
231 is large enough to do the division first without losing much
232 precision. */
69ad6a32 233 if (ENTRY_BLOCK_PTR_FOR_FN (fun)->count < REG_BR_PROB_BASE *
34154e27 234 REG_BR_PROB_BASE)
c1acf60c 235 {
236 gcov_type scaled_count
69ad6a32 237 = frequency * ENTRY_BLOCK_PTR_FOR_FN (fun)->count *
34154e27 238 unlikely_count_fraction;
239 computed_count = RDIV (scaled_count,
69ad6a32 240 ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency);
c1acf60c 241 }
242 else
243 {
69ad6a32 244 computed_count = RDIV (ENTRY_BLOCK_PTR_FOR_FN (fun)->count,
245 ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency);
c1acf60c 246 computed_count *= frequency * unlikely_count_fraction;
247 }
248 if (computed_count >= profile_info->runs)
249 return false;
4befb9f4 250 }
251 return true;
252 }
69ad6a32 253 if ((!profile_info || !(opt_for_fn (fun->decl, flag_branch_probabilities)))
415d1b9a 254 && (cgraph_node::get (fun->decl)->frequency
fd6a3c41 255 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
5de92639 256 return true;
429fa7fa 257 return false;
258}
259
80adc5a6 260
dcc9b351 261/* Return true in case BB is probably never executed. */
262
263bool
264probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
265{
266 return probably_never_executed (fun, bb->count, bb->frequency);
267}
268
269
80adc5a6 270/* Return true in case edge E is probably never executed. */
271
272bool
273probably_never_executed_edge_p (struct function *fun, edge e)
429fa7fa 274{
dcc9b351 275 return probably_never_executed (fun, e->count, EDGE_FREQUENCY (e));
429fa7fa 276}
277
cf262be9 278/* Return true when current function should always be optimized for size. */
279
280bool
281optimize_function_for_size_p (struct function *fun)
282{
cf262be9 283 if (!fun || !fun->decl)
69ad6a32 284 return optimize_size;
415d1b9a 285 cgraph_node *n = cgraph_node::get (fun->decl);
286 return n && n->optimize_for_size_p ();
cf262be9 287}
288
533af0db 289/* Return true when current function should always be optimized for speed. */
290
291bool
292optimize_function_for_speed_p (struct function *fun)
293{
294 return !optimize_function_for_size_p (fun);
7dfb44a0 295}
296
297/* Return TRUE when BB should be optimized for size. */
298
299bool
94ba1cf1 300optimize_bb_for_size_p (const_basic_block bb)
7dfb44a0 301{
b9ea678c 302 return (optimize_function_for_size_p (cfun)
303 || (bb && !maybe_hot_bb_p (cfun, bb)));
7dfb44a0 304}
305
306/* Return TRUE when BB should be optimized for speed. */
307
308bool
94ba1cf1 309optimize_bb_for_speed_p (const_basic_block bb)
7dfb44a0 310{
311 return !optimize_bb_for_size_p (bb);
312}
313
314/* Return TRUE when BB should be optimized for size. */
315
316bool
317optimize_edge_for_size_p (edge e)
318{
533af0db 319 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
7dfb44a0 320}
321
322/* Return TRUE when BB should be optimized for speed. */
323
324bool
325optimize_edge_for_speed_p (edge e)
326{
327 return !optimize_edge_for_size_p (e);
328}
329
330/* Return TRUE when BB should be optimized for size. */
331
332bool
333optimize_insn_for_size_p (void)
334{
533af0db 335 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
7dfb44a0 336}
337
338/* Return TRUE when BB should be optimized for speed. */
339
340bool
341optimize_insn_for_speed_p (void)
342{
343 return !optimize_insn_for_size_p ();
344}
345
94ba1cf1 346/* Return TRUE when LOOP should be optimized for size. */
347
348bool
349optimize_loop_for_size_p (struct loop *loop)
350{
351 return optimize_bb_for_size_p (loop->header);
352}
353
354/* Return TRUE when LOOP should be optimized for speed. */
355
356bool
357optimize_loop_for_speed_p (struct loop *loop)
358{
359 return optimize_bb_for_speed_p (loop->header);
360}
361
0bfd8d5c 362/* Return TRUE when LOOP nest should be optimized for speed. */
363
364bool
365optimize_loop_nest_for_speed_p (struct loop *loop)
366{
367 struct loop *l = loop;
368 if (optimize_loop_for_speed_p (loop))
369 return true;
370 l = loop->inner;
53be41ae 371 while (l && l != loop)
0bfd8d5c 372 {
373 if (optimize_loop_for_speed_p (l))
374 return true;
375 if (l->inner)
376 l = l->inner;
377 else if (l->next)
378 l = l->next;
379 else
7baffbd3 380 {
381 while (l != loop && !l->next)
382 l = loop_outer (l);
383 if (l != loop)
384 l = l->next;
385 }
0bfd8d5c 386 }
387 return false;
388}
389
390/* Return TRUE when LOOP nest should be optimized for size. */
391
392bool
393optimize_loop_nest_for_size_p (struct loop *loop)
394{
395 return !optimize_loop_nest_for_speed_p (loop);
396}
397
4a9d7ef7 398/* Return true when edge E is likely to be well predictable by branch
399 predictor. */
400
401bool
402predictable_edge_p (edge e)
403{
f26d8580 404 if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
4a9d7ef7 405 return false;
406 if ((e->probability
407 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
408 || (REG_BR_PROB_BASE - e->probability
409 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
410 return true;
411 return false;
412}
413
414
7dfb44a0 415/* Set RTL expansion for BB profile. */
416
417void
418rtl_profile_for_bb (basic_block bb)
419{
8d672d12 420 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
7dfb44a0 421}
422
423/* Set RTL expansion for edge profile. */
424
425void
426rtl_profile_for_edge (edge e)
427{
428 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
429}
430
431/* Set RTL expansion to default mode (i.e. when profile info is not known). */
432void
433default_rtl_profile (void)
434{
435 crtl->maybe_hot_insn_p = true;
436}
437
cd0fe062 438/* Return true if the one of outgoing edges is already predicted by
439 PREDICTOR. */
440
4ee9c684 441bool
5493cb9a 442rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
cd0fe062 443{
444 rtx note;
5496dbfc 445 if (!INSN_P (BB_END (bb)))
cd0fe062 446 return false;
5496dbfc 447 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
cd0fe062 448 if (REG_NOTE_KIND (note) == REG_BR_PRED
449 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
450 return true;
451 return false;
452}
5e96f51e 453
eeb030c4 454/* Structure representing predictions in tree level. */
455
456struct edge_prediction {
457 struct edge_prediction *ep_next;
458 edge ep_edge;
459 enum br_predictor ep_predictor;
460 int ep_probability;
461};
462
06ecf488 463/* This map contains for a basic block the list of predictions for the
464 outgoing edges. */
465
466static hash_map<const_basic_block, edge_prediction *> *bb_predictions;
467
4ee9c684 468/* Return true if the one of outgoing edges is already predicted by
469 PREDICTOR. */
470
471bool
75a70cf9 472gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
4ee9c684 473{
7ea47fbd 474 struct edge_prediction *i;
06ecf488 475 edge_prediction **preds = bb_predictions->get (bb);
b3723726 476
477 if (!preds)
478 return false;
48e1416a 479
06ecf488 480 for (i = *preds; i; i = i->ep_next)
f45e9182 481 if (i->ep_predictor == predictor)
4ee9c684 482 return true;
483 return false;
484}
485
b41438e5 486/* Return true when the probability of edge is reliable.
48e1416a 487
b41438e5 488 The profile guessing code is good at predicting branch outcome (ie.
489 taken/not taken), that is predicted right slightly over 75% of time.
ab4f0a13 490 It is however notoriously poor on predicting the probability itself.
b41438e5 491 In general the profile appear a lot flatter (with probabilities closer
492 to 50%) than the reality so it is bad idea to use it to drive optimization
493 such as those disabling dynamic branch prediction for well predictable
494 branches.
495
496 There are two exceptions - edges leading to noreturn edges and edges
497 predicted by number of iterations heuristics are predicted well. This macro
498 should be able to distinguish those, but at the moment it simply check for
499 noreturn heuristic that is only one giving probability over 99% or bellow
ab4f0a13 500 1%. In future we might want to propagate reliability information across the
b41438e5 501 CFG if we find this information useful on multiple places. */
502static bool
503probability_reliable_p (int prob)
504{
f26d8580 505 return (profile_status_for_fn (cfun) == PROFILE_READ
506 || (profile_status_for_fn (cfun) == PROFILE_GUESSED
b41438e5 507 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
508}
509
510/* Same predicate as above, working on edges. */
511bool
7ecb5bb2 512edge_probability_reliable_p (const_edge e)
b41438e5 513{
514 return probability_reliable_p (e->probability);
515}
516
517/* Same predicate as edge_probability_reliable_p, working on notes. */
518bool
7ecb5bb2 519br_prob_note_reliable_p (const_rtx note)
b41438e5 520{
521 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
9eb946de 522 return probability_reliable_p (XINT (note, 0));
b41438e5 523}
524
aa157ca4 525static void
ee5f6585 526predict_insn (rtx_insn *insn, enum br_predictor predictor, int probability)
13488c51 527{
876760f6 528 gcc_assert (any_condjump_p (insn));
b28bedce 529 if (!flag_guess_branch_prob)
530 return;
e6751e9a 531
a1ddb869 532 add_reg_note (insn, REG_BR_PRED,
533 gen_rtx_CONCAT (VOIDmode,
534 GEN_INT ((int) predictor),
535 GEN_INT ((int) probability)));
13488c51 536}
537
538/* Predict insn by given predictor. */
e6751e9a 539
13488c51 540void
ee5f6585 541predict_insn_def (rtx_insn *insn, enum br_predictor predictor,
d598ad0d 542 enum prediction taken)
13488c51 543{
544 int probability = predictor_info[(int) predictor].hitrate;
e6751e9a 545
13488c51 546 if (taken != TAKEN)
547 probability = REG_BR_PROB_BASE - probability;
e6751e9a 548
13488c51 549 predict_insn (insn, predictor, probability);
5e96f51e 550}
551
552/* Predict edge E with given probability if possible. */
e6751e9a 553
13488c51 554void
4ee9c684 555rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
5e96f51e 556{
ee5f6585 557 rtx_insn *last_insn;
5496dbfc 558 last_insn = BB_END (e->src);
5e96f51e 559
560 /* We can store the branch prediction information only about
561 conditional jumps. */
562 if (!any_condjump_p (last_insn))
563 return;
564
565 /* We always store probability of branching. */
566 if (e->flags & EDGE_FALLTHRU)
567 probability = REG_BR_PROB_BASE - probability;
568
13488c51 569 predict_insn (last_insn, predictor, probability);
570}
571
4ee9c684 572/* Predict edge E with the given PROBABILITY. */
573void
75a70cf9 574gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
4ee9c684 575{
f26d8580 576 gcc_assert (profile_status_for_fn (cfun) != PROFILE_GUESSED);
34154e27 577 if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) && EDGE_COUNT (e->src->succs) >
578 1)
d5043f32 579 && flag_guess_branch_prob && optimize)
ebd65d12 580 {
b3723726 581 struct edge_prediction *i = XNEW (struct edge_prediction);
06ecf488 582 edge_prediction *&preds = bb_predictions->get_or_insert (e->src);
4ee9c684 583
06ecf488 584 i->ep_next = preds;
585 preds = i;
f45e9182 586 i->ep_probability = probability;
587 i->ep_predictor = predictor;
588 i->ep_edge = e;
ebd65d12 589 }
4ee9c684 590}
591
631fa7de 592/* Remove all predictions on given basic block that are attached
593 to edge E. */
594void
595remove_predictions_associated_with_edge (edge e)
596{
b3723726 597 if (!bb_predictions)
598 return;
599
06ecf488 600 edge_prediction **preds = bb_predictions->get (e->src);
b3723726 601
602 if (preds)
631fa7de 603 {
06ecf488 604 struct edge_prediction **prediction = preds;
b3723726 605 struct edge_prediction *next;
606
631fa7de 607 while (*prediction)
608 {
f45e9182 609 if ((*prediction)->ep_edge == e)
b3723726 610 {
611 next = (*prediction)->ep_next;
612 free (*prediction);
613 *prediction = next;
614 }
631fa7de 615 else
f45e9182 616 prediction = &((*prediction)->ep_next);
631fa7de 617 }
618 }
619}
620
b3723726 621/* Clears the list of predictions stored for BB. */
622
623static void
624clear_bb_predictions (basic_block bb)
625{
06ecf488 626 edge_prediction **preds = bb_predictions->get (bb);
b3723726 627 struct edge_prediction *pred, *next;
628
629 if (!preds)
630 return;
631
06ecf488 632 for (pred = *preds; pred; pred = next)
b3723726 633 {
634 next = pred->ep_next;
635 free (pred);
636 }
637 *preds = NULL;
638}
639
1a12dac4 640/* Return true when we can store prediction on insn INSN.
