]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/reg-stack.c
2015-10-29 Andrew MacLeod <amacleod@redhat.com>
[thirdparty/gcc.git] / gcc / reg-stack.c
CommitLineData
535825e6 1/* Register to Stack convert for GNU compiler.
d353bf18 2 Copyright (C) 1992-2015 Free Software Foundation, Inc.
535825e6 3
f12b58b3 4 This file is part of GCC.
535825e6 5
f12b58b3 6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8c4c00c1 8 the Free Software Foundation; either version 3, or (at your option)
f3d96a58 9 any later version.
535825e6 10
f12b58b3 11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
535825e6 15
f3d96a58 16 You should have received a copy of the GNU General Public License
8c4c00c1 17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
535825e6 19
20/* This pass converts stack-like registers from the "flat register
21 file" model that gcc uses, to a stack convention that the 387 uses.
22
23 * The form of the input:
24
25 On input, the function consists of insn that have had their
26 registers fully allocated to a set of "virtual" registers. Note that
27 the word "virtual" is used differently here than elsewhere in gcc: for
28 each virtual stack reg, there is a hard reg, but the mapping between
29 them is not known until this pass is run. On output, hard register
30 numbers have been substituted, and various pop and exchange insns have
31 been emitted. The hard register numbers and the virtual register
32 numbers completely overlap - before this pass, all stack register
bed3e6b4 33 numbers are virtual, and afterward they are all hard.
535825e6 34
35 The virtual registers can be manipulated normally by gcc, and their
36 semantics are the same as for normal registers. After the hard
37 register numbers are substituted, the semantics of an insn containing
38 stack-like regs are not the same as for an insn with normal regs: for
39 instance, it is not safe to delete an insn that appears to be a no-op
40 move. In general, no insn containing hard regs should be changed
41 after this pass is done.
42
43 * The form of the output:
44
45 After this pass, hard register numbers represent the distance from
46 the current top of stack to the desired register. A reference to
47 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48 represents the register just below that, and so forth. Also, REG_DEAD
49 notes indicate whether or not a stack register should be popped.
50
51 A "swap" insn looks like a parallel of two patterns, where each
52 pattern is a SET: one sets A to B, the other B to A.
53
54 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
56 will replace the existing stack top, not push a new value.
57
58 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59 SET_SRC is REG or MEM.
60
fc738e1d 61 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
535825e6 62 appears ambiguous. As a special case, the presence of a REG_DEAD note
63 for FIRST_STACK_REG differentiates between a load insn and a pop.
64
65 If a REG_DEAD is present, the insn represents a "pop" that discards
66 the top of the register stack. If there is no REG_DEAD note, then the
67 insn represents a "dup" or a push of the current top of stack onto the
68 stack.
69
70 * Methodology:
71
72 Existing REG_DEAD and REG_UNUSED notes for stack registers are
73 deleted and recreated from scratch. REG_DEAD is never created for a
74 SET_DEST, only REG_UNUSED.
75
bed3e6b4 76 * asm_operands:
535825e6 77
bed3e6b4 78 There are several rules on the usage of stack-like regs in
79 asm_operands insns. These rules apply only to the operands that are
80 stack-like regs:
81
82 1. Given a set of input regs that die in an asm_operands, it is
83 necessary to know which are implicitly popped by the asm, and
84 which must be explicitly popped by gcc.
85
86 An input reg that is implicitly popped by the asm must be
87 explicitly clobbered, unless it is constrained to match an
88 output operand.
89
90 2. For any input reg that is implicitly popped by an asm, it is
91 necessary to know how to adjust the stack to compensate for the pop.
92 If any non-popped input is closer to the top of the reg-stack than
93 the implicitly popped reg, it would not be possible to know what the
94 stack looked like - it's not clear how the rest of the stack "slides
95 up".
96
97 All implicitly popped input regs must be closer to the top of
98 the reg-stack than any input that is not implicitly popped.
99
100 3. It is possible that if an input dies in an insn, reload might
101 use the input reg for an output reload. Consider this example:
102
103 asm ("foo" : "=t" (a) : "f" (b));
104
105 This asm says that input B is not popped by the asm, and that
0c6d8c36 106 the asm pushes a result onto the reg-stack, i.e., the stack is one
bed3e6b4 107 deeper after the asm than it was before. But, it is possible that
108 reload will think that it can use the same reg for both the input and
109 the output, if input B dies in this insn.
110
111 If any input operand uses the "f" constraint, all output reg
112 constraints must use the "&" earlyclobber.
113
114 The asm above would be written as
115
116 asm ("foo" : "=&t" (a) : "f" (b));
117
118 4. Some operands need to be in particular places on the stack. All
119 output operands fall in this category - there is no other way to
120 know which regs the outputs appear in unless the user indicates
121 this in the constraints.
122
123 Output operands must specifically indicate which reg an output
124 appears in after an asm. "=f" is not allowed: the operand
125 constraints must select a class with a single reg.
126
127 5. Output operands may not be "inserted" between existing stack regs.
128 Since no 387 opcode uses a read/write operand, all output operands
129 are dead before the asm_operands, and are pushed by the asm_operands.
130 It makes no sense to push anywhere but the top of the reg-stack.
131
132 Output operands must start at the top of the reg-stack: output
133 operands may not "skip" a reg.
134
135 6. Some asm statements may need extra stack space for internal
136 calculations. This can be guaranteed by clobbering stack registers
137 unrelated to the inputs and outputs.
138
139 Here are a couple of reasonable asms to want to write. This asm
140 takes one input, which is internally popped, and produces two outputs.
141
142 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
143
144 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
145 and replaces them with one output. The user must code the "st(1)"
146 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
147
148 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
149
f3d96a58 150*/
535825e6 151\f
535825e6 152#include "config.h"
405711de 153#include "system.h"
805e22b2 154#include "coretypes.h"
9ef16211 155#include "backend.h"
7c29e30e 156#include "target.h"
9ef16211 157#include "rtl.h"
7c29e30e 158#include "tree.h"
9ef16211 159#include "df.h"
7953c610 160#include "tm_p.h"
bed3e6b4 161#include "insn-config.h"
535825e6 162#include "regs.h"
7c29e30e 163#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
ce71a9e6 164#include "recog.h"
7c29e30e 165#include "alias.h"
166#include "varasm.h"
167#include "rtl-error.h"
168#include "flags.h"
94ea8568 169#include "cfgrtl.h"
170#include "cfganal.h"
171#include "cfgbuild.h"
172#include "cfgcleanup.h"
f388bf5f 173#include "reload.h"
77fce4cd 174#include "tree-pass.h"
db1b48f5 175#include "rtl-iter.h"
9500df50 176
a50d6416 177#ifdef STACK_REGS
178
1f3233d1 179/* We use this array to cache info about insns, because otherwise we
180 spend too much time in stack_regs_mentioned_p.
181
182 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
183 the insn uses stack registers, two indicates the insn does not use
184 stack registers. */
f1f41a6c 185static vec<char> stack_regs_mentioned_data;
535825e6 186
535825e6 187#define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
188
3e6933a8 189int regstack_completed = 0;
190
535825e6 191/* This is the basic stack record. TOP is an index into REG[] such
192 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
193
5e7a3068 194 If TOP is -2, REG[] is not yet initialized. Stack initialization
195 consists of placing each live reg in array `reg' and setting `top'
196 appropriately.
197
198 REG_SET indicates which registers are live. */
535825e6 199
200typedef struct stack_def
201{
202 int top; /* index to top stack element */
203 HARD_REG_SET reg_set; /* set of live registers */
32478e31 204 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
2b15d2ba 205} *stack_ptr;
535825e6 206
2617fe26 207/* This is used to carry information about basic blocks. It is
f3d96a58 208 attached to the AUX field of the standard CFG block. */
535825e6 209
f3d96a58 210typedef struct block_info_def
211{
212 struct stack_def stack_in; /* Input stack configuration. */
ecb7b891 213 struct stack_def stack_out; /* Output stack configuration. */
f3d96a58 214 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
215 int done; /* True if block already converted. */
d1b17fc8 216 int predecessors; /* Number of predecessors that need
ecb7b891 217 to be visited. */
f3d96a58 218} *block_info;
535825e6 219
f3d96a58 220#define BLOCK_INFO(B) ((block_info) (B)->aux)
535825e6 221
f3d96a58 222/* Passed to change_stack to indicate where to emit insns. */
223enum emit_where
224{
225 EMIT_AFTER,
226 EMIT_BEFORE
227};
535825e6 228
f3d96a58 229/* The block we're currently working on. */
230static basic_block current_block;
231
9d97464a 232/* In the current_block, whether we're processing the first register
e4da226b 233 stack or call instruction, i.e. the regstack is currently the
9d97464a 234 same as BLOCK_INFO(current_block)->stack_in. */
235static bool starting_stack_p;
236
45498ea1 237/* This is the register file for all register after conversion. */
a5dff55e 238static rtx
239 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
240
241#define FP_MODE_REG(regno,mode) \
33181afc 242 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
535825e6 243
f3d96a58 244/* Used to initialize uninitialized registers. */
62ec6441 245static rtx not_a_num;
535825e6 246
535825e6 247/* Forward declarations */
248
5493cb9a 249static int stack_regs_mentioned_p (const_rtx pat);
2b15d2ba 250static void pop_stack (stack_ptr, int);
3ad4992f 251static rtx *get_true_reg (rtx *);
252
8fe8e576 253static int check_asm_stack_operands (rtx_insn *);
78f55ca8 254static void get_asm_operands_in_out (rtx, int *, int *);
3ad4992f 255static rtx stack_result (tree);
256static void replace_reg (rtx *, int);
8fe8e576 257static void remove_regno_note (rtx_insn *, enum reg_note, unsigned int);
2b15d2ba 258static int get_hard_regnum (stack_ptr, rtx);
8fe8e576 259static rtx_insn *emit_pop_insn (rtx_insn *, stack_ptr, rtx, enum emit_where);
260static void swap_to_top (rtx_insn *, stack_ptr, rtx, rtx);
261static bool move_for_stack_reg (rtx_insn *, stack_ptr, rtx);
262static bool move_nan_for_stack_reg (rtx_insn *, stack_ptr, rtx);
3ad4992f 263static int swap_rtx_condition_1 (rtx);
8fe8e576 264static int swap_rtx_condition (rtx_insn *);
265static void compare_for_stack_reg (rtx_insn *, stack_ptr, rtx);
266static bool subst_stack_regs_pat (rtx_insn *, stack_ptr, rtx);
267static void subst_asm_stack_regs (rtx_insn *, stack_ptr);
268static bool subst_stack_regs (rtx_insn *, stack_ptr);
269static void change_stack (rtx_insn *, stack_ptr, stack_ptr, enum emit_where);
2b15d2ba 270static void print_stack (FILE *, stack_ptr);
8fe8e576 271static rtx_insn *next_flags_user (rtx_insn *);
b67ec609 272\f
7fd957fe 273/* Return nonzero if any stack register is mentioned somewhere within PAT. */
b67ec609 274
275static int
5493cb9a 276stack_regs_mentioned_p (const_rtx pat)
b67ec609 277{
19cb6b50 278 const char *fmt;
279 int i;
ce71a9e6 280
281 if (STACK_REG_P (pat))
282 return 1;
283
284 fmt = GET_RTX_FORMAT (GET_CODE (pat));
285 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
b67ec609 286 {
ce71a9e6 287 if (fmt[i] == 'E')
288 {
19cb6b50 289 int j;
ce71a9e6 290
291 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
292 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
293 return 1;
294 }
295 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
296 return 1;
b67ec609 297 }
ce71a9e6 298
b67ec609 299 return 0;
300}
301
ce71a9e6 302/* Return nonzero if INSN mentions stacked registers, else return zero. */
b67ec609 303
304int
5493cb9a 305stack_regs_mentioned (const_rtx insn)
b67ec609 306{
ce71a9e6 307 unsigned int uid, max;
308 int test;
309
f1f41a6c 310 if (! INSN_P (insn) || !stack_regs_mentioned_data.exists ())
b67ec609 311 return 0;
ce71a9e6 312
b67ec609 313 uid = INSN_UID (insn);
f1f41a6c 314 max = stack_regs_mentioned_data.length ();
ce71a9e6 315 if (uid >= max)
316 {
317 /* Allocate some extra size to avoid too many reallocs, but
318 do not grow too quickly. */
9500df50 319 max = uid + uid / 20 + 1;
f1f41a6c 320 stack_regs_mentioned_data.safe_grow_cleared (max);
ce71a9e6 321 }
322
f1f41a6c 323 test = stack_regs_mentioned_data[uid];
ce71a9e6 324 if (test == 0)
325 {
326 /* This insn has yet to be examined. Do so now. */
327 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
f1f41a6c 328 stack_regs_mentioned_data[uid] = test;
ce71a9e6 329 }
330
331 return test == 1;
b67ec609 332}
ce71a9e6 333\f
334static rtx ix86_flags_rtx;
b67ec609 335
8fe8e576 336static rtx_insn *
337next_flags_user (rtx_insn *insn)
ce71a9e6 338{
2617fe26 339 /* Search forward looking for the first use of this value.
ce71a9e6 340 Stop at block boundaries. */
ce71a9e6 341
5496dbfc 342 while (insn != BB_END (current_block))
ce71a9e6 343 {
344 insn = NEXT_INSN (insn);
ce71a9e6 345
9204e736 346 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
2617fe26 347 return insn;
ce71a9e6 348
6d7dc5b9 349 if (CALL_P (insn))
8fe8e576 350 return NULL;
ce71a9e6 351 }
8fe8e576 352 return NULL;
ce71a9e6 353}
535825e6 354\f
9d97464a 355/* Reorganize the stack into ascending numbers, before this insn. */
a5dff55e 356
357static void
8fe8e576 358straighten_stack (rtx_insn *insn, stack_ptr regstack)
a5dff55e 359{
360 struct stack_def temp_stack;
361 int top;
362
f43291cf 363 /* If there is only a single register on the stack, then the stack is
364 already in increasing order and no reorganization is needed.
