]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/reg-stack.c
basic-block.h (BLOCK_HEAD, BLOCK_END): Remove.
[thirdparty/gcc.git] / gcc / reg-stack.c
CommitLineData
48227150 1/* Register to Stack convert for GNU compiler.
1fb54135
RS
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
48227150 4
1322177d 5 This file is part of GCC.
48227150 6
1322177d
LB
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
a05924f9
JH
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
48227150 11
1322177d
LB
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
48227150 16
a05924f9 17 You should have received a copy of the GNU General Public License
1322177d
LB
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
48227150
JVA
21
22/* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
24
25 * The form of the input:
26
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
114cbee6 35 numbers are virtual, and afterward they are all hard.
48227150
JVA
36
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
44
45 * The form of the output:
46
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
52
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
55
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
59
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
62
3f5cfed6 63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
48227150
JVA
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
66
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
71
72 * Methodology:
73
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
77
114cbee6 78 * asm_operands:
48227150 79
114cbee6
RS
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
83
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
87
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
91
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
98
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
101
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
104
105 asm ("foo" : "=t" (a) : "f" (b));
106
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, ie, the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
112
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
115
116 The asm above would be written as
117
118 asm ("foo" : "=&t" (a) : "f" (b));
119
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
124
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
128
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
133
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
136
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
140
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
143
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
145
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
149
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
151
a05924f9 152*/
48227150 153\f
48227150 154#include "config.h"
670ee920 155#include "system.h"
4977bab6
ZW
156#include "coretypes.h"
157#include "tm.h"
48227150
JVA
158#include "tree.h"
159#include "rtl.h"
6baf1cc8 160#include "tm_p.h"
49ad7cfa 161#include "function.h"
114cbee6 162#include "insn-config.h"
48227150
JVA
163#include "regs.h"
164#include "hard-reg-set.h"
165#include "flags.h"
10f0ad3d 166#include "toplev.h"
e075ae69 167#include "recog.h"
a05924f9
JH
168#include "output.h"
169#include "basic-block.h"
21b2cd73 170#include "varray.h"
2840aebf 171#include "reload.h"
e2500fed
GK
172#include "ggc.h"
173
174/* We use this array to cache info about insns, because otherwise we
175 spend too much time in stack_regs_mentioned_p.
176
177 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
178 the insn uses stack registers, two indicates the insn does not use
179 stack registers. */
180static GTY(()) varray_type stack_regs_mentioned_data;
48227150
JVA
181
182#ifdef STACK_REGS
183
184#define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
185
48227150
JVA
186/* This is the basic stack record. TOP is an index into REG[] such
187 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
188
eca31501
JVA
189 If TOP is -2, REG[] is not yet initialized. Stack initialization
190 consists of placing each live reg in array `reg' and setting `top'
191 appropriately.
192
193 REG_SET indicates which registers are live. */
48227150
JVA
194
195typedef struct stack_def
196{
197 int top; /* index to top stack element */
198 HARD_REG_SET reg_set; /* set of live registers */
b00b2cc2 199 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
48227150
JVA
200} *stack;
201
a6a2274a 202/* This is used to carry information about basic blocks. It is
a05924f9 203 attached to the AUX field of the standard CFG block. */
48227150 204
a05924f9
JH
205typedef struct block_info_def
206{
207 struct stack_def stack_in; /* Input stack configuration. */
0ecf09f9 208 struct stack_def stack_out; /* Output stack configuration. */
a05924f9
JH
209 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
210 int done; /* True if block already converted. */
754d9299 211 int predecessors; /* Number of predecessors that needs
0ecf09f9 212 to be visited. */
a05924f9 213} *block_info;
48227150 214
a05924f9 215#define BLOCK_INFO(B) ((block_info) (B)->aux)
48227150 216
a05924f9
JH
217/* Passed to change_stack to indicate where to emit insns. */
218enum emit_where
219{
220 EMIT_AFTER,
221 EMIT_BEFORE
222};
48227150 223
a05924f9
JH
224/* The block we're currently working on. */
225static basic_block current_block;
226
3eae4643 227/* This is the register file for all register after conversion. */
99a59310
RK
228static rtx
229 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
230
231#define FP_MODE_REG(regno,mode) \
f4f4d0f8 232 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
48227150 233
a05924f9
JH
234/* Used to initialize uninitialized registers. */
235static rtx nan;
48227150 236
48227150
JVA
237/* Forward declarations */
238
0c20a65f
AJ
239static int stack_regs_mentioned_p (rtx pat);
240static void straighten_stack (rtx, stack);
241static void pop_stack (stack, int);
242static rtx *get_true_reg (rtx *);
243
244static int check_asm_stack_operands (rtx);
245static int get_asm_operand_n_inputs (rtx);
246static rtx stack_result (tree);
247static void replace_reg (rtx *, int);
248static void remove_regno_note (rtx, enum reg_note, unsigned int);
249static int get_hard_regnum (stack, rtx);
250static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
251static void emit_swap_insn (rtx, stack, rtx);
ecb63641 252static bool move_for_stack_reg (rtx, stack, rtx);
0c20a65f
AJ
253static int swap_rtx_condition_1 (rtx);
254static int swap_rtx_condition (rtx);
255static void compare_for_stack_reg (rtx, stack, rtx);
ecb63641 256static bool subst_stack_regs_pat (rtx, stack, rtx);
0c20a65f 257static void subst_asm_stack_regs (rtx, stack);
ecb63641 258static bool subst_stack_regs (rtx, stack);
0c20a65f
AJ
259static void change_stack (rtx, stack, stack, enum emit_where);
260static int convert_regs_entry (void);
261static void convert_regs_exit (void);
262static int convert_regs_1 (FILE *, basic_block);
263static int convert_regs_2 (FILE *, basic_block);
264static int convert_regs (FILE *);
265static void print_stack (FILE *, stack);
266static rtx next_flags_user (rtx);
267static void record_label_references (rtx, rtx);
268static bool compensate_edge (edge, FILE *);
21b2cd73 269\f
40f03658 270/* Return nonzero if any stack register is mentioned somewhere within PAT. */
21b2cd73
JH
271
272static int
0c20a65f 273stack_regs_mentioned_p (rtx pat)
21b2cd73 274{
b3694847
SS
275 const char *fmt;
276 int i;
e075ae69
RH
277
278 if (STACK_REG_P (pat))
279 return 1;
280
281 fmt = GET_RTX_FORMAT (GET_CODE (pat));
282 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
21b2cd73 283 {
e075ae69
RH
284 if (fmt[i] == 'E')
285 {
b3694847 286 int j;
e075ae69
RH
287
288 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
289 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
290 return 1;
291 }
292 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
293 return 1;
21b2cd73 294 }
e075ae69 295
21b2cd73
JH
296 return 0;
297}
298
e075ae69 299/* Return nonzero if INSN mentions stacked registers, else return zero. */
21b2cd73
JH
300
301int
0c20a65f 302stack_regs_mentioned (rtx insn)
21b2cd73 303{
e075ae69
RH
304 unsigned int uid, max;
305 int test;
306
4793dca1 307 if (! INSN_P (insn) || !stack_regs_mentioned_data)
21b2cd73 308 return 0;
e075ae69 309
21b2cd73 310 uid = INSN_UID (insn);
e075ae69
RH
311 max = VARRAY_SIZE (stack_regs_mentioned_data);
312 if (uid >= max)
313 {
314 /* Allocate some extra size to avoid too many reallocs, but
315 do not grow too quickly. */
316 max = uid + uid / 20;
317 VARRAY_GROW (stack_regs_mentioned_data, max);
318 }
319
320 test = VARRAY_CHAR (stack_regs_mentioned_data, uid);
321 if (test == 0)
322 {
323 /* This insn has yet to be examined. Do so now. */
324 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
325 VARRAY_CHAR (stack_regs_mentioned_data, uid) = test;
326 }
327
328 return test == 1;
21b2cd73 329}
e075ae69
RH
330\f
331static rtx ix86_flags_rtx;
21b2cd73 332
e075ae69 333static rtx
0c20a65f 334next_flags_user (rtx insn)
e075ae69 335{
a6a2274a 336 /* Search forward looking for the first use of this value.
e075ae69 337 Stop at block boundaries. */
e075ae69 338
a813c111 339 while (insn != BB_END (current_block))
e075ae69
RH
340 {
341 insn = NEXT_INSN (insn);
e075ae69 342
2c3c49de 343 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
a6a2274a 344 return insn;
e075ae69 345
0eac0e81 346 if (GET_CODE (insn) == CALL_INSN)
e075ae69
RH
347 return NULL_RTX;
348 }
0eac0e81 349 return NULL_RTX;
e075ae69 350}
48227150 351\f
05713b80 352/* Reorganize the stack into ascending numbers,
99a59310
RK
353 after this insn. */
354
355static void
0c20a65f 356straighten_stack (rtx insn, stack regstack)
99a59310
RK
357{
358 struct stack_def temp_stack;
359 int top;
360
8feb7351
JL
361 /* If there is only a single register on the stack, then the stack is
362 already in increasing order and no reorganization is needed.
363
364 Similarly if the stack is empty. */
365 if (regstack->top <= 0)
366 return;
367
d25cf633 368 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
99a59310
RK
369
370 for (top = temp_stack.top = regstack->top; top >= 0; top--)
e075ae69 371 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
a6a2274a 372
a05924f9 373 change_stack (insn, regstack, &temp_stack, EMIT_AFTER);
99a59310 374}
7aa74e4c 375
3eae4643 376/* Pop a register from the stack. */
7aa74e4c
SC
377
378static void
0c20a65f 379pop_stack (stack regstack, int regno)
7aa74e4c
SC
380{
381 int top = regstack->top;
382
383 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
384 regstack->top--;
3eae4643 385 /* If regno was not at the top of stack then adjust stack. */
7aa74e4c
SC
386 if (regstack->reg [top] != regno)
387 {
388 int i;
389 for (i = regstack->top; i >= 0; i--)
390 if (regstack->reg [i] == regno)
391 {
392 int j;
393 for (j = i; j < top; j++)
394 regstack->reg [j] = regstack->reg [j + 1];
395 break;
396 }
397 }
398}
99a59310 399\f
48227150
JVA
400/* Convert register usage from "flat" register file usage to a "stack
401 register file. FIRST is the first insn in the function, FILE is the
402 dump file, if used.
403
e218fc41 404 Construct a CFG and run life analysis. Then convert each insn one
0045d504 405 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
a05924f9
JH
406 code duplication created when the converter inserts pop insns on
407 the edges. */
48227150 408
b9422b69 409bool
0c20a65f 410reg_to_stack (rtx first, FILE *file)
48227150 411{
e0082a72 412 basic_block bb;
0b17ab2f
RH
413 int i;
414 int max_uid;
a05924f9 415
4793dca1 416 /* Clean up previous run. */
e2500fed 417 stack_regs_mentioned_data = 0;
4793dca1 418
a05924f9
JH
419 /* See if there is something to do. Flow analysis is quite
420 expensive so we might save some compilation time. */
421 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
422 if (regs_ever_live[i])
423 break;
424 if (i > LAST_STACK_REG)
b9422b69 425 return false;
99a59310 426
a6a2274a 427 /* Ok, floating point instructions exist. If not optimizing,
0c20a65f 428 build the CFG and run life analysis.
b9422b69
JH
429 Also need to rebuild life when superblock scheduling is done
430 as it don't update liveness yet. */
431 if (!optimize
432 || (flag_sched2_use_superblocks
433 && flag_schedule_insns_after_reload))
73991d6a 434 {
73991d6a
JH
435 count_or_remove_death_notes (NULL, 1);
436 life_analysis (first, file, PROP_DEATH_NOTES);
437 }
0ecf09f9 438 mark_dfs_back_edges ();
48227150 439
a05924f9 440 /* Set up block info for each basic block. */
ca6c03ca 441 alloc_aux_for_blocks (sizeof (struct block_info_def));
e0082a72 442 FOR_EACH_BB_REVERSE (bb)
0ecf09f9
JH
443 {
444 edge e;
6a87d634 445 for (e = bb->pred; e; e = e->pred_next)
0ecf09f9
JH
446 if (!(e->flags & EDGE_DFS_BACK)
447 && e->src != ENTRY_BLOCK_PTR)
754d9299 448 BLOCK_INFO (bb)->predecessors++;
0ecf09f9 449 }
48227150 450
a05924f9
JH
451 /* Create the replacement registers up front. */
452 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
21b2cd73 453 {
a05924f9
JH
454 enum machine_mode mode;
455 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
456 mode != VOIDmode;
457 mode = GET_MODE_WIDER_MODE (mode))
458 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
459 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
460 mode != VOIDmode;
461 mode = GET_MODE_WIDER_MODE (mode))
462 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
21b2cd73 463 }
48227150 464
a05924f9 465 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
48227150 466
a6a2274a 467 /* A QNaN for initializing uninitialized variables.
