]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/reg-stack.c
Update copyright years in gcc/
[thirdparty/gcc.git] / gcc / reg-stack.c
CommitLineData
48227150 1/* Register to Stack convert for GNU compiler.
23a5b65a 2 Copyright (C) 1992-2014 Free Software Foundation, Inc.
48227150 3
1322177d 4 This file is part of GCC.
48227150 5
1322177d
LB
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
9dcd6f09 8 the Free Software Foundation; either version 3, or (at your option)
a05924f9 9 any later version.
48227150 10
1322177d
LB
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
48227150 15
a05924f9 16 You should have received a copy of the GNU General Public License
9dcd6f09
NC
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
48227150
JVA
19
20/* This pass converts stack-like registers from the "flat register
21 file" model that gcc uses, to a stack convention that the 387 uses.
22
23 * The form of the input:
24
25 On input, the function consists of insn that have had their
26 registers fully allocated to a set of "virtual" registers. Note that
27 the word "virtual" is used differently here than elsewhere in gcc: for
28 each virtual stack reg, there is a hard reg, but the mapping between
29 them is not known until this pass is run. On output, hard register
30 numbers have been substituted, and various pop and exchange insns have
31 been emitted. The hard register numbers and the virtual register
32 numbers completely overlap - before this pass, all stack register
114cbee6 33 numbers are virtual, and afterward they are all hard.
48227150
JVA
34
35 The virtual registers can be manipulated normally by gcc, and their
36 semantics are the same as for normal registers. After the hard
37 register numbers are substituted, the semantics of an insn containing
38 stack-like regs are not the same as for an insn with normal regs: for
39 instance, it is not safe to delete an insn that appears to be a no-op
40 move. In general, no insn containing hard regs should be changed
41 after this pass is done.
42
43 * The form of the output:
44
45 After this pass, hard register numbers represent the distance from
46 the current top of stack to the desired register. A reference to
47 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48 represents the register just below that, and so forth. Also, REG_DEAD
49 notes indicate whether or not a stack register should be popped.
50
51 A "swap" insn looks like a parallel of two patterns, where each
52 pattern is a SET: one sets A to B, the other B to A.
53
54 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
56 will replace the existing stack top, not push a new value.
57
58 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59 SET_SRC is REG or MEM.
60
3f5cfed6 61 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
48227150
JVA
62 appears ambiguous. As a special case, the presence of a REG_DEAD note
63 for FIRST_STACK_REG differentiates between a load insn and a pop.
64
65 If a REG_DEAD is present, the insn represents a "pop" that discards
66 the top of the register stack. If there is no REG_DEAD note, then the
67 insn represents a "dup" or a push of the current top of stack onto the
68 stack.
69
70 * Methodology:
71
72 Existing REG_DEAD and REG_UNUSED notes for stack registers are
73 deleted and recreated from scratch. REG_DEAD is never created for a
74 SET_DEST, only REG_UNUSED.
75
114cbee6 76 * asm_operands:
48227150 77
114cbee6
RS
78 There are several rules on the usage of stack-like regs in
79 asm_operands insns. These rules apply only to the operands that are
80 stack-like regs:
81
82 1. Given a set of input regs that die in an asm_operands, it is
83 necessary to know which are implicitly popped by the asm, and
84 which must be explicitly popped by gcc.
85
86 An input reg that is implicitly popped by the asm must be
87 explicitly clobbered, unless it is constrained to match an
88 output operand.
89
90 2. For any input reg that is implicitly popped by an asm, it is
91 necessary to know how to adjust the stack to compensate for the pop.
92 If any non-popped input is closer to the top of the reg-stack than
93 the implicitly popped reg, it would not be possible to know what the
94 stack looked like - it's not clear how the rest of the stack "slides
95 up".
96
97 All implicitly popped input regs must be closer to the top of
98 the reg-stack than any input that is not implicitly popped.
99
100 3. It is possible that if an input dies in an insn, reload might
101 use the input reg for an output reload. Consider this example:
102
103 asm ("foo" : "=t" (a) : "f" (b));
104
105 This asm says that input B is not popped by the asm, and that
454ff5cb 106 the asm pushes a result onto the reg-stack, i.e., the stack is one
114cbee6
RS
107 deeper after the asm than it was before. But, it is possible that
108 reload will think that it can use the same reg for both the input and
109 the output, if input B dies in this insn.
110
111 If any input operand uses the "f" constraint, all output reg
112 constraints must use the "&" earlyclobber.
113
114 The asm above would be written as
115
116 asm ("foo" : "=&t" (a) : "f" (b));
117
118 4. Some operands need to be in particular places on the stack. All
119 output operands fall in this category - there is no other way to
120 know which regs the outputs appear in unless the user indicates
121 this in the constraints.
122
123 Output operands must specifically indicate which reg an output
124 appears in after an asm. "=f" is not allowed: the operand
125 constraints must select a class with a single reg.
126
127 5. Output operands may not be "inserted" between existing stack regs.
128 Since no 387 opcode uses a read/write operand, all output operands
129 are dead before the asm_operands, and are pushed by the asm_operands.
130 It makes no sense to push anywhere but the top of the reg-stack.
131
132 Output operands must start at the top of the reg-stack: output
133 operands may not "skip" a reg.
134
135 6. Some asm statements may need extra stack space for internal
136 calculations. This can be guaranteed by clobbering stack registers
137 unrelated to the inputs and outputs.
138
139 Here are a couple of reasonable asms to want to write. This asm
140 takes one input, which is internally popped, and produces two outputs.
141
142 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
143
144 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
145 and replaces them with one output. The user must code the "st(1)"
146 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
147
148 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
149
a05924f9 150*/
48227150 151\f
48227150 152#include "config.h"
670ee920 153#include "system.h"
4977bab6
ZW
154#include "coretypes.h"
155#include "tm.h"
48227150 156#include "tree.h"
d8a2d370 157#include "varasm.h"
0cbd9993 158#include "rtl-error.h"
6baf1cc8 159#include "tm_p.h"
49ad7cfa 160#include "function.h"
114cbee6 161#include "insn-config.h"
48227150
JVA
162#include "regs.h"
163#include "hard-reg-set.h"
164#include "flags.h"
e075ae69 165#include "recog.h"
a05924f9 166#include "basic-block.h"
2840aebf 167#include "reload.h"
e2500fed 168#include "ggc.h"
ef330312 169#include "tree-pass.h"
1d636cc6 170#include "target.h"
6fb5fa3c 171#include "df.h"
5936d944 172#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
e4881f23 173
5b94780f
KH
174#ifdef STACK_REGS
175
e2500fed
GK
176/* We use this array to cache info about insns, because otherwise we
177 spend too much time in stack_regs_mentioned_p.
178
179 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
180 the insn uses stack registers, two indicates the insn does not use
181 stack registers. */
9771b263 182static vec<char> stack_regs_mentioned_data;
48227150 183
48227150
JVA
184#define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
185
23249ac4
DB
186int regstack_completed = 0;
187
48227150
JVA
188/* This is the basic stack record. TOP is an index into REG[] such
189 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
190
eca31501
JVA
191 If TOP is -2, REG[] is not yet initialized. Stack initialization
192 consists of placing each live reg in array `reg' and setting `top'
193 appropriately.
194
195 REG_SET indicates which registers are live. */
48227150
JVA
196
197typedef struct stack_def
198{
199 int top; /* index to top stack element */
200 HARD_REG_SET reg_set; /* set of live registers */
b00b2cc2 201 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
0823efed 202} *stack_ptr;
48227150 203
a6a2274a 204/* This is used to carry information about basic blocks. It is
a05924f9 205 attached to the AUX field of the standard CFG block. */
48227150 206
a05924f9
JH
207typedef struct block_info_def
208{
209 struct stack_def stack_in; /* Input stack configuration. */
0ecf09f9 210 struct stack_def stack_out; /* Output stack configuration. */
a05924f9
JH
211 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
212 int done; /* True if block already converted. */
579e4a82 213 int predecessors; /* Number of predecessors that need
0ecf09f9 214 to be visited. */
a05924f9 215} *block_info;
48227150 216
a05924f9 217#define BLOCK_INFO(B) ((block_info) (B)->aux)
48227150 218
a05924f9
JH
219/* Passed to change_stack to indicate where to emit insns. */
220enum emit_where
221{
222 EMIT_AFTER,
223 EMIT_BEFORE
224};
48227150 225
a05924f9
JH
226/* The block we're currently working on. */
227static basic_block current_block;
228
385e0e08 229/* In the current_block, whether we're processing the first register
2e48874f 230 stack or call instruction, i.e. the regstack is currently the
385e0e08
RS
231 same as BLOCK_INFO(current_block)->stack_in. */
232static bool starting_stack_p;
233
3eae4643 234/* This is the register file for all register after conversion. */
99a59310
RK
235static rtx
236 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
237
238#define FP_MODE_REG(regno,mode) \
f4f4d0f8 239 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
48227150 240
a05924f9 241/* Used to initialize uninitialized registers. */
d2032ad8 242static rtx not_a_num;
48227150 243
48227150
JVA
244/* Forward declarations */
245
9678086d 246static int stack_regs_mentioned_p (const_rtx pat);
0823efed 247static void pop_stack (stack_ptr, int);
0c20a65f
AJ
248static rtx *get_true_reg (rtx *);
249
250static int check_asm_stack_operands (rtx);
1c384bf1 251static void get_asm_operands_in_out (rtx, int *, int *);
0c20a65f
AJ
252static rtx stack_result (tree);
253static void replace_reg (rtx *, int);
254static void remove_regno_note (rtx, enum reg_note, unsigned int);
0823efed
DN
255static int get_hard_regnum (stack_ptr, rtx);
256static rtx emit_pop_insn (rtx, stack_ptr, rtx, enum emit_where);
c3284718 257static void swap_to_top (rtx, stack_ptr, rtx, rtx);
0823efed
DN
258static bool move_for_stack_reg (rtx, stack_ptr, rtx);
259static bool move_nan_for_stack_reg (rtx, stack_ptr, rtx);
0c20a65f
AJ
260static int swap_rtx_condition_1 (rtx);
261static int swap_rtx_condition (rtx);
0823efed
DN
262static void compare_for_stack_reg (rtx, stack_ptr, rtx);
263static bool subst_stack_regs_pat (rtx, stack_ptr, rtx);
264static void subst_asm_stack_regs (rtx, stack_ptr);
265static bool subst_stack_regs (rtx, stack_ptr);
266static void change_stack (rtx, stack_ptr, stack_ptr, enum emit_where);
267static void print_stack (FILE *, stack_ptr);
0c20a65f 268static rtx next_flags_user (rtx);
21b2cd73 269\f
40f03658 270/* Return nonzero if any stack register is mentioned somewhere within PAT. */
21b2cd73
JH
271
272static int
9678086d 273stack_regs_mentioned_p (const_rtx pat)
21b2cd73 274{
b3694847
SS
275 const char *fmt;
276 int i;
e075ae69
RH
277
278 if (STACK_REG_P (pat))
279 return 1;
280
281 fmt = GET_RTX_FORMAT (GET_CODE (pat));
282 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
21b2cd73 283 {
e075ae69
RH
284 if (fmt[i] == 'E')
285 {
b3694847 286 int j;
e075ae69
RH
287
288 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
289 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
290 return 1;
291 }
292 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
293 return 1;
21b2cd73 294 }
e075ae69 295
21b2cd73
JH
296 return 0;
297}
298
e075ae69 299/* Return nonzero if INSN mentions stacked registers, else return zero. */
21b2cd73
JH
300
301int
9678086d 302stack_regs_mentioned (const_rtx insn)
21b2cd73 303{
e075ae69
RH
304 unsigned int uid, max;
305 int test;
306
9771b263 307 if (! INSN_P (insn) || !stack_regs_mentioned_data.exists ())
21b2cd73 308 return 0;
e075ae69 309
21b2cd73 310 uid = INSN_UID (insn);
9771b263 311 max = stack_regs_mentioned_data.length ();
e075ae69
RH
312 if (uid >= max)
313 {
314 /* Allocate some extra size to avoid too many reallocs, but
315 do not grow too quickly. */
e4881f23 316 max = uid + uid / 20 + 1;
9771b263 317 stack_regs_mentioned_data.safe_grow_cleared (max);
e075ae69
RH
318 }
319
9771b263 320 test = stack_regs_mentioned_data[uid];
e075ae69
RH
321 if (test == 0)
322 {
323 /* This insn has yet to be examined. Do so now. */
324 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
9771b263 325 stack_regs_mentioned_data[uid] = test;
e075ae69
RH
326 }
327
328 return test == 1;
21b2cd73 329}
e075ae69
RH
330\f
331static rtx ix86_flags_rtx;
21b2cd73 332
e075ae69 333static rtx
0c20a65f 334next_flags_user (rtx insn)
e075ae69 335{
a6a2274a 336 /* Search forward looking for the first use of this value.
e075ae69 337 Stop at block boundaries. */
e075ae69 338
a813c111 339 while (insn != BB_END (current_block))
e075ae69
RH
340 {
341 insn = NEXT_INSN (insn);
e075ae69 342
2c3c49de 343 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
a6a2274a 344 return insn;
e075ae69 345
4b4bf941 346 if (CALL_P (insn))
e075ae69
RH
347 return NULL_RTX;
348 }
0eac0e81 349 return NULL_RTX;
e075ae69 350}
48227150 351\f
385e0e08 352/* Reorganize the stack into ascending numbers, before this insn. */
99a59310
RK
353
354static void
0823efed 355straighten_stack (rtx insn, stack_ptr regstack)
99a59310
RK
356{
357 struct stack_def temp_stack;
358 int top;
359
8feb7351
JL
360 /* If there is only a single register on the stack, then the stack is
361 already in increasing order and no reorganization is needed.
