]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/regclass.c
gcc_release (announce_snapshot): Use changedir instead of plain cd.
[thirdparty/gcc.git] / gcc / regclass.c
CommitLineData
54dac99e 1/* Compute register class preferences for pseudo-registers.
517cbe13 2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
e146f815
KH
3 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
54dac99e 5
1322177d 6This file is part of GCC.
54dac99e 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
54dac99e 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
54dac99e
RK
17
18You should have received a copy of the GNU General Public License
1322177d
LB
19along with GCC; see the file COPYING. If not, write to the Free
20Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2102111-1307, USA. */
54dac99e
RK
22
23
24/* This file contains two passes of the compiler: reg_scan and reg_class.
25 It also defines some tables of information about the hardware registers
26 and a function init_reg_sets to initialize the tables. */
27
28#include "config.h"
670ee920 29#include "system.h"
4977bab6
ZW
30#include "coretypes.h"
31#include "tm.h"
cff9f8d5 32#include "hard-reg-set.h"
54dac99e 33#include "rtl.h"
0829d244 34#include "expr.h"
6baf1cc8 35#include "tm_p.h"
54dac99e
RK
36#include "flags.h"
37#include "basic-block.h"
38#include "regs.h"
49ad7cfa 39#include "function.h"
54dac99e
RK
40#include "insn-config.h"
41#include "recog.h"
e4600702
RK
42#include "reload.h"
43#include "real.h"
10f0ad3d 44#include "toplev.h"
d6f4ec51 45#include "output.h"
8b0212ca 46#include "ggc.h"
0d446150 47#include "timevar.h"
54dac99e 48
0c20a65f 49static void init_reg_sets_1 (void);
0c20a65f 50static void init_reg_autoinc (void);
24deb20a 51
533d0835
RK
52/* If we have auto-increment or auto-decrement and we can have secondary
53 reloads, we are not allowed to use classes requiring secondary
9faa82d8 54 reloads for pseudos auto-incremented since reload can't handle it. */
533d0835
RK
55
56#ifdef AUTO_INC_DEC
dd9f0e8f 57#if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
533d0835
RK
58#define FORBIDDEN_INC_DEC_CLASSES
59#endif
60#endif
54dac99e
RK
61\f
62/* Register tables used by many passes. */
63
64/* Indexed by hard register number, contains 1 for registers
65 that are fixed use (stack pointer, pc, frame pointer, etc.).
66 These are the registers that cannot be used to allocate
252f342a 67 a pseudo reg for general use. */
54dac99e
RK
68
69char fixed_regs[FIRST_PSEUDO_REGISTER];
70
71/* Same info as a HARD_REG_SET. */
72
73HARD_REG_SET fixed_reg_set;
74
75/* Data for initializing the above. */
76
8b60264b 77static const char initial_fixed_regs[] = FIXED_REGISTERS;
54dac99e
RK
78
79/* Indexed by hard register number, contains 1 for registers
80 that are fixed use or are clobbered by function calls.
81 These are the registers that cannot be used to allocate
252f342a
MH
82 a pseudo reg whose life crosses calls unless we are able
83 to save/restore them across the calls. */
54dac99e
RK
84
85char call_used_regs[FIRST_PSEUDO_REGISTER];
86
87/* Same info as a HARD_REG_SET. */
88
89HARD_REG_SET call_used_reg_set;
90
6cad67d2
JL
91/* HARD_REG_SET of registers we want to avoid caller saving. */
92HARD_REG_SET losing_caller_save_reg_set;
93
54dac99e
RK
94/* Data for initializing the above. */
95
8b60264b 96static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
fc1296b7
AM
97
98/* This is much like call_used_regs, except it doesn't have to
99 be a superset of FIXED_REGISTERS. This vector indicates
a6a2274a 100 what is really call clobbered, and is used when defining
fc1296b7
AM
101 regs_invalidated_by_call. */
102
fc1296b7 103#ifdef CALL_REALLY_USED_REGISTERS
d3259baa 104char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
fc1296b7 105#endif
a6a2274a 106
54dac99e 107/* Indexed by hard register number, contains 1 for registers that are
252f342a
MH
108 fixed use or call used registers that cannot hold quantities across
109 calls even if we are willing to save and restore them. call fixed
110 registers are a subset of call used registers. */
54dac99e
RK
111
112char call_fixed_regs[FIRST_PSEUDO_REGISTER];
113
114/* The same info as a HARD_REG_SET. */
115
116HARD_REG_SET call_fixed_reg_set;
117
118/* Number of non-fixed registers. */
119
120int n_non_fixed_regs;
121
122/* Indexed by hard register number, contains 1 for registers
123 that are being used for global register decls.
124 These must be exempt from ordinary flow analysis
125 and are also considered fixed. */
126
127char global_regs[FIRST_PSEUDO_REGISTER];
4e2db584
RH
128
129/* Contains 1 for registers that are set or clobbered by calls. */
130/* ??? Ideally, this would be just call_used_regs plus global_regs, but
131 for someone's bright idea to have call_used_regs strictly include
132 fixed_regs. Which leaves us guessing as to the set of fixed_regs
133 that are actually preserved. We know for sure that those associated
134 with the local stack frame are safe, but scant others. */
135
136HARD_REG_SET regs_invalidated_by_call;
137
54dac99e
RK
138/* Table of register numbers in the order in which to try to use them. */
139#ifdef REG_ALLOC_ORDER
140int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
f5d8c9f4
BS
141
142/* The inverse of reg_alloc_order. */
143int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
54dac99e
RK
144#endif
145
146/* For each reg class, a HARD_REG_SET saying which registers are in it. */
147
2e0e2b76
CH
148HARD_REG_SET reg_class_contents[N_REG_CLASSES];
149
089e575b
RS
150/* The same information, but as an array of unsigned ints. We copy from
151 these unsigned ints to the table above. We do this so the tm.h files
d4845339
RH
152 do not have to be aware of the wordsize for machines with <= 64 regs.
153 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
2e0e2b76
CH
154
155#define N_REG_INTS \
d4845339 156 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
2e0e2b76 157
a6a2274a 158static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
2e0e2b76 159 = REG_CLASS_CONTENTS;
54dac99e
RK
160
161/* For each reg class, number of regs it contains. */
162
770ae6cc 163unsigned int reg_class_size[N_REG_CLASSES];
54dac99e
RK
164
165/* For each reg class, table listing all the containing classes. */
166
167enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
168
169/* For each reg class, table listing all the classes contained in it. */
170
171enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
172
173/* For each pair of reg classes,
174 a largest reg class contained in their union. */
175
176enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
177
178/* For each pair of reg classes,
179 the smallest reg class containing their union. */
180
181enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
182
94134f42 183/* Array containing all of the register names. */
d05c8ee7 184
e087aeb2 185const char * reg_names[] = REGISTER_NAMES;
d05c8ee7 186
ca4aac00
DE
187/* For each hard register, the widest mode object that it can contain.
188 This will be a MODE_INT mode if the register can hold integers. Otherwise
189 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
190 register. */
191
192enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
193
6df26b8f
JH
194/* 1 if class does contain register of given mode. */
195
196static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
197
e4600702
RK
198/* Maximum cost of moving from a register in one class to a register in
199 another class. Based on REGISTER_MOVE_COST. */
200
e56b4594 201static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
e4600702
RK
202
203/* Similar, but here we don't have to move if the first index is a subset
204 of the second so in that case the cost is zero. */
205
e56b4594 206static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
ee59f29b
JH
207
208/* Similar, but here we don't have to move if the first index is a superset
209 of the second so in that case the cost is zero. */
210
e56b4594 211static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
e4600702 212
533d0835
RK
213#ifdef FORBIDDEN_INC_DEC_CLASSES
214
215/* These are the classes that regs which are auto-incremented or decremented
216 cannot be put in. */
217
218static int forbidden_inc_dec_class[N_REG_CLASSES];
219
40f03658 220/* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
533d0835
RK
221 context. */
222
223static char *in_inc_dec;
224
5fcb671c 225#endif /* FORBIDDEN_INC_DEC_CLASSES */
533d0835 226
cff9f8d5 227#ifdef CANNOT_CHANGE_MODE_CLASS
10a3fdd9
JH
228/* All registers that have been subreged. Indexed by regno * MAX_MACHINE_MODE
229 + mode. */
230bitmap_head subregs_of_mode;
cff9f8d5 231#endif
e79f71f7 232
473fe49b
KR
233/* Sample MEM values for use by memory_move_secondary_cost. */
234
e2500fed 235static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
473fe49b 236
6feacd09
MM
237/* Linked list of reg_info structures allocated for reg_n_info array.
238 Grouping all of the allocated structures together in one lump
239 means only one call to bzero to clear them, rather than n smaller
240 calls. */
241struct reg_info_data {
242 struct reg_info_data *next; /* next set of reg_info structures */
243 size_t min_index; /* minimum index # */
244 size_t max_index; /* maximum index # */
40f03658 245 char used_p; /* nonzero if this has been used previously */
6feacd09
MM
246 reg_info data[1]; /* beginning of the reg_info data */
247};
248
249static struct reg_info_data *reg_info_head;
250
c07c7c9d 251/* No more global register variables may be declared; true once
dc297297 252 regclass has been initialized. */
6c85df69
AH
253
254static int no_global_reg_vars = 0;
255
66fd46b6
JH
256/* Specify number of hard registers given machine mode occupy. */
257unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
6feacd09 258
54dac99e
RK
259/* Function called only once to initialize the above data on reg usage.
260 Once this is done, various switches may override. */
261
262void
0c20a65f 263init_reg_sets (void)
54dac99e 264{
b3694847 265 int i, j;
54dac99e 266
2e0e2b76
CH
267 /* First copy the register information from the initial int form into
268 the regsets. */
269
270 for (i = 0; i < N_REG_CLASSES; i++)
271 {
272 CLEAR_HARD_REG_SET (reg_class_contents[i]);
273
b85946fc 274 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
2e0e2b76 275 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
b85946fc
RH
276 if (int_reg_class_contents[i][j / 32]
277 & ((unsigned) 1 << (j % 32)))
2e0e2b76
CH
278 SET_HARD_REG_BIT (reg_class_contents[i], j);
279 }
280
4e135bdd
KG
281 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
282 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
961192e1 283 memset (global_regs, 0, sizeof global_regs);
54dac99e 284
3eae4643 285 /* Do any additional initialization regsets may need. */
910bc42d 286 INIT_ONCE_REG_SET ();
f5d8c9f4
BS
287
288#ifdef REG_ALLOC_ORDER
289 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
290 inv_reg_alloc_order[reg_alloc_order[i]] = i;
291#endif
910bc42d
R
292}
293
294/* After switches have been processed, which perhaps alter
295 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
296
297static void
0c20a65f 298init_reg_sets_1 (void)
910bc42d 299{
b3694847
SS
300 unsigned int i, j;
301 unsigned int /* enum machine_mode */ m;
6836e024 302 char allocatable_regs_of_mode [MAX_MACHINE_MODE];
910bc42d
R
303
304 /* This macro allows the fixed or call-used registers
305 and the register classes to depend on target flags. */
306
307#ifdef CONDITIONAL_REGISTER_USAGE
308 CONDITIONAL_REGISTER_USAGE;
309#endif
310
54dac99e
RK
311 /* Compute number of hard regs in each class. */
312
703ad42b 313 memset (reg_class_size, 0, sizeof reg_class_size);
54dac99e
RK
314 for (i = 0; i < N_REG_CLASSES; i++)
315 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
316 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
317 reg_class_size[i]++;
318
319 /* Initialize the table of subunions.
320 reg_class_subunion[I][J] gets the largest-numbered reg-class
321 that is contained in the union of classes I and J. */
322
323 for (i = 0; i < N_REG_CLASSES; i++)
324 {
325 for (j = 0; j < N_REG_CLASSES; j++)
326 {
49a27995 327 HARD_REG_SET c;
b3694847 328 int k;
54dac99e
RK
329
330 COPY_HARD_REG_SET (c, reg_class_contents[i]);
331 IOR_HARD_REG_SET (c, reg_class_contents[j]);
332 for (k = 0; k < N_REG_CLASSES; k++)
333 {
334 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
335 subclass1);
336 continue;
337
338 subclass1:
938d968e 339 /* Keep the largest subclass. */ /* SPEE 900308 */
54dac99e
RK
340 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
341 reg_class_contents[(int) reg_class_subunion[i][j]],
342 subclass2);
343 reg_class_subunion[i][j] = (enum reg_class) k;
344 subclass2:
345 ;
346 }
347 }
348 }
349
350 /* Initialize the table of superunions.