48227150 468
a05924f9 469 ??? We can't load from constant memory in PIC mode, because
d55d8fc7 470 we're inserting these instructions before the prologue and
a05924f9
JH
471 the PIC register hasn't been set up. In that case, fall back
472 on zero, which we can get from `ldz'. */
48227150 473
a05924f9
JH
474 if (flag_pic)
475 nan = CONST0_RTX (SFmode);
476 else
477 {
478 nan = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
479 nan = force_const_mem (SFmode, nan);
480 }
48227150 481
a05924f9
JH
482 /* Allocate a cache for stack_regs_mentioned. */
483 max_uid = get_max_uid ();
484 VARRAY_CHAR_INIT (stack_regs_mentioned_data, max_uid + 1,
485 "stack_regs_mentioned cache");
48227150 486
4793dca1 487 convert_regs (file);
21b2cd73 488
ca6c03ca 489 free_aux_for_blocks ();
b9422b69 490 return true;
48227150
JVA
491}
492\f
493/* Check PAT, which is in INSN, for LABEL_REFs. Add INSN to the
494 label's chain of references, and note which insn contains each
0f41302f 495 reference. */
48227150
JVA
496
497static void
0c20a65f 498record_label_references (rtx insn, rtx pat)
48227150 499{
b3694847
SS
500 enum rtx_code code = GET_CODE (pat);
501 int i;
502 const char *fmt;
48227150
JVA
503
504 if (code == LABEL_REF)
505 {
b3694847
SS
506 rtx label = XEXP (pat, 0);
507 rtx ref;
48227150
JVA
508
509 if (GET_CODE (label) != CODE_LABEL)
510 abort ();
511
0f41302f
MS
512 /* If this is an undefined label, LABEL_REFS (label) contains
513 garbage. */
13684373
RK
514 if (INSN_UID (label) == 0)
515 return;
516
0f41302f 517 /* Don't make a duplicate in the code_label's chain. */
48227150 518
9f5cad05
JVA
519 for (ref = LABEL_REFS (label);
520 ref && ref != label;
521 ref = LABEL_NEXTREF (ref))
48227150
JVA
522 if (CONTAINING_INSN (ref) == insn)
523 return;
524
525 CONTAINING_INSN (pat) = insn;
526 LABEL_NEXTREF (pat) = LABEL_REFS (label);
527 LABEL_REFS (label) = pat;
528
529 return;
530 }
531
532 fmt = GET_RTX_FORMAT (code);
533 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
534 {
535 if (fmt[i] == 'e')
536 record_label_references (insn, XEXP (pat, i));
537 if (fmt[i] == 'E')
538 {
b3694847 539 int j;
48227150
JVA
540 for (j = 0; j < XVECLEN (pat, i); j++)
541 record_label_references (insn, XVECEXP (pat, i, j));
542 }
543 }
544}
545\f
546/* Return a pointer to the REG expression within PAT. If PAT is not a
547 REG, possible enclosed by a conversion rtx, return the inner part of
0f41302f 548 PAT that stopped the search. */
48227150
JVA
549
550static rtx *
0c20a65f 551get_true_reg (rtx *pat)
48227150 552{
99a59310 553 for (;;)
e075ae69 554 switch (GET_CODE (*pat))
99a59310 555 {
e075ae69 556 case SUBREG:
8d9afc4e 557 /* Eliminate FP subregister accesses in favor of the
e075ae69
RH
558 actual FP register in use. */
559 {
560 rtx subreg;
561 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
99a59310 562 {
ddef6bc7
JJ
563 int regno_off = subreg_regno_offset (REGNO (subreg),
564 GET_MODE (subreg),
565 SUBREG_BYTE (*pat),
566 GET_MODE (*pat));
567 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
99a59310 568 GET_MODE (subreg));
e075ae69 569 default:
99a59310
RK
570 return pat;
571 }
e075ae69
RH
572 }
573 case FLOAT:
574 case FIX:
575 case FLOAT_EXTEND:
576 pat = & XEXP (*pat, 0);
99a59310 577 }
48227150 578}
48227150 579\f
d6fc0492
RH
580/* Set if we find any malformed asms in a block. */
581static bool any_malformed_asm;
582
a05924f9 583/* There are many rules that an asm statement for stack-like regs must
114cbee6 584 follow. Those rules are explained at the top of this file: the rule
0f41302f 585 numbers below refer to that explanation. */
114cbee6 586
a05924f9 587static int
0c20a65f 588check_asm_stack_operands (rtx insn)
114cbee6
RS
589{
590 int i;
114cbee6
RS
591 int n_clobbers;
592 int malformed_asm = 0;
593 rtx body = PATTERN (insn);
594
a05924f9
JH
595 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
596 char implicitly_dies[FIRST_PSEUDO_REGISTER];
f62a15e3 597 int alt;
114cbee6 598
a544cfd2 599 rtx *clobber_reg = 0;
f62a15e3 600 int n_inputs, n_outputs;
114cbee6 601
0e7d0eb9 602 /* Find out what the constraints require. If no constraint
854dfdff 603 alternative matches, this asm is malformed. */
f62a15e3
BS
604 extract_insn (insn);
605 constrain_operands (1);
606 alt = which_alternative;
607
608 preprocess_constraints ();
609
610 n_inputs = get_asm_operand_n_inputs (body);
1ccbefce 611 n_outputs = recog_data.n_operands - n_inputs;
f62a15e3
BS
612
613 if (alt < 0)
614 {
615 malformed_asm = 1;
616 /* Avoid further trouble with this insn. */
617 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
a05924f9 618 return 0;
f62a15e3 619 }
114cbee6 620
0f41302f 621 /* Strip SUBREGs here to make the following code simpler. */
1ccbefce
RH
622 for (i = 0; i < recog_data.n_operands; i++)
623 if (GET_CODE (recog_data.operand[i]) == SUBREG
624 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
625 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
114cbee6
RS
626
627 /* Set up CLOBBER_REG. */
628
629 n_clobbers = 0;
114cbee6
RS
630
631 if (GET_CODE (body) == PARALLEL)
3f5cfed6 632 {
703ad42b 633 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
114cbee6 634
3f5cfed6
JVA
635 for (i = 0; i < XVECLEN (body, 0); i++)
636 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
637 {
638 rtx clobber = XVECEXP (body, 0, i);
639 rtx reg = XEXP (clobber, 0);
114cbee6 640
3f5cfed6
JVA
641 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
642 reg = SUBREG_REG (reg);
643
644 if (STACK_REG_P (reg))
645 {
646 clobber_reg[n_clobbers] = reg;
647 n_clobbers++;
648 }
649 }
650 }
114cbee6
RS
651
652 /* Enforce rule #4: Output operands must specifically indicate which
653 reg an output appears in after an asm. "=f" is not allowed: the
654 operand constraints must select a class with a single reg.
655
656 Also enforce rule #5: Output operands must start at the top of
0f41302f 657 the reg-stack: output operands may not "skip" a reg. */
114cbee6 658
a05924f9 659 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
114cbee6 660 for (i = 0; i < n_outputs; i++)
1ccbefce 661 if (STACK_REG_P (recog_data.operand[i]))
9c318306 662 {
f62a15e3 663 if (reg_class_size[(int) recog_op_alt[i][alt].class] != 1)
9c318306 664 {
1f978f5f 665 error_for_asm (insn, "output constraint %d must specify a single register", i);
9c318306
MH
666 malformed_asm = 1;
667 }
a6a2274a 668 else
d40cd80a
JJ
669 {
670 int j;
671
672 for (j = 0; j < n_clobbers; j++)
673 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
674 {
1f978f5f 675 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
d40cd80a
JJ
676 i, reg_names [REGNO (clobber_reg[j])]);
677 malformed_asm = 1;
678 break;
679 }
680 if (j == n_clobbers)
681 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
682 }
9c318306 683 }
114cbee6
RS
684
685
686 /* Search for first non-popped reg. */
687 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
688 if (! reg_used_as_output[i])
689 break;
690
691 /* If there are any other popped regs, that's an error. */
692 for (; i < LAST_STACK_REG + 1; i++)
693 if (reg_used_as_output[i])
694 break;
695
696 if (i != LAST_STACK_REG + 1)
697 {
1f978f5f 698 error_for_asm (insn, "output regs must be grouped at top of stack");
114cbee6
RS
699 malformed_asm = 1;
700 }
701
702 /* Enforce rule #2: All implicitly popped input regs must be closer
703 to the top of the reg-stack than any input that is not implicitly
0f41302f 704 popped. */
114cbee6 705
a05924f9 706 memset (implicitly_dies, 0, sizeof (implicitly_dies));
f62a15e3 707 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1ccbefce 708 if (STACK_REG_P (recog_data.operand[i]))
114cbee6
RS
709 {
710 /* An input reg is implicitly popped if it is tied to an
0f41302f 711 output, or if there is a CLOBBER for it. */
114cbee6
RS
712 int j;
713
714 for (j = 0; j < n_clobbers; j++)
1ccbefce 715 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
114cbee6
RS
716 break;
717
f62a15e3 718 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
1ccbefce 719 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
114cbee6
RS
720 }
721
722 /* Search for first non-popped reg. */
723 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
724 if (! implicitly_dies[i])
725 break;
726
727 /* If there are any other popped regs, that's an error. */
728 for (; i < LAST_STACK_REG + 1; i++)
729 if (implicitly_dies[i])
730 break;
731
732 if (i != LAST_STACK_REG + 1)
733 {
734 error_for_asm (insn,
1f978f5f 735 "implicitly popped regs must be grouped at top of stack");
114cbee6
RS
736 malformed_asm = 1;
737 }
738
06d42c22 739 /* Enforce rule #3: If any input operand uses the "f" constraint, all
114cbee6
RS
740 output constraints must use the "&" earlyclobber.
741
a05924f9 742 ??? Detect this more deterministically by having constrain_asm_operands
0f41302f 743 record any earlyclobber. */
114cbee6 744
f62a15e3
BS
745 for (i = n_outputs; i < n_outputs + n_inputs; i++)
746 if (recog_op_alt[i][alt].matches == -1)
114cbee6
RS
747 {
748 int j;
749
750 for (j = 0; j < n_outputs; j++)
1ccbefce 751 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
114cbee6
RS
752 {
753 error_for_asm (insn,
1f978f5f 754 "output operand %d must use `&' constraint", j);
114cbee6
RS
755 malformed_asm = 1;
756 }
757 }
758
759 if (malformed_asm)
760 {
761 /* Avoid further trouble with this insn. */
38a448ca 762 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
d6fc0492 763 any_malformed_asm = true;
a05924f9 764 return 0;
0e7d0eb9 765 }
48227150 766
a05924f9 767 return 1;
48227150
JVA
768}
769\f
114cbee6
RS
770/* Calculate the number of inputs and outputs in BODY, an
771 asm_operands. N_OPERANDS is the total number of operands, and
772 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
0f41302f 773 placed. */
114cbee6 774
f62a15e3 775static int
0c20a65f 776get_asm_operand_n_inputs (rtx body)
114cbee6
RS
777{
778 if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
f62a15e3 779 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
114cbee6
RS
780
781 else if (GET_CODE (body) == ASM_OPERANDS)
f62a15e3 782 return ASM_OPERANDS_INPUT_LENGTH (body);
114cbee6
RS
783
784 else if (GET_CODE (body) == PARALLEL
785 && GET_CODE (XVECEXP (body, 0, 0)) == SET)
f62a15e3 786 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)));
114cbee6
RS
787
788 else if (GET_CODE (body) == PARALLEL
789 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
f62a15e3 790 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
114cbee6 791
f62a15e3 792 abort ();
114cbee6 793}
0ab759e4 794
96237362 795/* If current function returns its result in an fp stack register,
9f9ed50a 796 return the REG. Otherwise, return 0. */
96237362 797
99a59310 798static rtx
0c20a65f 799stack_result (tree decl)
96237362 800{
f099b1c9 801 rtx result;
96237362 802
f099b1c9
JL
803 /* If the value is supposed to be returned in memory, then clearly
804 it is not returned in a stack register. */
61f71b34 805 if (aggregate_value_p (DECL_RESULT (decl), decl))
f099b1c9
JL
806 return 0;
807
19e7881c 808 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
9cf218a3 809 if (result != 0)
96237362
RS
810 {
811#ifdef FUNCTION_OUTGOING_VALUE
812 result
a6a2274a 813 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
96237362
RS
814#else
815 result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
816#endif
817 }
818
9f9ed50a 819 return result != 0 && STACK_REG_P (result) ? result : 0;
96237362 820}
48227150 821\f
48227150 822
e075ae69
RH
823/*
824 * This section deals with stack register substitution, and forms the second
825 * pass over the RTL.
826 */
48227150
JVA
827
828/* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
0f41302f 829 the desired hard REGNO. */
48227150
JVA
830
831static void
0c20a65f 832replace_reg (rtx *reg, int regno)
48227150
JVA
833{
834 if (regno < FIRST_STACK_REG || regno > LAST_STACK_REG
835 || ! STACK_REG_P (*reg))
836 abort ();
837
99a59310 838 switch (GET_MODE_CLASS (GET_MODE (*reg)))
e075ae69
RH
839 {
840 default: abort ();
841 case MODE_FLOAT:
842 case MODE_COMPLEX_FLOAT:;
843 }
7d0e3dd4 844
99a59310 845 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
48227150
JVA
846}
847
848/* Remove a note of type NOTE, which must be found, for register
0f41302f 849 number REGNO from INSN. Remove only one such note. */
48227150
JVA
850
851static void
0c20a65f 852remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
48227150 853{
b3694847 854 rtx *note_link, this;
48227150 855
8e2e89f7 856 note_link = &REG_NOTES (insn);
48227150
JVA
857 for (this = *note_link; this; this = XEXP (this, 1))
858 if (REG_NOTE_KIND (this) == note
859 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
860 {
861 *note_link = XEXP (this, 1);
862 return;
863 }
864 else
865 note_link = &XEXP (this, 1);
866
867 abort ();
868}
869
870/* Find the hard register number of virtual register REG in REGSTACK.