362
363 Similarly if the stack is empty. */
364 if (regstack->top <= 0)
365 return;
366
d25cf633 367 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
99a59310
RK
368
369 for (top = temp_stack.top = regstack->top; top >= 0; top--)
e075ae69 370 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
a6a2274a 371
385e0e08 372 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
99a59310 373}
7aa74e4c 374
3eae4643 375/* Pop a register from the stack. */
7aa74e4c
SC
376
377static void
0823efed 378pop_stack (stack_ptr regstack, int regno)
7aa74e4c
SC
379{
380 int top = regstack->top;
381
382 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
383 regstack->top--;
3eae4643 384 /* If regno was not at the top of stack then adjust stack. */
7aa74e4c
SC
385 if (regstack->reg [top] != regno)
386 {
387 int i;
388 for (i = regstack->top; i >= 0; i--)
389 if (regstack->reg [i] == regno)
390 {
391 int j;
392 for (j = i; j < top; j++)
393 regstack->reg [j] = regstack->reg [j + 1];
394 break;
395 }
396 }
397}
48227150
JVA
398\f
399/* Return a pointer to the REG expression within PAT. If PAT is not a
400 REG, possible enclosed by a conversion rtx, return the inner part of
0f41302f 401 PAT that stopped the search. */
48227150
JVA
402
403static rtx *
0c20a65f 404get_true_reg (rtx *pat)
48227150 405{
99a59310 406 for (;;)
e075ae69 407 switch (GET_CODE (*pat))
99a59310 408 {
e075ae69 409 case SUBREG:
8d9afc4e 410 /* Eliminate FP subregister accesses in favor of the
e075ae69
RH
411 actual FP register in use. */
412 {
413 rtx subreg;
66aaf16f 414 if (STACK_REG_P (subreg = SUBREG_REG (*pat)))
99a59310 415 {
ddef6bc7
JJ
416 int regno_off = subreg_regno_offset (REGNO (subreg),
417 GET_MODE (subreg),
418 SUBREG_BYTE (*pat),
419 GET_MODE (*pat));
420 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
99a59310 421 GET_MODE (subreg));
99a59310
RK
422 return pat;
423 }
e075ae69
RH
424 }
425 case FLOAT:
426 case FIX:
427 case FLOAT_EXTEND:
428 pat = & XEXP (*pat, 0);
0c5faf29
RS
429 break;
430
01302104 431 case UNSPEC:
09ad58e6
UB
432 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP
433 || XINT (*pat, 1) == UNSPEC_LDA)
56d8eb62
UB
434 pat = & XVECEXP (*pat, 0, 0);
435 return pat;
01302104 436
0c5faf29
RS
437 case FLOAT_TRUNCATE:
438 if (!flag_unsafe_math_optimizations)
439 return pat;
440 pat = & XEXP (*pat, 0);
441 break;
c8e2516c
SB
442
443 default:
444 return pat;
99a59310 445 }
48227150 446}
48227150 447\f
d6fc0492
RH
448/* Set if we find any malformed asms in a block. */
449static bool any_malformed_asm;
450
a05924f9 451/* There are many rules that an asm statement for stack-like regs must
114cbee6 452 follow. Those rules are explained at the top of this file: the rule
0f41302f 453 numbers below refer to that explanation. */
114cbee6 454
a05924f9 455static int
0c20a65f 456check_asm_stack_operands (rtx insn)
114cbee6
RS
457{
458 int i;
114cbee6
RS
459 int n_clobbers;
460 int malformed_asm = 0;
461 rtx body = PATTERN (insn);
462
a05924f9
JH
463 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
464 char implicitly_dies[FIRST_PSEUDO_REGISTER];
f62a15e3 465 int alt;
114cbee6 466
a544cfd2 467 rtx *clobber_reg = 0;
f62a15e3 468 int n_inputs, n_outputs;
114cbee6 469
0e7d0eb9 470 /* Find out what the constraints require. If no constraint
854dfdff 471 alternative matches, this asm is malformed. */
f62a15e3
BS
472 extract_insn (insn);
473 constrain_operands (1);
474 alt = which_alternative;
475
476 preprocess_constraints ();
477
1c384bf1 478 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
f62a15e3
BS
479
480 if (alt < 0)
481 {
482 malformed_asm = 1;
483 /* Avoid further trouble with this insn. */
484 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
a05924f9 485 return 0;
f62a15e3 486 }
114cbee6 487
0f41302f 488 /* Strip SUBREGs here to make the following code simpler. */
1ccbefce
RH
489 for (i = 0; i < recog_data.n_operands; i++)
490 if (GET_CODE (recog_data.operand[i]) == SUBREG
f8cfc6aa 491 && REG_P (SUBREG_REG (recog_data.operand[i])))
1ccbefce 492 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
114cbee6
RS
493
494 /* Set up CLOBBER_REG. */
495
496 n_clobbers = 0;
114cbee6
RS
497
498 if (GET_CODE (body) == PARALLEL)
3f5cfed6 499 {
1634b18f 500 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
114cbee6 501
3f5cfed6
JVA
502 for (i = 0; i < XVECLEN (body, 0); i++)
503 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
504 {
505 rtx clobber = XVECEXP (body, 0, i);
506 rtx reg = XEXP (clobber, 0);
114cbee6 507
f8cfc6aa 508 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
3f5cfed6
JVA
509 reg = SUBREG_REG (reg);
510
511 if (STACK_REG_P (reg))
512 {
513 clobber_reg[n_clobbers] = reg;
514 n_clobbers++;
515 }
516 }
517 }
114cbee6
RS
518
519 /* Enforce rule #4: Output operands must specifically indicate which
520 reg an output appears in after an asm. "=f" is not allowed: the
521 operand constraints must select a class with a single reg.
522
523 Also enforce rule #5: Output operands must start at the top of
0f41302f 524 the reg-stack: output operands may not "skip" a reg. */
114cbee6 525
a05924f9 526 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
114cbee6 527 for (i = 0; i < n_outputs; i++)
1ccbefce 528 if (STACK_REG_P (recog_data.operand[i]))
9c318306 529 {
e3a64162 530 if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
9c318306 531 {
1f978f5f 532 error_for_asm (insn, "output constraint %d must specify a single register", i);
9c318306
MH
533 malformed_asm = 1;
534 }
a6a2274a 535 else
d40cd80a
JJ
536 {
537 int j;
538
539 for (j = 0; j < n_clobbers; j++)
540 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
541 {
1f978f5f 542 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
d40cd80a
JJ
543 i, reg_names [REGNO (clobber_reg[j])]);
544 malformed_asm = 1;
545 break;
546 }
547 if (j == n_clobbers)
548 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
549 }
9c318306 550 }
114cbee6
RS
551
552
553 /* Search for first non-popped reg. */
554 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
555 if (! reg_used_as_output[i])
556 break;
557
558 /* If there are any other popped regs, that's an error. */
559 for (; i < LAST_STACK_REG + 1; i++)
560 if (reg_used_as_output[i])
561 break;
562
563 if (i != LAST_STACK_REG + 1)
564 {
1f978f5f 565 error_for_asm (insn, "output regs must be grouped at top of stack");
114cbee6
RS
566 malformed_asm = 1;
567 }
568
569 /* Enforce rule #2: All implicitly popped input regs must be closer
570 to the top of the reg-stack than any input that is not implicitly
0f41302f 571 popped. */
114cbee6 572
a05924f9 573 memset (implicitly_dies, 0, sizeof (implicitly_dies));
f62a15e3 574 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1ccbefce 575 if (STACK_REG_P (recog_data.operand[i]))
114cbee6
RS
576 {
577 /* An input reg is implicitly popped if it is tied to an
0f41302f 578 output, or if there is a CLOBBER for it. */
114cbee6
RS
579 int j;
580
581 for (j = 0; j < n_clobbers; j++)
1ccbefce 582 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
114cbee6
RS
583 break;
584
f62a15e3 585 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
1ccbefce 586 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
114cbee6
RS
587 }
588
589 /* Search for first non-popped reg. */
590 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
591 if (! implicitly_dies[i])
592 break;
593
594 /* If there are any other popped regs, that's an error. */
595 for (; i < LAST_STACK_REG + 1; i++)
596 if (implicitly_dies[i])
597 break;
598
599 if (i != LAST_STACK_REG + 1)
600 {
601 error_for_asm (insn,
1f978f5f 602 "implicitly popped regs must be grouped at top of stack");
114cbee6
RS
603 malformed_asm = 1;
604 }
605
06d42c22 606 /* Enforce rule #3: If any input operand uses the "f" constraint, all
114cbee6
RS
607 output constraints must use the "&" earlyclobber.
608
a05924f9 609 ??? Detect this more deterministically by having constrain_asm_operands
0f41302f 610 record any earlyclobber. */
114cbee6 611
f62a15e3
BS
612 for (i = n_outputs; i < n_outputs + n_inputs; i++)
613 if (recog_op_alt[i][alt].matches == -1)
114cbee6
RS
614 {
615 int j;
616
617 for (j = 0; j < n_outputs; j++)
1ccbefce 618 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
114cbee6
RS
619 {
620 error_for_asm (insn,
9e637a26 621 "output operand %d must use %<&%> constraint", j);
114cbee6
RS
622 malformed_asm = 1;
623 }
624 }
625
626 if (malformed_asm)
627 {
628 /* Avoid further trouble with this insn. */
38a448ca 629 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
d6fc0492 630 any_malformed_asm = true;
a05924f9 631 return 0;
0e7d0eb9 632 }
48227150 633
a05924f9 634 return 1;
48227150
JVA
635}
636\f
114cbee6
RS
637/* Calculate the number of inputs and outputs in BODY, an
638 asm_operands. N_OPERANDS is the total number of operands, and
639 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
0f41302f 640 placed. */
114cbee6 641
1c384bf1
RH
642static void
643get_asm_operands_in_out (rtx body, int *pout, int *pin)
114cbee6 644{
1c384bf1
RH
645 rtx asmop = extract_asm_operands (body);
646
647 *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
648 *pout = (recog_data.n_operands
649 - ASM_OPERANDS_INPUT_LENGTH (asmop)
650 - ASM_OPERANDS_LABEL_LENGTH (asmop));
114cbee6 651}
0ab759e4 652
96237362 653/* If current function returns its result in an fp stack register,
9f9ed50a 654 return the REG. Otherwise, return 0. */
96237362 655
99a59310 656static rtx
0c20a65f 657stack_result (tree decl)
96237362 658{
f099b1c9 659 rtx result;
96237362 660
f099b1c9
JL
661 /* If the value is supposed to be returned in memory, then clearly
662 it is not returned in a stack register. */
61f71b34 663 if (aggregate_value_p (DECL_RESULT (decl), decl))
f099b1c9
JL
664 return 0;
665
19e7881c 666 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
9cf218a3 667 if (result != 0)
1d636cc6
RG
668 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
669 decl, true);
96237362 670
9f9ed50a 671 return result != 0 && STACK_REG_P (result) ? result : 0;
96237362 672}
48227150 673\f
48227150 674
e075ae69
RH
675/*
676 * This section deals with stack register substitution, and forms the second
677 * pass over the RTL.
678 */
48227150
JVA
679
680/* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
0f41302f 681 the desired hard REGNO. */
48227150
JVA
682
683static void
0c20a65f 684replace_reg (rtx *reg, int regno)
48227150 685{
8dde5924 686 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
41374e13 687 gcc_assert (STACK_REG_P (*reg));
48227150 688
3d8bf70f 689 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
41374e13 690 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
7d0e3dd4 691
99a59310 692 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
48227150
JVA
693}
694
695/* Remove a note of type NOTE, which must be found, for register
0f41302f 696 number REGNO from INSN. Remove only one such note. */
48227150
JVA
697
698static void
0c20a65f 699remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
48227150 700{
d858f359 701 rtx *note_link, this_rtx;
48227150 702
8e2e89f7 703 note_link = &REG_NOTES (insn);
d858f359
KG
704 for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
705 if (REG_NOTE_KIND (this_rtx) == note
706 && REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
48227150 707 {
d858f359 708 *note_link = XEXP (this_rtx, 1);
48227150
JVA
709 return;
710 }
711 else
d858f359 712 note_link = &XEXP (this_rtx, 1);
48227150 713
41374e13 714 gcc_unreachable ();
48227150
JVA
715}
716
717/* Find the hard register number of virtual register REG in REGSTACK.
718 The hard register number is relative to the top of the stack. -1 is
0f41302f 719 returned if the register is not found. */
48227150
JVA
720
721static int
0823efed 722get_hard_regnum (stack_ptr regstack, rtx reg)
48227150
JVA
723{
724 int i;
725
41374e13 726 gcc_assert (STACK_REG_P (reg));
48227150
JVA
727
728 for (i = regstack->top; i >= 0; i--)
729 if (regstack->reg[i] == REGNO (reg))
730 break;
731
732 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
733}
48227150
JVA
734\f
735/* Emit an insn to pop virtual register REG before or after INSN.
736 REGSTACK is the stack state after INSN and is updated to reflect this
e075ae69
RH
737 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
738 is represented as a SET whose destination is the register to be popped
739 and source is the top of stack. A death note for the top of stack
0f41302f 740 cases the movdf pattern to pop. */
48227150
JVA
741
742static rtx
0823efed 743emit_pop_insn (rtx insn, stack_ptr regstack, rtx reg, enum emit_where where)
48227150
JVA
744{
745 rtx pop_insn, pop_rtx;
746 int hard_regno;
747
037f20f1
JH
748 /* For complex types take care to pop both halves. These may survive in
749 CLOBBER and USE expressions. */
750 if (COMPLEX_MODE_P (GET_MODE (reg)))
751 {
752 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
753 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
754
755 pop_insn = NULL_RTX;
756 if (get_hard_regnum (regstack, reg1) >= 0)
a6a2274a 757 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
037f20f1 758 if (get_hard_regnum (regstack, reg2) >= 0)
a6a2274a 759 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
41374e13 760 gcc_assert (pop_insn);
037f20f1
JH
761 return pop_insn;
762 }
763
48227150
JVA
764 hard_regno = get_hard_regnum (regstack, reg);
765
41374e13 766 gcc_assert (hard_regno >= FIRST_STACK_REG);
48227150 767
e075ae69
RH
768 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
769 FP_MODE_REG (FIRST_STACK_REG, DFmode));
48227150 770
a05924f9 771 if (where == EMIT_AFTER)
3c030e88 772 pop_insn = emit_insn_after (pop_rtx, insn);
a05924f9 773 else
3c030e88 774 pop_insn = emit_insn_before (pop_rtx, insn);
48227150 775
65c5f2a6 776 add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode));
48227150
JVA
777
778 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
779 = regstack->reg[regstack->top];
780 regstack->top -= 1;
781 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
782
783 return pop_insn;
784}
785\f
a05924f9
JH
786/* Emit an insn before or after INSN to swap virtual register REG with
787 the top of stack. REGSTACK is the stack state before the swap, and
788 is updated to reflect the swap. A swap insn is represented as a
789 PARALLEL of two patterns: each pattern moves one reg to the other.
48227150 790
0f41302f 791 If REG is already at the top of the stack, no insn is emitted. */
48227150
JVA
792
793static void
0823efed 794emit_swap_insn (rtx insn, stack_ptr regstack, rtx reg)
48227150 795{
eca31501 796 int hard_regno;
a05924f9 797 rtx swap_rtx;
eca31501
JVA
798 int tmp, other_reg; /* swap regno temps */
799 rtx i1; /* the stack-reg insn prior to INSN */
800 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
48227150 801
eca31501
JVA
802 hard_regno = get_hard_regnum (regstack, reg);
803
48227150
JVA
804 if (hard_regno == FIRST_STACK_REG)
805 return;
7476f086
RH
806 if (hard_regno == -1)
807 {
808 /* Something failed if the register wasn't on the stack. If we had
809 malformed asms, we zapped the instruction itself, but that didn't
810 produce the same pattern of register sets as before. To prevent
811 further failure, adjust REGSTACK to include REG at TOP. */
812 gcc_assert (any_malformed_asm);
813 regstack->reg[++regstack->top] = REGNO (reg);
814 return;
815 }
816 gcc_assert (hard_regno >= FIRST_STACK_REG);
48227150 817
eca31501 818 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
48227150 819
eca31501
JVA
820 tmp = regstack->reg[other_reg];
821 regstack->reg[other_reg] = regstack->reg[regstack->top];
48227150 822 regstack->reg[regstack->top] = tmp;
48227150 823
a05924f9
JH
824 /* Find the previous insn involving stack regs, but don't pass a
825 block boundary. */
826 i1 = NULL;
a813c111 827 if (current_block && insn != BB_HEAD (current_block))
eca31501 828 {
a05924f9 829 rtx tmp = PREV_INSN (insn);
a813c111 830 rtx limit = PREV_INSN (BB_HEAD (current_block));
3a6cc978 831 while (tmp != limit)
a05924f9 832 {
4b4bf941
JQ
833 if (LABEL_P (tmp)
834 || CALL_P (tmp)
589ca5cb 835 || NOTE_INSN_BASIC_BLOCK_P (tmp)
4b4bf941 836 || (NONJUMP_INSN_P (tmp)
a05924f9
JH
837 && stack_regs_mentioned (tmp)))
838 {
839 i1 = tmp;
840 break;
841 }
842 tmp = PREV_INSN (tmp);
843 }
844 }
845
846 if (i1 != NULL_RTX
847 && (i1set = single_set (i1)) != NULL_RTX)
848 {
849 rtx i1src = *get_true_reg (&SET_SRC (i1set));
eca31501 850 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
48227150 851
eca31501 852 /* If the previous register stack push was from the reg we are to
0f41302f 853 swap with, omit the swap. */
eca31501 854
f8cfc6aa
JQ
855 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
856 && REG_P (i1src)
ae0ed63a 857 && REGNO (i1src) == (unsigned) hard_regno - 1
eca31501
JVA
858 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
859 return;
860
861 /* If the previous insn wrote to the reg we are to swap with,
862 omit the swap. */
863
f8cfc6aa
JQ
864 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
865 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
eca31501
JVA
866 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
867 return;
868 }
869
385e0e08
RS
870 /* Avoid emitting the swap if this is the first register stack insn
871 of the current_block. Instead update the current_block's stack_in
872 and let compensate edges take care of this for us. */
873 if (current_block && starting_stack_p)
874 {
875 BLOCK_INFO (current_block)->stack_in = *regstack;
876 starting_stack_p = false;
877 return;
878 }
879
e075ae69
RH
880 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
881 FP_MODE_REG (FIRST_STACK_REG, XFmode));
a05924f9
JH
882
883 if (i1)
3c030e88 884 emit_insn_after (swap_rtx, i1);
a05924f9 885 else if (current_block)
a813c111 886 emit_insn_before (swap_rtx, BB_HEAD (current_block));
a05924f9
JH
887 else
888 emit_insn_before (swap_rtx, insn);