351 reg_class_superunion[I][J] gets the smallest-numbered reg-class
352 containing the union of classes I and J. */
353
354 for (i = 0; i < N_REG_CLASSES; i++)
355 {
356 for (j = 0; j < N_REG_CLASSES; j++)
357 {
49a27995 358 HARD_REG_SET c;
b3694847 359 int k;
54dac99e
RK
360
361 COPY_HARD_REG_SET (c, reg_class_contents[i]);
362 IOR_HARD_REG_SET (c, reg_class_contents[j]);
363 for (k = 0; k < N_REG_CLASSES; k++)
364 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
365
366 superclass:
367 reg_class_superunion[i][j] = (enum reg_class) k;
368 }
369 }
370
371 /* Initialize the tables of subclasses and superclasses of each reg class.
372 First clear the whole table, then add the elements as they are found. */
373
374 for (i = 0; i < N_REG_CLASSES; i++)
375 {
376 for (j = 0; j < N_REG_CLASSES; j++)
377 {
378 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
379 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
380 }
381 }
382
383 for (i = 0; i < N_REG_CLASSES; i++)
384 {
385 if (i == (int) NO_REGS)
386 continue;
387
388 for (j = i + 1; j < N_REG_CLASSES; j++)
389 {
390 enum reg_class *p;
391
392 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
393 subclass);
394 continue;
395 subclass:
396 /* Reg class I is a subclass of J.
397 Add J to the table of superclasses of I. */
398 p = &reg_class_superclasses[i][0];
399 while (*p != LIM_REG_CLASSES) p++;
400 *p = (enum reg_class) j;
401 /* Add I to the table of superclasses of J. */
402 p = &reg_class_subclasses[j][0];
403 while (*p != LIM_REG_CLASSES) p++;
404 *p = (enum reg_class) i;
405 }
406 }
e4600702 407
54dac99e
RK
408 /* Initialize "constant" tables. */
409
410 CLEAR_HARD_REG_SET (fixed_reg_set);
411 CLEAR_HARD_REG_SET (call_used_reg_set);
412 CLEAR_HARD_REG_SET (call_fixed_reg_set);
4e2db584 413 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
54dac99e 414
4e135bdd 415 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
54dac99e
RK
416
417 n_non_fixed_regs = 0;
418
419 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
420 {
54dac99e
RK
421 if (fixed_regs[i])
422 SET_HARD_REG_BIT (fixed_reg_set, i);
423 else
424 n_non_fixed_regs++;
425
426 if (call_used_regs[i])
427 SET_HARD_REG_BIT (call_used_reg_set, i);
428 if (call_fixed_regs[i])
429 SET_HARD_REG_BIT (call_fixed_reg_set, i);
6cad67d2
JL
430 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
431 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
4e2db584
RH
432
433 /* There are a couple of fixed registers that we know are safe to
434 exclude from being clobbered by calls:
435
436 The frame pointer is always preserved across calls. The arg pointer
437 is if it is fixed. The stack pointer usually is, unless
438 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
439 If we are generating PIC code, the PIC offset table register is
440 preserved across calls, though the target can override that. */
a6a2274a 441
4e2db584
RH
442 if (i == STACK_POINTER_REGNUM || i == FRAME_POINTER_REGNUM)
443 ;
444#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
445 else if (i == HARD_FRAME_POINTER_REGNUM)
446 ;
447#endif
448#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
449 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
450 ;
451#endif
452#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
fc555370 453 else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
4e2db584
RH
454 ;
455#endif
d3259baa 456 else if (0
6ca3c22f 457#ifdef CALL_REALLY_USED_REGISTERS
d3259baa
RH
458 || call_really_used_regs[i]
459#else
460 || call_used_regs[i]
461#endif
462 || global_regs[i])
4e2db584 463 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
54dac99e 464 }
4e2db584 465
6836e024
JH
466 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
467 memset (allocatable_regs_of_mode, 0, sizeof (allocatable_regs_of_mode));
dbbbbf3b 468 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
6836e024 469 for (i = 0; i < N_REG_CLASSES; i++)
f7043461 470 if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
6df26b8f
JH
471 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
472 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
473 && HARD_REGNO_MODE_OK (j, m))
474 {
475 contains_reg_of_mode [i][m] = 1;
476 allocatable_regs_of_mode [m] = 1;
477 break;
478 }
acbce667
KR
479
480 /* Initialize the move cost table. Find every subset of each class
481 and take the maximum cost of moving any subset to any other. */
482
dbbbbf3b 483 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
6836e024
JH
484 if (allocatable_regs_of_mode [m])
485 {
486 for (i = 0; i < N_REG_CLASSES; i++)
487 if (contains_reg_of_mode [i][m])
488 for (j = 0; j < N_REG_CLASSES; j++)
489 {
490 int cost;
491 enum reg_class *p1, *p2;
492
493 if (!contains_reg_of_mode [j][m])
494 {
495 move_cost[m][i][j] = 65536;
496 may_move_in_cost[m][i][j] = 65536;
497 may_move_out_cost[m][i][j] = 65536;
498 }
499 else
500 {
26a952a8 501 cost = REGISTER_MOVE_COST (m, i, j);
6836e024
JH
502
503 for (p2 = &reg_class_subclasses[j][0];
504 *p2 != LIM_REG_CLASSES;
505 p2++)
506 if (*p2 != i && contains_reg_of_mode [*p2][m])
507 cost = MAX (cost, move_cost [m][i][*p2]);
508
509 for (p1 = &reg_class_subclasses[i][0];
510 *p1 != LIM_REG_CLASSES;
511 p1++)
512 if (*p1 != j && contains_reg_of_mode [*p1][m])
513 cost = MAX (cost, move_cost [m][*p1][j]);
514
515 move_cost[m][i][j] = cost;
516
517 if (reg_class_subset_p (i, j))
518 may_move_in_cost[m][i][j] = 0;
519 else
520 may_move_in_cost[m][i][j] = cost;
521
522 if (reg_class_subset_p (j, i))
523 may_move_out_cost[m][i][j] = 0;
524 else
525 may_move_out_cost[m][i][j] = cost;
526 }
527 }
1464632b 528 else
6836e024
JH
529 for (j = 0; j < N_REG_CLASSES; j++)
530 {
531 move_cost[m][i][j] = 65536;
532 may_move_in_cost[m][i][j] = 65536;
533 may_move_out_cost[m][i][j] = 65536;
534 }
535 }
c27c5281
DE
536}
537
538/* Compute the table of register modes.
539 These values are used to record death information for individual registers
540 (as opposed to a multi-register mode). */
ca4aac00 541
28420116
PB
542void
543init_reg_modes_once (void)
c27c5281 544{
66fd46b6
JH
545 int i, j;
546
547 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
548 for (j = 0; j < MAX_MACHINE_MODE; j++)
549 hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
ca4aac00
DE
550
551 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7f21d440 552 {
fee226d2 553 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
7f21d440 554
066c2fea 555 /* If we couldn't find a valid mode, just use the previous mode.
7f21d440
DE
556 ??? One situation in which we need to do this is on the mips where
557 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
558 to use DF mode for the even registers and VOIDmode for the odd
9faa82d8 559 (for the cpu models where the odd ones are inaccessible). */
7f21d440 560 if (reg_raw_mode[i] == VOIDmode)
066c2fea 561 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
7f21d440 562 }
ca4aac00
DE
563}
564
c27c5281
DE
565/* Finish initializing the register sets and
566 initialize the register modes. */
567
568void
0c20a65f 569init_regs (void)
c27c5281
DE
570{
571 /* This finishes what was started by init_reg_sets, but couldn't be done
572 until after register usage was specified. */
b93a436e 573 init_reg_sets_1 ();
c27c5281 574
1f80c9ef 575 init_reg_autoinc ();
6cde4876
JL
576}
577
578/* Initialize some fake stack-frame MEM references for use in
579 memory_move_secondary_cost. */
473fe49b 580
6cde4876 581void
0c20a65f 582init_fake_stack_mems (void)
6cde4876 583{
473fe49b
KR
584#ifdef HAVE_SECONDARY_RELOADS
585 {
473fe49b 586 int i;
d067e2aa 587
473fe49b 588 for (i = 0; i < MAX_MACHINE_MODE; i++)
9ec36da5 589 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
473fe49b
KR
590 }
591#endif
c27c5281
DE
592}
593
cbd5b9a2 594#ifdef HAVE_SECONDARY_RELOADS
473fe49b 595
cbd5b9a2
KR
596/* Compute extra cost of moving registers to/from memory due to reloads.
597 Only needed if secondary reloads are required for memory moves. */
473fe49b 598
cbd5b9a2 599int
0c20a65f 600memory_move_secondary_cost (enum machine_mode mode, enum reg_class class, int in)
cbd5b9a2
KR
601{
602 enum reg_class altclass;
603 int partial_cost = 0;
cbd5b9a2 604 /* We need a memory reference to feed to SECONDARY... macros. */
dc297297 605 /* mem may be unused even if the SECONDARY_ macros are defined. */
272df862
KG
606 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
607
cbd5b9a2
KR
608
609 if (in)
473fe49b 610 {
321c0828 611#ifdef SECONDARY_INPUT_RELOAD_CLASS
473fe49b 612 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
321c0828 613#else
473fe49b 614 altclass = NO_REGS;
321c0828 615#endif
473fe49b 616 }
cbd5b9a2 617 else
473fe49b 618 {
321c0828 619#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
473fe49b 620 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
321c0828 621#else
473fe49b 622 altclass = NO_REGS;
321c0828 623#endif
473fe49b
KR
624 }
625
cbd5b9a2
KR
626 if (altclass == NO_REGS)
627 return 0;
628
629 if (in)
e56b4594 630 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
cbd5b9a2 631 else
e56b4594 632 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
cbd5b9a2
KR
633
634 if (class == altclass)
635 /* This isn't simply a copy-to-temporary situation. Can't guess
636 what it is, so MEMORY_MOVE_COST really ought not to be calling
637 here in that case.
638
639 I'm tempted to put in an abort here, but returning this will
640 probably only give poor estimates, which is what we would've
641 had before this code anyways. */
642 return partial_cost;
643
644 /* Check if the secondary reload register will also need a
645 secondary reload. */
646 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
647}
648#endif
649
ca4aac00 650/* Return a machine mode that is legitimate for hard reg REGNO and large
fee226d2
R
651 enough to save nregs. If we can't find one, return VOIDmode.
652 If CALL_SAVED is true, only consider modes that are call saved. */
ca4aac00
DE
653
654enum machine_mode
0c20a65f 655choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
fee226d2 656 unsigned int nregs, bool call_saved)
ca4aac00 657{
dbbbbf3b 658 unsigned int /* enum machine_mode */ m;
ca4aac00
DE
659 enum machine_mode found_mode = VOIDmode, mode;
660
661 /* We first look for the largest integer mode that can be validly
662 held in REGNO. If none, we look for the largest floating-point mode.
663 If we still didn't find a valid mode, try CCmode. */
664
665 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
666 mode != VOIDmode;
667 mode = GET_MODE_WIDER_MODE (mode))
66fd46b6 668 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
fee226d2
R
669 && HARD_REGNO_MODE_OK (regno, mode)
670 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
ca4aac00
DE
671 found_mode = mode;
672
673 if (found_mode != VOIDmode)
674 return found_mode;
675
676 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
677 mode != VOIDmode;
678 mode = GET_MODE_WIDER_MODE (mode))
66fd46b6 679 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
fee226d2
R
680 && HARD_REGNO_MODE_OK (regno, mode)
681 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
ca4aac00
DE
682 found_mode = mode;
683
684 if (found_mode != VOIDmode)
685 return found_mode;
686
78b583fe
AH
687 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
688 mode != VOIDmode;
689 mode = GET_MODE_WIDER_MODE (mode))
66fd46b6 690 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
fee226d2
R
691 && HARD_REGNO_MODE_OK (regno, mode)
692 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
78b583fe
AH
693 found_mode = mode;
694
695 if (found_mode != VOIDmode)
696 return found_mode;
697
698 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
699 mode != VOIDmode;
700 mode = GET_MODE_WIDER_MODE (mode))
66fd46b6 701 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
fee226d2
R
702 && HARD_REGNO_MODE_OK (regno, mode)
703 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
78b583fe
AH
704 found_mode = mode;
705
706 if (found_mode != VOIDmode)
707 return found_mode;
708
0548a9df 709 /* Iterate over all of the CCmodes. */
dbbbbf3b
JDA
710 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
711 {
712 mode = (enum machine_mode) m;
66fd46b6 713 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
fee226d2
R
714 && HARD_REGNO_MODE_OK (regno, mode)
715 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
dbbbbf3b
JDA
716 return mode;
717 }
ca4aac00
DE
718
719 /* We can't find a mode valid for this register. */
720 return VOIDmode;
54dac99e
RK
721}
722
723/* Specify the usage characteristics of the register named NAME.
