]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/regclass.c
basic-block.h (BLOCK_HEAD, BLOCK_END): Remove.
[thirdparty/gcc.git] / gcc / regclass.c
CommitLineData
54dac99e 1/* Compute register class preferences for pseudo-registers.
517cbe13 2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
58b23af8 3 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
54dac99e 4
1322177d 5This file is part of GCC.
54dac99e 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
54dac99e 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
54dac99e
RK
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
54dac99e
RK
21
22
23/* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
26
27#include "config.h"
670ee920 28#include "system.h"
4977bab6
ZW
29#include "coretypes.h"
30#include "tm.h"
cff9f8d5 31#include "hard-reg-set.h"
54dac99e 32#include "rtl.h"
0829d244 33#include "expr.h"
6baf1cc8 34#include "tm_p.h"
54dac99e
RK
35#include "flags.h"
36#include "basic-block.h"
37#include "regs.h"
49ad7cfa 38#include "function.h"
54dac99e
RK
39#include "insn-config.h"
40#include "recog.h"
e4600702
RK
41#include "reload.h"
42#include "real.h"
10f0ad3d 43#include "toplev.h"
d6f4ec51 44#include "output.h"
8b0212ca 45#include "ggc.h"
0d446150 46#include "timevar.h"
54dac99e 47
0c20a65f 48static void init_reg_sets_1 (void);
0c20a65f 49static void init_reg_autoinc (void);
24deb20a 50
533d0835
RK
51/* If we have auto-increment or auto-decrement and we can have secondary
52 reloads, we are not allowed to use classes requiring secondary
9faa82d8 53 reloads for pseudos auto-incremented since reload can't handle it. */
533d0835
RK
54
55#ifdef AUTO_INC_DEC
dd9f0e8f 56#if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
533d0835
RK
57#define FORBIDDEN_INC_DEC_CLASSES
58#endif
59#endif
54dac99e
RK
60\f
61/* Register tables used by many passes. */
62
63/* Indexed by hard register number, contains 1 for registers
64 that are fixed use (stack pointer, pc, frame pointer, etc.).
65 These are the registers that cannot be used to allocate
252f342a 66 a pseudo reg for general use. */
54dac99e
RK
67
68char fixed_regs[FIRST_PSEUDO_REGISTER];
69
70/* Same info as a HARD_REG_SET. */
71
72HARD_REG_SET fixed_reg_set;
73
74/* Data for initializing the above. */
75
8b60264b 76static const char initial_fixed_regs[] = FIXED_REGISTERS;
54dac99e
RK
77
78/* Indexed by hard register number, contains 1 for registers
79 that are fixed use or are clobbered by function calls.
80 These are the registers that cannot be used to allocate
252f342a
MH
81 a pseudo reg whose life crosses calls unless we are able
82 to save/restore them across the calls. */
54dac99e
RK
83
84char call_used_regs[FIRST_PSEUDO_REGISTER];
85
86/* Same info as a HARD_REG_SET. */
87
88HARD_REG_SET call_used_reg_set;
89
6cad67d2
JL
90/* HARD_REG_SET of registers we want to avoid caller saving. */
91HARD_REG_SET losing_caller_save_reg_set;
92
54dac99e
RK
93/* Data for initializing the above. */
94
8b60264b 95static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
fc1296b7
AM
96
97/* This is much like call_used_regs, except it doesn't have to
98 be a superset of FIXED_REGISTERS. This vector indicates
a6a2274a 99 what is really call clobbered, and is used when defining
fc1296b7
AM
100 regs_invalidated_by_call. */
101
fc1296b7 102#ifdef CALL_REALLY_USED_REGISTERS
d3259baa 103char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
fc1296b7 104#endif
a6a2274a 105
54dac99e 106/* Indexed by hard register number, contains 1 for registers that are
252f342a
MH
107 fixed use or call used registers that cannot hold quantities across
108 calls even if we are willing to save and restore them. call fixed
109 registers are a subset of call used registers. */
54dac99e
RK
110
111char call_fixed_regs[FIRST_PSEUDO_REGISTER];
112
113/* The same info as a HARD_REG_SET. */
114
115HARD_REG_SET call_fixed_reg_set;
116
117/* Number of non-fixed registers. */
118
119int n_non_fixed_regs;
120
121/* Indexed by hard register number, contains 1 for registers
122 that are being used for global register decls.
123 These must be exempt from ordinary flow analysis
124 and are also considered fixed. */
125
126char global_regs[FIRST_PSEUDO_REGISTER];
4e2db584
RH
127
128/* Contains 1 for registers that are set or clobbered by calls. */
129/* ??? Ideally, this would be just call_used_regs plus global_regs, but
130 for someone's bright idea to have call_used_regs strictly include
131 fixed_regs. Which leaves us guessing as to the set of fixed_regs
132 that are actually preserved. We know for sure that those associated
133 with the local stack frame are safe, but scant others. */
134
135HARD_REG_SET regs_invalidated_by_call;
136
54dac99e
RK
137/* Table of register numbers in the order in which to try to use them. */
138#ifdef REG_ALLOC_ORDER
139int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
f5d8c9f4
BS
140
141/* The inverse of reg_alloc_order. */
142int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
54dac99e
RK
143#endif
144
145/* For each reg class, a HARD_REG_SET saying which registers are in it. */
146
2e0e2b76
CH
147HARD_REG_SET reg_class_contents[N_REG_CLASSES];
148
089e575b
RS
149/* The same information, but as an array of unsigned ints. We copy from
150 these unsigned ints to the table above. We do this so the tm.h files
d4845339
RH
151 do not have to be aware of the wordsize for machines with <= 64 regs.
152 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
2e0e2b76
CH
153
154#define N_REG_INTS \
d4845339 155 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
2e0e2b76 156
a6a2274a 157static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
2e0e2b76 158 = REG_CLASS_CONTENTS;
54dac99e
RK
159
160/* For each reg class, number of regs it contains. */
161
770ae6cc 162unsigned int reg_class_size[N_REG_CLASSES];
54dac99e
RK
163
164/* For each reg class, table listing all the containing classes. */
165
166enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
167
168/* For each reg class, table listing all the classes contained in it. */
169
170enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
171
172/* For each pair of reg classes,
173 a largest reg class contained in their union. */
174
175enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
176
177/* For each pair of reg classes,
178 the smallest reg class containing their union. */
179
180enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
181
94134f42 182/* Array containing all of the register names. */
d05c8ee7 183
e087aeb2 184const char * reg_names[] = REGISTER_NAMES;
d05c8ee7 185
ca4aac00
DE
186/* For each hard register, the widest mode object that it can contain.
