]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/regclass.c
Merge dataflow branch into mainline
[thirdparty/gcc.git] / gcc / regclass.c
CommitLineData
ae09e9a3 1/* Compute register class preferences for pseudo-registers.
0b387d23 2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
1a6a0f2a 3 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
0364c2b4 4 Free Software Foundation, Inc.
ae09e9a3 5
f12b58b3 6This file is part of GCC.
ae09e9a3 7
f12b58b3 8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
ae09e9a3 12
f12b58b3 13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
ae09e9a3 17
18You should have received a copy of the GNU General Public License
f12b58b3 19along with GCC; see the file COPYING. If not, write to the Free
67ce556b 20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA. */
ae09e9a3 22
23
24/* This file contains two passes of the compiler: reg_scan and reg_class.
25 It also defines some tables of information about the hardware registers
26 and a function init_reg_sets to initialize the tables. */
27
28#include "config.h"
405711de 29#include "system.h"
805e22b2 30#include "coretypes.h"
31#include "tm.h"
897118e8 32#include "hard-reg-set.h"
ae09e9a3 33#include "rtl.h"
ee0548e9 34#include "expr.h"
7953c610 35#include "tm_p.h"
ae09e9a3 36#include "flags.h"
37#include "basic-block.h"
38#include "regs.h"
00cb30dc 39#include "addresses.h"
0a893c29 40#include "function.h"
ae09e9a3 41#include "insn-config.h"
42#include "recog.h"
4023cea7 43#include "reload.h"
44#include "real.h"
12874aaf 45#include "toplev.h"
cd03a192 46#include "output.h"
0dddbcb3 47#include "ggc.h"
376c21d1 48#include "timevar.h"
3dc77328 49#include "hashtab.h"
4d58fa46 50#include "target.h"
3072d30e 51#include "tree-pass.h"
52#include "df.h"
53
54/* Maximum register number used in this function, plus one. */
55
56int max_regno;
ae09e9a3 57
3ad4992f 58static void init_reg_sets_1 (void);
3ad4992f 59static void init_reg_autoinc (void);
18525f1f 60
3d46a046 61/* If we have auto-increment or auto-decrement and we can have secondary
62 reloads, we are not allowed to use classes requiring secondary
c3418f42 63 reloads for pseudos auto-incremented since reload can't handle it. */
4d58fa46 64/* We leave it to target hooks to decide if we have secondary reloads, so
65 assume that we might have them. */
66#if defined(AUTO_INC_DEC) /* */
3d46a046 67#define FORBIDDEN_INC_DEC_CLASSES
68#endif
ae09e9a3 69\f
70/* Register tables used by many passes. */
71
72/* Indexed by hard register number, contains 1 for registers
73 that are fixed use (stack pointer, pc, frame pointer, etc.).
74 These are the registers that cannot be used to allocate
fc242db3 75 a pseudo reg for general use. */
ae09e9a3 76
77char fixed_regs[FIRST_PSEUDO_REGISTER];
78
79/* Same info as a HARD_REG_SET. */
80
81HARD_REG_SET fixed_reg_set;
82
83/* Data for initializing the above. */
84
e99c3a1d 85static const char initial_fixed_regs[] = FIXED_REGISTERS;
ae09e9a3 86
87/* Indexed by hard register number, contains 1 for registers
88 that are fixed use or are clobbered by function calls.
89 These are the registers that cannot be used to allocate
fc242db3 90 a pseudo reg whose life crosses calls unless we are able
91 to save/restore them across the calls. */
ae09e9a3 92
93char call_used_regs[FIRST_PSEUDO_REGISTER];
94
95/* Same info as a HARD_REG_SET. */
96
97HARD_REG_SET call_used_reg_set;
98
2836f006 99/* HARD_REG_SET of registers we want to avoid caller saving. */
100HARD_REG_SET losing_caller_save_reg_set;
101
ae09e9a3 102/* Data for initializing the above. */
103
e99c3a1d 104static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
d2d242b4 105
106/* This is much like call_used_regs, except it doesn't have to
107 be a superset of FIXED_REGISTERS. This vector indicates
2617fe26 108 what is really call clobbered, and is used when defining
d2d242b4 109 regs_invalidated_by_call. */
110
d2d242b4 111#ifdef CALL_REALLY_USED_REGISTERS
556ba85f 112char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
d2d242b4 113#endif
2617fe26 114
1fbc37ff 115#ifdef CALL_REALLY_USED_REGISTERS
116#define CALL_REALLY_USED_REGNO_P(X) call_really_used_regs[X]
117#else
118#define CALL_REALLY_USED_REGNO_P(X) call_used_regs[X]
119#endif
120
121
ae09e9a3 122/* Indexed by hard register number, contains 1 for registers that are
fc242db3 123 fixed use or call used registers that cannot hold quantities across
124 calls even if we are willing to save and restore them. call fixed
125 registers are a subset of call used registers. */
ae09e9a3 126
127char call_fixed_regs[FIRST_PSEUDO_REGISTER];
128
129/* The same info as a HARD_REG_SET. */
130
131HARD_REG_SET call_fixed_reg_set;
132
ae09e9a3 133/* Indexed by hard register number, contains 1 for registers
134 that are being used for global register decls.
135 These must be exempt from ordinary flow analysis
136 and are also considered fixed. */
137
138char global_regs[FIRST_PSEUDO_REGISTER];
546edcaa 139
140/* Contains 1 for registers that are set or clobbered by calls. */
141/* ??? Ideally, this would be just call_used_regs plus global_regs, but
142 for someone's bright idea to have call_used_regs strictly include
143 fixed_regs. Which leaves us guessing as to the set of fixed_regs
144 that are actually preserved. We know for sure that those associated
145 with the local stack frame are safe, but scant others. */
146
147HARD_REG_SET regs_invalidated_by_call;
148
ae09e9a3 149/* Table of register numbers in the order in which to try to use them. */
150#ifdef REG_ALLOC_ORDER
151int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
fbf51e51 152
153/* The inverse of reg_alloc_order. */
154int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
ae09e9a3 155#endif
156
157/* For each reg class, a HARD_REG_SET saying which registers are in it. */
158
0aab1048 159HARD_REG_SET reg_class_contents[N_REG_CLASSES];
160
545740b7 161/* The same information, but as an array of unsigned ints. We copy from
162 these unsigned ints to the table above. We do this so the tm.h files
fad8575f 163 do not have to be aware of the wordsize for machines with <= 64 regs.
164 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
0aab1048 165
166#define N_REG_INTS \
fad8575f 167 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
0aab1048 168
2617fe26 169static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
0aab1048 170 = REG_CLASS_CONTENTS;
ae09e9a3 171
172/* For each reg class, number of regs it contains. */
173
02e7a332 174unsigned int reg_class_size[N_REG_CLASSES];
ae09e9a3 175
176/* For each reg class, table listing all the containing classes. */
177
a792c500 178static enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
ae09e9a3 179
180/* For each reg class, table listing all the classes contained in it. */
181
a792c500 182static enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
ae09e9a3 183
184/* For each pair of reg classes,
185 a largest reg class contained in their union. */
186
187enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
188
189/* For each pair of reg classes,
190 the smallest reg class containing their union. */
191
192enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
193
15460c97 194/* Array containing all of the register names. */
6fe96dec 195
da0930ba 196const char * reg_names[] = REGISTER_NAMES;
6fe96dec 197
ada8adad 198/* Array containing all of the register class names. */
199
200const char * reg_class_names[] = REG_CLASS_NAMES;
201
d2b04fb8 202/* For each hard register, the widest mode object that it can contain.
203 This will be a MODE_INT mode if the register can hold integers. Otherwise
204 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
205 register. */
206
207enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
208
83e2a11b 209/* 1 if there is a register of given mode. */
210
211bool have_regs_of_mode [MAX_MACHINE_MODE];
212
0279c35a 213/* 1 if class does contain register of given mode. */
214
215static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
216
4023cea7 217/* Maximum cost of moving from a register in one class to a register in
218 another class. Based on REGISTER_MOVE_COST. */
219
0ac516dc 220static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
4023cea7 221
222/* Similar, but here we don't have to move if the first index is a subset
223 of the second so in that case the cost is zero. */
224
0ac516dc 225static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
f5a540b9 226
227/* Similar, but here we don't have to move if the first index is a superset
228 of the second so in that case the cost is zero. */
229
0ac516dc 230static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
4023cea7 231
3d46a046 232#ifdef FORBIDDEN_INC_DEC_CLASSES
233
234/* These are the classes that regs which are auto-incremented or decremented
235 cannot be put in. */
236
237static int forbidden_inc_dec_class[N_REG_CLASSES];
238
7fd957fe 239/* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
3d46a046 240 context. */
241
242static char *in_inc_dec;
243
313fe4bc 244#endif /* FORBIDDEN_INC_DEC_CLASSES */
3d46a046 245
4c685015 246/* Sample MEM values for use by memory_move_secondary_cost. */
247
1f3233d1 248static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
4c685015 249
7d0e67ac 250/* No more global register variables may be declared; true once
aa40f561 251 regclass has been initialized. */
f18e6699 252
253static int no_global_reg_vars = 0;
254
67d6c12b 255/* Specify number of hard registers given machine mode occupy. */
256unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
d6ff8d83 257
3072d30e 258/* Given a register bitmap, turn on the bits in a HARD_REG_SET that
259 correspond to the hard registers, if any, set in that map. This
260 could be done far more efficiently by having all sorts of special-cases
261 with moving single words, but probably isn't worth the trouble. */
262
263void
264reg_set_to_hard_reg_set (HARD_REG_SET *to, bitmap from)
265{
266 unsigned i;
267 bitmap_iterator bi;
268
269 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
270 {
271 if (i >= FIRST_PSEUDO_REGISTER)
272 return;
273 SET_HARD_REG_BIT (*to, i);
274 }
275}
276
277
ae09e9a3 278/* Function called only once to initialize the above data on reg usage.
279 Once this is done, various switches may override. */
280
281void
3ad4992f 282init_reg_sets (void)
ae09e9a3 283{
19cb6b50 284 int i, j;
ae09e9a3 285
0aab1048 286 /* First copy the register information from the initial int form into
287 the regsets. */
288
289 for (i = 0; i < N_REG_CLASSES; i++)
290 {
291 CLEAR_HARD_REG_SET (reg_class_contents[i]);
292
81fa5697 293 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
0aab1048 294 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
81fa5697 295 if (int_reg_class_contents[i][j / 32]
296 & ((unsigned) 1 << (j % 32)))
0aab1048 297 SET_HARD_REG_BIT (reg_class_contents[i], j);
298 }
299
2fd48995 300 /* Sanity check: make sure the target macros FIXED_REGISTERS and
301 CALL_USED_REGISTERS had the right number of initializers. */
04e579b6 302 gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
303 gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
2fd48995 304
b1b63592 305 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
306 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
93d3b7de 307 memset (global_regs, 0, sizeof global_regs);
ae09e9a3 308
fbf51e51 309#ifdef REG_ALLOC_ORDER
310 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
311 inv_reg_alloc_order[reg_alloc_order[i]] = i;
312#endif
3b28508a 313}
314
315/* After switches have been processed, which perhaps alter
316 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
317
318static void
3ad4992f 319init_reg_sets_1 (void)
3b28508a 320{
19cb6b50 321 unsigned int i, j;
322 unsigned int /* enum machine_mode */ m;
3b28508a 323
324 /* This macro allows the fixed or call-used registers
325 and the register classes to depend on target flags. */
326
327#ifdef CONDITIONAL_REGISTER_USAGE
328 CONDITIONAL_REGISTER_USAGE;
329#endif
330
ae09e9a3 331 /* Compute number of hard regs in each class. */
332
f0af5a88 333 memset (reg_class_size, 0, sizeof reg_class_size);
ae09e9a3 334 for (i = 0; i < N_REG_CLASSES; i++)
335 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
336 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
337 reg_class_size[i]++;
338
339 /* Initialize the table of subunions.