365
366 Similarly if the stack is empty. */
367 if (regstack->top <= 0)
368 return;
369
58bf3e9d 370 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
a5dff55e 371
372 for (top = temp_stack.top = regstack->top; top >= 0; top--)
ce71a9e6 373 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
2617fe26 374
9d97464a 375 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
a5dff55e 376}
a97edd5b 377
45498ea1 378/* Pop a register from the stack. */
a97edd5b 379
380static void
2b15d2ba 381pop_stack (stack_ptr regstack, int regno)
a97edd5b 382{
383 int top = regstack->top;
384
385 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
386 regstack->top--;
45498ea1 387 /* If regno was not at the top of stack then adjust stack. */
a97edd5b 388 if (regstack->reg [top] != regno)
389 {
390 int i;
391 for (i = regstack->top; i >= 0; i--)
392 if (regstack->reg [i] == regno)
393 {
394 int j;
395 for (j = i; j < top; j++)
396 regstack->reg [j] = regstack->reg [j + 1];
397 break;
398 }
399 }
400}
535825e6 401\f
402/* Return a pointer to the REG expression within PAT. If PAT is not a
403 REG, possible enclosed by a conversion rtx, return the inner part of
a92771b8 404 PAT that stopped the search. */
535825e6 405
406static rtx *
3ad4992f 407get_true_reg (rtx *pat)
535825e6 408{
a5dff55e 409 for (;;)
ce71a9e6 410 switch (GET_CODE (*pat))
a5dff55e 411 {
ce71a9e6 412 case SUBREG:
974e2c0c 413 /* Eliminate FP subregister accesses in favor of the
ce71a9e6 414 actual FP register in use. */
415 {
416 rtx subreg;
c2dd480c 417 if (STACK_REG_P (subreg = SUBREG_REG (*pat)))
a5dff55e 418 {
701e46d0 419 int regno_off = subreg_regno_offset (REGNO (subreg),
420 GET_MODE (subreg),
421 SUBREG_BYTE (*pat),
422 GET_MODE (*pat));
423 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
a5dff55e 424 GET_MODE (subreg));
a5dff55e 425 return pat;
426 }
ce71a9e6 427 }
428 case FLOAT:
429 case FIX:
430 case FLOAT_EXTEND:
431 pat = & XEXP (*pat, 0);
994db390 432 break;
433
fafa4a36 434 case UNSPEC:
05986501 435 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP
cb5d0a18 436 || XINT (*pat, 1) == UNSPEC_FILD_ATOMIC)
738a6975 437 pat = & XVECEXP (*pat, 0, 0);
438 return pat;
fafa4a36 439
994db390 440 case FLOAT_TRUNCATE:
441 if (!flag_unsafe_math_optimizations)
442 return pat;
443 pat = & XEXP (*pat, 0);
444 break;
2d0ff363 445
446 default:
447 return pat;
a5dff55e 448 }
535825e6 449}
535825e6 450\f
299a3cdd 451/* Set if we find any malformed asms in a block. */
452static bool any_malformed_asm;
453
f3d96a58 454/* There are many rules that an asm statement for stack-like regs must
bed3e6b4 455 follow. Those rules are explained at the top of this file: the rule
a92771b8 456 numbers below refer to that explanation. */
bed3e6b4 457
f3d96a58 458static int
8fe8e576 459check_asm_stack_operands (rtx_insn *insn)
bed3e6b4 460{
461 int i;
bed3e6b4 462 int n_clobbers;
463 int malformed_asm = 0;
464 rtx body = PATTERN (insn);
465
f3d96a58 466 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
467 char implicitly_dies[FIRST_PSEUDO_REGISTER];
bed3e6b4 468
ef2c4a29 469 rtx *clobber_reg = 0;
78e49515 470 int n_inputs, n_outputs;
bed3e6b4 471
d315aa96 472 /* Find out what the constraints require. If no constraint
71ed03a4 473 alternative matches, this asm is malformed. */
835b8178 474 extract_constrain_insn (insn);
78e49515 475
8eaaac4d 476 preprocess_constraints (insn);
78e49515 477
78f55ca8 478 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
78e49515 479
757fefec 480 if (which_alternative < 0)
78e49515 481 {
482 malformed_asm = 1;
483 /* Avoid further trouble with this insn. */
484 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
f3d96a58 485 return 0;
78e49515 486 }
89a7a6a5 487 const operand_alternative *op_alt = which_op_alt ();
bed3e6b4 488
a92771b8 489 /* Strip SUBREGs here to make the following code simpler. */
ed420a25 490 for (i = 0; i < recog_data.n_operands; i++)
491 if (GET_CODE (recog_data.operand[i]) == SUBREG
8ad4c111 492 && REG_P (SUBREG_REG (recog_data.operand[i])))
ed420a25 493 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
bed3e6b4 494
495 /* Set up CLOBBER_REG. */
496
497 n_clobbers = 0;
bed3e6b4 498
499 if (GET_CODE (body) == PARALLEL)
fc738e1d 500 {
f7f3687c 501 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
bed3e6b4 502
fc738e1d 503 for (i = 0; i < XVECLEN (body, 0); i++)
504 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
505 {
506 rtx clobber = XVECEXP (body, 0, i);
507 rtx reg = XEXP (clobber, 0);
bed3e6b4 508
8ad4c111 509 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
fc738e1d 510 reg = SUBREG_REG (reg);
511
512 if (STACK_REG_P (reg))
513 {
514 clobber_reg[n_clobbers] = reg;
515 n_clobbers++;
516 }
517 }
518 }
bed3e6b4 519
520 /* Enforce rule #4: Output operands must specifically indicate which
521 reg an output appears in after an asm. "=f" is not allowed: the
522 operand constraints must select a class with a single reg.
523
524 Also enforce rule #5: Output operands must start at the top of
a92771b8 525 the reg-stack: output operands may not "skip" a reg. */
bed3e6b4 526
f3d96a58 527 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
bed3e6b4 528 for (i = 0; i < n_outputs; i++)
ed420a25 529 if (STACK_REG_P (recog_data.operand[i]))
8ac2b0ed 530 {
757fefec 531 if (reg_class_size[(int) op_alt[i].cl] != 1)
8ac2b0ed 532 {
cb8bacb6 533 error_for_asm (insn, "output constraint %d must specify a single register", i);
8ac2b0ed 534 malformed_asm = 1;
535 }
2617fe26 536 else
8be6418a 537 {
538 int j;
539
540 for (j = 0; j < n_clobbers; j++)
541 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
542 {
cb8bacb6 543 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
8be6418a 544 i, reg_names [REGNO (clobber_reg[j])]);
545 malformed_asm = 1;
546 break;
547 }
548 if (j == n_clobbers)
549 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
550 }
8ac2b0ed 551 }
bed3e6b4 552
553
554 /* Search for first non-popped reg. */
555 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
556 if (! reg_used_as_output[i])
557 break;
558
559 /* If there are any other popped regs, that's an error. */
560 for (; i < LAST_STACK_REG + 1; i++)
561 if (reg_used_as_output[i])
562 break;
563
564 if (i != LAST_STACK_REG + 1)
565 {
cb8bacb6 566 error_for_asm (insn, "output regs must be grouped at top of stack");
bed3e6b4 567 malformed_asm = 1;
568 }
569
570 /* Enforce rule #2: All implicitly popped input regs must be closer
571 to the top of the reg-stack than any input that is not implicitly
a92771b8 572 popped. */
bed3e6b4 573
f3d96a58 574 memset (implicitly_dies, 0, sizeof (implicitly_dies));
78e49515 575 for (i = n_outputs; i < n_outputs + n_inputs; i++)
ed420a25 576 if (STACK_REG_P (recog_data.operand[i]))
bed3e6b4 577 {
578 /* An input reg is implicitly popped if it is tied to an
a92771b8 579 output, or if there is a CLOBBER for it. */
bed3e6b4 580 int j;
581
582 for (j = 0; j < n_clobbers; j++)
ed420a25 583 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
bed3e6b4 584 break;
585
757fefec 586 if (j < n_clobbers || op_alt[i].matches >= 0)
ed420a25 587 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
bed3e6b4 588 }
589
590 /* Search for first non-popped reg. */
591 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
592 if (! implicitly_dies[i])
593 break;
594
595 /* If there are any other popped regs, that's an error. */
596 for (; i < LAST_STACK_REG + 1; i++)
597 if (implicitly_dies[i])
598 break;
599
600 if (i != LAST_STACK_REG + 1)
601 {
602 error_for_asm (insn,
cb8bacb6 603 "implicitly popped regs must be grouped at top of stack");
bed3e6b4 604 malformed_asm = 1;
605 }
606
d6e0e053 607 /* Enforce rule #3: If any input operand uses the "f" constraint, all
bed3e6b4 608 output constraints must use the "&" earlyclobber.
609
f3d96a58 610 ??? Detect this more deterministically by having constrain_asm_operands
a92771b8 611 record any earlyclobber. */
bed3e6b4 612
78e49515 613 for (i = n_outputs; i < n_outputs + n_inputs; i++)
757fefec 614 if (op_alt[i].matches == -1)
bed3e6b4 615 {
616 int j;
617
618 for (j = 0; j < n_outputs; j++)
ed420a25 619 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
bed3e6b4 620 {
621 error_for_asm (insn,
1e5fcbe2 622 "output operand %d must use %<&%> constraint", j);
bed3e6b4 623 malformed_asm = 1;
624 }
625 }
626
627 if (malformed_asm)
628 {
629 /* Avoid further trouble with this insn. */
941522d6 630 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
299a3cdd 631 any_malformed_asm = true;
f3d96a58 632 return 0;
d315aa96 633 }
535825e6 634
f3d96a58 635 return 1;
535825e6 636}
637\f
bed3e6b4 638/* Calculate the number of inputs and outputs in BODY, an
639 asm_operands. N_OPERANDS is the total number of operands, and
640 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
a92771b8 641 placed. */
bed3e6b4 642
78f55ca8 643static void
644get_asm_operands_in_out (rtx body, int *pout, int *pin)
bed3e6b4 645{
78f55ca8 646 rtx asmop = extract_asm_operands (body);
647
648 *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
649 *pout = (recog_data.n_operands
650 - ASM_OPERANDS_INPUT_LENGTH (asmop)
651 - ASM_OPERANDS_LABEL_LENGTH (asmop));
bed3e6b4 652}
869072dd 653
24084825 654/* If current function returns its result in an fp stack register,
1166733c 655 return the REG. Otherwise, return 0. */
24084825 656
a5dff55e 657static rtx
3ad4992f 658stack_result (tree decl)
24084825 659{
f4b5ce94 660 rtx result;
24084825 661
f4b5ce94 662 /* If the value is supposed to be returned in memory, then clearly
663 it is not returned in a stack register. */
45550790 664 if (aggregate_value_p (DECL_RESULT (decl), decl))
f4b5ce94 665 return 0;
666
0e8e37b2 667 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
6e5b5ba9 668 if (result != 0)
46b3ff29 669 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
670 decl, true);
24084825 671
1166733c 672 return result != 0 && STACK_REG_P (result) ? result : 0;
24084825 673}
535825e6 674\f
535825e6 675
ce71a9e6 676/*
677 * This section deals with stack register substitution, and forms the second
678 * pass over the RTL.
679 */
535825e6 680
681/* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
a92771b8 682 the desired hard REGNO. */
535825e6 683
684static void
3ad4992f 685replace_reg (rtx *reg, int regno)
535825e6 686{
4e9abdcc 687 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
04e579b6 688 gcc_assert (STACK_REG_P (*reg));
535825e6 689
cee7491d 690 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
04e579b6 691 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
5d574ad0 692
a5dff55e 693 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
535825e6 694}
695
696/* Remove a note of type NOTE, which must be found, for register
a92771b8 697 number REGNO from INSN. Remove only one such note. */
535825e6 698
699static void
8fe8e576 700remove_regno_note (rtx_insn *insn, enum reg_note note, unsigned int regno)
535825e6 701{
6659485c 702 rtx *note_link, this_rtx;
535825e6 703
337d789b 704 note_link = &REG_NOTES (insn);
6659485c 705 for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
706 if (REG_NOTE_KIND (this_rtx) == note
707 && REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
535825e6 708 {
6659485c 709 *note_link = XEXP (this_rtx, 1);
535825e6 710 return;
711 }
712 else
6659485c 713 note_link = &XEXP (this_rtx, 1);
535825e6 714
04e579b6 715 gcc_unreachable ();
535825e6 716}
717
718/* Find the hard register number of virtual register REG in REGSTACK.
719 The hard register number is relative to the top of the stack. -1 is
a92771b8 720 returned if the register is not found. */
535825e6 721
722static int
2b15d2ba 723get_hard_regnum (stack_ptr regstack, rtx reg)
535825e6 724{
725 int i;
726
04e579b6 727 gcc_assert (STACK_REG_P (reg));
535825e6 728
729 for (i = regstack->top; i >= 0; i--)
730 if (regstack->reg[i] == REGNO (reg))
731 break;
732
733 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
734}
535825e6 735\f
736/* Emit an insn to pop virtual register REG before or after INSN.
737 REGSTACK is the stack state after INSN and is updated to reflect this
ce71a9e6 738 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
739 is represented as a SET whose destination is the register to be popped
740 and source is the top of stack. A death note for the top of stack
a92771b8 741 cases the movdf pattern to pop. */
535825e6 742
8fe8e576 743static rtx_insn *
744emit_pop_insn (rtx_insn *insn, stack_ptr regstack, rtx reg, enum emit_where where)
535825e6 745{
8fe8e576 746 rtx_insn *pop_insn;
747 rtx pop_rtx;
535825e6 748 int hard_regno;
749
5545a6c8 750 /* For complex types take care to pop both halves. These may survive in
751 CLOBBER and USE expressions. */
752 if (COMPLEX_MODE_P (GET_MODE (reg)))
753 {
754 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
755 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
756
8fe8e576 757 pop_insn = NULL;
5545a6c8 758 if (get_hard_regnum (regstack, reg1) >= 0)
2617fe26 759 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
5545a6c8 760 if (get_hard_regnum (regstack, reg2) >= 0)
2617fe26 761 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
04e579b6 762 gcc_assert (pop_insn);
5545a6c8 763 return pop_insn;
764 }
765
535825e6 766 hard_regno = get_hard_regnum (regstack, reg);
767
04e579b6 768 gcc_assert (hard_regno >= FIRST_STACK_REG);
535825e6 769
d1f9b275 770 pop_rtx = gen_rtx_SET (FP_MODE_REG (hard_regno, DFmode),
ce71a9e6 771 FP_MODE_REG (FIRST_STACK_REG, DFmode));
535825e6 772
f3d96a58 773 if (where == EMIT_AFTER)
9dda7915 774 pop_insn = emit_insn_after (pop_rtx, insn);
f3d96a58 775 else
9dda7915 776 pop_insn = emit_insn_before (pop_rtx, insn);
535825e6 777
a1ddb869 778 add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode));
535825e6 779
780 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
781 = regstack->reg[regstack->top];
782 regstack->top -= 1;
783 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
784
785 return pop_insn;
786}
787\f
f3d96a58 788/* Emit an insn before or after INSN to swap virtual register REG with
789 the top of stack. REGSTACK is the stack state before the swap, and
790 is updated to reflect the swap. A swap insn is represented as a
791 PARALLEL of two patterns: each pattern moves one reg to the other.
535825e6 792
a92771b8 793 If REG is already at the top of the stack, no insn is emitted. */
535825e6 794
795static void
8fe8e576 796emit_swap_insn (rtx_insn *insn, stack_ptr regstack, rtx reg)
535825e6 797{
5e7a3068 798 int hard_regno;
f3d96a58 799 rtx swap_rtx;
dfcf26a5 800 int other_reg; /* swap regno temps */
8fe8e576 801 rtx_insn *i1; /* the stack-reg insn prior to INSN */
5e7a3068 802 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
535825e6 803
5e7a3068 804 hard_regno = get_hard_regnum (regstack, reg);
805
535825e6 806 if (hard_regno == FIRST_STACK_REG)
807 return;
b8c362b7 808 if (hard_regno == -1)
809 {
810 /* Something failed if the register wasn't on the stack. If we had
811 malformed asms, we zapped the instruction itself, but that didn't
812 produce the same pattern of register sets as before. To prevent
813 further failure, adjust REGSTACK to include REG at TOP. */
814 gcc_assert (any_malformed_asm);
815 regstack->reg[++regstack->top] = REGNO (reg);
816 return;
817 }
818 gcc_assert (hard_regno >= FIRST_STACK_REG);
535825e6 819
5e7a3068 820 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
dfcf26a5 821 std::swap (regstack->reg[regstack->top], regstack->reg[other_reg]);
535825e6 822
f3d96a58 823 /* Find the previous insn involving stack regs, but don't pass a
824 block boundary. */
825 i1 = NULL;
5496dbfc 826 if (current_block && insn != BB_HEAD (current_block))
5e7a3068 827 {
8fe8e576 828 rtx_insn *tmp = PREV_INSN (insn);
829 rtx_insn *limit = PREV_INSN (BB_HEAD (current_block));
281d2538 830 while (tmp != limit)
f3d96a58 831 {
6d7dc5b9 832 if (LABEL_P (tmp)
833 || CALL_P (tmp)
83458610 834 || NOTE_INSN_BASIC_BLOCK_P (tmp)
6d7dc5b9 835 || (NONJUMP_INSN_P (tmp)
f3d96a58 836 && stack_regs_mentioned (tmp)))
837 {
838 i1 = tmp;
839 break;
840 }
841 tmp = PREV_INSN (tmp);
842 }
843 }
844
845 if (i1 != NULL_RTX
846 && (i1set = single_set (i1)) != NULL_RTX)
847 {
848 rtx i1src = *get_true_reg (&SET_SRC (i1set));
5e7a3068 849 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
535825e6 850
5e7a3068 851 /* If the previous register stack push was from the reg we are to
a92771b8 852 swap with, omit the swap. */
5e7a3068 853
8ad4c111 854 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
855 && REG_P (i1src)
97b330ca 856 && REGNO (i1src) == (unsigned) hard_regno - 1
5e7a3068 857 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
858 return;
859
860 /* If the previous insn wrote to the reg we are to swap with,
861 omit the swap. */
862
8ad4c111 863 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
864 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
5e7a3068 865 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
866 return;
867 }
868
9d97464a 869 /* Avoid emitting the swap if this is the first register stack insn
870 of the current_block. Instead update the current_block's stack_in
871 and let compensate edges take care of this for us. */
872 if (current_block && starting_stack_p)
873 {
874 BLOCK_INFO (current_block)->stack_in = *regstack;
875 starting_stack_p = false;
876 return;
877 }
878
ce71a9e6 879 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
880 FP_MODE_REG (FIRST_STACK_REG, XFmode));
f3d96a58 881
882 if (i1)
9dda7915 883 emit_insn_after (swap_rtx, i1);
f3d96a58 884 else if (current_block)
5496dbfc 885 emit_insn_before (swap_rtx, BB_HEAD (current_block));
f3d96a58 886 else
887 emit_insn_before (swap_rtx, insn);