187 This will be a MODE_INT mode if the register can hold integers. Otherwise
188 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
189 register. */
190
191enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
192
6df26b8f
JH
193/* 1 if class does contain register of given mode. */
194
195static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
196
e4600702
RK
197/* Maximum cost of moving from a register in one class to a register in
198 another class. Based on REGISTER_MOVE_COST. */
199
e56b4594 200static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
e4600702
RK
201
202/* Similar, but here we don't have to move if the first index is a subset
203 of the second so in that case the cost is zero. */
204
e56b4594 205static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
ee59f29b
JH
206
207/* Similar, but here we don't have to move if the first index is a superset
208 of the second so in that case the cost is zero. */
209
e56b4594 210static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
e4600702 211
533d0835
RK
212#ifdef FORBIDDEN_INC_DEC_CLASSES
213
214/* These are the classes that regs which are auto-incremented or decremented
215 cannot be put in. */
216
217static int forbidden_inc_dec_class[N_REG_CLASSES];
218
40f03658 219/* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
533d0835
RK
220 context. */
221
222static char *in_inc_dec;
223
5fcb671c 224#endif /* FORBIDDEN_INC_DEC_CLASSES */
533d0835 225
cff9f8d5 226#ifdef CANNOT_CHANGE_MODE_CLASS
10a3fdd9
JH
227/* All registers that have been subreged. Indexed by regno * MAX_MACHINE_MODE
228 + mode. */
229bitmap_head subregs_of_mode;
cff9f8d5 230#endif
e79f71f7 231
473fe49b
KR
232/* Sample MEM values for use by memory_move_secondary_cost. */
233
e2500fed 234static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
473fe49b 235
6feacd09
MM
236/* Linked list of reg_info structures allocated for reg_n_info array.
237 Grouping all of the allocated structures together in one lump
238 means only one call to bzero to clear them, rather than n smaller
239 calls. */
240struct reg_info_data {
241 struct reg_info_data *next; /* next set of reg_info structures */
242 size_t min_index; /* minimum index # */
243 size_t max_index; /* maximum index # */
40f03658 244 char used_p; /* nonzero if this has been used previously */
6feacd09
MM
245 reg_info data[1]; /* beginning of the reg_info data */
246};
247
248static struct reg_info_data *reg_info_head;
249
c07c7c9d 250/* No more global register variables may be declared; true once
dc297297 251 regclass has been initialized. */
6c85df69
AH
252
253static int no_global_reg_vars = 0;
254
6feacd09 255
54dac99e
RK
256/* Function called only once to initialize the above data on reg usage.
257 Once this is done, various switches may override. */
258
259void
0c20a65f 260init_reg_sets (void)
54dac99e 261{
b3694847 262 int i, j;
54dac99e 263
2e0e2b76
CH
264 /* First copy the register information from the initial int form into
265 the regsets. */
266
267 for (i = 0; i < N_REG_CLASSES; i++)
268 {
269 CLEAR_HARD_REG_SET (reg_class_contents[i]);
270
b85946fc 271 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
2e0e2b76 272 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
b85946fc
RH
273 if (int_reg_class_contents[i][j / 32]
274 & ((unsigned) 1 << (j % 32)))
2e0e2b76
CH
275 SET_HARD_REG_BIT (reg_class_contents[i], j);
276 }
277
4e135bdd
KG
278 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
279 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
961192e1 280 memset (global_regs, 0, sizeof global_regs);
54dac99e 281
3eae4643 282 /* Do any additional initialization regsets may need. */
910bc42d 283 INIT_ONCE_REG_SET ();
f5d8c9f4
BS
284
285#ifdef REG_ALLOC_ORDER
286 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
287 inv_reg_alloc_order[reg_alloc_order[i]] = i;
288#endif
910bc42d
R
289}
290
291/* After switches have been processed, which perhaps alter
292 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
293
294static void
0c20a65f 295init_reg_sets_1 (void)
910bc42d 296{
b3694847
SS
297 unsigned int i, j;
298 unsigned int /* enum machine_mode */ m;
6836e024 299 char allocatable_regs_of_mode [MAX_MACHINE_MODE];
910bc42d
R
300
301 /* This macro allows the fixed or call-used registers
302 and the register classes to depend on target flags. */
303
304#ifdef CONDITIONAL_REGISTER_USAGE
305 CONDITIONAL_REGISTER_USAGE;
306#endif
307
54dac99e
RK
308 /* Compute number of hard regs in each class. */
309
703ad42b 310 memset (reg_class_size, 0, sizeof reg_class_size);
54dac99e
RK
311 for (i = 0; i < N_REG_CLASSES; i++)
312 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
313 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
314 reg_class_size[i]++;
315
316 /* Initialize the table of subunions.
317 reg_class_subunion[I][J] gets the largest-numbered reg-class
318 that is contained in the union of classes I and J. */
319
320 for (i = 0; i < N_REG_CLASSES; i++)
321 {
322 for (j = 0; j < N_REG_CLASSES; j++)
323 {
324#ifdef HARD_REG_SET
325 register /* Declare it register if it's a scalar. */
326#endif
327 HARD_REG_SET c;
b3694847 328 int k;
54dac99e
RK
329
330 COPY_HARD_REG_SET (c, reg_class_contents[i]);
331 IOR_HARD_REG_SET (c, reg_class_contents[j]);
332 for (k = 0; k < N_REG_CLASSES; k++)
333 {
334 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
335 subclass1);
336 continue;
337
338 subclass1:
938d968e 339 /* Keep the largest subclass. */ /* SPEE 900308 */
54dac99e
RK
340 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
341 reg_class_contents[(int) reg_class_subunion[i][j]],
342 subclass2);
343 reg_class_subunion[i][j] = (enum reg_class) k;
344 subclass2:
345 ;
346 }
347 }
348 }
349
350 /* Initialize the table of superunions.
351 reg_class_superunion[I][J] gets the smallest-numbered reg-class
352 containing the union of classes I and J. */
353
354 for (i = 0; i < N_REG_CLASSES; i++)
355 {
356 for (j = 0; j < N_REG_CLASSES; j++)
357 {
358#ifdef HARD_REG_SET
359 register /* Declare it register if it's a scalar. */
360#endif
361 HARD_REG_SET c;
b3694847 362 int k;
54dac99e
RK
363
364 COPY_HARD_REG_SET (c, reg_class_contents[i]);
365 IOR_HARD_REG_SET (c, reg_class_contents[j]);
366 for (k = 0; k < N_REG_CLASSES; k++)
367 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
368
369 superclass:
370 reg_class_superunion[i][j] = (enum reg_class) k;
371 }
372 }
373
374 /* Initialize the tables of subclasses and superclasses of each reg class.