340 reg_class_subunion[I][J] gets the largest-numbered reg-class
341 that is contained in the union of classes I and J. */
342
343 for (i = 0; i < N_REG_CLASSES; i++)
344 {
345 for (j = 0; j < N_REG_CLASSES; j++)
346 {
a00f8533 347 HARD_REG_SET c;
19cb6b50 348 int k;
ae09e9a3 349
350 COPY_HARD_REG_SET (c, reg_class_contents[i]);
351 IOR_HARD_REG_SET (c, reg_class_contents[j]);
352 for (k = 0; k < N_REG_CLASSES; k++)
ddc556d1 353 if (hard_reg_set_subset_p (reg_class_contents[k], c)
354 && !hard_reg_set_subset_p (reg_class_contents[k],
355 reg_class_contents
356 [(int) reg_class_subunion[i][j]]))
ae09e9a3 357 reg_class_subunion[i][j] = (enum reg_class) k;
ae09e9a3 358 }
359 }
360
361 /* Initialize the table of superunions.
362 reg_class_superunion[I][J] gets the smallest-numbered reg-class
363 containing the union of classes I and J. */
364
365 for (i = 0; i < N_REG_CLASSES; i++)
366 {
367 for (j = 0; j < N_REG_CLASSES; j++)
368 {
a00f8533 369 HARD_REG_SET c;
19cb6b50 370 int k;
ae09e9a3 371
372 COPY_HARD_REG_SET (c, reg_class_contents[i]);
373 IOR_HARD_REG_SET (c, reg_class_contents[j]);
374 for (k = 0; k < N_REG_CLASSES; k++)
ddc556d1 375 if (hard_reg_set_subset_p (c, reg_class_contents[k]))
376 break;
ae09e9a3 377
ae09e9a3 378 reg_class_superunion[i][j] = (enum reg_class) k;
379 }
380 }
381
382 /* Initialize the tables of subclasses and superclasses of each reg class.
383 First clear the whole table, then add the elements as they are found. */
384
385 for (i = 0; i < N_REG_CLASSES; i++)
386 {
387 for (j = 0; j < N_REG_CLASSES; j++)
388 {
389 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
390 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
391 }
392 }
393
394 for (i = 0; i < N_REG_CLASSES; i++)
395 {
396 if (i == (int) NO_REGS)
397 continue;
398
399 for (j = i + 1; j < N_REG_CLASSES; j++)
ddc556d1 400 if (hard_reg_set_subset_p (reg_class_contents[i],
401 reg_class_contents[j]))
402 {
403 /* Reg class I is a subclass of J.
404 Add J to the table of superclasses of I. */
405 enum reg_class *p;
406
407 p = &reg_class_superclasses[i][0];
408 while (*p != LIM_REG_CLASSES) p++;
409 *p = (enum reg_class) j;
410 /* Add I to the table of superclasses of J. */
411 p = &reg_class_subclasses[j][0];
412 while (*p != LIM_REG_CLASSES) p++;
413 *p = (enum reg_class) i;
414 }
ae09e9a3 415 }
4023cea7 416
ae09e9a3 417 /* Initialize "constant" tables. */
418
419 CLEAR_HARD_REG_SET (fixed_reg_set);
420 CLEAR_HARD_REG_SET (call_used_reg_set);
421 CLEAR_HARD_REG_SET (call_fixed_reg_set);
546edcaa 422 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
ae09e9a3 423
b1b63592 424 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
ae09e9a3 425
ae09e9a3 426 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
427 {
579bc712 428 /* call_used_regs must include fixed_regs. */
04e579b6 429 gcc_assert (!fixed_regs[i] || call_used_regs[i]);
579bc712 430#ifdef CALL_REALLY_USED_REGISTERS
431 /* call_used_regs must include call_really_used_regs. */
04e579b6 432 gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
579bc712 433#endif
434
ae09e9a3 435 if (fixed_regs[i])
436 SET_HARD_REG_BIT (fixed_reg_set, i);
ae09e9a3 437
438 if (call_used_regs[i])
439 SET_HARD_REG_BIT (call_used_reg_set, i);
440 if (call_fixed_regs[i])
441 SET_HARD_REG_BIT (call_fixed_reg_set, i);
2836f006 442 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
443 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
546edcaa 444
445 /* There are a couple of fixed registers that we know are safe to
446 exclude from being clobbered by calls:
447
448 The frame pointer is always preserved across calls. The arg pointer
449 is if it is fixed. The stack pointer usually is, unless
450 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
451 If we are generating PIC code, the PIC offset table register is
452 preserved across calls, though the target can override that. */
2617fe26 453
1fbc37ff 454 if (i == STACK_POINTER_REGNUM)
455 ;
456 else if (global_regs[i])
457 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
458 else if (i == FRAME_POINTER_REGNUM)
546edcaa 459 ;
460#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
461 else if (i == HARD_FRAME_POINTER_REGNUM)
462 ;
463#endif
464#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
465 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
466 ;
467#endif
468#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
3473aefe 469 else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
546edcaa 470 ;
471#endif
1fbc37ff 472 else if (CALL_REALLY_USED_REGNO_P (i))
546edcaa 473 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
ae09e9a3 474 }
546edcaa 475
83e2a11b 476 memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
cc693d06 477 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
0fd4500a 478 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
cc693d06 479 for (i = 0; i < N_REG_CLASSES; i++)
bb37f971 480 if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
0279c35a 481 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
482 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
483 && HARD_REGNO_MODE_OK (j, m))
484 {
485 contains_reg_of_mode [i][m] = 1;
83e2a11b 486 have_regs_of_mode [m] = 1;
0279c35a 487 break;
488 }
b110f7ec 489
490 /* Initialize the move cost table. Find every subset of each class
491 and take the maximum cost of moving any subset to any other. */
492
0fd4500a 493 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
83e2a11b 494 if (have_regs_of_mode [m])
cc693d06 495 {
496 for (i = 0; i < N_REG_CLASSES; i++)
497 if (contains_reg_of_mode [i][m])
498 for (j = 0; j < N_REG_CLASSES; j++)
499 {
500 int cost;
501 enum reg_class *p1, *p2;
502
503 if (!contains_reg_of_mode [j][m])
504 {
505 move_cost[m][i][j] = 65536;
506 may_move_in_cost[m][i][j] = 65536;
507 may_move_out_cost[m][i][j] = 65536;
508 }
509 else
510 {
bb1892a6 511 cost = REGISTER_MOVE_COST (m, i, j);
cc693d06 512
513 for (p2 = &reg_class_subclasses[j][0];
514 *p2 != LIM_REG_CLASSES;
515 p2++)
516 if (*p2 != i && contains_reg_of_mode [*p2][m])
517 cost = MAX (cost, move_cost [m][i][*p2]);
518
519 for (p1 = &reg_class_subclasses[i][0];
520 *p1 != LIM_REG_CLASSES;
521 p1++)
522 if (*p1 != j && contains_reg_of_mode [*p1][m])
523 cost = MAX (cost, move_cost [m][*p1][j]);
524
525 move_cost[m][i][j] = cost;
526
527 if (reg_class_subset_p (i, j))
528 may_move_in_cost[m][i][j] = 0;
529 else
530 may_move_in_cost[m][i][j] = cost;
531
532 if (reg_class_subset_p (j, i))
533 may_move_out_cost[m][i][j] = 0;
534 else
535 may_move_out_cost[m][i][j] = cost;
536 }
537 }
c1cc1ab4 538 else
cc693d06 539 for (j = 0; j < N_REG_CLASSES; j++)
540 {
541 move_cost[m][i][j] = 65536;
542 may_move_in_cost[m][i][j] = 65536;
543 may_move_out_cost[m][i][j] = 65536;
544 }
545 }
fc9bfb3a 546}
547
548/* Compute the table of register modes.
549 These values are used to record death information for individual registers
550 (as opposed to a multi-register mode). */
d2b04fb8 551
c235b58a 552void
553init_reg_modes_once (void)
fc9bfb3a 554{
67d6c12b 555 int i, j;
556
557 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
558 for (j = 0; j < MAX_MACHINE_MODE; j++)
559 hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
d2b04fb8 560
561 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1f902da9 562 {
b805295e 563 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
1f902da9 564
0868ea21 565 /* If we couldn't find a valid mode, just use the previous mode.
1f902da9 566 ??? One situation in which we need to do this is on the mips where
567 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
568 to use DF mode for the even registers and VOIDmode for the odd
c3418f42 569 (for the cpu models where the odd ones are inaccessible). */
1f902da9 570 if (reg_raw_mode[i] == VOIDmode)
0868ea21 571 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
1f902da9 572 }
d2b04fb8 573}
574
fc9bfb3a 575/* Finish initializing the register sets and
576 initialize the register modes. */
577
578void
3ad4992f 579init_regs (void)
fc9bfb3a 580{
581 /* This finishes what was started by init_reg_sets, but couldn't be done
582 until after register usage was specified. */
b54842d8 583 init_reg_sets_1 ();
fc9bfb3a 584
c8a9f9bf 585 init_reg_autoinc ();
90295bd2 586}
587
588/* Initialize some fake stack-frame MEM references for use in
589 memory_move_secondary_cost. */
4c685015 590
90295bd2 591void
3ad4992f 592init_fake_stack_mems (void)
90295bd2 593{
4c685015 594 {
4c685015 595 int i;
c58d0063 596
4c685015 597 for (i = 0; i < MAX_MACHINE_MODE; i++)
9e042f31 598 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
4c685015 599 }
fc9bfb3a 600}
601
4c685015 602
3afef759 603/* Compute extra cost of moving registers to/from memory due to reloads.
604 Only needed if secondary reloads are required for memory moves. */
4c685015 605
3afef759 606int
3ad4992f 607memory_move_secondary_cost (enum machine_mode mode, enum reg_class class, int in)
3afef759 608{
609 enum reg_class altclass;
610 int partial_cost = 0;
3afef759 611 /* We need a memory reference to feed to SECONDARY... macros. */
aa40f561 612 /* mem may be unused even if the SECONDARY_ macros are defined. */
c5b89159 613 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
614
3afef759 615
4d58fa46 616 altclass = secondary_reload_class (in ? 1 : 0, class, mode, mem);
4c685015 617
3afef759 618 if (altclass == NO_REGS)
619 return 0;
620
621 if (in)
0ac516dc 622 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
3afef759 623 else
0ac516dc 624 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
3afef759 625
626 if (class == altclass)
627 /* This isn't simply a copy-to-temporary situation. Can't guess
628 what it is, so MEMORY_MOVE_COST really ought not to be calling
629 here in that case.
630
04e579b6 631 I'm tempted to put in an assert here, but returning this will
3afef759 632 probably only give poor estimates, which is what we would've
633 had before this code anyways. */
634 return partial_cost;
635
636 /* Check if the secondary reload register will also need a
637 secondary reload. */
638 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
639}
3afef759 640
d2b04fb8 641/* Return a machine mode that is legitimate for hard reg REGNO and large
b805295e 642 enough to save nregs. If we can't find one, return VOIDmode.
643 If CALL_SAVED is true, only consider modes that are call saved. */
d2b04fb8 644
645enum machine_mode
3ad4992f 646choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
b805295e 647 unsigned int nregs, bool call_saved)
d2b04fb8 648{
0fd4500a 649 unsigned int /* enum machine_mode */ m;
d2b04fb8 650 enum machine_mode found_mode = VOIDmode, mode;
651
652 /* We first look for the largest integer mode that can be validly
653 held in REGNO. If none, we look for the largest floating-point mode.