48227150
JVA
889}
890\f
f964bd29
UB
891/* Emit an insns before INSN to swap virtual register SRC1 with
892 the top of stack and virtual register SRC2 with second stack
893 slot. REGSTACK is the stack state before the swaps, and
894 is updated to reflect the swaps. A swap insn is represented as a
895 PARALLEL of two patterns: each pattern moves one reg to the other.
896
897 If SRC1 and/or SRC2 are already at the right place, no swap insn
898 is emitted. */
899
900static void
0823efed 901swap_to_top (rtx insn, stack_ptr regstack, rtx src1, rtx src2)
f964bd29
UB
902{
903 struct stack_def temp_stack;
904 int regno, j, k, temp;
905
906 temp_stack = *regstack;
907
908 /* Place operand 1 at the top of stack. */
909 regno = get_hard_regnum (&temp_stack, src1);
41374e13 910 gcc_assert (regno >= 0);
f964bd29
UB
911 if (regno != FIRST_STACK_REG)
912 {
913 k = temp_stack.top - (regno - FIRST_STACK_REG);
914 j = temp_stack.top;
915
916 temp = temp_stack.reg[k];
917 temp_stack.reg[k] = temp_stack.reg[j];
918 temp_stack.reg[j] = temp;
919 }
920
921 /* Place operand 2 next on the stack. */
922 regno = get_hard_regnum (&temp_stack, src2);
41374e13 923 gcc_assert (regno >= 0);
f964bd29
UB
924 if (regno != FIRST_STACK_REG + 1)
925 {
926 k = temp_stack.top - (regno - FIRST_STACK_REG);
927 j = temp_stack.top - 1;
928
929 temp = temp_stack.reg[k];
930 temp_stack.reg[k] = temp_stack.reg[j];
931 temp_stack.reg[j] = temp;
932 }
933
934 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
935}
936\f
48227150 937/* Handle a move to or from a stack register in PAT, which is in INSN.
ecb63641
EB
938 REGSTACK is the current stack. Return whether a control flow insn
939 was deleted in the process. */
48227150 940
ecb63641 941static bool
0823efed 942move_for_stack_reg (rtx insn, stack_ptr regstack, rtx pat)
48227150 943{
99a59310
RK
944 rtx *psrc = get_true_reg (&SET_SRC (pat));
945 rtx *pdest = get_true_reg (&SET_DEST (pat));
946 rtx src, dest;
48227150 947 rtx note;
ecb63641 948 bool control_flow_insn_deleted = false;
48227150 949
99a59310
RK
950 src = *psrc; dest = *pdest;
951
952 if (STACK_REG_P (src) && STACK_REG_P (dest))
48227150
JVA
953 {
954 /* Write from one stack reg to another. If SRC dies here, then
0f41302f 955 just change the register mapping and delete the insn. */
48227150 956
99a59310 957 note = find_regno_note (insn, REG_DEAD, REGNO (src));
48227150
JVA
958 if (note)
959 {
960 int i;
961
0f41302f 962 /* If this is a no-op move, there must not be a REG_DEAD note. */
41374e13 963 gcc_assert (REGNO (src) != REGNO (dest));
48227150
JVA
964
965 for (i = regstack->top; i >= 0; i--)
99a59310 966 if (regstack->reg[i] == REGNO (src))
48227150
JVA
967 break;
968
5ad85f7d 969 /* The destination must be dead, or life analysis is borked. */
41374e13 970 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
48227150 971
5ad85f7d
RH
972 /* If the source is not live, this is yet another case of
973 uninitialized variables. Load up a NaN instead. */
974 if (i < 0)
975 return move_nan_for_stack_reg (insn, regstack, dest);
976
48227150 977 /* It is possible that the dest is unused after this insn.
0f41302f 978 If so, just pop the src. */
48227150 979
99a59310 980 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
ecb63641
EB
981 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
982 else
48227150 983 {
ecb63641
EB
984 regstack->reg[i] = REGNO (dest);
985 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
986 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
48227150
JVA
987 }
988
ecb63641 989 control_flow_insn_deleted |= control_flow_insn_p (insn);
53c17031 990 delete_insn (insn);
ecb63641 991 return control_flow_insn_deleted;
48227150
JVA
992 }
993
0f41302f 994 /* The source reg does not die. */
48227150
JVA
995
996 /* If this appears to be a no-op move, delete it, or else it
997 will confuse the machine description output patterns. But if
998 it is REG_UNUSED, we must pop the reg now, as per-insn processing
0f41302f 999 for REG_UNUSED will not work for deleted insns. */
48227150 1000
99a59310 1001 if (REGNO (src) == REGNO (dest))
48227150 1002 {
99a59310 1003 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
a05924f9 1004 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
48227150 1005
ecb63641 1006 control_flow_insn_deleted |= control_flow_insn_p (insn);
53c17031 1007 delete_insn (insn);
ecb63641 1008 return control_flow_insn_deleted;
48227150
JVA
1009 }
1010
3eae4643 1011 /* The destination ought to be dead. */
41374e13 1012 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
48227150 1013
99a59310 1014 replace_reg (psrc, get_hard_regnum (regstack, src));
48227150 1015
99a59310
RK
1016 regstack->reg[++regstack->top] = REGNO (dest);
1017 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1018 replace_reg (pdest, FIRST_STACK_REG);
48227150 1019 }
99a59310 1020 else if (STACK_REG_P (src))
48227150
JVA
1021 {
1022 /* Save from a stack reg to MEM, or possibly integer reg. Since
1023 only top of stack may be saved, emit an exchange first if
0f41302f 1024 needs be. */
48227150 1025
99a59310 1026 emit_swap_insn (insn, regstack, src);
48227150 1027
99a59310 1028 note = find_regno_note (insn, REG_DEAD, REGNO (src));
48227150
JVA
1029 if (note)
1030 {
1031 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1032 regstack->top--;
99a59310 1033 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
48227150 1034 }
f8a1ebc6 1035 else if ((GET_MODE (src) == XFmode)
cadcffb3 1036 && regstack->top < REG_STACK_SIZE - 1)
b40b8b06
JVA
1037 {
1038 /* A 387 cannot write an XFmode value to a MEM without
1039 clobbering the source reg. The output code can handle
1040 this by reading back the value from the MEM.
1041 But it is more efficient to use a temp register if one is
1042 available. Push the source value here if the register
1043 stack is not full, and then write the value to memory via
1044 a pop. */
f7448d50 1045 rtx push_rtx;
037f20f1 1046 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
b40b8b06 1047
f8a1ebc6 1048 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
f7448d50 1049 emit_insn_before (push_rtx, insn);
65c5f2a6 1050 add_reg_note (insn, REG_DEAD, top_stack_reg);
b40b8b06 1051 }
48227150 1052
99a59310 1053 replace_reg (psrc, FIRST_STACK_REG);
48227150 1054 }
41374e13 1055 else
48227150 1056 {
d85c7550
UB
1057 rtx pat = PATTERN (insn);
1058
41374e13
NS
1059 gcc_assert (STACK_REG_P (dest));
1060
48227150
JVA
1061 /* Load from MEM, or possibly integer REG or constant, into the
1062 stack regs. The actual target is always the top of the
1063 stack. The stack mapping is changed to reflect that DEST is
1064 now at top of stack. */
1065
d85c7550
UB
1066 /* The destination ought to be dead. However, there is a
1067 special case with i387 UNSPEC_TAN, where destination is live
1068 (an argument to fptan) but inherent load of 1.0 is modelled
1069 as a load from a constant. */
590e9a42
UB
1070 if (GET_CODE (pat) == PARALLEL
1071 && XVECLEN (pat, 0) == 2
1072 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1073 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1074 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1075 emit_swap_insn (insn, regstack, dest);
1076 else
d85c7550 1077 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
48227150 1078
41374e13 1079 gcc_assert (regstack->top < REG_STACK_SIZE);
48227150 1080
99a59310
RK
1081 regstack->reg[++regstack->top] = REGNO (dest);
1082 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1083 replace_reg (pdest, FIRST_STACK_REG);
48227150 1084 }
ecb63641
EB
1085
1086 return control_flow_insn_deleted;
48227150 1087}
5ad85f7d
RH
1088
1089/* A helper function which replaces INSN with a pattern that loads up
1090 a NaN into DEST, then invokes move_for_stack_reg. */
1091
1092static bool
0823efed 1093move_nan_for_stack_reg (rtx insn, stack_ptr regstack, rtx dest)
5ad85f7d
RH
1094{
1095 rtx pat;
1096
1097 dest = FP_MODE_REG (REGNO (dest), SFmode);
1098 pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1099 PATTERN (insn) = pat;
1100 INSN_CODE (insn) = -1;
1101
1102 return move_for_stack_reg (insn, regstack, pat);
1103}
48227150 1104\f
e075ae69
RH
1105/* Swap the condition on a branch, if there is one. Return true if we
1106 found a condition to swap. False if the condition was not used as
dc297297 1107 such. */
e075ae69
RH
1108
1109static int
0c20a65f 1110swap_rtx_condition_1 (rtx pat)
eca31501 1111{
b3694847
SS
1112 const char *fmt;
1113 int i, r = 0;
eca31501 1114
ec8e098d 1115 if (COMPARISON_P (pat))
eca31501
JVA
1116 {
1117 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
e075ae69 1118 r = 1;
eca31501 1119 }
e075ae69 1120 else
eca31501 1121 {
e075ae69
RH
1122 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1123 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
eca31501 1124 {
e075ae69
RH
1125 if (fmt[i] == 'E')
1126 {
b3694847 1127 int j;
eca31501 1128
e075ae69
RH
1129 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1130 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1131 }
1132 else if (fmt[i] == 'e')
1133 r |= swap_rtx_condition_1 (XEXP (pat, i));
eca31501 1134 }
eca31501 1135 }
e075ae69
RH
1136
1137 return r;
1138}
1139
1140static int
0c20a65f 1141swap_rtx_condition (rtx insn)
e075ae69
RH
1142{
1143 rtx pat = PATTERN (insn);
1144
1145 /* We're looking for a single set to cc0 or an HImode temporary. */
1146
1147 if (GET_CODE (pat) == SET
f8cfc6aa 1148 && REG_P (SET_DEST (pat))
e075ae69
RH
1149 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1150 {
1151 insn = next_flags_user (insn);
1152 if (insn == NULL_RTX)
1153 return 0;
1154 pat = PATTERN (insn);
1155 }
1156
383898f7
JJ
1157 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1158 with the cc value right now. We may be able to search for one
1159 though. */
e075ae69
RH
1160
1161 if (GET_CODE (pat) == SET
1162 && GET_CODE (SET_SRC (pat)) == UNSPEC
35a76aac 1163 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
e075ae69
RH
1164 {
1165 rtx dest = SET_DEST (pat);
1166
a6a2274a 1167 /* Search forward looking for the first use of this value.
e075ae69 1168 Stop at block boundaries. */
a813c111 1169 while (insn != BB_END (current_block))
e075ae69
RH
1170 {
1171 insn = NEXT_INSN (insn);
2c3c49de 1172 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
e075ae69 1173 break;
4b4bf941 1174 if (CALL_P (insn))
e075ae69
RH
1175 return 0;
1176 }
1177
383898f7
JJ
1178 /* We haven't found it. */
1179 if (insn == BB_END (current_block))
1180 return 0;
1181
e075ae69 1182 /* So we've found the insn using this value. If it is anything
383898f7
JJ
1183 other than sahf or the value does not die (meaning we'd have
1184 to search further), then we must give up. */
e075ae69
RH
1185 pat = PATTERN (insn);
1186 if (GET_CODE (pat) != SET
1187 || GET_CODE (SET_SRC (pat)) != UNSPEC
35a76aac 1188 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
e075ae69
RH
1189 || ! dead_or_set_p (insn, dest))
1190 return 0;
1191
1192 /* Now we are prepared to handle this as a normal cc0 setter. */
1193 insn = next_flags_user (insn);
1194 if (insn == NULL_RTX)
1195 return 0;
1196 pat = PATTERN (insn);
1197 }
1198
90a74703
JH
1199 if (swap_rtx_condition_1 (pat))
1200 {
0eac0e81 1201 int fail = 0;
90a74703
JH
1202 INSN_CODE (insn) = -1;
1203 if (recog_memoized (insn) == -1)
0eac0e81
JH
1204 fail = 1;
1205 /* In case the flags don't die here, recurse to try fix
1206 following user too. */
1207 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1208 {
1209 insn = next_flags_user (insn);
1210 if (!insn || !swap_rtx_condition (insn))
1211 fail = 1;
1212 }
1213 if (fail)
90a74703
JH
1214 {
1215 swap_rtx_condition_1 (pat);
1216 return 0;
1217 }
1218 return 1;
1219 }
1220 return 0;
eca31501
JVA
1221}
1222
48227150
JVA
1223/* Handle a comparison. Special care needs to be taken to avoid
1224 causing comparisons that a 387 cannot do correctly, such as EQ.
1225
e075ae69 1226 Also, a pop insn may need to be emitted. The 387 does have an
48227150
JVA
1227 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1228 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
e075ae69 1229 set up. */
48227150
JVA
1230
1231static void
0823efed 1232compare_for_stack_reg (rtx insn, stack_ptr regstack, rtx pat_src)
48227150
JVA
1233{
1234 rtx *src1, *src2;
1235 rtx src1_note, src2_note;
914ec131 1236
e075ae69
RH
1237 src1 = get_true_reg (&XEXP (pat_src, 0));
1238 src2 = get_true_reg (&XEXP (pat_src, 1));
48227150 1239
eca31501 1240 /* ??? If fxch turns out to be cheaper than fstp, give priority to
0f41302f 1241 registers that die in this insn - move those to stack top first. */
e075ae69
RH
1242 if ((! STACK_REG_P (*src1)
1243 || (STACK_REG_P (*src2)
1244 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1245 && swap_rtx_condition (insn))
eca31501 1246 {
e075ae69
RH
1247 rtx temp;
1248 temp = XEXP (pat_src, 0);
1249 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1250 XEXP (pat_src, 1) = temp;
48227150 1251
e075ae69
RH
1252 src1 = get_true_reg (&XEXP (pat_src, 0));
1253 src2 = get_true_reg (&XEXP (pat_src, 1));
dc78213e 1254
b9342cdf 1255 INSN_CODE (insn) = -1;
eca31501 1256 }
48227150 1257
0f41302f 1258 /* We will fix any death note later. */
48227150
JVA
1259
1260 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1261
1262 if (STACK_REG_P (*src2))
1263 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1264 else
eca31501 1265 src2_note = NULL_RTX;
48227150 1266
e075ae69 1267 emit_swap_insn (insn, regstack, *src1);
48227150
JVA
1268
1269 replace_reg (src1, FIRST_STACK_REG);
1270
1271 if (STACK_REG_P (*src2))
e075ae69 1272 replace_reg (src2, get_hard_regnum (regstack, *src2));
48227150
JVA
1273
1274 if (src1_note)
1275 {
7aa74e4c 1276 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
48227150 1277 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
48227150
JVA
1278 }
1279
1280 /* If the second operand dies, handle that. But if the operands are
1281 the same stack register, don't bother, because only one death is
0f41302f 1282 needed, and it was just handled. */
48227150
JVA
1283
1284 if (src2_note
eca31501 1285 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
48227150
JVA
1286 && REGNO (*src1) == REGNO (*src2)))
1287 {
1288 /* As a special case, two regs may die in this insn if src2 is
1289 next to top of stack and the top of stack also dies. Since
1290 we have already popped src1, "next to top of stack" is really
0f41302f 1291 at top (FIRST_STACK_REG) now. */
48227150
JVA
1292
1293 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1294 && src1_note)
1295 {
7aa74e4c 1296 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
48227150 1297 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
48227150
JVA
1298 }
1299 else
1300 {
e075ae69
RH
1301 /* The 386 can only represent death of the first operand in
1302 the case handled above. In all other cases, emit a separate
1303 pop and remove the death note from here. */
e075ae69 1304 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
e075ae69 1305 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
a05924f9 1306 EMIT_AFTER);
48227150
JVA
1307 }
1308 }
1309}
1310\f
b5b8b0ac
AO
1311/* Substitute new registers in LOC, which is part of a debug insn.