641 At the moment we represent predictions only on conditional
642 jumps, not at computed jump or other complicated cases. */
643static bool
ee5f6585 644can_predict_insn_p (const rtx_insn *insn)
1a12dac4 645{
6d7dc5b9 646 return (JUMP_P (insn)
1a12dac4 647 && any_condjump_p (insn)
cd665a06 648 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
1a12dac4 649}
650
13488c51 651/* Predict edge E by given predictor if possible. */
e6751e9a 652
13488c51 653void
d598ad0d 654predict_edge_def (edge e, enum br_predictor predictor,
655 enum prediction taken)
13488c51 656{
657 int probability = predictor_info[(int) predictor].hitrate;
658
659 if (taken != TAKEN)
660 probability = REG_BR_PROB_BASE - probability;
e6751e9a 661
13488c51 662 predict_edge (e, predictor, probability);
663}
664
665/* Invert all branch predictions or probability notes in the INSN. This needs
666 to be done each time we invert the condition used by the jump. */
e6751e9a 667
13488c51 668void
d598ad0d 669invert_br_probabilities (rtx insn)
13488c51 670{
e6751e9a 671 rtx note;
672
673 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
674 if (REG_NOTE_KIND (note) == REG_BR_PROB)
9eb946de 675 XINT (note, 0) = REG_BR_PROB_BASE - XINT (note, 0);
e6751e9a 676 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
677 XEXP (XEXP (note, 0), 1)
678 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
13488c51 679}
680
681/* Dump information about the branch prediction to the output file. */
e6751e9a 682
13488c51 683static void
4ee9c684 684dump_prediction (FILE *file, enum br_predictor predictor, int probability,
d598ad0d 685 basic_block bb, int used)
13488c51 686{
cd665a06 687 edge e;
688 edge_iterator ei;
13488c51 689
4ee9c684 690 if (!file)
13488c51 691 return;
692
cd665a06 693 FOR_EACH_EDGE (e, ei, bb->succs)
694 if (! (e->flags & EDGE_FALLTHRU))
695 break;
13488c51 696
4ee9c684 697 fprintf (file, " %s heuristics%s: %.1f%%",
13488c51 698 predictor_info[predictor].name,
e6751e9a 699 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
13488c51 700
701 if (bb->count)
17a81216 702 {
3a4303e7 703 fprintf (file, " exec %"PRId64, bb->count);
12c94d25 704 if (e)
705 {
3a4303e7 706 fprintf (file, " hit %"PRId64, e->count);
4ee9c684 707 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
12c94d25 708 }
17a81216 709 }
e6751e9a 710
4ee9c684 711 fprintf (file, "\n");
13488c51 712}
713
7edd21a5 714/* We can not predict the probabilities of outgoing edges of bb. Set them
83c8a977 715 evenly and hope for the best. */
716static void
717set_even_probabilities (basic_block bb)
718{
719 int nedges = 0;
720 edge e;
cd665a06 721 edge_iterator ei;
83c8a977 722
cd665a06 723 FOR_EACH_EDGE (e, ei, bb->succs)
83c8a977 724 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
725 nedges ++;
cd665a06 726 FOR_EACH_EDGE (e, ei, bb->succs)
83c8a977 727 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
728 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
729 else
730 e->probability = 0;
731}
732
13488c51 733/* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
734 note if not already present. Remove now useless REG_BR_PRED notes. */
e6751e9a 735
13488c51 736static void
ee5f6585 737combine_predictions_for_insn (rtx_insn *insn, basic_block bb)
13488c51 738{
83c8a977 739 rtx prob_note;
740 rtx *pnote;
e6751e9a 741 rtx note;
13488c51 742 int best_probability = PROB_EVEN;
b9c74b4d 743 enum br_predictor best_predictor = END_PREDICTORS;
eb429644 744 int combined_probability = REG_BR_PROB_BASE / 2;
745 int d;
49d7c0db 746 bool first_match = false;
747 bool found = false;
13488c51 748
83c8a977 749 if (!can_predict_insn_p (insn))
750 {
751 set_even_probabilities (bb);
752 return;
753 }
754
755 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
756 pnote = &REG_NOTES (insn);
450d042a 757 if (dump_file)
758 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
b3d6de89 759 bb->index);
13488c51 760
761 /* We implement "first match" heuristics and use probability guessed
4ee9c684 762 by predictor with smallest index. */
e6751e9a 763 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
764 if (REG_NOTE_KIND (note) == REG_BR_PRED)
765 {
bc620c5c 766 enum br_predictor predictor = ((enum br_predictor)
767 INTVAL (XEXP (XEXP (note, 0), 0)));
e6751e9a 768 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
769
770 found = true;
771 if (best_predictor > predictor)
772 best_probability = probability, best_predictor = predictor;
773
774 d = (combined_probability * probability
775 + (REG_BR_PROB_BASE - combined_probability)
776 * (REG_BR_PROB_BASE - probability));
777
778 /* Use FP math to avoid overflows of 32bit integers. */
c4a616f2 779 if (d == 0)
780 /* If one probability is 0% and one 100%, avoid division by zero. */
781 combined_probability = REG_BR_PROB_BASE / 2;
782 else
783 combined_probability = (((double) combined_probability) * probability
784 * REG_BR_PROB_BASE / d + 0.5);
e6751e9a 785 }
786
787 /* Decide which heuristic to use. In case we didn't match anything,
788 use no_prediction heuristic, in case we did match, use either
49d7c0db 789 first match or Dempster-Shaffer theory depending on the flags. */
790
eb429644 791 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
49d7c0db 792 first_match = true;
793
794 if (!found)
4ee9c684 795 dump_prediction (dump_file, PRED_NO_PREDICTION,
796 combined_probability, bb, true);
49d7c0db 797 else
798 {
4ee9c684 799 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
800 bb, !first_match);
801 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
802 bb, first_match);
49d7c0db 803 }
804
805 if (first_match)
eb429644 806 combined_probability = best_probability;
4ee9c684 807 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
49d7c0db 808
809 while (*pnote)
810 {
811 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
812 {
bc620c5c 813 enum br_predictor predictor = ((enum br_predictor)
814 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
49d7c0db 815 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
816
4ee9c684 817 dump_prediction (dump_file, predictor, probability, bb,
49d7c0db 818 !first_match || best_predictor == predictor);
195731ad 819 *pnote = XEXP (*pnote, 1);
49d7c0db 820 }
821 else
195731ad 822 pnote = &XEXP (*pnote, 1);
49d7c0db 823 }
e6751e9a 824
13488c51 825 if (!prob_note)
826 {
9eb946de 827 add_int_reg_note (insn, REG_BR_PROB, combined_probability);
e6751e9a 828
eb429644 829 /* Save the prediction into CFG in case we are seeing non-degenerated
830 conditional jump. */
ea091dfd 831 if (!single_succ_p (bb))
eb429644 832 {
833 BRANCH_EDGE (bb)->probability = combined_probability;
e6751e9a 834 FALLTHRU_EDGE (bb)->probability
835 = REG_BR_PROB_BASE - combined_probability;
eb429644 836 }
13488c51 837 }
ea091dfd 838 else if (!single_succ_p (bb))
d8c70625 839 {
9eb946de 840 int prob = XINT (prob_note, 0);
d8c70625 841
842 BRANCH_EDGE (bb)->probability = prob;
843 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
844 }
845 else
ea091dfd 846 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
5e96f51e 847}
848
4ee9c684 849/* Combine predictions into single probability and store them into CFG.
850 Remove now useless prediction entries. */
59423b59 851
4ee9c684 852static void
3f5be5f4 853combine_predictions_for_bb (basic_block bb)
59423b59 854{
4ee9c684 855 int best_probability = PROB_EVEN;
b9c74b4d 856 enum br_predictor best_predictor = END_PREDICTORS;
4ee9c684 857 int combined_probability = REG_BR_PROB_BASE / 2;
858 int d;
859 bool first_match = false;
860 bool found = false;
861 struct edge_prediction *pred;
862 int nedges = 0;
863 edge e, first = NULL, second = NULL;
cd665a06 864 edge_iterator ei;
59423b59 865
cd665a06 866 FOR_EACH_EDGE (e, ei, bb->succs)
4ee9c684 867 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
868 {
cd665a06 869 nedges ++;
4ee9c684 870 if (first && !second)
871 second = e;
872 if (!first)
873 first = e;
874 }
875
48e1416a 876 /* When there is no successor or only one choice, prediction is easy.
4ee9c684 877
878 We are lazy for now and predict only basic blocks with two outgoing
879 edges. It is possible to predict generic case too, but we have to
880 ignore first match heuristics and do more involved combining. Implement
881 this later. */
882 if (nedges != 2)
883 {
83c8a977 884 if (!bb->count)
885 set_even_probabilities (bb);
b3723726 886 clear_bb_predictions (bb);
3f5be5f4 887 if (dump_file)
888 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
4ee9c684 889 nedges, bb->index);
890 return;
891 }
892
3f5be5f4 893 if (dump_file)
894 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
4ee9c684 895
06ecf488 896 edge_prediction **preds = bb_predictions->get (bb);
b3723726 897 if (preds)
4ee9c684 898 {
b3723726 899 /* We implement "first match" heuristics and use probability guessed
900 by predictor with smallest index. */
06ecf488 901 for (pred = *preds; pred; pred = pred->ep_next)
b3723726 902 {
b9c74b4d 903 enum br_predictor predictor = pred->ep_predictor;
b3723726 904 int probability = pred->ep_probability;
4ee9c684 905
b3723726 906 if (pred->ep_edge != first)
907 probability = REG_BR_PROB_BASE - probability;
4ee9c684 908
b3723726 909 found = true;
9f694a82 910 /* First match heuristics would be widly confused if we predicted
911 both directions. */
b3723726 912 if (best_predictor > predictor)
9f694a82 913 {
914 struct edge_prediction *pred2;
915 int prob = probability;
916
c83059be 917 for (pred2 = (struct edge_prediction *) *preds;
918 pred2; pred2 = pred2->ep_next)
9f694a82 919 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
920 {
921 int probability2 = pred->ep_probability;
922
923 if (pred2->ep_edge != first)
924 probability2 = REG_BR_PROB_BASE - probability2;
925
48e1416a 926 if ((probability < REG_BR_PROB_BASE / 2) !=
9f694a82 927 (probability2 < REG_BR_PROB_BASE / 2))
928 break;
929
930 /* If the same predictor later gave better result, go for it! */
931 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
932 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
933 prob = probability2;
934 }
935 if (!pred2)
936 best_probability = prob, best_predictor = predictor;
937 }
4ee9c684 938
b3723726 939 d = (combined_probability * probability
940 + (REG_BR_PROB_BASE - combined_probability)
941 * (REG_BR_PROB_BASE - probability));
4ee9c684 942
b3723726 943 /* Use FP math to avoid overflows of 32bit integers. */
944 if (d == 0)
945 /* If one probability is 0% and one 100%, avoid division by zero. */
946 combined_probability = REG_BR_PROB_BASE / 2;
947 else
948 combined_probability = (((double) combined_probability)
949 * probability
950 * REG_BR_PROB_BASE / d + 0.5);
951 }
4ee9c684 952 }
953
954 /* Decide which heuristic to use. In case we didn't match anything,
955 use no_prediction heuristic, in case we did match, use either
956 first match or Dempster-Shaffer theory depending on the flags. */
957
958 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
959 first_match = true;
960
961 if (!found)
3f5be5f4 962 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
4ee9c684 963 else
964 {
3f5be5f4 965 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
4ee9c684 966 !first_match);
3f5be5f4 967 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
4ee9c684 968 first_match);
969 }
970
971 if (first_match)
972 combined_probability = best_probability;
3f5be5f4 973 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
4ee9c684 974
b3723726 975 if (preds)
4ee9c684 976 {
4077bf7a 977 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
b3723726 978 {
b9c74b4d 979 enum br_predictor predictor = pred->ep_predictor;
b3723726 980 int probability = pred->ep_probability;
4ee9c684 981
b3723726 982 if (pred->ep_edge != EDGE_SUCC (bb, 0))
983 probability = REG_BR_PROB_BASE - probability;
984 dump_prediction (dump_file, predictor, probability, bb,
985 !first_match || best_predictor == predictor);
986 }
4ee9c684 987 }
b3723726 988 clear_bb_predictions (bb);
4ee9c684 989
83c8a977 990 if (!bb->count)
991 {
992 first->probability = combined_probability;
993 second->probability = REG_BR_PROB_BASE - combined_probability;
994 }
4ee9c684 995}
996
fd757b76 997/* Check if T1 and T2 satisfy the IV_COMPARE condition.
998 Return the SSA_NAME if the condition satisfies, NULL otherwise.
999
1000 T1 and T2 should be one of the following cases:
1001 1. T1 is SSA_NAME, T2 is NULL
1002 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1003 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1004
1005static tree
1006strips_small_constant (tree t1, tree t2)
1007{
1008 tree ret = NULL;
1009 int value = 0;
1010
1011 if (!t1)
1012 return NULL;
1013 else if (TREE_CODE (t1) == SSA_NAME)
1014 ret = t1;
e913b5cd 1015 else if (tree_fits_shwi_p (t1))
1016 value = tree_to_shwi (t1);
fd757b76 1017 else
1018 return NULL;
1019
1020 if (!t2)
1021 return ret;
e913b5cd 1022 else if (tree_fits_shwi_p (t2))
1023 value = tree_to_shwi (t2);
fd757b76 1024 else if (TREE_CODE (t2) == SSA_NAME)
1025 {
1026 if (ret)
1027 return NULL;
1028 else
1029 ret = t2;
1030 }
1031
1032 if (value <= 4 && value >= -4)
1033 return ret;
1034 else
1035 return NULL;
1036}
1037
1038/* Return the SSA_NAME in T or T's operands.