871 The hard register number is relative to the top of the stack. -1 is
0f41302f 872 returned if the register is not found. */
48227150
JVA
873
874static int
0c20a65f 875get_hard_regnum (stack regstack, rtx reg)
48227150
JVA
876{
877 int i;
878
879 if (! STACK_REG_P (reg))
880 abort ();
881
882 for (i = regstack->top; i >= 0; i--)
883 if (regstack->reg[i] == REGNO (reg))
884 break;
885
886 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
887}
48227150
JVA
888\f
889/* Emit an insn to pop virtual register REG before or after INSN.
890 REGSTACK is the stack state after INSN and is updated to reflect this
e075ae69
RH
891 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
892 is represented as a SET whose destination is the register to be popped
893 and source is the top of stack. A death note for the top of stack
0f41302f 894 cases the movdf pattern to pop. */
48227150
JVA
895
896static rtx
0c20a65f 897emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
48227150
JVA
898{
899 rtx pop_insn, pop_rtx;
900 int hard_regno;
901
037f20f1
JH
902 /* For complex types take care to pop both halves. These may survive in
903 CLOBBER and USE expressions. */
904 if (COMPLEX_MODE_P (GET_MODE (reg)))
905 {
906 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
907 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
908
909 pop_insn = NULL_RTX;
910 if (get_hard_regnum (regstack, reg1) >= 0)
a6a2274a 911 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
037f20f1 912 if (get_hard_regnum (regstack, reg2) >= 0)
a6a2274a 913 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
037f20f1
JH
914 if (!pop_insn)
915 abort ();
916 return pop_insn;
917 }
918
48227150
JVA
919 hard_regno = get_hard_regnum (regstack, reg);
920
921 if (hard_regno < FIRST_STACK_REG)
922 abort ();
923
e075ae69
RH
924 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
925 FP_MODE_REG (FIRST_STACK_REG, DFmode));
48227150 926
a05924f9 927 if (where == EMIT_AFTER)
3c030e88 928 pop_insn = emit_insn_after (pop_rtx, insn);
a05924f9 929 else
3c030e88 930 pop_insn = emit_insn_before (pop_rtx, insn);
48227150 931
c5c76735
JL
932 REG_NOTES (pop_insn)
933 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
934 REG_NOTES (pop_insn));
48227150
JVA
935
936 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
937 = regstack->reg[regstack->top];
938 regstack->top -= 1;
939 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
940
941 return pop_insn;
942}
943\f
a05924f9
JH
944/* Emit an insn before or after INSN to swap virtual register REG with
945 the top of stack. REGSTACK is the stack state before the swap, and
946 is updated to reflect the swap. A swap insn is represented as a
947 PARALLEL of two patterns: each pattern moves one reg to the other.
48227150 948
0f41302f 949 If REG is already at the top of the stack, no insn is emitted. */
48227150
JVA
950
951static void
0c20a65f 952emit_swap_insn (rtx insn, stack regstack, rtx reg)
48227150 953{
eca31501 954 int hard_regno;
a05924f9 955 rtx swap_rtx;
eca31501
JVA
956 int tmp, other_reg; /* swap regno temps */
957 rtx i1; /* the stack-reg insn prior to INSN */
958 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
48227150 959
eca31501
JVA
960 hard_regno = get_hard_regnum (regstack, reg);
961
962 if (hard_regno < FIRST_STACK_REG)
963 abort ();
48227150
JVA
964 if (hard_regno == FIRST_STACK_REG)
965 return;
966
eca31501 967 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
48227150 968
eca31501
JVA
969 tmp = regstack->reg[other_reg];
970 regstack->reg[other_reg] = regstack->reg[regstack->top];
48227150 971 regstack->reg[regstack->top] = tmp;
48227150 972
a05924f9
JH
973 /* Find the previous insn involving stack regs, but don't pass a
974 block boundary. */
975 i1 = NULL;
a813c111 976 if (current_block && insn != BB_HEAD (current_block))
eca31501 977 {
a05924f9 978 rtx tmp = PREV_INSN (insn);
a813c111 979 rtx limit = PREV_INSN (BB_HEAD (current_block));
3a6cc978 980 while (tmp != limit)
a05924f9
JH
981 {
982 if (GET_CODE (tmp) == CODE_LABEL
35433587 983 || GET_CODE (tmp) == CALL_INSN
589ca5cb 984 || NOTE_INSN_BASIC_BLOCK_P (tmp)
a05924f9
JH
985 || (GET_CODE (tmp) == INSN
986 && stack_regs_mentioned (tmp)))
987 {
988 i1 = tmp;
989 break;
990 }
991 tmp = PREV_INSN (tmp);
992 }
993 }
994
995 if (i1 != NULL_RTX
996 && (i1set = single_set (i1)) != NULL_RTX)
997 {
998 rtx i1src = *get_true_reg (&SET_SRC (i1set));
eca31501 999 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
48227150 1000
eca31501 1001 /* If the previous register stack push was from the reg we are to
0f41302f 1002 swap with, omit the swap. */
eca31501
JVA
1003
1004 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == FIRST_STACK_REG
ae0ed63a
JM
1005 && GET_CODE (i1src) == REG
1006 && REGNO (i1src) == (unsigned) hard_regno - 1
eca31501
JVA
1007 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1008 return;
1009
1010 /* If the previous insn wrote to the reg we are to swap with,
1011 omit the swap. */
1012
ae0ed63a 1013 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == (unsigned) hard_regno
eca31501
JVA
1014 && GET_CODE (i1src) == REG && REGNO (i1src) == FIRST_STACK_REG
1015 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1016 return;
1017 }
1018
e075ae69
RH
1019 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
1020 FP_MODE_REG (FIRST_STACK_REG, XFmode));
a05924f9
JH
1021
1022 if (i1)
3c030e88 1023 emit_insn_after (swap_rtx, i1);
a05924f9 1024 else if (current_block)
a813c111 1025 emit_insn_before (swap_rtx, BB_HEAD (current_block));
a05924f9
JH
1026 else
1027 emit_insn_before (swap_rtx, insn);
48227150
JVA
1028}
1029\f
1030/* Handle a move to or from a stack register in PAT, which is in INSN.
ecb63641
EB
1031 REGSTACK is the current stack. Return whether a control flow insn
1032 was deleted in the process. */
48227150 1033
ecb63641 1034static bool
0c20a65f 1035move_for_stack_reg (rtx insn, stack regstack, rtx pat)
48227150 1036{
99a59310
RK
1037 rtx *psrc = get_true_reg (&SET_SRC (pat));
1038 rtx *pdest = get_true_reg (&SET_DEST (pat));
1039 rtx src, dest;
48227150 1040 rtx note;
ecb63641 1041 bool control_flow_insn_deleted = false;
48227150 1042
99a59310
RK
1043 src = *psrc; dest = *pdest;
1044
1045 if (STACK_REG_P (src) && STACK_REG_P (dest))
48227150
JVA
1046 {
1047 /* Write from one stack reg to another. If SRC dies here, then
0f41302f 1048 just change the register mapping and delete the insn. */
48227150 1049
99a59310 1050 note = find_regno_note (insn, REG_DEAD, REGNO (src));
48227150
JVA
1051 if (note)
1052 {
1053 int i;
1054
0f41302f 1055 /* If this is a no-op move, there must not be a REG_DEAD note. */
99a59310 1056 if (REGNO (src) == REGNO (dest))
48227150
JVA
1057 abort ();
1058
1059 for (i = regstack->top; i >= 0; i--)
99a59310 1060 if (regstack->reg[i] == REGNO (src))
48227150
JVA
1061 break;
1062
0f41302f 1063 /* The source must be live, and the dest must be dead. */
99a59310 1064 if (i < 0 || get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
48227150
JVA
1065 abort ();
1066
1067 /* It is possible that the dest is unused after this insn.
0f41302f 1068 If so, just pop the src. */
48227150 1069
99a59310 1070 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
ecb63641
EB
1071 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1072 else
48227150 1073 {
ecb63641
EB
1074 regstack->reg[i] = REGNO (dest);
1075 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1076 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
48227150
JVA
1077 }
1078
ecb63641 1079 control_flow_insn_deleted |= control_flow_insn_p (insn);
53c17031 1080 delete_insn (insn);
ecb63641 1081 return control_flow_insn_deleted;
48227150
JVA
1082 }
1083
0f41302f 1084 /* The source reg does not die. */
48227150
JVA
1085
1086 /* If this appears to be a no-op move, delete it, or else it
1087 will confuse the machine description output patterns. But if
1088 it is REG_UNUSED, we must pop the reg now, as per-insn processing
0f41302f 1089 for REG_UNUSED will not work for deleted insns. */
48227150 1090
99a59310 1091 if (REGNO (src) == REGNO (dest))
48227150 1092 {
99a59310 1093 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
a05924f9 1094 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
48227150 1095
ecb63641 1096 control_flow_insn_deleted |= control_flow_insn_p (insn);
53c17031 1097 delete_insn (insn);
ecb63641 1098 return control_flow_insn_deleted;
48227150
JVA
1099 }
1100
3eae4643 1101 /* The destination ought to be dead. */
99a59310 1102 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
48227150
JVA
1103 abort ();
1104
99a59310 1105 replace_reg (psrc, get_hard_regnum (regstack, src));
48227150 1106
99a59310
RK
1107 regstack->reg[++regstack->top] = REGNO (dest);
1108 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1109 replace_reg (pdest, FIRST_STACK_REG);
48227150 1110 }
99a59310 1111 else if (STACK_REG_P (src))
48227150
JVA
1112 {
1113 /* Save from a stack reg to MEM, or possibly integer reg. Since
1114 only top of stack may be saved, emit an exchange first if
0f41302f 1115 needs be. */
48227150 1116
99a59310 1117 emit_swap_insn (insn, regstack, src);
48227150 1118
99a59310 1119 note = find_regno_note (insn, REG_DEAD, REGNO (src));
48227150
JVA
1120 if (note)
1121 {
1122 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1123 regstack->top--;
99a59310 1124 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
48227150 1125 }
f8a1ebc6 1126 else if ((GET_MODE (src) == XFmode)
cadcffb3 1127 && regstack->top < REG_STACK_SIZE - 1)
b40b8b06
JVA
1128 {
1129 /* A 387 cannot write an XFmode value to a MEM without
1130 clobbering the source reg. The output code can handle
1131 this by reading back the value from the MEM.
1132 But it is more efficient to use a temp register if one is
1133 available. Push the source value here if the register
1134 stack is not full, and then write the value to memory via
1135 a pop. */
1136 rtx push_rtx, push_insn;
037f20f1 1137 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
b40b8b06 1138
f8a1ebc6 1139 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
b40b8b06 1140 push_insn = emit_insn_before (push_rtx, insn);
38a448ca
RH
1141 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1142 REG_NOTES (insn));
b40b8b06 1143 }
48227150 1144
99a59310 1145 replace_reg (psrc, FIRST_STACK_REG);
48227150 1146 }
99a59310 1147 else if (STACK_REG_P (dest))
48227150
JVA
1148 {
1149 /* Load from MEM, or possibly integer REG or constant, into the
1150 stack regs. The actual target is always the top of the
1151 stack. The stack mapping is changed to reflect that DEST is
1152 now at top of stack. */
1153
3eae4643 1154 /* The destination ought to be dead. */
99a59310 1155 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
48227150
JVA
1156 abort ();
1157
1158 if (regstack->top >= REG_STACK_SIZE)
1159 abort ();
1160
99a59310
RK
1161 regstack->reg[++regstack->top] = REGNO (dest);
1162 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1163 replace_reg (pdest, FIRST_STACK_REG);
48227150
JVA
1164 }
1165 else
1166 abort ();
ecb63641
EB
1167
1168 return control_flow_insn_deleted;
48227150
JVA
1169}
1170\f
e075ae69
RH
1171/* Swap the condition on a branch, if there is one. Return true if we
1172 found a condition to swap. False if the condition was not used as
dc297297 1173 such. */
e075ae69
RH
1174
1175static int
0c20a65f 1176swap_rtx_condition_1 (rtx pat)
eca31501 1177{
b3694847
SS
1178 const char *fmt;
1179 int i, r = 0;
eca31501
JVA
1180
1181 if (GET_RTX_CLASS (GET_CODE (pat)) == '<')
1182 {
1183 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
e075ae69 1184 r = 1;
eca31501 1185 }
e075ae69 1186 else
eca31501 1187 {
e075ae69
RH
1188 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1189 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
eca31501 1190 {
e075ae69
RH
1191 if (fmt[i] == 'E')
1192 {
b3694847 1193 int j;
eca31501 1194
e075ae69
RH
1195 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1196 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1197 }
1198 else if (fmt[i] == 'e')
1199 r |= swap_rtx_condition_1 (XEXP (pat, i));
eca31501 1200 }
eca31501 1201 }
e075ae69
RH
1202
1203 return r;
1204}
1205
1206static int
0c20a65f 1207swap_rtx_condition (rtx insn)
e075ae69
RH
1208{
1209 rtx pat = PATTERN (insn);
1210
1211 /* We're looking for a single set to cc0 or an HImode temporary. */
1212
1213 if (GET_CODE (pat) == SET
1214 && GET_CODE (SET_DEST (pat)) == REG
1215 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1216 {
1217 insn = next_flags_user (insn);
1218 if (insn == NULL_RTX)
1219 return 0;
1220 pat = PATTERN (insn);
1221 }
1222
1223 /* See if this is, or ends in, a fnstsw, aka unspec 9. If so, we're
1224 not doing anything with the cc value right now. We may be able to
1225 search for one though. */
1226
1227 if (GET_CODE (pat) == SET
1228 && GET_CODE (SET_SRC (pat)) == UNSPEC
35a76aac 1229 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
e075ae69
RH
1230 {
1231 rtx dest = SET_DEST (pat);
1232
a6a2274a 1233 /* Search forward looking for the first use of this value.