724 It should be a fixed register if FIXED and a
725 call-used register if CALL_USED. */
726
727void
0c20a65f 728fix_register (const char *name, int fixed, int call_used)
54dac99e
RK
729{
730 int i;
731
732 /* Decode the name and update the primary form of
733 the register info. */
734
e5c90c23
TW
735 if ((i = decode_reg_name (name)) >= 0)
736 {
cb2fdc84
GRK
737 if ((i == STACK_POINTER_REGNUM
738#ifdef HARD_FRAME_POINTER_REGNUM
739 || i == HARD_FRAME_POINTER_REGNUM
740#else
741 || i == FRAME_POINTER_REGNUM
742#endif
743 )
744 && (fixed == 0 || call_used == 0))
745 {
6f7d635c 746 static const char * const what_option[2][2] = {
7f7f8214
KG
747 { "call-saved", "call-used" },
748 { "no-such-option", "fixed" }};
a6a2274a
KH
749
750 error ("can't use '%s' as a %s register", name,
cb2fdc84
GRK
751 what_option[fixed][call_used]);
752 }
753 else
754 {
755 fixed_regs[i] = fixed;
756 call_used_regs[i] = call_used;
ec523c2f 757#ifdef CALL_REALLY_USED_REGISTERS
fc1296b7
AM
758 if (fixed == 0)
759 call_really_used_regs[i] = call_used;
d3259baa 760#endif
cb2fdc84 761 }
e5c90c23
TW
762 }
763 else
54dac99e
RK
764 {
765 warning ("unknown register name: %s", name);
54dac99e
RK
766 }
767}
614f68e2
RK
768
769/* Mark register number I as global. */
770
771void
0c20a65f 772globalize_reg (int i)
614f68e2 773{
c07c7c9d 774 if (fixed_regs[i] == 0 && no_global_reg_vars)
6c85df69
AH
775 error ("global register variable follows a function definition");
776
614f68e2
RK
777 if (global_regs[i])
778 {
779 warning ("register used for two global register variables");
780 return;
781 }
782
783 if (call_used_regs[i] && ! fixed_regs[i])
784 warning ("call-clobbered register used for global register variable");
785
786 global_regs[i] = 1;
787
788 /* If already fixed, nothing else to do. */
789 if (fixed_regs[i])
790 return;
791
792 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
793 n_non_fixed_regs--;
794
795 SET_HARD_REG_BIT (fixed_reg_set, i);
796 SET_HARD_REG_BIT (call_used_reg_set, i);
797 SET_HARD_REG_BIT (call_fixed_reg_set, i);
caecc099 798 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
614f68e2 799}
54dac99e
RK
800\f
801/* Now the data and code for the `regclass' pass, which happens
802 just before local-alloc. */
803
e4600702
RK
804/* The `costs' struct records the cost of using a hard register of each class
805 and of using memory for each pseudo. We use this data to set up
806 register class preferences. */
54dac99e 807
e4600702 808struct costs
54dac99e 809{
e4600702
RK
810 int cost[N_REG_CLASSES];
811 int mem_cost;
54dac99e
RK
812};
813
d55d8fc7 814/* Structure used to record preferences of given pseudo. */
9ffc5a70
JH
815struct reg_pref
816{
817 /* (enum reg_class) prefclass is the preferred class. */
818 char prefclass;
819
820 /* altclass is a register class that we should use for allocating
821 pseudo if no register in the preferred class is available.
822 If no register in this class is available, memory is preferred.
823
824 It might appear to be more general to have a bitmask of classes here,
825 but since it is recommended that there be a class corresponding to the
826 union of most major pair of classes, that generality is not required. */
827 char altclass;
828};
829
e4600702
RK
830/* Record the cost of each class for each pseudo. */
831
832static struct costs *costs;
833
61719ba7
BS
834/* Initialized once, and used to initialize cost values for each insn. */
835
836static struct costs init_cost;
837
d55d8fc7 838/* Record preferences of each pseudo.
54dac99e
RK
839 This is available after `regclass' is run. */
840
9ffc5a70 841static struct reg_pref *reg_pref;
54d23420 842
dc297297 843/* Allocated buffers for reg_pref. */
54dac99e 844
9ffc5a70 845static struct reg_pref *reg_pref_buffer;
6feacd09 846
9401afe3 847/* Frequency of executions of current insn. */
54d23420 848
9401afe3 849static int frequency;
54d23420 850
0c20a65f
AJ
851static rtx scan_one_insn (rtx, int);
852static void record_operand_costs (rtx, struct costs *, struct reg_pref *);
853static void dump_regclass (FILE *);
854static void record_reg_classes (int, int, rtx *, enum machine_mode *,
855 const char **, rtx, struct costs *,
856 struct reg_pref *);
857static int copy_cost (rtx, enum machine_mode, enum reg_class, int);
858static void record_address_regs (rtx, enum reg_class, int);
1d300e19 859#ifdef FORBIDDEN_INC_DEC_CLASSES
0c20a65f 860static int auto_inc_dec_reg_p (rtx, enum machine_mode);
1d300e19 861#endif
0c20a65f 862static void reg_scan_mark_refs (rtx, rtx, int, unsigned int);
54dac99e
RK
863
864/* Return the reg_class in which pseudo reg number REGNO is best allocated.
865 This function is sometimes called before the info has been computed.
866 When that happens, just return GENERAL_REGS, which is innocuous. */
867
868enum reg_class
0c20a65f 869reg_preferred_class (int regno)
54dac99e 870{
9ffc5a70 871 if (reg_pref == 0)
54dac99e 872 return GENERAL_REGS;
9ffc5a70 873 return (enum reg_class) reg_pref[regno].prefclass;
54dac99e
RK
874}
875
e4600702 876enum reg_class
0c20a65f 877reg_alternate_class (int regno)
54dac99e 878{
9ffc5a70 879 if (reg_pref == 0)
e4600702
RK
880 return ALL_REGS;
881
9ffc5a70 882 return (enum reg_class) reg_pref[regno].altclass;
54dac99e
RK
883}
884
61719ba7 885/* Initialize some global data for this pass. */
54dac99e
RK
886
887void
0c20a65f 888regclass_init (void)
54dac99e 889{
61719ba7
BS
890 int i;
891
892 init_cost.mem_cost = 10000;
893 for (i = 0; i < N_REG_CLASSES; i++)
894 init_cost.cost[i] = 10000;
895
896 /* This prevents dump_flow_info from losing if called
897 before regclass is run. */
9ffc5a70 898 reg_pref = NULL;
6c85df69 899
dc297297 900 /* No more global register variables may be declared. */
6c85df69 901 no_global_reg_vars = 1;
54dac99e 902}
246fd41f
JH
903\f
904/* Dump register costs. */
915b80ed 905static void
0c20a65f 906dump_regclass (FILE *dump)
246fd41f
JH
907{
908 static const char *const reg_class_names[] = REG_CLASS_NAMES;
909 int i;
910 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
911 {
dbbbbf3b 912 int /* enum reg_class */ class;
246fd41f
JH
913 if (REG_N_REFS (i))
914 {
f741a71c 915 fprintf (dump, " Register %i costs:", i);
dbbbbf3b
JDA
916 for (class = 0; class < (int) N_REG_CLASSES; class++)
917 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
6df26b8f 918#ifdef FORBIDDEN_INC_DEC_CLASSES
dbbbbf3b
JDA
919 && (!in_inc_dec[i]
920 || !forbidden_inc_dec_class[(enum reg_class) class])
6df26b8f 921#endif
cff9f8d5
AH
922#ifdef CANNOT_CHANGE_MODE_CLASS
923 && ! invalid_mode_change_p (i, (enum reg_class) class,
924 PSEUDO_REGNO_MODE (i))
6df26b8f
JH
925#endif
926 )
dbbbbf3b
JDA
927 fprintf (dump, " %s:%i", reg_class_names[class],
928 costs[i].cost[(enum reg_class) class]);
f741a71c 929 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
246fd41f
JH
930 }
931 }
932}
f741a71c
JH
933\f
934
935/* Calculate the costs of insn operands. */
936
937static void
0c20a65f
AJ
938record_operand_costs (rtx insn, struct costs *op_costs,
939 struct reg_pref *reg_pref)
f741a71c
JH
940{
941 const char *constraints[MAX_RECOG_OPERANDS];
942 enum machine_mode modes[MAX_RECOG_OPERANDS];
f741a71c
JH
943 int i;
944
945 for (i = 0; i < recog_data.n_operands; i++)
946 {
947 constraints[i] = recog_data.constraints[i];
948 modes[i] = recog_data.operand_mode[i];
949 }
f741a71c
JH
950
951 /* If we get here, we are set up to record the costs of all the
952 operands for this insn. Start by initializing the costs.
953 Then handle any address registers. Finally record the desired
954 classes for any pseudos, doing it twice if some pair of
955 operands are commutative. */
a6a2274a 956
f741a71c
JH
957 for (i = 0; i < recog_data.n_operands; i++)
958 {
959 op_costs[i] = init_cost;
960
961 if (GET_CODE (recog_data.operand[i]) == SUBREG)
cff9f8d5 962 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
f741a71c
JH
963
964 if (GET_CODE (recog_data.operand[i]) == MEM)
965 record_address_regs (XEXP (recog_data.operand[i], 0),
3dcc68a4 966 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
ccfc6cc8 967 else if (constraints[i][0] == 'p'
97488870 968 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
f741a71c 969 record_address_regs (recog_data.operand[i],
3dcc68a4 970 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
f741a71c
JH
971 }
972
973 /* Check for commutative in a separate loop so everything will
974 have been initialized. We must do this even if one operand
975 is a constant--see addsi3 in m68k.md. */
976
977 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
978 if (constraints[i][0] == '%')
979 {
980 const char *xconstraints[MAX_RECOG_OPERANDS];
981 int j;
246fd41f 982
f741a71c
JH
983 /* Handle commutative operands by swapping the constraints.
984 We assume the modes are the same. */
985
986 for (j = 0; j < recog_data.n_operands; j++)
987 xconstraints[j] = constraints[j];
988
989 xconstraints[i] = constraints[i+1];
990 xconstraints[i+1] = constraints[i];
991 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
a6a2274a 992 recog_data.operand, modes,
f741a71c
JH
993 xconstraints, insn, op_costs, reg_pref);
994 }
995
996 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
a6a2274a 997 recog_data.operand, modes,
f741a71c
JH
998 constraints, insn, op_costs, reg_pref);
999}
54dac99e 1000\f
61719ba7
BS
1001/* Subroutine of regclass, processes one insn INSN. Scan it and record each
1002 time it would save code to put a certain register in a certain class.
1003 PASS, when nonzero, inhibits some optimizations which need only be done
1004 once.
1005 Return the last insn processed, so that the scan can be continued from
1006 there. */
1007
1008static rtx
0c20a65f 1009scan_one_insn (rtx insn, int pass)
61719ba7 1010{
61719ba7 1011 enum rtx_code pat_code;
0eadeb15 1012 rtx set, note;
61719ba7 1013 int i, j;
f741a71c 1014 struct costs op_costs[MAX_RECOG_OPERANDS];
61719ba7 1015
ec8e098d 1016 if (!INSN_P (insn))
61719ba7
BS
1017 return insn;
1018
1019 pat_code = GET_CODE (PATTERN (insn));
1020 if (pat_code == USE
1021 || pat_code == CLOBBER
1022 || pat_code == ASM_INPUT
1023 || pat_code == ADDR_VEC
1024 || pat_code == ADDR_DIFF_VEC)
1025 return insn;
1026
0eadeb15
BS
1027 set = single_set (insn);
1028 extract_insn (insn);
1029
0eadeb15
BS
1030 /* If this insn loads a parameter from its stack slot, then
1031 it represents a savings, rather than a cost, if the
1032 parameter is stored in memory. Record this fact. */
61719ba7 1033
0eadeb15
BS
1034 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
1035 && GET_CODE (SET_SRC (set)) == MEM
1036 && (note = find_reg_note (insn, REG_EQUIV,
1037 NULL_RTX)) != 0
1038 && GET_CODE (XEXP (note, 0)) == MEM)
1039 {
1040 costs[REGNO (SET_DEST (set))].mem_cost
1041 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1042 GENERAL_REGS, 1)
9401afe3 1043 * frequency);
0eadeb15 1044 record_address_regs (XEXP (SET_SRC (set), 0),
3dcc68a4 1045 MODE_BASE_REG_CLASS (VOIDmode), frequency * 2);
0eadeb15
BS
1046 return insn;
1047 }
61719ba7 1048
0eadeb15
BS
1049 /* Improve handling of two-address insns such as
1050 (set X (ashift CONST Y)) where CONST must be made to
1051 match X. Change it into two insns: (set X CONST)
1052 (set X (ashift X Y)). If we left this for reloading, it
1053 would probably get three insns because X and Y might go
1054 in the same place. This prevents X and Y from receiving
1055 the same hard reg.