654 If we still didn't find a valid mode, try CCmode. */
655
656 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
657 mode != VOIDmode;
658 mode = GET_MODE_WIDER_MODE (mode))
67d6c12b 659 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
b805295e 660 && HARD_REGNO_MODE_OK (regno, mode)
661 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
d2b04fb8 662 found_mode = mode;
663
664 if (found_mode != VOIDmode)
665 return found_mode;
666
667 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
668 mode != VOIDmode;
669 mode = GET_MODE_WIDER_MODE (mode))
67d6c12b 670 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
b805295e 671 && HARD_REGNO_MODE_OK (regno, mode)
672 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
d2b04fb8 673 found_mode = mode;
674
675 if (found_mode != VOIDmode)
676 return found_mode;
677
47c327df 678 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
679 mode != VOIDmode;
680 mode = GET_MODE_WIDER_MODE (mode))
67d6c12b 681 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
b805295e 682 && HARD_REGNO_MODE_OK (regno, mode)
683 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
47c327df 684 found_mode = mode;
685
686 if (found_mode != VOIDmode)
687 return found_mode;
688
689 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
690 mode != VOIDmode;
691 mode = GET_MODE_WIDER_MODE (mode))
67d6c12b 692 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
b805295e 693 && HARD_REGNO_MODE_OK (regno, mode)
694 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
47c327df 695 found_mode = mode;
696
697 if (found_mode != VOIDmode)
698 return found_mode;
699
595d8922 700 /* Iterate over all of the CCmodes. */
0fd4500a 701 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
702 {
703 mode = (enum machine_mode) m;
67d6c12b 704 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
b805295e 705 && HARD_REGNO_MODE_OK (regno, mode)
706 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
0fd4500a 707 return mode;
708 }
d2b04fb8 709
710 /* We can't find a mode valid for this register. */
711 return VOIDmode;
ae09e9a3 712}
713
714/* Specify the usage characteristics of the register named NAME.
715 It should be a fixed register if FIXED and a
716 call-used register if CALL_USED. */
717
718void
3ad4992f 719fix_register (const char *name, int fixed, int call_used)
ae09e9a3 720{
721 int i;
722
723 /* Decode the name and update the primary form of
724 the register info. */
725
4c0b30a9 726 if ((i = decode_reg_name (name)) >= 0)
727 {
2c330d86 728 if ((i == STACK_POINTER_REGNUM
729#ifdef HARD_FRAME_POINTER_REGNUM
730 || i == HARD_FRAME_POINTER_REGNUM
731#else
732 || i == FRAME_POINTER_REGNUM
733#endif
734 )
735 && (fixed == 0 || call_used == 0))
736 {
d2ca078f 737 static const char * const what_option[2][2] = {
4063e82c 738 { "call-saved", "call-used" },
739 { "no-such-option", "fixed" }};
2617fe26 740
741 error ("can't use '%s' as a %s register", name,
2c330d86 742 what_option[fixed][call_used]);
743 }
744 else
745 {
746 fixed_regs[i] = fixed;
747 call_used_regs[i] = call_used;
e28a648c 748#ifdef CALL_REALLY_USED_REGISTERS
d2d242b4 749 if (fixed == 0)
750 call_really_used_regs[i] = call_used;
556ba85f 751#endif
2c330d86 752 }
4c0b30a9 753 }
754 else
ae09e9a3 755 {
c3ceba8e 756 warning (0, "unknown register name: %s", name);
ae09e9a3 757 }
758}
b8f0384b 759
760/* Mark register number I as global. */
761
762void
3ad4992f 763globalize_reg (int i)
b8f0384b 764{
7d0e67ac 765 if (fixed_regs[i] == 0 && no_global_reg_vars)
f18e6699 766 error ("global register variable follows a function definition");
767
b8f0384b 768 if (global_regs[i])
769 {
c3ceba8e 770 warning (0, "register used for two global register variables");
b8f0384b 771 return;
772 }
773
774 if (call_used_regs[i] && ! fixed_regs[i])
c3ceba8e 775 warning (0, "call-clobbered register used for global register variable");
b8f0384b 776
777 global_regs[i] = 1;
778
1fbc37ff 779 /* If we're globalizing the frame pointer, we need to set the
780 appropriate regs_invalidated_by_call bit, even if it's already
781 set in fixed_regs. */
782 if (i != STACK_POINTER_REGNUM)
783 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
784
b8f0384b 785 /* If already fixed, nothing else to do. */
786 if (fixed_regs[i])
787 return;
788
789 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
170e5ff4 790#ifdef CALL_REALLY_USED_REGISTERS
791 call_really_used_regs[i] = 1;
792#endif
b8f0384b 793
794 SET_HARD_REG_BIT (fixed_reg_set, i);
795 SET_HARD_REG_BIT (call_used_reg_set, i);
796 SET_HARD_REG_BIT (call_fixed_reg_set, i);
797}
ae09e9a3 798\f
799/* Now the data and code for the `regclass' pass, which happens
800 just before local-alloc. */
801
4023cea7 802/* The `costs' struct records the cost of using a hard register of each class
803 and of using memory for each pseudo. We use this data to set up
804 register class preferences. */
ae09e9a3 805
4023cea7 806struct costs
ae09e9a3 807{
4023cea7 808 int cost[N_REG_CLASSES];
809 int mem_cost;
ae09e9a3 810};
811
41a6f238 812/* Structure used to record preferences of given pseudo. */
ef776217 813struct reg_pref
814{
8ee7afab 815 /* (enum reg_class) prefclass is the preferred class. May be
816 NO_REGS if no class is better than memory. */
ef776217 817 char prefclass;
818
819 /* altclass is a register class that we should use for allocating
820 pseudo if no register in the preferred class is available.
821 If no register in this class is available, memory is preferred.
822
823 It might appear to be more general to have a bitmask of classes here,
824 but since it is recommended that there be a class corresponding to the
825 union of most major pair of classes, that generality is not required. */
826 char altclass;
827};
828
4023cea7 829/* Record the cost of each class for each pseudo. */
830
831static struct costs *costs;
832
c426f6be 833/* Initialized once, and used to initialize cost values for each insn. */
834
835static struct costs init_cost;
836
41a6f238 837/* Record preferences of each pseudo.
ae09e9a3 838 This is available after `regclass' is run. */
839
ef776217 840static struct reg_pref *reg_pref;
66adfeef 841
8172d01c 842/* Frequency of executions of current insn. */
66adfeef 843
8172d01c 844static int frequency;
66adfeef 845
3ad4992f 846static rtx scan_one_insn (rtx, int);
847static void record_operand_costs (rtx, struct costs *, struct reg_pref *);
848static void dump_regclass (FILE *);
849static void record_reg_classes (int, int, rtx *, enum machine_mode *,
850 const char **, rtx, struct costs *,
851 struct reg_pref *);
4d58fa46 852static int copy_cost (rtx, enum machine_mode, enum reg_class, int,
853 secondary_reload_info *);
00cb30dc 854static void record_address_regs (enum machine_mode, rtx, int, enum rtx_code,
855 enum rtx_code, int);
99c14947 856#ifdef FORBIDDEN_INC_DEC_CLASSES
3ad4992f 857static int auto_inc_dec_reg_p (rtx, enum machine_mode);
99c14947 858#endif
3072d30e 859static void reg_scan_mark_refs (rtx, rtx);
ae09e9a3 860
00cb30dc 861/* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
862
863static inline bool
864ok_for_index_p_nonstrict (rtx reg)
865{
866 unsigned regno = REGNO (reg);
867 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
868}
869
870/* A version of regno_ok_for_base_p for use during regclass, when all pseudos
871 should count as OK. Arguments as for regno_ok_for_base_p. */
872
873static inline bool
874ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode,
875 enum rtx_code outer_code, enum rtx_code index_code)
876{
877 unsigned regno = REGNO (reg);
878 if (regno >= FIRST_PSEUDO_REGISTER)
879 return true;
880
881 return ok_for_base_p_1 (regno, mode, outer_code, index_code);
882}
883
ae09e9a3 884/* Return the reg_class in which pseudo reg number REGNO is best allocated.
885 This function is sometimes called before the info has been computed.
886 When that happens, just return GENERAL_REGS, which is innocuous. */
887
888enum reg_class
3ad4992f 889reg_preferred_class (int regno)
ae09e9a3 890{
ef776217 891 if (reg_pref == 0)
ae09e9a3 892 return GENERAL_REGS;
ef776217 893 return (enum reg_class) reg_pref[regno].prefclass;
ae09e9a3 894}
895
4023cea7 896enum reg_class
3ad4992f 897reg_alternate_class (int regno)
ae09e9a3 898{
ef776217 899 if (reg_pref == 0)
4023cea7 900 return ALL_REGS;
901
ef776217 902 return (enum reg_class) reg_pref[regno].altclass;
ae09e9a3 903}
904
c426f6be 905/* Initialize some global data for this pass. */
ae09e9a3 906
3072d30e 907static unsigned int
3ad4992f 908regclass_init (void)
ae09e9a3 909{
c426f6be 910 int i;
911
3072d30e 912 if (df)
913 df_compute_regs_ever_live (true);
914
c426f6be 915 init_cost.mem_cost = 10000;
916 for (i = 0; i < N_REG_CLASSES; i++)
917 init_cost.cost[i] = 10000;
918
919 /* This prevents dump_flow_info from losing if called
920 before regclass is run. */
ef776217 921 reg_pref = NULL;
f18e6699 922
aa40f561 923 /* No more global register variables may be declared. */
f18e6699 924 no_global_reg_vars = 1;
3072d30e 925 return 1;
ae09e9a3 926}
3072d30e 927
928struct tree_opt_pass pass_regclass_init =
929{
930 "regclass", /* name */
931 NULL, /* gate */
932 regclass_init, /* execute */
933 NULL, /* sub */
934 NULL, /* next */
935 0, /* static_pass_number */
936 0, /* tv_id */
937 0, /* properties_required */
938 0, /* properties_provided */
939 0, /* properties_destroyed */
940 0, /* todo_flags_start */
941 0, /* todo_flags_finish */
942 'k' /* letter */
943};
944
945
ac147b1a 946\f
947/* Dump register costs. */
20cfb17d 948static void
3ad4992f 949dump_regclass (FILE *dump)
ac147b1a 950{
ac147b1a 951 int i;
952 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
953 {
0fd4500a 954 int /* enum reg_class */ class;
ac147b1a 955 if (REG_N_REFS (i))
956 {
299a8d4e 957 fprintf (dump, " Register %i costs:", i);
0fd4500a 958 for (class = 0; class < (int) N_REG_CLASSES; class++)
959 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
0279c35a 960#ifdef FORBIDDEN_INC_DEC_CLASSES
0fd4500a 961 && (!in_inc_dec[i]
962 || !forbidden_inc_dec_class[(enum reg_class) class])
0279c35a 963#endif
897118e8 964#ifdef CANNOT_CHANGE_MODE_CLASS
965 && ! invalid_mode_change_p (i, (enum reg_class) class,
966 PSEUDO_REGNO_MODE (i))
0279c35a 967#endif
968 )
0fd4500a 969 fprintf (dump, " %s:%i", reg_class_names[class],
970 costs[i].cost[(enum reg_class) class]);
299a8d4e 971 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
ac147b1a 972 }
973 }
974}
299a8d4e 975\f
976
977/* Calculate the costs of insn operands. */
978
979static void
3ad4992f 980record_operand_costs (rtx insn, struct costs *op_costs,
981 struct reg_pref *reg_pref)
299a8d4e 982{
983 const char *constraints[MAX_RECOG_OPERANDS];
984 enum machine_mode modes[MAX_RECOG_OPERANDS];
299a8d4e 985 int i;
986
987 for (i = 0; i < recog_data.n_operands; i++)
988 {
989 constraints[i] = recog_data.constraints[i];
990 modes[i] = recog_data.operand_mode[i];
991 }
299a8d4e 992
993 /* If we get here, we are set up to record the costs of all the
994 operands for this insn. Start by initializing the costs.
995 Then handle any address registers. Finally record the desired
996 classes for any pseudos, doing it twice if some pair of
997 operands are commutative. */
2617fe26 998
299a8d4e 999 for (i = 0; i < recog_data.n_operands; i++)
1000 {
1001 op_costs[i] = init_cost;
1002
1003 if (GET_CODE (recog_data.operand[i]) == SUBREG)
897118e8 1004 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
299a8d4e 1005
e16ceb8e 1006 if (MEM_P (recog_data.operand[i]))
00cb30dc 1007 record_address_regs (GET_MODE (recog_data.operand[i]),
1008 XEXP (recog_data.operand[i], 0),
1009 0, MEM, SCRATCH, frequency * 2);
a5004c3d 1010 else if (constraints[i][0] == 'p'
48ea5577 1011 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
00cb30dc 1012 record_address_regs (VOIDmode, recog_data.operand[i], 0, ADDRESS,
1013 SCRATCH, frequency * 2);
299a8d4e 1014 }
1015
1016 /* Check for commutative in a separate loop so everything will
1017 have been initialized. We must do this even if one operand
1018 is a constant--see addsi3 in m68k.md. */
1019
1020 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1021 if (constraints[i][0] == '%')
1022 {
1023 const char *xconstraints[MAX_RECOG_OPERANDS];
1024 int j;
ac147b1a 1025
299a8d4e 1026 /* Handle commutative operands by swapping the constraints.