535825e6 888}
889\f
0bfbd311 890/* Emit an insns before INSN to swap virtual register SRC1 with
891 the top of stack and virtual register SRC2 with second stack
892 slot. REGSTACK is the stack state before the swaps, and
893 is updated to reflect the swaps. A swap insn is represented as a
894 PARALLEL of two patterns: each pattern moves one reg to the other.
895
896 If SRC1 and/or SRC2 are already at the right place, no swap insn
897 is emitted. */
898
899static void
8fe8e576 900swap_to_top (rtx_insn *insn, stack_ptr regstack, rtx src1, rtx src2)
0bfbd311 901{
902 struct stack_def temp_stack;
dfcf26a5 903 int regno, j, k;
0bfbd311 904
905 temp_stack = *regstack;
906
907 /* Place operand 1 at the top of stack. */
908 regno = get_hard_regnum (&temp_stack, src1);
04e579b6 909 gcc_assert (regno >= 0);
0bfbd311 910 if (regno != FIRST_STACK_REG)
911 {
912 k = temp_stack.top - (regno - FIRST_STACK_REG);
913 j = temp_stack.top;
914
dfcf26a5 915 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
0bfbd311 916 }
917
918 /* Place operand 2 next on the stack. */
919 regno = get_hard_regnum (&temp_stack, src2);
04e579b6 920 gcc_assert (regno >= 0);
0bfbd311 921 if (regno != FIRST_STACK_REG + 1)
922 {
923 k = temp_stack.top - (regno - FIRST_STACK_REG);
924 j = temp_stack.top - 1;
925
dfcf26a5 926 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
0bfbd311 927 }
928
929 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
930}
931\f
535825e6 932/* Handle a move to or from a stack register in PAT, which is in INSN.
393522df 933 REGSTACK is the current stack. Return whether a control flow insn
934 was deleted in the process. */
535825e6 935
393522df 936static bool
8fe8e576 937move_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat)
535825e6 938{
a5dff55e 939 rtx *psrc = get_true_reg (&SET_SRC (pat));
940 rtx *pdest = get_true_reg (&SET_DEST (pat));
941 rtx src, dest;
535825e6 942 rtx note;
393522df 943 bool control_flow_insn_deleted = false;
535825e6 944
a5dff55e 945 src = *psrc; dest = *pdest;
946
947 if (STACK_REG_P (src) && STACK_REG_P (dest))
535825e6 948 {
949 /* Write from one stack reg to another. If SRC dies here, then
a92771b8 950 just change the register mapping and delete the insn. */
535825e6 951
a5dff55e 952 note = find_regno_note (insn, REG_DEAD, REGNO (src));
535825e6 953 if (note)
954 {
955 int i;
956
a92771b8 957 /* If this is a no-op move, there must not be a REG_DEAD note. */
04e579b6 958 gcc_assert (REGNO (src) != REGNO (dest));
535825e6 959
960 for (i = regstack->top; i >= 0; i--)
a5dff55e 961 if (regstack->reg[i] == REGNO (src))
535825e6 962 break;
963
99f4aa93 964 /* The destination must be dead, or life analysis is borked. */
04e579b6 965 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
535825e6 966
99f4aa93 967 /* If the source is not live, this is yet another case of
968 uninitialized variables. Load up a NaN instead. */
969 if (i < 0)
970 return move_nan_for_stack_reg (insn, regstack, dest);
971
535825e6 972 /* It is possible that the dest is unused after this insn.
a92771b8 973 If so, just pop the src. */
535825e6 974
a5dff55e 975 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
393522df 976 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
977 else
535825e6 978 {
393522df 979 regstack->reg[i] = REGNO (dest);
980 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
981 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
535825e6 982 }
983
393522df 984 control_flow_insn_deleted |= control_flow_insn_p (insn);
e4bf866d 985 delete_insn (insn);
393522df 986 return control_flow_insn_deleted;
535825e6 987 }
988
a92771b8 989 /* The source reg does not die. */
535825e6 990
991 /* If this appears to be a no-op move, delete it, or else it
992 will confuse the machine description output patterns. But if
993 it is REG_UNUSED, we must pop the reg now, as per-insn processing
a92771b8 994 for REG_UNUSED will not work for deleted insns. */
535825e6 995
a5dff55e 996 if (REGNO (src) == REGNO (dest))
535825e6 997 {
a5dff55e 998 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
f3d96a58 999 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
535825e6 1000
393522df 1001 control_flow_insn_deleted |= control_flow_insn_p (insn);
e4bf866d 1002 delete_insn (insn);
393522df 1003 return control_flow_insn_deleted;
535825e6 1004 }
1005
45498ea1 1006 /* The destination ought to be dead. */
04e579b6 1007 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
535825e6 1008
a5dff55e 1009 replace_reg (psrc, get_hard_regnum (regstack, src));
535825e6 1010
a5dff55e 1011 regstack->reg[++regstack->top] = REGNO (dest);
1012 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1013 replace_reg (pdest, FIRST_STACK_REG);
535825e6 1014 }
a5dff55e 1015 else if (STACK_REG_P (src))
535825e6 1016 {
1017 /* Save from a stack reg to MEM, or possibly integer reg. Since
1018 only top of stack may be saved, emit an exchange first if
a92771b8 1019 needs be. */
535825e6 1020
a5dff55e 1021 emit_swap_insn (insn, regstack, src);
535825e6 1022
a5dff55e 1023 note = find_regno_note (insn, REG_DEAD, REGNO (src));
535825e6 1024 if (note)
1025 {
1026 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1027 regstack->top--;
a5dff55e 1028 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
535825e6 1029 }
e07e720e 1030 else if ((GET_MODE (src) == XFmode)
75ab846a 1031 && regstack->top < REG_STACK_SIZE - 1)
b6e49ac0 1032 {
1033 /* A 387 cannot write an XFmode value to a MEM without
1034 clobbering the source reg. The output code can handle
1035 this by reading back the value from the MEM.
1036 But it is more efficient to use a temp register if one is
1037 available. Push the source value here if the register
1038 stack is not full, and then write the value to memory via
1039 a pop. */
d10ecf6f 1040 rtx push_rtx;
5545a6c8 1041 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
b6e49ac0 1042
e07e720e 1043 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
d10ecf6f 1044 emit_insn_before (push_rtx, insn);
a1ddb869 1045 add_reg_note (insn, REG_DEAD, top_stack_reg);
b6e49ac0 1046 }
535825e6 1047
a5dff55e 1048 replace_reg (psrc, FIRST_STACK_REG);
535825e6 1049 }
04e579b6 1050 else
535825e6 1051 {
64d0b996 1052 rtx pat = PATTERN (insn);
1053
04e579b6 1054 gcc_assert (STACK_REG_P (dest));
1055
535825e6 1056 /* Load from MEM, or possibly integer REG or constant, into the
1057 stack regs. The actual target is always the top of the
1058 stack. The stack mapping is changed to reflect that DEST is
1059 now at top of stack. */
1060
64d0b996 1061 /* The destination ought to be dead. However, there is a
1062 special case with i387 UNSPEC_TAN, where destination is live
1063 (an argument to fptan) but inherent load of 1.0 is modelled
1064 as a load from a constant. */
c4ed2246 1065 if (GET_CODE (pat) == PARALLEL
1066 && XVECLEN (pat, 0) == 2
1067 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1068 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1069 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1070 emit_swap_insn (insn, regstack, dest);
1071 else
64d0b996 1072 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
535825e6 1073
04e579b6 1074 gcc_assert (regstack->top < REG_STACK_SIZE);
535825e6 1075
a5dff55e 1076 regstack->reg[++regstack->top] = REGNO (dest);
1077 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1078 replace_reg (pdest, FIRST_STACK_REG);
535825e6 1079 }
393522df 1080
1081 return control_flow_insn_deleted;
535825e6 1082}
99f4aa93 1083
1084/* A helper function which replaces INSN with a pattern that loads up
1085 a NaN into DEST, then invokes move_for_stack_reg. */
1086
1087static bool
8fe8e576 1088move_nan_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx dest)
99f4aa93 1089{
1090 rtx pat;
1091
1092 dest = FP_MODE_REG (REGNO (dest), SFmode);
d1f9b275 1093 pat = gen_rtx_SET (dest, not_a_num);
99f4aa93 1094 PATTERN (insn) = pat;
1095 INSN_CODE (insn) = -1;
1096
1097 return move_for_stack_reg (insn, regstack, pat);
1098}
535825e6 1099\f
ce71a9e6 1100/* Swap the condition on a branch, if there is one. Return true if we
1101 found a condition to swap. False if the condition was not used as
aa40f561 1102 such. */
ce71a9e6 1103
1104static int
3ad4992f 1105swap_rtx_condition_1 (rtx pat)
5e7a3068 1106{
19cb6b50 1107 const char *fmt;
1108 int i, r = 0;
5e7a3068 1109
6720e96c 1110 if (COMPARISON_P (pat))
5e7a3068 1111 {
1112 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
ce71a9e6 1113 r = 1;
5e7a3068 1114 }
ce71a9e6 1115 else
5e7a3068 1116 {
ce71a9e6 1117 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1118 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
5e7a3068 1119 {
ce71a9e6 1120 if (fmt[i] == 'E')
1121 {
19cb6b50 1122 int j;
5e7a3068 1123
ce71a9e6 1124 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1125 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1126 }
1127 else if (fmt[i] == 'e')
1128 r |= swap_rtx_condition_1 (XEXP (pat, i));
5e7a3068 1129 }
5e7a3068 1130 }
ce71a9e6 1131
1132 return r;
1133}
1134
1135static int
8fe8e576 1136swap_rtx_condition (rtx_insn *insn)
ce71a9e6 1137{
1138 rtx pat = PATTERN (insn);
1139
1140 /* We're looking for a single set to cc0 or an HImode temporary. */
1141
1142 if (GET_CODE (pat) == SET
8ad4c111 1143 && REG_P (SET_DEST (pat))
ce71a9e6 1144 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1145 {
1146 insn = next_flags_user (insn);
1147 if (insn == NULL_RTX)
1148 return 0;
1149 pat = PATTERN (insn);
1150 }
1151
e0793548 1152 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1153 with the cc value right now. We may be able to search for one
1154 though. */
ce71a9e6 1155
1156 if (GET_CODE (pat) == SET
1157 && GET_CODE (SET_SRC (pat)) == UNSPEC
372310d2 1158 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
ce71a9e6 1159 {
1160 rtx dest = SET_DEST (pat);
1161
2617fe26 1162 /* Search forward looking for the first use of this value.
ce71a9e6 1163 Stop at block boundaries. */
5496dbfc 1164 while (insn != BB_END (current_block))
ce71a9e6 1165 {
1166 insn = NEXT_INSN (insn);
9204e736 1167 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
ce71a9e6 1168 break;
6d7dc5b9 1169 if (CALL_P (insn))
ce71a9e6 1170 return 0;
1171 }
1172
e0793548 1173 /* We haven't found it. */
1174 if (insn == BB_END (current_block))
1175 return 0;
1176
ce71a9e6 1177 /* So we've found the insn using this value. If it is anything
e0793548 1178 other than sahf or the value does not die (meaning we'd have
1179 to search further), then we must give up. */
ce71a9e6 1180 pat = PATTERN (insn);
1181 if (GET_CODE (pat) != SET
1182 || GET_CODE (SET_SRC (pat)) != UNSPEC
372310d2 1183 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
ce71a9e6 1184 || ! dead_or_set_p (insn, dest))
1185 return 0;
1186
1187 /* Now we are prepared to handle this as a normal cc0 setter. */
1188 insn = next_flags_user (insn);
1189 if (insn == NULL_RTX)
1190 return 0;
1191 pat = PATTERN (insn);
1192 }
1193
5377f687 1194 if (swap_rtx_condition_1 (pat))
1195 {
7ce6501c 1196 int fail = 0;
5377f687 1197 INSN_CODE (insn) = -1;
1198 if (recog_memoized (insn) == -1)
7ce6501c 1199 fail = 1;
1200 /* In case the flags don't die here, recurse to try fix
1201 following user too. */
1202 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1203 {
1204 insn = next_flags_user (insn);
1205 if (!insn || !swap_rtx_condition (insn))
1206 fail = 1;
1207 }
1208 if (fail)
5377f687 1209 {
1210 swap_rtx_condition_1 (pat);
1211 return 0;
1212 }
1213 return 1;
1214 }
1215 return 0;
5e7a3068 1216}
1217
535825e6 1218/* Handle a comparison. Special care needs to be taken to avoid
1219 causing comparisons that a 387 cannot do correctly, such as EQ.