1056
1057 We can only do this if the modes of operands 0 and 1
1058 (which might not be the same) are tieable and we only need
1059 do this during our first pass. */
1060
1061 if (pass == 0 && optimize
1ccbefce
RH
1062 && recog_data.n_operands >= 3
1063 && recog_data.constraints[1][0] == '0'
1064 && recog_data.constraints[1][1] == 0
1065 && CONSTANT_P (recog_data.operand[1])
1066 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1067 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1068 && GET_CODE (recog_data.operand[0]) == REG
1069 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1070 recog_data.operand_mode[1]))
0eadeb15
BS
1071 {
1072 rtx previnsn = prev_real_insn (insn);
1073 rtx dest
1ccbefce
RH
1074 = gen_lowpart (recog_data.operand_mode[1],
1075 recog_data.operand[0]);
0eadeb15 1076 rtx newinsn
1ccbefce 1077 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
61719ba7 1078
0eadeb15
BS
1079 /* If this insn was the start of a basic block,
1080 include the new insn in that block.
1081 We need not check for code_label here;
1082 while a basic block can start with a code_label,
1083 INSN could not be at the beginning of that block. */
1084 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
61719ba7 1085 {
e0082a72
ZD
1086 basic_block b;
1087 FOR_EACH_BB (b)
a813c111
SB
1088 if (insn == BB_HEAD (b))
1089 BB_HEAD (b) = newinsn;
61719ba7
BS
1090 }
1091
0eadeb15 1092 /* This makes one more setting of new insns's dest. */
1ccbefce 1093 REG_N_SETS (REGNO (recog_data.operand[0]))++;
d3c7d45e 1094 REG_N_REFS (REGNO (recog_data.operand[0]))++;
9401afe3 1095 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
61719ba7 1096
1ccbefce 1097 *recog_data.operand_loc[1] = recog_data.operand[0];
d3c7d45e 1098 REG_N_REFS (REGNO (recog_data.operand[0]))++;
9401afe3 1099 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1ccbefce
RH
1100 for (i = recog_data.n_dups - 1; i >= 0; i--)
1101 if (recog_data.dup_num[i] == 1)
d3c7d45e
AO
1102 {
1103 *recog_data.dup_loc[i] = recog_data.operand[0];
1104 REG_N_REFS (REGNO (recog_data.operand[0]))++;
9401afe3 1105 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
d3c7d45e 1106 }
61719ba7 1107
0eadeb15 1108 return PREV_INSN (newinsn);
61719ba7
BS
1109 }
1110
4963c995 1111 record_operand_costs (insn, op_costs, reg_pref);
61719ba7
BS
1112
1113 /* Now add the cost for each operand to the total costs for
1114 its register. */
1115
1ccbefce
RH
1116 for (i = 0; i < recog_data.n_operands; i++)
1117 if (GET_CODE (recog_data.operand[i]) == REG
1118 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
61719ba7 1119 {
1ccbefce 1120 int regno = REGNO (recog_data.operand[i]);
61719ba7
BS
1121 struct costs *p = &costs[regno], *q = &op_costs[i];
1122
9401afe3 1123 p->mem_cost += q->mem_cost * frequency;
61719ba7 1124 for (j = 0; j < N_REG_CLASSES; j++)
9401afe3 1125 p->cost[j] += q->cost[j] * frequency;
61719ba7
BS
1126 }
1127
1128 return insn;
1129}
1130
1f80c9ef
MS
1131/* Initialize information about which register classes can be used for
1132 pseudos that are auto-incremented or auto-decremented. */
54dac99e 1133
1f80c9ef 1134static void
0c20a65f 1135init_reg_autoinc (void)
54dac99e 1136{
533d0835 1137#ifdef FORBIDDEN_INC_DEC_CLASSES
1f80c9ef 1138 int i;
533d0835
RK
1139
1140 for (i = 0; i < N_REG_CLASSES; i++)
1141 {
1f80c9ef 1142 rtx r = gen_rtx_raw_REG (VOIDmode, 0);
533d0835 1143 enum machine_mode m;
b3694847 1144 int j;
533d0835
RK
1145
1146 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1147 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1148 {
1149 REGNO (r) = j;
1150
1151 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
808043ed 1152 m = (enum machine_mode) ((int) m + 1))
533d0835
RK
1153 if (HARD_REGNO_MODE_OK (j, m))
1154 {
1155 PUT_MODE (r, m);
08d95f91
RK
1156
1157 /* If a register is not directly suitable for an
1158 auto-increment or decrement addressing mode and
1159 requires secondary reloads, disallow its class from
1160 being used in such addresses. */
1161
1162 if ((0
041d7180 1163#ifdef SECONDARY_RELOAD_CLASS
3dcc68a4 1164 || (SECONDARY_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
041d7180
JL
1165 != NO_REGS)
1166#else
533d0835 1167#ifdef SECONDARY_INPUT_RELOAD_CLASS
3dcc68a4 1168 || (SECONDARY_INPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
08d95f91 1169 != NO_REGS)
533d0835
RK
1170#endif
1171#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
3dcc68a4 1172 || (SECONDARY_OUTPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
08d95f91 1173 != NO_REGS)
041d7180 1174#endif
533d0835 1175#endif
08d95f91
RK
1176 )
1177 && ! auto_inc_dec_reg_p (r, m))
533d0835
RK
1178 forbidden_inc_dec_class[i] = 1;
1179 }
1180 }
1181 }
1f80c9ef
MS
1182#endif /* FORBIDDEN_INC_DEC_CLASSES */
1183}
1184
1185/* This is a pass of the compiler that scans all instructions
1186 and calculates the preferred class for each pseudo-register.
1187 This information can be accessed later by calling `reg_preferred_class'.
1188 This pass comes just before local register allocation. */
1189
1190void
0c20a65f 1191regclass (rtx f, int nregs, FILE *dump)
1f80c9ef
MS
1192{
1193 rtx insn;
1194 int i;
1195 int pass;
1196
1197 init_recog ();
1198
703ad42b 1199 costs = xmalloc (nregs * sizeof (struct costs));
1f80c9ef
MS
1200
1201#ifdef FORBIDDEN_INC_DEC_CLASSES
1202
703ad42b 1203 in_inc_dec = xmalloc (nregs);
1f80c9ef 1204
533d0835
RK
1205#endif /* FORBIDDEN_INC_DEC_CLASSES */
1206
e4600702
RK
1207 /* Normally we scan the insns once and determine the best class to use for
1208 each register. However, if -fexpensive_optimizations are on, we do so
1209 twice, the second time using the tentative best classes to guide the
1210 selection. */
54dac99e 1211
e4600702
RK
1212 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1213 {
e0082a72 1214 basic_block bb;
f741a71c
JH
1215
1216 if (dump)
a6a2274a 1217 fprintf (dump, "\n\nPass %i\n\n",pass);
e4600702 1218 /* Zero out our accumulation of the cost of each class for each reg. */
54dac99e 1219
703ad42b 1220 memset (costs, 0, nregs * sizeof (struct costs));
54dac99e 1221
533d0835 1222#ifdef FORBIDDEN_INC_DEC_CLASSES
961192e1 1223 memset (in_inc_dec, 0, nregs);
533d0835
RK
1224#endif
1225
e4600702
RK
1226 /* Scan the instructions and record each time it would
1227 save code to put a certain register in a certain class. */
1228
1f01879e 1229 if (!optimize)
54dac99e 1230 {
a08b2604 1231 frequency = REG_FREQ_MAX;
1f01879e
JH
1232 for (insn = f; insn; insn = NEXT_INSN (insn))
1233 insn = scan_one_insn (insn, pass);
54dac99e 1234 }
1f01879e 1235 else
e0082a72 1236 FOR_EACH_BB (bb)
1f01879e 1237 {
1f01879e 1238 /* Show that an insn inside a loop is likely to be executed three
9b15c17f
RH
1239 times more than insns outside a loop. This is much more
1240 aggressive than the assumptions made elsewhere and is being
1241 tried as an experiment. */
a08b2604 1242 frequency = REG_FREQ_FROM_BB (bb);
a813c111 1243 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1f01879e
JH
1244 {
1245 insn = scan_one_insn (insn, pass);
a813c111 1246 if (insn == BB_END (bb))
1f01879e
JH
1247 break;
1248 }
1249 }
a6a2274a 1250
e4600702
RK
1251 /* Now for each register look at how desirable each class is
1252 and find which class is preferred. Store that in
9ffc5a70 1253 `prefclass'. Record in `altclass' the largest register
e4600702 1254 class any of whose registers is better than memory. */
a6a2274a 1255
e4600702 1256 if (pass == 0)
9ffc5a70 1257 reg_pref = reg_pref_buffer;
54dac99e 1258
f741a71c 1259 if (dump)
a6a2274a 1260 {
f741a71c 1261 dump_regclass (dump);
4963c995 1262 fprintf (dump,"\n");
f741a71c 1263 }
e4600702 1264 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
54dac99e 1265 {
b3694847 1266 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
e4600702
RK
1267 enum reg_class best = ALL_REGS, alt = NO_REGS;
1268 /* This is an enum reg_class, but we call it an int
1269 to save lots of casts. */
b3694847
SS
1270 int class;
1271 struct costs *p = &costs[i];
e4600702 1272
64615302
JH
1273 /* In non-optimizing compilation REG_N_REFS is not initialized
1274 yet. */
ed8d2920 1275 if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
f741a71c
JH
1276 continue;
1277
e4600702 1278 for (class = (int) ALL_REGS - 1; class > 0; class--)
54dac99e 1279 {
533d0835 1280 /* Ignore classes that are too small for this operand or
4fe9b91c 1281 invalid for an operand that was auto-incremented. */
6df26b8f 1282 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
533d0835
RK
1283#ifdef FORBIDDEN_INC_DEC_CLASSES
1284 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
e79f71f7 1285#endif
cff9f8d5
AH
1286#ifdef CANNOT_CHANGE_MODE_CLASS
1287 || invalid_mode_change_p (i, (enum reg_class) class,
1288 PSEUDO_REGNO_MODE (i))
533d0835
RK
1289#endif
1290 )
e4600702
RK
1291 ;
1292 else if (p->cost[class] < best_cost)
1293 {
1294 best_cost = p->cost[class];
1295 best = (enum reg_class) class;
1296 }
1297 else if (p->cost[class] == best_cost)
8e2e89f7 1298 best = reg_class_subunion[(int) best][class];
54dac99e 1299 }
54dac99e 1300
e4600702
RK
1301 /* Record the alternate register class; i.e., a class for which
1302 every register in it is better than using memory. If adding a
1303 class would make a smaller class (i.e., no union of just those
1304 classes exists), skip that class. The major unions of classes
1305 should be provided as a register class. Don't do this if we
1306 will be doing it again later. */
1307
f741a71c 1308 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
e4600702
RK
1309 for (class = 0; class < N_REG_CLASSES; class++)
1310 if (p->cost[class] < p->mem_cost
77edb222 1311 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
533d0835
RK
1312 > reg_class_size[(int) alt])
1313#ifdef FORBIDDEN_INC_DEC_CLASSES
1314 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
e79f71f7 1315#endif
cff9f8d5
AH
1316#ifdef CANNOT_CHANGE_MODE_CLASS
1317 && ! invalid_mode_change_p (i, (enum reg_class) class,
1318 PSEUDO_REGNO_MODE (i))
533d0835
RK
1319#endif
1320 )
e4600702 1321 alt = reg_class_subunion[(int) alt][class];
a6a2274a 1322
e4600702
RK
1323 /* If we don't add any classes, nothing to try. */
1324 if (alt == best)
995d54dd 1325 alt = NO_REGS;
e4600702 1326
a6a2274a 1327 if (dump
f741a71c
JH
1328 && (reg_pref[i].prefclass != (int) best
1329 || reg_pref[i].altclass != (int) alt))
1330 {
1331 static const char *const reg_class_names[] = REG_CLASS_NAMES;
4963c995 1332 fprintf (dump, " Register %i", i);
f741a71c
JH
1333 if (alt == ALL_REGS || best == ALL_REGS)
1334 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1335 else if (alt == NO_REGS)
1336 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1337 else
1338 fprintf (dump, " pref %s, else %s\n",
1339 reg_class_names[(int) best],
1340 reg_class_names[(int) alt]);
1341 }
1342
e4600702 1343 /* We cast to (int) because (char) hits bugs in some compilers. */
9ffc5a70
JH
1344 reg_pref[i].prefclass = (int) best;
1345 reg_pref[i].altclass = (int) alt;
e4600702 1346 }
54dac99e 1347 }
56a65848 1348
4da896b2
MM
1349#ifdef FORBIDDEN_INC_DEC_CLASSES
1350 free (in_inc_dec);
1351#endif
56a65848 1352 free (costs);
54dac99e
RK
1353}
1354\f
e4600702
RK
1355/* Record the cost of using memory or registers of various classes for
1356 the operands in INSN.