375 First clear the whole table, then add the elements as they are found. */
376
377 for (i = 0; i < N_REG_CLASSES; i++)
378 {
379 for (j = 0; j < N_REG_CLASSES; j++)
380 {
381 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
382 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
383 }
384 }
385
386 for (i = 0; i < N_REG_CLASSES; i++)
387 {
388 if (i == (int) NO_REGS)
389 continue;
390
391 for (j = i + 1; j < N_REG_CLASSES; j++)
392 {
393 enum reg_class *p;
394
395 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
396 subclass);
397 continue;
398 subclass:
399 /* Reg class I is a subclass of J.
400 Add J to the table of superclasses of I. */
401 p = &reg_class_superclasses[i][0];
402 while (*p != LIM_REG_CLASSES) p++;
403 *p = (enum reg_class) j;
404 /* Add I to the table of superclasses of J. */
405 p = &reg_class_subclasses[j][0];
406 while (*p != LIM_REG_CLASSES) p++;
407 *p = (enum reg_class) i;
408 }
409 }
e4600702 410
54dac99e
RK
411 /* Initialize "constant" tables. */
412
413 CLEAR_HARD_REG_SET (fixed_reg_set);
414 CLEAR_HARD_REG_SET (call_used_reg_set);
415 CLEAR_HARD_REG_SET (call_fixed_reg_set);
4e2db584 416 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
54dac99e 417
4e135bdd 418 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
54dac99e
RK
419
420 n_non_fixed_regs = 0;
421
422 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
423 {
54dac99e
RK
424 if (fixed_regs[i])
425 SET_HARD_REG_BIT (fixed_reg_set, i);
426 else
427 n_non_fixed_regs++;
428
429 if (call_used_regs[i])
430 SET_HARD_REG_BIT (call_used_reg_set, i);
431 if (call_fixed_regs[i])
432 SET_HARD_REG_BIT (call_fixed_reg_set, i);
6cad67d2
JL
433 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
434 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
4e2db584
RH
435
436 /* There are a couple of fixed registers that we know are safe to
437 exclude from being clobbered by calls:
438
439 The frame pointer is always preserved across calls. The arg pointer
440 is if it is fixed. The stack pointer usually is, unless
441 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
442 If we are generating PIC code, the PIC offset table register is
443 preserved across calls, though the target can override that. */
a6a2274a 444
4e2db584
RH
445 if (i == STACK_POINTER_REGNUM || i == FRAME_POINTER_REGNUM)
446 ;
447#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
448 else if (i == HARD_FRAME_POINTER_REGNUM)
449 ;
450#endif
451#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
452 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
453 ;
454#endif
455#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
fc555370 456 else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
4e2db584
RH
457 ;
458#endif
d3259baa 459 else if (0
6ca3c22f 460#ifdef CALL_REALLY_USED_REGISTERS
d3259baa
RH
461 || call_really_used_regs[i]
462#else
463 || call_used_regs[i]
464#endif
465 || global_regs[i])
4e2db584 466 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
54dac99e 467 }
4e2db584 468
6836e024
JH
469 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
470 memset (allocatable_regs_of_mode, 0, sizeof (allocatable_regs_of_mode));
dbbbbf3b 471 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
6836e024 472 for (i = 0; i < N_REG_CLASSES; i++)
f7043461 473 if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
6df26b8f
JH
474 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
475 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
476 && HARD_REGNO_MODE_OK (j, m))
477 {
478 contains_reg_of_mode [i][m] = 1;
479 allocatable_regs_of_mode [m] = 1;
480 break;
481 }
acbce667
KR
482
483 /* Initialize the move cost table. Find every subset of each class
484 and take the maximum cost of moving any subset to any other. */
485
dbbbbf3b 486 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
6836e024
JH
487 if (allocatable_regs_of_mode [m])
488 {
489 for (i = 0; i < N_REG_CLASSES; i++)
490 if (contains_reg_of_mode [i][m])
491 for (j = 0; j < N_REG_CLASSES; j++)
492 {
493 int cost;
494 enum reg_class *p1, *p2;
495
496 if (!contains_reg_of_mode [j][m])
497 {
498 move_cost[m][i][j] = 65536;
499 may_move_in_cost[m][i][j] = 65536;
500 may_move_out_cost[m][i][j] = 65536;
501 }
502 else
503 {
26a952a8 504 cost = REGISTER_MOVE_COST (m, i, j);
6836e024
JH
505
506 for (p2 = &reg_class_subclasses[j][0];
507 *p2 != LIM_REG_CLASSES;
508 p2++)
509 if (*p2 != i && contains_reg_of_mode [*p2][m])
510 cost = MAX (cost, move_cost [m][i][*p2]);
511
512 for (p1 = &reg_class_subclasses[i][0];
513 *p1 != LIM_REG_CLASSES;
514 p1++)
515 if (*p1 != j && contains_reg_of_mode [*p1][m])
516 cost = MAX (cost, move_cost [m][*p1][j]);
517
518 move_cost[m][i][j] = cost;
519
520 if (reg_class_subset_p (i, j))
521 may_move_in_cost[m][i][j] = 0;
522 else
523 may_move_in_cost[m][i][j] = cost;
524
525 if (reg_class_subset_p (j, i))
526 may_move_out_cost[m][i][j] = 0;
527 else
528 may_move_out_cost[m][i][j] = cost;
529 }
530 }
1464632b 531 else
6836e024
JH
532 for (j = 0; j < N_REG_CLASSES; j++)
533 {
534 move_cost[m][i][j] = 65536;
535 may_move_in_cost[m][i][j] = 65536;
536 may_move_out_cost[m][i][j] = 65536;
537 }
538 }
c27c5281
DE
539}
540
541/* Compute the table of register modes.
542 These values are used to record death information for individual registers
543 (as opposed to a multi-register mode). */
ca4aac00 544
28420116
PB
545void
546init_reg_modes_once (void)
c27c5281 547{
b3694847 548 int i;
ca4aac00
DE
549
550 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7f21d440 551 {
fee226d2 552 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
7f21d440 553
066c2fea 554 /* If we couldn't find a valid mode, just use the previous mode.