1039 Return NULL if SSA_NAME cannot be found. */
1040
1041static tree
1042get_base_value (tree t)
1043{
1044 if (TREE_CODE (t) == SSA_NAME)
1045 return t;
1046
1047 if (!BINARY_CLASS_P (t))
1048 return NULL;
1049
1050 switch (TREE_OPERAND_LENGTH (t))
1051 {
1052 case 1:
1053 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1054 case 2:
1055 return strips_small_constant (TREE_OPERAND (t, 0),
1056 TREE_OPERAND (t, 1));
1057 default:
1058 return NULL;
1059 }
1060}
1061
1062/* Check the compare STMT in LOOP. If it compares an induction
1063 variable to a loop invariant, return true, and save
1064 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1065 Otherwise return false and set LOOP_INVAIANT to NULL. */
1066
1067static bool
1a91d914 1068is_comparison_with_loop_invariant_p (gcond *stmt, struct loop *loop,
fd757b76 1069 tree *loop_invariant,
1070 enum tree_code *compare_code,
b3269f54 1071 tree *loop_step,
fd757b76 1072 tree *loop_iv_base)
1073{
1074 tree op0, op1, bound, base;
1075 affine_iv iv0, iv1;
1076 enum tree_code code;
b3269f54 1077 tree step;
fd757b76 1078
1079 code = gimple_cond_code (stmt);
1080 *loop_invariant = NULL;
1081
1082 switch (code)
1083 {
1084 case GT_EXPR:
1085 case GE_EXPR:
1086 case NE_EXPR:
1087 case LT_EXPR:
1088 case LE_EXPR:
1089 case EQ_EXPR:
1090 break;
1091
1092 default:
1093 return false;
1094 }
1095
1096 op0 = gimple_cond_lhs (stmt);
1097 op1 = gimple_cond_rhs (stmt);
1098
1099 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1100 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1101 return false;
1102 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1103 return false;
1104 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1105 return false;
1106 if (TREE_CODE (iv0.step) != INTEGER_CST
1107 || TREE_CODE (iv1.step) != INTEGER_CST)
1108 return false;
1109 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1110 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1111 return false;
1112
1113 if (integer_zerop (iv0.step))
1114 {
1115 if (code != NE_EXPR && code != EQ_EXPR)
1116 code = invert_tree_comparison (code, false);
1117 bound = iv0.base;
1118 base = iv1.base;
e913b5cd 1119 if (tree_fits_shwi_p (iv1.step))
b3269f54 1120 step = iv1.step;
fd757b76 1121 else
1122 return false;
1123 }
1124 else
1125 {
1126 bound = iv1.base;
1127 base = iv0.base;
e913b5cd 1128 if (tree_fits_shwi_p (iv0.step))
b3269f54 1129 step = iv0.step;
fd757b76 1130 else
1131 return false;
1132 }
1133
1134 if (TREE_CODE (bound) != INTEGER_CST)
1135 bound = get_base_value (bound);
1136 if (!bound)
1137 return false;
1138 if (TREE_CODE (base) != INTEGER_CST)
1139 base = get_base_value (base);
1140 if (!base)
1141 return false;
1142
1143 *loop_invariant = bound;
1144 *compare_code = code;
1145 *loop_step = step;
1146 *loop_iv_base = base;
1147 return true;
1148}
1149
1150/* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1151
1152static bool
1153expr_coherent_p (tree t1, tree t2)
1154{
1155 gimple stmt;
1156 tree ssa_name_1 = NULL;
1157 tree ssa_name_2 = NULL;
1158
1159 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1160 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1161
1162 if (t1 == t2)
1163 return true;
1164
1165 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1166 return true;
1167 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1168 return false;
1169
1170 /* Check to see if t1 is expressed/defined with t2. */
1171 stmt = SSA_NAME_DEF_STMT (t1);
1172 gcc_assert (stmt != NULL);
1173 if (is_gimple_assign (stmt))
1174 {
1175 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1176 if (ssa_name_1 && ssa_name_1 == t2)
1177 return true;
1178 }
1179
1180 /* Check to see if t2 is expressed/defined with t1. */
1181 stmt = SSA_NAME_DEF_STMT (t2);
1182 gcc_assert (stmt != NULL);
1183 if (is_gimple_assign (stmt))
1184 {
1185 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1186 if (ssa_name_2 && ssa_name_2 == t1)
1187 return true;
1188 }
1189
1190 /* Compare if t1 and t2's def_stmts are identical. */
1191 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1192 return true;
1193 else
1194 return false;
1195}
1196
1197/* Predict branch probability of BB when BB contains a branch that compares
1198 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1199 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1200
1201 E.g.
1202 for (int i = 0; i < bound; i++) {
1203 if (i < bound - 2)
1204 computation_1();
1205 else
1206 computation_2();
1207 }
1208
1209 In this loop, we will predict the branch inside the loop to be taken. */
1210
1211static void
1212predict_iv_comparison (struct loop *loop, basic_block bb,
1213 tree loop_bound_var,
1214 tree loop_iv_base_var,
1215 enum tree_code loop_bound_code,
1216 int loop_bound_step)
1217{
1218 gimple stmt;
1219 tree compare_var, compare_base;
1220 enum tree_code compare_code;
b3269f54 1221 tree compare_step_var;
fd757b76 1222 edge then_edge;
1223 edge_iterator ei;
1224
1225 if (predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1226 || predicted_by_p (bb, PRED_LOOP_ITERATIONS)
1227 || predicted_by_p (bb, PRED_LOOP_EXIT))
1228 return;
1229
1230 stmt = last_stmt (bb);
1231 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1232 return;
1a91d914 1233 if (!is_comparison_with_loop_invariant_p (as_a <gcond *> (stmt),
1234 loop, &compare_var,
fd757b76 1235 &compare_code,
b3269f54 1236 &compare_step_var,
fd757b76 1237 &compare_base))
1238 return;
1239
1240 /* Find the taken edge. */
1241 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1242 if (then_edge->flags & EDGE_TRUE_VALUE)
1243 break;
1244
1245 /* When comparing an IV to a loop invariant, NE is more likely to be
1246 taken while EQ is more likely to be not-taken. */
1247 if (compare_code == NE_EXPR)
1248 {
1249 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1250 return;
1251 }
1252 else if (compare_code == EQ_EXPR)
1253 {
1254 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1255 return;
1256 }
1257
1258 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1259 return;
1260
1261 /* If loop bound, base and compare bound are all constants, we can
1262 calculate the probability directly. */
e913b5cd 1263 if (tree_fits_shwi_p (loop_bound_var)
1264 && tree_fits_shwi_p (compare_var)
1265 && tree_fits_shwi_p (compare_base))
fd757b76 1266 {
1267 int probability;
e913b5cd 1268 bool overflow, overall_overflow = false;
ab2c1de8 1269 widest_int compare_count, tem;
b3269f54 1270
b3269f54 1271 /* (loop_bound - base) / compare_step */
c311b856 1272 tem = wi::sub (wi::to_widest (loop_bound_var),
1273 wi::to_widest (compare_base), SIGNED, &overflow);
e913b5cd 1274 overall_overflow |= overflow;
c311b856 1275 widest_int loop_count = wi::div_trunc (tem,
1276 wi::to_widest (compare_step_var),
1277 SIGNED, &overflow);
e913b5cd 1278 overall_overflow |= overflow;
1279
c311b856 1280 if (!wi::neg_p (wi::to_widest (compare_step_var))
fd757b76 1281 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
b3269f54 1282 {
1283 /* (loop_bound - compare_bound) / compare_step */
c311b856 1284 tem = wi::sub (wi::to_widest (loop_bound_var),
1285 wi::to_widest (compare_var), SIGNED, &overflow);
e913b5cd 1286 overall_overflow |= overflow;
c311b856 1287 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1288 SIGNED, &overflow);
e913b5cd 1289 overall_overflow |= overflow;
b3269f54 1290 }
fd757b76 1291 else
b3269f54 1292 {
1293 /* (compare_bound - base) / compare_step */
c311b856 1294 tem = wi::sub (wi::to_widest (compare_var),
1295 wi::to_widest (compare_base), SIGNED, &overflow);
e913b5cd 1296 overall_overflow |= overflow;
c311b856 1297 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1298 SIGNED, &overflow);
e913b5cd 1299 overall_overflow |= overflow;
b3269f54 1300 }
fd757b76 1301 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
b3269f54 1302 ++compare_count;
fd757b76 1303 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
b3269f54 1304 ++loop_count;
796b6678 1305 if (wi::neg_p (compare_count))
e913b5cd 1306 compare_count = 0;
796b6678 1307 if (wi::neg_p (loop_count))
e913b5cd 1308 loop_count = 0;
796b6678 1309 if (loop_count == 0)
fd757b76 1310 probability = 0;
796b6678 1311 else if (wi::cmps (compare_count, loop_count) == 1)
fd757b76 1312 probability = REG_BR_PROB_BASE;
1313 else
b3269f54 1314 {
e913b5cd 1315 tem = compare_count * REG_BR_PROB_BASE;
796b6678 1316 tem = wi::udiv_trunc (tem, loop_count);
b3269f54 1317 probability = tem.to_uhwi ();
1318 }
1319
e913b5cd 1320 if (!overall_overflow)
b3269f54 1321 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1322
fd757b76 1323 return;
1324 }
1325
1326 if (expr_coherent_p (loop_bound_var, compare_var))
1327 {
1328 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1329 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1330 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1331 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1332 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1333 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1334 else if (loop_bound_code == NE_EXPR)
1335 {
1336 /* If the loop backedge condition is "(i != bound)", we do
1337 the comparison based on the step of IV:
1338 * step < 0 : backedge condition is like (i > bound)
1339 * step > 0 : backedge condition is like (i < bound) */
1340 gcc_assert (loop_bound_step != 0);
1341 if (loop_bound_step > 0
1342 && (compare_code == LT_EXPR
1343 || compare_code == LE_EXPR))
1344 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1345 else if (loop_bound_step < 0
1346 && (compare_code == GT_EXPR
1347 || compare_code == GE_EXPR))
1348 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1349 else
1350 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1351 }
1352 else
1353 /* The branch is predicted not-taken if loop_bound_code is
1354 opposite with compare_code. */
1355 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1356 }
1357 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1358 {
1359 /* For cases like:
1360 for (i = s; i < h; i++)
1361 if (i > s + 2) ....
1362 The branch should be predicted taken. */
1363 if (loop_bound_step > 0
1364 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1365 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1366 else if (loop_bound_step < 0
1367 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1368 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1369 else
1370 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1371 }
1372}
4ca17abf 1373
1374/* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1375 exits are resulted from short-circuit conditions that will generate an
1376 if_tmp. E.g.:
1377
1378 if (foo() || global > 10)
1379 break;
1380
1381 This will be translated into:
1382
1383 BB3:
1384 loop header...
1385 BB4:
1386 if foo() goto BB6 else goto BB5
1387 BB5:
1388 if global > 10 goto BB6 else goto BB7
1389 BB6:
1390 goto BB7
1391 BB7:
1392 iftmp = (PHI 0(BB5), 1(BB6))
1393 if iftmp == 1 goto BB8 else goto BB3
1394 BB8:
1395 outside of the loop...