1312 REGSTACK is the current register layout. */
1313
1314static int
1315subst_stack_regs_in_debug_insn (rtx *loc, void *data)
1316{
0823efed 1317 stack_ptr regstack = (stack_ptr)data;
b5b8b0ac
AO
1318 int hard_regno;
1319
bd0ba05d 1320 if (!STACK_REG_P (*loc))
b5b8b0ac
AO
1321 return 0;
1322
1323 hard_regno = get_hard_regnum (regstack, *loc);
a7a110bb
AO
1324
1325 /* If we can't find an active register, reset this debug insn. */
1326 if (hard_regno == -1)
1327 return 1;
1328
b5b8b0ac
AO
1329 gcc_assert (hard_regno >= FIRST_STACK_REG);
1330
1331 replace_reg (loc, hard_regno);
1332
1333 return -1;
1334}
1335
a7a110bb
AO
1336/* Substitute hardware stack regs in debug insn INSN, using stack
1337 layout REGSTACK. If we can't find a hardware stack reg for any of
1338 the REGs in it, reset the debug insn. */
1339
1340static void
1341subst_all_stack_regs_in_debug_insn (rtx insn, struct stack_def *regstack)
1342{
1343 int ret = for_each_rtx (&INSN_VAR_LOCATION_LOC (insn),
1344 subst_stack_regs_in_debug_insn,
1345 regstack);
1346
1347 if (ret == 1)
1348 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1349 else
1350 gcc_checking_assert (ret == 0);
1351}
1352
48227150 1353/* Substitute new registers in PAT, which is part of INSN. REGSTACK
ecb63641
EB
1354 is the current register layout. Return whether a control flow insn
1355 was deleted in the process. */
48227150 1356
ecb63641 1357static bool
0823efed 1358subst_stack_regs_pat (rtx insn, stack_ptr regstack, rtx pat)
48227150
JVA
1359{
1360 rtx *dest, *src;
ecb63641 1361 bool control_flow_insn_deleted = false;
48227150 1362
a05924f9
JH
1363 switch (GET_CODE (pat))
1364 {
1365 case USE:
1366 /* Deaths in USE insns can happen in non optimizing compilation.
1367 Handle them by popping the dying register. */
1368 src = get_true_reg (&XEXP (pat, 0));
a6a2274a
KH
1369 if (STACK_REG_P (*src)
1370 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1371 {
6fb5fa3c
DB
1372 /* USEs are ignored for liveness information so USEs of dead
1373 register might happen. */
1374 if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1375 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
ecb63641 1376 return control_flow_insn_deleted;
a6a2274a 1377 }
6fb5fa3c
DB
1378 /* Uninitialized USE might happen for functions returning uninitialized
1379 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
cea618ac 1380 so it is safe to ignore the use here. This is consistent with behavior
b8698a0f 1381 of dataflow analyzer that ignores USE too. (This also imply that
cea618ac 1382 forcibly initializing the register to NaN here would lead to ICE later,
6fb5fa3c 1383 since the REG_DEAD notes are not issued.) */
a05924f9 1384 break;
48227150 1385
b5b8b0ac
AO
1386 case VAR_LOCATION:
1387 gcc_unreachable ();
1388
a05924f9
JH
1389 case CLOBBER:
1390 {
1391 rtx note;
48227150 1392
a05924f9
JH
1393 dest = get_true_reg (&XEXP (pat, 0));
1394 if (STACK_REG_P (*dest))
1395 {
1396 note = find_reg_note (insn, REG_DEAD, *dest);
bd695e1e
RH
1397
1398 if (pat != PATTERN (insn))
1399 {
83a6ac60
VM
1400 /* The fix_truncdi_1 pattern wants to be able to
1401 allocate its own scratch register. It does this by
1402 clobbering an fp reg so that it is assured of an
1403 empty reg-stack register. If the register is live,
1404 kill it now. Remove the DEAD/UNUSED note so we
1405 don't try to kill it later too.
1406
1407 In reality the UNUSED note can be absent in some
1408 complicated cases when the register is reused for
1409 partially set variable. */
bd695e1e
RH
1410
1411 if (note)
1412 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1413 else
83a6ac60
VM
1414 note = find_reg_note (insn, REG_UNUSED, *dest);
1415 if (note)
1416 remove_note (insn, note);
cb0bc263 1417 replace_reg (dest, FIRST_STACK_REG + 1);
bd695e1e 1418 }
a05924f9
JH
1419 else
1420 {
bd695e1e
RH
1421 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1422 indicates an uninitialized value. Because reload removed
a6a2274a 1423 all other clobbers, this must be due to a function
bd695e1e
RH
1424 returning without a value. Load up a NaN. */
1425
5ad85f7d 1426 if (!note)
037f20f1 1427 {
5ad85f7d 1428 rtx t = *dest;
5ad85f7d
RH
1429 if (COMPLEX_MODE_P (GET_MODE (t)))
1430 {
190e9534
PB
1431 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1432 if (get_hard_regnum (regstack, u) == -1)
1433 {
1434 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1435 rtx insn2 = emit_insn_before (pat2, insn);
1436 control_flow_insn_deleted
1437 |= move_nan_for_stack_reg (insn2, regstack, u);
1438 }
5ad85f7d 1439 }
190e9534
PB
1440 if (get_hard_regnum (regstack, t) == -1)
1441 control_flow_insn_deleted
1442 |= move_nan_for_stack_reg (insn, regstack, t);
037f20f1 1443 }
a05924f9 1444 }
a05924f9 1445 }
48227150 1446 break;
a05924f9 1447 }
48227150 1448
a05924f9
JH
1449 case SET:
1450 {
6496a589 1451 rtx *src1 = (rtx *) 0, *src2;
a05924f9
JH
1452 rtx src1_note, src2_note;
1453 rtx pat_src;
1454
1455 dest = get_true_reg (&SET_DEST (pat));
1456 src = get_true_reg (&SET_SRC (pat));
1457 pat_src = SET_SRC (pat);
1458
1459 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1460 if (STACK_REG_P (*src)
1461 || (STACK_REG_P (*dest)
3c0cb5de 1462 && (REG_P (*src) || MEM_P (*src)
48175537 1463 || CONST_DOUBLE_P (*src))))
a05924f9 1464 {
ecb63641 1465 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
a05924f9
JH
1466 break;
1467 }
48227150 1468
a05924f9
JH
1469 switch (GET_CODE (pat_src))
1470 {
1471 case COMPARE:
1472 compare_for_stack_reg (insn, regstack, pat_src);
1473 break;
48227150 1474
a05924f9
JH
1475 case CALL:
1476 {
1477 int count;
66fd46b6 1478 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
a05924f9
JH
1479 --count >= 0;)
1480 {
1481 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1482 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1483 }
1484 }
1485 replace_reg (dest, FIRST_STACK_REG);
1486 break;
48227150 1487
a05924f9
JH
1488 case REG:
1489 /* This is a `tstM2' case. */
41374e13 1490 gcc_assert (*dest == cc0_rtx);
a05924f9 1491 src1 = src;
48227150 1492
a05924f9 1493 /* Fall through. */
48227150 1494
a05924f9
JH
1495 case FLOAT_TRUNCATE:
1496 case SQRT:
1497 case ABS:
1498 case NEG:
1499 /* These insns only operate on the top of the stack. DEST might
1500 be cc0_rtx if we're processing a tstM pattern. Also, it's
1501 possible that the tstM case results in a REG_DEAD note on the
1502 source. */
48227150 1503
a05924f9
JH
1504 if (src1 == 0)
1505 src1 = get_true_reg (&XEXP (pat_src, 0));
48227150 1506
a05924f9 1507 emit_swap_insn (insn, regstack, *src1);
48227150 1508
a05924f9 1509 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
48227150 1510
a05924f9
JH
1511 if (STACK_REG_P (*dest))
1512 replace_reg (dest, FIRST_STACK_REG);
48227150 1513
a05924f9
JH
1514 if (src1_note)
1515 {
1516 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1517 regstack->top--;
1518 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1519 }
48227150 1520
a05924f9
JH
1521 replace_reg (src1, FIRST_STACK_REG);
1522 break;
48227150 1523
a05924f9
JH
1524 case MINUS:
1525 case DIV:
1526 /* On i386, reversed forms of subM3 and divM3 exist for
1527 MODE_FLOAT, so the same code that works for addM3 and mulM3
1528 can be used. */
1529 case MULT:
1530 case PLUS:
1531 /* These insns can accept the top of stack as a destination
1532 from a stack reg or mem, or can use the top of stack as a
1533 source and some other stack register (possibly top of stack)
1534 as a destination. */
1535
1536 src1 = get_true_reg (&XEXP (pat_src, 0));
1537 src2 = get_true_reg (&XEXP (pat_src, 1));
1538
1539 /* We will fix any death note later. */
1540
1541 if (STACK_REG_P (*src1))
1542 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1543 else
1544 src1_note = NULL_RTX;
1545 if (STACK_REG_P (*src2))
1546 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1547 else
1548 src2_note = NULL_RTX;
48227150 1549
a05924f9
JH
1550 /* If either operand is not a stack register, then the dest
1551 must be top of stack. */
48227150 1552
a05924f9 1553 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
eca31501 1554 emit_swap_insn (insn, regstack, *dest);
a05924f9
JH
1555 else
1556 {
1557 /* Both operands are REG. If neither operand is already
34e4536e
UB
1558 at the top of stack, choose to make the one that is the
1559 dest the new top of stack. */
48227150 1560
a05924f9 1561 int src1_hard_regnum, src2_hard_regnum;
48227150 1562
a05924f9
JH
1563 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1564 src2_hard_regnum = get_hard_regnum (regstack, *src2);
34e4536e
UB
1565
1566 /* If the source is not live, this is yet another case of
1567 uninitialized variables. Load up a NaN instead. */
1568 if (src1_hard_regnum == -1)
1569 {
1570 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1571 rtx insn2 = emit_insn_before (pat2, insn);
1572 control_flow_insn_deleted
1573 |= move_nan_for_stack_reg (insn2, regstack, *src1);
1574 }
1575 if (src2_hard_regnum == -1)
1576 {
1577 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1578 rtx insn2 = emit_insn_before (pat2, insn);
1579 control_flow_insn_deleted
1580 |= move_nan_for_stack_reg (insn2, regstack, *src2);
1581 }
48227150 1582
a05924f9
JH
1583 if (src1_hard_regnum != FIRST_STACK_REG
1584 && src2_hard_regnum != FIRST_STACK_REG)
1585 emit_swap_insn (insn, regstack, *dest);
48227150 1586 }
a05924f9
JH
1587
1588 if (STACK_REG_P (*src1))
1589 replace_reg (src1, get_hard_regnum (regstack, *src1));
1590 if (STACK_REG_P (*src2))
1591 replace_reg (src2, get_hard_regnum (regstack, *src2));
1592
1593 if (src1_note)
48227150 1594 {
a05924f9 1595 rtx src1_reg = XEXP (src1_note, 0);
48227150 1596
a05924f9
JH
1597 /* If the register that dies is at the top of stack, then
1598 the destination is somewhere else - merely substitute it.
1599 But if the reg that dies is not at top of stack, then
1600 move the top of stack to the dead reg, as though we had
1601 done the insn and then a store-with-pop. */
48227150 1602
a05924f9
JH
1603 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1604 {
1605 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1606 replace_reg (dest, get_hard_regnum (regstack, *dest));
1607 }
1608 else
1609 {
1610 int regno = get_hard_regnum (regstack, src1_reg);
48227150 1611
a05924f9
JH
1612 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1613 replace_reg (dest, regno);
1614
1615 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1616 = regstack->reg[regstack->top];
1617 }
1618
1619 CLEAR_HARD_REG_BIT (regstack->reg_set,
1620 REGNO (XEXP (src1_note, 0)));
1621 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1622 regstack->top--;
1623 }
1624 else if (src2_note)
48227150 1625 {
a05924f9
JH
1626 rtx src2_reg = XEXP (src2_note, 0);
1627 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1628 {
1629 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1630 replace_reg (dest, get_hard_regnum (regstack, *dest));
1631 }
1632 else
1633 {
1634 int regno = get_hard_regnum (regstack, src2_reg);
1635
1636 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1637 replace_reg (dest, regno);
1638
1639 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1640 = regstack->reg[regstack->top];
1641 }
1642
1643 CLEAR_HARD_REG_BIT (regstack->reg_set,
1644 REGNO (XEXP (src2_note, 0)));
1645 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1646 regstack->top--;
48227150
JVA
1647 }
1648 else
1649 {
48227150 1650 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
a05924f9 1651 replace_reg (dest, get_hard_regnum (regstack, *dest));
48227150 1652 }
caa6ec8d 1653
d55d8fc7 1654 /* Keep operand 1 matching with destination. */
ec8e098d 1655 if (COMMUTATIVE_ARITH_P (pat_src)
caa6ec8d
JH
1656 && REG_P (*src1) && REG_P (*src2)
1657 && REGNO (*src1) != REGNO (*dest))
1658 {
0b9aaeee
JH
1659 int tmp = REGNO (*src1);
1660 replace_reg (src1, REGNO (*src2));
1661 replace_reg (src2, tmp);
caa6ec8d 1662 }
a05924f9 1663 break;
48227150 1664
a05924f9
JH
1665 case UNSPEC:
1666 switch (XINT (pat_src, 1))
1667 {
09ad58e6 1668 case UNSPEC_STA:
6e858d45 1669 case UNSPEC_FIST:
4a927664
UB
1670
1671 case UNSPEC_FIST_FLOOR:
1672 case UNSPEC_FIST_CEIL:
1673
6e858d45
UB
1674 /* These insns only operate on the top of the stack. */
1675
1676 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1677 emit_swap_insn (insn, regstack, *src1);
1678
1679 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1680
1681 if (STACK_REG_P (*dest))
1682 replace_reg (dest, FIRST_STACK_REG);
1683
1684 if (src1_note)
1685 {
1686 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1687 regstack->top--;
1688 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1689 }
1690
1691 replace_reg (src1, FIRST_STACK_REG);
1692 break;
1693
9ed4207f
UB
1694 case UNSPEC_FXAM:
1695
1696 /* This insn only operate on the top of the stack. */
1697
1698 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1699 emit_swap_insn (insn, regstack, *src1);
1700
1701 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1702
1703 replace_reg (src1, FIRST_STACK_REG);
1704
1705 if (src1_note)
1706 {
1707 remove_regno_note (insn, REG_DEAD,
1708 REGNO (XEXP (src1_note, 0)));
1709 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1710 EMIT_AFTER);
1711 }
1712
1713 break;
1714
35a76aac
RH
1715 case UNSPEC_SIN:
1716 case UNSPEC_COS:
9d5b9dae
RS
1717 case UNSPEC_FRNDINT:
1718 case UNSPEC_F2XM1:
edeacc14
UB
1719
1720 case UNSPEC_FRNDINT_FLOOR:
1721 case UNSPEC_FRNDINT_CEIL:
1722 case UNSPEC_FRNDINT_TRUNC:
1723 case UNSPEC_FRNDINT_MASK_PM:
1724
d85c7550
UB
1725 /* Above insns operate on the top of the stack. */
1726
1727 case UNSPEC_SINCOS_COS:
1728 case UNSPEC_XTRACT_FRACT:
1729
1730 /* Above insns operate on the top two stack slots,
1731 first part of one input, double output insn. */
0e7d0eb9 1732
a05924f9 1733 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
0e7d0eb9 1734
a05924f9 1735 emit_swap_insn (insn, regstack, *src1);
0e7d0eb9 1736
d85c7550 1737 /* Input should never die, it is replaced with output. */
a05924f9 1738 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
41374e13 1739 gcc_assert (!src1_note);
0e7d0eb9 1740
a05924f9
JH
1741 if (STACK_REG_P (*dest))
1742 replace_reg (dest, FIRST_STACK_REG);
0e7d0eb9 1743
a05924f9
JH
1744 replace_reg (src1, FIRST_STACK_REG);
1745 break;
0e7d0eb9 1746
d85c7550
UB
1747 case UNSPEC_SINCOS_SIN:
1748 case UNSPEC_XTRACT_EXP:
1749
1750 /* These insns operate on the top two stack slots,
1751 second part of one input, double output insn. */
1752
1753 regstack->top++;
1754 /* FALLTHRU */
1755
1756 case UNSPEC_TAN:
1757
1758 /* For UNSPEC_TAN, regstack->top is already increased
1759 by inherent load of constant 1.0. */
1760
1761 /* Output value is generated in the second stack slot.