54dac99e 1357
e4600702 1358 N_ALTS is the number of alternatives.
54dac99e 1359
e4600702
RK
1360 N_OPS is the number of operands.
1361
1362 OPS is an array of the operands.
1363
1364 MODES are the modes of the operands, in case any are VOIDmode.
1365
1366 CONSTRAINTS are the constraints to use for the operands. This array
1367 is modified by this procedure.
1368
1369 This procedure works alternative by alternative. For each alternative
1370 we assume that we will be able to allocate all pseudos to their ideal
1371 register class and calculate the cost of using that alternative. Then
a6a2274a 1372 we compute for each operand that is a pseudo-register, the cost of
e4600702
RK
1373 having the pseudo allocated to each register class and using it in that
1374 alternative. To this cost is added the cost of the alternative.
1375
1376 The cost of each class for this insn is its lowest cost among all the
1377 alternatives. */
1378
1379static void
0c20a65f
AJ
1380record_reg_classes (int n_alts, int n_ops, rtx *ops,
1381 enum machine_mode *modes, const char **constraints,
1382 rtx insn, struct costs *op_costs,
1383 struct reg_pref *reg_pref)
54dac99e 1384{
e4600702 1385 int alt;
e4600702 1386 int i, j;
ec2d92af 1387 rtx set;
e4600702 1388
e4600702
RK
1389 /* Process each alternative, each time minimizing an operand's cost with
1390 the cost for each operand in that alternative. */
54dac99e 1391
e4600702 1392 for (alt = 0; alt < n_alts; alt++)
54dac99e 1393 {
e4600702
RK
1394 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1395 int alt_fail = 0;
1396 int alt_cost = 0;
1397 enum reg_class classes[MAX_RECOG_OPERANDS];
da2c0219 1398 int allows_mem[MAX_RECOG_OPERANDS];
e4600702 1399 int class;
54dac99e 1400
e4600702
RK
1401 for (i = 0; i < n_ops; i++)
1402 {
9b3142b3 1403 const char *p = constraints[i];
e4600702
RK
1404 rtx op = ops[i];
1405 enum machine_mode mode = modes[i];
94e6f783 1406 int allows_addr = 0;
e4600702 1407 int win = 0;
e51712db 1408 unsigned char c;
54dac99e 1409
7405d9a1
DE
1410 /* Initially show we know nothing about the register class. */
1411 classes[i] = NO_REGS;
da2c0219 1412 allows_mem[i] = 0;
7405d9a1 1413
a6a2274a 1414 /* If this operand has no constraints at all, we can conclude
e4600702 1415 nothing about it since anything is valid. */
54dac99e 1416
e4600702
RK
1417 if (*p == 0)
1418 {
1419 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
703ad42b 1420 memset (&this_op_costs[i], 0, sizeof this_op_costs[i]);
54dac99e 1421
e4600702
RK
1422 continue;
1423 }
54dac99e 1424
7405d9a1
DE
1425 /* If this alternative is only relevant when this operand
1426 matches a previous operand, we do different things depending
1427 on whether this operand is a pseudo-reg or not. We must process
1428 any modifiers for the operand before we can make this test. */
1429
8c368ee2 1430 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
0eadeb15 1431 p++;
8c368ee2 1432
e4600702
RK
1433 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1434 {
da2c0219
RK
1435 /* Copy class and whether memory is allowed from the matching
1436 alternative. Then perform any needed cost computations
1437 and/or adjustments. */
e4600702
RK
1438 j = p[0] - '0';
1439 classes[i] = classes[j];
da2c0219 1440 allows_mem[i] = allows_mem[j];
e4600702
RK
1441
1442 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1443 {
1444 /* If this matches the other operand, we have no added
dc903608 1445 cost and we win. */
e4600702 1446 if (rtx_equal_p (ops[j], op))
dc903608 1447 win = 1;
e4600702 1448
77e67eac
RK
1449 /* If we can put the other operand into a register, add to
1450 the cost of this alternative the cost to copy this
1451 operand to the register used for the other operand. */
e4600702 1452
dc903608 1453 else if (classes[j] != NO_REGS)
77e67eac 1454 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
e4600702 1455 }
07d8ca2d
RS
1456 else if (GET_CODE (ops[j]) != REG
1457 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1458 {
1459 /* This op is a pseudo but the one it matches is not. */
a6a2274a 1460
07d8ca2d
RS
1461 /* If we can't put the other operand into a register, this
1462 alternative can't be used. */
1463
1464 if (classes[j] == NO_REGS)
1465 alt_fail = 1;
e4600702 1466
07d8ca2d
RS
1467 /* Otherwise, add to the cost of this alternative the cost
1468 to copy the other operand to the register used for this
1469 operand. */
1470
1471 else
1472 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1473 }
e4600702
RK
1474 else
1475 {
da2c0219
RK
1476 /* The costs of this operand are not the same as the other
1477 operand since move costs are not symmetric. Moreover,
1478 if we cannot tie them, this alternative needs to do a
1479 copy, which is one instruction. */
1480
1481 struct costs *pp = &this_op_costs[i];
1482
1483 for (class = 0; class < N_REG_CLASSES; class++)
1484 pp->cost[class]
d5e2075d 1485 = ((recog_data.operand_type[i] != OP_OUT
e56b4594 1486 ? may_move_in_cost[mode][class][(int) classes[i]]
d5e2075d
JH
1487 : 0)
1488 + (recog_data.operand_type[i] != OP_IN
e56b4594 1489 ? may_move_out_cost[mode][(int) classes[i]][class]
d5e2075d 1490 : 0));
a6a2274a 1491
da2c0219
RK
1492 /* If the alternative actually allows memory, make things
1493 a bit cheaper since we won't need an extra insn to
1494 load it. */
1495
1496 pp->mem_cost
d5e2075d
JH
1497 = ((recog_data.operand_type[i] != OP_IN
1498 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1499 : 0)
1500 + (recog_data.operand_type[i] != OP_OUT
1501 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1502 : 0) - allows_mem[i]);
da2c0219
RK
1503
1504 /* If we have assigned a class to this register in our
1505 first pass, add a cost to this alternative corresponding
1506 to what we would add if this register were not in the
1507 appropriate class. */
1508
9ffc5a70 1509 if (reg_pref)
da2c0219 1510 alt_cost
e56b4594
AO
1511 += (may_move_in_cost[mode]
1512 [(unsigned char) reg_pref[REGNO (op)].prefclass]
da2c0219 1513 [(int) classes[i]]);
e4600702 1514
37747c82
RK
1515 if (REGNO (ops[i]) != REGNO (ops[j])
1516 && ! find_reg_note (insn, REG_DEAD, op))
1517 alt_cost += 2;
e4600702 1518
347099d6 1519 /* This is in place of ordinary cost computation
1ddb342a
RK
1520 for this operand, so skip to the end of the
1521 alternative (should be just one character). */
1522 while (*p && *p++ != ',')
1523 ;
1524
1525 constraints[i] = p;
347099d6
RS
1526 continue;
1527 }
e4600702
RK
1528 }
1529
1530 /* Scan all the constraint letters. See if the operand matches
1531 any of the constraints. Collect the valid register classes
1532 and see if this operand accepts memory. */
1533
97488870
R
1534 while ((c = *p))
1535 {
1536 switch (c)
1537 {
1538 case ',':
1539 break;
1540 case '*':
1541 /* Ignore the next letter for this pass. */
1542 c = *++p;
1543 break;
94e6f783 1544
97488870
R
1545 case '?':
1546 alt_cost += 2;
1547 case '!': case '#': case '&':
1548 case '0': case '1': case '2': case '3': case '4':
1549 case '5': case '6': case '7': case '8': case '9':
1550 break;
e4600702 1551
97488870
R
1552 case 'p':
1553 allows_addr = 1;
1554 win = address_operand (op, GET_MODE (op));
1555 /* We know this operand is an address, so we want it to be
1556 allocated to a register that can be the base of an
1557 address, ie BASE_REG_CLASS. */
1558 classes[i]
1559 = reg_class_subunion[(int) classes[i]]
1560 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1561 break;
e4600702 1562
97488870
R
1563 case 'm': case 'o': case 'V':
1564 /* It doesn't seem worth distinguishing between offsettable
1565 and non-offsettable addresses here. */
1566 allows_mem[i] = 1;
1567 if (GET_CODE (op) == MEM)
1568 win = 1;
1569 break;
e4600702 1570
97488870
R
1571 case '<':
1572 if (GET_CODE (op) == MEM
1573 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1574 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1575 win = 1;
1576 break;
e4600702 1577
97488870
R
1578 case '>':
1579 if (GET_CODE (op) == MEM
1580 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1581 || GET_CODE (XEXP (op, 0)) == POST_INC))
1582 win = 1;
1583 break;
e4600702 1584
97488870
R
1585 case 'E':
1586 case 'F':
1587 if (GET_CODE (op) == CONST_DOUBLE
1588 || (GET_CODE (op) == CONST_VECTOR
1589 && (GET_MODE_CLASS (GET_MODE (op))
1590 == MODE_VECTOR_FLOAT)))
1591 win = 1;
1592 break;
e4600702 1593
97488870
R
1594 case 'G':
1595 case 'H':
1596 if (GET_CODE (op) == CONST_DOUBLE
1597 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1598 win = 1;
e4600702 1599 break;
97488870
R
1600
1601 case 's':
1602 if (GET_CODE (op) == CONST_INT
1603 || (GET_CODE (op) == CONST_DOUBLE
1604 && GET_MODE (op) == VOIDmode))
1605 break;
1606 case 'i':
1607 if (CONSTANT_P (op)
e4600702 1608#ifdef LEGITIMATE_PIC_OPERAND_P
97488870 1609 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
e4600702 1610#endif
97488870
R
1611 )
1612 win = 1;
1613 break;
e4600702 1614
97488870
R
1615 case 'n':
1616 if (GET_CODE (op) == CONST_INT
1617 || (GET_CODE (op) == CONST_DOUBLE
1618 && GET_MODE (op) == VOIDmode))
1619 win = 1;
1620 break;
e4600702 1621
97488870
R
1622 case 'I':
1623 case 'J':
1624 case 'K':
1625 case 'L':
1626 case 'M':
1627 case 'N':
1628 case 'O':
1629 case 'P':
1630 if (GET_CODE (op) == CONST_INT
1631 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1632 win = 1;
1633 break;
e4600702 1634
97488870
R
1635 case 'X':
1636 win = 1;
1637 break;
54dac99e 1638
97488870
R
1639 case 'g':
1640 if (GET_CODE (op) == MEM
1641 || (CONSTANT_P (op)
e4600702 1642#ifdef LEGITIMATE_PIC_OPERAND_P
97488870 1643 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
54dac99e 1644#endif
97488870
R
1645 ))
1646 win = 1;
1647 allows_mem[i] = 1;
1648 case 'r':
c2cba7a9 1649 classes[i]
97488870
R
1650 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1651 break;
ccfc6cc8 1652
97488870
R
1653 default:
1654 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
ccfc6cc8
UW
1655 classes[i]
1656 = reg_class_subunion[(int) classes[i]]
97488870
R
1657 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1658#ifdef EXTRA_CONSTRAINT_STR
1659 else if (EXTRA_CONSTRAINT_STR (op, c, p))
1660 win = 1;
1661
1662 if (EXTRA_MEMORY_CONSTRAINT (c, p))
1663 {
1664 /* Every MEM can be reloaded to fit. */
1665 allows_mem[i] = 1;
1666 if (GET_CODE (op) == MEM)
1667 win = 1;
1668 }
1669 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1670 {
1671 /* Every address can be reloaded to fit. */
1672 allows_addr = 1;
1673 if (address_operand (op, GET_MODE (op)))
1674 win = 1;
1675 /* We know this operand is an address, so we want it to
1676 be allocated to a register that can be the base of an
1677 address, ie BASE_REG_CLASS. */
1678 classes[i]
1679 = reg_class_subunion[(int) classes[i]]
1680 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1681 }
c2cba7a9 1682#endif
97488870
R
1683 break;
1684 }
1685 p += CONSTRAINT_LEN (c, p);
1686 if (c == ',')
c2cba7a9 1687 break;
97488870 1688 }
e4600702
RK
1689
1690 constraints[i] = p;
1691
1692 /* How we account for this operand now depends on whether it is a
1693 pseudo register or not. If it is, we first check if any
1694 register classes are valid. If not, we ignore this alternative,
1695 since we want to assume that all pseudos get allocated for
1696 register preferencing. If some register class is valid, compute
1697 the costs of moving the pseudo into that class. */
1698
1699 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
4db18574 1700 {
e4600702 1701 if (classes[i] == NO_REGS)
94e6f783 1702 {
e79f71f7
GK
1703 /* We must always fail if the operand is a REG, but
1704 we did not find a suitable class.