1220
ce71a9e6 1221 Also, a pop insn may need to be emitted. The 387 does have an
535825e6 1222 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1223 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
ce71a9e6 1224 set up. */
535825e6 1225
1226static void
8fe8e576 1227compare_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat_src)
535825e6 1228{
1229 rtx *src1, *src2;
1230 rtx src1_note, src2_note;
3c8249d9 1231
ce71a9e6 1232 src1 = get_true_reg (&XEXP (pat_src, 0));
1233 src2 = get_true_reg (&XEXP (pat_src, 1));
535825e6 1234
5e7a3068 1235 /* ??? If fxch turns out to be cheaper than fstp, give priority to
a92771b8 1236 registers that die in this insn - move those to stack top first. */
ce71a9e6 1237 if ((! STACK_REG_P (*src1)
1238 || (STACK_REG_P (*src2)
1239 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1240 && swap_rtx_condition (insn))
5e7a3068 1241 {
dfcf26a5 1242 std::swap (XEXP (pat_src, 0), XEXP (pat_src, 1));
535825e6 1243
ce71a9e6 1244 src1 = get_true_reg (&XEXP (pat_src, 0));
1245 src2 = get_true_reg (&XEXP (pat_src, 1));
3f89e86c 1246
2f4ca440 1247 INSN_CODE (insn) = -1;
5e7a3068 1248 }
535825e6 1249
a92771b8 1250 /* We will fix any death note later. */
535825e6 1251
1252 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1253
1254 if (STACK_REG_P (*src2))
1255 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1256 else
5e7a3068 1257 src2_note = NULL_RTX;
535825e6 1258
ce71a9e6 1259 emit_swap_insn (insn, regstack, *src1);
535825e6 1260
1261 replace_reg (src1, FIRST_STACK_REG);
1262
1263 if (STACK_REG_P (*src2))
ce71a9e6 1264 replace_reg (src2, get_hard_regnum (regstack, *src2));
535825e6 1265
1266 if (src1_note)
1267 {
a97edd5b 1268 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
535825e6 1269 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
535825e6 1270 }
1271
1272 /* If the second operand dies, handle that. But if the operands are
1273 the same stack register, don't bother, because only one death is
a92771b8 1274 needed, and it was just handled. */
535825e6 1275
1276 if (src2_note
5e7a3068 1277 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
535825e6 1278 && REGNO (*src1) == REGNO (*src2)))
1279 {
1280 /* As a special case, two regs may die in this insn if src2 is
1281 next to top of stack and the top of stack also dies. Since
1282 we have already popped src1, "next to top of stack" is really
a92771b8 1283 at top (FIRST_STACK_REG) now. */
535825e6 1284
1285 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1286 && src1_note)
1287 {
a97edd5b 1288 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
535825e6 1289 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
535825e6 1290 }
1291 else
1292 {
ce71a9e6 1293 /* The 386 can only represent death of the first operand in
1294 the case handled above. In all other cases, emit a separate
1295 pop and remove the death note from here. */
ce71a9e6 1296 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
ce71a9e6 1297 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
f3d96a58 1298 EMIT_AFTER);
535825e6 1299 }
1300 }
1301}
1302\f
a6aa49aa 1303/* Substitute hardware stack regs in debug insn INSN, using stack
1304 layout REGSTACK. If we can't find a hardware stack reg for any of
1305 the REGs in it, reset the debug insn. */
1306
1307static void
8fe8e576 1308subst_all_stack_regs_in_debug_insn (rtx_insn *insn, struct stack_def *regstack)
a6aa49aa 1309{
db1b48f5 1310 subrtx_ptr_iterator::array_type array;
1311 FOR_EACH_SUBRTX_PTR (iter, array, &INSN_VAR_LOCATION_LOC (insn), NONCONST)
1312 {
1313 rtx *loc = *iter;
1314 rtx x = *loc;
1315 if (STACK_REG_P (x))
1316 {
1317 int hard_regno = get_hard_regnum (regstack, x);
a6aa49aa 1318
db1b48f5 1319 /* If we can't find an active register, reset this debug insn. */
1320 if (hard_regno == -1)
1321 {
1322 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1323 return;
1324 }
1325
1326 gcc_assert (hard_regno >= FIRST_STACK_REG);
1327 replace_reg (loc, hard_regno);
1328 iter.skip_subrtxes ();
1329 }
1330 }
a6aa49aa 1331}
1332
535825e6 1333/* Substitute new registers in PAT, which is part of INSN. REGSTACK
393522df 1334 is the current register layout. Return whether a control flow insn
1335 was deleted in the process. */
535825e6 1336
393522df 1337static bool
8fe8e576 1338subst_stack_regs_pat (rtx_insn *insn, stack_ptr regstack, rtx pat)
535825e6 1339{
1340 rtx *dest, *src;
393522df 1341 bool control_flow_insn_deleted = false;
535825e6 1342
f3d96a58 1343 switch (GET_CODE (pat))
1344 {
1345 case USE:
1346 /* Deaths in USE insns can happen in non optimizing compilation.
1347 Handle them by popping the dying register. */
1348 src = get_true_reg (&XEXP (pat, 0));
2617fe26 1349 if (STACK_REG_P (*src)
1350 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1351 {
3072d30e 1352 /* USEs are ignored for liveness information so USEs of dead
1353 register might happen. */
1354 if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1355 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
393522df 1356 return control_flow_insn_deleted;
2617fe26 1357 }
3072d30e 1358 /* Uninitialized USE might happen for functions returning uninitialized
1359 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
4a7e4fcc 1360 so it is safe to ignore the use here. This is consistent with behavior
48e1416a 1361 of dataflow analyzer that ignores USE too. (This also imply that
4a7e4fcc 1362 forcibly initializing the register to NaN here would lead to ICE later,
3072d30e 1363 since the REG_DEAD notes are not issued.) */
f3d96a58 1364 break;
535825e6 1365
9845d120 1366 case VAR_LOCATION:
1367 gcc_unreachable ();
1368
f3d96a58 1369 case CLOBBER:
1370 {
1371 rtx note;
535825e6 1372
f3d96a58 1373 dest = get_true_reg (&XEXP (pat, 0));
1374 if (STACK_REG_P (*dest))
1375 {
1376 note = find_reg_note (insn, REG_DEAD, *dest);
631ef7ce 1377
1378 if (pat != PATTERN (insn))
1379 {
59082b2e 1380 /* The fix_truncdi_1 pattern wants to be able to
1381 allocate its own scratch register. It does this by
1382 clobbering an fp reg so that it is assured of an
1383 empty reg-stack register. If the register is live,
1384 kill it now. Remove the DEAD/UNUSED note so we
1385 don't try to kill it later too.
1386
1387 In reality the UNUSED note can be absent in some
1388 complicated cases when the register is reused for
1389 partially set variable. */
631ef7ce 1390
1391 if (note)
1392 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1393 else
59082b2e 1394 note = find_reg_note (insn, REG_UNUSED, *dest);
1395 if (note)
1396 remove_note (insn, note);
0834f16c 1397 replace_reg (dest, FIRST_STACK_REG + 1);
631ef7ce 1398 }
f3d96a58 1399 else
1400 {
631ef7ce 1401 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1402 indicates an uninitialized value. Because reload removed
2617fe26 1403 all other clobbers, this must be due to a function
631ef7ce 1404 returning without a value. Load up a NaN. */
1405
99f4aa93 1406 if (!note)
5545a6c8 1407 {
99f4aa93 1408 rtx t = *dest;
99f4aa93 1409 if (COMPLEX_MODE_P (GET_MODE (t)))
1410 {
389d0d04 1411 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1412 if (get_hard_regnum (regstack, u) == -1)
1413 {
1414 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
8fe8e576 1415 rtx_insn *insn2 = emit_insn_before (pat2, insn);
389d0d04 1416 control_flow_insn_deleted
1417 |= move_nan_for_stack_reg (insn2, regstack, u);
1418 }
99f4aa93 1419 }
389d0d04 1420 if (get_hard_regnum (regstack, t) == -1)
1421 control_flow_insn_deleted
1422 |= move_nan_for_stack_reg (insn, regstack, t);
5545a6c8 1423 }
f3d96a58 1424 }
f3d96a58 1425 }
535825e6 1426 break;
f3d96a58 1427 }
535825e6 1428
f3d96a58 1429 case SET:
1430 {
d946ea19 1431 rtx *src1 = (rtx *) 0, *src2;
f3d96a58 1432 rtx src1_note, src2_note;
1433 rtx pat_src;
1434
1435 dest = get_true_reg (&SET_DEST (pat));
1436 src = get_true_reg (&SET_SRC (pat));
1437 pat_src = SET_SRC (pat);
1438
1439 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1440 if (STACK_REG_P (*src)
1441 || (STACK_REG_P (*dest)
e16ceb8e 1442 && (REG_P (*src) || MEM_P (*src)
78f1962f 1443 || CONST_DOUBLE_P (*src))))
f3d96a58 1444 {
393522df 1445 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
f3d96a58 1446 break;
1447 }
535825e6 1448
f3d96a58 1449 switch (GET_CODE (pat_src))
1450 {
1451 case COMPARE:
1452 compare_for_stack_reg (insn, regstack, pat_src);
1453 break;
535825e6 1454
f3d96a58 1455 case CALL:
1456 {
1457 int count;
0933f1d9 1458 for (count = REG_NREGS (*dest); --count >= 0;)
f3d96a58 1459 {
1460 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1461 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1462 }
1463 }
1464 replace_reg (dest, FIRST_STACK_REG);
1465 break;
535825e6 1466
f3d96a58 1467 case REG:
1468 /* This is a `tstM2' case. */
04e579b6 1469 gcc_assert (*dest == cc0_rtx);
f3d96a58 1470 src1 = src;
535825e6 1471
f3d96a58 1472 /* Fall through. */
535825e6 1473
f3d96a58 1474 case FLOAT_TRUNCATE:
1475 case SQRT:
1476 case ABS:
1477 case NEG:
1478 /* These insns only operate on the top of the stack. DEST might
1479 be cc0_rtx if we're processing a tstM pattern. Also, it's
1480 possible that the tstM case results in a REG_DEAD note on the
1481 source. */
535825e6 1482
f3d96a58 1483 if (src1 == 0)
1484 src1 = get_true_reg (&XEXP (pat_src, 0));
535825e6 1485
f3d96a58 1486 emit_swap_insn (insn, regstack, *src1);
535825e6 1487
f3d96a58 1488 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
535825e6 1489
f3d96a58 1490 if (STACK_REG_P (*dest))
1491 replace_reg (dest, FIRST_STACK_REG);
535825e6 1492
f3d96a58 1493 if (src1_note)
1494 {
1495 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1496 regstack->top--;
1497 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1498 }
535825e6 1499
f3d96a58 1500 replace_reg (src1, FIRST_STACK_REG);
1501 break;
535825e6 1502
f3d96a58 1503 case MINUS:
1504 case DIV:
1505 /* On i386, reversed forms of subM3 and divM3 exist for
1506 MODE_FLOAT, so the same code that works for addM3 and mulM3
1507 can be used. */
1508 case MULT:
1509 case PLUS:
1510 /* These insns can accept the top of stack as a destination
1511 from a stack reg or mem, or can use the top of stack as a
1512 source and some other stack register (possibly top of stack)
1513 as a destination. */
1514
1515 src1 = get_true_reg (&XEXP (pat_src, 0));
1516 src2 = get_true_reg (&XEXP (pat_src, 1));
1517
1518 /* We will fix any death note later. */
1519
1520 if (STACK_REG_P (*src1))
1521 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1522 else
1523 src1_note = NULL_RTX;
1524 if (STACK_REG_P (*src2))
1525 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1526 else
1527 src2_note = NULL_RTX;
535825e6 1528
f3d96a58 1529 /* If either operand is not a stack register, then the dest
1530 must be top of stack. */
535825e6 1531
f3d96a58 1532 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
5e7a3068 1533 emit_swap_insn (insn, regstack, *dest);
f3d96a58 1534 else
1535 {
1536 /* Both operands are REG. If neither operand is already
1e8379be 1537 at the top of stack, choose to make the one that is the
1538 dest the new top of stack. */
535825e6 1539
f3d96a58 1540 int src1_hard_regnum, src2_hard_regnum;
535825e6 1541
f3d96a58 1542 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1543 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1e8379be 1544
1545 /* If the source is not live, this is yet another case of
1546 uninitialized variables. Load up a NaN instead. */
1547 if (src1_hard_regnum == -1)
1548 {
1549 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
8fe8e576 1550 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1e8379be 1551 control_flow_insn_deleted
1552 |= move_nan_for_stack_reg (insn2, regstack, *src1);
1553 }
1554 if (src2_hard_regnum == -1)
1555 {
1556 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
8fe8e576 1557 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1e8379be 1558 control_flow_insn_deleted
1559 |= move_nan_for_stack_reg (insn2, regstack, *src2);
1560 }
535825e6 1561
f3d96a58 1562 if (src1_hard_regnum != FIRST_STACK_REG
1563 && src2_hard_regnum != FIRST_STACK_REG)
1564 emit_swap_insn (insn, regstack, *dest);
535825e6 1565 }
f3d96a58 1566
1567 if (STACK_REG_P (*src1))
1568 replace_reg (src1, get_hard_regnum (regstack, *src1));
1569 if (STACK_REG_P (*src2))
1570 replace_reg (src2, get_hard_regnum (regstack, *src2));
1571
1572 if (src1_note)
535825e6 1573 {
f3d96a58 1574 rtx src1_reg = XEXP (src1_note, 0);
535825e6 1575
f3d96a58 1576 /* If the register that dies is at the top of stack, then
1577 the destination is somewhere else - merely substitute it.
1578 But if the reg that dies is not at top of stack, then
1579 move the top of stack to the dead reg, as though we had
1580 done the insn and then a store-with-pop. */
535825e6 1581
f3d96a58 1582 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1583 {
1584 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1585 replace_reg (dest, get_hard_regnum (regstack, *dest));
1586 }
1587 else
1588 {
1589 int regno = get_hard_regnum (regstack, src1_reg);
535825e6 1590
f3d96a58 1591 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1592 replace_reg (dest, regno);
1593
1594 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1595 = regstack->reg[regstack->top];
1596 }
1597
1598 CLEAR_HARD_REG_BIT (regstack->reg_set,
1599 REGNO (XEXP (src1_note, 0)));
1600 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1601 regstack->top--;
1602 }
1603 else if (src2_note)
535825e6 1604 {
f3d96a58 1605 rtx src2_reg = XEXP (src2_note, 0);
1606 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1607 {
1608 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1609 replace_reg (dest, get_hard_regnum (regstack, *dest));
1610 }
1611 else
1612 {
1613 int regno = get_hard_regnum (regstack, src2_reg);
1614
1615 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1616 replace_reg (dest, regno);
1617
1618 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1619 = regstack->reg[regstack->top];
1620 }
1621
1622 CLEAR_HARD_REG_BIT (regstack->reg_set,
1623 REGNO (XEXP (src2_note, 0)));
1624 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1625 regstack->top--;
535825e6 1626 }
1627 else
1628 {
535825e6 1629 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
f3d96a58 1630 replace_reg (dest, get_hard_regnum (regstack, *dest));
535825e6 1631 }
2fa792d7 1632
41a6f238 1633 /* Keep operand 1 matching with destination. */
6720e96c 1634 if (COMMUTATIVE_ARITH_P (pat_src)
2fa792d7 1635 && REG_P (*src1) && REG_P (*src2)
1636 && REGNO (*src1) != REGNO (*dest))
1637 {
73ca2d39 1638 int tmp = REGNO (*src1);
1639 replace_reg (src1, REGNO (*src2));
1640 replace_reg (src2, tmp);
2fa792d7 1641 }
f3d96a58 1642 break;
535825e6 1643
f3d96a58 1644 case UNSPEC:
1645 switch (XINT (pat_src, 1))
1646 {
3cd431f4 1647 case UNSPEC_FIST:
cb5d0a18 1648 case UNSPEC_FIST_ATOMIC:
162669a8 1649
1650 case UNSPEC_FIST_FLOOR:
1651 case UNSPEC_FIST_CEIL:
1652
3cd431f4 1653 /* These insns only operate on the top of the stack. */
1654
1655 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1656 emit_swap_insn (insn, regstack, *src1);
1657
1658 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1659
1660 if (STACK_REG_P (*dest))
1661 replace_reg (dest, FIRST_STACK_REG);
1662
1663 if (src1_note)
1664 {
1665 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1666 regstack->top--;
1667 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1668 }
1669
1670 replace_reg (src1, FIRST_STACK_REG);
1671 break;
1672
69b779ea 1673 case UNSPEC_FXAM:
1674
1675 /* This insn only operate on the top of the stack. */
1676
1677 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1678 emit_swap_insn (insn, regstack, *src1);
1679
1680 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1681
1682 replace_reg (src1, FIRST_STACK_REG);
1683
1684 if (src1_note)
1685 {
1686 remove_regno_note (insn, REG_DEAD,
1687 REGNO (XEXP (src1_note, 0)));
1688 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1689 EMIT_AFTER);
1690 }
1691
1692 break;
1693
372310d2 1694 case UNSPEC_SIN:
1695 case UNSPEC_COS:
839151ad 1696 case UNSPEC_FRNDINT:
1697 case UNSPEC_F2XM1:
aef94a0f 1698
1699 case UNSPEC_FRNDINT_FLOOR:
1700 case UNSPEC_FRNDINT_CEIL:
1701 case UNSPEC_FRNDINT_TRUNC:
1702 case UNSPEC_FRNDINT_MASK_PM:
1703
64d0b996 1704 /* Above insns operate on the top of the stack. */
1705
1706 case UNSPEC_SINCOS_COS:
1707 case UNSPEC_XTRACT_FRACT:
1708
1709 /* Above insns operate on the top two stack slots,
1710 first part of one input, double output insn. */
d315aa96 1711
f3d96a58 1712 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
d315aa96 1713
f3d96a58 1714 emit_swap_insn (insn, regstack, *src1);
d315aa96 1715
64d0b996 1716 /* Input should never die, it is replaced with output. */
f3d96a58 1717 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
04e579b6 1718 gcc_assert (!src1_note);
d315aa96 1719
f3d96a58 1720 if (STACK_REG_P (*dest))
1721 replace_reg (dest, FIRST_STACK_REG);
d315aa96 1722
f3d96a58 1723 replace_reg (src1, FIRST_STACK_REG);
1724 break;
d315aa96 1725
64d0b996 1726 case UNSPEC_SINCOS_SIN:
1727 case UNSPEC_XTRACT_EXP:
1728
1729 /* These insns operate on the top two stack slots,
1730 second part of one input, double output insn. */
1731
1732 regstack->top++;
1733 /* FALLTHRU */
1734
1735 case UNSPEC_TAN:
1736
1737 /* For UNSPEC_TAN, regstack->top is already increased
1738 by inherent load of constant 1.0. */
1739
1740 /* Output value is generated in the second stack slot.