1027 We assume the modes are the same. */
1028
1029 for (j = 0; j < recog_data.n_operands; j++)
1030 xconstraints[j] = constraints[j];
1031
1032 xconstraints[i] = constraints[i+1];
1033 xconstraints[i+1] = constraints[i];
1034 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
2617fe26 1035 recog_data.operand, modes,
299a8d4e 1036 xconstraints, insn, op_costs, reg_pref);
1037 }
1038
1039 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
2617fe26 1040 recog_data.operand, modes,
299a8d4e 1041 constraints, insn, op_costs, reg_pref);
1042}
ae09e9a3 1043\f
c426f6be 1044/* Subroutine of regclass, processes one insn INSN. Scan it and record each
1045 time it would save code to put a certain register in a certain class.
1046 PASS, when nonzero, inhibits some optimizations which need only be done
1047 once.
1048 Return the last insn processed, so that the scan can be continued from
1049 there. */
1050
1051static rtx
8c96295a 1052scan_one_insn (rtx insn, int pass ATTRIBUTE_UNUSED)
c426f6be 1053{
c426f6be 1054 enum rtx_code pat_code;
7f82be90 1055 rtx set, note;
c426f6be 1056 int i, j;
299a8d4e 1057 struct costs op_costs[MAX_RECOG_OPERANDS];
c426f6be 1058
6720e96c 1059 if (!INSN_P (insn))
c426f6be 1060 return insn;
1061
1062 pat_code = GET_CODE (PATTERN (insn));
1063 if (pat_code == USE
1064 || pat_code == CLOBBER
1065 || pat_code == ASM_INPUT
1066 || pat_code == ADDR_VEC
1067 || pat_code == ADDR_DIFF_VEC)
1068 return insn;
1069
7f82be90 1070 set = single_set (insn);
1071 extract_insn (insn);
1072
7f82be90 1073 /* If this insn loads a parameter from its stack slot, then
1074 it represents a savings, rather than a cost, if the
1075 parameter is stored in memory. Record this fact. */
c426f6be 1076
8ad4c111 1077 if (set != 0 && REG_P (SET_DEST (set))
e16ceb8e 1078 && MEM_P (SET_SRC (set))
7f82be90 1079 && (note = find_reg_note (insn, REG_EQUIV,
1080 NULL_RTX)) != 0
e16ceb8e 1081 && MEM_P (XEXP (note, 0)))
7f82be90 1082 {
1083 costs[REGNO (SET_DEST (set))].mem_cost
1084 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1085 GENERAL_REGS, 1)
8172d01c 1086 * frequency);
00cb30dc 1087 record_address_regs (GET_MODE (SET_SRC (set)), XEXP (SET_SRC (set), 0),
1088 0, MEM, SCRATCH, frequency * 2);
7f82be90 1089 return insn;
1090 }
c426f6be 1091
d1c0bcc3 1092 record_operand_costs (insn, op_costs, reg_pref);
c426f6be 1093
1094 /* Now add the cost for each operand to the total costs for
1095 its register. */
1096
ed420a25 1097 for (i = 0; i < recog_data.n_operands; i++)
8ad4c111 1098 if (REG_P (recog_data.operand[i])
ed420a25 1099 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
c426f6be 1100 {
ed420a25 1101 int regno = REGNO (recog_data.operand[i]);
c426f6be 1102 struct costs *p = &costs[regno], *q = &op_costs[i];
1103
8172d01c 1104 p->mem_cost += q->mem_cost * frequency;
c426f6be 1105 for (j = 0; j < N_REG_CLASSES; j++)
8172d01c 1106 p->cost[j] += q->cost[j] * frequency;
c426f6be 1107 }
1108
1109 return insn;
1110}
1111
c8a9f9bf 1112/* Initialize information about which register classes can be used for
1113 pseudos that are auto-incremented or auto-decremented. */
ae09e9a3 1114
c8a9f9bf 1115static void
3ad4992f 1116init_reg_autoinc (void)
ae09e9a3 1117{
3d46a046 1118#ifdef FORBIDDEN_INC_DEC_CLASSES
c8a9f9bf 1119 int i;
3d46a046 1120
1121 for (i = 0; i < N_REG_CLASSES; i++)
1122 {
c8a9f9bf 1123 rtx r = gen_rtx_raw_REG (VOIDmode, 0);
3d46a046 1124 enum machine_mode m;
19cb6b50 1125 int j;
3d46a046 1126
1127 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1128 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1129 {
3072d30e 1130 SET_REGNO (r, j);
3d46a046 1131
1132 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
13df24e3 1133 m = (enum machine_mode) ((int) m + 1))
3d46a046 1134 if (HARD_REGNO_MODE_OK (j, m))
1135 {
00cb30dc 1136 /* ??? There are two assumptions here; that the base class does not
1137 depend on the exact outer code (POST_INC vs. PRE_INC etc.), and
1138 that it does not depend on the machine mode of the memory
1139 reference. */
1140 enum reg_class base_class
1141 = base_reg_class (VOIDmode, POST_INC, SCRATCH);
4d58fa46 1142
3d46a046 1143 PUT_MODE (r, m);
4ac7d2be 1144
1145 /* If a register is not directly suitable for an
1146 auto-increment or decrement addressing mode and
1147 requires secondary reloads, disallow its class from
1148 being used in such addresses. */
1149
4d58fa46 1150 if ((secondary_reload_class (1, base_class, m, r)
1151 || secondary_reload_class (1, base_class, m, r))
4ac7d2be 1152 && ! auto_inc_dec_reg_p (r, m))
3d46a046 1153 forbidden_inc_dec_class[i] = 1;
1154 }
1155 }
1156 }
c8a9f9bf 1157#endif /* FORBIDDEN_INC_DEC_CLASSES */
1158}
1159
1160/* This is a pass of the compiler that scans all instructions
1161 and calculates the preferred class for each pseudo-register.
1162 This information can be accessed later by calling `reg_preferred_class'.
1163 This pass comes just before local register allocation. */
1164
1165void
3f5be5f4 1166regclass (rtx f, int nregs)
c8a9f9bf 1167{
1168 rtx insn;
1169 int i;
1170 int pass;
3072d30e 1171 max_regno = max_reg_num ();
c8a9f9bf 1172
1173 init_recog ();
1174
3072d30e 1175 reg_renumber = xmalloc (max_regno * sizeof (short));
1176 reg_pref = XCNEWVEC (struct reg_pref, max_regno);
1177 memset (reg_renumber, -1, max_regno * sizeof (short));
1178
4c36ffe6 1179 costs = XNEWVEC (struct costs, nregs);
c8a9f9bf 1180
1181#ifdef FORBIDDEN_INC_DEC_CLASSES
1182
4c36ffe6 1183 in_inc_dec = XNEWVEC (char, nregs);
c8a9f9bf 1184
3d46a046 1185#endif /* FORBIDDEN_INC_DEC_CLASSES */
1186
4023cea7 1187 /* Normally we scan the insns once and determine the best class to use for
1188 each register. However, if -fexpensive_optimizations are on, we do so
1189 twice, the second time using the tentative best classes to guide the
1190 selection. */
ae09e9a3 1191
4023cea7 1192 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1193 {
4c26117a 1194 basic_block bb;
299a8d4e 1195
3f5be5f4 1196 if (dump_file)
1197 fprintf (dump_file, "\n\nPass %i\n\n",pass);
4023cea7 1198 /* Zero out our accumulation of the cost of each class for each reg. */
ae09e9a3 1199
f0af5a88 1200 memset (costs, 0, nregs * sizeof (struct costs));
ae09e9a3 1201
3d46a046 1202#ifdef FORBIDDEN_INC_DEC_CLASSES
93d3b7de 1203 memset (in_inc_dec, 0, nregs);
3d46a046 1204#endif
1205
4023cea7 1206 /* Scan the instructions and record each time it would
1207 save code to put a certain register in a certain class. */
1208
d8817c59 1209 if (!optimize)
ae09e9a3 1210 {
eefdec48 1211 frequency = REG_FREQ_MAX;
d8817c59 1212 for (insn = f; insn; insn = NEXT_INSN (insn))
1213 insn = scan_one_insn (insn, pass);
ae09e9a3 1214 }
d8817c59 1215 else
4c26117a 1216 FOR_EACH_BB (bb)
d8817c59 1217 {
d8817c59 1218 /* Show that an insn inside a loop is likely to be executed three
b275aace 1219 times more than insns outside a loop. This is much more
1220 aggressive than the assumptions made elsewhere and is being
1221 tried as an experiment. */
eefdec48 1222 frequency = REG_FREQ_FROM_BB (bb);
5496dbfc 1223 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
d8817c59 1224 {
1225 insn = scan_one_insn (insn, pass);
5496dbfc 1226 if (insn == BB_END (bb))
d8817c59 1227 break;
1228 }
1229 }
2617fe26 1230
4023cea7 1231 /* Now for each register look at how desirable each class is
1232 and find which class is preferred. Store that in
ef776217 1233 `prefclass'. Record in `altclass' the largest register
4023cea7 1234 class any of whose registers is better than memory. */
2617fe26 1235
3f5be5f4 1236 if (dump_file)
2617fe26 1237 {
3f5be5f4 1238 dump_regclass (dump_file);
1239 fprintf (dump_file,"\n");
299a8d4e 1240 }
4023cea7 1241 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
ae09e9a3 1242 {
19cb6b50 1243 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
4023cea7 1244 enum reg_class best = ALL_REGS, alt = NO_REGS;
1245 /* This is an enum reg_class, but we call it an int
1246 to save lots of casts. */
19cb6b50 1247 int class;
1248 struct costs *p = &costs[i];
4023cea7 1249
93340cae 1250 if (regno_reg_rtx[i] == NULL)
1251 continue;
1252
adf6ebca 1253 /* In non-optimizing compilation REG_N_REFS is not initialized
1254 yet. */
cb5c5698 1255 if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
299a8d4e 1256 continue;
1257
4023cea7 1258 for (class = (int) ALL_REGS - 1; class > 0; class--)
ae09e9a3 1259 {
3d46a046 1260 /* Ignore classes that are too small for this operand or
20dd417a 1261 invalid for an operand that was auto-incremented. */
0279c35a 1262 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
3d46a046 1263#ifdef FORBIDDEN_INC_DEC_CLASSES
1264 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
e8e6034b 1265#endif
897118e8 1266#ifdef CANNOT_CHANGE_MODE_CLASS
1267 || invalid_mode_change_p (i, (enum reg_class) class,
1268 PSEUDO_REGNO_MODE (i))
3d46a046 1269#endif
1270 )
4023cea7 1271 ;
1272 else if (p->cost[class] < best_cost)
1273 {
1274 best_cost = p->cost[class];
1275 best = (enum reg_class) class;
1276 }
1277 else if (p->cost[class] == best_cost)
337d789b 1278 best = reg_class_subunion[(int) best][class];
ae09e9a3 1279 }
ae09e9a3 1280
8ee7afab 1281 /* If no register class is better than memory, use memory. */
1282 if (p->mem_cost < best_cost)
1283 best = NO_REGS;
1284
4023cea7 1285 /* Record the alternate register class; i.e., a class for which
1286 every register in it is better than using memory. If adding a
1287 class would make a smaller class (i.e., no union of just those
1288 classes exists), skip that class. The major unions of classes
1289 should be provided as a register class. Don't do this if we
1290 will be doing it again later. */
1291
3f5be5f4 1292 if ((pass == 1 || dump_file) || ! flag_expensive_optimizations)
4023cea7 1293 for (class = 0; class < N_REG_CLASSES; class++)
1294 if (p->cost[class] < p->mem_cost
121f87c5 1295 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
3d46a046 1296 > reg_class_size[(int) alt])
1297#ifdef FORBIDDEN_INC_DEC_CLASSES
1298 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
e8e6034b 1299#endif
897118e8 1300#ifdef CANNOT_CHANGE_MODE_CLASS
1301 && ! invalid_mode_change_p (i, (enum reg_class) class,
1302 PSEUDO_REGNO_MODE (i))
3d46a046 1303#endif
1304 )
4023cea7 1305 alt = reg_class_subunion[(int) alt][class];
2617fe26 1306
4023cea7 1307 /* If we don't add any classes, nothing to try. */
1308 if (alt == best)
4fe44868 1309 alt = NO_REGS;
4023cea7 1310
3f5be5f4 1311 if (dump_file
299a8d4e 1312 && (reg_pref[i].prefclass != (int) best
1313 || reg_pref[i].altclass != (int) alt))
1314 {
3f5be5f4 1315 fprintf (dump_file, " Register %i", i);
299a8d4e 1316 if (alt == ALL_REGS || best == ALL_REGS)
3f5be5f4 1317 fprintf (dump_file, " pref %s\n", reg_class_names[(int) best]);
299a8d4e 1318 else if (alt == NO_REGS)
3f5be5f4 1319 fprintf (dump_file, " pref %s or none\n", reg_class_names[(int) best]);
299a8d4e 1320 else
3f5be5f4 1321 fprintf (dump_file, " pref %s, else %s\n",
299a8d4e 1322 reg_class_names[(int) best],
1323 reg_class_names[(int) alt]);
1324 }
1325
4023cea7 1326 /* We cast to (int) because (char) hits bugs in some compilers. */
ef776217 1327 reg_pref[i].prefclass = (int) best;
1328 reg_pref[i].altclass = (int) alt;
4023cea7 1329 }
ae09e9a3 1330 }
829c0ce9 1331
b9cf3f63 1332#ifdef FORBIDDEN_INC_DEC_CLASSES
1333 free (in_inc_dec);
1334#endif
829c0ce9 1335 free (costs);
ae09e9a3 1336}
1337\f
4023cea7 1338/* Record the cost of using memory or registers of various classes for
1339 the operands in INSN.