1396
1397 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1398 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1399 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1400 exits to predict them using PRED_LOOP_EXIT. */
1401
1402static void
1403predict_extra_loop_exits (edge exit_edge)
1404{
1405 unsigned i;
1406 bool check_value_one;
1a91d914 1407 gimple lhs_def_stmt;
1408 gphi *phi_stmt;
4ca17abf 1409 tree cmp_rhs, cmp_lhs;
1a91d914 1410 gimple last;
1411 gcond *cmp_stmt;
4ca17abf 1412
1a91d914 1413 last = last_stmt (exit_edge->src);
1414 if (!last)
1415 return;
1416 cmp_stmt = dyn_cast <gcond *> (last);
1417 if (!cmp_stmt)
4ca17abf 1418 return;
1a91d914 1419
4ca17abf 1420 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1421 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1422 if (!TREE_CONSTANT (cmp_rhs)
1423 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1424 return;
1425 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1426 return;
1427
1428 /* If check_value_one is true, only the phi_args with value '1' will lead
1429 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1430 loop exit. */
1431 check_value_one = (((integer_onep (cmp_rhs))
1432 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1433 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1434
1a91d914 1435 lhs_def_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1436 if (!lhs_def_stmt)
1437 return;
1438
1439 phi_stmt = dyn_cast <gphi *> (lhs_def_stmt);
1440 if (!phi_stmt)
4ca17abf 1441 return;
1442
1443 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1444 {
1445 edge e1;
1446 edge_iterator ei;
1447 tree val = gimple_phi_arg_def (phi_stmt, i);
1448 edge e = gimple_phi_arg_edge (phi_stmt, i);
1449
1450 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1451 continue;
1452 if ((check_value_one ^ integer_onep (val)) == 1)
1453 continue;
1454 if (EDGE_COUNT (e->src->succs) != 1)
1455 {
1456 predict_paths_leading_to_edge (e, PRED_LOOP_EXIT, NOT_TAKEN);
1457 continue;
1458 }
1459
1460 FOR_EACH_EDGE (e1, ei, e->src->preds)
1461 predict_paths_leading_to_edge (e1, PRED_LOOP_EXIT, NOT_TAKEN);
1462 }
1463}
1464
7194de72 1465/* Predict edge probabilities by exploiting loop structure. */
1466
4ee9c684 1467static void
7194de72 1468predict_loops (void)
4ee9c684 1469{
17519ba0 1470 struct loop *loop;
c12f2fcb 1471
7fcadf62 1472 /* Try to predict out blocks in a loop that are not part of a
1473 natural loop. */
f21d4d00 1474 FOR_EACH_LOOP (loop, 0)
59423b59 1475 {
7fb12188 1476 basic_block bb, *bbs;
749ea85f 1477 unsigned j, n_exits;
f1f41a6c 1478 vec<edge> exits;
3b0b2309 1479 struct tree_niter_desc niter_desc;
749ea85f 1480 edge ex;
fd757b76 1481 struct nb_iter_bound *nb_iter;
1482 enum tree_code loop_bound_code = ERROR_MARK;
b3269f54 1483 tree loop_bound_step = NULL;
fd757b76 1484 tree loop_bound_var = NULL;
1485 tree loop_iv_base = NULL;
1a91d914 1486 gcond *stmt = NULL;
59423b59 1487
749ea85f 1488 exits = get_loop_exit_edges (loop);
f1f41a6c 1489 n_exits = exits.length ();
5d865361 1490 if (!n_exits)
1491 {
f1f41a6c 1492 exits.release ();
5d865361 1493 continue;
1494 }
ba38e12b 1495
f1f41a6c 1496 FOR_EACH_VEC_ELT (exits, j, ex)
d27b0b64 1497 {
3b0b2309 1498 tree niter = NULL;
d500fef3 1499 HOST_WIDE_INT nitercst;
1500 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1501 int probability;
1502 enum br_predictor predictor;
d27b0b64 1503
4ca17abf 1504 predict_extra_loop_exits (ex);
1505
3f78e715 1506 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
3b0b2309 1507 niter = niter_desc.niter;
1508 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
749ea85f 1509 niter = loop_niter_by_eval (loop, ex);
d27b0b64 1510
3b0b2309 1511 if (TREE_CODE (niter) == INTEGER_CST)
1512 {
e913b5cd 1513 if (tree_fits_uhwi_p (niter)
ed60f27f 1514 && max
1515 && compare_tree_int (niter, max - 1) == -1)
e913b5cd 1516 nitercst = tree_to_uhwi (niter) + 1;
3b0b2309 1517 else
d500fef3 1518 nitercst = max;
1519 predictor = PRED_LOOP_ITERATIONS;
1520 }
1521 /* If we have just one exit and we can derive some information about
1522 the number of iterations of the loop from the statements inside
1523 the loop, use it to predict this exit. */
1524 else if (n_exits == 1)
1525 {
fee017b3 1526 nitercst = estimated_stmt_executions_int (loop);
d500fef3 1527 if (nitercst < 0)
1528 continue;
1529 if (nitercst > max)
1530 nitercst = max;
d27b0b64 1531
d500fef3 1532 predictor = PRED_LOOP_ITERATIONS_GUESSED;
3b0b2309 1533 }
d500fef3 1534 else
1535 continue;
1536
ed60f27f 1537 /* If the prediction for number of iterations is zero, do not
1538 predict the exit edges. */
1539 if (nitercst == 0)
1540 continue;
1541
d500fef3 1542 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
1543 predict_edge (ex, predictor, probability);
d27b0b64 1544 }
f1f41a6c 1545 exits.release ();
862be747 1546
fd757b76 1547 /* Find information about loop bound variables. */
1548 for (nb_iter = loop->bounds; nb_iter;
1549 nb_iter = nb_iter->next)
1550 if (nb_iter->stmt
1551 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
1552 {
1a91d914 1553 stmt = as_a <gcond *> (nb_iter->stmt);
fd757b76 1554 break;
1555 }
1556 if (!stmt && last_stmt (loop->header)
1557 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
1a91d914 1558 stmt = as_a <gcond *> (last_stmt (loop->header));
fd757b76 1559 if (stmt)
1560 is_comparison_with_loop_invariant_p (stmt, loop,
1561 &loop_bound_var,
1562 &loop_bound_code,
1563 &loop_bound_step,
1564 &loop_iv_base);
1565
7fb12188 1566 bbs = get_loop_body (loop);
4ee9c684 1567
7fb12188 1568 for (j = 0; j < loop->num_nodes; j++)
1569 {
1570 int header_found = 0;
1571 edge e;
cd665a06 1572 edge_iterator ei;
7fb12188 1573
1574 bb = bbs[j];
e6751e9a 1575
cd0fe062 1576 /* Bypass loop heuristics on continue statement. These
1577 statements construct loops via "non-loop" constructs
1578 in the source language and are better to be handled
1579 separately. */
3b0b2309 1580 if (predicted_by_p (bb, PRED_CONTINUE))
cd0fe062 1581 continue;
1582
7fb12188 1583 /* Loop branch heuristics - predict an edge back to a
1584 loop's head as taken. */
c6356c17 1585 if (bb == loop->latch)
1586 {
1587 e = find_edge (loop->latch, loop->header);
1588 if (e)
1589 {
1590 header_found = 1;
1591 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1592 }
1593 }
e6751e9a 1594
7fb12188 1595 /* Loop exit heuristics - predict an edge exiting the loop if the
41a6f238 1596 conditional has no loop header successors as not taken. */
d500fef3 1597 if (!header_found
1598 /* If we already used more reliable loop exit predictors, do not
1599 bother with PRED_LOOP_EXIT. */
1600 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1601 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
b41438e5 1602 {
1603 /* For loop with many exits we don't want to predict all exits
1604 with the pretty large probability, because if all exits are
1605 considered in row, the loop would be predicted to iterate
1606 almost never. The code to divide probability by number of
1607 exits is very rough. It should compute the number of exits
1608 taken in each patch through function (not the overall number
1609 of exits that might be a lot higher for loops with wide switch
1610 statements in them) and compute n-th square root.
1611
1612 We limit the minimal probability by 2% to avoid
1613 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1614 as this was causing regression in perl benchmark containing such
1615 a wide loop. */
48e1416a 1616
b41438e5 1617 int probability = ((REG_BR_PROB_BASE
1618 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1619 / n_exits);
1620 if (probability < HITRATE (2))
1621 probability = HITRATE (2);
1622 FOR_EACH_EDGE (e, ei, bb->succs)
1623 if (e->dest->index < NUM_FIXED_BLOCKS
1624 || !flow_bb_inside_loop_p (loop, e->dest))
1625 predict_edge (e, PRED_LOOP_EXIT, probability);
1626 }
fd757b76 1627 if (loop_bound_var)
1628 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
1629 loop_bound_code,
e913b5cd 1630 tree_to_shwi (loop_bound_step));
7fb12188 1631 }
48e1416a 1632
21dda4ee 1633 /* Free basic blocks from get_loop_body. */
dcd8fd01 1634 free (bbs);
59423b59 1635 }
4ee9c684 1636}
1637
83c8a977 1638/* Attempt to predict probabilities of BB outgoing edges using local
1639 properties. */
1640static void
1641bb_estimate_probability_locally (basic_block bb)
1642{
ee5f6585 1643 rtx_insn *last_insn = BB_END (bb);
83c8a977 1644 rtx cond;
1645
1646 if (! can_predict_insn_p (last_insn))
1647 return;
1648 cond = get_condition (last_insn, NULL, false, false);
1649 if (! cond)
1650 return;
1651
1652 /* Try "pointer heuristic."
1653 A comparison ptr == 0 is predicted as false.
1654 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1655 if (COMPARISON_P (cond)
1656 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1657 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1658 {
1659 if (GET_CODE (cond) == EQ)
1660 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1661 else if (GET_CODE (cond) == NE)
1662 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1663 }
1664 else
1665
1666 /* Try "opcode heuristic."
1667 EQ tests are usually false and NE tests are usually true. Also,
1668 most quantities are positive, so we can make the appropriate guesses
1669 about signed comparisons against zero. */
1670 switch (GET_CODE (cond))
1671 {
1672 case CONST_INT:
1673 /* Unconditional branch. */
1674 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1675 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1676 break;
1677
1678 case EQ:
1679 case UNEQ:
1680 /* Floating point comparisons appears to behave in a very
1681 unpredictable way because of special role of = tests in
1682 FP code. */
1683 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1684 ;
1685 /* Comparisons with 0 are often used for booleans and there is
1686 nothing useful to predict about them. */
1687 else if (XEXP (cond, 1) == const0_rtx
1688 || XEXP (cond, 0) == const0_rtx)
1689 ;
1690 else
1691 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1692 break;
1693
1694 case NE:
1695 case LTGT:
1696 /* Floating point comparisons appears to behave in a very
1697 unpredictable way because of special role of = tests in
1698 FP code. */
1699 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1700 ;
1701 /* Comparisons with 0 are often used for booleans and there is
1702 nothing useful to predict about them. */
1703 else if (XEXP (cond, 1) == const0_rtx
1704 || XEXP (cond, 0) == const0_rtx)
1705 ;
1706 else
1707 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1708 break;
1709
1710 case ORDERED:
1711 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1712 break;
1713
1714 case UNORDERED:
1715 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1716 break;
1717
1718 case LE:
1719 case LT:
1720 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1721 || XEXP (cond, 1) == constm1_rtx)
1722 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1723 break;
1724
1725 case GE:
1726 case GT:
1727 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1728 || XEXP (cond, 1) == constm1_rtx)
1729 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1730 break;
1731
1732 default:
1733 break;
1734 }
1735}
1736
7edd21a5 1737/* Set edge->probability for each successor edge of BB. */
83c8a977 1738void
1739guess_outgoing_edge_probabilities (basic_block bb)
1740{
1741 bb_estimate_probability_locally (bb);
1742 combine_predictions_for_insn (BB_END (bb), bb);
1743}
4ee9c684 1744\f
c83059be 1745static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor);
75a70cf9 1746
1747/* Helper function for expr_expected_value. */
42975b1f 1748
1749static tree
2380e91e 1750expr_expected_value_1 (tree type, tree op0, enum tree_code code,
c83059be 1751 tree op1, bitmap visited, enum br_predictor *predictor)
42975b1f 1752{
75a70cf9 1753 gimple def;
1754
c83059be 1755 if (predictor)
1756 *predictor = PRED_UNCONDITIONAL;
1757
75a70cf9 1758 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
42975b1f 1759 {
75a70cf9 1760 if (TREE_CONSTANT (op0))
1761 return op0;
1762
1763 if (code != SSA_NAME)
1764 return NULL_TREE;
1765
1766 def = SSA_NAME_DEF_STMT (op0);
42975b1f 1767
1768 /* If we were already here, break the infinite cycle. */
6ef9bbe0 1769 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
42975b1f 1770 return NULL;
42975b1f 1771
75a70cf9 1772 if (gimple_code (def) == GIMPLE_PHI)
42975b1f 1773 {
1774 /* All the arguments of the PHI node must have the same constant
1775 length. */
75a70cf9 1776 int i, n = gimple_phi_num_args (def);
42975b1f 1777 tree val = NULL, new_val;
4ee9c684 1778
75a70cf9 1779 for (i = 0; i < n; i++)
42975b1f 1780 {
1781 tree arg = PHI_ARG_DEF (def, i);
c83059be 1782 enum br_predictor predictor2;
42975b1f 1783
1784 /* If this PHI has itself as an argument, we cannot
1785 determine the string length of this argument. However,
86481e89 1786 if we can find an expected constant value for the other
42975b1f 1787 PHI args then we can still be sure that this is
1788 likely a constant. So be optimistic and just
1789 continue with the next argument. */
1790 if (arg == PHI_RESULT (def))
1791 continue;
1792
c83059be 1793 new_val = expr_expected_value (arg, visited, &predictor2);
1794
1795 /* It is difficult to combine value predictors. Simply assume
1796 that later predictor is weaker and take its prediction. */
1797 if (predictor && *predictor < predictor2)
1798 *predictor = predictor2;
42975b1f 1799 if (!new_val)
1800 return NULL;
1801 if (!val)
1802 val = new_val;
1803 else if (!operand_equal_p (val, new_val, false))
1804 return NULL;
1805 }
1806 return val;
1807 }
75a70cf9 1808 if (is_gimple_assign (def))
42975b1f 1809 {
75a70cf9 1810 if (gimple_assign_lhs (def) != op0)
1811 return NULL;
42975b1f 1812
75a70cf9 1813 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1814 gimple_assign_rhs1 (def),
1815 gimple_assign_rhs_code (def),
1816 gimple_assign_rhs2 (def),
c83059be 1817 visited, predictor);
75a70cf9 1818 }
1819
1820 if (is_gimple_call (def))
1821 {
1822 tree decl = gimple_call_fndecl (def);
1823 if (!decl)
c83059be 1824 {
1825 if (gimple_call_internal_p (def)
1826 && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
1827 {
1828 gcc_assert (gimple_call_num_args (def) == 3);
1829 tree val = gimple_call_arg (def, 0);
1830 if (TREE_CONSTANT (val))
1831 return val;
1832 if (predictor)
1833 {
c83059be 1834 tree val2 = gimple_call_arg (def, 2);
1835 gcc_assert (TREE_CODE (val2) == INTEGER_CST
1836 && tree_fits_uhwi_p (val2)
1837 && tree_to_uhwi (val2) < END_PREDICTORS);
1838 *predictor = (enum br_predictor) tree_to_uhwi (val2);
1839 }
1840 return gimple_call_arg (def, 1);
1841 }
1842 return NULL;
1843 }
2380e91e 1844 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
1845 switch (DECL_FUNCTION_CODE (decl))
1846 {
1847 case BUILT_IN_EXPECT:
1848 {
1849 tree val;
1850 if (gimple_call_num_args (def) != 2)
1851 return NULL;
1852 val = gimple_call_arg (def, 0);
1853 if (TREE_CONSTANT (val))
1854 return val;
c83059be 1855 if (predictor)
1856 *predictor = PRED_BUILTIN_EXPECT;
2380e91e 1857 return gimple_call_arg (def, 1);
1858 }
75a70cf9 1859
2380e91e 1860 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
1861 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
1862 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
1863 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
1864 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
1865 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
1866 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
1867 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
1868 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
1869 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
1870 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
1871 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
1872 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
1873 /* Assume that any given atomic operation has low contention,
1874 and thus the compare-and-swap operation succeeds. */
c83059be 1875 if (predictor)
1876 *predictor = PRED_COMPARE_AND_SWAP;
2380e91e 1877 return boolean_true_node;
5213d6c9 1878 default:
1879 break;
75a70cf9 1880 }
42975b1f 1881 }
75a70cf9 1882
1883 return NULL;
42975b1f 1884 }
75a70cf9 1885
1886 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
42975b1f 1887 {
75a70cf9 1888 tree res;
c83059be 1889 enum br_predictor predictor2;
1890 op0 = expr_expected_value (op0, visited, predictor);
42975b1f 1891 if (!op0)
1892 return NULL;
c83059be 1893 op1 = expr_expected_value (op1, visited, &predictor2);
1894 if (predictor && *predictor < predictor2)
1895 *predictor = predictor2;
42975b1f 1896 if (!op1)
1897 return NULL;
75a70cf9 1898 res = fold_build2 (code, type, op0, op1);
42975b1f 1899 if (TREE_CONSTANT (res))
1900 return res;
1901 return NULL;
1902 }
75a70cf9 1903 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
42975b1f 1904 {
75a70cf9 1905 tree res;
c83059be 1906 op0 = expr_expected_value (op0, visited, predictor);
42975b1f 1907 if (!op0)
1908 return NULL;
75a70cf9 1909 res = fold_build1 (code, type, op0);
42975b1f 1910 if (TREE_CONSTANT (res))
1911 return res;
1912 return NULL;
1913 }
1914 return NULL;
1915}
75a70cf9 1916
48e1416a 1917/* Return constant EXPR will likely have at execution time, NULL if unknown.