e075ae69 1234 Stop at block boundaries. */
a813c111 1235 while (insn != BB_END (current_block))
e075ae69
RH
1236 {
1237 insn = NEXT_INSN (insn);
2c3c49de 1238 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
e075ae69 1239 break;
0eac0e81 1240 if (GET_CODE (insn) == CALL_INSN)
e075ae69
RH
1241 return 0;
1242 }
1243
1244 /* So we've found the insn using this value. If it is anything
1245 other than sahf, aka unspec 10, or the value does not die
1246 (meaning we'd have to search further), then we must give up. */
1247 pat = PATTERN (insn);
1248 if (GET_CODE (pat) != SET
1249 || GET_CODE (SET_SRC (pat)) != UNSPEC
35a76aac 1250 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
e075ae69
RH
1251 || ! dead_or_set_p (insn, dest))
1252 return 0;
1253
1254 /* Now we are prepared to handle this as a normal cc0 setter. */
1255 insn = next_flags_user (insn);
1256 if (insn == NULL_RTX)
1257 return 0;
1258 pat = PATTERN (insn);
1259 }
1260
90a74703
JH
1261 if (swap_rtx_condition_1 (pat))
1262 {
0eac0e81 1263 int fail = 0;
90a74703
JH
1264 INSN_CODE (insn) = -1;
1265 if (recog_memoized (insn) == -1)
0eac0e81
JH
1266 fail = 1;
1267 /* In case the flags don't die here, recurse to try fix
1268 following user too. */
1269 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1270 {
1271 insn = next_flags_user (insn);
1272 if (!insn || !swap_rtx_condition (insn))
1273 fail = 1;
1274 }
1275 if (fail)
90a74703
JH
1276 {
1277 swap_rtx_condition_1 (pat);
1278 return 0;
1279 }
1280 return 1;
1281 }
1282 return 0;
eca31501
JVA
1283}
1284
48227150
JVA
1285/* Handle a comparison. Special care needs to be taken to avoid
1286 causing comparisons that a 387 cannot do correctly, such as EQ.
1287
e075ae69 1288 Also, a pop insn may need to be emitted. The 387 does have an
48227150
JVA
1289 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1290 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
e075ae69 1291 set up. */
48227150
JVA
1292
1293static void
0c20a65f 1294compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
48227150
JVA
1295{
1296 rtx *src1, *src2;
1297 rtx src1_note, src2_note;
e075ae69 1298 rtx flags_user;
914ec131 1299
e075ae69
RH
1300 src1 = get_true_reg (&XEXP (pat_src, 0));
1301 src2 = get_true_reg (&XEXP (pat_src, 1));
1302 flags_user = next_flags_user (insn);
48227150 1303
eca31501 1304 /* ??? If fxch turns out to be cheaper than fstp, give priority to
0f41302f 1305 registers that die in this insn - move those to stack top first. */
e075ae69
RH
1306 if ((! STACK_REG_P (*src1)
1307 || (STACK_REG_P (*src2)
1308 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1309 && swap_rtx_condition (insn))
eca31501 1310 {
e075ae69
RH
1311 rtx temp;
1312 temp = XEXP (pat_src, 0);
1313 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1314 XEXP (pat_src, 1) = temp;
48227150 1315
e075ae69
RH
1316 src1 = get_true_reg (&XEXP (pat_src, 0));
1317 src2 = get_true_reg (&XEXP (pat_src, 1));
dc78213e 1318
b9342cdf 1319 INSN_CODE (insn) = -1;
eca31501 1320 }
48227150 1321
0f41302f 1322 /* We will fix any death note later. */
48227150
JVA
1323
1324 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1325
1326 if (STACK_REG_P (*src2))
1327 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1328 else
eca31501 1329 src2_note = NULL_RTX;
48227150 1330
e075ae69 1331 emit_swap_insn (insn, regstack, *src1);
48227150
JVA
1332
1333 replace_reg (src1, FIRST_STACK_REG);
1334
1335 if (STACK_REG_P (*src2))
e075ae69 1336 replace_reg (src2, get_hard_regnum (regstack, *src2));
48227150
JVA
1337
1338 if (src1_note)
1339 {
7aa74e4c 1340 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
48227150 1341 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
48227150
JVA
1342 }
1343
1344 /* If the second operand dies, handle that. But if the operands are
1345 the same stack register, don't bother, because only one death is
0f41302f 1346 needed, and it was just handled. */
48227150
JVA
1347
1348 if (src2_note
eca31501 1349 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
48227150
JVA
1350 && REGNO (*src1) == REGNO (*src2)))
1351 {
1352 /* As a special case, two regs may die in this insn if src2 is
1353 next to top of stack and the top of stack also dies. Since
1354 we have already popped src1, "next to top of stack" is really
0f41302f 1355 at top (FIRST_STACK_REG) now. */
48227150
JVA
1356
1357 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1358 && src1_note)
1359 {
7aa74e4c 1360 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
48227150 1361 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
48227150
JVA
1362 }
1363 else
1364 {
e075ae69
RH
1365 /* The 386 can only represent death of the first operand in
1366 the case handled above. In all other cases, emit a separate
1367 pop and remove the death note from here. */
1368
1369 /* link_cc0_insns (insn); */
1370
1371 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
48227150 1372
e075ae69 1373 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
a05924f9 1374 EMIT_AFTER);
48227150
JVA
1375 }
1376 }
1377}
1378\f
1379/* Substitute new registers in PAT, which is part of INSN. REGSTACK
ecb63641
EB
1380 is the current register layout. Return whether a control flow insn
1381 was deleted in the process. */
48227150 1382
ecb63641 1383static bool
0c20a65f 1384subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
48227150
JVA
1385{
1386 rtx *dest, *src;
ecb63641 1387 bool control_flow_insn_deleted = false;
48227150 1388
a05924f9
JH
1389 switch (GET_CODE (pat))
1390 {
1391 case USE:
1392 /* Deaths in USE insns can happen in non optimizing compilation.
1393 Handle them by popping the dying register. */
1394 src = get_true_reg (&XEXP (pat, 0));
a6a2274a
KH
1395 if (STACK_REG_P (*src)
1396 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1397 {
1398 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
ecb63641 1399 return control_flow_insn_deleted;
a6a2274a 1400 }
eedf2f55 1401 /* ??? Uninitialized USE should not happen. */
a05924f9 1402 else if (get_hard_regnum (regstack, *src) == -1)
f4f4d0f8 1403 abort ();
a05924f9 1404 break;
48227150 1405
a05924f9
JH
1406 case CLOBBER:
1407 {
1408 rtx note;
48227150 1409
a05924f9
JH
1410 dest = get_true_reg (&XEXP (pat, 0));
1411 if (STACK_REG_P (*dest))
1412 {
1413 note = find_reg_note (insn, REG_DEAD, *dest);
bd695e1e
RH
1414
1415 if (pat != PATTERN (insn))
1416 {
1417 /* The fix_truncdi_1 pattern wants to be able to allocate
1418 it's own scratch register. It does this by clobbering
1419 an fp reg so that it is assured of an empty reg-stack
a6a2274a 1420 register. If the register is live, kill it now.
bd695e1e
RH
1421 Remove the DEAD/UNUSED note so we don't try to kill it
1422 later too. */
1423
1424 if (note)
1425 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1426 else
1427 {
1428 note = find_reg_note (insn, REG_UNUSED, *dest);
1429 if (!note)
1430 abort ();
1431 }
1432 remove_note (insn, note);
cb0bc263 1433 replace_reg (dest, FIRST_STACK_REG + 1);
bd695e1e 1434 }
a05924f9
JH
1435 else
1436 {
bd695e1e
RH
1437 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1438 indicates an uninitialized value. Because reload removed
a6a2274a 1439 all other clobbers, this must be due to a function
bd695e1e
RH
1440 returning without a value. Load up a NaN. */
1441
1442 if (! note
1443 && get_hard_regnum (regstack, *dest) == -1)
1444 {
1445 pat = gen_rtx_SET (VOIDmode,
1446 FP_MODE_REG (REGNO (*dest), SFmode),
1447 nan);
1448 PATTERN (insn) = pat;
ecb63641 1449 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
bd695e1e 1450 }
037f20f1
JH
1451 if (! note && COMPLEX_MODE_P (GET_MODE (*dest))
1452 && get_hard_regnum (regstack, FP_MODE_REG (REGNO (*dest), DFmode)) == -1)
1453 {
1454 pat = gen_rtx_SET (VOIDmode,
1455 FP_MODE_REG (REGNO (*dest) + 1, SFmode),
1456 nan);
1457 PATTERN (insn) = pat;
ecb63641 1458 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
037f20f1 1459 }
a05924f9 1460 }
a05924f9 1461 }
48227150 1462 break;
a05924f9 1463 }
48227150 1464
a05924f9
JH
1465 case SET:
1466 {
6496a589 1467 rtx *src1 = (rtx *) 0, *src2;
a05924f9
JH
1468 rtx src1_note, src2_note;
1469 rtx pat_src;
1470
1471 dest = get_true_reg (&SET_DEST (pat));
1472 src = get_true_reg (&SET_SRC (pat));
1473 pat_src = SET_SRC (pat);
1474
1475 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1476 if (STACK_REG_P (*src)
1477 || (STACK_REG_P (*dest)
1478 && (GET_CODE (*src) == REG || GET_CODE (*src) == MEM
1479 || GET_CODE (*src) == CONST_DOUBLE)))
1480 {
ecb63641 1481 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
a05924f9
JH
1482 break;
1483 }
48227150 1484
a05924f9
JH
1485 switch (GET_CODE (pat_src))
1486 {
1487 case COMPARE:
1488 compare_for_stack_reg (insn, regstack, pat_src);
1489 break;
48227150 1490
a05924f9
JH
1491 case CALL:
1492 {
1493 int count;
1494 for (count = HARD_REGNO_NREGS (REGNO (*dest), GET_MODE (*dest));
1495 --count >= 0;)
1496 {
1497 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1498 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1499 }
1500 }
1501 replace_reg (dest, FIRST_STACK_REG);
1502 break;
48227150 1503
a05924f9
JH
1504 case REG:
1505 /* This is a `tstM2' case. */
1506 if (*dest != cc0_rtx)
1507 abort ();
1508 src1 = src;
48227150 1509
a05924f9 1510 /* Fall through. */
48227150 1511
a05924f9
JH
1512 case FLOAT_TRUNCATE:
1513 case SQRT:
1514 case ABS:
1515 case NEG:
1516 /* These insns only operate on the top of the stack. DEST might
1517 be cc0_rtx if we're processing a tstM pattern. Also, it's
1518 possible that the tstM case results in a REG_DEAD note on the
1519 source. */
48227150 1520
a05924f9
JH
1521 if (src1 == 0)
1522 src1 = get_true_reg (&XEXP (pat_src, 0));
48227150 1523
a05924f9 1524 emit_swap_insn (insn, regstack, *src1);
48227150 1525
a05924f9 1526 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
48227150 1527
a05924f9
JH
1528 if (STACK_REG_P (*dest))
1529 replace_reg (dest, FIRST_STACK_REG);
48227150 1530
a05924f9
JH
1531 if (src1_note)
1532 {
1533 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1534 regstack->top--;
1535 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1536 }
48227150 1537
a05924f9
JH
1538 replace_reg (src1, FIRST_STACK_REG);
1539 break;
48227150 1540
a05924f9
JH
1541 case MINUS:
1542 case DIV:
1543 /* On i386, reversed forms of subM3 and divM3 exist for
1544 MODE_FLOAT, so the same code that works for addM3 and mulM3
1545 can be used. */
1546 case MULT:
1547 case PLUS:
1548 /* These insns can accept the top of stack as a destination
1549 from a stack reg or mem, or can use the top of stack as a
1550 source and some other stack register (possibly top of stack)
1551 as a destination. */
1552
1553 src1 = get_true_reg (&XEXP (pat_src, 0));
1554 src2 = get_true_reg (&XEXP (pat_src, 1));
1555
1556 /* We will fix any death note later. */
1557
1558 if (STACK_REG_P (*src1))
1559 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1560 else
1561 src1_note = NULL_RTX;
1562 if (STACK_REG_P (*src2))
1563 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1564 else
1565 src2_note = NULL_RTX;
48227150 1566
a05924f9
JH
1567 /* If either operand is not a stack register, then the dest
1568 must be top of stack. */
48227150 1569
a05924f9 1570 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
eca31501 1571 emit_swap_insn (insn, regstack, *dest);
a05924f9
JH
1572 else
1573 {
1574 /* Both operands are REG. If neither operand is already
1575 at the top of stack, choose to make the one that is the dest
1576 the new top of stack. */
48227150 1577
a05924f9 1578 int src1_hard_regnum, src2_hard_regnum;
48227150 1579
a05924f9
JH
1580 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1581 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1582 if (src1_hard_regnum == -1 || src2_hard_regnum == -1)
1583 abort ();
48227150 1584
a05924f9
JH
1585 if (src1_hard_regnum != FIRST_STACK_REG
1586 && src2_hard_regnum != FIRST_STACK_REG)
1587 emit_swap_insn (insn, regstack, *dest);
48227150 1588 }
a05924f9
JH
1589
1590 if (STACK_REG_P (*src1))
1591 replace_reg (src1, get_hard_regnum (regstack, *src1));
1592 if (STACK_REG_P (*src2))
1593 replace_reg (src2, get_hard_regnum (regstack, *src2));
1594
1595 if (src1_note)
48227150 1596 {
a05924f9 1597 rtx src1_reg = XEXP (src1_note, 0);
48227150 1598
a05924f9
JH
1599 /* If the register that dies is at the top of stack, then
1600 the destination is somewhere else - merely substitute it.