1741 Move current value from second slot to the top. */
1742 regstack->reg[regstack->top]
1743 = regstack->reg[regstack->top - 1];
1744
1745 gcc_assert (STACK_REG_P (*dest));
1746
1747 regstack->reg[regstack->top - 1] = REGNO (*dest);
1748 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1749 replace_reg (dest, FIRST_STACK_REG + 1);
1750
1751 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1752
1753 replace_reg (src1, FIRST_STACK_REG);
1754 break;
1755
b60cce8a 1756 case UNSPEC_FPATAN:
26398ccb 1757 case UNSPEC_FYL2X:
f474cd93 1758 case UNSPEC_FYL2XP1:
b60cce8a 1759 /* These insns operate on the top two stack slots. */
1760
1761 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1762 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1763
1764 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1765 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1766
0bfbd311 1767 swap_to_top (insn, regstack, *src1, *src2);
b60cce8a 1768
1769 replace_reg (src1, FIRST_STACK_REG);
1770 replace_reg (src2, FIRST_STACK_REG + 1);
1771
1772 if (src1_note)
1773 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1774 if (src2_note)
1775 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1776
1777 /* Pop both input operands from the stack. */
1778 CLEAR_HARD_REG_BIT (regstack->reg_set,
1779 regstack->reg[regstack->top]);
1780 CLEAR_HARD_REG_BIT (regstack->reg_set,
1781 regstack->reg[regstack->top - 1]);
1782 regstack->top -= 2;
1783
1784 /* Push the result back onto the stack. */
1785 regstack->reg[++regstack->top] = REGNO (*dest);
1786 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1787 replace_reg (dest, FIRST_STACK_REG);
1788 break;
1789
0bfbd311 1790 case UNSPEC_FSCALE_FRACT:
80ed5c06 1791 case UNSPEC_FPREM_F:
1792 case UNSPEC_FPREM1_F:
5c2d2d32 1793 /* These insns operate on the top two stack slots,
0bfbd311 1794 first part of double input, double output insn. */
1795
1796 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1797 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1798
1799 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1800 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1801
1802 /* Inputs should never die, they are
1803 replaced with outputs. */
04e579b6 1804 gcc_assert (!src1_note);
1805 gcc_assert (!src2_note);
0bfbd311 1806
1807 swap_to_top (insn, regstack, *src1, *src2);
1808
1809 /* Push the result back onto stack. Empty stack slot
0bed3869 1810 will be filled in second part of insn. */
7d4c98bc 1811 if (STACK_REG_P (*dest))
1812 {
1813 regstack->reg[regstack->top] = REGNO (*dest);
1814 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1815 replace_reg (dest, FIRST_STACK_REG);
1816 }
0bfbd311 1817
1818 replace_reg (src1, FIRST_STACK_REG);
1819 replace_reg (src2, FIRST_STACK_REG + 1);
1820 break;
1821
1822 case UNSPEC_FSCALE_EXP:
80ed5c06 1823 case UNSPEC_FPREM_U:
1824 case UNSPEC_FPREM1_U:
5c2d2d32 1825 /* These insns operate on the top two stack slots,
0bfbd311 1826 second part of double input, double output insn. */
1827
1828 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1829 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1830
0bfbd311 1831 /* Push the result back onto stack. Fill empty slot from
1832 first part of insn and fix top of stack pointer. */
7d4c98bc 1833 if (STACK_REG_P (*dest))
1834 {
1835 regstack->reg[regstack->top - 1] = REGNO (*dest);
1836 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1837 replace_reg (dest, FIRST_STACK_REG + 1);
1838 }
0bfbd311 1839
1840 replace_reg (src1, FIRST_STACK_REG);
1841 replace_reg (src2, FIRST_STACK_REG + 1);
1842 break;
1843
5c2d2d32 1844 case UNSPEC_C2_FLAG:
1845 /* This insn operates on the top two stack slots,
1846 third part of C2 setting double input insn. */
1847
1848 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1849 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1850
1851 replace_reg (src1, FIRST_STACK_REG);
1852 replace_reg (src2, FIRST_STACK_REG + 1);
1853 break;
1854
372310d2 1855 case UNSPEC_SAHF:
1856 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1857 The combination matches the PPRO fcomi instruction. */
d315aa96 1858
f3d96a58 1859 pat_src = XVECEXP (pat_src, 0, 0);
04e579b6 1860 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1861 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
d632b59a 1862 /* Fall through. */
ce71a9e6 1863
372310d2 1864 case UNSPEC_FNSTSW:
f3d96a58 1865 /* Combined fcomp+fnstsw generated for doing well with
1866 CSE. When optimizing this would have been broken
1867 up before now. */
ce71a9e6 1868
f3d96a58 1869 pat_src = XVECEXP (pat_src, 0, 0);
04e579b6 1870 gcc_assert (GET_CODE (pat_src) == COMPARE);
ce71a9e6 1871
f3d96a58 1872 compare_for_stack_reg (insn, regstack, pat_src);
1873 break;
ce71a9e6 1874
f3d96a58 1875 default:
04e579b6 1876 gcc_unreachable ();
f3d96a58 1877 }
ce71a9e6 1878 break;
1879
f3d96a58 1880 case IF_THEN_ELSE:
aa40f561 1881 /* This insn requires the top of stack to be the destination. */
d315aa96 1882
ba126de4 1883 src1 = get_true_reg (&XEXP (pat_src, 1));
1884 src2 = get_true_reg (&XEXP (pat_src, 2));
1885
1886 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1887 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1888
f3d96a58 1889 /* If the comparison operator is an FP comparison operator,
1890 it is handled correctly by compare_for_stack_reg () who
1891 will move the destination to the top of stack. But if the
1892 comparison operator is not an FP comparison operator, we
aa40f561 1893 have to handle it here. */
f3d96a58 1894 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1895 && REGNO (*dest) != regstack->reg[regstack->top])
ba126de4 1896 {
1897 /* In case one of operands is the top of stack and the operands
372310d2 1898 dies, it is safe to make it the destination operand by
1899 reversing the direction of cmove and avoid fxch. */
ba126de4 1900 if ((REGNO (*src1) == regstack->reg[regstack->top]
1901 && src1_note)
1902 || (REGNO (*src2) == regstack->reg[regstack->top]
1903 && src2_note))
1904 {
33e1caad 1905 int idx1 = (get_hard_regnum (regstack, *src1)
1906 - FIRST_STACK_REG);
1907 int idx2 = (get_hard_regnum (regstack, *src2)
1908 - FIRST_STACK_REG);
1909
1910 /* Make reg-stack believe that the operands are already
1911 swapped on the stack */
1912 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1913 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1914
1915 /* Reverse condition to compensate the operand swap.
1916 i386 do have comparison always reversible. */
ba126de4 1917 PUT_CODE (XEXP (pat_src, 0),
1918 reversed_comparison_code (XEXP (pat_src, 0), insn));
1919 }
1920 else
2617fe26 1921 emit_swap_insn (insn, regstack, *dest);
ba126de4 1922 }
632c6b15 1923
f3d96a58 1924 {
1925 rtx src_note [3];
1926 int i;
632c6b15 1927
f3d96a58 1928 src_note[0] = 0;
1929 src_note[1] = src1_note;
1930 src_note[2] = src2_note;
2ff2cb3c 1931
f3d96a58 1932 if (STACK_REG_P (*src1))
1933 replace_reg (src1, get_hard_regnum (regstack, *src1));
1934 if (STACK_REG_P (*src2))
1935 replace_reg (src2, get_hard_regnum (regstack, *src2));
632c6b15 1936
f3d96a58 1937 for (i = 1; i <= 2; i++)
1938 if (src_note [i])
632c6b15 1939 {
f3d96a58 1940 int regno = REGNO (XEXP (src_note[i], 0));
1941
1942 /* If the register that dies is not at the top of
04e579b6 1943 stack, then move the top of stack to the dead reg.
1944 Top of stack should never die, as it is the
1945 destination. */
1946 gcc_assert (regno != regstack->reg[regstack->top]);
1947 remove_regno_note (insn, REG_DEAD, regno);
1948 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1949 EMIT_AFTER);
632c6b15 1950 }
f3d96a58 1951 }
632c6b15 1952
f3d96a58 1953 /* Make dest the top of stack. Add dest to regstack if
aa40f561 1954 not present. */
f3d96a58 1955 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
2617fe26 1956 regstack->reg[++regstack->top] = REGNO (*dest);
f3d96a58 1957 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1958 replace_reg (dest, FIRST_STACK_REG);
1959 break;
3c8249d9 1960
f3d96a58 1961 default:
04e579b6 1962 gcc_unreachable ();
f3d96a58 1963 }
632c6b15 1964 break;
535825e6 1965 }
f3d96a58 1966
1967 default:
1968 break;
1969 }
393522df 1970
1971 return control_flow_insn_deleted;
535825e6 1972}
1973\f
bed3e6b4 1974/* Substitute hard regnums for any stack regs in INSN, which has
1975 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
78e49515 1976 before the insn, and is updated with changes made here.
bed3e6b4 1977
1978 There are several requirements and assumptions about the use of
1979 stack-like regs in asm statements. These rules are enforced by
1980 record_asm_stack_regs; see comments there for details. Any
1981 asm_operands left in the RTL at this point may be assume to meet the
667a0198 1982 requirements, since record_asm_stack_regs removes any problem asm. */
bed3e6b4 1983
667a0198 1984static void
8fe8e576 1985subst_asm_stack_regs (rtx_insn *insn, stack_ptr regstack)
bed3e6b4 1986{
bed3e6b4 1987 rtx body = PATTERN (insn);
bed3e6b4 1988
1989 rtx *note_reg; /* Array of note contents */
1990 rtx **note_loc; /* Address of REG field of each note */
1991 enum reg_note *note_kind; /* The type of each note */
1992
ef2c4a29 1993 rtx *clobber_reg = 0;
1994 rtx **clobber_loc = 0;
bed3e6b4 1995
1996 struct stack_def temp_stack;
1997 int n_notes;
1998 int n_clobbers;
1999 rtx note;
2000 int i;
78e49515 2001 int n_inputs, n_outputs;
bed3e6b4 2002
f3d96a58 2003 if (! check_asm_stack_operands (insn))
2004 return;
2005
bed3e6b4 2006 /* Find out what the constraints required. If no constraint
2007 alternative matches, that is a compiler bug: we should have caught
f3d96a58 2008 such an insn in check_asm_stack_operands. */
835b8178 2009 extract_constrain_insn (insn);
78e49515 2010
8eaaac4d 2011 preprocess_constraints (insn);
89a7a6a5 2012 const operand_alternative *op_alt = which_op_alt ();
bed3e6b4 2013
78f55ca8 2014 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2617fe26 2015
a92771b8 2016 /* Strip SUBREGs here to make the following code simpler. */
ed420a25 2017 for (i = 0; i < recog_data.n_operands; i++)
2018 if (GET_CODE (recog_data.operand[i]) == SUBREG
8ad4c111 2019 && REG_P (SUBREG_REG (recog_data.operand[i])))
bed3e6b4 2020 {
ed420a25 2021 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2022 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
bed3e6b4 2023 }
2024
2025 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2026
2027 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2028 i++;
2029
f7f3687c 2030 note_reg = XALLOCAVEC (rtx, i);
2031 note_loc = XALLOCAVEC (rtx *, i);
2032 note_kind = XALLOCAVEC (enum reg_note, i);
bed3e6b4 2033
2034 n_notes = 0;
2035 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2036 {
9eb946de 2037 if (GET_CODE (note) != EXPR_LIST)
2038 continue;
bed3e6b4 2039 rtx reg = XEXP (note, 0);
2040 rtx *loc = & XEXP (note, 0);
2041
8ad4c111 2042 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
bed3e6b4 2043 {
2044 loc = & SUBREG_REG (reg);
2045 reg = SUBREG_REG (reg);
2046 }
2047
2048 if (STACK_REG_P (reg)
2049 && (REG_NOTE_KIND (note) == REG_DEAD
2050 || REG_NOTE_KIND (note) == REG_UNUSED))
2051 {
2052 note_reg[n_notes] = reg;
2053 note_loc[n_notes] = loc;
2054 note_kind[n_notes] = REG_NOTE_KIND (note);
2055 n_notes++;
2056 }
2057 }
2058
2059 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2060
2061 n_clobbers = 0;
bed3e6b4 2062
2063 if (GET_CODE (body) == PARALLEL)
fc738e1d 2064 {
f7f3687c 2065 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2066 clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
bed3e6b4 2067
fc738e1d 2068 for (i = 0; i < XVECLEN (body, 0); i++)
2069 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2070 {
2071 rtx clobber = XVECEXP (body, 0, i);
2072 rtx reg = XEXP (clobber, 0);
2073 rtx *loc = & XEXP (clobber, 0);
bed3e6b4 2074
8ad4c111 2075 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
fc738e1d 2076 {
2077 loc = & SUBREG_REG (reg);
2078 reg = SUBREG_REG (reg);
2079 }
2080
2081 if (STACK_REG_P (reg))
2082 {
2083 clobber_reg[n_clobbers] = reg;
2084 clobber_loc[n_clobbers] = loc;
2085 n_clobbers++;
2086 }
2087 }
2088 }
bed3e6b4 2089
f3d96a58 2090 temp_stack = *regstack;
bed3e6b4 2091
2092 /* Put the input regs into the desired place in TEMP_STACK. */
2093
78e49515 2094 for (i = n_outputs; i < n_outputs + n_inputs; i++)
ed420a25 2095 if (STACK_REG_P (recog_data.operand[i])
757fefec 2096 && reg_class_subset_p (op_alt[i].cl, FLOAT_REGS)
2097 && op_alt[i].cl != FLOAT_REGS)
bed3e6b4 2098 {
2099 /* If an operand needs to be in a particular reg in
2100 FLOAT_REGS, the constraint was either 't' or 'u'. Since
ed420a25 2101 these constraints are for single register classes, and
2102 reload guaranteed that operand[i] is already in that class,
2103 we can just use REGNO (recog_data.operand[i]) to know which
2104 actual reg this operand needs to be in. */
bed3e6b4 2105
ed420a25 2106 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
bed3e6b4 2107
04e579b6 2108 gcc_assert (regno >= 0);
bed3e6b4 2109
97b330ca 2110 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
bed3e6b4 2111 {
ed420a25 2112 /* recog_data.operand[i] is not in the right place. Find
2113 it and swap it with whatever is already in I's place.