a6a2274a 1705
e79f71f7
GK
1706 Otherwise we may perform an uninitialized read
1707 from this_op_costs after the `continue' statement
1708 below. */
1709 alt_fail = 1;
94e6f783 1710 }
e4600702
RK
1711 else
1712 {
1713 struct costs *pp = &this_op_costs[i];
1714
1715 for (class = 0; class < N_REG_CLASSES; class++)
14a774a9 1716 pp->cost[class]
d5e2075d 1717 = ((recog_data.operand_type[i] != OP_OUT
e56b4594 1718 ? may_move_in_cost[mode][class][(int) classes[i]]
d5e2075d
JH
1719 : 0)
1720 + (recog_data.operand_type[i] != OP_IN
e56b4594 1721 ? may_move_out_cost[mode][(int) classes[i]][class]
d5e2075d 1722 : 0));
e4600702
RK
1723
1724 /* If the alternative actually allows memory, make things
1725 a bit cheaper since we won't need an extra insn to
1726 load it. */
1727
14a774a9 1728 pp->mem_cost
d5e2075d
JH
1729 = ((recog_data.operand_type[i] != OP_IN
1730 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1731 : 0)
1732 + (recog_data.operand_type[i] != OP_OUT
1733 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1734 : 0) - allows_mem[i]);
e4600702
RK
1735
1736 /* If we have assigned a class to this register in our
1737 first pass, add a cost to this alternative corresponding
1738 to what we would add if this register were not in the
1739 appropriate class. */
1740
9ffc5a70 1741 if (reg_pref)
e4600702 1742 alt_cost
e56b4594
AO
1743 += (may_move_in_cost[mode]
1744 [(unsigned char) reg_pref[REGNO (op)].prefclass]
14a774a9 1745 [(int) classes[i]]);
e4600702 1746 }
4db18574 1747 }
54dac99e 1748
e4600702
RK
1749 /* Otherwise, if this alternative wins, either because we
1750 have already determined that or if we have a hard register of
1751 the proper class, there is no cost for this alternative. */
54dac99e 1752
e4600702
RK
1753 else if (win
1754 || (GET_CODE (op) == REG
6f654776 1755 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
e4600702 1756 ;
54dac99e 1757
e4600702
RK
1758 /* If registers are valid, the cost of this alternative includes
1759 copying the object to and/or from a register. */
54dac99e 1760
e4600702
RK
1761 else if (classes[i] != NO_REGS)
1762 {
1ccbefce 1763 if (recog_data.operand_type[i] != OP_OUT)
e4600702 1764 alt_cost += copy_cost (op, mode, classes[i], 1);
54dac99e 1765
1ccbefce 1766 if (recog_data.operand_type[i] != OP_IN)
e4600702
RK
1767 alt_cost += copy_cost (op, mode, classes[i], 0);
1768 }
54dac99e 1769
e4600702
RK
1770 /* The only other way this alternative can be used is if this is a
1771 constant that could be placed into memory. */
1772
da2c0219 1773 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
cbd5b9a2 1774 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
e4600702
RK
1775 else
1776 alt_fail = 1;
1777 }
1778
1779 if (alt_fail)
1780 continue;
1781
1782 /* Finally, update the costs with the information we've calculated
1783 about this alternative. */
1784
1785 for (i = 0; i < n_ops; i++)
1786 if (GET_CODE (ops[i]) == REG
1787 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
54dac99e 1788 {
e4600702 1789 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1ccbefce 1790 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
54dac99e 1791
e4600702
RK
1792 pp->mem_cost = MIN (pp->mem_cost,
1793 (qq->mem_cost + alt_cost) * scale);
54dac99e 1794
e4600702
RK
1795 for (class = 0; class < N_REG_CLASSES; class++)
1796 pp->cost[class] = MIN (pp->cost[class],
1797 (qq->cost[class] + alt_cost) * scale);
1798 }
1799 }
ec2d92af
RK
1800
1801 /* If this insn is a single set copying operand 1 to operand 0
accef103
JL
1802 and one operand is a pseudo with the other a hard reg or a pseudo
1803 that prefers a register that is in its own register class then
1804 we may want to adjust the cost of that register class to -1.
a6a2274a 1805
accef103 1806 Avoid the adjustment if the source does not die to avoid stressing of
4d6922ee 1807 register allocator by preferrencing two colliding registers into single
accef103
JL
1808 class.
1809
1810 Also avoid the adjustment if a copy between registers of the class
1811 is expensive (ten times the cost of a default copy is considered
1812 arbitrarily expensive). This avoids losing when the preferred class
1813 is very expensive as the source of a copy instruction. */
ec2d92af
RK
1814
1815 if ((set = single_set (insn)) != 0
1816 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
0dc0641b
JH
1817 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1818 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
ec2d92af
RK
1819 for (i = 0; i <= 1; i++)
1820 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1821 {
770ae6cc 1822 unsigned int regno = REGNO (ops[!i]);
ec2d92af
RK
1823 enum machine_mode mode = GET_MODE (ops[!i]);
1824 int class;
770ae6cc 1825 unsigned int nr;
ec2d92af 1826
accef103
JL
1827 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1828 {
1829 enum reg_class pref = reg_pref[regno].prefclass;
1830
1831 if ((reg_class_size[(unsigned char) pref]
f7043461 1832 == (unsigned) CLASS_MAX_NREGS (pref, mode))
e56b4594 1833 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
accef103
JL
1834 op_costs[i].cost[(unsigned char) pref] = -1;
1835 }
ec2d92af
RK
1836 else if (regno < FIRST_PSEUDO_REGISTER)
1837 for (class = 0; class < N_REG_CLASSES; class++)
1838 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
f7043461 1839 && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
4841ba4b
RK
1840 {
1841 if (reg_class_size[class] == 1)
1842 op_costs[i].cost[class] = -1;
1843 else
1844 {
66fd46b6 1845 for (nr = 0; nr < (unsigned) hard_regno_nregs[regno][mode]; nr++)
4841ba4b 1846 {
770ae6cc
RK
1847 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1848 regno + nr))
4841ba4b
RK
1849 break;
1850 }
1851
66fd46b6 1852 if (nr == (unsigned) hard_regno_nregs[regno][mode])
4841ba4b
RK
1853 op_costs[i].cost[class] = -1;
1854 }
1855 }
ec2d92af 1856 }
54dac99e 1857}
e4600702 1858\f
40f03658 1859/* Compute the cost of loading X into (if TO_P is nonzero) or from (if
e4600702
RK
1860 TO_P is zero) a register of class CLASS in mode MODE.
1861
1862 X must not be a pseudo. */
1863
1864static int
0c20a65f
AJ
1865copy_cost (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1866 enum reg_class class, int to_p ATTRIBUTE_UNUSED)
e4600702 1867{
29a82058 1868#ifdef HAVE_SECONDARY_RELOADS
e4600702 1869 enum reg_class secondary_class = NO_REGS;
29a82058 1870#endif
e4600702
RK
1871
1872 /* If X is a SCRATCH, there is actually nothing to move since we are
1873 assuming optimal allocation. */
1874
1875 if (GET_CODE (x) == SCRATCH)
1876 return 0;
1877
1878 /* Get the class we will actually use for a reload. */
1879 class = PREFERRED_RELOAD_CLASS (x, class);
1880
1881#ifdef HAVE_SECONDARY_RELOADS
a6a2274a 1882 /* If we need a secondary reload (we assume here that we are using
e4600702
RK
1883 the secondary reload as an intermediate, not a scratch register), the
1884 cost is that to load the input into the intermediate register, then
1885 to copy them. We use a special value of TO_P to avoid recursion. */
1886
1887#ifdef SECONDARY_INPUT_RELOAD_CLASS
1888 if (to_p == 1)
1889 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1890#endif
1891
dd9f0e8f 1892#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
e4600702
RK
1893 if (! to_p)
1894 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1895#endif
1896
1897 if (secondary_class != NO_REGS)
e56b4594 1898 return (move_cost[mode][(int) secondary_class][(int) class]
e4600702 1899 + copy_cost (x, mode, secondary_class, 2));
dd9f0e8f 1900#endif /* HAVE_SECONDARY_RELOADS */
e4600702
RK
1901
1902 /* For memory, use the memory move cost, for (hard) registers, use the
1903 cost to move between the register classes, and use 2 for everything
1904 else (constants). */
1905
1906 if (GET_CODE (x) == MEM || class == NO_REGS)
cbd5b9a2 1907 return MEMORY_MOVE_COST (mode, class, to_p);
54dac99e 1908
e4600702 1909 else if (GET_CODE (x) == REG)
e56b4594 1910 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
e4600702
RK
1911
1912 else
1913 /* If this is a constant, we may eventually want to call rtx_cost here. */
b437f1a7 1914 return COSTS_N_INSNS (1);
e4600702
RK
1915}
1916\f
54dac99e
RK
1917/* Record the pseudo registers we must reload into hard registers
1918 in a subexpression of a memory address, X.
e4600702
RK
1919
1920 CLASS is the class that the register needs to be in and is either
1921 BASE_REG_CLASS or INDEX_REG_CLASS.
1922
1923 SCALE is twice the amount to multiply the cost by (it is twice so we
1924 can represent half-cost adjustments). */
54dac99e 1925
197d6480 1926static void
0c20a65f 1927record_address_regs (rtx x, enum reg_class class, int scale)
54dac99e 1928{
b3694847 1929 enum rtx_code code = GET_CODE (x);
54dac99e
RK
1930
1931 switch (code)
1932 {
1933 case CONST_INT:
1934 case CONST:
1935 case CC0:
1936 case PC:
1937 case SYMBOL_REF:
1938 case LABEL_REF:
1939 return;
1940
1941 case PLUS:
1942 /* When we have an address that is a sum,
1943 we must determine whether registers are "base" or "index" regs.