1601 But if the reg that dies is not at top of stack, then
1602 move the top of stack to the dead reg, as though we had
1603 done the insn and then a store-with-pop. */
48227150 1604
a05924f9
JH
1605 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1606 {
1607 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1608 replace_reg (dest, get_hard_regnum (regstack, *dest));
1609 }
1610 else
1611 {
1612 int regno = get_hard_regnum (regstack, src1_reg);
48227150 1613
a05924f9
JH
1614 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1615 replace_reg (dest, regno);
1616
1617 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1618 = regstack->reg[regstack->top];
1619 }
1620
1621 CLEAR_HARD_REG_BIT (regstack->reg_set,
1622 REGNO (XEXP (src1_note, 0)));
1623 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1624 regstack->top--;
1625 }
1626 else if (src2_note)
48227150 1627 {
a05924f9
JH
1628 rtx src2_reg = XEXP (src2_note, 0);
1629 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1630 {
1631 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1632 replace_reg (dest, get_hard_regnum (regstack, *dest));
1633 }
1634 else
1635 {
1636 int regno = get_hard_regnum (regstack, src2_reg);
1637
1638 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1639 replace_reg (dest, regno);
1640
1641 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1642 = regstack->reg[regstack->top];
1643 }
1644
1645 CLEAR_HARD_REG_BIT (regstack->reg_set,
1646 REGNO (XEXP (src2_note, 0)));
1647 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1648 regstack->top--;
48227150
JVA
1649 }
1650 else
1651 {
48227150 1652 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
a05924f9 1653 replace_reg (dest, get_hard_regnum (regstack, *dest));
48227150 1654 }
caa6ec8d 1655
d55d8fc7 1656 /* Keep operand 1 matching with destination. */
caa6ec8d
JH
1657 if (GET_RTX_CLASS (GET_CODE (pat_src)) == 'c'
1658 && REG_P (*src1) && REG_P (*src2)
1659 && REGNO (*src1) != REGNO (*dest))
1660 {
0b9aaeee
JH
1661 int tmp = REGNO (*src1);
1662 replace_reg (src1, REGNO (*src2));
1663 replace_reg (src2, tmp);
caa6ec8d 1664 }
a05924f9 1665 break;
48227150 1666
a05924f9
JH
1667 case UNSPEC:
1668 switch (XINT (pat_src, 1))
1669 {
35a76aac
RH
1670 case UNSPEC_SIN:
1671 case UNSPEC_COS:
9d5b9dae
RS
1672 case UNSPEC_FRNDINT:
1673 case UNSPEC_F2XM1:
a05924f9 1674 /* These insns only operate on the top of the stack. */
0e7d0eb9 1675
a05924f9 1676 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
0e7d0eb9 1677
a05924f9 1678 emit_swap_insn (insn, regstack, *src1);
0e7d0eb9 1679
a05924f9 1680 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
0e7d0eb9 1681
a05924f9
JH
1682 if (STACK_REG_P (*dest))
1683 replace_reg (dest, FIRST_STACK_REG);
0e7d0eb9 1684
a05924f9
JH
1685 if (src1_note)
1686 {
1687 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1688 regstack->top--;
1689 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1690 }
0e7d0eb9 1691
a05924f9
JH
1692 replace_reg (src1, FIRST_STACK_REG);
1693 break;
0e7d0eb9 1694
1fb54135 1695 case UNSPEC_FPATAN:
358997e2 1696 case UNSPEC_FYL2X:
9d5b9dae 1697 case UNSPEC_FSCALE:
1fb54135
RS
1698 /* These insns operate on the top two stack slots. */
1699
1700 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1701 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1702
1703 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1704 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1705
1706 {
1707 struct stack_def temp_stack;
1708 int regno, j, k, temp;
1709
0c20a65f 1710 temp_stack = *regstack;
1fb54135
RS
1711
1712 /* Place operand 1 at the top of stack. */
1713 regno = get_hard_regnum (&temp_stack, *src1);
1714 if (regno < 0)
1715 abort ();
1716 if (regno != FIRST_STACK_REG)
1717 {
1718 k = temp_stack.top - (regno - FIRST_STACK_REG);
1719 j = temp_stack.top;
1720
1721 temp = temp_stack.reg[k];
1722 temp_stack.reg[k] = temp_stack.reg[j];
1723 temp_stack.reg[j] = temp;
1724 }
1725
1726 /* Place operand 2 next on the stack. */
1727 regno = get_hard_regnum (&temp_stack, *src2);
1728 if (regno < 0)
1729 abort ();
1730 if (regno != FIRST_STACK_REG + 1)
1731 {
1732 k = temp_stack.top - (regno - FIRST_STACK_REG);
1733 j = temp_stack.top - 1;
1734
1735 temp = temp_stack.reg[k];
1736 temp_stack.reg[k] = temp_stack.reg[j];
1737 temp_stack.reg[j] = temp;
1738 }
1739
1740 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
1741 }
1742
1743 replace_reg (src1, FIRST_STACK_REG);
1744 replace_reg (src2, FIRST_STACK_REG + 1);
1745
1746 if (src1_note)
1747 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1748 if (src2_note)
1749 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1750
1751 /* Pop both input operands from the stack. */
1752 CLEAR_HARD_REG_BIT (regstack->reg_set,
1753 regstack->reg[regstack->top]);
1754 CLEAR_HARD_REG_BIT (regstack->reg_set,
1755 regstack->reg[regstack->top - 1]);
1756 regstack->top -= 2;
1757
1758 /* Push the result back onto the stack. */
1759 regstack->reg[++regstack->top] = REGNO (*dest);
1760 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1761 replace_reg (dest, FIRST_STACK_REG);
1762 break;
1763
35a76aac
RH
1764 case UNSPEC_SAHF:
1765 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1766 The combination matches the PPRO fcomi instruction. */
0e7d0eb9 1767
a05924f9
JH
1768 pat_src = XVECEXP (pat_src, 0, 0);
1769 if (GET_CODE (pat_src) != UNSPEC
35a76aac 1770 || XINT (pat_src, 1) != UNSPEC_FNSTSW)
a05924f9
JH
1771 abort ();
1772 /* FALLTHRU */
e075ae69 1773
35a76aac 1774 case UNSPEC_FNSTSW:
a05924f9
JH
1775 /* Combined fcomp+fnstsw generated for doing well with
1776 CSE. When optimizing this would have been broken
1777 up before now. */
e075ae69 1778
a05924f9
JH
1779 pat_src = XVECEXP (pat_src, 0, 0);
1780 if (GET_CODE (pat_src) != COMPARE)
1781 abort ();
e075ae69 1782
a05924f9
JH
1783 compare_for_stack_reg (insn, regstack, pat_src);
1784 break;
e075ae69 1785
a05924f9
JH
1786 default:
1787 abort ();
1788 }
e075ae69
RH
1789 break;
1790
a05924f9 1791 case IF_THEN_ELSE:
dc297297 1792 /* This insn requires the top of stack to be the destination. */
0e7d0eb9 1793
2ab0437e
JH
1794 src1 = get_true_reg (&XEXP (pat_src, 1));
1795 src2 = get_true_reg (&XEXP (pat_src, 2));
1796
1797 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1798 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1799
a05924f9
JH
1800 /* If the comparison operator is an FP comparison operator,
1801 it is handled correctly by compare_for_stack_reg () who
1802 will move the destination to the top of stack. But if the
1803 comparison operator is not an FP comparison operator, we
dc297297 1804 have to handle it here. */
a05924f9
JH
1805 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1806 && REGNO (*dest) != regstack->reg[regstack->top])
2ab0437e
JH
1807 {
1808 /* In case one of operands is the top of stack and the operands
35a76aac
RH
1809 dies, it is safe to make it the destination operand by
1810 reversing the direction of cmove and avoid fxch. */
2ab0437e
JH
1811 if ((REGNO (*src1) == regstack->reg[regstack->top]
1812 && src1_note)
1813 || (REGNO (*src2) == regstack->reg[regstack->top]
1814 && src2_note))
1815 {
b74cf1ce
JH
1816 int idx1 = (get_hard_regnum (regstack, *src1)
1817 - FIRST_STACK_REG);
1818 int idx2 = (get_hard_regnum (regstack, *src2)
1819 - FIRST_STACK_REG);
1820
1821 /* Make reg-stack believe that the operands are already
1822 swapped on the stack */
1823 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1824 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1825
1826 /* Reverse condition to compensate the operand swap.
1827 i386 do have comparison always reversible. */
2ab0437e
JH
1828 PUT_CODE (XEXP (pat_src, 0),
1829 reversed_comparison_code (XEXP (pat_src, 0), insn));
1830 }
1831 else
a6a2274a 1832 emit_swap_insn (insn, regstack, *dest);
2ab0437e 1833 }
4e97601f 1834
a05924f9
JH
1835 {
1836 rtx src_note [3];
1837 int i;
4e97601f 1838
a05924f9
JH
1839 src_note[0] = 0;
1840 src_note[1] = src1_note;
1841 src_note[2] = src2_note;
54552651 1842
a05924f9
JH
1843 if (STACK_REG_P (*src1))
1844 replace_reg (src1, get_hard_regnum (regstack, *src1));
1845 if (STACK_REG_P (*src2))
1846 replace_reg (src2, get_hard_regnum (regstack, *src2));
4e97601f 1847
a05924f9
JH
1848 for (i = 1; i <= 2; i++)
1849 if (src_note [i])
4e97601f 1850 {
a05924f9
JH
1851 int regno = REGNO (XEXP (src_note[i], 0));
1852
1853 /* If the register that dies is not at the top of
1854 stack, then move the top of stack to the dead reg */
1855 if (regno != regstack->reg[regstack->top])
1856 {
1857 remove_regno_note (insn, REG_DEAD, regno);
1858 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1859 EMIT_AFTER);
1860 }
1861 else
b74cf1ce
JH
1862 /* Top of stack never dies, as it is the
1863 destination. */
1864 abort ();
4e97601f 1865 }
a05924f9 1866 }
4e97601f 1867
a05924f9 1868 /* Make dest the top of stack. Add dest to regstack if
dc297297 1869 not present. */
a05924f9 1870 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
a6a2274a 1871 regstack->reg[++regstack->top] = REGNO (*dest);
a05924f9
JH
1872 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1873 replace_reg (dest, FIRST_STACK_REG);
1874 break;
914ec131 1875
a05924f9
JH
1876 default:
1877 abort ();
1878 }
4e97601f 1879 break;
48227150 1880 }
a05924f9
JH
1881
1882 default:
1883 break;
1884 }
ecb63641
EB
1885
1886 return control_flow_insn_deleted;
48227150
JVA
1887}
1888\f
114cbee6
RS
1889/* Substitute hard regnums for any stack regs in INSN, which has
1890 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
f62a15e3 1891 before the insn, and is updated with changes made here.