7f21d440
DE
555 ??? One situation in which we need to do this is on the mips where
556 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
557 to use DF mode for the even registers and VOIDmode for the odd
9faa82d8 558 (for the cpu models where the odd ones are inaccessible). */
7f21d440 559 if (reg_raw_mode[i] == VOIDmode)
066c2fea 560 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
7f21d440 561 }
ca4aac00
DE
562}
563
c27c5281
DE
564/* Finish initializing the register sets and
565 initialize the register modes. */
566
567void
0c20a65f 568init_regs (void)
c27c5281
DE
569{
570 /* This finishes what was started by init_reg_sets, but couldn't be done
571 until after register usage was specified. */
b93a436e 572 init_reg_sets_1 ();
c27c5281 573
1f80c9ef 574 init_reg_autoinc ();
6cde4876
JL
575}
576
577/* Initialize some fake stack-frame MEM references for use in
578 memory_move_secondary_cost. */
473fe49b 579
6cde4876 580void
0c20a65f 581init_fake_stack_mems (void)
6cde4876 582{
473fe49b
KR
583#ifdef HAVE_SECONDARY_RELOADS
584 {
473fe49b 585 int i;
d067e2aa 586
473fe49b 587 for (i = 0; i < MAX_MACHINE_MODE; i++)
9ec36da5 588 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
473fe49b
KR
589 }
590#endif
c27c5281
DE
591}
592
cbd5b9a2 593#ifdef HAVE_SECONDARY_RELOADS
473fe49b 594
cbd5b9a2
KR
595/* Compute extra cost of moving registers to/from memory due to reloads.
596 Only needed if secondary reloads are required for memory moves. */
473fe49b 597
cbd5b9a2 598int
0c20a65f 599memory_move_secondary_cost (enum machine_mode mode, enum reg_class class, int in)
cbd5b9a2
KR
600{
601 enum reg_class altclass;
602 int partial_cost = 0;
cbd5b9a2 603 /* We need a memory reference to feed to SECONDARY... macros. */
dc297297 604 /* mem may be unused even if the SECONDARY_ macros are defined. */
272df862
KG
605 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
606
cbd5b9a2
KR
607
608 if (in)
473fe49b 609 {
321c0828 610#ifdef SECONDARY_INPUT_RELOAD_CLASS
473fe49b 611 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
321c0828 612#else
473fe49b 613 altclass = NO_REGS;
321c0828 614#endif
473fe49b 615 }
cbd5b9a2 616 else
473fe49b 617 {
321c0828 618#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
473fe49b 619 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
321c0828 620#else
473fe49b 621 altclass = NO_REGS;
321c0828 622#endif
473fe49b
KR
623 }
624
cbd5b9a2
KR
625 if (altclass == NO_REGS)
626 return 0;
627
628 if (in)
e56b4594 629 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
cbd5b9a2 630 else
e56b4594 631 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
cbd5b9a2
KR
632
633 if (class == altclass)
634 /* This isn't simply a copy-to-temporary situation. Can't guess
635 what it is, so MEMORY_MOVE_COST really ought not to be calling
636 here in that case.
637
638 I'm tempted to put in an abort here, but returning this will
639 probably only give poor estimates, which is what we would've
640 had before this code anyways. */
641 return partial_cost;
642
643 /* Check if the secondary reload register will also need a
644 secondary reload. */
645 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
646}
647#endif
648
ca4aac00 649/* Return a machine mode that is legitimate for hard reg REGNO and large
fee226d2
R
650 enough to save nregs. If we can't find one, return VOIDmode.
651 If CALL_SAVED is true, only consider modes that are call saved. */
ca4aac00
DE
652
653enum machine_mode
0c20a65f 654choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
fee226d2 655 unsigned int nregs, bool call_saved)
ca4aac00 656{
dbbbbf3b 657 unsigned int /* enum machine_mode */ m;
ca4aac00
DE
658 enum machine_mode found_mode = VOIDmode, mode;
659
660 /* We first look for the largest integer mode that can be validly
661 held in REGNO. If none, we look for the largest floating-point mode.
662 If we still didn't find a valid mode, try CCmode. */
663
664 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
665 mode != VOIDmode;
666 mode = GET_MODE_WIDER_MODE (mode))
f7043461 667 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
fee226d2
R
668 && HARD_REGNO_MODE_OK (regno, mode)
669 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
ca4aac00
DE
670 found_mode = mode;
671
672 if (found_mode != VOIDmode)
673 return found_mode;
674
675 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
676 mode != VOIDmode;
677 mode = GET_MODE_WIDER_MODE (mode))
f7043461 678 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
fee226d2
R
679 && HARD_REGNO_MODE_OK (regno, mode)
680 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
ca4aac00
DE
681 found_mode = mode;
682
683 if (found_mode != VOIDmode)
684 return found_mode;
685
78b583fe
AH
686 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
687 mode != VOIDmode;
688 mode = GET_MODE_WIDER_MODE (mode))
f7043461 689 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
fee226d2
R
690 && HARD_REGNO_MODE_OK (regno, mode)
691 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
78b583fe
AH
692 found_mode = mode;
693
694 if (found_mode != VOIDmode)
695 return found_mode;
696
697 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
698 mode != VOIDmode;
699 mode = GET_MODE_WIDER_MODE (mode))
f7043461 700 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
fee226d2
R
701 && HARD_REGNO_MODE_OK (regno, mode)
702 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
78b583fe
AH
703 found_mode = mode;
704
705 if (found_mode != VOIDmode)
706 return found_mode;
707
0548a9df 708 /* Iterate over all of the CCmodes. */
dbbbbf3b
JDA
709 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
710 {
711 mode = (enum machine_mode) m;
f7043461 712 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
fee226d2
R
713 && HARD_REGNO_MODE_OK (regno, mode)
714 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
dbbbbf3b
JDA
715 return mode;
716 }
ca4aac00
DE
717
718 /* We can't find a mode valid for this register. */
719 return VOIDmode;
54dac99e
RK
720}
721
722/* Specify the usage characteristics of the register named NAME.