75a70cf9 1918 The function is used by builtin_expect branch predictor so the evidence
1919 must come from this construct and additional possible constant folding.
48e1416a 1920
75a70cf9 1921 We may want to implement more involved value guess (such as value range
1922 propagation based prediction), but such tricks shall go to new
1923 implementation. */
1924
1925static tree
c83059be 1926expr_expected_value (tree expr, bitmap visited,
1927 enum br_predictor *predictor)
75a70cf9 1928{
1929 enum tree_code code;
1930 tree op0, op1;
1931
1932 if (TREE_CONSTANT (expr))
c83059be 1933 {
1934 if (predictor)
1935 *predictor = PRED_UNCONDITIONAL;
1936 return expr;
1937 }
75a70cf9 1938
1939 extract_ops_from_tree (expr, &code, &op0, &op1);
1940 return expr_expected_value_1 (TREE_TYPE (expr),
c83059be 1941 op0, code, op1, visited, predictor);
75a70cf9 1942}
42975b1f 1943\f
4ee9c684 1944/* Predict using opcode of the last statement in basic block. */
1945static void
1946tree_predict_by_opcode (basic_block bb)
1947{
75a70cf9 1948 gimple stmt = last_stmt (bb);
4ee9c684 1949 edge then_edge;
75a70cf9 1950 tree op0, op1;
4ee9c684 1951 tree type;
42975b1f 1952 tree val;
75a70cf9 1953 enum tree_code cmp;
42975b1f 1954 bitmap visited;
cd665a06 1955 edge_iterator ei;
c83059be 1956 enum br_predictor predictor;
4ee9c684 1957
75a70cf9 1958 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
4ee9c684 1959 return;
cd665a06 1960 FOR_EACH_EDGE (then_edge, ei, bb->succs)
4ee9c684 1961 if (then_edge->flags & EDGE_TRUE_VALUE)
cd665a06 1962 break;
75a70cf9 1963 op0 = gimple_cond_lhs (stmt);
1964 op1 = gimple_cond_rhs (stmt);
1965 cmp = gimple_cond_code (stmt);
4ee9c684 1966 type = TREE_TYPE (op0);
27335ffd 1967 visited = BITMAP_ALLOC (NULL);
c83059be 1968 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited,
1969 &predictor);
27335ffd 1970 BITMAP_FREE (visited);
c83059be 1971 if (val && TREE_CODE (val) == INTEGER_CST)
42975b1f 1972 {
c83059be 1973 if (predictor == PRED_BUILTIN_EXPECT)
1974 {
1975 int percent = PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY);
21853731 1976
c83059be 1977 gcc_assert (percent >= 0 && percent <= 100);
1978 if (integer_zerop (val))
1979 percent = 100 - percent;
1980 predict_edge (then_edge, PRED_BUILTIN_EXPECT, HITRATE (percent));
1981 }
1982 else
1983 predict_edge (then_edge, predictor,
1984 integer_zerop (val) ? NOT_TAKEN : TAKEN);
42975b1f 1985 }
4ee9c684 1986 /* Try "pointer heuristic."
1987 A comparison ptr == 0 is predicted as false.
1988 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1989 if (POINTER_TYPE_P (type))
1990 {
75a70cf9 1991 if (cmp == EQ_EXPR)
4ee9c684 1992 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
75a70cf9 1993 else if (cmp == NE_EXPR)
4ee9c684 1994 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1995 }
1996 else
1997
1998 /* Try "opcode heuristic."
1999 EQ tests are usually false and NE tests are usually true. Also,
2000 most quantities are positive, so we can make the appropriate guesses
2001 about signed comparisons against zero. */
75a70cf9 2002 switch (cmp)
4ee9c684 2003 {
2004 case EQ_EXPR:
2005 case UNEQ_EXPR:
2006 /* Floating point comparisons appears to behave in a very
2007 unpredictable way because of special role of = tests in
2008 FP code. */
2009 if (FLOAT_TYPE_P (type))
2010 ;
2011 /* Comparisons with 0 are often used for booleans and there is
2012 nothing useful to predict about them. */
75a70cf9 2013 else if (integer_zerop (op0) || integer_zerop (op1))
4ee9c684 2014 ;
2015 else
2016 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2017 break;
2018
2019 case NE_EXPR:
318a728f 2020 case LTGT_EXPR:
4ee9c684 2021 /* Floating point comparisons appears to behave in a very
2022 unpredictable way because of special role of = tests in
2023 FP code. */
2024 if (FLOAT_TYPE_P (type))
2025 ;
2026 /* Comparisons with 0 are often used for booleans and there is
2027 nothing useful to predict about them. */
2028 else if (integer_zerop (op0)
75a70cf9 2029 || integer_zerop (op1))
4ee9c684 2030 ;
2031 else
2032 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2033 break;
2034
2035 case ORDERED_EXPR:
2036 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2037 break;
2038
2039 case UNORDERED_EXPR:
2040 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2041 break;
2042
2043 case LE_EXPR:
2044 case LT_EXPR:
75a70cf9 2045 if (integer_zerop (op1)
2046 || integer_onep (op1)
2047 || integer_all_onesp (op1)
2048 || real_zerop (op1)
2049 || real_onep (op1)
2050 || real_minus_onep (op1))
4ee9c684 2051 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2052 break;
2053
2054 case GE_EXPR:
2055 case GT_EXPR:
75a70cf9 2056 if (integer_zerop (op1)
2057 || integer_onep (op1)
2058 || integer_all_onesp (op1)
2059 || real_zerop (op1)
2060 || real_onep (op1)
2061 || real_minus_onep (op1))
4ee9c684 2062 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2063 break;
2064
2065 default:
2066 break;
2067 }
2068}
2069
f816ec49 2070/* Try to guess whether the value of return means error code. */
75a70cf9 2071
f816ec49 2072static enum br_predictor
2073return_prediction (tree val, enum prediction *prediction)
2074{
2075 /* VOID. */
2076 if (!val)
2077 return PRED_NO_PREDICTION;
2078 /* Different heuristics for pointers and scalars. */
2079 if (POINTER_TYPE_P (TREE_TYPE (val)))
2080 {
2081 /* NULL is usually not returned. */
2082 if (integer_zerop (val))
2083 {
2084 *prediction = NOT_TAKEN;
2085 return PRED_NULL_RETURN;
2086 }
2087 }
2088 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2089 {
2090 /* Negative return values are often used to indicate
2091 errors. */
2092 if (TREE_CODE (val) == INTEGER_CST
2093 && tree_int_cst_sgn (val) < 0)
2094 {
2095 *prediction = NOT_TAKEN;
2096 return PRED_NEGATIVE_RETURN;
2097 }
2098 /* Constant return values seems to be commonly taken.
2099 Zero/one often represent booleans so exclude them from the
2100 heuristics. */
2101 if (TREE_CONSTANT (val)
2102 && (!integer_zerop (val) && !integer_onep (val)))
2103 {
2104 *prediction = TAKEN;
4a4e4487 2105 return PRED_CONST_RETURN;
f816ec49 2106 }
2107 }
2108 return PRED_NO_PREDICTION;
2109}
2110
2111/* Find the basic block with return expression and look up for possible
2112 return value trying to apply RETURN_PREDICTION heuristics. */
2113static void
d704ea82 2114apply_return_prediction (void)
f816ec49 2115{
1a91d914 2116 greturn *return_stmt = NULL;
f816ec49 2117 tree return_val;
2118 edge e;
1a91d914 2119 gphi *phi;
f816ec49 2120 int phi_num_args, i;
2121 enum br_predictor pred;
2122 enum prediction direction;
cd665a06 2123 edge_iterator ei;
f816ec49 2124
34154e27 2125 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
f816ec49 2126 {
1a91d914 2127 gimple last = last_stmt (e->src);
2128 if (last
2129 && gimple_code (last) == GIMPLE_RETURN)
2130 {
2131 return_stmt = as_a <greturn *> (last);
2132 break;
2133 }
f816ec49 2134 }
2135 if (!e)
2136 return;
75a70cf9 2137 return_val = gimple_return_retval (return_stmt);
f816ec49 2138 if (!return_val)
2139 return;
f816ec49 2140 if (TREE_CODE (return_val) != SSA_NAME
2141 || !SSA_NAME_DEF_STMT (return_val)
75a70cf9 2142 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
f816ec49 2143 return;
1a91d914 2144 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (return_val));
75a70cf9 2145 phi_num_args = gimple_phi_num_args (phi);
f816ec49 2146 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2147
2148 /* Avoid the degenerate case where all return values form the function
2149 belongs to same category (ie they are all positive constants)
2150 so we can hardly say something about them. */
2151 for (i = 1; i < phi_num_args; i++)
2152 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2153 break;
2154 if (i != phi_num_args)
2155 for (i = 0; i < phi_num_args; i++)
2156 {
2157 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2158 if (pred != PRED_NO_PREDICTION)
5707768a 2159 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2160 direction);
f816ec49 2161 }
2162}
2163
2164/* Look for basic block that contains unlikely to happen events
2165 (such as noreturn calls) and mark all paths leading to execution
2166 of this basic blocks as unlikely. */
2167
2168static void
2169tree_bb_level_predictions (void)
2170{
2171 basic_block bb;
9f694a82 2172 bool has_return_edges = false;
2173 edge e;
2174 edge_iterator ei;
2175
34154e27 2176 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
9f694a82 2177 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
2178 {
2179 has_return_edges = true;
2180 break;
2181 }
f816ec49 2182
d704ea82 2183 apply_return_prediction ();
f816ec49 2184
fc00614f 2185 FOR_EACH_BB_FN (bb, cfun)
f816ec49 2186 {
75a70cf9 2187 gimple_stmt_iterator gsi;
f816ec49 2188
1add270f 2189 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
f816ec49 2190 {
75a70cf9 2191 gimple stmt = gsi_stmt (gsi);
5de92639 2192 tree decl;
3ed4a4a1 2193
75a70cf9 2194 if (is_gimple_call (stmt))
f816ec49 2195 {
9f694a82 2196 if ((gimple_call_flags (stmt) & ECF_NORETURN)
2197 && has_return_edges)
75a70cf9 2198 predict_paths_leading_to (bb, PRED_NORETURN,
2199 NOT_TAKEN);
2200 decl = gimple_call_fndecl (stmt);
2201 if (decl
2202 && lookup_attribute ("cold",
2203 DECL_ATTRIBUTES (decl)))
2204 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2205 NOT_TAKEN);
f816ec49 2206 }
75a70cf9 2207 else if (gimple_code (stmt) == GIMPLE_PREDICT)
2208 {
2209 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
2210 gimple_predict_outcome (stmt));
1add270f 2211 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2212 hints to callers. */
75a70cf9 2213 }
f816ec49 2214 }
2215 }
f816ec49 2216}
2217
b3723726 2218#ifdef ENABLE_CHECKING
2219
06ecf488 2220/* Callback for hash_map::traverse, asserts that the pointer map is
b3723726 2221 empty. */
2222
06ecf488 2223bool
2224assert_is_empty (const_basic_block const &, edge_prediction *const &value,
2225 void *)
b3723726 2226{
06ecf488 2227 gcc_assert (!value);
b3723726 2228 return false;
2229}
2230#endif
2231
675d86b2 2232/* Predict branch probabilities and estimate profile for basic block BB. */
2233
2234static void
2235tree_estimate_probability_bb (basic_block bb)
2236{
2237 edge e;
2238 edge_iterator ei;
2239 gimple last;
2240
2241 FOR_EACH_EDGE (e, ei, bb->succs)
2242 {
758a38ab 2243 /* Predict edges to user labels with attributes. */
34154e27 2244 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
758a38ab 2245 {
2246 gimple_stmt_iterator gi;
2247 for (gi = gsi_start_bb (e->dest); !gsi_end_p (gi); gsi_next (&gi))
2248 {
1a91d914 2249 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gi));
758a38ab 2250 tree decl;
2251
1a91d914 2252 if (!label_stmt)
758a38ab 2253 break;
1a91d914 2254 decl = gimple_label_label (label_stmt);
758a38ab 2255 if (DECL_ARTIFICIAL (decl))
2256 continue;
2257
2258 /* Finally, we have a user-defined label. */
2259 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl)))
2260 predict_edge_def (e, PRED_COLD_LABEL, NOT_TAKEN);
2261 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl)))
2262 predict_edge_def (e, PRED_HOT_LABEL, TAKEN);
2263 }
2264 }
2265
675d86b2 2266 /* Predict early returns to be probable, as we've already taken
2267 care for error returns and other cases are often used for
2268 fast paths through function.