114cbee6
RS
1892
1893 There are several requirements and assumptions about the use of
1894 stack-like regs in asm statements. These rules are enforced by
1895 record_asm_stack_regs; see comments there for details. Any
1896 asm_operands left in the RTL at this point may be assume to meet the
561cf7b1 1897 requirements, since record_asm_stack_regs removes any problem asm. */
114cbee6 1898
561cf7b1 1899static void
0c20a65f 1900subst_asm_stack_regs (rtx insn, stack regstack)
114cbee6 1901{
114cbee6 1902 rtx body = PATTERN (insn);
f62a15e3 1903 int alt;
114cbee6
RS
1904
1905 rtx *note_reg; /* Array of note contents */
1906 rtx **note_loc; /* Address of REG field of each note */
1907 enum reg_note *note_kind; /* The type of each note */
1908
a544cfd2
KG
1909 rtx *clobber_reg = 0;
1910 rtx **clobber_loc = 0;
114cbee6
RS
1911
1912 struct stack_def temp_stack;
1913 int n_notes;
1914 int n_clobbers;
1915 rtx note;
1916 int i;
f62a15e3 1917 int n_inputs, n_outputs;
114cbee6 1918
a05924f9
JH
1919 if (! check_asm_stack_operands (insn))
1920 return;
1921
114cbee6
RS
1922 /* Find out what the constraints required. If no constraint
1923 alternative matches, that is a compiler bug: we should have caught
a05924f9 1924 such an insn in check_asm_stack_operands. */
f62a15e3
BS
1925 extract_insn (insn);
1926 constrain_operands (1);
1927 alt = which_alternative;
1928
1929 preprocess_constraints ();
114cbee6 1930
f62a15e3 1931 n_inputs = get_asm_operand_n_inputs (body);
1ccbefce 1932 n_outputs = recog_data.n_operands - n_inputs;
a6a2274a 1933
f62a15e3 1934 if (alt < 0)
114cbee6
RS
1935 abort ();
1936
0f41302f 1937 /* Strip SUBREGs here to make the following code simpler. */
1ccbefce
RH
1938 for (i = 0; i < recog_data.n_operands; i++)
1939 if (GET_CODE (recog_data.operand[i]) == SUBREG
1940 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
114cbee6 1941 {
1ccbefce
RH
1942 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
1943 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
114cbee6
RS
1944 }
1945
1946 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
1947
1948 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
1949 i++;
1950
703ad42b
KG
1951 note_reg = alloca (i * sizeof (rtx));
1952 note_loc = alloca (i * sizeof (rtx *));
1953 note_kind = alloca (i * sizeof (enum reg_note));
114cbee6
RS
1954
1955 n_notes = 0;
1956 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1957 {
1958 rtx reg = XEXP (note, 0);
1959 rtx *loc = & XEXP (note, 0);
1960
1961 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
1962 {
1963 loc = & SUBREG_REG (reg);
1964 reg = SUBREG_REG (reg);
1965 }
1966
1967 if (STACK_REG_P (reg)
1968 && (REG_NOTE_KIND (note) == REG_DEAD
1969 || REG_NOTE_KIND (note) == REG_UNUSED))
1970 {
1971 note_reg[n_notes] = reg;
1972 note_loc[n_notes] = loc;
1973 note_kind[n_notes] = REG_NOTE_KIND (note);
1974 n_notes++;
1975 }
1976 }
1977
1978 /* Set up CLOBBER_REG and CLOBBER_LOC. */
1979
1980 n_clobbers = 0;
114cbee6
RS
1981
1982 if (GET_CODE (body) == PARALLEL)
3f5cfed6 1983 {
703ad42b
KG
1984 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
1985 clobber_loc = alloca (XVECLEN (body, 0) * sizeof (rtx *));
114cbee6 1986
3f5cfed6
JVA
1987 for (i = 0; i < XVECLEN (body, 0); i++)
1988 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1989 {
1990 rtx clobber = XVECEXP (body, 0, i);
1991 rtx reg = XEXP (clobber, 0);
1992 rtx *loc = & XEXP (clobber, 0);
114cbee6 1993
3f5cfed6
JVA
1994 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
1995 {
1996 loc = & SUBREG_REG (reg);
1997 reg = SUBREG_REG (reg);
1998 }
1999
2000 if (STACK_REG_P (reg))
2001 {
2002 clobber_reg[n_clobbers] = reg;
2003 clobber_loc[n_clobbers] = loc;
2004 n_clobbers++;
2005 }
2006 }
2007 }
114cbee6 2008
a05924f9 2009 temp_stack = *regstack;
114cbee6
RS
2010
2011 /* Put the input regs into the desired place in TEMP_STACK. */
2012
f62a15e3 2013 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1ccbefce 2014 if (STACK_REG_P (recog_data.operand[i])
f62a15e3
BS
2015 && reg_class_subset_p (recog_op_alt[i][alt].class,
2016 FLOAT_REGS)
2017 && recog_op_alt[i][alt].class != FLOAT_REGS)
114cbee6
RS
2018 {
2019 /* If an operand needs to be in a particular reg in
2020 FLOAT_REGS, the constraint was either 't' or 'u'. Since
1ccbefce
RH
2021 these constraints are for single register classes, and
2022 reload guaranteed that operand[i] is already in that class,
2023 we can just use REGNO (recog_data.operand[i]) to know which
2024 actual reg this operand needs to be in. */
114cbee6 2025
1ccbefce 2026 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
114cbee6
RS
2027
2028 if (regno < 0)
2029 abort ();
2030
ae0ed63a 2031 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
114cbee6 2032 {
1ccbefce
RH
2033 /* recog_data.operand[i] is not in the right place. Find
2034 it and swap it with whatever is already in I's place.
2035 K is where recog_data.operand[i] is now. J is where it
2036 should be. */
114cbee6
RS
2037 int j, k, temp;
2038
2039 k = temp_stack.top - (regno - FIRST_STACK_REG);
2040 j = (temp_stack.top
1ccbefce 2041 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
114cbee6
RS
2042
2043 temp = temp_stack.reg[k];
2044 temp_stack.reg[k] = temp_stack.reg[j];
2045 temp_stack.reg[j] = temp;
2046 }
2047 }
2048
a05924f9 2049 /* Emit insns before INSN to make sure the reg-stack is in the right
114cbee6
RS
2050 order. */
2051
a05924f9 2052 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
114cbee6
RS
2053
2054 /* Make the needed input register substitutions. Do death notes and
0f41302f 2055 clobbers too, because these are for inputs, not outputs. */
114cbee6 2056
f62a15e3 2057 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1ccbefce 2058 if (STACK_REG_P (recog_data.operand[i]))
114cbee6 2059 {
1ccbefce 2060 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
114cbee6
RS
2061
2062 if (regnum < 0)
2063 abort ();
2064
1ccbefce 2065 replace_reg (recog_data.operand_loc[i], regnum);
114cbee6
RS
2066 }
2067
2068 for (i = 0; i < n_notes; i++)
2069 if (note_kind[i] == REG_DEAD)
2070 {
2071 int regnum = get_hard_regnum (regstack, note_reg[i]);
2072
2073 if (regnum < 0)
2074 abort ();
2075
2076 replace_reg (note_loc[i], regnum);
2077 }
2078
2079 for (i = 0; i < n_clobbers; i++)
2080 {
2081 /* It's OK for a CLOBBER to reference a reg that is not live.
2082 Don't try to replace it in that case. */
2083 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2084
2085 if (regnum >= 0)
2086 {
2087 /* Sigh - clobbers always have QImode. But replace_reg knows
2088 that these regs can't be MODE_INT and will abort. Just put
2089 the right reg there without calling replace_reg. */
2090
99a59310 2091 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
114cbee6
RS
2092 }
2093 }
2094
0f41302f 2095 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
114cbee6 2096
f62a15e3 2097 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1ccbefce 2098 if (STACK_REG_P (recog_data.operand[i]))
114cbee6
RS
2099 {
2100 /* An input reg is implicitly popped if it is tied to an
0f41302f 2101 output, or if there is a CLOBBER for it. */
114cbee6
RS
2102 int j;
2103
2104 for (j = 0; j < n_clobbers; j++)
1ccbefce 2105 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
114cbee6
RS
2106 break;
2107
f62a15e3 2108 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
114cbee6 2109 {
1ccbefce
RH
2110 /* recog_data.operand[i] might not be at the top of stack.
2111 But that's OK, because all we need to do is pop the
2112 right number of regs off of the top of the reg-stack.
2113 record_asm_stack_regs guaranteed that all implicitly
2114 popped regs were grouped at the top of the reg-stack. */
114cbee6
RS
2115
2116 CLEAR_HARD_REG_BIT (regstack->reg_set,
2117 regstack->reg[regstack->top]);
2118 regstack->top--;
2119 }
2120 }
2121
2122 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2123 Note that there isn't any need to substitute register numbers.
0f41302f 2124 ??? Explain why this is true. */
114cbee6
RS
2125
2126 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2127 {
2128 /* See if there is an output for this hard reg. */
2129 int j;
2130
2131 for (j = 0; j < n_outputs; j++)
1ccbefce 2132 if (STACK_REG_P (recog_data.operand[j])
ae0ed63a 2133 && REGNO (recog_data.operand[j]) == (unsigned) i)
114cbee6
RS
2134 {
2135 regstack->reg[++regstack->top] = i;
2136 SET_HARD_REG_BIT (regstack->reg_set, i);
2137 break;
2138 }
2139 }
2140
2141 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2142 input that the asm didn't implicitly pop. If the asm didn't
3f5cfed6 2143 implicitly pop an input reg, that reg will still be live.
114cbee6
RS
2144
2145 Note that we can't use find_regno_note here: the register numbers
2146 in the death notes have already been substituted. */
2147
3f5cfed6 2148 for (i = 0; i < n_outputs; i++)
1ccbefce 2149 if (STACK_REG_P (recog_data.operand[i]))
3f5cfed6
JVA
2150 {
2151 int j;
2152
2153 for (j = 0; j < n_notes; j++)
1ccbefce 2154 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
3f5cfed6
JVA
2155 && note_kind[j] == REG_UNUSED)
2156 {
1ccbefce 2157 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
a05924f9 2158 EMIT_AFTER);
3f5cfed6
JVA
2159 break;
2160 }
2161 }
2162
f62a15e3 2163 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1ccbefce 2164 if (STACK_REG_P (recog_data.operand[i]))
114cbee6
RS
2165 {
2166 int j;
2167
2168 for (j = 0; j < n_notes; j++)
1ccbefce 2169 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
3f5cfed6 2170 && note_kind[j] == REG_DEAD
f62a15e3 2171 && TEST_HARD_REG_BIT (regstack->reg_set,
1ccbefce 2172 REGNO (recog_data.operand[i])))
114cbee6 2173 {
1ccbefce 2174 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
a05924f9 2175 EMIT_AFTER);
114cbee6
RS
2176 break;
2177 }
2178 }
2179}
2180\f
48227150
JVA
2181/* Substitute stack hard reg numbers for stack virtual registers in
2182 INSN. Non-stack register numbers are not changed. REGSTACK is the
2183 current stack content. Insns may be emitted as needed to arrange the
ecb63641
EB
2184 stack for the 387 based on the contents of the insn. Return whether
2185 a control flow insn was deleted in the process. */
f37eb5cb 2186
ecb63641 2187static bool
0c20a65f 2188subst_stack_regs (rtx insn, stack regstack)
48227150 2189{
b3694847 2190 rtx *note_link, note;
ecb63641 2191 bool control_flow_insn_deleted = false;
b3694847 2192 int i;
48227150 2193
99a59310 2194 if (GET_CODE (insn) == CALL_INSN)
e075ae69
RH
2195 {
2196 int top = regstack->top;
48227150 2197
e075ae69
RH
2198 /* If there are any floating point parameters to be passed in
2199 registers for this call, make sure they are in the right
2200 order. */
48227150 2201
e075ae69
RH
2202 if (top >= 0)
2203 {
2204 straighten_stack (PREV_INSN (insn), regstack);
99a59310 2205
e075ae69 2206 /* Now mark the arguments as dead after the call. */
99a59310 2207
e075ae69
RH
2208 while (regstack->top >= 0)
2209 {
2210 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2211 regstack->top--;
2212 }
2213 }
2214 }
48227150
JVA
2215
2216 /* Do the actual substitution if any stack regs are mentioned.
2217 Since we only record whether entire insn mentions stack regs, and
2218 subst_stack_regs_pat only works for patterns that contain stack regs,
2219 we must check each pattern in a parallel here. A call_value_pop could
0f41302f 2220 fail otherwise. */
48227150 2221
21b2cd73 2222 if (stack_regs_mentioned (insn))
48227150 2223 {
f62a15e3 2224 int n_operands = asm_noperands (PATTERN (insn));
114cbee6
RS
2225 if (n_operands >= 0)
2226 {
2227 /* This insn is an `asm' with operands. Decode the operands,
2228 decide how many are inputs, and do register substitution.
0f41302f 2229 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
114cbee6 2230
f62a15e3 2231 subst_asm_stack_regs (insn, regstack);
ecb63641 2232 return control_flow_insn_deleted;
114cbee6
RS
2233 }
2234
48227150 2235 if (GET_CODE (PATTERN (insn)) == PARALLEL)
c166a311 2236 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
48227150
JVA
2237 {
2238 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
ecb63641
EB
2239 control_flow_insn_deleted
2240 |= subst_stack_regs_pat (insn, regstack,
2241 XVECEXP (PATTERN (insn), 0, i));
48227150
JVA
2242 }
2243 else
ecb63641
EB
2244 control_flow_insn_deleted
2245 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
48227150
JVA
2246 }
2247
2248 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
0f41302f 2249 REG_UNUSED will already have been dealt with, so just return. */
48227150 2250
cbafacd1 2251 if (GET_CODE (insn) == NOTE || INSN_DELETED_P (insn))
ecb63641 2252 return control_flow_insn_deleted;
48227150
JVA
2253
2254 /* If there is a REG_UNUSED note on a stack register on this insn,
2255 the indicated reg must be popped. The REG_UNUSED note is removed,
2256 since the form of the newly emitted pop insn references the reg,
0f41302f 2257 making it no longer `unset'. */
48227150 2258
8e2e89f7 2259 note_link = &REG_NOTES (insn);
48227150
JVA
2260 for (note = *note_link; note; note = XEXP (note, 1))
2261 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2262 {
2263 *note_link = XEXP (note, 1);
a05924f9 2264 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
48227150
JVA
2265 }
2266 else
2267 note_link = &XEXP (note, 1);
ecb63641
EB
2268
2269 return control_flow_insn_deleted;
48227150
JVA
2270}
2271\f
2272/* Change the organization of the stack so that it fits a new basic
2273 block. Some registers might have to be popped, but there can never be
2274 a register live in the new block that is not now live.