1944 If there is a sum of two registers, we must choose one to be
3502dc9c
JDA
1945 the "base". Luckily, we can use the REG_POINTER to make a good
1946 choice most of the time. We only need to do this on machines
1947 that can have two registers in an address and where the base
1948 and index register classes are different.
e4600702
RK
1949
1950 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1951 that seems bogus since it should only be set when we are sure
1952 the register is being used as a pointer. */
1953
54dac99e
RK
1954 {
1955 rtx arg0 = XEXP (x, 0);
1956 rtx arg1 = XEXP (x, 1);
b3694847
SS
1957 enum rtx_code code0 = GET_CODE (arg0);
1958 enum rtx_code code1 = GET_CODE (arg1);
54dac99e
RK
1959
1960 /* Look inside subregs. */
e4600702 1961 if (code0 == SUBREG)
54dac99e 1962 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
e4600702 1963 if (code1 == SUBREG)
54dac99e
RK
1964 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1965
e4600702
RK
1966 /* If this machine only allows one register per address, it must
1967 be in the first operand. */
1968
1969 if (MAX_REGS_PER_ADDRESS == 1)
1970 record_address_regs (arg0, class, scale);
1971
1972 /* If index and base registers are the same on this machine, just
1973 record registers in any non-constant operands. We assume here,
a6a2274a 1974 as well as in the tests below, that all addresses are in
e4600702
RK
1975 canonical form. */
1976
3dcc68a4 1977 else if (INDEX_REG_CLASS == MODE_BASE_REG_CLASS (VOIDmode))
54dac99e 1978 {
e4600702
RK
1979 record_address_regs (arg0, class, scale);
1980 if (! CONSTANT_P (arg1))
1981 record_address_regs (arg1, class, scale);
54dac99e 1982 }
e4600702
RK
1983
1984 /* If the second operand is a constant integer, it doesn't change
1985 what class the first operand must be. */
1986
1987 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1988 record_address_regs (arg0, class, scale);
1989
1990 /* If the second operand is a symbolic constant, the first operand
1991 must be an index register. */
1992
1993 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1994 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1995
956d6950
JL
1996 /* If both operands are registers but one is already a hard register
1997 of index or base class, give the other the class that the hard
1998 register is not. */
1999
3f9e9508 2000#ifdef REG_OK_FOR_BASE_P
956d6950
JL
2001 else if (code0 == REG && code1 == REG
2002 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2003 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
2004 record_address_regs (arg1,
2005 REG_OK_FOR_BASE_P (arg0)
3dcc68a4 2006 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
956d6950
JL
2007 scale);
2008 else if (code0 == REG && code1 == REG
2009 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2010 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
2011 record_address_regs (arg0,
2012 REG_OK_FOR_BASE_P (arg1)
3dcc68a4 2013 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
956d6950 2014 scale);
3f9e9508 2015#endif
956d6950 2016
e9a25f70
JL
2017 /* If one operand is known to be a pointer, it must be the base
2018 with the other operand the index. Likewise if the other operand
2019 is a MULT. */
f22376c7 2020
3502dc9c 2021 else if ((code0 == REG && REG_POINTER (arg0))
e9a25f70 2022 || code1 == MULT)
f22376c7 2023 {
3dcc68a4 2024 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode), scale);
f22376c7
CI
2025 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2026 }
3502dc9c 2027 else if ((code1 == REG && REG_POINTER (arg1))
e9a25f70 2028 || code0 == MULT)
f22376c7
CI
2029 {
2030 record_address_regs (arg0, INDEX_REG_CLASS, scale);
3dcc68a4 2031 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode), scale);
f22376c7
CI
2032 }
2033
e9a25f70 2034 /* Otherwise, count equal chances that each might be a base
e4600702
RK
2035 or index register. This case should be rare. */
2036
e9a25f70 2037 else
54dac99e 2038 {
3dcc68a4
NC
2039 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode),
2040 scale / 2);
e4600702 2041 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
3dcc68a4
NC
2042 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode),
2043 scale / 2);
e4600702 2044 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
54dac99e 2045 }
54dac99e
RK
2046 }
2047 break;
2048
4b983fdc
RH
2049 /* Double the importance of a pseudo register that is incremented
2050 or decremented, since it would take two extra insns
2051 if it ends up in the wrong place. */
2052 case POST_MODIFY:
2053 case PRE_MODIFY:
3dcc68a4
NC
2054 record_address_regs (XEXP (x, 0), MODE_BASE_REG_CLASS (VOIDmode),
2055 2 * scale);
4b983fdc
RH
2056 if (REG_P (XEXP (XEXP (x, 1), 1)))
2057 record_address_regs (XEXP (XEXP (x, 1), 1),
2058 INDEX_REG_CLASS, 2 * scale);
2059 break;
2060
54dac99e
RK
2061 case POST_INC:
2062 case PRE_INC:
2063 case POST_DEC:
2064 case PRE_DEC:
2065 /* Double the importance of a pseudo register that is incremented
2066 or decremented, since it would take two extra insns
533d0835
RK
2067 if it ends up in the wrong place. If the operand is a pseudo,
2068 show it is being used in an INC_DEC context. */
2069
2070#ifdef FORBIDDEN_INC_DEC_CLASSES
2071 if (GET_CODE (XEXP (x, 0)) == REG
2072 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2073 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2074#endif
e4600702
RK
2075
2076 record_address_regs (XEXP (x, 0), class, 2 * scale);
54dac99e
RK
2077 break;
2078
2079 case REG:
2080 {
b3694847
SS
2081 struct costs *pp = &costs[REGNO (x)];
2082 int i;
54dac99e 2083
cbd5b9a2 2084 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
54dac99e 2085
e4600702 2086 for (i = 0; i < N_REG_CLASSES; i++)
e56b4594 2087 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
54dac99e
RK
2088 }
2089 break;
2090
2091 default:
2092 {
b3694847
SS
2093 const char *fmt = GET_RTX_FORMAT (code);
2094 int i;
54dac99e
RK
2095 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2096 if (fmt[i] == 'e')
e4600702 2097 record_address_regs (XEXP (x, i), class, scale);
54dac99e
RK
2098 }
2099 }
2100}
08d95f91
RK
2101\f
2102#ifdef FORBIDDEN_INC_DEC_CLASSES
2103
2104/* Return 1 if REG is valid as an auto-increment memory reference
2105 to an object of MODE. */
2106
1d300e19 2107static int
0c20a65f 2108auto_inc_dec_reg_p (rtx reg, enum machine_mode mode)
08d95f91 2109{
940da324
JL
2110 if (HAVE_POST_INCREMENT
2111 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
08d95f91 2112 return 1;
08d95f91 2113
940da324
JL
2114 if (HAVE_POST_DECREMENT
2115 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
08d95f91 2116 return 1;
08d95f91 2117
940da324
JL
2118 if (HAVE_PRE_INCREMENT
2119 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
08d95f91 2120 return 1;
08d95f91 2121
940da324
JL
2122 if (HAVE_PRE_DECREMENT
2123 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
08d95f91 2124 return 1;
08d95f91
RK
2125
2126 return 0;
2127}
2128#endif
b1f21e0a 2129\f
da668e9c
MM
2130static short *renumber;
2131static size_t regno_allocated;
2132static unsigned int reg_n_max;
ed396e68 2133
b1f21e0a
MM
2134/* Allocate enough space to hold NUM_REGS registers for the tables used for
2135 reg_scan and flow_analysis that are indexed by the register number. If
88cad84b 2136 NEW_P is nonzero, initialize all of the registers, otherwise only
39379e67
MM
2137 initialize the new registers allocated. The same table is kept from
2138 function to function, only reallocating it when we need more room. If
88cad84b 2139 RENUMBER_P is nonzero, allocate the reg_renumber array also. */
b1f21e0a
MM
2140
2141void
0c20a65f 2142allocate_reg_info (size_t num_regs, int new_p, int renumber_p)
b1f21e0a 2143{
6feacd09
MM
2144 size_t size_info;
2145 size_t size_renumber;
2146 size_t min = (new_p) ? 0 : reg_n_max;
2147 struct reg_info_data *reg_data;
39379e67 2148
b1f21e0a
MM
2149 if (num_regs > regno_allocated)
2150 {
6feacd09
MM
2151 size_t old_allocated = regno_allocated;
2152
938d968e 2153 regno_allocated = num_regs + (num_regs / 20); /* Add some slop space. */
39379e67
MM
2154 size_renumber = regno_allocated * sizeof (short);
2155
2156 if (!reg_n_info)
2157 {
6feacd09 2158 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
703ad42b
KG
2159 renumber = xmalloc (size_renumber);
2160 reg_pref_buffer = xmalloc (regno_allocated
2161 * sizeof (struct reg_pref));
39379e67
MM
2162 }
2163
2164 else
2165 {
6feacd09
MM
2166 VARRAY_GROW (reg_n_info, regno_allocated);
2167
938d968e 2168 if (new_p) /* If we're zapping everything, no need to realloc. */
6feacd09 2169 {
8e2e89f7
KH
2170 free ((char *) renumber);
2171 free ((char *) reg_pref);
703ad42b
KG
2172 renumber = xmalloc (size_renumber);
2173 reg_pref_buffer = xmalloc (regno_allocated
2174 * sizeof (struct reg_pref));
6feacd09
MM
2175 }
2176
2177 else
2178 {
703ad42b
KG
2179 renumber = xrealloc (renumber, size_renumber);
2180 reg_pref_buffer = xrealloc (reg_pref_buffer,
2181 regno_allocated
2182 * sizeof (struct reg_pref));
6feacd09 2183 }
39379e67 2184 }
6feacd09
MM
2185
2186 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2187 + sizeof (struct reg_info_data) - sizeof (reg_info);
703ad42b 2188 reg_data = xcalloc (size_info, 1);
6feacd09
MM
2189 reg_data->min_index = old_allocated;
2190 reg_data->max_index = regno_allocated - 1;
2191 reg_data->next = reg_info_head;
2192 reg_info_head = reg_data;
b1f21e0a
MM
2193 }
2194
6feacd09 2195 reg_n_max = num_regs;
b1f21e0a
MM
2196 if (min < num_regs)
2197 {
6feacd09
MM
2198 /* Loop through each of the segments allocated for the actual
2199 reg_info pages, and set up the pointers, zero the pages, etc. */
a6a2274a 2200 for (reg_data = reg_info_head;
da668e9c
MM
2201 reg_data && reg_data->max_index >= min;
2202 reg_data = reg_data->next)
39379e67 2203 {
6feacd09
MM
2204 size_t min_index = reg_data->min_index;
2205 size_t max_index = reg_data->max_index;
da668e9c
MM
2206 size_t max = MIN (max_index, num_regs);
2207 size_t local_min = min - min_index;
2208 size_t i;
6feacd09 2209
da668e9c
MM
2210 if (reg_data->min_index > num_regs)
2211 continue;
6feacd09 2212
da668e9c
MM
2213 if (min < min_index)
2214 local_min = 0;
2215 if (!reg_data->used_p) /* page just allocated with calloc */
2216 reg_data->used_p = 1; /* no need to zero */
2217 else
703ad42b
KG
2218 memset (&reg_data->data[local_min], 0,
2219 sizeof (reg_info) * (max - min_index - local_min + 1));
da668e9c
MM
2220
2221 for (i = min_index+local_min; i <= max; i++)
2222 {
2223 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2224 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2225 renumber[i] = -1;
2226 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2227 reg_pref_buffer[i].altclass = (char) NO_REGS;
6feacd09 2228 }
39379e67 2229 }
b1f21e0a
MM
2230 }
2231
6feacd09
MM
2232 /* If {pref,alt}class have already been allocated, update the pointers to
2233 the newly realloced ones. */
9ffc5a70
JH
2234 if (reg_pref)
2235 reg_pref = reg_pref_buffer;
6feacd09 2236
39379e67
MM
2237 if (renumber_p)
2238 reg_renumber = renumber;
2239
3eae4643 2240 /* Tell the regset code about the new number of registers. */
73b76448 2241 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
b1f21e0a
MM
2242}
2243
ed396e68
BS
2244/* Free up the space allocated by allocate_reg_info. */
2245void
0c20a65f 2246free_reg_info (void)
ed396e68
BS
2247{
2248 if (reg_n_info)
2249 {
2250 struct reg_info_data *reg_data;
2251 struct reg_info_data *reg_next;
2252
2253 VARRAY_FREE (reg_n_info);
2254 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2255 {
2256 reg_next = reg_data->next;
8e2e89f7 2257 free ((char *) reg_data);
ed396e68
BS
2258 }
2259
9ffc5a70 2260 free (reg_pref_buffer);
f4f4d0f8
KH
2261 reg_pref_buffer = (struct reg_pref *) 0;
2262 reg_info_head = (struct reg_info_data *) 0;
2263 renumber = (short *) 0;
ed396e68
BS
2264 }
2265 regno_allocated = 0;
2266 reg_n_max = 0;
2267}
54dac99e
RK
2268\f
2269/* This is the `regscan' pass of the compiler, run just before cse
2270 and again just before loop.
2271
2272 It finds the first and last use of each pseudo-register
2273 and records them in the vectors regno_first_uid, regno_last_uid
2274 and counts the number of sets in the vector reg_n_sets.
2275
2276 REPEAT is nonzero the second time this is called. */
2277
54dac99e 2278/* Maximum number of parallel sets and clobbers in any insn in this fn.
d22d5f34 2279 Always at least 3, since the combiner could put that many together
79b9ec0d
RK
2280 and we want this to remain correct for all the remaining passes.