1762 Move current value from second slot to the top. */
1763 regstack->reg[regstack->top]
1764 = regstack->reg[regstack->top - 1];
1765
1766 gcc_assert (STACK_REG_P (*dest));
1767
1768 regstack->reg[regstack->top - 1] = REGNO (*dest);
1769 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1770 replace_reg (dest, FIRST_STACK_REG + 1);
1771
1772 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1773
1774 replace_reg (src1, FIRST_STACK_REG);
1775 break;
1776
1fb54135 1777 case UNSPEC_FPATAN:
358997e2 1778 case UNSPEC_FYL2X:
c2fcfa4f 1779 case UNSPEC_FYL2XP1:
1fb54135
RS
1780 /* These insns operate on the top two stack slots. */
1781
1782 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1783 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1784
1785 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1786 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1787
f964bd29 1788 swap_to_top (insn, regstack, *src1, *src2);
1fb54135
RS
1789
1790 replace_reg (src1, FIRST_STACK_REG);
1791 replace_reg (src2, FIRST_STACK_REG + 1);
1792
1793 if (src1_note)
1794 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1795 if (src2_note)
1796 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1797
1798 /* Pop both input operands from the stack. */
1799 CLEAR_HARD_REG_BIT (regstack->reg_set,
1800 regstack->reg[regstack->top]);
1801 CLEAR_HARD_REG_BIT (regstack->reg_set,
1802 regstack->reg[regstack->top - 1]);
1803 regstack->top -= 2;
1804
1805 /* Push the result back onto the stack. */
1806 regstack->reg[++regstack->top] = REGNO (*dest);
1807 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1808 replace_reg (dest, FIRST_STACK_REG);
1809 break;
1810
f964bd29 1811 case UNSPEC_FSCALE_FRACT:
5ae27cfa
UB
1812 case UNSPEC_FPREM_F:
1813 case UNSPEC_FPREM1_F:
79cd820a 1814 /* These insns operate on the top two stack slots,
f964bd29
UB
1815 first part of double input, double output insn. */
1816
1817 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1818 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1819
1820 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1821 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1822
1823 /* Inputs should never die, they are
1824 replaced with outputs. */
41374e13
NS
1825 gcc_assert (!src1_note);
1826 gcc_assert (!src2_note);
f964bd29
UB
1827
1828 swap_to_top (insn, regstack, *src1, *src2);
1829
1830 /* Push the result back onto stack. Empty stack slot
9cf737f8 1831 will be filled in second part of insn. */
428aba16
RS
1832 if (STACK_REG_P (*dest))
1833 {
1834 regstack->reg[regstack->top] = REGNO (*dest);
1835 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1836 replace_reg (dest, FIRST_STACK_REG);
1837 }
f964bd29
UB
1838
1839 replace_reg (src1, FIRST_STACK_REG);
1840 replace_reg (src2, FIRST_STACK_REG + 1);
1841 break;
1842
1843 case UNSPEC_FSCALE_EXP:
5ae27cfa
UB
1844 case UNSPEC_FPREM_U:
1845 case UNSPEC_FPREM1_U:
79cd820a 1846 /* These insns operate on the top two stack slots,
f964bd29
UB
1847 second part of double input, double output insn. */
1848
1849 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1850 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1851
f964bd29
UB
1852 /* Push the result back onto stack. Fill empty slot from
1853 first part of insn and fix top of stack pointer. */
428aba16
RS
1854 if (STACK_REG_P (*dest))
1855 {
1856 regstack->reg[regstack->top - 1] = REGNO (*dest);
1857 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1858 replace_reg (dest, FIRST_STACK_REG + 1);
1859 }
f964bd29
UB
1860
1861 replace_reg (src1, FIRST_STACK_REG);
1862 replace_reg (src2, FIRST_STACK_REG + 1);
1863 break;
1864
79cd820a
UB
1865 case UNSPEC_C2_FLAG:
1866 /* This insn operates on the top two stack slots,
1867 third part of C2 setting double input insn. */
1868
1869 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1870 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1871
1872 replace_reg (src1, FIRST_STACK_REG);
1873 replace_reg (src2, FIRST_STACK_REG + 1);
1874 break;
1875
35a76aac
RH
1876 case UNSPEC_SAHF:
1877 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1878 The combination matches the PPRO fcomi instruction. */
0e7d0eb9 1879
a05924f9 1880 pat_src = XVECEXP (pat_src, 0, 0);
41374e13
NS
1881 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1882 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
5d3cc252 1883 /* Fall through. */
e075ae69 1884
35a76aac 1885 case UNSPEC_FNSTSW:
a05924f9
JH
1886 /* Combined fcomp+fnstsw generated for doing well with
1887 CSE. When optimizing this would have been broken
1888 up before now. */
e075ae69 1889
a05924f9 1890 pat_src = XVECEXP (pat_src, 0, 0);
41374e13 1891 gcc_assert (GET_CODE (pat_src) == COMPARE);
e075ae69 1892
a05924f9
JH
1893 compare_for_stack_reg (insn, regstack, pat_src);
1894 break;
e075ae69 1895
a05924f9 1896 default:
41374e13 1897 gcc_unreachable ();
a05924f9 1898 }
e075ae69
RH
1899 break;
1900
a05924f9 1901 case IF_THEN_ELSE:
dc297297 1902 /* This insn requires the top of stack to be the destination. */
0e7d0eb9 1903
2ab0437e
JH
1904 src1 = get_true_reg (&XEXP (pat_src, 1));
1905 src2 = get_true_reg (&XEXP (pat_src, 2));
1906
1907 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1908 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1909
a05924f9
JH
1910 /* If the comparison operator is an FP comparison operator,
1911 it is handled correctly by compare_for_stack_reg () who
1912 will move the destination to the top of stack. But if the
1913 comparison operator is not an FP comparison operator, we
dc297297 1914 have to handle it here. */
a05924f9
JH
1915 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1916 && REGNO (*dest) != regstack->reg[regstack->top])
2ab0437e
JH
1917 {
1918 /* In case one of operands is the top of stack and the operands
35a76aac
RH
1919 dies, it is safe to make it the destination operand by
1920 reversing the direction of cmove and avoid fxch. */
2ab0437e
JH
1921 if ((REGNO (*src1) == regstack->reg[regstack->top]
1922 && src1_note)
1923 || (REGNO (*src2) == regstack->reg[regstack->top]
1924 && src2_note))
1925 {
b74cf1ce
JH
1926 int idx1 = (get_hard_regnum (regstack, *src1)
1927 - FIRST_STACK_REG);
1928 int idx2 = (get_hard_regnum (regstack, *src2)
1929 - FIRST_STACK_REG);
1930
1931 /* Make reg-stack believe that the operands are already
1932 swapped on the stack */
1933 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1934 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1935
1936 /* Reverse condition to compensate the operand swap.
1937 i386 do have comparison always reversible. */
2ab0437e
JH
1938 PUT_CODE (XEXP (pat_src, 0),
1939 reversed_comparison_code (XEXP (pat_src, 0), insn));
1940 }
1941 else
a6a2274a 1942 emit_swap_insn (insn, regstack, *dest);
2ab0437e 1943 }
4e97601f 1944
a05924f9
JH
1945 {
1946 rtx src_note [3];
1947 int i;
4e97601f 1948
a05924f9
JH
1949 src_note[0] = 0;
1950 src_note[1] = src1_note;
1951 src_note[2] = src2_note;
54552651 1952
a05924f9
JH
1953 if (STACK_REG_P (*src1))
1954 replace_reg (src1, get_hard_regnum (regstack, *src1));
1955 if (STACK_REG_P (*src2))
1956 replace_reg (src2, get_hard_regnum (regstack, *src2));
4e97601f 1957
a05924f9
JH
1958 for (i = 1; i <= 2; i++)
1959 if (src_note [i])
4e97601f 1960 {
a05924f9
JH
1961 int regno = REGNO (XEXP (src_note[i], 0));
1962
1963 /* If the register that dies is not at the top of
41374e13
NS
1964 stack, then move the top of stack to the dead reg.
1965 Top of stack should never die, as it is the
1966 destination. */
1967 gcc_assert (regno != regstack->reg[regstack->top]);
1968 remove_regno_note (insn, REG_DEAD, regno);
1969 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1970 EMIT_AFTER);
4e97601f 1971 }
a05924f9 1972 }
4e97601f 1973
a05924f9 1974 /* Make dest the top of stack. Add dest to regstack if
dc297297 1975 not present. */
a05924f9 1976 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
a6a2274a 1977 regstack->reg[++regstack->top] = REGNO (*dest);
a05924f9
JH
1978 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1979 replace_reg (dest, FIRST_STACK_REG);
1980 break;
914ec131 1981
a05924f9 1982 default:
41374e13 1983 gcc_unreachable ();
a05924f9 1984 }
4e97601f 1985 break;
48227150 1986 }
a05924f9
JH
1987
1988 default:
1989 break;
1990 }
ecb63641
EB
1991
1992 return control_flow_insn_deleted;
48227150
JVA
1993}
1994\f
114cbee6
RS
1995/* Substitute hard regnums for any stack regs in INSN, which has
1996 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
f62a15e3 1997 before the insn, and is updated with changes made here.
114cbee6
RS
1998
1999 There are several requirements and assumptions about the use of
2000 stack-like regs in asm statements. These rules are enforced by
2001 record_asm_stack_regs; see comments there for details. Any
2002 asm_operands left in the RTL at this point may be assume to meet the
561cf7b1 2003 requirements, since record_asm_stack_regs removes any problem asm. */
114cbee6 2004
561cf7b1 2005static void
0823efed 2006subst_asm_stack_regs (rtx insn, stack_ptr regstack)
114cbee6 2007{
114cbee6 2008 rtx body = PATTERN (insn);
f62a15e3 2009 int alt;
114cbee6
RS
2010
2011 rtx *note_reg; /* Array of note contents */
2012 rtx **note_loc; /* Address of REG field of each note */
2013 enum reg_note *note_kind; /* The type of each note */
2014
a544cfd2
KG
2015 rtx *clobber_reg = 0;
2016 rtx **clobber_loc = 0;
114cbee6
RS
2017
2018 struct stack_def temp_stack;
2019 int n_notes;
2020 int n_clobbers;
2021 rtx note;
2022 int i;
f62a15e3 2023 int n_inputs, n_outputs;
114cbee6 2024
a05924f9
JH
2025 if (! check_asm_stack_operands (insn))
2026 return;
2027
114cbee6
RS
2028 /* Find out what the constraints required. If no constraint
2029 alternative matches, that is a compiler bug: we should have caught
a05924f9 2030 such an insn in check_asm_stack_operands. */
f62a15e3
BS
2031 extract_insn (insn);
2032 constrain_operands (1);
2033 alt = which_alternative;
2034
2035 preprocess_constraints ();
114cbee6 2036
1c384bf1 2037 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
a6a2274a 2038
41374e13 2039 gcc_assert (alt >= 0);
114cbee6 2040
0f41302f 2041 /* Strip SUBREGs here to make the following code simpler. */
1ccbefce
RH
2042 for (i = 0; i < recog_data.n_operands; i++)
2043 if (GET_CODE (recog_data.operand[i]) == SUBREG
f8cfc6aa 2044 && REG_P (SUBREG_REG (recog_data.operand[i])))
114cbee6 2045 {
1ccbefce
RH
2046 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2047 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
114cbee6
RS
2048 }
2049
2050 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2051
2052 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2053 i++;
2054
1634b18f
KG
2055 note_reg = XALLOCAVEC (rtx, i);
2056 note_loc = XALLOCAVEC (rtx *, i);
2057 note_kind = XALLOCAVEC (enum reg_note, i);
114cbee6
RS
2058
2059 n_notes = 0;
2060 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2061 {
e5af9ddd
RS
2062 if (GET_CODE (note) != EXPR_LIST)
2063 continue;
114cbee6
RS
2064 rtx reg = XEXP (note, 0);
2065 rtx *loc = & XEXP (note, 0);
2066
f8cfc6aa 2067 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
114cbee6
RS
2068 {
2069 loc = & SUBREG_REG (reg);
2070 reg = SUBREG_REG (reg);
2071 }
2072
2073 if (STACK_REG_P (reg)
2074 && (REG_NOTE_KIND (note) == REG_DEAD
2075 || REG_NOTE_KIND (note) == REG_UNUSED))
2076 {
2077 note_reg[n_notes] = reg;
2078 note_loc[n_notes] = loc;
2079 note_kind[n_notes] = REG_NOTE_KIND (note);
2080 n_notes++;
2081 }
2082 }
2083
2084 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2085
2086 n_clobbers = 0;
114cbee6
RS
2087
2088 if (GET_CODE (body) == PARALLEL)
3f5cfed6 2089 {
1634b18f
KG
2090 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2091 clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
114cbee6 2092
3f5cfed6
JVA
2093 for (i = 0; i < XVECLEN (body, 0); i++)
2094 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2095 {
2096 rtx clobber = XVECEXP (body, 0, i);
2097 rtx reg = XEXP (clobber, 0);
2098 rtx *loc = & XEXP (clobber, 0);
114cbee6 2099
f8cfc6aa 2100 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
3f5cfed6
JVA
2101 {
2102 loc = & SUBREG_REG (reg);
2103 reg = SUBREG_REG (reg);
2104 }
2105
2106 if (STACK_REG_P (reg))
2107 {
2108 clobber_reg[n_clobbers] = reg;
2109 clobber_loc[n_clobbers] = loc;
2110 n_clobbers++;
2111 }
2112 }
2113 }
114cbee6 2114
a05924f9 2115 temp_stack = *regstack;
114cbee6
RS
2116
2117 /* Put the input regs into the desired place in TEMP_STACK. */
2118
f62a15e3 2119 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1ccbefce 2120 if (STACK_REG_P (recog_data.operand[i])
e3a64162 2121 && reg_class_subset_p (recog_op_alt[i][alt].cl,
f62a15e3 2122 FLOAT_REGS)
e3a64162 2123 && recog_op_alt[i][alt].cl != FLOAT_REGS)
114cbee6
RS
2124 {
2125 /* If an operand needs to be in a particular reg in
2126 FLOAT_REGS, the constraint was either 't' or 'u'. Since
1ccbefce
RH
2127 these constraints are for single register classes, and
2128 reload guaranteed that operand[i] is already in that class,
2129 we can just use REGNO (recog_data.operand[i]) to know which
2130 actual reg this operand needs to be in. */
114cbee6 2131
1ccbefce 2132 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
114cbee6 2133
41374e13 2134 gcc_assert (regno >= 0);
114cbee6 2135
ae0ed63a 2136 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
114cbee6 2137 {
1ccbefce
RH
2138 /* recog_data.operand[i] is not in the right place. Find
2139 it and swap it with whatever is already in I's place.