723 It should be a fixed register if FIXED and a
724 call-used register if CALL_USED. */
725
726void
0c20a65f 727fix_register (const char *name, int fixed, int call_used)
54dac99e
RK
728{
729 int i;
730
731 /* Decode the name and update the primary form of
732 the register info. */
733
e5c90c23
TW
734 if ((i = decode_reg_name (name)) >= 0)
735 {
cb2fdc84
GRK
736 if ((i == STACK_POINTER_REGNUM
737#ifdef HARD_FRAME_POINTER_REGNUM
738 || i == HARD_FRAME_POINTER_REGNUM
739#else
740 || i == FRAME_POINTER_REGNUM
741#endif
742 )
743 && (fixed == 0 || call_used == 0))
744 {
6f7d635c 745 static const char * const what_option[2][2] = {
7f7f8214
KG
746 { "call-saved", "call-used" },
747 { "no-such-option", "fixed" }};
a6a2274a
KH
748
749 error ("can't use '%s' as a %s register", name,
cb2fdc84
GRK
750 what_option[fixed][call_used]);
751 }
752 else
753 {
754 fixed_regs[i] = fixed;
755 call_used_regs[i] = call_used;
ec523c2f 756#ifdef CALL_REALLY_USED_REGISTERS
fc1296b7
AM
757 if (fixed == 0)
758 call_really_used_regs[i] = call_used;
d3259baa 759#endif
cb2fdc84 760 }
e5c90c23
TW
761 }
762 else
54dac99e
RK
763 {
764 warning ("unknown register name: %s", name);
54dac99e
RK
765 }
766}
614f68e2
RK
767
768/* Mark register number I as global. */
769
770void
0c20a65f 771globalize_reg (int i)
614f68e2 772{
c07c7c9d 773 if (fixed_regs[i] == 0 && no_global_reg_vars)
6c85df69
AH
774 error ("global register variable follows a function definition");
775
614f68e2
RK
776 if (global_regs[i])
777 {
778 warning ("register used for two global register variables");
779 return;
780 }
781
782 if (call_used_regs[i] && ! fixed_regs[i])
783 warning ("call-clobbered register used for global register variable");
784
785 global_regs[i] = 1;
786
787 /* If already fixed, nothing else to do. */
788 if (fixed_regs[i])
789 return;
790
791 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
792 n_non_fixed_regs--;
793
794 SET_HARD_REG_BIT (fixed_reg_set, i);
795 SET_HARD_REG_BIT (call_used_reg_set, i);
796 SET_HARD_REG_BIT (call_fixed_reg_set, i);
caecc099 797 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
614f68e2 798}
54dac99e
RK
799\f
800/* Now the data and code for the `regclass' pass, which happens
801 just before local-alloc. */
802
e4600702
RK
803/* The `costs' struct records the cost of using a hard register of each class
804 and of using memory for each pseudo. We use this data to set up
805 register class preferences. */
54dac99e 806
e4600702 807struct costs
54dac99e 808{
e4600702
RK
809 int cost[N_REG_CLASSES];
810 int mem_cost;
54dac99e
RK
811};
812
d55d8fc7 813/* Structure used to record preferences of given pseudo. */
9ffc5a70
JH
814struct reg_pref
815{
816 /* (enum reg_class) prefclass is the preferred class. */
817 char prefclass;
818
819 /* altclass is a register class that we should use for allocating
820 pseudo if no register in the preferred class is available.
821 If no register in this class is available, memory is preferred.
822
823 It might appear to be more general to have a bitmask of classes here,
824 but since it is recommended that there be a class corresponding to the
825 union of most major pair of classes, that generality is not required. */
826 char altclass;
827};
828
e4600702
RK
829/* Record the cost of each class for each pseudo. */
830
831static struct costs *costs;
832
61719ba7
BS
833/* Initialized once, and used to initialize cost values for each insn. */
834
835static struct costs init_cost;
836
d55d8fc7 837/* Record preferences of each pseudo.
54dac99e
RK
838 This is available after `regclass' is run. */
839
9ffc5a70 840static struct reg_pref *reg_pref;
54d23420 841
dc297297 842/* Allocated buffers for reg_pref. */
54dac99e 843
9ffc5a70 844static struct reg_pref *reg_pref_buffer;
6feacd09 845
9401afe3 846/* Frequency of executions of current insn. */
54d23420 847
9401afe3 848static int frequency;
54d23420 849
0c20a65f
AJ
850static rtx scan_one_insn (rtx, int);
851static void record_operand_costs (rtx, struct costs *, struct reg_pref *);
852static void dump_regclass (FILE *);
853static void record_reg_classes (int, int, rtx *, enum machine_mode *,
854 const char **, rtx, struct costs *,
855 struct reg_pref *);
856static int copy_cost (rtx, enum machine_mode, enum reg_class, int);
857static void record_address_regs (rtx, enum reg_class, int);
1d300e19 858#ifdef FORBIDDEN_INC_DEC_CLASSES
0c20a65f 859static int auto_inc_dec_reg_p (rtx, enum machine_mode);
1d300e19 860#endif
0c20a65f 861static void reg_scan_mark_refs (rtx, rtx, int, unsigned int);
54dac99e
RK
862
863/* Return the reg_class in which pseudo reg number REGNO is best allocated.
864 This function is sometimes called before the info has been computed.
865 When that happens, just return GENERAL_REGS, which is innocuous. */
866
867enum reg_class
0c20a65f 868reg_preferred_class (int regno)
54dac99e 869{
9ffc5a70 870 if (reg_pref == 0)
54dac99e 871 return GENERAL_REGS;
9ffc5a70 872 return (enum reg_class) reg_pref[regno].prefclass;
54dac99e
RK
873}
874
e4600702 875enum reg_class
0c20a65f 876reg_alternate_class (int regno)
54dac99e 877{
9ffc5a70 878 if (reg_pref == 0)
e4600702
RK
879 return ALL_REGS;
880
9ffc5a70 881 return (enum reg_class) reg_pref[regno].altclass;
54dac99e
RK
882}
883
61719ba7 884/* Initialize some global data for this pass. */
54dac99e
RK
885
886void
0c20a65f 887regclass_init (void)
54dac99e 888{
61719ba7
BS
889 int i;
890
891 init_cost.mem_cost = 10000;
892 for (i = 0; i < N_REG_CLASSES; i++)
893 init_cost.cost[i] = 10000;
894
895 /* This prevents dump_flow_info from losing if called
896 before regclass is run. */
9ffc5a70 897 reg_pref = NULL;
6c85df69 898
dc297297 899 /* No more global register variables may be declared. */
6c85df69 900 no_global_reg_vars = 1;
54dac99e 901}
246fd41f
JH
902\f
903/* Dump register costs. */
915b80ed 904static void
0c20a65f 905dump_regclass (FILE *dump)
246fd41f
JH
906{
907 static const char *const reg_class_names[] = REG_CLASS_NAMES;
908 int i;
909 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
910 {
dbbbbf3b 911 int /* enum reg_class */ class;
246fd41f
JH
912 if (REG_N_REFS (i))
913 {
f741a71c 914 fprintf (dump, " Register %i costs:", i);
dbbbbf3b
JDA
915 for (class = 0; class < (int) N_REG_CLASSES; class++)
916 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
6df26b8f 917#ifdef FORBIDDEN_INC_DEC_CLASSES
dbbbbf3b
JDA
918 && (!in_inc_dec[i]
919 || !forbidden_inc_dec_class[(enum reg_class) class])
6df26b8f 920#endif
cff9f8d5
AH
921#ifdef CANNOT_CHANGE_MODE_CLASS
922 && ! invalid_mode_change_p (i, (enum reg_class) class,
923 PSEUDO_REGNO_MODE (i))
6df26b8f
JH
924#endif
925 )
dbbbbf3b
JDA
926 fprintf (dump, " %s:%i", reg_class_names[class],
927 costs[i].cost[(enum reg_class) class]);
f741a71c 928 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
246fd41f
JH
929 }
930 }
931}
f741a71c
JH
932\f
933
934/* Calculate the costs of insn operands. */
935
936static void
0c20a65f
AJ
937record_operand_costs (rtx insn, struct costs *op_costs,
938 struct reg_pref *reg_pref)
f741a71c
JH
939{
940 const char *constraints[MAX_RECOG_OPERANDS];
941 enum machine_mode modes[MAX_RECOG_OPERANDS];
f741a71c
JH
942 int i;
943
944 for (i = 0; i < recog_data.n_operands; i++)
945 {
946 constraints[i] = recog_data.constraints[i];
947 modes[i] = recog_data.operand_mode[i];
948 }
f741a71c
JH
949
950 /* If we get here, we are set up to record the costs of all the
951 operands for this insn. Start by initializing the costs.