2275
a05924f9
JH
2276 Insert any needed insns before or after INSN, as indicated by
2277 WHERE. OLD is the original stack layout, and NEW is the desired
2278 form. OLD is updated to reflect the code emitted, ie, it will be
2279 the same as NEW upon return.
48227150
JVA
2280
2281 This function will not preserve block_end[]. But that information
0f41302f 2282 is no longer needed once this has executed. */
48227150
JVA
2283
2284static void
0c20a65f 2285change_stack (rtx insn, stack old, stack new, enum emit_where where)
48227150
JVA
2286{
2287 int reg;
a05924f9 2288 int update_end = 0;
48227150 2289
a05924f9
JH
2290 /* We will be inserting new insns "backwards". If we are to insert
2291 after INSN, find the next insn, and insert before it. */
48227150 2292
a05924f9
JH
2293 if (where == EMIT_AFTER)
2294 {
a813c111 2295 if (current_block && BB_END (current_block) == insn)
a05924f9
JH
2296 update_end = 1;
2297 insn = NEXT_INSN (insn);
2298 }
48227150 2299
0f41302f 2300 /* Pop any registers that are not needed in the new block. */
48227150
JVA
2301
2302 for (reg = old->top; reg >= 0; reg--)
2303 if (! TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
99a59310 2304 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[reg], DFmode),
a05924f9 2305 EMIT_BEFORE);
48227150
JVA
2306
2307 if (new->top == -2)
2308 {
2309 /* If the new block has never been processed, then it can inherit
0f41302f 2310 the old stack order. */
48227150
JVA
2311
2312 new->top = old->top;
a05924f9 2313 memcpy (new->reg, old->reg, sizeof (new->reg));
48227150
JVA
2314 }
2315 else
2316 {
2317 /* This block has been entered before, and we must match the
0f41302f 2318 previously selected stack order. */
48227150
JVA
2319
2320 /* By now, the only difference should be the order of the stack,
0f41302f 2321 not their depth or liveliness. */
48227150
JVA
2322
2323 GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
48227150 2324 abort ();
48227150 2325 win:
48227150
JVA
2326 if (old->top != new->top)
2327 abort ();
2328
80832cf2 2329 /* If the stack is not empty (new->top != -1), loop here emitting
a6a2274a 2330 swaps until the stack is correct.
80832cf2
HB
2331
2332 The worst case number of swaps emitted is N + 2, where N is the
48227150
JVA
2333 depth of the stack. In some cases, the reg at the top of
2334 stack may be correct, but swapped anyway in order to fix
2335 other regs. But since we never swap any other reg away from
0f41302f 2336 its correct slot, this algorithm will converge. */
48227150 2337
80832cf2
HB
2338 if (new->top != -1)
2339 do
2340 {
2341 /* Swap the reg at top of stack into the position it is
2342 supposed to be in, until the correct top of stack appears. */
48227150 2343
80832cf2
HB
2344 while (old->reg[old->top] != new->reg[new->top])
2345 {
2346 for (reg = new->top; reg >= 0; reg--)
2347 if (new->reg[reg] == old->reg[old->top])
2348 break;
48227150 2349
80832cf2
HB
2350 if (reg == -1)
2351 abort ();
48227150 2352
80832cf2
HB
2353 emit_swap_insn (insn, old,
2354 FP_MODE_REG (old->reg[reg], DFmode));
2355 }
48227150 2356
80832cf2 2357 /* See if any regs remain incorrect. If so, bring an
48227150 2358 incorrect reg to the top of stack, and let the while loop
0f41302f 2359 above fix it. */
48227150 2360
80832cf2
HB
2361 for (reg = new->top; reg >= 0; reg--)
2362 if (new->reg[reg] != old->reg[reg])
2363 {
2364 emit_swap_insn (insn, old,
2365 FP_MODE_REG (old->reg[reg], DFmode));
2366 break;
2367 }
2368 } while (reg >= 0);
48227150 2369
0f41302f 2370 /* At this point there must be no differences. */
48227150
JVA
2371
2372 for (reg = old->top; reg >= 0; reg--)
2373 if (old->reg[reg] != new->reg[reg])
2374 abort ();
2375 }
a05924f9
JH
2376
2377 if (update_end)
a813c111 2378 BB_END (current_block) = PREV_INSN (insn);
48227150
JVA
2379}
2380\f
a05924f9 2381/* Print stack configuration. */
48227150
JVA
2382
2383static void
0c20a65f 2384print_stack (FILE *file, stack s)
48227150 2385{
a05924f9
JH
2386 if (! file)
2387 return;
48227150 2388
a05924f9
JH
2389 if (s->top == -2)
2390 fprintf (file, "uninitialized\n");
2391 else if (s->top == -1)
2392 fprintf (file, "empty\n");
2393 else
e075ae69 2394 {
a05924f9
JH
2395 int i;
2396 fputs ("[ ", file);
2397 for (i = 0; i <= s->top; ++i)
2398 fprintf (file, "%d ", s->reg[i]);
2399 fputs ("]\n", file);
e075ae69 2400 }
a05924f9
JH
2401}
2402\f
2403/* This function was doing life analysis. We now let the regular live
a6a2274a 2404 code do it's job, so we only need to check some extra invariants
a05924f9
JH
2405 that reg-stack expects. Primary among these being that all registers
2406 are initialized before use.
48227150 2407
a05924f9
JH
2408 The function returns true when code was emitted to CFG edges and
2409 commit_edge_insertions needs to be called. */
48227150 2410
a05924f9 2411static int
0c20a65f 2412convert_regs_entry (void)
a05924f9 2413{
e0082a72 2414 int inserted = 0;
a05924f9 2415 edge e;
e0082a72 2416 basic_block block;
48227150 2417
e0082a72 2418 FOR_EACH_BB_REVERSE (block)
48227150 2419 {
a05924f9
JH
2420 block_info bi = BLOCK_INFO (block);
2421 int reg;
a6a2274a 2422
a05924f9
JH
2423 /* Set current register status at last instruction `uninitialized'. */
2424 bi->stack_in.top = -2;
a6a2274a 2425
a05924f9
JH
2426 /* Copy live_at_end and live_at_start into temporaries. */
2427 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
48227150 2428 {
a05924f9
JH
2429 if (REGNO_REG_SET_P (block->global_live_at_end, reg))
2430 SET_HARD_REG_BIT (bi->out_reg_set, reg);
2431 if (REGNO_REG_SET_P (block->global_live_at_start, reg))
2432 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
48227150
JVA
2433 }
2434 }
48227150 2435
a6a2274a 2436 /* Load something into each stack register live at function entry.
a05924f9 2437 Such live registers can be caused by uninitialized variables or
a6a2274a 2438 functions not returning values on all paths. In order to keep
a05924f9 2439 the push/pop code happy, and to not scrog the register stack, we
a6a2274a 2440 must put something in these registers. Use a QNaN.
48227150 2441
d55d8fc7 2442 Note that we are inserting converted code here. This code is
a05924f9 2443 never seen by the convert_regs pass. */
48227150 2444
a05924f9
JH
2445 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2446 {
2447 basic_block block = e->dest;
2448 block_info bi = BLOCK_INFO (block);
2449 int reg, top = -1;
48227150 2450
a05924f9
JH
2451 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2452 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2453 {
2454 rtx init;
48227150 2455
a05924f9 2456 bi->stack_in.reg[++top] = reg;
48227150 2457
a05924f9
JH
2458 init = gen_rtx_SET (VOIDmode,
2459 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2460 nan);
2461 insert_insn_on_edge (init, e);
2462 inserted = 1;
2463 }
48227150 2464
a05924f9
JH
2465 bi->stack_in.top = top;
2466 }
48227150 2467
a05924f9
JH
2468 return inserted;
2469}
48227150 2470
a05924f9
JH
2471/* Construct the desired stack for function exit. This will either
2472 be `empty', or the function return value at top-of-stack. */
48227150 2473
a05924f9 2474static void
0c20a65f 2475convert_regs_exit (void)
a05924f9
JH
2476{
2477 int value_reg_low, value_reg_high;
2478 stack output_stack;
2479 rtx retvalue;
48227150 2480
a05924f9
JH
2481 retvalue = stack_result (current_function_decl);
2482 value_reg_low = value_reg_high = -1;
2483 if (retvalue)
2484 {
2485 value_reg_low = REGNO (retvalue);
2486 value_reg_high = value_reg_low
2487 + HARD_REGNO_NREGS (value_reg_low, GET_MODE (retvalue)) - 1;
2488 }
48227150 2489
a05924f9
JH
2490 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2491 if (value_reg_low == -1)
2492 output_stack->top = -1;
2493 else
2494 {
2495 int reg;
48227150 2496
a05924f9
JH
2497 output_stack->top = value_reg_high - value_reg_low;
2498 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2499 {
bc9c2952 2500 output_stack->reg[value_reg_high - reg] = reg;
a05924f9
JH
2501 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2502 }
2503 }
48227150 2504}
48227150 2505
0ecf09f9
JH
2506/* Adjust the stack of this block on exit to match the stack of the
2507 target block, or copy stack info into the stack of the successor
2508 of the successor hasn't been processed yet. */
2509static bool
0c20a65f 2510compensate_edge (edge e, FILE *file)
0ecf09f9
JH
2511{
2512 basic_block block = e->src, target = e->dest;
2513 block_info bi = BLOCK_INFO (block);
2514 struct stack_def regstack, tmpstack;
2515 stack target_stack = &BLOCK_INFO (target)->stack_in;
2516 int reg;
2517
2518 current_block = block;
2519 regstack = bi->stack_out;
2520 if (file)
0b17ab2f 2521 fprintf (file, "Edge %d->%d: ", block->index, target->index);
0ecf09f9
JH
2522
2523 if (target_stack->top == -2)
2524 {
2525 /* The target block hasn't had a stack order selected.
2526 We need merely ensure that no pops are needed. */
2527 for (reg = regstack.top; reg >= 0; --reg)
2528 if (!TEST_HARD_REG_BIT (target_stack->reg_set, regstack.reg[reg]))
2529 break;
2530
2531 if (reg == -1)
2532 {
2533 if (file)
2534 fprintf (file, "new block; copying stack position\n");
2535
2536 /* change_stack kills values in regstack. */
2537 tmpstack = regstack;
2538
a813c111 2539 change_stack (BB_END (block), &tmpstack, target_stack, EMIT_AFTER);
a6a2274a 2540 return false;
0ecf09f9
JH
2541 }
2542
2543 if (file)
2544 fprintf (file, "new block; pops needed\n");
2545 }
2546 else
2547 {
2548 if (target_stack->top == regstack.top)
2549 {
2550 for (reg = target_stack->top; reg >= 0; --reg)
2551 if (target_stack->reg[reg] != regstack.reg[reg])
2552 break;
2553
2554 if (reg == -1)
2555 {
2556 if (file)
2557 fprintf (file, "no changes needed\n");
2558 return false;
2559 }
2560 }
2561
2562 if (file)
2563 {
2564 fprintf (file, "correcting stack to ");
2565 print_stack (file, target_stack);
2566 }
2567 }
2568
2569 /* Care for non-call EH edges specially. The normal return path have
2570 values in registers. These will be popped en masse by the unwind
2571 library. */
2572 if ((e->flags & (EDGE_EH | EDGE_ABNORMAL_CALL)) == EDGE_EH)
2573 target_stack->top = -1;
2574
2575 /* Other calls may appear to have values live in st(0), but the
2576 abnormal return path will not have actually loaded the values. */
2577 else if (e->flags & EDGE_ABNORMAL_CALL)
2578 {
2579 /* Assert that the lifetimes are as we expect -- one value
2580 live at st(0) on the end of the source block, and no
2581 values live at the beginning of the destination block. */
2582 HARD_REG_SET tmp;
2583
2584 CLEAR_HARD_REG_SET (tmp);
2585 GO_IF_HARD_REG_EQUAL (target_stack->reg_set, tmp, eh1);
2586 abort ();
2587 eh1:
2588
04989d15
JH
2589 /* We are sure that there is st(0) live, otherwise we won't compensate.