2269
2270 Since we've already removed the return statements, we are
2271 looking for CFG like:
2272
2273 if (conditional)
2274 {
2275 ..
2276 goto return_block
2277 }
2278 some other blocks
2279 return_block:
2280 return_stmt. */
2281 if (e->dest != bb->next_bb
34154e27 2282 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
675d86b2 2283 && single_succ_p (e->dest)
34154e27 2284 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
675d86b2 2285 && (last = last_stmt (e->dest)) != NULL
2286 && gimple_code (last) == GIMPLE_RETURN)
2287 {
2288 edge e1;
2289 edge_iterator ei1;
2290
2291 if (single_succ_p (bb))
2292 {
2293 FOR_EACH_EDGE (e1, ei1, bb->preds)
2294 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
2295 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
2296 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
2297 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2298 }
2299 else
2300 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
2301 && !predicted_by_p (e->src, PRED_CONST_RETURN)
2302 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
2303 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2304 }
2305
2306 /* Look for block we are guarding (ie we dominate it,
2307 but it doesn't postdominate us). */
34154e27 2308 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
675d86b2 2309 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
2310 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
2311 {
2312 gimple_stmt_iterator bi;
2313
2314 /* The call heuristic claims that a guarded function call
2315 is improbable. This is because such calls are often used
2316 to signal exceptional situations such as printing error
2317 messages. */
2318 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
2319 gsi_next (&bi))
2320 {
2321 gimple stmt = gsi_stmt (bi);
2322 if (is_gimple_call (stmt)
2323 /* Constant and pure calls are hardly used to signalize
2324 something exceptional. */
2325 && gimple_has_side_effects (stmt))
2326 {
2327 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
2328 break;
2329 }
2330 }
2331 }
2332 }
2333 tree_predict_by_opcode (bb);
2334}
2335
2336/* Predict branch probabilities and estimate profile of the tree CFG.
2337 This function can be called from the loop optimizers to recompute
2338 the profile information. */
2339
2340void
4ee9c684 2341tree_estimate_probability (void)
2342{
2343 basic_block bb;
4ee9c684 2344
f816ec49 2345 add_noreturn_fake_exit_edges ();
4ee9c684 2346 connect_infinite_loops_to_exit ();
d8a0d6b8 2347 /* We use loop_niter_by_eval, which requires that the loops have
2348 preheaders. */
2349 create_preheaders (CP_SIMPLE_PREHEADERS);
4ee9c684 2350 calculate_dominance_info (CDI_POST_DOMINATORS);
2351
06ecf488 2352 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
f816ec49 2353 tree_bb_level_predictions ();
d500fef3 2354 record_loop_exits ();
675d86b2 2355
41f75a99 2356 if (number_of_loops (cfun) > 1)
7194de72 2357 predict_loops ();
4ee9c684 2358
fc00614f 2359 FOR_EACH_BB_FN (bb, cfun)
675d86b2 2360 tree_estimate_probability_bb (bb);
4ee9c684 2361
fc00614f 2362 FOR_EACH_BB_FN (bb, cfun)
3f5be5f4 2363 combine_predictions_for_bb (bb);
f81d9f78 2364
b3723726 2365#ifdef ENABLE_CHECKING
06ecf488 2366 bb_predictions->traverse<void *, assert_is_empty> (NULL);
b3723726 2367#endif
06ecf488 2368 delete bb_predictions;
b3723726 2369 bb_predictions = NULL;
2370
5327650f 2371 estimate_bb_frequencies (false);
4ee9c684 2372 free_dominance_info (CDI_POST_DOMINATORS);
41d24834 2373 remove_fake_exit_edges ();
675d86b2 2374}
89cfe6e5 2375\f
f0b5f617 2376/* Predict edges to successors of CUR whose sources are not postdominated by
d704ea82 2377 BB by PRED and recurse to all postdominators. */
f816ec49 2378
2379static void
d704ea82 2380predict_paths_for_bb (basic_block cur, basic_block bb,
2381 enum br_predictor pred,
d3443011 2382 enum prediction taken,
2383 bitmap visited)
f816ec49 2384{
2385 edge e;
cd665a06 2386 edge_iterator ei;
d704ea82 2387 basic_block son;
f816ec49 2388
d704ea82 2389 /* We are looking for all edges forming edge cut induced by
2390 set of all blocks postdominated by BB. */
2391 FOR_EACH_EDGE (e, ei, cur->preds)
2392 if (e->src->index >= NUM_FIXED_BLOCKS
2393 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
f816ec49 2394 {
f1d5a92b 2395 edge e2;
2396 edge_iterator ei2;
2397 bool found = false;
2398
5707768a 2399 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2400 if (e->flags & (EDGE_EH | EDGE_FAKE))
f1d5a92b 2401 continue;
d704ea82 2402 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
f1d5a92b 2403
d3443011 2404 /* See if there is an edge from e->src that is not abnormal
f1d5a92b 2405 and does not lead to BB. */
2406 FOR_EACH_EDGE (e2, ei2, e->src->succs)
2407 if (e2 != e
5707768a 2408 && !(e2->flags & (EDGE_EH | EDGE_FAKE))
f1d5a92b 2409 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
2410 {
2411 found = true;
2412 break;
2413 }
2414
2415 /* If there is non-abnormal path leaving e->src, predict edge
2416 using predictor. Otherwise we need to look for paths
d3443011 2417 leading to e->src.
2418
2419 The second may lead to infinite loop in the case we are predicitng
2420 regions that are only reachable by abnormal edges. We simply
2421 prevent visiting given BB twice. */
f1d5a92b 2422 if (found)
2423 predict_edge_def (e, pred, taken);
6e3803fb 2424 else if (bitmap_set_bit (visited, e->src->index))
d3443011 2425 predict_paths_for_bb (e->src, e->src, pred, taken, visited);
f816ec49 2426 }
d704ea82 2427 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
2428 son;
2429 son = next_dom_son (CDI_POST_DOMINATORS, son))
d3443011 2430 predict_paths_for_bb (son, bb, pred, taken, visited);
d704ea82 2431}
f816ec49 2432
d704ea82 2433/* Sets branch probabilities according to PREDiction and
2434 FLAGS. */
f816ec49 2435
d704ea82 2436static void
2437predict_paths_leading_to (basic_block bb, enum br_predictor pred,
2438 enum prediction taken)
2439{
d3443011 2440 bitmap visited = BITMAP_ALLOC (NULL);
2441 predict_paths_for_bb (bb, bb, pred, taken, visited);
2442 BITMAP_FREE (visited);
f816ec49 2443}
5707768a 2444
2445/* Like predict_paths_leading_to but take edge instead of basic block. */
2446
2447static void
2448predict_paths_leading_to_edge (edge e, enum br_predictor pred,
2449 enum prediction taken)
2450{
2451 bool has_nonloop_edge = false;
2452 edge_iterator ei;
2453 edge e2;
2454
2455 basic_block bb = e->src;
2456 FOR_EACH_EDGE (e2, ei, bb->succs)
2457 if (e2->dest != e->src && e2->dest != e->dest
2458 && !(e->flags & (EDGE_EH | EDGE_FAKE))
2459 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
2460 {
2461 has_nonloop_edge = true;
2462 break;
2463 }
2464 if (!has_nonloop_edge)
d3443011 2465 {
2466 bitmap visited = BITMAP_ALLOC (NULL);
2467 predict_paths_for_bb (bb, bb, pred, taken, visited);
2468 BITMAP_FREE (visited);
2469 }
5707768a 2470 else
2471 predict_edge_def (e, pred, taken);
2472}
cd0fe062 2473\f
e725f898 2474/* This is used to carry information about basic blocks. It is
f81d9f78 2475 attached to the AUX field of the standard CFG block. */
2476
9908fe4d 2477struct block_info
f81d9f78 2478{
2479 /* Estimated frequency of execution of basic_block. */
e9d7220b 2480 sreal frequency;
f81d9f78 2481
2482 /* To keep queue of basic blocks to process. */
2483 basic_block next;
2484
4a82352a 2485 /* Number of predecessors we need to visit first. */
4ad72a03 2486 int npredecessors;
9908fe4d 2487};
f81d9f78 2488
2489/* Similar information for edges. */
9908fe4d 2490struct edge_prob_info
f81d9f78 2491{
77aa6362 2492 /* In case edge is a loopback edge, the probability edge will be reached
f81d9f78 2493 in case header is. Estimated number of iterations of the loop can be
56ff4880 2494 then computed as 1 / (1 - back_edge_prob). */
e9d7220b 2495 sreal back_edge_prob;
77aa6362 2496 /* True if the edge is a loopback edge in the natural loop. */
74cbb553 2497 unsigned int back_edge:1;
9908fe4d 2498};
f81d9f78 2499
9908fe4d 2500#define BLOCK_INFO(B) ((block_info *) (B)->aux)
886c1262 2501#undef EDGE_INFO
9908fe4d 2502#define EDGE_INFO(E) ((edge_prob_info *) (E)->aux)
f81d9f78 2503
2504/* Helper function for estimate_bb_frequencies.