952 Then handle any address registers. Finally record the desired
953 classes for any pseudos, doing it twice if some pair of
954 operands are commutative. */
a6a2274a 955
f741a71c
JH
956 for (i = 0; i < recog_data.n_operands; i++)
957 {
958 op_costs[i] = init_cost;
959
960 if (GET_CODE (recog_data.operand[i]) == SUBREG)
cff9f8d5 961 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
f741a71c
JH
962
963 if (GET_CODE (recog_data.operand[i]) == MEM)
964 record_address_regs (XEXP (recog_data.operand[i], 0),
3dcc68a4 965 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
ccfc6cc8 966 else if (constraints[i][0] == 'p'
97488870 967 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
f741a71c 968 record_address_regs (recog_data.operand[i],
3dcc68a4 969 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
f741a71c
JH
970 }
971
972 /* Check for commutative in a separate loop so everything will
973 have been initialized. We must do this even if one operand
974 is a constant--see addsi3 in m68k.md. */
975
976 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
977 if (constraints[i][0] == '%')
978 {
979 const char *xconstraints[MAX_RECOG_OPERANDS];
980 int j;
246fd41f 981
f741a71c
JH
982 /* Handle commutative operands by swapping the constraints.
983 We assume the modes are the same. */
984
985 for (j = 0; j < recog_data.n_operands; j++)
986 xconstraints[j] = constraints[j];
987
988 xconstraints[i] = constraints[i+1];
989 xconstraints[i+1] = constraints[i];
990 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
a6a2274a 991 recog_data.operand, modes,
f741a71c
JH
992 xconstraints, insn, op_costs, reg_pref);
993 }
994
995 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
a6a2274a 996 recog_data.operand, modes,
f741a71c
JH
997 constraints, insn, op_costs, reg_pref);
998}
54dac99e 999\f
61719ba7
BS
1000/* Subroutine of regclass, processes one insn INSN. Scan it and record each
1001 time it would save code to put a certain register in a certain class.
1002 PASS, when nonzero, inhibits some optimizations which need only be done
1003 once.
1004 Return the last insn processed, so that the scan can be continued from
1005 there. */
1006
1007static rtx
0c20a65f 1008scan_one_insn (rtx insn, int pass)
61719ba7
BS
1009{
1010 enum rtx_code code = GET_CODE (insn);
1011 enum rtx_code pat_code;
0eadeb15 1012 rtx set, note;
61719ba7 1013 int i, j;
f741a71c 1014 struct costs op_costs[MAX_RECOG_OPERANDS];
61719ba7 1015
61719ba7
BS
1016 if (GET_RTX_CLASS (code) != 'i')
1017 return insn;
1018
1019 pat_code = GET_CODE (PATTERN (insn));
1020 if (pat_code == USE
1021 || pat_code == CLOBBER
1022 || pat_code == ASM_INPUT
1023 || pat_code == ADDR_VEC
1024 || pat_code == ADDR_DIFF_VEC)
1025 return insn;
1026
0eadeb15
BS
1027 set = single_set (insn);
1028 extract_insn (insn);
1029
0eadeb15
BS
1030 /* If this insn loads a parameter from its stack slot, then
1031 it represents a savings, rather than a cost, if the
1032 parameter is stored in memory. Record this fact. */
61719ba7 1033
0eadeb15
BS
1034 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
1035 && GET_CODE (SET_SRC (set)) == MEM
1036 && (note = find_reg_note (insn, REG_EQUIV,
1037 NULL_RTX)) != 0
1038 && GET_CODE (XEXP (note, 0)) == MEM)
1039 {
1040 costs[REGNO (SET_DEST (set))].mem_cost
1041 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1042 GENERAL_REGS, 1)
9401afe3 1043 * frequency);
0eadeb15 1044 record_address_regs (XEXP (SET_SRC (set), 0),
3dcc68a4 1045 MODE_BASE_REG_CLASS (VOIDmode), frequency * 2);
0eadeb15
BS
1046 return insn;
1047 }
61719ba7 1048
0eadeb15
BS
1049 /* Improve handling of two-address insns such as
1050 (set X (ashift CONST Y)) where CONST must be made to
1051 match X. Change it into two insns: (set X CONST)
1052 (set X (ashift X Y)). If we left this for reloading, it
1053 would probably get three insns because X and Y might go
1054 in the same place. This prevents X and Y from receiving
1055 the same hard reg.
1056
1057 We can only do this if the modes of operands 0 and 1
1058 (which might not be the same) are tieable and we only need
1059 do this during our first pass. */
1060
1061 if (pass == 0 && optimize
1ccbefce
RH
1062 && recog_data.n_operands >= 3
1063 && recog_data.constraints[1][0] == '0'
1064 && recog_data.constraints[1][1] == 0
1065 && CONSTANT_P (recog_data.operand[1])
1066 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1067 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1068 && GET_CODE (recog_data.operand[0]) == REG
1069 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1070 recog_data.operand_mode[1]))
0eadeb15
BS
1071 {
1072 rtx previnsn = prev_real_insn (insn);
1073 rtx dest
1ccbefce
RH
1074 = gen_lowpart (recog_data.operand_mode[1],
1075 recog_data.operand[0]);
0eadeb15 1076 rtx newinsn
1ccbefce 1077 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
61719ba7 1078
0eadeb15
BS
1079 /* If this insn was the start of a basic block,
1080 include the new insn in that block.