2140 K is where recog_data.operand[i] is now. J is where it
2141 should be. */
114cbee6
RS
2142 int j, k, temp;
2143
2144 k = temp_stack.top - (regno - FIRST_STACK_REG);
2145 j = (temp_stack.top
1ccbefce 2146 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
114cbee6
RS
2147
2148 temp = temp_stack.reg[k];
2149 temp_stack.reg[k] = temp_stack.reg[j];
2150 temp_stack.reg[j] = temp;
2151 }
2152 }
2153
a05924f9 2154 /* Emit insns before INSN to make sure the reg-stack is in the right
114cbee6
RS
2155 order. */
2156
a05924f9 2157 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
114cbee6
RS
2158
2159 /* Make the needed input register substitutions. Do death notes and
0f41302f 2160 clobbers too, because these are for inputs, not outputs. */
114cbee6 2161
f62a15e3 2162 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1ccbefce 2163 if (STACK_REG_P (recog_data.operand[i]))
114cbee6 2164 {
1ccbefce 2165 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
114cbee6 2166
41374e13 2167 gcc_assert (regnum >= 0);
114cbee6 2168
1ccbefce 2169 replace_reg (recog_data.operand_loc[i], regnum);
114cbee6
RS
2170 }
2171
2172 for (i = 0; i < n_notes; i++)
2173 if (note_kind[i] == REG_DEAD)
2174 {
2175 int regnum = get_hard_regnum (regstack, note_reg[i]);
2176
41374e13 2177 gcc_assert (regnum >= 0);
114cbee6
RS
2178
2179 replace_reg (note_loc[i], regnum);
2180 }
2181
2182 for (i = 0; i < n_clobbers; i++)
2183 {
2184 /* It's OK for a CLOBBER to reference a reg that is not live.
2185 Don't try to replace it in that case. */
2186 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2187
2188 if (regnum >= 0)
2189 {
2190 /* Sigh - clobbers always have QImode. But replace_reg knows
41374e13 2191 that these regs can't be MODE_INT and will assert. Just put
114cbee6
RS
2192 the right reg there without calling replace_reg. */
2193
99a59310 2194 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
114cbee6
RS
2195 }
2196 }
2197
0f41302f 2198 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
114cbee6 2199
f62a15e3 2200 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1ccbefce 2201 if (STACK_REG_P (recog_data.operand[i]))
114cbee6
RS
2202 {
2203 /* An input reg is implicitly popped if it is tied to an
0f41302f 2204 output, or if there is a CLOBBER for it. */
114cbee6
RS
2205 int j;
2206
2207 for (j = 0; j < n_clobbers; j++)
1ccbefce 2208 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
114cbee6
RS
2209 break;
2210
f62a15e3 2211 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
114cbee6 2212 {
1ccbefce
RH
2213 /* recog_data.operand[i] might not be at the top of stack.
2214 But that's OK, because all we need to do is pop the
2215 right number of regs off of the top of the reg-stack.
2216 record_asm_stack_regs guaranteed that all implicitly
2217 popped regs were grouped at the top of the reg-stack. */
114cbee6
RS
2218
2219 CLEAR_HARD_REG_BIT (regstack->reg_set,
2220 regstack->reg[regstack->top]);
2221 regstack->top--;
2222 }
2223 }
2224
2225 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2226 Note that there isn't any need to substitute register numbers.
0f41302f 2227 ??? Explain why this is true. */
114cbee6
RS
2228
2229 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2230 {
2231 /* See if there is an output for this hard reg. */
2232 int j;
2233
2234 for (j = 0; j < n_outputs; j++)
1ccbefce 2235 if (STACK_REG_P (recog_data.operand[j])
ae0ed63a 2236 && REGNO (recog_data.operand[j]) == (unsigned) i)
114cbee6
RS
2237 {
2238 regstack->reg[++regstack->top] = i;
2239 SET_HARD_REG_BIT (regstack->reg_set, i);
2240 break;
2241 }
2242 }
2243
2244 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2245 input that the asm didn't implicitly pop. If the asm didn't
3f5cfed6 2246 implicitly pop an input reg, that reg will still be live.
114cbee6
RS
2247
2248 Note that we can't use find_regno_note here: the register numbers
2249 in the death notes have already been substituted. */
2250
3f5cfed6 2251 for (i = 0; i < n_outputs; i++)
1ccbefce 2252 if (STACK_REG_P (recog_data.operand[i]))
3f5cfed6
JVA
2253 {
2254 int j;
2255
2256 for (j = 0; j < n_notes; j++)
1ccbefce 2257 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
3f5cfed6
JVA
2258 && note_kind[j] == REG_UNUSED)
2259 {
1ccbefce 2260 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
a05924f9 2261 EMIT_AFTER);
3f5cfed6
JVA
2262 break;
2263 }
2264 }
2265
f62a15e3 2266 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1ccbefce 2267 if (STACK_REG_P (recog_data.operand[i]))
114cbee6
RS
2268 {
2269 int j;
2270
2271 for (j = 0; j < n_notes; j++)
1ccbefce 2272 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
3f5cfed6 2273 && note_kind[j] == REG_DEAD
f62a15e3 2274 && TEST_HARD_REG_BIT (regstack->reg_set,
1ccbefce 2275 REGNO (recog_data.operand[i])))
114cbee6 2276 {
1ccbefce 2277 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
a05924f9 2278 EMIT_AFTER);
114cbee6
RS
2279 break;
2280 }
2281 }
2282}
2283\f
48227150
JVA
2284/* Substitute stack hard reg numbers for stack virtual registers in
2285 INSN. Non-stack register numbers are not changed. REGSTACK is the
2286 current stack content. Insns may be emitted as needed to arrange the
ecb63641
EB
2287 stack for the 387 based on the contents of the insn. Return whether
2288 a control flow insn was deleted in the process. */
f37eb5cb 2289
ecb63641 2290static bool
0823efed 2291subst_stack_regs (rtx insn, stack_ptr regstack)
48227150 2292{
b3694847 2293 rtx *note_link, note;
ecb63641 2294 bool control_flow_insn_deleted = false;
b3694847 2295 int i;
48227150 2296
4b4bf941 2297 if (CALL_P (insn))
e075ae69
RH
2298 {
2299 int top = regstack->top;
48227150 2300
e075ae69
RH
2301 /* If there are any floating point parameters to be passed in
2302 registers for this call, make sure they are in the right
2303 order. */
48227150 2304
e075ae69
RH
2305 if (top >= 0)
2306 {
385e0e08 2307 straighten_stack (insn, regstack);
99a59310 2308
e075ae69 2309 /* Now mark the arguments as dead after the call. */
99a59310 2310
e075ae69
RH
2311 while (regstack->top >= 0)
2312 {
2313 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2314 regstack->top--;
2315 }
2316 }
2317 }
48227150
JVA
2318
2319 /* Do the actual substitution if any stack regs are mentioned.
2320 Since we only record whether entire insn mentions stack regs, and
2321 subst_stack_regs_pat only works for patterns that contain stack regs,
2322 we must check each pattern in a parallel here. A call_value_pop could
0f41302f 2323 fail otherwise. */
48227150 2324
21b2cd73 2325 if (stack_regs_mentioned (insn))
48227150 2326 {
f62a15e3 2327 int n_operands = asm_noperands (PATTERN (insn));
114cbee6
RS
2328 if (n_operands >= 0)
2329 {
2330 /* This insn is an `asm' with operands. Decode the operands,
2331 decide how many are inputs, and do register substitution.
0f41302f 2332 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
114cbee6 2333
f62a15e3 2334 subst_asm_stack_regs (insn, regstack);
ecb63641 2335 return control_flow_insn_deleted;
114cbee6
RS
2336 }
2337
48227150 2338 if (GET_CODE (PATTERN (insn)) == PARALLEL)
c166a311 2339 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
48227150
JVA
2340 {
2341 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
736b64dd
JH
2342 {
2343 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2344 XVECEXP (PATTERN (insn), 0, i)
2345 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2346 control_flow_insn_deleted
2347 |= subst_stack_regs_pat (insn, regstack,
2348 XVECEXP (PATTERN (insn), 0, i));
2349 }
48227150
JVA
2350 }
2351 else
ecb63641
EB
2352 control_flow_insn_deleted
2353 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
48227150
JVA
2354 }
2355
2356 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
0f41302f 2357 REG_UNUSED will already have been dealt with, so just return. */
48227150 2358
4b4bf941 2359 if (NOTE_P (insn) || INSN_DELETED_P (insn))
ecb63641 2360 return control_flow_insn_deleted;
48227150 2361
2d0df1f9
RS
2362 /* If this a noreturn call, we can't insert pop insns after it.
2363 Instead, reset the stack state to empty. */
2364 if (CALL_P (insn)
2365 && find_reg_note (insn, REG_NORETURN, NULL))
2366 {
2367 regstack->top = -1;
2368 CLEAR_HARD_REG_SET (regstack->reg_set);
2369 return control_flow_insn_deleted;
2370 }
2371
48227150
JVA
2372 /* If there is a REG_UNUSED note on a stack register on this insn,
2373 the indicated reg must be popped. The REG_UNUSED note is removed,
2374 since the form of the newly emitted pop insn references the reg,
0f41302f 2375 making it no longer `unset'. */
48227150 2376
8e2e89f7 2377 note_link = &REG_NOTES (insn);
48227150
JVA
2378 for (note = *note_link; note; note = XEXP (note, 1))
2379 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2380 {
2381 *note_link = XEXP (note, 1);
a05924f9 2382 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
48227150
JVA
2383 }
2384 else
2385 note_link = &XEXP (note, 1);
ecb63641
EB
2386
2387 return control_flow_insn_deleted;
48227150
JVA
2388}
2389\f
2390/* Change the organization of the stack so that it fits a new basic
2391 block. Some registers might have to be popped, but there can never be
2392 a register live in the new block that is not now live.
2393
a05924f9
JH
2394 Insert any needed insns before or after INSN, as indicated by
2395 WHERE. OLD is the original stack layout, and NEW is the desired
454ff5cb 2396 form. OLD is updated to reflect the code emitted, i.e., it will be
a05924f9 2397 the same as NEW upon return.
48227150
JVA
2398
2399 This function will not preserve block_end[]. But that information
0f41302f 2400 is no longer needed once this has executed. */
48227150
JVA
2401
2402static void
0823efed 2403change_stack (rtx insn, stack_ptr old, stack_ptr new_stack, enum emit_where where)
48227150
JVA
2404{
2405 int reg;
a05924f9 2406 int update_end = 0;
6fb5fa3c 2407 int i;
48227150 2408
385e0e08
RS
2409 /* Stack adjustments for the first insn in a block update the
2410 current_block's stack_in instead of inserting insns directly.
2411 compensate_edges will add the necessary code later. */
2412 if (current_block
2413 && starting_stack_p
2414 && where == EMIT_BEFORE)
2415 {
d858f359 2416 BLOCK_INFO (current_block)->stack_in = *new_stack;
385e0e08 2417 starting_stack_p = false;
d858f359 2418 *old = *new_stack;
385e0e08
RS
2419 return;
2420 }
2421
a05924f9
JH
2422 /* We will be inserting new insns "backwards". If we are to insert
2423 after INSN, find the next insn, and insert before it. */
48227150 2424
a05924f9
JH
2425 if (where == EMIT_AFTER)
2426 {
a813c111 2427 if (current_block && BB_END (current_block) == insn)
a05924f9
JH
2428 update_end = 1;
2429 insn = NEXT_INSN (insn);
2430 }
48227150 2431
6fb5fa3c
DB
2432 /* Initialize partially dead variables. */
2433 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
d858f359 2434 if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
6fb5fa3c
DB
2435 && !TEST_HARD_REG_BIT (old->reg_set, i))
2436 {
2437 old->reg[++old->top] = i;
2438 SET_HARD_REG_BIT (old->reg_set, i);
2439 emit_insn_before (gen_rtx_SET (VOIDmode,
2440 FP_MODE_REG (i, SFmode), not_a_num), insn);
2441 }
2442
0f41302f 2443 /* Pop any registers that are not needed in the new block. */
48227150 2444
0cc5dec1
RS
2445 /* If the destination block's stack already has a specified layout
2446 and contains two or more registers, use a more intelligent algorithm
2447 to pop registers that minimizes the number number of fxchs below. */
d858f359 2448 if (new_stack->top > 0)
0cc5dec1
RS
2449 {
2450 bool slots[REG_STACK_SIZE];
2451 int pops[REG_STACK_SIZE];
00fc055e 2452 int next, dest, topsrc;
0cc5dec1
RS
2453
2454 /* First pass to determine the free slots. */
d858f359
KG
2455 for (reg = 0; reg <= new_stack->top; reg++)
2456 slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
0cc5dec1
RS
2457
2458 /* Second pass to allocate preferred slots. */
00fc055e 2459 topsrc = -1;
d858f359
KG
2460 for (reg = old->top; reg > new_stack->top; reg--)
2461 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
0cc5dec1
RS
2462 {
2463 dest = -1;
d858f359
KG
2464 for (next = 0; next <= new_stack->top; next++)
2465 if (!slots[next] && new_stack->reg[next] == old->reg[reg])
0cc5dec1 2466 {
00fc055e
RS
2467 /* If this is a preference for the new top of stack, record
2468 the fact by remembering it's old->reg in topsrc. */
d858f359 2469 if (next == new_stack->top)
00fc055e 2470 topsrc = reg;
0cc5dec1
RS
2471 slots[next] = true;
2472 dest = next;
2473 break;
2474 }
2475 pops[reg] = dest;
2476 }
2477 else
2478 pops[reg] = reg;
2479
00fc055e
RS
2480 /* Intentionally, avoid placing the top of stack in it's correct
2481 location, if we still need to permute the stack below and we
2482 can usefully place it somewhere else. This is the case if any
2483 slot is still unallocated, in which case we should place the
2484 top of stack there. */
2485 if (topsrc != -1)
d858f359 2486 for (reg = 0; reg < new_stack->top; reg++)
00fc055e
RS
2487 if (!slots[reg])
2488 {
2489 pops[topsrc] = reg;
d858f359 2490 slots[new_stack->top] = false;
00fc055e
RS
2491 slots[reg] = true;
2492 break;
2493 }
2494
0cc5dec1 2495 /* Third pass allocates remaining slots and emits pop insns. */
d858f359
KG
2496 next = new_stack->top;
2497 for (reg = old->top; reg > new_stack->top; reg--)
0cc5dec1
RS
2498 {
2499 dest = pops[reg];
2500 if (dest == -1)
2501 {
2502 /* Find next free slot. */
2503 while (slots[next])
00fc055e
RS
2504 next--;
2505 dest = next--;
0cc5dec1
RS
2506 }
2507 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2508 EMIT_BEFORE);
2509 }
2510 }
2511 else
00fc055e
RS
2512 {
2513 /* The following loop attempts to maximize the number of times we
2514 pop the top of the stack, as this permits the use of the faster
2515 ffreep instruction on platforms that support it. */
2516 int live, next;
2517
2518 live = 0;
2519 for (reg = 0; reg <= old->top; reg++)
d858f359 2520 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
00fc055e
RS
2521 live++;
2522
2523 next = live;
2524 while (old->top >= live)
d858f359 2525 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
00fc055e 2526 {
d858f359 2527 while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
00fc055e
RS
2528 next--;
2529 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
0cc5dec1 2530 EMIT_BEFORE);
00fc055e
RS
2531 }
2532 else
2533 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
0cc5dec1 2534 EMIT_BEFORE);
00fc055e 2535 }
48227150 2536
d858f359 2537 if (new_stack->top == -2)
48227150
JVA
2538 {
2539 /* If the new block has never been processed, then it can inherit
0f41302f 2540 the old stack order. */
48227150 2541
d858f359
KG
2542 new_stack->top = old->top;
2543 memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
48227150
JVA
2544 }
2545 else
2546 {
2547 /* This block has been entered before, and we must match the
0f41302f 2548 previously selected stack order. */
48227150
JVA
2549
2550 /* By now, the only difference should be the order of the stack,
0f41302f 2551 not their depth or liveliness. */
48227150 2552
d858f359
KG
2553 gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2554 gcc_assert (old->top == new_stack->top);
48227150 2555
d858f359 2556 /* If the stack is not empty (new_stack->top != -1), loop here emitting
a6a2274a 2557 swaps until the stack is correct.