ae09e9a3 1340
4023cea7 1341 N_ALTS is the number of alternatives.
ae09e9a3 1342
4023cea7 1343 N_OPS is the number of operands.
1344
1345 OPS is an array of the operands.
1346
1347 MODES are the modes of the operands, in case any are VOIDmode.
1348
1349 CONSTRAINTS are the constraints to use for the operands. This array
1350 is modified by this procedure.
1351
1352 This procedure works alternative by alternative. For each alternative
1353 we assume that we will be able to allocate all pseudos to their ideal
1354 register class and calculate the cost of using that alternative. Then
2617fe26 1355 we compute for each operand that is a pseudo-register, the cost of
4023cea7 1356 having the pseudo allocated to each register class and using it in that
1357 alternative. To this cost is added the cost of the alternative.
1358
1359 The cost of each class for this insn is its lowest cost among all the
1360 alternatives. */
1361
1362static void
3ad4992f 1363record_reg_classes (int n_alts, int n_ops, rtx *ops,
1364 enum machine_mode *modes, const char **constraints,
1365 rtx insn, struct costs *op_costs,
1366 struct reg_pref *reg_pref)
ae09e9a3 1367{
4023cea7 1368 int alt;
4023cea7 1369 int i, j;
1f8d882f 1370 rtx set;
4023cea7 1371
4023cea7 1372 /* Process each alternative, each time minimizing an operand's cost with
1373 the cost for each operand in that alternative. */
ae09e9a3 1374
4023cea7 1375 for (alt = 0; alt < n_alts; alt++)
ae09e9a3 1376 {
4023cea7 1377 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1378 int alt_fail = 0;
1379 int alt_cost = 0;
1380 enum reg_class classes[MAX_RECOG_OPERANDS];
2cc205f8 1381 int allows_mem[MAX_RECOG_OPERANDS];
4023cea7 1382 int class;
ae09e9a3 1383
4023cea7 1384 for (i = 0; i < n_ops; i++)
1385 {
a8482e91 1386 const char *p = constraints[i];
4023cea7 1387 rtx op = ops[i];
1388 enum machine_mode mode = modes[i];
65678154 1389 int allows_addr = 0;
4023cea7 1390 int win = 0;
274c11d8 1391 unsigned char c;
ae09e9a3 1392
e9cda871 1393 /* Initially show we know nothing about the register class. */
1394 classes[i] = NO_REGS;
2cc205f8 1395 allows_mem[i] = 0;
e9cda871 1396
2617fe26 1397 /* If this operand has no constraints at all, we can conclude
4023cea7 1398 nothing about it since anything is valid. */
ae09e9a3 1399
4023cea7 1400 if (*p == 0)
1401 {
8ad4c111 1402 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
f0af5a88 1403 memset (&this_op_costs[i], 0, sizeof this_op_costs[i]);
ae09e9a3 1404
4023cea7 1405 continue;
1406 }
ae09e9a3 1407
e9cda871 1408 /* If this alternative is only relevant when this operand
1409 matches a previous operand, we do different things depending
1410 on whether this operand is a pseudo-reg or not. We must process
1411 any modifiers for the operand before we can make this test. */
1412
9a5e3964 1413 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
7f82be90 1414 p++;
9a5e3964 1415
4023cea7 1416 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1417 {
2cc205f8 1418 /* Copy class and whether memory is allowed from the matching
1419 alternative. Then perform any needed cost computations
1420 and/or adjustments. */
4023cea7 1421 j = p[0] - '0';
1422 classes[i] = classes[j];
2cc205f8 1423 allows_mem[i] = allows_mem[j];
4023cea7 1424
8ad4c111 1425 if (!REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
4023cea7 1426 {
1427 /* If this matches the other operand, we have no added
deff29cb 1428 cost and we win. */
4023cea7 1429 if (rtx_equal_p (ops[j], op))
deff29cb 1430 win = 1;
4023cea7 1431
64ff0ff2 1432 /* If we can put the other operand into a register, add to
1433 the cost of this alternative the cost to copy this
1434 operand to the register used for the other operand. */
4023cea7 1435
deff29cb 1436 else if (classes[j] != NO_REGS)
4d58fa46 1437 {
1438 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
1439 win = 1;
1440 }
4023cea7 1441 }
8ad4c111 1442 else if (!REG_P (ops[j])
0c60cf1b 1443 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1444 {
1445 /* This op is a pseudo but the one it matches is not. */
2617fe26 1446
0c60cf1b 1447 /* If we can't put the other operand into a register, this
1448 alternative can't be used. */
1449
1450 if (classes[j] == NO_REGS)
1451 alt_fail = 1;
4023cea7 1452
0c60cf1b 1453 /* Otherwise, add to the cost of this alternative the cost
1454 to copy the other operand to the register used for this
1455 operand. */
1456
1457 else
4d58fa46 1458 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
0c60cf1b 1459 }
4023cea7 1460 else
1461 {
2cc205f8 1462 /* The costs of this operand are not the same as the other
1463 operand since move costs are not symmetric. Moreover,
1464 if we cannot tie them, this alternative needs to do a
1465 copy, which is one instruction. */
1466
1467 struct costs *pp = &this_op_costs[i];
1468
1469 for (class = 0; class < N_REG_CLASSES; class++)
1470 pp->cost[class]
8cd81992 1471 = ((recog_data.operand_type[i] != OP_OUT
0ac516dc 1472 ? may_move_in_cost[mode][class][(int) classes[i]]
8cd81992 1473 : 0)
1474 + (recog_data.operand_type[i] != OP_IN
0ac516dc 1475 ? may_move_out_cost[mode][(int) classes[i]][class]
8cd81992 1476 : 0));
2617fe26 1477
2cc205f8 1478 /* If the alternative actually allows memory, make things
1479 a bit cheaper since we won't need an extra insn to
1480 load it. */
1481
1482 pp->mem_cost
8cd81992 1483 = ((recog_data.operand_type[i] != OP_IN
1484 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1485 : 0)
1486 + (recog_data.operand_type[i] != OP_OUT
1487 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1488 : 0) - allows_mem[i]);
2cc205f8 1489
1490 /* If we have assigned a class to this register in our
1491 first pass, add a cost to this alternative corresponding
1492 to what we would add if this register were not in the
1493 appropriate class. */
1494
8ee7afab 1495 if (reg_pref && reg_pref[REGNO (op)].prefclass != NO_REGS)
2cc205f8 1496 alt_cost
0ac516dc 1497 += (may_move_in_cost[mode]
1498 [(unsigned char) reg_pref[REGNO (op)].prefclass]
2cc205f8 1499 [(int) classes[i]]);
4023cea7 1500
8f03fdc8 1501 if (REGNO (ops[i]) != REGNO (ops[j])
1502 && ! find_reg_note (insn, REG_DEAD, op))
1503 alt_cost += 2;
4023cea7 1504
86ff3166 1505 /* This is in place of ordinary cost computation
cf4b8e5a 1506 for this operand, so skip to the end of the
1507 alternative (should be just one character). */
1508 while (*p && *p++ != ',')
1509 ;
1510
1511 constraints[i] = p;
86ff3166 1512 continue;
1513 }
4023cea7 1514 }
1515
1516 /* Scan all the constraint letters. See if the operand matches
1517 any of the constraints. Collect the valid register classes
1518 and see if this operand accepts memory. */
1519
48ea5577 1520 while ((c = *p))
1521 {
1522 switch (c)
1523 {
1524 case ',':
1525 break;
1526 case '*':
1527 /* Ignore the next letter for this pass. */
1528 c = *++p;
1529 break;
65678154 1530
48ea5577 1531 case '?':
1532 alt_cost += 2;
1533 case '!': case '#': case '&':
1534 case '0': case '1': case '2': case '3': case '4':
1535 case '5': case '6': case '7': case '8': case '9':
1536 break;
4023cea7 1537
48ea5577 1538 case 'p':
1539 allows_addr = 1;
1540 win = address_operand (op, GET_MODE (op));
1541 /* We know this operand is an address, so we want it to be
1542 allocated to a register that can be the base of an
0c6d8c36 1543 address, i.e. BASE_REG_CLASS. */
48ea5577 1544 classes[i]
1545 = reg_class_subunion[(int) classes[i]]
00cb30dc 1546 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
48ea5577 1547 break;
4023cea7 1548
48ea5577 1549 case 'm': case 'o': case 'V':
1550 /* It doesn't seem worth distinguishing between offsettable
1551 and non-offsettable addresses here. */
1552 allows_mem[i] = 1;
e16ceb8e 1553 if (MEM_P (op))
48ea5577 1554 win = 1;
1555 break;
4023cea7 1556
48ea5577 1557 case '<':
e16ceb8e 1558 if (MEM_P (op)
48ea5577 1559 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1560 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1561 win = 1;
1562 break;
4023cea7 1563
48ea5577 1564 case '>':
e16ceb8e 1565 if (MEM_P (op)
48ea5577 1566 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1567 || GET_CODE (XEXP (op, 0)) == POST_INC))
1568 win = 1;
1569 break;
4023cea7 1570
48ea5577 1571 case 'E':
1572 case 'F':
1573 if (GET_CODE (op) == CONST_DOUBLE
1574 || (GET_CODE (op) == CONST_VECTOR
1575 && (GET_MODE_CLASS (GET_MODE (op))
1576 == MODE_VECTOR_FLOAT)))
1577 win = 1;
1578 break;
4023cea7 1579
48ea5577 1580 case 'G':
1581 case 'H':
1582 if (GET_CODE (op) == CONST_DOUBLE
1583 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1584 win = 1;
4023cea7 1585 break;
48ea5577 1586
1587 case 's':
1588 if (GET_CODE (op) == CONST_INT
1589 || (GET_CODE (op) == CONST_DOUBLE
1590 && GET_MODE (op) == VOIDmode))
1591 break;
1592 case 'i':
1593 if (CONSTANT_P (op)
7151fd0e 1594 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
48ea5577 1595 win = 1;
1596 break;
4023cea7 1597
48ea5577 1598 case 'n':
1599 if (GET_CODE (op) == CONST_INT
1600 || (GET_CODE (op) == CONST_DOUBLE
1601 && GET_MODE (op) == VOIDmode))
1602 win = 1;
1603 break;
4023cea7 1604
48ea5577 1605 case 'I':
1606 case 'J':
1607 case 'K':
1608 case 'L':
1609 case 'M':
1610 case 'N':
1611 case 'O':
1612 case 'P':
1613 if (GET_CODE (op) == CONST_INT
1614 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1615 win = 1;
1616 break;
4023cea7 1617
48ea5577 1618 case 'X':
1619 win = 1;
1620 break;
ae09e9a3 1621
48ea5577 1622 case 'g':
e16ceb8e 1623 if (MEM_P (op)
48ea5577 1624 || (CONSTANT_P (op)
7151fd0e 1625 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
48ea5577 1626 win = 1;
1627 allows_mem[i] = 1;
1628 case 'r':
f3653a64 1629 classes[i]
48ea5577 1630 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1631 break;
a5004c3d 1632
48ea5577 1633 default:
1634 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
a5004c3d 1635 classes[i]
1636 = reg_class_subunion[(int) classes[i]]
48ea5577 1637 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1638#ifdef EXTRA_CONSTRAINT_STR
1639 else if (EXTRA_CONSTRAINT_STR (op, c, p))
1640 win = 1;
1641
1642 if (EXTRA_MEMORY_CONSTRAINT (c, p))
1643 {
1644 /* Every MEM can be reloaded to fit. */
1645 allows_mem[i] = 1;
e16ceb8e 1646 if (MEM_P (op))
48ea5577 1647 win = 1;
1648 }
1649 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1650 {
1651 /* Every address can be reloaded to fit. */
1652 allows_addr = 1;
1653 if (address_operand (op, GET_MODE (op)))
1654 win = 1;
1655 /* We know this operand is an address, so we want it to
1656 be allocated to a register that can be the base of an
0c6d8c36 1657 address, i.e. BASE_REG_CLASS. */
48ea5577 1658 classes[i]
1659 = reg_class_subunion[(int) classes[i]]
00cb30dc 1660 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
48ea5577 1661 }
f3653a64 1662#endif
48ea5577 1663 break;
1664 }
1665 p += CONSTRAINT_LEN (c, p);
1666 if (c == ',')
f3653a64 1667 break;
48ea5577 1668 }
4023cea7 1669
1670 constraints[i] = p;
1671
1672 /* How we account for this operand now depends on whether it is a
1673 pseudo register or not. If it is, we first check if any
1674 register classes are valid. If not, we ignore this alternative,
1675 since we want to assume that all pseudos get allocated for
1676 register preferencing. If some register class is valid, compute
1677 the costs of moving the pseudo into that class. */
1678
8ad4c111 1679 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
8659a89f 1680 {
4023cea7 1681 if (classes[i] == NO_REGS)
65678154 1682 {
e8e6034b 1683 /* We must always fail if the operand is a REG, but
1684 we did not find a suitable class.