1081 We need not check for code_label here;
1082 while a basic block can start with a code_label,
1083 INSN could not be at the beginning of that block. */
1084 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
61719ba7 1085 {
e0082a72
ZD
1086 basic_block b;
1087 FOR_EACH_BB (b)
a813c111
SB
1088 if (insn == BB_HEAD (b))
1089 BB_HEAD (b) = newinsn;
61719ba7
BS
1090 }
1091
0eadeb15 1092 /* This makes one more setting of new insns's dest. */
1ccbefce 1093 REG_N_SETS (REGNO (recog_data.operand[0]))++;
d3c7d45e 1094 REG_N_REFS (REGNO (recog_data.operand[0]))++;
9401afe3 1095 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
61719ba7 1096
1ccbefce 1097 *recog_data.operand_loc[1] = recog_data.operand[0];
d3c7d45e 1098 REG_N_REFS (REGNO (recog_data.operand[0]))++;
9401afe3 1099 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1ccbefce
RH
1100 for (i = recog_data.n_dups - 1; i >= 0; i--)
1101 if (recog_data.dup_num[i] == 1)
d3c7d45e
AO
1102 {
1103 *recog_data.dup_loc[i] = recog_data.operand[0];
1104 REG_N_REFS (REGNO (recog_data.operand[0]))++;
9401afe3 1105 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
d3c7d45e 1106 }
61719ba7 1107
0eadeb15 1108 return PREV_INSN (newinsn);
61719ba7
BS
1109 }
1110
4963c995 1111 record_operand_costs (insn, op_costs, reg_pref);
61719ba7
BS
1112
1113 /* Now add the cost for each operand to the total costs for
1114 its register. */
1115
1ccbefce
RH
1116 for (i = 0; i < recog_data.n_operands; i++)
1117 if (GET_CODE (recog_data.operand[i]) == REG
1118 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
61719ba7 1119 {
1ccbefce 1120 int regno = REGNO (recog_data.operand[i]);
61719ba7
BS
1121 struct costs *p = &costs[regno], *q = &op_costs[i];
1122
9401afe3 1123 p->mem_cost += q->mem_cost * frequency;
61719ba7 1124 for (j = 0; j < N_REG_CLASSES; j++)
9401afe3 1125 p->cost[j] += q->cost[j] * frequency;
61719ba7
BS
1126 }
1127
1128 return insn;
1129}
1130
1f80c9ef
MS
1131/* Initialize information about which register classes can be used for
1132 pseudos that are auto-incremented or auto-decremented. */
54dac99e 1133
1f80c9ef 1134static void
0c20a65f 1135init_reg_autoinc (void)
54dac99e 1136{
533d0835 1137#ifdef FORBIDDEN_INC_DEC_CLASSES
1f80c9ef 1138 int i;
533d0835
RK
1139
1140 for (i = 0; i < N_REG_CLASSES; i++)
1141 {
1f80c9ef 1142 rtx r = gen_rtx_raw_REG (VOIDmode, 0);
533d0835 1143 enum machine_mode m;
b3694847 1144 int j;
533d0835
RK
1145
1146 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1147 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1148 {
1149 REGNO (r) = j;
1150
1151 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
808043ed 1152 m = (enum machine_mode) ((int) m + 1))
533d0835
RK
1153 if (HARD_REGNO_MODE_OK (j, m))
1154 {
1155 PUT_MODE (r, m);
08d95f91
RK
1156
1157 /* If a register is not directly suitable for an
1158 auto-increment or decrement addressing mode and
1159 requires secondary reloads, disallow its class from
1160 being used in such addresses. */
1161
1162 if ((0
041d7180 1163#ifdef SECONDARY_RELOAD_CLASS
3dcc68a4 1164 || (SECONDARY_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
041d7180
JL
1165 != NO_REGS)
1166#else
533d0835 1167#ifdef SECONDARY_INPUT_RELOAD_CLASS
3dcc68a4 1168 || (SECONDARY_INPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
08d95f91 1169 != NO_REGS)
533d0835
RK
1170#endif
1171#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
3dcc68a4 1172 || (SECONDARY_OUTPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
08d95f91 1173 != NO_REGS)
041d7180 1174#endif
533d0835 1175#endif
08d95f91
RK
1176 )
1177 && ! auto_inc_dec_reg_p (r, m))
533d0835
RK
1178 forbidden_inc_dec_class[i] = 1;
1179 }
1180 }
1181 }
1f80c9ef
MS
1182#endif /* FORBIDDEN_INC_DEC_CLASSES */
1183}
1184
1185/* This is a pass of the compiler that scans all instructions
1186 and calculates the preferred class for each pseudo-register.
1187 This information can be accessed later by calling `reg_preferred_class'.
1188 This pass comes just before local register allocation. */
1189
1190void
0c20a65f 1191regclass (rtx f, int nregs, FILE *dump)
1f80c9ef
MS
1192{
1193 rtx insn;
1194 int i;
1195 int pass;
1196
1197 init_recog ();
1198
703ad42b 1199 costs = xmalloc (nregs * sizeof (struct costs));
1f80c9ef
MS
1200
1201#ifdef FORBIDDEN_INC_DEC_CLASSES
1202
703ad42b 1203 in_inc_dec = xmalloc (nregs);
1f80c9ef 1204
533d0835
RK
1205#endif /* FORBIDDEN_INC_DEC_CLASSES */
1206
e4600702
RK
1207 /* Normally we scan the insns once and determine the best class to use for
1208 each register. However, if -fexpensive_optimizations are on, we do so
1209 twice, the second time using the tentative best classes to guide the
1210 selection. */
54dac99e 1211
e4600702
RK
1212 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1213 {
e0082a72 1214 basic_block bb;
f741a71c
JH
1215
1216 if (dump)
a6a2274a 1217 fprintf (dump, "\n\nPass %i\n\n",pass);
e4600702 1218 /* Zero out our accumulation of the cost of each class for each reg. */
54dac99e 1219
703ad42b 1220 memset (costs, 0, nregs * sizeof (struct costs));
54dac99e 1221
533d0835 1222#ifdef FORBIDDEN_INC_DEC_CLASSES
961192e1 1223 memset (in_inc_dec, 0, nregs);
533d0835
RK
1224#endif
1225
e4600702
RK
1226 /* Scan the instructions and record each time it would
1227 save code to put a certain register in a certain class. */
1228
1f01879e 1229 if (!optimize)
54dac99e 1230 {
a08b2604 1231 frequency = REG_FREQ_MAX;
1f01879e
JH
1232 for (insn = f; insn; insn = NEXT_INSN (insn))
1233 insn = scan_one_insn (insn, pass);
54dac99e 1234 }
1f01879e 1235 else
e0082a72 1236 FOR_EACH_BB (bb)
1f01879e 1237 {
1f01879e 1238 /* Show that an insn inside a loop is likely to be executed three
9b15c17f
RH
1239 times more than insns outside a loop. This is much more
1240 aggressive than the assumptions made elsewhere and is being
1241 tried as an experiment. */
a08b2604 1242 frequency = REG_FREQ_FROM_BB (bb);
a813c111 1243 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1f01879e
JH
1244 {
1245 insn = scan_one_insn (insn, pass);
a813c111 1246 if (insn == BB_END (bb))
1f01879e
JH
1247 break;
1248 }
1249 }
a6a2274a 1250