2114 K is where recog_data.operand[i] is now. J is where it
2115 should be. */
dfcf26a5 2116 int j, k;
bed3e6b4 2117
2118 k = temp_stack.top - (regno - FIRST_STACK_REG);
2119 j = (temp_stack.top
ed420a25 2120 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
bed3e6b4 2121
dfcf26a5 2122 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
bed3e6b4 2123 }
2124 }
2125
f3d96a58 2126 /* Emit insns before INSN to make sure the reg-stack is in the right
bed3e6b4 2127 order. */
2128
f3d96a58 2129 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
bed3e6b4 2130
2131 /* Make the needed input register substitutions. Do death notes and
a92771b8 2132 clobbers too, because these are for inputs, not outputs. */
bed3e6b4 2133
78e49515 2134 for (i = n_outputs; i < n_outputs + n_inputs; i++)
ed420a25 2135 if (STACK_REG_P (recog_data.operand[i]))
bed3e6b4 2136 {
ed420a25 2137 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
bed3e6b4 2138
04e579b6 2139 gcc_assert (regnum >= 0);
bed3e6b4 2140
ed420a25 2141 replace_reg (recog_data.operand_loc[i], regnum);
bed3e6b4 2142 }
2143
2144 for (i = 0; i < n_notes; i++)
2145 if (note_kind[i] == REG_DEAD)
2146 {
2147 int regnum = get_hard_regnum (regstack, note_reg[i]);
2148
04e579b6 2149 gcc_assert (regnum >= 0);
bed3e6b4 2150
2151 replace_reg (note_loc[i], regnum);
2152 }
2153
2154 for (i = 0; i < n_clobbers; i++)
2155 {
2156 /* It's OK for a CLOBBER to reference a reg that is not live.
2157 Don't try to replace it in that case. */
2158 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2159
2160 if (regnum >= 0)
2161 {
2162 /* Sigh - clobbers always have QImode. But replace_reg knows
04e579b6 2163 that these regs can't be MODE_INT and will assert. Just put
bed3e6b4 2164 the right reg there without calling replace_reg. */
2165
a5dff55e 2166 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
bed3e6b4 2167 }
2168 }
2169
a92771b8 2170 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
bed3e6b4 2171
78e49515 2172 for (i = n_outputs; i < n_outputs + n_inputs; i++)
ed420a25 2173 if (STACK_REG_P (recog_data.operand[i]))
bed3e6b4 2174 {
2175 /* An input reg is implicitly popped if it is tied to an
a92771b8 2176 output, or if there is a CLOBBER for it. */
bed3e6b4 2177 int j;
2178
2179 for (j = 0; j < n_clobbers; j++)
ed420a25 2180 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
bed3e6b4 2181 break;
2182
757fefec 2183 if (j < n_clobbers || op_alt[i].matches >= 0)
bed3e6b4 2184 {
ed420a25 2185 /* recog_data.operand[i] might not be at the top of stack.
2186 But that's OK, because all we need to do is pop the
2187 right number of regs off of the top of the reg-stack.
2188 record_asm_stack_regs guaranteed that all implicitly
2189 popped regs were grouped at the top of the reg-stack. */
bed3e6b4 2190
2191 CLEAR_HARD_REG_BIT (regstack->reg_set,
2192 regstack->reg[regstack->top]);
2193 regstack->top--;
2194 }
2195 }
2196
2197 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2198 Note that there isn't any need to substitute register numbers.
a92771b8 2199 ??? Explain why this is true. */
bed3e6b4 2200
2201 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2202 {
2203 /* See if there is an output for this hard reg. */
2204 int j;
2205
2206 for (j = 0; j < n_outputs; j++)
ed420a25 2207 if (STACK_REG_P (recog_data.operand[j])
97b330ca 2208 && REGNO (recog_data.operand[j]) == (unsigned) i)
bed3e6b4 2209 {
2210 regstack->reg[++regstack->top] = i;
2211 SET_HARD_REG_BIT (regstack->reg_set, i);
2212 break;
2213 }
2214 }
2215
2216 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2217 input that the asm didn't implicitly pop. If the asm didn't
fc738e1d 2218 implicitly pop an input reg, that reg will still be live.
bed3e6b4 2219
2220 Note that we can't use find_regno_note here: the register numbers
2221 in the death notes have already been substituted. */
2222
fc738e1d 2223 for (i = 0; i < n_outputs; i++)
ed420a25 2224 if (STACK_REG_P (recog_data.operand[i]))
fc738e1d 2225 {
2226 int j;
2227
2228 for (j = 0; j < n_notes; j++)
ed420a25 2229 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
fc738e1d 2230 && note_kind[j] == REG_UNUSED)
2231 {
ed420a25 2232 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
f3d96a58 2233 EMIT_AFTER);
fc738e1d 2234 break;
2235 }
2236 }
2237
78e49515 2238 for (i = n_outputs; i < n_outputs + n_inputs; i++)
ed420a25 2239 if (STACK_REG_P (recog_data.operand[i]))
bed3e6b4 2240 {
2241 int j;
2242
2243 for (j = 0; j < n_notes; j++)
ed420a25 2244 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
fc738e1d 2245 && note_kind[j] == REG_DEAD
78e49515 2246 && TEST_HARD_REG_BIT (regstack->reg_set,
ed420a25 2247 REGNO (recog_data.operand[i])))
bed3e6b4 2248 {
ed420a25 2249 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
f3d96a58 2250 EMIT_AFTER);
bed3e6b4 2251 break;
2252 }
2253 }
2254}
2255\f
535825e6 2256/* Substitute stack hard reg numbers for stack virtual registers in
2257 INSN. Non-stack register numbers are not changed. REGSTACK is the
2258 current stack content. Insns may be emitted as needed to arrange the
393522df 2259 stack for the 387 based on the contents of the insn. Return whether
2260 a control flow insn was deleted in the process. */
6f3ee61d 2261
393522df 2262static bool
8fe8e576 2263subst_stack_regs (rtx_insn *insn, stack_ptr regstack)
535825e6 2264{
19cb6b50 2265 rtx *note_link, note;
393522df 2266 bool control_flow_insn_deleted = false;
19cb6b50 2267 int i;
535825e6 2268
6d7dc5b9 2269 if (CALL_P (insn))
ce71a9e6 2270 {
2271 int top = regstack->top;
535825e6 2272
ce71a9e6 2273 /* If there are any floating point parameters to be passed in
2274 registers for this call, make sure they are in the right
2275 order. */
535825e6 2276
ce71a9e6 2277 if (top >= 0)
2278 {
9d97464a 2279 straighten_stack (insn, regstack);
a5dff55e 2280
ce71a9e6 2281 /* Now mark the arguments as dead after the call. */
a5dff55e 2282
ce71a9e6 2283 while (regstack->top >= 0)
2284 {
2285 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2286 regstack->top--;
2287 }
2288 }
2289 }
535825e6 2290
2291 /* Do the actual substitution if any stack regs are mentioned.
2292 Since we only record whether entire insn mentions stack regs, and
2293 subst_stack_regs_pat only works for patterns that contain stack regs,
2294 we must check each pattern in a parallel here. A call_value_pop could
a92771b8 2295 fail otherwise. */
535825e6 2296
b67ec609 2297 if (stack_regs_mentioned (insn))
535825e6 2298 {
78e49515 2299 int n_operands = asm_noperands (PATTERN (insn));
bed3e6b4 2300 if (n_operands >= 0)
2301 {
2302 /* This insn is an `asm' with operands. Decode the operands,
2303 decide how many are inputs, and do register substitution.
a92771b8 2304 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
bed3e6b4 2305
78e49515 2306 subst_asm_stack_regs (insn, regstack);
393522df 2307 return control_flow_insn_deleted;
bed3e6b4 2308 }
2309
535825e6 2310 if (GET_CODE (PATTERN (insn)) == PARALLEL)
d3115c90 2311 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
535825e6 2312 {
2313 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
f2a3e89e 2314 {
2315 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2316 XVECEXP (PATTERN (insn), 0, i)
2317 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2318 control_flow_insn_deleted
2319 |= subst_stack_regs_pat (insn, regstack,
2320 XVECEXP (PATTERN (insn), 0, i));
2321 }
535825e6 2322 }
2323 else
393522df 2324 control_flow_insn_deleted
2325 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
535825e6 2326 }
2327
2328 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
a92771b8 2329 REG_UNUSED will already have been dealt with, so just return. */
535825e6 2330
dd1286fb 2331 if (NOTE_P (insn) || insn->deleted ())
393522df 2332 return control_flow_insn_deleted;
535825e6 2333
50e6dbf3 2334 /* If this a noreturn call, we can't insert pop insns after it.
2335 Instead, reset the stack state to empty. */
2336 if (CALL_P (insn)
2337 && find_reg_note (insn, REG_NORETURN, NULL))
2338 {
2339 regstack->top = -1;
2340 CLEAR_HARD_REG_SET (regstack->reg_set);
2341 return control_flow_insn_deleted;
2342 }
2343
535825e6 2344 /* If there is a REG_UNUSED note on a stack register on this insn,
2345 the indicated reg must be popped. The REG_UNUSED note is removed,
2346 since the form of the newly emitted pop insn references the reg,
a92771b8 2347 making it no longer `unset'. */
535825e6 2348
337d789b 2349 note_link = &REG_NOTES (insn);
535825e6 2350 for (note = *note_link; note; note = XEXP (note, 1))
2351 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2352 {
2353 *note_link = XEXP (note, 1);
f3d96a58 2354 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
535825e6 2355 }
2356 else
2357 note_link = &XEXP (note, 1);
393522df 2358
2359 return control_flow_insn_deleted;
535825e6 2360}
2361\f
2362/* Change the organization of the stack so that it fits a new basic
2363 block. Some registers might have to be popped, but there can never be
2364 a register live in the new block that is not now live.
2365
f3d96a58 2366 Insert any needed insns before or after INSN, as indicated by
2367 WHERE. OLD is the original stack layout, and NEW is the desired
0c6d8c36 2368 form. OLD is updated to reflect the code emitted, i.e., it will be
f3d96a58 2369 the same as NEW upon return.
535825e6 2370
2371 This function will not preserve block_end[]. But that information
a92771b8 2372 is no longer needed once this has executed. */
535825e6 2373
2374static void
8fe8e576 2375change_stack (rtx_insn *insn, stack_ptr old, stack_ptr new_stack,
2376 enum emit_where where)
535825e6 2377{
2378 int reg;
f3d96a58 2379 int update_end = 0;
3072d30e 2380 int i;
535825e6 2381
9d97464a 2382 /* Stack adjustments for the first insn in a block update the
2383 current_block's stack_in instead of inserting insns directly.
2384 compensate_edges will add the necessary code later. */
2385 if (current_block
2386 && starting_stack_p
2387 && where == EMIT_BEFORE)
2388 {
6659485c 2389 BLOCK_INFO (current_block)->stack_in = *new_stack;
9d97464a 2390 starting_stack_p = false;
6659485c 2391 *old = *new_stack;
9d97464a 2392 return;
2393 }
2394
f3d96a58 2395 /* We will be inserting new insns "backwards". If we are to insert
2396 after INSN, find the next insn, and insert before it. */
535825e6 2397
f3d96a58 2398 if (where == EMIT_AFTER)
2399 {
5496dbfc 2400 if (current_block && BB_END (current_block) == insn)
f3d96a58 2401 update_end = 1;
2402 insn = NEXT_INSN (insn);
2403 }
535825e6 2404
3072d30e 2405 /* Initialize partially dead variables. */
2406 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
6659485c 2407 if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
3072d30e 2408 && !TEST_HARD_REG_BIT (old->reg_set, i))
2409 {
2410 old->reg[++old->top] = i;
2411 SET_HARD_REG_BIT (old->reg_set, i);
d1f9b275 2412 emit_insn_before (gen_rtx_SET (FP_MODE_REG (i, SFmode), not_a_num),
2413 insn);
3072d30e 2414 }
2415
a92771b8 2416 /* Pop any registers that are not needed in the new block. */
535825e6 2417
7e542714 2418 /* If the destination block's stack already has a specified layout
2419 and contains two or more registers, use a more intelligent algorithm
47ae02b7 2420 to pop registers that minimizes the number of fxchs below. */
6659485c 2421 if (new_stack->top > 0)
7e542714 2422 {
2423 bool slots[REG_STACK_SIZE];
2424 int pops[REG_STACK_SIZE];
73f51753 2425 int next, dest, topsrc;
7e542714 2426
2427 /* First pass to determine the free slots. */
6659485c 2428 for (reg = 0; reg <= new_stack->top; reg++)
2429 slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
7e542714 2430
2431 /* Second pass to allocate preferred slots. */
73f51753 2432 topsrc = -1;
6659485c 2433 for (reg = old->top; reg > new_stack->top; reg--)
2434 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
7e542714 2435 {
2436 dest = -1;
6659485c 2437 for (next = 0; next <= new_stack->top; next++)
2438 if (!slots[next] && new_stack->reg[next] == old->reg[reg])
7e542714 2439 {
73f51753 2440 /* If this is a preference for the new top of stack, record
2441 the fact by remembering it's old->reg in topsrc. */
6659485c 2442 if (next == new_stack->top)
73f51753 2443 topsrc = reg;
7e542714 2444 slots[next] = true;
2445 dest = next;
2446 break;
2447 }
2448 pops[reg] = dest;
2449 }
2450 else
2451 pops[reg] = reg;
2452
73f51753 2453 /* Intentionally, avoid placing the top of stack in it's correct
2454 location, if we still need to permute the stack below and we
2455 can usefully place it somewhere else. This is the case if any
2456 slot is still unallocated, in which case we should place the
2457 top of stack there. */
2458 if (topsrc != -1)
6659485c 2459 for (reg = 0; reg < new_stack->top; reg++)
73f51753 2460 if (!slots[reg])
2461 {
2462 pops[topsrc] = reg;
6659485c 2463 slots[new_stack->top] = false;
73f51753 2464 slots[reg] = true;
2465 break;
2466 }
2467
7e542714 2468 /* Third pass allocates remaining slots and emits pop insns. */
6659485c 2469 next = new_stack->top;
2470 for (reg = old->top; reg > new_stack->top; reg--)
7e542714 2471 {
2472 dest = pops[reg];
2473 if (dest == -1)
2474 {
2475 /* Find next free slot. */
2476 while (slots[next])
73f51753 2477 next--;
2478 dest = next--;
7e542714 2479 }
2480 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2481 EMIT_BEFORE);
2482 }
2483 }
2484 else
73f51753 2485 {
2486 /* The following loop attempts to maximize the number of times we
2487 pop the top of the stack, as this permits the use of the faster
2488 ffreep instruction on platforms that support it. */
2489 int live, next;
2490
2491 live = 0;
2492 for (reg = 0; reg <= old->top; reg++)
6659485c 2493 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
73f51753 2494 live++;
2495
2496 next = live;
2497 while (old->top >= live)
6659485c 2498 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
73f51753 2499 {
6659485c 2500 while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
73f51753 2501 next--;
2502 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
7e542714 2503 EMIT_BEFORE);
73f51753 2504 }
2505 else
2506 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
7e542714 2507 EMIT_BEFORE);
73f51753 2508 }
535825e6 2509
6659485c 2510 if (new_stack->top == -2)
535825e6 2511 {
2512 /* If the new block has never been processed, then it can inherit
a92771b8 2513 the old stack order. */
535825e6 2514
6659485c 2515 new_stack->top = old->top;
2516 memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
535825e6 2517 }
2518 else
2519 {
2520 /* This block has been entered before, and we must match the
a92771b8 2521 previously selected stack order. */
535825e6 2522
2523 /* By now, the only difference should be the order of the stack,
a92771b8 2524 not their depth or liveliness. */
535825e6 2525
6659485c 2526 gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2527 gcc_assert (old->top == new_stack->top);
535825e6 2528
6659485c 2529 /* If the stack is not empty (new_stack->top != -1), loop here emitting
2617fe26 2530 swaps until the stack is correct.