2617fe26 1685
e8e6034b 1686 Otherwise we may perform an uninitialized read
1687 from this_op_costs after the `continue' statement
1688 below. */
1689 alt_fail = 1;
65678154 1690 }
4023cea7 1691 else
1692 {
1693 struct costs *pp = &this_op_costs[i];
1694
1695 for (class = 0; class < N_REG_CLASSES; class++)
155b05dc 1696 pp->cost[class]
8cd81992 1697 = ((recog_data.operand_type[i] != OP_OUT
0ac516dc 1698 ? may_move_in_cost[mode][class][(int) classes[i]]
8cd81992 1699 : 0)
1700 + (recog_data.operand_type[i] != OP_IN
0ac516dc 1701 ? may_move_out_cost[mode][(int) classes[i]][class]
8cd81992 1702 : 0));
4023cea7 1703
1704 /* If the alternative actually allows memory, make things
1705 a bit cheaper since we won't need an extra insn to
1706 load it. */
1707
155b05dc 1708 pp->mem_cost
8cd81992 1709 = ((recog_data.operand_type[i] != OP_IN
1710 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1711 : 0)
1712 + (recog_data.operand_type[i] != OP_OUT
1713 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1714 : 0) - allows_mem[i]);
4023cea7 1715
1716 /* If we have assigned a class to this register in our
1717 first pass, add a cost to this alternative corresponding
1718 to what we would add if this register were not in the
1719 appropriate class. */
1720
8ee7afab 1721 if (reg_pref && reg_pref[REGNO (op)].prefclass != NO_REGS)
4023cea7 1722 alt_cost
0ac516dc 1723 += (may_move_in_cost[mode]
1724 [(unsigned char) reg_pref[REGNO (op)].prefclass]
155b05dc 1725 [(int) classes[i]]);
4023cea7 1726 }
8659a89f 1727 }
ae09e9a3 1728
4023cea7 1729 /* Otherwise, if this alternative wins, either because we
1730 have already determined that or if we have a hard register of
1731 the proper class, there is no cost for this alternative. */
ae09e9a3 1732
4023cea7 1733 else if (win
8ad4c111 1734 || (REG_P (op)
40c12d65 1735 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
4023cea7 1736 ;
ae09e9a3 1737
4023cea7 1738 /* If registers are valid, the cost of this alternative includes
1739 copying the object to and/or from a register. */
ae09e9a3 1740
4023cea7 1741 else if (classes[i] != NO_REGS)
1742 {
ed420a25 1743 if (recog_data.operand_type[i] != OP_OUT)
4d58fa46 1744 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
ae09e9a3 1745
ed420a25 1746 if (recog_data.operand_type[i] != OP_IN)
4d58fa46 1747 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
4023cea7 1748 }
ae09e9a3 1749
4023cea7 1750 /* The only other way this alternative can be used is if this is a
1751 constant that could be placed into memory. */
1752
2cc205f8 1753 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
3afef759 1754 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
4023cea7 1755 else
1756 alt_fail = 1;
1757 }
1758
1759 if (alt_fail)
1760 continue;
1761
1762 /* Finally, update the costs with the information we've calculated
1763 about this alternative. */
1764
1765 for (i = 0; i < n_ops; i++)
8ad4c111 1766 if (REG_P (ops[i])
4023cea7 1767 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
ae09e9a3 1768 {
4023cea7 1769 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
ed420a25 1770 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
ae09e9a3 1771
4023cea7 1772 pp->mem_cost = MIN (pp->mem_cost,
1773 (qq->mem_cost + alt_cost) * scale);
ae09e9a3 1774
4023cea7 1775 for (class = 0; class < N_REG_CLASSES; class++)
1776 pp->cost[class] = MIN (pp->cost[class],
1777 (qq->cost[class] + alt_cost) * scale);
1778 }
1779 }
1f8d882f 1780
1781 /* If this insn is a single set copying operand 1 to operand 0
392f94ec 1782 and one operand is a pseudo with the other a hard reg or a pseudo
1783 that prefers a register that is in its own register class then
1784 we may want to adjust the cost of that register class to -1.
2617fe26 1785
392f94ec 1786 Avoid the adjustment if the source does not die to avoid stressing of
917bbcab 1787 register allocator by preferrencing two colliding registers into single
392f94ec 1788 class.
1789
1790 Also avoid the adjustment if a copy between registers of the class
1791 is expensive (ten times the cost of a default copy is considered
1792 arbitrarily expensive). This avoids losing when the preferred class
1793 is very expensive as the source of a copy instruction. */
1f8d882f 1794
1795 if ((set = single_set (insn)) != 0
1796 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
8ad4c111 1797 && REG_P (ops[0]) && REG_P (ops[1])
ae150852 1798 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1f8d882f 1799 for (i = 0; i <= 1; i++)
1800 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1801 {
02e7a332 1802 unsigned int regno = REGNO (ops[!i]);
1f8d882f 1803 enum machine_mode mode = GET_MODE (ops[!i]);
1804 int class;
1805
8ee7afab 1806 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0
1807 && reg_pref[regno].prefclass != NO_REGS)
392f94ec 1808 {
1809 enum reg_class pref = reg_pref[regno].prefclass;
1810
1811 if ((reg_class_size[(unsigned char) pref]
bb37f971 1812 == (unsigned) CLASS_MAX_NREGS (pref, mode))
0ac516dc 1813 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
392f94ec 1814 op_costs[i].cost[(unsigned char) pref] = -1;
1815 }
1f8d882f 1816 else if (regno < FIRST_PSEUDO_REGISTER)
1817 for (class = 0; class < N_REG_CLASSES; class++)
1818 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
bb37f971 1819 && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
2cff88c1 1820 {
1821 if (reg_class_size[class] == 1)
1822 op_costs[i].cost[class] = -1;
a2c6f0b7 1823 else if (in_hard_reg_set_p (reg_class_contents[class],
1824 mode, regno))
1825 op_costs[i].cost[class] = -1;
2cff88c1 1826 }
1f8d882f 1827 }
ae09e9a3 1828}
4023cea7 1829\f
7fd957fe 1830/* Compute the cost of loading X into (if TO_P is nonzero) or from (if
4023cea7 1831 TO_P is zero) a register of class CLASS in mode MODE.
1832
1833 X must not be a pseudo. */
1834
1835static int
4d58fa46 1836copy_cost (rtx x, enum machine_mode mode, enum reg_class class, int to_p,
1837 secondary_reload_info *prev_sri)
4023cea7 1838{
1839 enum reg_class secondary_class = NO_REGS;
4d58fa46 1840 secondary_reload_info sri;
4023cea7 1841
1842 /* If X is a SCRATCH, there is actually nothing to move since we are
1843 assuming optimal allocation. */
1844
1845 if (GET_CODE (x) == SCRATCH)
1846 return 0;
1847
1848 /* Get the class we will actually use for a reload. */
1849 class = PREFERRED_RELOAD_CLASS (x, class);
1850
4d58fa46 1851 /* If we need a secondary reload for an intermediate, the
4023cea7 1852 cost is that to load the input into the intermediate register, then
4d58fa46 1853 to copy it. */
4023cea7 1854
4d58fa46 1855 sri.prev_sri = prev_sri;
1856 sri.extra_cost = 0;
1857 secondary_class = targetm.secondary_reload (to_p, x, class, mode, &sri);
4023cea7 1858
1859 if (secondary_class != NO_REGS)
0ac516dc 1860 return (move_cost[mode][(int) secondary_class][(int) class]
4d58fa46 1861 + sri.extra_cost
1862 + copy_cost (x, mode, secondary_class, to_p, &sri));
4023cea7 1863
1864 /* For memory, use the memory move cost, for (hard) registers, use the
1865 cost to move between the register classes, and use 2 for everything
1866 else (constants). */
1867
e16ceb8e 1868 if (MEM_P (x) || class == NO_REGS)
4d58fa46 1869 return sri.extra_cost + MEMORY_MOVE_COST (mode, class, to_p);
ae09e9a3 1870
8ad4c111 1871 else if (REG_P (x))
4d58fa46 1872 return (sri.extra_cost
1873 + move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class]);
4023cea7 1874
1875 else
1876 /* If this is a constant, we may eventually want to call rtx_cost here. */
4d58fa46 1877 return sri.extra_cost + COSTS_N_INSNS (1);
4023cea7 1878}
1879\f
ae09e9a3 1880/* Record the pseudo registers we must reload into hard registers
1881 in a subexpression of a memory address, X.
4023cea7 1882
00cb30dc 1883 If CONTEXT is 0, we are looking at the base part of an address, otherwise we
1884 are looking at the index part.
1885
1886 MODE is the mode of the memory reference; OUTER_CODE and INDEX_CODE
1887 give the context that the rtx appears in. These three arguments are
1888 passed down to base_reg_class.