2281 This corresponds to the maximum number of times note_stores will call
2282 a function for any insn. */
54dac99e
RK
2283
2284int max_parallel;
2285
a6a2274a 2286/* Used as a temporary to record the largest number of registers in
79b9ec0d
RK
2287 PARALLEL in a SET_DEST. This is added to max_parallel. */
2288
2289static int max_set_parallel;
2290
54dac99e 2291void
0c20a65f 2292reg_scan (rtx f, unsigned int nregs, int repeat ATTRIBUTE_UNUSED)
54dac99e 2293{
b3694847 2294 rtx insn;
54dac99e 2295
28cb2b14
RS
2296 timevar_push (TV_REG_SCAN);
2297
39379e67 2298 allocate_reg_info (nregs, TRUE, FALSE);
54dac99e 2299 max_parallel = 3;
79b9ec0d 2300 max_set_parallel = 0;
54dac99e
RK
2301
2302 for (insn = f; insn; insn = NEXT_INSN (insn))
28cb2b14 2303 if (INSN_P (insn))
54dac99e 2304 {
28cb2b14
RS
2305 rtx pat = PATTERN (insn);
2306 if (GET_CODE (pat) == PARALLEL
2307 && XVECLEN (pat, 0) > max_parallel)
2308 max_parallel = XVECLEN (pat, 0);
2309 reg_scan_mark_refs (pat, insn, 0, 0);
01565a55
RK
2310
2311 if (REG_NOTES (insn))
f903b91f
DM
2312 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2313 }
79b9ec0d
RK
2314
2315 max_parallel += max_set_parallel;
0d446150
JH
2316
2317 timevar_pop (TV_REG_SCAN);
f903b91f
DM
2318}
2319
2320/* Update 'regscan' information by looking at the insns
2321 from FIRST to LAST. Some new REGs have been created,
2322 and any REG with number greater than OLD_MAX_REGNO is
2323 such a REG. We only update information for those. */
2324
2325void
0c20a65f 2326reg_scan_update (rtx first, rtx last, unsigned int old_max_regno)
f903b91f 2327{
b3694847 2328 rtx insn;
f903b91f
DM
2329
2330 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2331
2332 for (insn = first; insn != last; insn = NEXT_INSN (insn))
28cb2b14 2333 if (INSN_P (insn))
f903b91f 2334 {
28cb2b14
RS
2335 rtx pat = PATTERN (insn);
2336 if (GET_CODE (pat) == PARALLEL
2337 && XVECLEN (pat, 0) > max_parallel)
2338 max_parallel = XVECLEN (pat, 0);
2339 reg_scan_mark_refs (pat, insn, 0, old_max_regno);
f903b91f
DM
2340
2341 if (REG_NOTES (insn))
2342 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
54dac99e
RK
2343 }
2344}
2345
1ebecb64 2346/* X is the expression to scan. INSN is the insn it appears in.
f903b91f
DM
2347 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2348 We should only record information for REGs with numbers
2349 greater than or equal to MIN_REGNO. */
1ebecb64 2350
08d95f91 2351static void
0c20a65f 2352reg_scan_mark_refs (rtx x, rtx insn, int note_flag, unsigned int min_regno)
54dac99e 2353{
b3694847
SS
2354 enum rtx_code code;
2355 rtx dest;
2356 rtx note;
54dac99e 2357
ed8d2920
MM
2358 if (!x)
2359 return;
fa23c636 2360 code = GET_CODE (x);
54dac99e
RK
2361 switch (code)
2362 {
54dac99e 2363 case CONST:
185ebd6c 2364 case CONST_INT:
54dac99e 2365 case CONST_DOUBLE:
69ef87e2 2366 case CONST_VECTOR:
54dac99e
RK
2367 case CC0:
2368 case PC:
2369 case SYMBOL_REF:
2370 case LABEL_REF:
2371 case ADDR_VEC:
2372 case ADDR_DIFF_VEC:
2373 return;
2374
2375 case REG:
2376 {
770ae6cc 2377 unsigned int regno = REGNO (x);
54dac99e 2378
f903b91f
DM
2379 if (regno >= min_regno)
2380 {
2381 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2382 if (!note_flag)
2383 REGNO_LAST_UID (regno) = INSN_UID (insn);
2384 if (REGNO_FIRST_UID (regno) == 0)
2385 REGNO_FIRST_UID (regno) = INSN_UID (insn);
ed8d2920
MM
2386 /* If we are called by reg_scan_update() (indicated by min_regno
2387 being set), we also need to update the reference count. */
2388 if (min_regno)
2389 REG_N_REFS (regno)++;
f903b91f 2390 }
54dac99e
RK
2391 }
2392 break;
2393
01565a55 2394 case EXPR_LIST:
7b18c3db 2395 if (XEXP (x, 0))
f903b91f 2396 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
01565a55 2397 if (XEXP (x, 1))
f903b91f 2398 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
01565a55
RK
2399 break;
2400
2401 case INSN_LIST:
2402 if (XEXP (x, 1))
f903b91f 2403 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
01565a55
RK
2404 break;
2405
ed8d2920
MM
2406 case CLOBBER:
2407 {
2408 rtx reg = XEXP (x, 0);
2409 if (REG_P (reg)
2410 && REGNO (reg) >= min_regno)
2411 {
2412 REG_N_SETS (REGNO (reg))++;
2413 REG_N_REFS (REGNO (reg))++;
2414 }
aaf3ce3e
DJ
2415 else if (GET_CODE (reg) == MEM)
2416 reg_scan_mark_refs (XEXP (reg, 0), insn, note_flag, min_regno);
ed8d2920
MM
2417 }
2418 break;
2419
54dac99e
RK
2420 case SET:
2421 /* Count a set of the destination if it is a register. */
2422 for (dest = SET_DEST (x);
2423 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2424 || GET_CODE (dest) == ZERO_EXTEND;
2425 dest = XEXP (dest, 0))
2426 ;
2427
79b9ec0d
RK
2428 /* For a PARALLEL, record the number of things (less the usual one for a
2429 SET) that are set. */
2430 if (GET_CODE (dest) == PARALLEL)
2431 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2432
f903b91f
DM
2433 if (GET_CODE (dest) == REG
2434 && REGNO (dest) >= min_regno)
b2d57793
DB
2435 {
2436 REG_N_SETS (REGNO (dest))++;
2437 REG_N_REFS (REGNO (dest))++;
2438 }
54dac99e 2439
be8dcd74
RK
2440 /* If this is setting a pseudo from another pseudo or the sum of a
2441 pseudo and a constant integer and the other pseudo is known to be
2442 a pointer, set the destination to be a pointer as well.
2443
2444 Likewise if it is setting the destination from an address or from a
2445 value equivalent to an address or to the sum of an address and
2446 something else.
a6a2274a 2447
be8dcd74
RK
2448 But don't do any of this if the pseudo corresponds to a user
2449 variable since it should have already been set as a pointer based
2450 on the type. */
2451
2452 if (GET_CODE (SET_DEST (x)) == REG
2453 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
f903b91f 2454 && REGNO (SET_DEST (x)) >= min_regno
64d3b4ca
JL
2455 /* If the destination pseudo is set more than once, then other
2456 sets might not be to a pointer value (consider access to a
d55d8fc7 2457 union in two threads of control in the presence of global
3502dc9c 2458 optimizations). So only set REG_POINTER on the destination
64d3b4ca
JL
2459 pseudo if this is the only set of that pseudo. */
2460 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
be8dcd74 2461 && ! REG_USERVAR_P (SET_DEST (x))
3502dc9c 2462 && ! REG_POINTER (SET_DEST (x))
be8dcd74 2463 && ((GET_CODE (SET_SRC (x)) == REG
3502dc9c 2464 && REG_POINTER (SET_SRC (x)))
be8dcd74
RK
2465 || ((GET_CODE (SET_SRC (x)) == PLUS
2466 || GET_CODE (SET_SRC (x)) == LO_SUM)
2467 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2468 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3502dc9c 2469 && REG_POINTER (XEXP (SET_SRC (x), 0)))
be8dcd74
RK
2470 || GET_CODE (SET_SRC (x)) == CONST
2471 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2472 || GET_CODE (SET_SRC (x)) == LABEL_REF
2473 || (GET_CODE (SET_SRC (x)) == HIGH
2474 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2475 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2476 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2477 || ((GET_CODE (SET_SRC (x)) == PLUS
2478 || GET_CODE (SET_SRC (x)) == LO_SUM)
2479 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2480 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2481 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2482 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2483 && (GET_CODE (XEXP (note, 0)) == CONST
2484 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2485 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
3502dc9c 2486 REG_POINTER (SET_DEST (x)) = 1;
be8dcd74 2487
0d4903b8 2488 /* If this is setting a register from a register or from a simple
a560d4d4 2489 conversion of a register, propagate REG_EXPR. */
0d4903b8
RK
2490 if (GET_CODE (dest) == REG)
2491 {
2492 rtx src = SET_SRC (x);
2493
2494 while (GET_CODE (src) == SIGN_EXTEND
2495 || GET_CODE (src) == ZERO_EXTEND
2496 || GET_CODE (src) == TRUNCATE
2497 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2498 src = XEXP (src, 0);
2499
a560d4d4
JH
2500 if (!REG_ATTRS (dest) && REG_P (src))
2501 REG_ATTRS (dest) = REG_ATTRS (src);
2502 if (!REG_ATTRS (dest) && GET_CODE (src) == MEM)
2503 set_reg_attrs_from_mem (dest, src);
0d4903b8
RK
2504 }
2505
0f41302f 2506 /* ... fall through ... */
54dac99e
RK
2507
2508 default:
2509 {
b3694847
SS
2510 const char *fmt = GET_RTX_FORMAT (code);
2511 int i;
54dac99e
RK
2512 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2513 {
2514 if (fmt[i] == 'e')
f903b91f 2515 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
54dac99e
RK
2516 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2517 {
b3694847 2518 int j;
54dac99e 2519 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
f903b91f 2520 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
54dac99e
RK
2521 }
2522 }
2523 }
2524 }
2525}
2526\f
2527/* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2528 is also in C2. */
2529
2530int
0c20a65f 2531reg_class_subset_p (enum reg_class c1, enum reg_class c2)
54dac99e
RK
2532{
2533 if (c1 == c2) return 1;
2534
2535 if (c2 == ALL_REGS)
2536 win:
2537 return 1;
8e2e89f7
KH
2538 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2539 reg_class_contents[(int) c2],
54dac99e
RK
2540 win);
2541 return 0;
2542}
2543
2544/* Return nonzero if there is a register that is in both C1 and C2. */
2545
2546int
0c20a65f 2547reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
54dac99e 2548{
49a27995 2549 HARD_REG_SET c;
54dac99e
RK
2550
2551 if (c1 == c2) return 1;
2552
2553 if (c1 == ALL_REGS || c2 == ALL_REGS)
2554 return 1;
2555
2556 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2557 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2558
2559 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2560 return 1;
2561
2562 lose:
2563 return 0;
2564}
2565
73b76448
RK
2566/* Release any memory allocated by register sets. */
2567
2568void
0c20a65f 2569regset_release_memory (void)
73b76448 2570{
73b76448
RK
2571 bitmap_release_memory ();
2572}
e2500fed 2573
cff9f8d5
AH
2574#ifdef CANNOT_CHANGE_MODE_CLASS
2575/* Set bits in *USED which correspond to registers which can't change
2576 their mode from FROM to any mode in which REGNO was encountered. */
2577
2578void
0c20a65f
AJ
2579cannot_change_mode_set_regs (HARD_REG_SET *used, enum machine_mode from,
2580 unsigned int regno)
cff9f8d5
AH
2581{
2582 enum machine_mode to;
10a3fdd9
JH
2583 int n, i;
2584 int start = regno * MAX_MACHINE_MODE;
cff9f8d5 2585
10a3fdd9
JH
2586 EXECUTE_IF_SET_IN_BITMAP (&subregs_of_mode, start, n,
2587 if (n >= MAX_MACHINE_MODE + start)
2588 return;
2589 to = n - start;
2590 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2591 if (! TEST_HARD_REG_BIT (*used, i)
2592 && REG_CANNOT_CHANGE_MODE_P (i, from, to))
2593 SET_HARD_REG_BIT (*used, i);
2594 );
cff9f8d5
AH
2595}
2596
2597/* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2598 mode. */
2599
2600bool
0c20a65f
AJ
2601invalid_mode_change_p (unsigned int regno, enum reg_class class,
2602 enum machine_mode from_mode)
cff9f8d5
AH
2603{
2604 enum machine_mode to_mode;
10a3fdd9
JH
2605 int n;
2606 int start = regno * MAX_MACHINE_MODE;
2607
2608 EXECUTE_IF_SET_IN_BITMAP (&subregs_of_mode, start, n,
2609 if (n >= MAX_MACHINE_MODE + start)
2610 return 0;
2611 to_mode = n - start;
2612 if (CANNOT_CHANGE_MODE_CLASS (from_mode, to_mode, class))
cff9f8d5 2613 return 1;
10a3fdd9 2614 );
cff9f8d5
AH
2615 return 0;
2616}
2617#endif /* CANNOT_CHANGE_MODE_CLASS */
2618
e2500fed 2619#include "gt-regclass.h"