ce531cb7 2531
2532 The worst case number of swaps emitted is N + 2, where N is the
535825e6 2533 depth of the stack. In some cases, the reg at the top of
2534 stack may be correct, but swapped anyway in order to fix
2535 other regs. But since we never swap any other reg away from
a92771b8 2536 its correct slot, this algorithm will converge. */
535825e6 2537
6659485c 2538 if (new_stack->top != -1)
ce531cb7 2539 do
2540 {
2541 /* Swap the reg at top of stack into the position it is
2542 supposed to be in, until the correct top of stack appears. */
535825e6 2543
6659485c 2544 while (old->reg[old->top] != new_stack->reg[new_stack->top])
ce531cb7 2545 {
6659485c 2546 for (reg = new_stack->top; reg >= 0; reg--)
2547 if (new_stack->reg[reg] == old->reg[old->top])
ce531cb7 2548 break;
535825e6 2549
04e579b6 2550 gcc_assert (reg != -1);
535825e6 2551
ce531cb7 2552 emit_swap_insn (insn, old,
2553 FP_MODE_REG (old->reg[reg], DFmode));
2554 }
535825e6 2555
ce531cb7 2556 /* See if any regs remain incorrect. If so, bring an
535825e6 2557 incorrect reg to the top of stack, and let the while loop
a92771b8 2558 above fix it. */
535825e6 2559
6659485c 2560 for (reg = new_stack->top; reg >= 0; reg--)
2561 if (new_stack->reg[reg] != old->reg[reg])
ce531cb7 2562 {
2563 emit_swap_insn (insn, old,
2564 FP_MODE_REG (old->reg[reg], DFmode));
2565 break;
2566 }
2567 } while (reg >= 0);
535825e6 2568
a92771b8 2569 /* At this point there must be no differences. */
535825e6 2570
2571 for (reg = old->top; reg >= 0; reg--)
6659485c 2572 gcc_assert (old->reg[reg] == new_stack->reg[reg]);
535825e6 2573 }
f3d96a58 2574
2575 if (update_end)
26bb3cb2 2576 BB_END (current_block) = PREV_INSN (insn);
535825e6 2577}
2578\f
f3d96a58 2579/* Print stack configuration. */
535825e6 2580
2581static void
2b15d2ba 2582print_stack (FILE *file, stack_ptr s)
535825e6 2583{
f3d96a58 2584 if (! file)
2585 return;
535825e6 2586
f3d96a58 2587 if (s->top == -2)
2588 fprintf (file, "uninitialized\n");
2589 else if (s->top == -1)
2590 fprintf (file, "empty\n");
2591 else
ce71a9e6 2592 {
f3d96a58 2593 int i;
2594 fputs ("[ ", file);
2595 for (i = 0; i <= s->top; ++i)
2596 fprintf (file, "%d ", s->reg[i]);
2597 fputs ("]\n", file);
ce71a9e6 2598 }
f3d96a58 2599}
2600\f
2601/* This function was doing life analysis. We now let the regular live
2617fe26 2602 code do it's job, so we only need to check some extra invariants
f3d96a58 2603 that reg-stack expects. Primary among these being that all registers
2604 are initialized before use.
535825e6 2605
f3d96a58 2606 The function returns true when code was emitted to CFG edges and
2607 commit_edge_insertions needs to be called. */
535825e6 2608
f3d96a58 2609static int
3ad4992f 2610convert_regs_entry (void)
f3d96a58 2611{
4c26117a 2612 int inserted = 0;
f3d96a58 2613 edge e;
cd665a06 2614 edge_iterator ei;
535825e6 2615
bae5345b 2616 /* Load something into each stack register live at function entry.
f3d96a58 2617 Such live registers can be caused by uninitialized variables or
2617fe26 2618 functions not returning values on all paths. In order to keep
f3d96a58 2619 the push/pop code happy, and to not scrog the register stack, we
2617fe26 2620 must put something in these registers. Use a QNaN.
535825e6 2621
41a6f238 2622 Note that we are inserting converted code here. This code is
f3d96a58 2623 never seen by the convert_regs pass. */
535825e6 2624
34154e27 2625 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
f3d96a58 2626 {
2627 basic_block block = e->dest;
2628 block_info bi = BLOCK_INFO (block);
2629 int reg, top = -1;
535825e6 2630
f3d96a58 2631 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
bae5345b 2632 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
f3d96a58 2633 {
2634 rtx init;
535825e6 2635
f3d96a58 2636 bi->stack_in.reg[++top] = reg;
535825e6 2637
d1f9b275 2638 init = gen_rtx_SET (FP_MODE_REG (FIRST_STACK_REG, SFmode),
62ec6441 2639 not_a_num);
f3d96a58 2640 insert_insn_on_edge (init, e);
2641 inserted = 1;
2642 }
535825e6 2643
f3d96a58 2644 bi->stack_in.top = top;
2645 }
535825e6 2646
f3d96a58 2647 return inserted;
2648}
535825e6 2649
f3d96a58 2650/* Construct the desired stack for function exit. This will either
2651 be `empty', or the function return value at top-of-stack. */
535825e6 2652
f3d96a58 2653static void
3ad4992f 2654convert_regs_exit (void)
f3d96a58 2655{
2656 int value_reg_low, value_reg_high;
2b15d2ba 2657 stack_ptr output_stack;
f3d96a58 2658 rtx retvalue;
535825e6 2659
f3d96a58 2660 retvalue = stack_result (current_function_decl);
2661 value_reg_low = value_reg_high = -1;
2662 if (retvalue)
2663 {
2664 value_reg_low = REGNO (retvalue);
788bed51 2665 value_reg_high = END_REGNO (retvalue) - 1;
f3d96a58 2666 }
535825e6 2667
34154e27 2668 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->stack_in;
f3d96a58 2669 if (value_reg_low == -1)
2670 output_stack->top = -1;
2671 else
2672 {
2673 int reg;
535825e6 2674
f3d96a58 2675 output_stack->top = value_reg_high - value_reg_low;
2676 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2677 {
f4e62fcf 2678 output_stack->reg[value_reg_high - reg] = reg;
f3d96a58 2679 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2680 }
2681 }
535825e6 2682}
535825e6 2683
e8f7380b 2684/* Copy the stack info from the end of edge E's source block to the
2685 start of E's destination block. */
ea06f797 2686
2687static void
2688propagate_stack (edge e)
2689{
2b15d2ba 2690 stack_ptr src_stack = &BLOCK_INFO (e->src)->stack_out;
2691 stack_ptr dest_stack = &BLOCK_INFO (e->dest)->stack_in;
e8f7380b 2692 int reg;
ea06f797 2693
e8f7380b 2694 /* Preserve the order of the original stack, but check whether
2695 any pops are needed. */
2696 dest_stack->top = -1;
2697 for (reg = 0; reg <= src_stack->top; ++reg)
2698 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2699 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
3072d30e 2700
2701 /* Push in any partially dead values. */
2702 for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2703 if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2704 && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2705 dest_stack->reg[++dest_stack->top] = reg;
ea06f797 2706}
2707
2708
2709/* Adjust the stack of edge E's source block on exit to match the stack
2710 of it's target block upon input. The stack layouts of both blocks
2711 should have been defined by now. */
2712
ecb7b891 2713static bool
3f5be5f4 2714compensate_edge (edge e)
ecb7b891 2715{
d1b17fc8 2716 basic_block source = e->src, target = e->dest;
2b15d2ba 2717 stack_ptr target_stack = &BLOCK_INFO (target)->stack_in;
2718 stack_ptr source_stack = &BLOCK_INFO (source)->stack_out;
d1b17fc8 2719 struct stack_def regstack;
ecb7b891 2720 int reg;
2721
3f5be5f4 2722 if (dump_file)
2723 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
ecb7b891 2724
ea06f797 2725 gcc_assert (target_stack->top != -2);
2726
2727 /* Check whether stacks are identical. */
d1b17fc8 2728 if (target_stack->top == source_stack->top)
ecb7b891 2729 {
ea06f797 2730 for (reg = target_stack->top; reg >= 0; --reg)
d1b17fc8 2731 if (target_stack->reg[reg] != source_stack->reg[reg])
ecb7b891 2732 break;
2733
2734 if (reg == -1)
2735 {
3f5be5f4 2736 if (dump_file)
2737 fprintf (dump_file, "no changes needed\n");
2617fe26 2738 return false;
ecb7b891 2739 }
ecb7b891 2740 }
ecb7b891 2741
3f5be5f4 2742 if (dump_file)
ea06f797 2743 {
3f5be5f4 2744 fprintf (dump_file, "correcting stack to ");
2745 print_stack (dump_file, target_stack);
ecb7b891 2746 }
2747
d1b17fc8 2748 /* Abnormal calls may appear to have values live in st(0), but the
ecb7b891 2749 abnormal return path will not have actually loaded the values. */
d1b17fc8 2750 if (e->flags & EDGE_ABNORMAL_CALL)
ecb7b891 2751 {
2752 /* Assert that the lifetimes are as we expect -- one value
2753 live at st(0) on the end of the source block, and no
ff432028 2754 values live at the beginning of the destination block.
2755 For complex return values, we may have st(1) live as well. */
2756 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
d1b17fc8 2757 gcc_assert (target_stack->top == -1);
2758 return false;
2759 }
ecb7b891 2760
d1b17fc8 2761 /* Handle non-call EH edges specially. The normal return path have
2762 values in registers. These will be popped en masse by the unwind
2763 library. */
2764 if (e->flags & EDGE_EH)
2765 {
2766 gcc_assert (target_stack->top == -1);
2767 return false;
ecb7b891 2768 }
2769
d1b17fc8 2770 /* We don't support abnormal edges. Global takes care to
2771 avoid any live register across them, so we should never
2772 have to insert instructions on such edges. */
2773 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2774
2775 /* Make a copy of source_stack as change_stack is destructive. */
2776 regstack = *source_stack;
2777
ecb7b891 2778 /* It is better to output directly to the end of the block
2779 instead of to the edge, because emit_swap can do minimal
2780 insn scheduling. We can do this when there is only one
2781 edge out, and it is not abnormal. */
d1b17fc8 2782 if (EDGE_COUNT (source->succs) == 1)
ecb7b891 2783 {
d1b17fc8 2784 current_block = source;
2785 change_stack (BB_END (source), &regstack, target_stack,
2786 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
ecb7b891 2787 }
2788 else
2789 {
cef3d8ad 2790 rtx_insn *seq;
2791 rtx_note *after;
ecb7b891 2792
ecb7b891 2793 current_block = NULL;
2794 start_sequence ();
2795
31d3e01c 2796 /* ??? change_stack needs some point to emit insns after. */
31b97e8f 2797 after = emit_note (NOTE_INSN_DELETED);
ecb7b891 2798
d1b17fc8 2799 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
ecb7b891 2800
31d3e01c 2801 seq = get_insns ();
ecb7b891 2802 end_sequence ();
2803
2804 insert_insn_on_edge (seq, e);
2805 return true;
2806 }
2807 return false;
2808}
2809
ea06f797 2810/* Traverse all non-entry edges in the CFG, and emit the necessary
2811 edge compensation code to change the stack from stack_out of the
2812 source block to the stack_in of the destination block. */
2813
2814static bool
3f5be5f4 2815compensate_edges (void)
ea06f797 2816{
2817 bool inserted = false;
2818 basic_block bb;
2819
9d97464a 2820 starting_stack_p = false;
2821
fc00614f 2822 FOR_EACH_BB_FN (bb, cfun)
34154e27 2823 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
ea06f797 2824 {
2825 edge e;
2826 edge_iterator ei;
2827
2828 FOR_EACH_EDGE (e, ei, bb->succs)
3f5be5f4 2829 inserted |= compensate_edge (e);
ea06f797 2830 }
2831 return inserted;
2832}
2833
e8f7380b 2834/* Select the better of two edges E1 and E2 to use to determine the
2835 stack layout for their shared destination basic block. This is
2836 typically the more frequently executed. The edge E1 may be NULL
2837 (in which case E2 is returned), but E2 is always non-NULL. */
2838
2839static edge
2840better_edge (edge e1, edge e2)
2841{
2842 if (!e1)
2843 return e2;
2844
2845 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2846 return e1;
2847 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2848 return e2;
2849
2850 if (e1->count > e2->count)
2851 return e1;
2852 if (e1->count < e2->count)
2853 return e2;
2854
2855 /* Prefer critical edges to minimize inserting compensation code on
2856 critical edges. */
2857
2858 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2859 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2860
3ce7ff97 2861 /* Avoid non-deterministic behavior. */
e8f7380b 2862 return (e1->src->index < e2->src->index) ? e1 : e2;
2863}
2864
6a3002a6 2865/* Convert stack register references in one block. Return true if the CFG
2866 has been modified in the process. */
f3d96a58 2867
6a3002a6 2868static bool
3f5be5f4 2869convert_regs_1 (basic_block block)
535825e6 2870{
ecb7b891 2871 struct stack_def regstack;
f3d96a58 2872 block_info bi = BLOCK_INFO (block);
ea06f797 2873 int reg;
8fe8e576 2874 rtx_insn *insn, *next;
393522df 2875 bool control_flow_insn_deleted = false;
6a3002a6 2876 bool cfg_altered = false;
9845d120 2877 int debug_insns_with_starting_stack = 0;
535825e6 2878
299a3cdd 2879 any_malformed_asm = false;
ecb7b891 2880
e8f7380b 2881 /* Choose an initial stack layout, if one hasn't already been chosen. */
ecb7b891 2882 if (bi->stack_in.top == -2)
054e1120 2883 {
e8f7380b 2884 edge e, beste = NULL;
2885 edge_iterator ei;
2886
2887 /* Select the best incoming edge (typically the most frequent) to
2888 use as a template for this basic block. */
2889 FOR_EACH_EDGE (e, ei, block->preds)
2890 if (BLOCK_INFO (e->src)->done)
2891 beste = better_edge (beste, e);
2892
054e1120 2893 if (beste)
ea06f797 2894 propagate_stack (beste);
054e1120 2895 else
2896 {
2897 /* No predecessors. Create an arbitrary input stack. */
054e1120 2898 bi->stack_in.top = -1;
2899 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2900 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2901 bi->stack_in.reg[++bi->stack_in.top] = reg;
2902 }
2903 }
2617fe26 2904
3f5be5f4 2905 if (dump_file)
535825e6 2906 {
3f5be5f4 2907 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2908 print_stack (dump_file, &bi->stack_in);
f3d96a58 2909 }
535825e6 2910
f3d96a58 2911 /* Process all insns in this block. Keep track of NEXT so that we
2912 don't process insns emitted while substituting in INSN. */
9d97464a 2913 current_block = block;
5496dbfc 2914 next = BB_HEAD (block);
f3d96a58 2915 regstack = bi->stack_in;
9d97464a 2916 starting_stack_p = true;
2917
f3d96a58 2918 do
2919 {
2920 insn = next;
2921 next = NEXT_INSN (insn);
535825e6 2922
f3d96a58 2923 /* Ensure we have not missed a block boundary. */
04e579b6 2924 gcc_assert (next);
5496dbfc 2925 if (insn == BB_END (block))
f3d96a58 2926 next = NULL;
2927
2928 /* Don't bother processing unless there is a stack reg
2929 mentioned or if it's a CALL_INSN. */
9845d120 2930 if (DEBUG_INSN_P (insn))
2931 {
2932 if (starting_stack_p)
2933 debug_insns_with_starting_stack++;
2934 else
2935 {
a6aa49aa 2936 subst_all_stack_regs_in_debug_insn (insn, &regstack);
9845d120 2937
2938 /* Nothing must ever die at a debug insn. If something
2939 is referenced in it that becomes dead, it should have
2940 died before and the reference in the debug insn
2941 should have been removed so as to avoid changing code
2942 generation. */
2943 gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
2944 }
2945 }
2946 else if (stack_regs_mentioned (insn)
2947 || CALL_P (insn))
f3d96a58 2948 {
3f5be5f4 2949 if (dump_file)
f3d96a58 2950 {
3f5be5f4 2951 fprintf (dump_file, " insn %d input stack: ",
f3d96a58 2952 INSN_UID (insn));
3f5be5f4 2953 print_stack (dump_file, &regstack);
f3d96a58 2954 }
393522df 2955 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
9d97464a 2956 starting_stack_p = false;
535825e6 2957 }
f3d96a58 2958 }
2959 while (next);
535825e6 2960
9845d120 2961 if (debug_insns_with_starting_stack)
2962 {
2963 /* Since it's the first non-debug instruction that determines
2964 the stack requirements of the current basic block, we refrain
2965 from updating debug insns before it in the loop above, and
2966 fix them up here. */
2967 for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
2968 insn = NEXT_INSN (insn))
2969 {
2970 if (!DEBUG_INSN_P (insn))
2971 continue;
2972
2973 debug_insns_with_starting_stack--;
a6aa49aa 2974 subst_all_stack_regs_in_debug_insn (insn, &bi->stack_in);
9845d120 2975 }
2976 }
2977
3f5be5f4 2978 if (dump_file)
f3d96a58 2979 {
3f5be5f4 2980 fprintf (dump_file, "Expected live registers [");
f3d96a58 2981 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2982 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
3f5be5f4 2983 fprintf (dump_file, " %d", reg);
2984 fprintf (dump_file, " ]\nOutput stack: ");
2985 print_stack (dump_file, &regstack);
f3d96a58 2986 }
535825e6 2987
5496dbfc 2988 insn = BB_END (block);
6d7dc5b9 2989 if (JUMP_P (insn))
f3d96a58 2990 insn = PREV_INSN (insn);
2991
2992 /* If the function is declared to return a value, but it returns one
2993 in only some cases, some registers might come live here. Emit
2994 necessary moves for them. */
2995
2996 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2997 {
2998 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2999 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
535825e6 3000 {
f3d96a58 3001 rtx set;
535825e6 3002
3f5be5f4 3003 if (dump_file)
3004 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
535825e6 3005
d1f9b275 3006 set = gen_rtx_SET (FP_MODE_REG (reg, SFmode), not_a_num);
9dda7915 3007 insn = emit_insn_after (set, insn);
393522df 3008 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
f3d96a58 3009 }
3010 }
48e1416a 3011
92770800 3012 /* Amongst the insns possibly deleted during the substitution process above,
3013 might have been the only trapping insn in the block. We purge the now
3014 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3015 called at the end of convert_regs. The order in which we process the
3016 blocks ensures that we never delete an already processed edge.