80832cf2
HB
2558
2559 The worst case number of swaps emitted is N + 2, where N is the
48227150
JVA
2560 depth of the stack. In some cases, the reg at the top of
2561 stack may be correct, but swapped anyway in order to fix
2562 other regs. But since we never swap any other reg away from
0f41302f 2563 its correct slot, this algorithm will converge. */
48227150 2564
d858f359 2565 if (new_stack->top != -1)
80832cf2
HB
2566 do
2567 {
2568 /* Swap the reg at top of stack into the position it is
2569 supposed to be in, until the correct top of stack appears. */
48227150 2570
d858f359 2571 while (old->reg[old->top] != new_stack->reg[new_stack->top])
80832cf2 2572 {
d858f359
KG
2573 for (reg = new_stack->top; reg >= 0; reg--)
2574 if (new_stack->reg[reg] == old->reg[old->top])
80832cf2 2575 break;
48227150 2576
41374e13 2577 gcc_assert (reg != -1);
48227150 2578
80832cf2
HB
2579 emit_swap_insn (insn, old,
2580 FP_MODE_REG (old->reg[reg], DFmode));
2581 }
48227150 2582
80832cf2 2583 /* See if any regs remain incorrect. If so, bring an
48227150 2584 incorrect reg to the top of stack, and let the while loop
0f41302f 2585 above fix it. */
48227150 2586
d858f359
KG
2587 for (reg = new_stack->top; reg >= 0; reg--)
2588 if (new_stack->reg[reg] != old->reg[reg])
80832cf2
HB
2589 {
2590 emit_swap_insn (insn, old,
2591 FP_MODE_REG (old->reg[reg], DFmode));
2592 break;
2593 }
2594 } while (reg >= 0);
48227150 2595
0f41302f 2596 /* At this point there must be no differences. */
48227150
JVA
2597
2598 for (reg = old->top; reg >= 0; reg--)
d858f359 2599 gcc_assert (old->reg[reg] == new_stack->reg[reg]);
48227150 2600 }
a05924f9
JH
2601
2602 if (update_end)
a813c111 2603 BB_END (current_block) = PREV_INSN (insn);
48227150
JVA
2604}
2605\f
a05924f9 2606/* Print stack configuration. */
48227150
JVA
2607
2608static void
0823efed 2609print_stack (FILE *file, stack_ptr s)
48227150 2610{
a05924f9
JH
2611 if (! file)
2612 return;
48227150 2613
a05924f9
JH
2614 if (s->top == -2)
2615 fprintf (file, "uninitialized\n");
2616 else if (s->top == -1)
2617 fprintf (file, "empty\n");
2618 else
e075ae69 2619 {
a05924f9
JH
2620 int i;
2621 fputs ("[ ", file);
2622 for (i = 0; i <= s->top; ++i)
2623 fprintf (file, "%d ", s->reg[i]);
2624 fputs ("]\n", file);
e075ae69 2625 }
a05924f9
JH
2626}
2627\f
2628/* This function was doing life analysis. We now let the regular live
a6a2274a 2629 code do it's job, so we only need to check some extra invariants
a05924f9
JH
2630 that reg-stack expects. Primary among these being that all registers
2631 are initialized before use.
48227150 2632
a05924f9
JH
2633 The function returns true when code was emitted to CFG edges and
2634 commit_edge_insertions needs to be called. */
48227150 2635
a05924f9 2636static int
0c20a65f 2637convert_regs_entry (void)
a05924f9 2638{
e0082a72 2639 int inserted = 0;
a05924f9 2640 edge e;
628f6a4e 2641 edge_iterator ei;
48227150 2642
fa283935 2643 /* Load something into each stack register live at function entry.
a05924f9 2644 Such live registers can be caused by uninitialized variables or
a6a2274a 2645 functions not returning values on all paths. In order to keep
a05924f9 2646 the push/pop code happy, and to not scrog the register stack, we
a6a2274a 2647 must put something in these registers. Use a QNaN.
48227150 2648
d55d8fc7 2649 Note that we are inserting converted code here. This code is
a05924f9 2650 never seen by the convert_regs pass. */
48227150 2651
fefa31b5 2652 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
a05924f9
JH
2653 {
2654 basic_block block = e->dest;
2655 block_info bi = BLOCK_INFO (block);
2656 int reg, top = -1;
48227150 2657
a05924f9 2658 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
fa283935 2659 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
a05924f9
JH
2660 {
2661 rtx init;
48227150 2662
a05924f9 2663 bi->stack_in.reg[++top] = reg;
48227150 2664
a05924f9
JH
2665 init = gen_rtx_SET (VOIDmode,
2666 FP_MODE_REG (FIRST_STACK_REG, SFmode),
d2032ad8 2667 not_a_num);
a05924f9
JH
2668 insert_insn_on_edge (init, e);
2669 inserted = 1;
2670 }
48227150 2671
a05924f9
JH
2672 bi->stack_in.top = top;
2673 }
48227150 2674
a05924f9
JH
2675 return inserted;
2676}
48227150 2677
a05924f9
JH
2678/* Construct the desired stack for function exit. This will either
2679 be `empty', or the function return value at top-of-stack. */
48227150 2680
a05924f9 2681static void
0c20a65f 2682convert_regs_exit (void)
a05924f9
JH
2683{
2684 int value_reg_low, value_reg_high;
0823efed 2685 stack_ptr output_stack;
a05924f9 2686 rtx retvalue;
48227150 2687
a05924f9
JH
2688 retvalue = stack_result (current_function_decl);
2689 value_reg_low = value_reg_high = -1;
2690 if (retvalue)
2691 {
2692 value_reg_low = REGNO (retvalue);
09e18274 2693 value_reg_high = END_HARD_REGNO (retvalue) - 1;
a05924f9 2694 }
48227150 2695
fefa31b5 2696 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->stack_in;
a05924f9
JH
2697 if (value_reg_low == -1)
2698 output_stack->top = -1;
2699 else
2700 {
2701 int reg;
48227150 2702
a05924f9
JH
2703 output_stack->top = value_reg_high - value_reg_low;
2704 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2705 {
bc9c2952 2706 output_stack->reg[value_reg_high - reg] = reg;
a05924f9
JH
2707 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2708 }
2709 }
48227150 2710}
48227150 2711
0ac2a27a
RS
2712/* Copy the stack info from the end of edge E's source block to the
2713 start of E's destination block. */
1c320f82
RS
2714
2715static void
2716propagate_stack (edge e)
2717{
0823efed
DN
2718 stack_ptr src_stack = &BLOCK_INFO (e->src)->stack_out;
2719 stack_ptr dest_stack = &BLOCK_INFO (e->dest)->stack_in;
0ac2a27a 2720 int reg;
1c320f82 2721
0ac2a27a
RS
2722 /* Preserve the order of the original stack, but check whether
2723 any pops are needed. */
2724 dest_stack->top = -1;
2725 for (reg = 0; reg <= src_stack->top; ++reg)
2726 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2727 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
6fb5fa3c
DB
2728
2729 /* Push in any partially dead values. */
2730 for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2731 if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2732 && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2733 dest_stack->reg[++dest_stack->top] = reg;
1c320f82
RS
2734}
2735
2736
2737/* Adjust the stack of edge E's source block on exit to match the stack
2738 of it's target block upon input. The stack layouts of both blocks
2739 should have been defined by now. */
2740
0ecf09f9 2741static bool
10d22567 2742compensate_edge (edge e)
0ecf09f9 2743{
579e4a82 2744 basic_block source = e->src, target = e->dest;
0823efed
DN
2745 stack_ptr target_stack = &BLOCK_INFO (target)->stack_in;
2746 stack_ptr source_stack = &BLOCK_INFO (source)->stack_out;
579e4a82 2747 struct stack_def regstack;
0ecf09f9
JH
2748 int reg;
2749
10d22567
ZD
2750 if (dump_file)
2751 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
0ecf09f9 2752
1c320f82
RS
2753 gcc_assert (target_stack->top != -2);
2754
2755 /* Check whether stacks are identical. */
579e4a82 2756 if (target_stack->top == source_stack->top)
0ecf09f9 2757 {
1c320f82 2758 for (reg = target_stack->top; reg >= 0; --reg)
579e4a82 2759 if (target_stack->reg[reg] != source_stack->reg[reg])
0ecf09f9
JH
2760 break;
2761
2762 if (reg == -1)
2763 {
10d22567
ZD
2764 if (dump_file)
2765 fprintf (dump_file, "no changes needed\n");
a6a2274a 2766 return false;
0ecf09f9 2767 }
0ecf09f9 2768 }
0ecf09f9 2769
10d22567 2770 if (dump_file)
1c320f82 2771 {
10d22567
ZD
2772 fprintf (dump_file, "correcting stack to ");
2773 print_stack (dump_file, target_stack);
0ecf09f9
JH
2774 }
2775
579e4a82 2776 /* Abnormal calls may appear to have values live in st(0), but the
0ecf09f9 2777 abnormal return path will not have actually loaded the values. */
579e4a82 2778 if (e->flags & EDGE_ABNORMAL_CALL)
0ecf09f9
JH
2779 {
2780 /* Assert that the lifetimes are as we expect -- one value
2781 live at st(0) on the end of the source block, and no
6f7e2c0c
RS
2782 values live at the beginning of the destination block.
2783 For complex return values, we may have st(1) live as well. */
2784 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
579e4a82
RS
2785 gcc_assert (target_stack->top == -1);
2786 return false;
2787 }
0ecf09f9 2788
579e4a82
RS
2789 /* Handle non-call EH edges specially. The normal return path have
2790 values in registers. These will be popped en masse by the unwind
2791 library. */
2792 if (e->flags & EDGE_EH)
2793 {
2794 gcc_assert (target_stack->top == -1);
2795 return false;
0ecf09f9
JH
2796 }
2797
579e4a82
RS
2798 /* We don't support abnormal edges. Global takes care to
2799 avoid any live register across them, so we should never
2800 have to insert instructions on such edges. */
2801 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2802
2803 /* Make a copy of source_stack as change_stack is destructive. */
2804 regstack = *source_stack;
2805
0ecf09f9
JH
2806 /* It is better to output directly to the end of the block
2807 instead of to the edge, because emit_swap can do minimal
2808 insn scheduling. We can do this when there is only one
2809 edge out, and it is not abnormal. */
579e4a82 2810 if (EDGE_COUNT (source->succs) == 1)
0ecf09f9 2811 {
579e4a82
RS
2812 current_block = source;
2813 change_stack (BB_END (source), &regstack, target_stack,
2814 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
0ecf09f9
JH
2815 }
2816 else
2817 {
2818 rtx seq, after;
2819
0ecf09f9
JH
2820 current_block = NULL;
2821 start_sequence ();
2822
2f937369 2823 /* ??? change_stack needs some point to emit insns after. */
2e040219 2824 after = emit_note (NOTE_INSN_DELETED);
0ecf09f9 2825
579e4a82 2826 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
0ecf09f9 2827
2f937369 2828 seq = get_insns ();
0ecf09f9
JH
2829 end_sequence ();
2830
2831 insert_insn_on_edge (seq, e);
2832 return true;
2833 }
2834 return false;
2835}
2836
1c320f82
RS
2837/* Traverse all non-entry edges in the CFG, and emit the necessary
2838 edge compensation code to change the stack from stack_out of the
2839 source block to the stack_in of the destination block. */
2840
2841static bool
10d22567 2842compensate_edges (void)
1c320f82
RS
2843{
2844 bool inserted = false;
2845 basic_block bb;
2846
385e0e08
RS
2847 starting_stack_p = false;
2848
11cd3bed 2849 FOR_EACH_BB_FN (bb, cfun)
fefa31b5 2850 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
1c320f82
RS
2851 {
2852 edge e;
2853 edge_iterator ei;
2854
2855 FOR_EACH_EDGE (e, ei, bb->succs)
10d22567 2856 inserted |= compensate_edge (e);
1c320f82
RS
2857 }
2858 return inserted;
2859}
2860
0ac2a27a
RS
2861/* Select the better of two edges E1 and E2 to use to determine the
2862 stack layout for their shared destination basic block. This is
2863 typically the more frequently executed. The edge E1 may be NULL
2864 (in which case E2 is returned), but E2 is always non-NULL. */
2865
2866static edge
2867better_edge (edge e1, edge e2)
2868{
2869 if (!e1)
2870 return e2;
2871
2872 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2873 return e1;
2874 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2875 return e2;
2876
2877 if (e1->count > e2->count)
2878 return e1;
2879 if (e1->count < e2->count)
2880 return e2;
2881
2882 /* Prefer critical edges to minimize inserting compensation code on
2883 critical edges. */
2884
2885 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2886 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2887
a4d05547 2888 /* Avoid non-deterministic behavior. */
0ac2a27a
RS
2889 return (e1->src->index < e2->src->index) ? e1 : e2;
2890}
2891
12929514
EB
2892/* Convert stack register references in one block. Return true if the CFG
2893 has been modified in the process. */
a05924f9 2894
12929514 2895static bool
10d22567 2896convert_regs_1 (basic_block block)
48227150 2897{
0ecf09f9 2898 struct stack_def regstack;
a05924f9 2899 block_info bi = BLOCK_INFO (block);
1c320f82 2900 int reg;
a05924f9 2901 rtx insn, next;
ecb63641 2902 bool control_flow_insn_deleted = false;
12929514 2903 bool cfg_altered = false;
b5b8b0ac 2904 int debug_insns_with_starting_stack = 0;
48227150 2905
d6fc0492 2906 any_malformed_asm = false;
0ecf09f9 2907
0ac2a27a 2908 /* Choose an initial stack layout, if one hasn't already been chosen. */
0ecf09f9 2909 if (bi->stack_in.top == -2)
b3cd99cd 2910 {
0ac2a27a
RS
2911 edge e, beste = NULL;
2912 edge_iterator ei;
2913
2914 /* Select the best incoming edge (typically the most frequent) to
2915 use as a template for this basic block. */
2916 FOR_EACH_EDGE (e, ei, block->preds)
2917 if (BLOCK_INFO (e->src)->done)
2918 beste = better_edge (beste, e);
2919
b3cd99cd 2920 if (beste)
1c320f82 2921 propagate_stack (beste);
b3cd99cd
EB
2922 else
2923 {
2924 /* No predecessors. Create an arbitrary input stack. */
b3cd99cd
EB
2925 bi->stack_in.top = -1;
2926 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2927 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2928 bi->stack_in.reg[++bi->stack_in.top] = reg;
2929 }
2930 }
a6a2274a 2931
10d22567 2932 if (dump_file)
48227150 2933 {
10d22567
ZD
2934 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2935 print_stack (dump_file, &bi->stack_in);
a05924f9 2936 }
48227150 2937
a05924f9
JH
2938 /* Process all insns in this block. Keep track of NEXT so that we
2939 don't process insns emitted while substituting in INSN. */
385e0e08 2940 current_block = block;
a813c111 2941 next = BB_HEAD (block);
a05924f9 2942 regstack = bi->stack_in;
385e0e08
RS
2943 starting_stack_p = true;
2944
a05924f9
JH
2945 do
2946 {
2947 insn = next;
2948 next = NEXT_INSN (insn);
48227150 2949
a05924f9 2950 /* Ensure we have not missed a block boundary. */
41374e13 2951 gcc_assert (next);
a813c111 2952 if (insn == BB_END (block))
a05924f9
JH
2953 next = NULL;
2954
2955 /* Don't bother processing unless there is a stack reg
2956 mentioned or if it's a CALL_INSN. */
b5b8b0ac
AO
2957 if (DEBUG_INSN_P (insn))
2958 {
2959 if (starting_stack_p)
2960 debug_insns_with_starting_stack++;
2961 else
2962 {
a7a110bb 2963 subst_all_stack_regs_in_debug_insn (insn, &regstack);
b5b8b0ac
AO
2964
2965 /* Nothing must ever die at a debug insn. If something
2966 is referenced in it that becomes dead, it should have
2967 died before and the reference in the debug insn
2968 should have been removed so as to avoid changing code
2969 generation. */
2970 gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
2971 }
2972 }
2973 else if (stack_regs_mentioned (insn)
2974 || CALL_P (insn))
a05924f9 2975 {
10d22567 2976 if (dump_file)
a05924f9 2977 {
10d22567 2978 fprintf (dump_file, " insn %d input stack: ",
a05924f9 2979 INSN_UID (insn));
10d22567 2980 print_stack (dump_file, &regstack);
a05924f9 2981 }
ecb63641 2982 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
385e0e08 2983 starting_stack_p = false;
48227150 2984 }
a05924f9
JH
2985 }
2986 while (next);
48227150 2987
b5b8b0ac
AO
2988 if (debug_insns_with_starting_stack)
2989 {
2990 /* Since it's the first non-debug instruction that determines
2991 the stack requirements of the current basic block, we refrain
2992 from updating debug insns before it in the loop above, and
2993 fix them up here. */
2994 for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
2995 insn = NEXT_INSN (insn))
2996 {
2997 if (!DEBUG_INSN_P (insn))
2998 continue;
2999
3000 debug_insns_with_starting_stack--;
a7a110bb 3001 subst_all_stack_regs_in_debug_insn (insn, &bi->stack_in);
b5b8b0ac
AO
3002 }
3003 }
3004
10d22567 3005 if (dump_file)
a05924f9 3006 {
10d22567 3007 fprintf (dump_file, "Expected live registers [");
a05924f9
JH
3008 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3009 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
10d22567
ZD
3010 fprintf (dump_file, " %d", reg);
3011 fprintf (dump_file, " ]\nOutput stack: ");
3012 print_stack (dump_file, &regstack);
a05924f9 3013 }
48227150 3014
a813c111 3015 insn = BB_END (block);
4b4bf941 3016 if (JUMP_P (insn))
a05924f9
JH
3017 insn = PREV_INSN (insn);
3018
3019 /* If the function is declared to return a value, but it returns one
3020 in only some cases, some registers might come live here. Emit
3021 necessary moves for them. */
3022
3023 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3024 {
3025 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3026 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
48227150 3027 {
a05924f9 3028 rtx set;
48227150 3029
10d22567
ZD
3030 if (dump_file)
3031 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
48227150 3032
5ad85f7d 3033 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
3c030e88 3034 insn = emit_insn_after (set, insn);
ecb63641 3035 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
a05924f9
JH
3036 }
3037 }
b8698a0f 3038
de582cfb
EB
3039 /* Amongst the insns possibly deleted during the substitution process above,
3040 might have been the only trapping insn in the block. We purge the now
3041 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3042 called at the end of convert_regs. The order in which we process the
3043 blocks ensures that we never delete an already processed edge.