88e6f696 2505 Propagate the frequencies in blocks marked in
2506 TOVISIT, starting in HEAD. */
e6751e9a 2507
f81d9f78 2508static void
88e6f696 2509propagate_freq (basic_block head, bitmap tovisit)
f81d9f78 2510{
4c26117a 2511 basic_block bb;
2512 basic_block last;
9ea83aa5 2513 unsigned i;
f81d9f78 2514 edge e;
2515 basic_block nextbb;
b1bb9b10 2516 bitmap_iterator bi;
312866af 2517
4a82352a 2518 /* For each basic block we need to visit count number of his predecessors
312866af 2519 we need to visit first. */
b1bb9b10 2520 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
312866af 2521 {
b1bb9b10 2522 edge_iterator ei;
2523 int count = 0;
2524
f5a6b05f 2525 bb = BASIC_BLOCK_FOR_FN (cfun, i);
e6751e9a 2526
b1bb9b10 2527 FOR_EACH_EDGE (e, ei, bb->preds)
2528 {
2529 bool visit = bitmap_bit_p (tovisit, e->src->index);
2530
2531 if (visit && !(e->flags & EDGE_DFS_BACK))
2532 count++;
2533 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
2534 fprintf (dump_file,
2535 "Irreducible region hit, ignoring edge to %i->%i\n",
2536 e->src->index, bb->index);
312866af 2537 }
9ea83aa5 2538 BLOCK_INFO (bb)->npredecessors = count;
555e8b05 2539 /* When function never returns, we will never process exit block. */
34154e27 2540 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
555e8b05 2541 bb->count = bb->frequency = 0;
312866af 2542 }
f81d9f78 2543
23a92fc7 2544 BLOCK_INFO (head)->frequency = real_one;
4c26117a 2545 last = head;
2546 for (bb = head; bb; bb = nextbb)
f81d9f78 2547 {
cd665a06 2548 edge_iterator ei;
23a92fc7 2549 sreal cyclic_probability = real_zero;
2550 sreal frequency = real_zero;
f81d9f78 2551
2552 nextbb = BLOCK_INFO (bb)->next;
2553 BLOCK_INFO (bb)->next = NULL;
2554
2555 /* Compute frequency of basic block. */
2556 if (bb != head)
2557 {
312866af 2558#ifdef ENABLE_CHECKING
cd665a06 2559 FOR_EACH_EDGE (e, ei, bb->preds)
876760f6 2560 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
2561 || (e->flags & EDGE_DFS_BACK));
312866af 2562#endif
f81d9f78 2563
cd665a06 2564 FOR_EACH_EDGE (e, ei, bb->preds)
f81d9f78 2565 if (EDGE_INFO (e)->back_edge)
56ff4880 2566 {
23a92fc7 2567 cyclic_probability += EDGE_INFO (e)->back_edge_prob;
56ff4880 2568 }
312866af 2569 else if (!(e->flags & EDGE_DFS_BACK))
56ff4880 2570 {
56ff4880 2571 /* frequency += (e->probability
2572 * BLOCK_INFO (e->src)->frequency /
2573 REG_BR_PROB_BASE); */
2574
23a92fc7 2575 sreal tmp (e->probability, 0);
2576 tmp *= BLOCK_INFO (e->src)->frequency;
2577 tmp *= real_inv_br_prob_base;
2578 frequency += tmp;
56ff4880 2579 }
2580
23a92fc7 2581 if (cyclic_probability == real_zero)
e9d7220b 2582 {
23a92fc7 2583 BLOCK_INFO (bb)->frequency = frequency;
e9d7220b 2584 }
2e3c56e8 2585 else
2586 {
23a92fc7 2587 if (cyclic_probability > real_almost_one)
2588 cyclic_probability = real_almost_one;
f81d9f78 2589
d598ad0d 2590 /* BLOCK_INFO (bb)->frequency = frequency
e9d7220b 2591 / (1 - cyclic_probability) */
f81d9f78 2592
23a92fc7 2593 cyclic_probability = real_one - cyclic_probability;
2594 BLOCK_INFO (bb)->frequency = frequency / cyclic_probability;
2e3c56e8 2595 }
f81d9f78 2596 }
2597
b1bb9b10 2598 bitmap_clear_bit (tovisit, bb->index);
f81d9f78 2599
c6356c17 2600 e = find_edge (bb, head);
2601 if (e)
2602 {
c6356c17 2603 /* EDGE_INFO (e)->back_edge_prob
2604 = ((e->probability * BLOCK_INFO (bb)->frequency)
2605 / REG_BR_PROB_BASE); */
48e1416a 2606
23a92fc7 2607 sreal tmp (e->probability, 0);
2608 tmp *= BLOCK_INFO (bb)->frequency;
2609 EDGE_INFO (e)->back_edge_prob = tmp * real_inv_br_prob_base;
c6356c17 2610 }
f81d9f78 2611
e725f898 2612 /* Propagate to successor blocks. */
cd665a06 2613 FOR_EACH_EDGE (e, ei, bb->succs)
312866af 2614 if (!(e->flags & EDGE_DFS_BACK)
4ad72a03 2615 && BLOCK_INFO (e->dest)->npredecessors)
f81d9f78 2616 {
4ad72a03 2617 BLOCK_INFO (e->dest)->npredecessors--;
2618 if (!BLOCK_INFO (e->dest)->npredecessors)
312866af 2619 {
2620 if (!nextbb)
2621 nextbb = e->dest;
2622 else
2623 BLOCK_INFO (last)->next = e->dest;
48e1416a 2624
312866af 2625 last = e->dest;
2626 }
cd665a06 2627 }
f81d9f78 2628 }
2629}
2630
5327650f 2631/* Estimate frequencies in loops at same nest level. */
e6751e9a 2632
f81d9f78 2633static void
88e6f696 2634estimate_loops_at_level (struct loop *first_loop)
f81d9f78 2635{
7fb12188 2636 struct loop *loop;
f81d9f78 2637
2638 for (loop = first_loop; loop; loop = loop->next)
2639 {
f81d9f78 2640 edge e;
7fb12188 2641 basic_block *bbs;
862be747 2642 unsigned i;
88e6f696 2643 bitmap tovisit = BITMAP_ALLOC (NULL);
f81d9f78 2644
88e6f696 2645 estimate_loops_at_level (loop->inner);
d598ad0d 2646
88e6f696 2647 /* Find current loop back edge and mark it. */
2648 e = loop_latch_edge (loop);
2649 EDGE_INFO (e)->back_edge = 1;
7fb12188 2650
2651 bbs = get_loop_body (loop);
2652 for (i = 0; i < loop->num_nodes; i++)
b1bb9b10 2653 bitmap_set_bit (tovisit, bbs[i]->index);
7fb12188 2654 free (bbs);
88e6f696 2655 propagate_freq (loop->header, tovisit);
2656 BITMAP_FREE (tovisit);
f81d9f78 2657 }
2658}
2659
fa7637bd 2660/* Propagates frequencies through structure of loops. */
88e6f696 2661
2662static void
7194de72 2663estimate_loops (void)
88e6f696 2664{
2665 bitmap tovisit = BITMAP_ALLOC (NULL);
2666 basic_block bb;
2667
2668 /* Start by estimating the frequencies in the loops. */
41f75a99 2669 if (number_of_loops (cfun) > 1)
7194de72 2670 estimate_loops_at_level (current_loops->tree_root->inner);
88e6f696 2671
2672 /* Now propagate the frequencies through all the blocks. */
ed7d889a 2673 FOR_ALL_BB_FN (bb, cfun)
88e6f696 2674 {
2675 bitmap_set_bit (tovisit, bb->index);
2676 }
34154e27 2677 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit);
88e6f696 2678 BITMAP_FREE (tovisit);
2679}
2680
38a65d4e 2681/* Drop the profile for NODE to guessed, and update its frequency based on
901d3ddc 2682 whether it is expected to be hot given the CALL_COUNT. */
38a65d4e 2683
2684static void
901d3ddc 2685drop_profile (struct cgraph_node *node, gcov_type call_count)
38a65d4e 2686{
2687 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
901d3ddc 2688 /* In the case where this was called by another function with a
2689 dropped profile, call_count will be 0. Since there are no
2690 non-zero call counts to this function, we don't know for sure
2691 whether it is hot, and therefore it will be marked normal below. */
2692 bool hot = maybe_hot_count_p (NULL, call_count);
38a65d4e 2693
2694 if (dump_file)
2695 fprintf (dump_file,
2696 "Dropping 0 profile for %s/%i. %s based on calls.\n",
f1c8b4d7 2697 node->name (), node->order,
38a65d4e 2698 hot ? "Function is hot" : "Function is normal");
2699 /* We only expect to miss profiles for functions that are reached
2700 via non-zero call edges in cases where the function may have
2701 been linked from another module or library (COMDATs and extern
901d3ddc 2702 templates). See the comments below for handle_missing_profiles.
2703 Also, only warn in cases where the missing counts exceed the
2704 number of training runs. In certain cases with an execv followed
2705 by a no-return call the profile for the no-return call is not
2706 dumped and there can be a mismatch. */
2707 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
2708 && call_count > profile_info->runs)
38a65d4e 2709 {
2710 if (flag_profile_correction)
2711 {
2712 if (dump_file)
2713 fprintf (dump_file,
2714 "Missing counts for called function %s/%i\n",
f1c8b4d7 2715 node->name (), node->order);
38a65d4e 2716 }
2717 else
901d3ddc 2718 warning (0, "Missing counts for called function %s/%i",
f1c8b4d7 2719 node->name (), node->order);
38a65d4e 2720 }
2721
3bedbae3 2722 profile_status_for_fn (fn)
38a65d4e 2723 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
2724 node->frequency
2725 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
2726}
2727
2728/* In the case of COMDAT routines, multiple object files will contain the same
2729 function and the linker will select one for the binary. In that case
2730 all the other copies from the profile instrument binary will be missing
2731 profile counts. Look for cases where this happened, due to non-zero
2732 call counts going to 0-count functions, and drop the profile to guessed
2733 so that we can use the estimated probabilities and avoid optimizing only
2734 for size.
2735
2736 The other case where the profile may be missing is when the routine
2737 is not going to be emitted to the object file, e.g. for "extern template"
2738 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
2739 all other cases of non-zero calls to 0-count functions. */
2740
2741void
2742handle_missing_profiles (void)
2743{
2744 struct cgraph_node *node;
2745 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
2746 vec<struct cgraph_node *> worklist;
2747 worklist.create (64);
2748
2749 /* See if 0 count function has non-0 count callers. In this case we
2750 lost some profile. Drop its function profile to PROFILE_GUESSED. */
2751 FOR_EACH_DEFINED_FUNCTION (node)
2752 {
2753 struct cgraph_edge *e;
2754 gcov_type call_count = 0;
af48f0b1 2755 gcov_type max_tp_first_run = 0;
38a65d4e 2756 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2757
2758 if (node->count)
2759 continue;
2760 for (e = node->callers; e; e = e->next_caller)
af48f0b1 2761 {
38a65d4e 2762 call_count += e->count;
af48f0b1 2763
2764 if (e->caller->tp_first_run > max_tp_first_run)
2765 max_tp_first_run = e->caller->tp_first_run;
2766 }
2767
2768 /* If time profile is missing, let assign the maximum that comes from
2769 caller functions. */
2770 if (!node->tp_first_run && max_tp_first_run)
2771 node->tp_first_run = max_tp_first_run + 1;
2772
38a65d4e 2773 if (call_count
2774 && fn && fn->cfg
2775 && (call_count * unlikely_count_fraction >= profile_info->runs))
2776 {
901d3ddc 2777 drop_profile (node, call_count);
38a65d4e 2778 worklist.safe_push (node);
2779 }
2780 }
2781
2782 /* Propagate the profile dropping to other 0-count COMDATs that are
2783 potentially called by COMDATs we already dropped the profile on. */
2784 while (worklist.length () > 0)
2785 {
2786 struct cgraph_edge *e;
2787
2788 node = worklist.pop ();
2789 for (e = node->callees; e; e = e->next_caller)
2790 {
2791 struct cgraph_node *callee = e->callee;
2792 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
2793
2794 if (callee->count > 0)
2795 continue;
2796 if (DECL_COMDAT (callee->decl) && fn && fn->cfg
3bedbae3 2797 && profile_status_for_fn (fn) == PROFILE_READ)
38a65d4e 2798 {
901d3ddc 2799 drop_profile (node, 0);
38a65d4e 2800 worklist.safe_push (callee);
2801 }
2802 }
2803 }
2804 worklist.release ();
2805}
2806
3f18719c 2807/* Convert counts measured by profile driven feedback to frequencies.