4023cea7 1889
1890 SCALE is twice the amount to multiply the cost by (it is twice so we
1891 can represent half-cost adjustments). */
ae09e9a3 1892
ade5541e 1893static void
00cb30dc 1894record_address_regs (enum machine_mode mode, rtx x, int context,
1895 enum rtx_code outer_code, enum rtx_code index_code,
1896 int scale)
ae09e9a3 1897{
19cb6b50 1898 enum rtx_code code = GET_CODE (x);
00cb30dc 1899 enum reg_class class;
1900
1901 if (context == 1)
1902 class = INDEX_REG_CLASS;
1903 else
1904 class = base_reg_class (mode, outer_code, index_code);
ae09e9a3 1905
1906 switch (code)
1907 {
1908 case CONST_INT:
1909 case CONST:
1910 case CC0:
1911 case PC:
1912 case SYMBOL_REF:
1913 case LABEL_REF:
1914 return;
1915
1916 case PLUS:
1917 /* When we have an address that is a sum,
1918 we must determine whether registers are "base" or "index" regs.
1919 If there is a sum of two registers, we must choose one to be
e61a0a7f 1920 the "base". Luckily, we can use the REG_POINTER to make a good
1921 choice most of the time. We only need to do this on machines
1922 that can have two registers in an address and where the base
1923 and index register classes are different.
4023cea7 1924
1925 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1926 that seems bogus since it should only be set when we are sure
1927 the register is being used as a pointer. */
1928
ae09e9a3 1929 {
1930 rtx arg0 = XEXP (x, 0);
1931 rtx arg1 = XEXP (x, 1);
19cb6b50 1932 enum rtx_code code0 = GET_CODE (arg0);
1933 enum rtx_code code1 = GET_CODE (arg1);
ae09e9a3 1934
1935 /* Look inside subregs. */
4023cea7 1936 if (code0 == SUBREG)
ae09e9a3 1937 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
4023cea7 1938 if (code1 == SUBREG)
ae09e9a3 1939 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1940
4023cea7 1941 /* If this machine only allows one register per address, it must
1942 be in the first operand. */
1943
1944 if (MAX_REGS_PER_ADDRESS == 1)
00cb30dc 1945 record_address_regs (mode, arg0, 0, PLUS, code1, scale);
4023cea7 1946
1947 /* If index and base registers are the same on this machine, just
1948 record registers in any non-constant operands. We assume here,
2617fe26 1949 as well as in the tests below, that all addresses are in
4023cea7 1950 canonical form. */
1951
00cb30dc 1952 else if (INDEX_REG_CLASS == base_reg_class (VOIDmode, PLUS, SCRATCH))
ae09e9a3 1953 {
00cb30dc 1954 record_address_regs (mode, arg0, context, PLUS, code1, scale);
4023cea7 1955 if (! CONSTANT_P (arg1))
00cb30dc 1956 record_address_regs (mode, arg1, context, PLUS, code0, scale);
ae09e9a3 1957 }
4023cea7 1958
1959 /* If the second operand is a constant integer, it doesn't change
1960 what class the first operand must be. */
1961
1962 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
00cb30dc 1963 record_address_regs (mode, arg0, context, PLUS, code1, scale);
4023cea7 1964
1965 /* If the second operand is a symbolic constant, the first operand
1966 must be an index register. */
1967
1968 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
00cb30dc 1969 record_address_regs (mode, arg0, 1, PLUS, code1, scale);
4023cea7 1970
ad87de1e 1971 /* If both operands are registers but one is already a hard register
6006f9fd 1972 of index or reg-base class, give the other the class that the
1973 hard register is not. */
ad87de1e 1974
1975 else if (code0 == REG && code1 == REG
1976 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
00cb30dc 1977 && (ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
1978 || ok_for_index_p_nonstrict (arg0)))
1979 record_address_regs (mode, arg1,
1980 ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
1981 ? 1 : 0,
1982 PLUS, REG, scale);
ad87de1e 1983 else if (code0 == REG && code1 == REG
1984 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
00cb30dc 1985 && (ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
1986 || ok_for_index_p_nonstrict (arg1)))
1987 record_address_regs (mode, arg0,
1988 ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
1989 ? 1 : 0,
1990 PLUS, REG, scale);
ad87de1e 1991
0dbd1c74 1992 /* If one operand is known to be a pointer, it must be the base
1993 with the other operand the index. Likewise if the other operand
1994 is a MULT. */
b0f6c01a 1995
e61a0a7f 1996 else if ((code0 == REG && REG_POINTER (arg0))
0dbd1c74 1997 || code1 == MULT)
b0f6c01a 1998 {
00cb30dc 1999 record_address_regs (mode, arg0, 0, PLUS, code1, scale);
2000 record_address_regs (mode, arg1, 1, PLUS, code0, scale);
b0f6c01a 2001 }
e61a0a7f 2002 else if ((code1 == REG && REG_POINTER (arg1))
0dbd1c74 2003 || code0 == MULT)
b0f6c01a 2004 {
00cb30dc 2005 record_address_regs (mode, arg0, 1, PLUS, code1, scale);
2006 record_address_regs (mode, arg1, 0, PLUS, code0, scale);
b0f6c01a 2007 }
2008
0dbd1c74 2009 /* Otherwise, count equal chances that each might be a base
4023cea7 2010 or index register. This case should be rare. */
2011
0dbd1c74 2012 else
ae09e9a3 2013 {
00cb30dc 2014 record_address_regs (mode, arg0, 0, PLUS, code1, scale / 2);
2015 record_address_regs (mode, arg0, 1, PLUS, code1, scale / 2);
2016 record_address_regs (mode, arg1, 0, PLUS, code0, scale / 2);
2017 record_address_regs (mode, arg1, 1, PLUS, code0, scale / 2);
ae09e9a3 2018 }
ae09e9a3 2019 }
2020 break;
2021
40988080 2022 /* Double the importance of a pseudo register that is incremented
2023 or decremented, since it would take two extra insns
2024 if it ends up in the wrong place. */
2025 case POST_MODIFY:
2026 case PRE_MODIFY:
00cb30dc 2027 record_address_regs (mode, XEXP (x, 0), 0, code,
2028 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
40988080 2029 if (REG_P (XEXP (XEXP (x, 1), 1)))
00cb30dc 2030 record_address_regs (mode, XEXP (XEXP (x, 1), 1), 1, code, REG,
2031 2 * scale);
40988080 2032 break;
2033
ae09e9a3 2034 case POST_INC:
2035 case PRE_INC:
2036 case POST_DEC:
2037 case PRE_DEC:
2038 /* Double the importance of a pseudo register that is incremented
2039 or decremented, since it would take two extra insns
3d46a046 2040 if it ends up in the wrong place. If the operand is a pseudo,
2041 show it is being used in an INC_DEC context. */
2042
2043#ifdef FORBIDDEN_INC_DEC_CLASSES
8ad4c111 2044 if (REG_P (XEXP (x, 0))
3d46a046 2045 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2046 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2047#endif
4023cea7 2048
00cb30dc 2049 record_address_regs (mode, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
ae09e9a3 2050 break;
2051
2052 case REG:
2053 {
19cb6b50 2054 struct costs *pp = &costs[REGNO (x)];
2055 int i;
ae09e9a3 2056
3afef759 2057 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
ae09e9a3 2058
4023cea7 2059 for (i = 0; i < N_REG_CLASSES; i++)
0ac516dc 2060 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
ae09e9a3 2061 }
2062 break;
2063
2064 default:
2065 {
19cb6b50 2066 const char *fmt = GET_RTX_FORMAT (code);
2067 int i;
ae09e9a3 2068 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2069 if (fmt[i] == 'e')
00cb30dc 2070 record_address_regs (mode, XEXP (x, i), context, code, SCRATCH,
2071 scale);
ae09e9a3 2072 }
2073 }
2074}
4ac7d2be 2075\f
2076#ifdef FORBIDDEN_INC_DEC_CLASSES
2077
2078/* Return 1 if REG is valid as an auto-increment memory reference
2079 to an object of MODE. */
2080
99c14947 2081static int
3ad4992f 2082auto_inc_dec_reg_p (rtx reg, enum machine_mode mode)
4ac7d2be 2083{
e4e498cf 2084 if (HAVE_POST_INCREMENT
2085 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
4ac7d2be 2086 return 1;
4ac7d2be 2087
e4e498cf 2088 if (HAVE_POST_DECREMENT
2089 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
4ac7d2be 2090 return 1;
4ac7d2be 2091
e4e498cf 2092 if (HAVE_PRE_INCREMENT
2093 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
4ac7d2be 2094 return 1;
4ac7d2be 2095
e4e498cf 2096 if (HAVE_PRE_DECREMENT
2097 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
4ac7d2be 2098 return 1;
4ac7d2be 2099
2100 return 0;
2101}
2102#endif
394685a4 2103\f
1e16645c 2104/* Free up the space allocated by allocate_reg_info. */
2105void
3ad4992f 2106free_reg_info (void)
1e16645c 2107{
3072d30e 2108 if (reg_pref)
1e16645c 2109 {
3072d30e 2110 free (reg_pref);
2111 reg_pref = NULL;
2112 }
1e16645c 2113
3072d30e 2114 if (reg_renumber)
2115 {
2116 free (reg_renumber);
2117 reg_renumber = NULL;
1e16645c 2118 }
1e16645c 2119}
1a6a0f2a 2120
ae09e9a3 2121\f
3072d30e 2122/* This is the `regscan' pass of the compiler, run just before cse and
2123 again just before loop. It finds the first and last use of each
2124 pseudo-register. */
9a504a44 2125
ae09e9a3 2126void
3072d30e 2127reg_scan (rtx f, unsigned int nregs ATTRIBUTE_UNUSED)
ae09e9a3 2128{
19cb6b50 2129 rtx insn;
ae09e9a3 2130
a66cff91 2131 timevar_push (TV_REG_SCAN);
2132
ae09e9a3 2133 for (insn = f; insn; insn = NEXT_INSN (insn))
a66cff91 2134 if (INSN_P (insn))
ae09e9a3 2135 {
3072d30e 2136 reg_scan_mark_refs (PATTERN (insn), insn);
25105766 2137 if (REG_NOTES (insn))
3072d30e 2138 reg_scan_mark_refs (REG_NOTES (insn), insn);
e4525dfe 2139 }
9a504a44 2140
376c21d1 2141 timevar_pop (TV_REG_SCAN);
e4525dfe 2142}
2143
1a6a0f2a 2144
b1501a29 2145/* X is the expression to scan. INSN is the insn it appears in.
1a6a0f2a 2146 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2147 We should only record information for REGs with numbers
2148 greater than or equal to MIN_REGNO. */
b1501a29 2149
3072d30e 2150extern struct tree_opt_pass *current_pass;
2151
4ac7d2be 2152static void
3072d30e 2153reg_scan_mark_refs (rtx x, rtx insn)
ae09e9a3 2154{
19cb6b50 2155 enum rtx_code code;
2156 rtx dest;
2157 rtx note;
ae09e9a3 2158
cb5c5698 2159 if (!x)
2160 return;
7968c331 2161 code = GET_CODE (x);
ae09e9a3 2162 switch (code)
2163 {
ae09e9a3 2164 case CONST:
2c776a54 2165 case CONST_INT:
ae09e9a3 2166 case CONST_DOUBLE:
886cfd4f 2167 case CONST_VECTOR:
ae09e9a3 2168 case CC0:
2169 case PC:
2170 case SYMBOL_REF:
2171 case LABEL_REF:
2172 case ADDR_VEC:
2173 case ADDR_DIFF_VEC:
ae09e9a3 2174 case REG:
3072d30e 2175 return;
ae09e9a3 2176
25105766 2177 case EXPR_LIST:
b4b9ba24 2178 if (XEXP (x, 0))
3072d30e 2179 reg_scan_mark_refs (XEXP (x, 0), insn);
25105766 2180 if (XEXP (x, 1))
3072d30e 2181 reg_scan_mark_refs (XEXP (x, 1), insn);
25105766 2182 break;
2183
2184 case INSN_LIST:
2185 if (XEXP (x, 1))
3072d30e 2186 reg_scan_mark_refs (XEXP (x, 1), insn);
25105766 2187 break;
2188
cb5c5698 2189 case CLOBBER:
3072d30e 2190 if (MEM_P (XEXP (x, 0)))
2191 reg_scan_mark_refs (XEXP (XEXP (x, 0), 0), insn);
cb5c5698 2192 break;
2193
ae09e9a3 2194 case SET:
2195 /* Count a set of the destination if it is a register. */
2196 for (dest = SET_DEST (x);
2197 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2198 || GET_CODE (dest) == ZERO_EXTEND;
2199 dest = XEXP (dest, 0))
2200 ;
2201
bff0cb47 2202 /* If this is setting a pseudo from another pseudo or the sum of a
2203 pseudo and a constant integer and the other pseudo is known to be
2204 a pointer, set the destination to be a pointer as well.