3044
ecb63641
EB
3045 Note that, at this point, the CFG may have been damaged by the emission
3046 of instructions after an abnormal call, which moves the basic block end
3047 (and is the reason why we call fixup_abnormal_edges later). So we must
3048 be sure that the trapping insn has been deleted before trying to purge
3049 dead edges, otherwise we risk purging valid edges.
3050
de582cfb
EB
3051 ??? We are normally supposed not to delete trapping insns, so we pretend
3052 that the insns deleted above don't actually trap. It would have been
3053 better to detect this earlier and avoid creating the EH edge in the first
3054 place, still, but we don't have enough information at that time. */
3055
ecb63641 3056 if (control_flow_insn_deleted)
12929514 3057 cfg_altered |= purge_dead_edges (block);
48227150 3058
d6fc0492
RH
3059 /* Something failed if the stack lives don't match. If we had malformed
3060 asms, we zapped the instruction itself, but that didn't produce the
3061 same pattern of register kills as before. */
b8698a0f 3062
56b138ae
RS
3063 gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
3064 || any_malformed_asm);
0ecf09f9 3065 bi->stack_out = regstack;
579e4a82 3066 bi->done = true;
12929514
EB
3067
3068 return cfg_altered;
48227150 3069}
48227150 3070
12929514
EB
3071/* Convert registers in all blocks reachable from BLOCK. Return true if the
3072 CFG has been modified in the process. */
a05924f9 3073
12929514 3074static bool
10d22567 3075convert_regs_2 (basic_block block)
48227150 3076{
a05924f9 3077 basic_block *stack, *sp;
12929514 3078 bool cfg_altered = false;
48227150 3079
de582cfb
EB
3080 /* We process the blocks in a top-down manner, in a way such that one block
3081 is only processed after all its predecessors. The number of predecessors
b8698a0f 3082 of every block has already been computed. */
de582cfb 3083
0cae8d31 3084 stack = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
a05924f9 3085 sp = stack;
48227150 3086
a05924f9 3087 *sp++ = block;
48227150 3088
a05924f9
JH
3089 do
3090 {
3091 edge e;
628f6a4e 3092 edge_iterator ei;
48227150 3093
a05924f9 3094 block = *--sp;
48227150 3095
b3cd99cd
EB
3096 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3097 some dead EH outgoing edge after the deletion of the trapping
3098 insn inside the block. Since the number of predecessors of
3099 BLOCK's successors was computed based on the initial edge set,
3100 we check the necessity to process some of these successors
3101 before such an edge deletion may happen. However, there is
3102 a pitfall: if BLOCK is the only predecessor of a successor and
3103 the edge between them happens to be deleted, the successor
3104 becomes unreachable and should not be processed. The problem
3105 is that there is no way to preventively detect this case so we
3106 stack the successor in all cases and hand over the task of
3107 fixing up the discrepancy to convert_regs_1. */
3108
628f6a4e 3109 FOR_EACH_EDGE (e, ei, block->succs)
0ecf09f9 3110 if (! (e->flags & EDGE_DFS_BACK))
a05924f9 3111 {
754d9299
JM
3112 BLOCK_INFO (e->dest)->predecessors--;
3113 if (!BLOCK_INFO (e->dest)->predecessors)
628f6a4e 3114 *sp++ = e->dest;
a05924f9 3115 }
de582cfb 3116
12929514 3117 cfg_altered |= convert_regs_1 (block);
48227150 3118 }
a05924f9
JH
3119 while (sp != stack);
3120
3d5eef4c 3121 free (stack);
12929514
EB
3122
3123 return cfg_altered;
48227150 3124}
841fc5a1 3125
a05924f9
JH
3126/* Traverse all basic blocks in a function, converting the register
3127 references in each insn from the "flat" register file that gcc uses,
3128 to the stack-like registers the 387 uses. */
3129
00b9ce5c 3130static void
10d22567 3131convert_regs (void)
48227150 3132{
12929514 3133 bool cfg_altered = false;
e0082a72
ZD
3134 int inserted;
3135 basic_block b;
a05924f9 3136 edge e;
628f6a4e 3137 edge_iterator ei;
48227150 3138
a05924f9
JH
3139 /* Initialize uninitialized registers on function entry. */
3140 inserted = convert_regs_entry ();
48227150 3141
a05924f9
JH
3142 /* Construct the desired stack for function exit. */
3143 convert_regs_exit ();
fefa31b5 3144 BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->done = 1;
48227150 3145
a05924f9
JH
3146 /* ??? Future: process inner loops first, and give them arbitrary
3147 initial stacks which emit_swap_insn can modify. This ought to
1ae58c30 3148 prevent double fxch that often appears at the head of a loop. */
48227150 3149
a05924f9 3150 /* Process all blocks reachable from all entry points. */
fefa31b5 3151 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
12929514 3152 cfg_altered |= convert_regs_2 (e->dest);
a6a2274a
KH
3153
3154 /* ??? Process all unreachable blocks. Though there's no excuse
a05924f9 3155 for keeping these even when not optimizing. */
11cd3bed 3156 FOR_EACH_BB_FN (b, cfun)
a05924f9 3157 {
a05924f9 3158 block_info bi = BLOCK_INFO (b);
48227150 3159
a05924f9 3160 if (! bi->done)
12929514 3161 cfg_altered |= convert_regs_2 (b);
a05924f9 3162 }
1c320f82 3163
ba5e9aca
EB
3164 /* We must fix up abnormal edges before inserting compensation code
3165 because both mechanisms insert insns on edges. */
3166 inserted |= fixup_abnormal_edges ();
3167
10d22567 3168 inserted |= compensate_edges ();
1c320f82 3169
9dca2ad5 3170 clear_aux_for_blocks ();
48227150 3171
a05924f9
JH
3172 if (inserted)
3173 commit_edge_insertions ();
48227150 3174
12929514
EB
3175 if (cfg_altered)
3176 cleanup_cfg (0);
3177
10d22567
ZD
3178 if (dump_file)
3179 fputc ('\n', dump_file);
00b9ce5c
RS
3180}
3181\f
3182/* Convert register usage from "flat" register file usage to a "stack
3183 register file. FILE is the dump file, if used.
48227150 3184
00b9ce5c
RS
3185 Construct a CFG and run life analysis. Then convert each insn one
3186 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3187 code duplication created when the converter inserts pop insns on
3188 the edges. */
3189
cf4d5c75 3190static bool
10d22567 3191reg_to_stack (void)
00b9ce5c
RS
3192{
3193 basic_block bb;
3194 int i;
3195 int max_uid;
3196
3197 /* Clean up previous run. */
9771b263 3198 stack_regs_mentioned_data.release ();
00b9ce5c
RS
3199
3200 /* See if there is something to do. Flow analysis is quite
3201 expensive so we might save some compilation time. */
3202 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
6fb5fa3c 3203 if (df_regs_ever_live_p (i))
00b9ce5c
RS
3204 break;
3205 if (i > LAST_STACK_REG)
3206 return false;
3207
6fb5fa3c
DB
3208 df_note_add_problem ();
3209 df_analyze ();
3210
00b9ce5c
RS
3211 mark_dfs_back_edges ();
3212
3213 /* Set up block info for each basic block. */
3214 alloc_aux_for_blocks (sizeof (struct block_info_def));
11cd3bed 3215 FOR_EACH_BB_FN (bb, cfun)
00b9ce5c
RS
3216 {
3217 block_info bi = BLOCK_INFO (bb);
3218 edge_iterator ei;
3219 edge e;
3220 int reg;
3221
3222 FOR_EACH_EDGE (e, ei, bb->preds)
3223 if (!(e->flags & EDGE_DFS_BACK)
fefa31b5 3224 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
00b9ce5c
RS
3225 bi->predecessors++;
3226
3227 /* Set current register status at last instruction `uninitialized'. */
3228 bi->stack_in.top = -2;
3229
3230 /* Copy live_at_end and live_at_start into temporaries. */
3231 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3232 {
6fb5fa3c 3233 if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
00b9ce5c 3234 SET_HARD_REG_BIT (bi->out_reg_set, reg);
6fb5fa3c 3235 if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
00b9ce5c
RS
3236 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3237 }
3238 }
3239
3240 /* Create the replacement registers up front. */
3241 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3242 {
3243 enum machine_mode mode;
3244 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3245 mode != VOIDmode;
3246 mode = GET_MODE_WIDER_MODE (mode))
3247 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3248 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3249 mode != VOIDmode;
3250 mode = GET_MODE_WIDER_MODE (mode))
3251 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3252 }
3253
3254 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3255
3256 /* A QNaN for initializing uninitialized variables.
3257
3258 ??? We can't load from constant memory in PIC mode, because
3259 we're inserting these instructions before the prologue and
3260 the PIC register hasn't been set up. In that case, fall back
11f48903 3261 on zero, which we can get from `fldz'. */
00b9ce5c 3262
dc4d7240
JH
3263 if ((flag_pic && !TARGET_64BIT)
3264 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
00b9ce5c
RS
3265 not_a_num = CONST0_RTX (SFmode);
3266 else
3267 {
11f48903
UB
3268 REAL_VALUE_TYPE r;
3269
3270 real_nan (&r, "", 1, SFmode);
3271 not_a_num = CONST_DOUBLE_FROM_REAL_VALUE (r, SFmode);
00b9ce5c
RS
3272 not_a_num = force_const_mem (SFmode, not_a_num);
3273 }
3274
3275 /* Allocate a cache for stack_regs_mentioned. */
3276 max_uid = get_max_uid ();
9771b263
DN
3277 stack_regs_mentioned_data.create (max_uid + 1);
3278 memset (stack_regs_mentioned_data.address (),
0a83b1b0 3279 0, sizeof (char) * (max_uid + 1));
00b9ce5c 3280
10d22567 3281 convert_regs ();
00b9ce5c
RS
3282
3283 free_aux_for_blocks ();
3284 return true;
48227150 3285}
48227150 3286#endif /* STACK_REGS */
ef330312
PB
3287\f
3288static bool
3289gate_handle_stack_regs (void)
3290{
3291#ifdef STACK_REGS
3292 return 1;
3293#else
3294 return 0;
3295#endif
3296}
3297
27a4cd48
DM
3298namespace {
3299
3300const pass_data pass_data_stack_regs =
6fb5fa3c 3301{
27a4cd48
DM
3302 RTL_PASS, /* type */
3303 "*stack_regs", /* name */
3304 OPTGROUP_NONE, /* optinfo_flags */
3305 true, /* has_gate */
3306 false, /* has_execute */
3307 TV_REG_STACK, /* tv_id */
3308 0, /* properties_required */
3309 0, /* properties_provided */
3310 0, /* properties_destroyed */
3311 0, /* todo_flags_start */
3312 0, /* todo_flags_finish */
6fb5fa3c
DB
3313};
3314
27a4cd48
DM
3315class pass_stack_regs : public rtl_opt_pass
3316{
3317public:
c3284718
RS
3318 pass_stack_regs (gcc::context *ctxt)
3319 : rtl_opt_pass (pass_data_stack_regs, ctxt)
27a4cd48
DM
3320 {}
3321
3322 /* opt_pass methods: */
3323 bool gate () { return gate_handle_stack_regs (); }
3324
3325}; // class pass_stack_regs
3326
3327} // anon namespace
3328
3329rtl_opt_pass *
3330make_pass_stack_regs (gcc::context *ctxt)
3331{
3332 return new pass_stack_regs (ctxt);
3333}
3334
ef330312
PB
3335/* Convert register usage from flat register file usage to a stack
3336 register file. */
c2924966 3337static unsigned int
ef330312
PB
3338rest_of_handle_stack_regs (void)
3339{
3340#ifdef STACK_REGS
6fb5fa3c
DB
3341 reg_to_stack ();
3342 regstack_completed = 1;
ef330312 3343#endif
c2924966 3344 return 0;
ef330312
PB
3345}
3346
27a4cd48
DM
3347namespace {
3348
3349const pass_data pass_data_stack_regs_run =
ef330312 3350{
27a4cd48
DM
3351 RTL_PASS, /* type */
3352 "stack", /* name */
3353 OPTGROUP_NONE, /* optinfo_flags */
3354 false, /* has_gate */
3355 true, /* has_execute */
3356 TV_REG_STACK, /* tv_id */
3357 0, /* properties_required */
3358 0, /* properties_provided */
3359 0, /* properties_destroyed */
3360 0, /* todo_flags_start */
3361 ( TODO_df_finish | TODO_verify_rtl_sharing ), /* todo_flags_finish */
ef330312 3362};
27a4cd48
DM
3363
3364class pass_stack_regs_run : public rtl_opt_pass
3365{
3366public:
c3284718
RS
3367 pass_stack_regs_run (gcc::context *ctxt)
3368 : rtl_opt_pass (pass_data_stack_regs_run, ctxt)
27a4cd48
DM
3369 {}
3370
3371 /* opt_pass methods: */
3372 unsigned int execute () { return rest_of_handle_stack_regs (); }
3373
3374}; // class pass_stack_regs_run
3375
3376} // anon namespace
3377
3378rtl_opt_pass *
3379make_pass_stack_regs_run (gcc::context *ctxt)
3380{
3381 return new pass_stack_regs_run (ctxt);
3382}