3017
393522df 3018 Note that, at this point, the CFG may have been damaged by the emission
3019 of instructions after an abnormal call, which moves the basic block end
3020 (and is the reason why we call fixup_abnormal_edges later). So we must
3021 be sure that the trapping insn has been deleted before trying to purge
3022 dead edges, otherwise we risk purging valid edges.
3023
92770800 3024 ??? We are normally supposed not to delete trapping insns, so we pretend
3025 that the insns deleted above don't actually trap. It would have been
3026 better to detect this earlier and avoid creating the EH edge in the first
3027 place, still, but we don't have enough information at that time. */
3028
393522df 3029 if (control_flow_insn_deleted)
6a3002a6 3030 cfg_altered |= purge_dead_edges (block);
535825e6 3031
299a3cdd 3032 /* Something failed if the stack lives don't match. If we had malformed
3033 asms, we zapped the instruction itself, but that didn't produce the
3034 same pattern of register kills as before. */
48e1416a 3035
ddc556d1 3036 gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
3037 || any_malformed_asm);
ecb7b891 3038 bi->stack_out = regstack;
d1b17fc8 3039 bi->done = true;
6a3002a6 3040
3041 return cfg_altered;
535825e6 3042}
535825e6 3043
6a3002a6 3044/* Convert registers in all blocks reachable from BLOCK. Return true if the
3045 CFG has been modified in the process. */
f3d96a58 3046
6a3002a6 3047static bool
3f5be5f4 3048convert_regs_2 (basic_block block)
535825e6 3049{
f3d96a58 3050 basic_block *stack, *sp;
6a3002a6 3051 bool cfg_altered = false;
535825e6 3052
92770800 3053 /* We process the blocks in a top-down manner, in a way such that one block
3054 is only processed after all its predecessors. The number of predecessors
48e1416a 3055 of every block has already been computed. */
92770800 3056
a28770e1 3057 stack = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
f3d96a58 3058 sp = stack;
535825e6 3059
f3d96a58 3060 *sp++ = block;
535825e6 3061
f3d96a58 3062 do
3063 {
3064 edge e;
cd665a06 3065 edge_iterator ei;
535825e6 3066
f3d96a58 3067 block = *--sp;
535825e6 3068
054e1120 3069 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3070 some dead EH outgoing edge after the deletion of the trapping
3071 insn inside the block. Since the number of predecessors of
3072 BLOCK's successors was computed based on the initial edge set,
3073 we check the necessity to process some of these successors
3074 before such an edge deletion may happen. However, there is
3075 a pitfall: if BLOCK is the only predecessor of a successor and
3076 the edge between them happens to be deleted, the successor
3077 becomes unreachable and should not be processed. The problem
3078 is that there is no way to preventively detect this case so we
3079 stack the successor in all cases and hand over the task of
3080 fixing up the discrepancy to convert_regs_1. */
3081
cd665a06 3082 FOR_EACH_EDGE (e, ei, block->succs)
ecb7b891 3083 if (! (e->flags & EDGE_DFS_BACK))
f3d96a58 3084 {
4ad72a03 3085 BLOCK_INFO (e->dest)->predecessors--;
3086 if (!BLOCK_INFO (e->dest)->predecessors)
cd665a06 3087 *sp++ = e->dest;
f3d96a58 3088 }
92770800 3089
6a3002a6 3090 cfg_altered |= convert_regs_1 (block);
535825e6 3091 }
f3d96a58 3092 while (sp != stack);
3093
1a727bd2 3094 free (stack);
6a3002a6 3095
3096 return cfg_altered;
535825e6 3097}
c5b9f902 3098
f3d96a58 3099/* Traverse all basic blocks in a function, converting the register
3100 references in each insn from the "flat" register file that gcc uses,
3101 to the stack-like registers the 387 uses. */
3102
30bb6ef3 3103static void
3f5be5f4 3104convert_regs (void)
535825e6 3105{
6a3002a6 3106 bool cfg_altered = false;
4c26117a 3107 int inserted;
3108 basic_block b;
f3d96a58 3109 edge e;
cd665a06 3110 edge_iterator ei;
535825e6 3111
f3d96a58 3112 /* Initialize uninitialized registers on function entry. */
3113 inserted = convert_regs_entry ();
535825e6 3114
f3d96a58 3115 /* Construct the desired stack for function exit. */
3116 convert_regs_exit ();
34154e27 3117 BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->done = 1;
535825e6 3118
f3d96a58 3119 /* ??? Future: process inner loops first, and give them arbitrary
3120 initial stacks which emit_swap_insn can modify. This ought to
7bd28bba 3121 prevent double fxch that often appears at the head of a loop. */
535825e6 3122
f3d96a58 3123 /* Process all blocks reachable from all entry points. */
34154e27 3124 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
6a3002a6 3125 cfg_altered |= convert_regs_2 (e->dest);
2617fe26 3126
3127 /* ??? Process all unreachable blocks. Though there's no excuse
f3d96a58 3128 for keeping these even when not optimizing. */
fc00614f 3129 FOR_EACH_BB_FN (b, cfun)
f3d96a58 3130 {
f3d96a58 3131 block_info bi = BLOCK_INFO (b);
535825e6 3132
f3d96a58 3133 if (! bi->done)
6a3002a6 3134 cfg_altered |= convert_regs_2 (b);
f3d96a58 3135 }
ea06f797 3136
54f21e20 3137 /* We must fix up abnormal edges before inserting compensation code
3138 because both mechanisms insert insns on edges. */
3139 inserted |= fixup_abnormal_edges ();
3140
3f5be5f4 3141 inserted |= compensate_edges ();
ea06f797 3142
43585301 3143 clear_aux_for_blocks ();
535825e6 3144
f3d96a58 3145 if (inserted)
3146 commit_edge_insertions ();
535825e6 3147
6a3002a6 3148 if (cfg_altered)
3149 cleanup_cfg (0);
3150
3f5be5f4 3151 if (dump_file)
3152 fputc ('\n', dump_file);
30bb6ef3 3153}
3154\f
3155/* Convert register usage from "flat" register file usage to a "stack
3156 register file. FILE is the dump file, if used.
535825e6 3157
30bb6ef3 3158 Construct a CFG and run life analysis. Then convert each insn one
3159 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3160 code duplication created when the converter inserts pop insns on
3161 the edges. */
3162
c2d7bf84 3163static bool
3f5be5f4 3164reg_to_stack (void)
30bb6ef3 3165{
3166 basic_block bb;
3167 int i;
3168 int max_uid;
3169
3170 /* Clean up previous run. */
f1f41a6c 3171 stack_regs_mentioned_data.release ();
30bb6ef3 3172
3173 /* See if there is something to do. Flow analysis is quite
3174 expensive so we might save some compilation time. */
3175 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3072d30e 3176 if (df_regs_ever_live_p (i))
30bb6ef3 3177 break;
3178 if (i > LAST_STACK_REG)
3179 return false;
3180
3072d30e 3181 df_note_add_problem ();
3182 df_analyze ();
3183
30bb6ef3 3184 mark_dfs_back_edges ();
3185
3186 /* Set up block info for each basic block. */
3187 alloc_aux_for_blocks (sizeof (struct block_info_def));
fc00614f 3188 FOR_EACH_BB_FN (bb, cfun)
30bb6ef3 3189 {
3190 block_info bi = BLOCK_INFO (bb);
3191 edge_iterator ei;
3192 edge e;
3193 int reg;
3194
3195 FOR_EACH_EDGE (e, ei, bb->preds)
3196 if (!(e->flags & EDGE_DFS_BACK)
34154e27 3197 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
30bb6ef3 3198 bi->predecessors++;
3199
3200 /* Set current register status at last instruction `uninitialized'. */
3201 bi->stack_in.top = -2;
3202
3203 /* Copy live_at_end and live_at_start into temporaries. */
3204 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3205 {
3072d30e 3206 if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
30bb6ef3 3207 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3072d30e 3208 if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
30bb6ef3 3209 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3210 }
3211 }
3212
3213 /* Create the replacement registers up front. */
3214 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3215 {
3754d046 3216 machine_mode mode;
30bb6ef3 3217 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3218 mode != VOIDmode;
3219 mode = GET_MODE_WIDER_MODE (mode))
3220 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3221 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3222 mode != VOIDmode;
3223 mode = GET_MODE_WIDER_MODE (mode))
3224 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3225 }
3226
3227 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3228
3229 /* A QNaN for initializing uninitialized variables.
3230
3231 ??? We can't load from constant memory in PIC mode, because
3232 we're inserting these instructions before the prologue and
3233 the PIC register hasn't been set up. In that case, fall back
458dbf04 3234 on zero, which we can get from `fldz'. */
30bb6ef3 3235
5fe80ef0 3236 if ((flag_pic && !TARGET_64BIT)
3237 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
30bb6ef3 3238 not_a_num = CONST0_RTX (SFmode);
3239 else
3240 {
458dbf04 3241 REAL_VALUE_TYPE r;
3242
3243 real_nan (&r, "", 1, SFmode);
d5f9611d 3244 not_a_num = const_double_from_real_value (r, SFmode);
30bb6ef3 3245 not_a_num = force_const_mem (SFmode, not_a_num);
3246 }
3247
3248 /* Allocate a cache for stack_regs_mentioned. */
3249 max_uid = get_max_uid ();
f1f41a6c 3250 stack_regs_mentioned_data.create (max_uid + 1);
3251 memset (stack_regs_mentioned_data.address (),
0ff9e65d 3252 0, sizeof (char) * (max_uid + 1));
30bb6ef3 3253
3f5be5f4 3254 convert_regs ();
30bb6ef3 3255
3256 free_aux_for_blocks ();
3257 return true;
535825e6 3258}
535825e6 3259#endif /* STACK_REGS */
77fce4cd 3260\f
cbe8bda8 3261namespace {
3262
3263const pass_data pass_data_stack_regs =
3072d30e 3264{
cbe8bda8 3265 RTL_PASS, /* type */
3266 "*stack_regs", /* name */
3267 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 3268 TV_REG_STACK, /* tv_id */
3269 0, /* properties_required */
3270 0, /* properties_provided */
3271 0, /* properties_destroyed */
3272 0, /* todo_flags_start */
3273 0, /* todo_flags_finish */
3072d30e 3274};
3275
cbe8bda8 3276class pass_stack_regs : public rtl_opt_pass
3277{
3278public:
9af5ce0c 3279 pass_stack_regs (gcc::context *ctxt)
3280 : rtl_opt_pass (pass_data_stack_regs, ctxt)
cbe8bda8 3281 {}
3282
3283 /* opt_pass methods: */
31315c24 3284 virtual bool gate (function *)
3285 {
3286#ifdef STACK_REGS
3287 return true;
3288#else
3289 return false;
3290#endif
3291 }
cbe8bda8 3292
3293}; // class pass_stack_regs
3294
3295} // anon namespace
3296
3297rtl_opt_pass *
3298make_pass_stack_regs (gcc::context *ctxt)
3299{
3300 return new pass_stack_regs (ctxt);
3301}
3302
77fce4cd 3303/* Convert register usage from flat register file usage to a stack
3304 register file. */
2a1990e9 3305static unsigned int
77fce4cd 3306rest_of_handle_stack_regs (void)
3307{
3308#ifdef STACK_REGS
3072d30e 3309 reg_to_stack ();
3310 regstack_completed = 1;
77fce4cd 3311#endif
2a1990e9 3312 return 0;
77fce4cd 3313}
3314
cbe8bda8 3315namespace {
3316
3317const pass_data pass_data_stack_regs_run =
77fce4cd 3318{
cbe8bda8 3319 RTL_PASS, /* type */
3320 "stack", /* name */
3321 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 3322 TV_REG_STACK, /* tv_id */
3323 0, /* properties_required */
3324 0, /* properties_provided */
3325 0, /* properties_destroyed */
3326 0, /* todo_flags_start */
8b88439e 3327 TODO_df_finish, /* todo_flags_finish */
77fce4cd 3328};
cbe8bda8 3329
3330class pass_stack_regs_run : public rtl_opt_pass
3331{
3332public:
9af5ce0c 3333 pass_stack_regs_run (gcc::context *ctxt)
3334 : rtl_opt_pass (pass_data_stack_regs_run, ctxt)
cbe8bda8 3335 {}
3336
3337 /* opt_pass methods: */
65b0537f 3338 virtual unsigned int execute (function *)
3339 {
3340 return rest_of_handle_stack_regs ();
3341 }
cbe8bda8 3342
3343}; // class pass_stack_regs_run
3344
3345} // anon namespace
3346
3347rtl_opt_pass *
3348make_pass_stack_regs_run (gcc::context *ctxt)
3349{
3350 return new pass_stack_regs_run (ctxt);
3351}