2205
2206 Likewise if it is setting the destination from an address or from a
2207 value equivalent to an address or to the sum of an address and
2208 something else.
2617fe26 2209
bff0cb47 2210 But don't do any of this if the pseudo corresponds to a user
2211 variable since it should have already been set as a pointer based
2212 on the type. */
2213
8ad4c111 2214 if (REG_P (SET_DEST (x))
bff0cb47 2215 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
584afdda 2216 /* If the destination pseudo is set more than once, then other
2217 sets might not be to a pointer value (consider access to a
41a6f238 2218 union in two threads of control in the presence of global
e61a0a7f 2219 optimizations). So only set REG_POINTER on the destination
584afdda 2220 pseudo if this is the only set of that pseudo. */
3072d30e 2221 && DF_REG_DEF_COUNT (REGNO (SET_DEST (x))) == 1
bff0cb47 2222 && ! REG_USERVAR_P (SET_DEST (x))
e61a0a7f 2223 && ! REG_POINTER (SET_DEST (x))
8ad4c111 2224 && ((REG_P (SET_SRC (x))
e61a0a7f 2225 && REG_POINTER (SET_SRC (x)))
bff0cb47 2226 || ((GET_CODE (SET_SRC (x)) == PLUS
2227 || GET_CODE (SET_SRC (x)) == LO_SUM)
2228 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
8ad4c111 2229 && REG_P (XEXP (SET_SRC (x), 0))
e61a0a7f 2230 && REG_POINTER (XEXP (SET_SRC (x), 0)))
bff0cb47 2231 || GET_CODE (SET_SRC (x)) == CONST
2232 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2233 || GET_CODE (SET_SRC (x)) == LABEL_REF
2234 || (GET_CODE (SET_SRC (x)) == HIGH
2235 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2236 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2237 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2238 || ((GET_CODE (SET_SRC (x)) == PLUS
2239 || GET_CODE (SET_SRC (x)) == LO_SUM)
2240 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2241 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2242 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2243 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2244 && (GET_CODE (XEXP (note, 0)) == CONST
2245 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2246 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
e61a0a7f 2247 REG_POINTER (SET_DEST (x)) = 1;
bff0cb47 2248
fcdc122e 2249 /* If this is setting a register from a register or from a simple
ca74b940 2250 conversion of a register, propagate REG_EXPR. */
3072d30e 2251 if (REG_P (dest) && !REG_ATTRS (dest))
fcdc122e 2252 {
2253 rtx src = SET_SRC (x);
2254
2255 while (GET_CODE (src) == SIGN_EXTEND
2256 || GET_CODE (src) == ZERO_EXTEND
2257 || GET_CODE (src) == TRUNCATE
2258 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2259 src = XEXP (src, 0);
2260
3072d30e 2261 if (REG_P (src))
ca74b940 2262 REG_ATTRS (dest) = REG_ATTRS (src);
3072d30e 2263 if (MEM_P (src))
ca74b940 2264 set_reg_attrs_from_mem (dest, src);
fcdc122e 2265 }
2266
a92771b8 2267 /* ... fall through ... */
ae09e9a3 2268
2269 default:
2270 {
19cb6b50 2271 const char *fmt = GET_RTX_FORMAT (code);
2272 int i;
ae09e9a3 2273 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2274 {
2275 if (fmt[i] == 'e')
3072d30e 2276 reg_scan_mark_refs (XEXP (x, i), insn);
ae09e9a3 2277 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2278 {
19cb6b50 2279 int j;
ae09e9a3 2280 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3072d30e 2281 reg_scan_mark_refs (XVECEXP (x, i, j), insn);
ae09e9a3 2282 }
2283 }
2284 }
2285 }
2286}
2287\f
2288/* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2289 is also in C2. */
2290
2291int
3ad4992f 2292reg_class_subset_p (enum reg_class c1, enum reg_class c2)
ae09e9a3 2293{
ddc556d1 2294 return (c1 == c2
2295 || c2 == ALL_REGS
2296 || hard_reg_set_subset_p (reg_class_contents[(int) c1],
2297 reg_class_contents[(int) c2]));
ae09e9a3 2298}
2299
2300/* Return nonzero if there is a register that is in both C1 and C2. */
2301
2302int
3ad4992f 2303reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
ae09e9a3 2304{
ddc556d1 2305 return (c1 == c2
2306 || c1 == ALL_REGS
2307 || c2 == ALL_REGS
2308 || hard_reg_set_intersect_p (reg_class_contents[(int) c1],
2309 reg_class_contents[(int) c2]));
ae09e9a3 2310}
2311
897118e8 2312#ifdef CANNOT_CHANGE_MODE_CLASS
3dc77328 2313
2314struct subregs_of_mode_node
2315{
2316 unsigned int block;
2317 unsigned char modes[MAX_MACHINE_MODE];
2318};
2319
2320static htab_t subregs_of_mode;
2321
2322static hashval_t
2323som_hash (const void *x)
2324{
2325 const struct subregs_of_mode_node *a = x;
2326 return a->block;
2327}
2328
2329static int
2330som_eq (const void *x, const void *y)
2331{
2332 const struct subregs_of_mode_node *a = x;
2333 const struct subregs_of_mode_node *b = y;
2334 return a->block == b->block;
2335}
2336
3dc77328 2337
3072d30e 2338static void
3dc77328 2339record_subregs_of_mode (rtx subreg)
2340{
2341 struct subregs_of_mode_node dummy, *node;
2342 enum machine_mode mode;
2343 unsigned int regno;
2344 void **slot;
2345
2346 if (!REG_P (SUBREG_REG (subreg)))
2347 return;
2348
2349 regno = REGNO (SUBREG_REG (subreg));
2350 mode = GET_MODE (subreg);
2351
2352 if (regno < FIRST_PSEUDO_REGISTER)
2353 return;
2354
2355 dummy.block = regno & -8;
2356 slot = htab_find_slot_with_hash (subregs_of_mode, &dummy,
2357 dummy.block, INSERT);
2358 node = *slot;
2359 if (node == NULL)
2360 {
4c36ffe6 2361 node = XCNEW (struct subregs_of_mode_node);
3dc77328 2362 node->block = regno & -8;
2363 *slot = node;
2364 }
2365
2366 node->modes[mode] |= 1 << (regno & 7);
2367}
2368
3072d30e 2369
2370/* Call record_subregs_of_mode for all the subregs in X. */
2371
2372static void
2373find_subregs_of_mode (rtx x)
2374{
2375 enum rtx_code code = GET_CODE (x);
2376 const char * const fmt = GET_RTX_FORMAT (code);
2377 int i;
2378
2379 if (code == SUBREG)
2380 record_subregs_of_mode (x);
2381
2382 /* Time for some deep diving. */
2383 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2384 {
2385 if (fmt[i] == 'e')
2386 find_subregs_of_mode (XEXP (x, i));
2387 else if (fmt[i] == 'E')
2388 {
2389 int j;
2390 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2391 find_subregs_of_mode (XVECEXP (x, i, j));
2392 }
2393 }
2394}
2395
2396static unsigned int
2397init_subregs_of_mode (void)
2398{
2399 basic_block bb;
2400 rtx insn;
2401
2402 if (subregs_of_mode)
2403 htab_empty (subregs_of_mode);
2404 else
2405 subregs_of_mode = htab_create (100, som_hash, som_eq, free);
2406
2407 FOR_EACH_BB (bb)
2408 FOR_BB_INSNS (bb, insn)
2409 if (INSN_P (insn))
2410 find_subregs_of_mode (PATTERN (insn));
2411
2412 return 0;
2413}
2414
2415
897118e8 2416/* Set bits in *USED which correspond to registers which can't change
2417 their mode from FROM to any mode in which REGNO was encountered. */
2418
2419void
3ad4992f 2420cannot_change_mode_set_regs (HARD_REG_SET *used, enum machine_mode from,
2421 unsigned int regno)
897118e8 2422{
3dc77328 2423 struct subregs_of_mode_node dummy, *node;
897118e8 2424 enum machine_mode to;
3dc77328 2425 unsigned char mask;
2426 unsigned int i;
897118e8 2427
3072d30e 2428 gcc_assert (subregs_of_mode);
3dc77328 2429 dummy.block = regno & -8;
2430 node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
2431 if (node == NULL)
2432 return;
2433
2434 mask = 1 << (regno & 7);
2435 for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
2436 if (node->modes[to] & mask)
2437 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2438 if (!TEST_HARD_REG_BIT (*used, i)
2439 && REG_CANNOT_CHANGE_MODE_P (i, from, to))
2440 SET_HARD_REG_BIT (*used, i);
897118e8 2441}
2442
2443/* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2444 mode. */
2445
2446bool
3ad4992f 2447invalid_mode_change_p (unsigned int regno, enum reg_class class,
3dc77328 2448 enum machine_mode from)
897118e8 2449{
3dc77328 2450 struct subregs_of_mode_node dummy, *node;
2451 enum machine_mode to;
2452 unsigned char mask;
2453
3072d30e 2454 gcc_assert (subregs_of_mode);
3dc77328 2455 dummy.block = regno & -8;
2456 node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
2457 if (node == NULL)
2458 return false;
2459
2460 mask = 1 << (regno & 7);
2461 for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
2462 if (node->modes[to] & mask)
2463 if (CANNOT_CHANGE_MODE_CLASS (from, to, class))
2464 return true;
2465
2466 return false;
897118e8 2467}
3072d30e 2468
2469static unsigned int
2470finish_subregs_of_mode (void)
2471{
2472 htab_delete (subregs_of_mode);
2473 subregs_of_mode = 0;
2474 return 0;
2475}
2476#else
2477static unsigned int
2478init_subregs_of_mode (void)
2479{
2480 return 0;
2481}
2482static unsigned int
2483finish_subregs_of_mode (void)
2484{
2485 return 0;
2486}
2487
897118e8 2488#endif /* CANNOT_CHANGE_MODE_CLASS */
2489
3072d30e 2490static bool
2491gate_subregs_of_mode_init (void)
2492{
2493#ifdef CANNOT_CHANGE_MODE_CLASS
2494 return true;
2495#else
2496 return false;
2497#endif
2498}
2499
2500struct tree_opt_pass pass_subregs_of_mode_init =
2501{
2502 "subregs_of_mode_init", /* name */
2503 gate_subregs_of_mode_init, /* gate */
2504 init_subregs_of_mode, /* execute */
2505 NULL, /* sub */
2506 NULL, /* next */
2507 0, /* static_pass_number */
2508 0, /* tv_id */
2509 0, /* properties_required */
2510 0, /* properties_provided */
2511 0, /* properties_destroyed */
2512 0, /* todo_flags_start */
2513 0, /* todo_flags_finish */
2514 0 /* letter */
2515};
2516
2517struct tree_opt_pass pass_subregs_of_mode_finish =
2518{
2519 "subregs_of_mode_finish", /* name */
2520 gate_subregs_of_mode_init, /* gate */
2521 finish_subregs_of_mode, /* execute */
2522 NULL, /* sub */
2523 NULL, /* next */
2524 0, /* static_pass_number */
2525 0, /* tv_id */
2526 0, /* properties_required */
2527 0, /* properties_provided */
2528 0, /* properties_destroyed */
2529 0, /* todo_flags_start */
2530 0, /* todo_flags_finish */
2531 0 /* letter */
2532};
2533
2534
2535
1f3233d1 2536#include "gt-regclass.h"