2808 Return nonzero iff there was any nonzero execution count. */
e6751e9a 2809
ffedd254 2810int
d598ad0d 2811counts_to_freqs (void)
f81d9f78 2812{
3f18719c 2813 gcov_type count_max, true_count_max = 0;
4c26117a 2814 basic_block bb;
b3d6de89 2815
38a65d4e 2816 /* Don't overwrite the estimated frequencies when the profile for
2817 the function is missing. We may drop this function PROFILE_GUESSED
2818 later in drop_profile (). */
94bed7c3 2819 if (!flag_auto_profile && !ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
38a65d4e 2820 return 0;
2821
34154e27 2822 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3f18719c 2823 true_count_max = MAX (bb->count, true_count_max);
f81d9f78 2824
3f18719c 2825 count_max = MAX (true_count_max, 1);
34154e27 2826 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
4c26117a 2827 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
167b550b 2828
3f18719c 2829 return true_count_max;
f81d9f78 2830}
2831
e6751e9a 2832/* Return true if function is likely to be expensive, so there is no point to
2833 optimize performance of prologue, epilogue or do inlining at the expense
41a6f238 2834 of code size growth. THRESHOLD is the limit of number of instructions
e6751e9a 2835 function can execute at average to be still considered not expensive. */
2836
f4c0c1a2 2837bool
d598ad0d 2838expensive_function_p (int threshold)
f4c0c1a2 2839{
2840 unsigned int sum = 0;
4c26117a 2841 basic_block bb;
27d0c333 2842 unsigned int limit;
f4c0c1a2 2843
2844 /* We can not compute accurately for large thresholds due to scaled
2845 frequencies. */
876760f6 2846 gcc_assert (threshold <= BB_FREQ_MAX);
f4c0c1a2 2847
4a82352a 2848 /* Frequencies are out of range. This either means that function contains
f4c0c1a2 2849 internal loop executing more than BB_FREQ_MAX times or profile feedback
2850 is available and function has not been executed at all. */
34154e27 2851 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency == 0)
f4c0c1a2 2852 return true;
195731ad 2853
f4c0c1a2 2854 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
34154e27 2855 limit = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency * threshold;
fc00614f 2856 FOR_EACH_BB_FN (bb, cfun)
f4c0c1a2 2857 {
ee5f6585 2858 rtx_insn *insn;
f4c0c1a2 2859
91f71fa3 2860 FOR_BB_INSNS (bb, insn)
e6751e9a 2861 if (active_insn_p (insn))
2862 {
2863 sum += bb->frequency;
2864 if (sum > limit)
2865 return true;
f4c0c1a2 2866 }
2867 }
e6751e9a 2868
f4c0c1a2 2869 return false;
2870}
2871
5327650f 2872/* Estimate and propagate basic block frequencies using the given branch
2873 probabilities. If FORCE is true, the frequencies are used to estimate
2874 the counts even when there are already non-zero profile counts. */
e6751e9a 2875
4ae20857 2876void
5327650f 2877estimate_bb_frequencies (bool force)
f81d9f78 2878{
4c26117a 2879 basic_block bb;
e9d7220b 2880 sreal freq_max;
56ff4880 2881
f26d8580 2882 if (force || profile_status_for_fn (cfun) != PROFILE_READ || !counts_to_freqs ())
429fa7fa 2883 {
31e4010e 2884 static int real_values_initialized = 0;
2885
2886 if (!real_values_initialized)
2887 {
fc22704f 2888 real_values_initialized = 1;
23a92fc7 2889 real_zero = sreal (0, 0);
2890 real_one = sreal (1, 0);
2891 real_br_prob_base = sreal (REG_BR_PROB_BASE, 0);
2892 real_bb_freq_max = sreal (BB_FREQ_MAX, 0);
2893 real_one_half = sreal (1, -1);
2894 real_inv_br_prob_base = real_one / real_br_prob_base;
2895 real_almost_one = real_one - real_inv_br_prob_base;
31e4010e 2896 }
f81d9f78 2897
429fa7fa 2898 mark_dfs_back_edges ();
429fa7fa 2899
34154e27 2900 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
2901 REG_BR_PROB_BASE;
429fa7fa 2902
2903 /* Set up block info for each basic block. */
9908fe4d 2904 alloc_aux_for_blocks (sizeof (block_info));
2905 alloc_aux_for_edges (sizeof (edge_prob_info));
34154e27 2906 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
f81d9f78 2907 {
f81d9f78 2908 edge e;
cd665a06 2909 edge_iterator ei;
429fa7fa 2910
cd665a06 2911 FOR_EACH_EDGE (e, ei, bb->succs)
f81d9f78 2912 {
23a92fc7 2913 EDGE_INFO (e)->back_edge_prob = sreal (e->probability, 0);
2914 EDGE_INFO (e)->back_edge_prob *= real_inv_br_prob_base;
f81d9f78 2915 }
f81d9f78 2916 }
e6751e9a 2917
5327650f 2918 /* First compute frequencies locally for each loop from innermost
2919 to outermost to examine frequencies for back edges. */
7194de72 2920 estimate_loops ();
f81d9f78 2921
23a92fc7 2922 freq_max = real_zero;
fc00614f 2923 FOR_EACH_BB_FN (bb, cfun)
23a92fc7 2924 if (freq_max < BLOCK_INFO (bb)->frequency)
2925 freq_max = BLOCK_INFO (bb)->frequency;
2e3c56e8 2926
23a92fc7 2927 freq_max = real_bb_freq_max / freq_max;
34154e27 2928 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
56ff4880 2929 {
23a92fc7 2930 sreal tmp = BLOCK_INFO (bb)->frequency * freq_max + real_one_half;
2931 bb->frequency = tmp.to_int ();
429fa7fa 2932 }
e6751e9a 2933
429fa7fa 2934 free_aux_for_blocks ();
2935 free_aux_for_edges ();
2936 }
2937 compute_function_frequency ();
429fa7fa 2938}
f81d9f78 2939
429fa7fa 2940/* Decide whether function is hot, cold or unlikely executed. */
63aab97d 2941void
d598ad0d 2942compute_function_frequency (void)
429fa7fa 2943{
4c26117a 2944 basic_block bb;
415d1b9a 2945 struct cgraph_node *node = cgraph_node::get (current_function_decl);
e27f29dd 2946
0f9fb931 2947 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2948 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
2949 node->only_called_at_startup = true;
2950 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
2951 node->only_called_at_exit = true;
4c26117a 2952
f26d8580 2953 if (profile_status_for_fn (cfun) != PROFILE_READ)
5de92639 2954 {
125b6d78 2955 int flags = flags_from_decl_or_type (current_function_decl);
5de92639 2956 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
2957 != NULL)
125b6d78 2958 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
5de92639 2959 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
2960 != NULL)
125b6d78 2961 node->frequency = NODE_FREQUENCY_HOT;
2962 else if (flags & ECF_NORETURN)
2963 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2964 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
2965 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2966 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2967 || DECL_STATIC_DESTRUCTOR (current_function_decl))
2968 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
5de92639 2969 return;
2970 }
e27f29dd 2971
2972 /* Only first time try to drop function into unlikely executed.
2973 After inlining the roundoff errors may confuse us.
2974 Ipa-profile pass will drop functions only called from unlikely
2975 functions to unlikely and that is most of what we care about. */
2976 if (!cfun->after_inlining)
2977 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
fc00614f 2978 FOR_EACH_BB_FN (bb, cfun)
f81d9f78 2979 {
8d672d12 2980 if (maybe_hot_bb_p (cfun, bb))
429fa7fa 2981 {
125b6d78 2982 node->frequency = NODE_FREQUENCY_HOT;
429fa7fa 2983 return;
2984 }
8d672d12 2985 if (!probably_never_executed_bb_p (cfun, bb))
125b6d78 2986 node->frequency = NODE_FREQUENCY_NORMAL;
f81d9f78 2987 }
429fa7fa 2988}
f81d9f78 2989
4a1849e3 2990/* Build PREDICT_EXPR. */
2991tree
2992build_predict_expr (enum br_predictor predictor, enum prediction taken)
2993{
08f62b1b 2994 tree t = build1 (PREDICT_EXPR, void_type_node,
b3d480fb 2995 build_int_cst (integer_type_node, predictor));
b9c74b4d 2996 SET_PREDICT_EXPR_OUTCOME (t, taken);
4a1849e3 2997 return t;
2998}
2999
3000const char *
3001predictor_name (enum br_predictor predictor)
3002{
3003 return predictor_info[predictor].name;
3004}
3005
65b0537f 3006/* Predict branch probabilities and estimate profile of the tree CFG. */
3007
cbe8bda8 3008namespace {
3009
3010const pass_data pass_data_profile =
3011{
3012 GIMPLE_PASS, /* type */
3013 "profile_estimate", /* name */
3014 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 3015 TV_BRANCH_PROB, /* tv_id */
3016 PROP_cfg, /* properties_required */
3017 0, /* properties_provided */
3018 0, /* properties_destroyed */
3019 0, /* todo_flags_start */
8b88439e 3020 0, /* todo_flags_finish */
4ee9c684 3021};
1add270f 3022
cbe8bda8 3023class pass_profile : public gimple_opt_pass
3024{
3025public:
9af5ce0c 3026 pass_profile (gcc::context *ctxt)
3027 : gimple_opt_pass (pass_data_profile, ctxt)
cbe8bda8 3028 {}
3029
3030 /* opt_pass methods: */
31315c24 3031 virtual bool gate (function *) { return flag_guess_branch_prob; }
65b0537f 3032 virtual unsigned int execute (function *);
cbe8bda8 3033
3034}; // class pass_profile
3035
65b0537f 3036unsigned int
3037pass_profile::execute (function *fun)
3038{
3039 unsigned nb_loops;
3040
3041 loop_optimizer_init (LOOPS_NORMAL);
3042 if (dump_file && (dump_flags & TDF_DETAILS))
3043 flow_loops_dump (dump_file, NULL, 0);
3044
3045 mark_irreducible_loops ();
3046
3047 nb_loops = number_of_loops (fun);
3048 if (nb_loops > 1)
3049 scev_initialize ();
3050
3051 tree_estimate_probability ();
3052
3053 if (nb_loops > 1)
3054 scev_finalize ();
3055
3056 loop_optimizer_finalize ();
3057 if (dump_file && (dump_flags & TDF_DETAILS))
3058 gimple_dump_cfg (dump_file, dump_flags);
3059 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
3060 profile_status_for_fn (fun) = PROFILE_GUESSED;
3061 return 0;
3062}
3063
cbe8bda8 3064} // anon namespace
3065
3066gimple_opt_pass *
3067make_pass_profile (gcc::context *ctxt)
3068{
3069 return new pass_profile (ctxt);
3070}
3071
3072namespace {
3073
3074const pass_data pass_data_strip_predict_hints =
3075{
3076 GIMPLE_PASS, /* type */
3077 "*strip_predict_hints", /* name */
3078 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 3079 TV_BRANCH_PROB, /* tv_id */
3080 PROP_cfg, /* properties_required */
3081 0, /* properties_provided */
3082 0, /* properties_destroyed */
3083 0, /* todo_flags_start */
8b88439e 3084 0, /* todo_flags_finish */
1add270f 3085};
555e8b05 3086
cbe8bda8 3087class pass_strip_predict_hints : public gimple_opt_pass
3088{
3089public:
9af5ce0c 3090 pass_strip_predict_hints (gcc::context *ctxt)
3091 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
cbe8bda8 3092 {}
3093
3094 /* opt_pass methods: */
ae84f584 3095 opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
65b0537f 3096 virtual unsigned int execute (function *);
cbe8bda8 3097
3098}; // class pass_strip_predict_hints
3099
65b0537f 3100/* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
3101 we no longer need. */
3102unsigned int
3103pass_strip_predict_hints::execute (function *fun)
3104{
3105 basic_block bb;
3106 gimple ass_stmt;
3107 tree var;
3108
3109 FOR_EACH_BB_FN (bb, fun)
3110 {
3111 gimple_stmt_iterator bi;
3112 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
3113 {
3114 gimple stmt = gsi_stmt (bi);
3115
3116 if (gimple_code (stmt) == GIMPLE_PREDICT)
3117 {
3118 gsi_remove (&bi, true);
3119 continue;
3120 }
3121 else if (is_gimple_call (stmt))
3122 {
3123 tree fndecl = gimple_call_fndecl (stmt);
3124
3125 if ((fndecl
3126 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
3127 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
3128 && gimple_call_num_args (stmt) == 2)
3129 || (gimple_call_internal_p (stmt)
3130 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT))
3131 {
3132 var = gimple_call_lhs (stmt);
3133 if (var)
3134 {
3135 ass_stmt
3136 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
3137 gsi_replace (&bi, ass_stmt, true);
3138 }
3139 else
3140 {
3141 gsi_remove (&bi, true);
3142 continue;
3143 }
3144 }
3145 }
3146 gsi_next (&bi);
3147 }
3148 }
3149 return 0;
3150}
3151
cbe8bda8 3152} // anon namespace
3153
3154gimple_opt_pass *
3155make_pass_strip_predict_hints (gcc::context *ctxt)
3156{
3157 return new pass_strip_predict_hints (ctxt);
3158}
3159
555e8b05 3160/* Rebuild function frequencies. Passes are in general expected to
3161 maintain profile by hand, however in some cases this is not possible:
3162 for example when inlining several functions with loops freuqencies might run
3163 out of scale and thus needs to be recomputed. */
3164
3165void
3166rebuild_frequencies (void)
3167{
4b366dd3 3168 timevar_push (TV_REBUILD_FREQUENCIES);
5327650f 3169
3170 /* When the max bb count in the function is small, there is a higher
3171 chance that there were truncation errors in the integer scaling
3172 of counts by inlining and other optimizations. This could lead
3173 to incorrect classification of code as being cold when it isn't.
3174 In that case, force the estimation of bb counts/frequencies from the
3175 branch probabilities, rather than computing frequencies from counts,
3176 which may also lead to frequencies incorrectly reduced to 0. There
3177 is less precision in the probabilities, so we only do this for small
3178 max counts. */
3179 gcov_type count_max = 0;
3180 basic_block bb;
34154e27 3181 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
5327650f 3182 count_max = MAX (bb->count, count_max);
3183
f26d8580 3184 if (profile_status_for_fn (cfun) == PROFILE_GUESSED
94bed7c3 3185 || (!flag_auto_profile && profile_status_for_fn (cfun) == PROFILE_READ
3186 && count_max < REG_BR_PROB_BASE/10))
555e8b05 3187 {
3188 loop_optimizer_init (0);
3189 add_noreturn_fake_exit_edges ();
3190 mark_irreducible_loops ();
3191 connect_infinite_loops_to_exit ();
5327650f 3192 estimate_bb_frequencies (true);
555e8b05 3193 remove_fake_exit_edges ();
3194 loop_optimizer_finalize ();
3195 }
f26d8580 3196 else if (profile_status_for_fn (cfun) == PROFILE_READ)
555e8b05 3197 counts_to_freqs ();
3198 else
3199 gcc_unreachable ();
4b366dd3 3200 timevar_pop (TV_REBUILD_FREQUENCIES);
555e8b05 3201}