2590 For complex return values, we may have st(1) live as well. */
0ecf09f9 2591 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG);
04989d15
JH
2592 if (TEST_HARD_REG_BIT (regstack.reg_set, FIRST_STACK_REG + 1))
2593 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG + 1);
0ecf09f9
JH
2594 GO_IF_HARD_REG_EQUAL (regstack.reg_set, tmp, eh2);
2595 abort ();
2596 eh2:
2597
2598 target_stack->top = -1;
2599 }
2600
2601 /* It is better to output directly to the end of the block
2602 instead of to the edge, because emit_swap can do minimal
2603 insn scheduling. We can do this when there is only one
2604 edge out, and it is not abnormal. */
2605 else if (block->succ->succ_next == NULL && !(e->flags & EDGE_ABNORMAL))
2606 {
2607 /* change_stack kills values in regstack. */
2608 tmpstack = regstack;
2609
a813c111
SB
2610 change_stack (BB_END (block), &tmpstack, target_stack,
2611 (GET_CODE (BB_END (block)) == JUMP_INSN
0ecf09f9
JH
2612 ? EMIT_BEFORE : EMIT_AFTER));
2613 }
2614 else
2615 {
2616 rtx seq, after;
2617
2618 /* We don't support abnormal edges. Global takes care to
2619 avoid any live register across them, so we should never
2620 have to insert instructions on such edges. */
2621 if (e->flags & EDGE_ABNORMAL)
2622 abort ();
2623
2624 current_block = NULL;
2625 start_sequence ();
2626
2f937369 2627 /* ??? change_stack needs some point to emit insns after. */
2e040219 2628 after = emit_note (NOTE_INSN_DELETED);
0ecf09f9
JH
2629
2630 tmpstack = regstack;
2631 change_stack (after, &tmpstack, target_stack, EMIT_BEFORE);
2632
2f937369 2633 seq = get_insns ();
0ecf09f9
JH
2634 end_sequence ();
2635
2636 insert_insn_on_edge (seq, e);
2637 return true;
2638 }
2639 return false;
2640}
2641
a05924f9
JH
2642/* Convert stack register references in one block. */
2643
2644static int
0c20a65f 2645convert_regs_1 (FILE *file, basic_block block)
48227150 2646{
0ecf09f9 2647 struct stack_def regstack;
a05924f9 2648 block_info bi = BLOCK_INFO (block);
de582cfb 2649 int deleted, inserted, reg;
a05924f9 2650 rtx insn, next;
0ecf09f9 2651 edge e, beste = NULL;
ecb63641 2652 bool control_flow_insn_deleted = false;
48227150 2653
0ecf09f9 2654 inserted = 0;
de582cfb 2655 deleted = 0;
d6fc0492 2656 any_malformed_asm = false;
0ecf09f9
JH
2657
2658 /* Find the edge we will copy stack from. It should be the most frequent
2659 one as it will get cheapest after compensation code is generated,
ff7cc307 2660 if multiple such exists, take one with largest count, prefer critical
0ecf09f9
JH
2661 one (as splitting critical edges is more expensive), or one with lowest
2662 index, to avoid random changes with different orders of the edges. */
2663 for (e = block->pred; e ; e = e->pred_next)
2664 {
2665 if (e->flags & EDGE_DFS_BACK)
2666 ;
2667 else if (! beste)
2668 beste = e;
2669 else if (EDGE_FREQUENCY (beste) < EDGE_FREQUENCY (e))
2670 beste = e;
3e42ccd2
JH
2671 else if (EDGE_FREQUENCY (beste) > EDGE_FREQUENCY (e))
2672 ;
0ecf09f9
JH
2673 else if (beste->count < e->count)
2674 beste = e;
2675 else if (beste->count > e->count)
2676 ;
4262e623
JH
2677 else if ((EDGE_CRITICAL_P (e) != 0)
2678 != (EDGE_CRITICAL_P (beste) != 0))
0ecf09f9 2679 {
4262e623 2680 if (EDGE_CRITICAL_P (e))
0ecf09f9
JH
2681 beste = e;
2682 }
0b17ab2f 2683 else if (e->src->index < beste->src->index)
0ecf09f9
JH
2684 beste = e;
2685 }
2686
b3cd99cd 2687 /* Initialize stack at block entry. */
0ecf09f9 2688 if (bi->stack_in.top == -2)
b3cd99cd
EB
2689 {
2690 if (beste)
2691 inserted |= compensate_edge (beste, file);
2692 else
2693 {
2694 /* No predecessors. Create an arbitrary input stack. */
2695 int reg;
2696
2697 bi->stack_in.top = -1;
2698 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2699 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2700 bi->stack_in.reg[++bi->stack_in.top] = reg;
2701 }
2702 }
0ecf09f9 2703 else
b3cd99cd 2704 /* Entry blocks do have stack already initialized. */
0ecf09f9 2705 beste = NULL;
a6a2274a 2706
0ecf09f9
JH
2707 current_block = block;
2708
a05924f9 2709 if (file)
48227150 2710 {
0b17ab2f 2711 fprintf (file, "\nBasic block %d\nInput stack: ", block->index);
a05924f9
JH
2712 print_stack (file, &bi->stack_in);
2713 }
48227150 2714
a05924f9
JH
2715 /* Process all insns in this block. Keep track of NEXT so that we
2716 don't process insns emitted while substituting in INSN. */
a813c111 2717 next = BB_HEAD (block);
a05924f9
JH
2718 regstack = bi->stack_in;
2719 do
2720 {
2721 insn = next;
2722 next = NEXT_INSN (insn);
48227150 2723
a05924f9
JH
2724 /* Ensure we have not missed a block boundary. */
2725 if (next == NULL)
2726 abort ();
a813c111 2727 if (insn == BB_END (block))
a05924f9
JH
2728 next = NULL;
2729
2730 /* Don't bother processing unless there is a stack reg
2731 mentioned or if it's a CALL_INSN. */
2732 if (stack_regs_mentioned (insn)
2733 || GET_CODE (insn) == CALL_INSN)
2734 {
2735 if (file)
2736 {
2737 fprintf (file, " insn %d input stack: ",
2738 INSN_UID (insn));
2739 print_stack (file, &regstack);
2740 }
ecb63641 2741 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
48227150 2742 }
a05924f9
JH
2743 }
2744 while (next);
48227150 2745
a05924f9
JH
2746 if (file)
2747 {
2748 fprintf (file, "Expected live registers [");
2749 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2750 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2751 fprintf (file, " %d", reg);
2752 fprintf (file, " ]\nOutput stack: ");
2753 print_stack (file, &regstack);
2754 }
48227150 2755
a813c111 2756 insn = BB_END (block);
a05924f9
JH
2757 if (GET_CODE (insn) == JUMP_INSN)
2758 insn = PREV_INSN (insn);
2759
2760 /* If the function is declared to return a value, but it returns one
2761 in only some cases, some registers might come live here. Emit
2762 necessary moves for them. */
2763
2764 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2765 {
2766 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2767 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
48227150 2768 {
a05924f9 2769 rtx set;
48227150 2770
a05924f9
JH
2771 if (file)
2772 {
2773 fprintf (file, "Emitting insn initializing reg %d\n",
2774 reg);
2775 }
48227150 2776
a05924f9
JH
2777 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode),
2778 nan);
3c030e88 2779 insn = emit_insn_after (set, insn);
ecb63641 2780 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
a05924f9
JH
2781 }
2782 }
de582cfb
EB
2783
2784 /* Amongst the insns possibly deleted during the substitution process above,
2785 might have been the only trapping insn in the block. We purge the now
2786 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
2787 called at the end of convert_regs. The order in which we process the
2788 blocks ensures that we never delete an already processed edge.
2789
ecb63641
EB
2790 Note that, at this point, the CFG may have been damaged by the emission
2791 of instructions after an abnormal call, which moves the basic block end
2792 (and is the reason why we call fixup_abnormal_edges later). So we must
2793 be sure that the trapping insn has been deleted before trying to purge
2794 dead edges, otherwise we risk purging valid edges.
2795
de582cfb
EB
2796 ??? We are normally supposed not to delete trapping insns, so we pretend
2797 that the insns deleted above don't actually trap. It would have been
2798 better to detect this earlier and avoid creating the EH edge in the first
2799 place, still, but we don't have enough information at that time. */
2800
ecb63641 2801 if (control_flow_insn_deleted)
de582cfb 2802 purge_dead_edges (block);
48227150 2803
d6fc0492
RH
2804 /* Something failed if the stack lives don't match. If we had malformed
2805 asms, we zapped the instruction itself, but that didn't produce the
2806 same pattern of register kills as before. */
a05924f9 2807 GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
d6fc0492
RH
2808 if (!any_malformed_asm)
2809 abort ();
a05924f9 2810 win:
0ecf09f9 2811 bi->stack_out = regstack;
48227150 2812
0ecf09f9 2813 /* Compensate the back edges, as those wasn't visited yet. */
a05924f9
JH
2814 for (e = block->succ; e ; e = e->succ_next)
2815 {
0ecf09f9
JH
2816 if (e->flags & EDGE_DFS_BACK
2817 || (e->dest == EXIT_BLOCK_PTR))
a05924f9 2818 {
0ecf09f9
JH
2819 if (!BLOCK_INFO (e->dest)->done
2820 && e->dest != block)
2821 abort ();
a6a2274a 2822 inserted |= compensate_edge (e, file);
e075ae69 2823 }
0ecf09f9
JH
2824 }
2825 for (e = block->pred; e ; e = e->pred_next)
2826 {
2827 if (e != beste && !(e->flags & EDGE_DFS_BACK)
2828 && e->src != ENTRY_BLOCK_PTR)
a05924f9 2829 {
0ecf09f9 2830 if (!BLOCK_INFO (e->src)->done)
a05924f9 2831 abort ();
a6a2274a 2832 inserted |= compensate_edge (e, file);
a05924f9 2833 }
e075ae69 2834 }
a05924f9
JH
2835
2836 return inserted;
48227150 2837}
48227150 2838
a05924f9
JH
2839/* Convert registers in all blocks reachable from BLOCK. */
2840
2841static int
0c20a65f 2842convert_regs_2 (FILE *file, basic_block block)
48227150 2843{
a05924f9
JH
2844 basic_block *stack, *sp;
2845 int inserted;
48227150 2846
de582cfb
EB
2847 /* We process the blocks in a top-down manner, in a way such that one block
2848 is only processed after all its predecessors. The number of predecessors
2849 of every block has already been computed. */
2850
703ad42b 2851 stack = xmalloc (sizeof (*stack) * n_basic_blocks);
a05924f9 2852 sp = stack;
48227150 2853
a05924f9 2854 *sp++ = block;
48227150 2855
a05924f9
JH
2856 inserted = 0;
2857 do
2858 {
2859 edge e;
48227150 2860
a05924f9 2861 block = *--sp;
48227150 2862
b3cd99cd
EB
2863 /* Processing BLOCK is achieved by convert_regs_1, which may purge
2864 some dead EH outgoing edge after the deletion of the trapping
2865 insn inside the block. Since the number of predecessors of
2866 BLOCK's successors was computed based on the initial edge set,
2867 we check the necessity to process some of these successors
2868 before such an edge deletion may happen. However, there is
2869 a pitfall: if BLOCK is the only predecessor of a successor and
2870 the edge between them happens to be deleted, the successor
2871 becomes unreachable and should not be processed. The problem
2872 is that there is no way to preventively detect this case so we
2873 stack the successor in all cases and hand over the task of
2874 fixing up the discrepancy to convert_regs_1. */
2875
a05924f9 2876 for (e = block->succ; e ; e = e->succ_next)
0ecf09f9 2877 if (! (e->flags & EDGE_DFS_BACK))
a05924f9 2878 {
754d9299
JM
2879 BLOCK_INFO (e->dest)->predecessors--;
2880 if (!BLOCK_INFO (e->dest)->predecessors)
0ecf09f9 2881 *sp++ = e->dest;
a05924f9 2882 }
de582cfb
EB
2883
2884 inserted |= convert_regs_1 (file, block);
2885 BLOCK_INFO (block)->done = 1;
48227150 2886 }
a05924f9
JH
2887 while (sp != stack);
2888
2889 return inserted;
48227150 2890}
841fc5a1 2891
a05924f9
JH
2892/* Traverse all basic blocks in a function, converting the register
2893 references in each insn from the "flat" register file that gcc uses,
2894 to the stack-like registers the 387 uses. */
2895
2896static int
0c20a65f 2897convert_regs (FILE *file)
48227150 2898{
e0082a72
ZD
2899 int inserted;
2900 basic_block b;
a05924f9 2901 edge e;
48227150 2902
a05924f9
JH
2903 /* Initialize uninitialized registers on function entry. */
2904 inserted = convert_regs_entry ();
48227150 2905
a05924f9
JH
2906 /* Construct the desired stack for function exit. */
2907 convert_regs_exit ();
2908 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
48227150 2909
a05924f9
JH
2910 /* ??? Future: process inner loops first, and give them arbitrary
2911 initial stacks which emit_swap_insn can modify. This ought to
2912 prevent double fxch that aften appears at the head of a loop. */
48227150 2913
a05924f9
JH
2914 /* Process all blocks reachable from all entry points. */
2915 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2916 inserted |= convert_regs_2 (file, e->dest);
a6a2274a
KH
2917
2918 /* ??? Process all unreachable blocks. Though there's no excuse
a05924f9 2919 for keeping these even when not optimizing. */
e0082a72 2920 FOR_EACH_BB (b)
a05924f9 2921 {
a05924f9 2922 block_info bi = BLOCK_INFO (b);
48227150 2923
a05924f9 2924 if (! bi->done)
b3cd99cd 2925 inserted |= convert_regs_2 (file, b);
a05924f9 2926 }
9dca2ad5 2927 clear_aux_for_blocks ();
48227150 2928
068473ec 2929 fixup_abnormal_edges ();
a05924f9
JH
2930 if (inserted)
2931 commit_edge_insertions ();
48227150 2932
a05924f9
JH
2933 if (file)
2934 fputc ('\n', file);
48227150 2935
a05924f9 2936 return inserted;
48227150 2937}
48227150 2938#endif /* STACK_REGS */
e2500fed
GK
2939
2940#include "gt-reg-stack.h"