e4600702
RK
1251 /* Now for each register look at how desirable each class is
1252 and find which class is preferred. Store that in
9ffc5a70 1253 `prefclass'. Record in `altclass' the largest register
e4600702 1254 class any of whose registers is better than memory. */
a6a2274a 1255
e4600702 1256 if (pass == 0)
9ffc5a70 1257 reg_pref = reg_pref_buffer;
54dac99e 1258
f741a71c 1259 if (dump)
a6a2274a 1260 {
f741a71c 1261 dump_regclass (dump);
4963c995 1262 fprintf (dump,"\n");
f741a71c 1263 }
e4600702 1264 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
54dac99e 1265 {
b3694847 1266 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
e4600702
RK
1267 enum reg_class best = ALL_REGS, alt = NO_REGS;
1268 /* This is an enum reg_class, but we call it an int
1269 to save lots of casts. */
b3694847
SS
1270 int class;
1271 struct costs *p = &costs[i];
e4600702 1272
64615302
JH
1273 /* In non-optimizing compilation REG_N_REFS is not initialized
1274 yet. */
ed8d2920 1275 if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
f741a71c
JH
1276 continue;
1277
e4600702 1278 for (class = (int) ALL_REGS - 1; class > 0; class--)
54dac99e 1279 {
533d0835 1280 /* Ignore classes that are too small for this operand or
4fe9b91c 1281 invalid for an operand that was auto-incremented. */
6df26b8f 1282 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
533d0835
RK
1283#ifdef FORBIDDEN_INC_DEC_CLASSES
1284 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
e79f71f7 1285#endif
cff9f8d5
AH
1286#ifdef CANNOT_CHANGE_MODE_CLASS
1287 || invalid_mode_change_p (i, (enum reg_class) class,
1288 PSEUDO_REGNO_MODE (i))
533d0835
RK
1289#endif
1290 )
e4600702
RK
1291 ;
1292 else if (p->cost[class] < best_cost)
1293 {
1294 best_cost = p->cost[class];
1295 best = (enum reg_class) class;
1296 }
1297 else if (p->cost[class] == best_cost)
8e2e89f7 1298 best = reg_class_subunion[(int) best][class];
54dac99e 1299 }
54dac99e 1300
e4600702
RK
1301 /* Record the alternate register class; i.e., a class for which
1302 every register in it is better than using memory. If adding a
1303 class would make a smaller class (i.e., no union of just those
1304 classes exists), skip that class. The major unions of classes
1305 should be provided as a register class. Don't do this if we
1306 will be doing it again later. */
1307
f741a71c 1308 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
e4600702
RK
1309 for (class = 0; class < N_REG_CLASSES; class++)
1310 if (p->cost[class] < p->mem_cost
77edb222 1311 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
533d0835
RK
1312 > reg_class_size[(int) alt])
1313#ifdef FORBIDDEN_INC_DEC_CLASSES
1314 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
e79f71f7 1315#endif
cff9f8d5
AH
1316#ifdef CANNOT_CHANGE_MODE_CLASS
1317 && ! invalid_mode_change_p (i, (enum reg_class) class,
1318 PSEUDO_REGNO_MODE (i))
533d0835
RK
1319#endif
1320 )
e4600702 1321 alt = reg_class_subunion[(int) alt][class];
a6a2274a 1322
e4600702
RK
1323 /* If we don't add any classes, nothing to try. */
1324 if (alt == best)
995d54dd 1325 alt = NO_REGS;
e4600702 1326
a6a2274a 1327 if (dump
f741a71c
JH
1328 && (reg_pref[i].prefclass != (int) best
1329 || reg_pref[i].altclass != (int) alt))
1330 {
1331 static const char *const reg_class_names[] = REG_CLASS_NAMES;
4963c995 1332 fprintf (dump, " Register %i", i);
f741a71c
JH
1333 if (alt == ALL_REGS || best == ALL_REGS)
1334 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1335 else if (alt == NO_REGS)
1336 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1337 else
1338 fprintf (dump, " pref %s, else %s\n",
1339 reg_class_names[(int) best],
1340 reg_class_names[(int) alt]);
1341 }
1342
e4600702 1343 /* We cast to (int) because (char) hits bugs in some compilers. */
9ffc5a70
JH
1344 reg_pref[i].prefclass = (int) best;
1345 reg_pref[i].altclass = (int) alt;
e4600702 1346 }
54dac99e 1347 }
56a65848 1348
4da896b2
MM
1349#ifdef FORBIDDEN_INC_DEC_CLASSES
1350 free (in_inc_dec);
1351#endif
56a65848 1352 free (costs);
54dac99e
RK
1353}
1354\f
e4600702
RK
1355/* Record the cost of using memory or registers of various classes for
1356 the operands in INSN.
54dac99e 1357
e4600702 1358 N_ALTS is the number of alternatives.
54dac99e 1359
e4600702
RK
1360 N_OPS is the number of operands.
1361
1362 OPS is an array of the operands.
1363
1364 MODES are the modes of the operands, in case any are VOIDmode.
1365
1366 CONSTRAINTS are the constraints to use for the operands. This array
1367 is modified by this procedure.
1368
1369 This procedure works alternative by alternative. For each alternative
1370 we assume that we will be able to allocate all pseudos to their ideal
1371 register class and calculate the cost of using that alternative. Then
a6a2274a 1372 we compute for each operand that is a pseudo-register, the cost of
e4600702
RK
1373 having the pseudo allocated to each register class and using it in that
1374 alternative. To this cost is added the cost of the alternative.
1375
1376 The cost of each class for this insn is its lowest cost among all the
1377 alternatives. */
1378
1379static void
0c20a65f
AJ
1380record_reg_classes (int n_alts, int n_ops, rtx *ops,
1381 enum machine_mode *modes, const char **constraints,
1382 rtx insn, struct costs *op_costs,
1383 struct reg_pref *reg_pref)
54dac99e 1384{
e4600702 1385 int alt;
e4600702 1386 int i, j;
ec2d92af 1387 rtx set;
e4600702 1388
e4600702
RK
1389 /* Process each alternative, each time minimizing an operand's cost with
1390 the cost for each operand in that alternative. */
54dac99e 1391
e4600702 1392 for (alt = 0; alt < n_alts; alt++)
54dac99e 1393 {
e4600702
RK
1394 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1395 int alt_fail = 0;
1396 int alt_cost = 0;
1397 enum reg_class classes[MAX_RECOG_OPERANDS];
da2c0219 1398 int allows_mem[MAX_RECOG_OPERANDS];
e4600702 1399 int class;
54dac99e 1400
e4600702
RK
1401 for (i = 0; i < n_ops; i++)
1402 {
9b3142b3 1403 const char *p = constraints[i];
e4600702
RK
1404 rtx op = ops[i];
1405 enum machine_mode mode = modes[i];
94e6f783 1406 int allows_addr = 0;
e4600702 1407 int win = 0;
e51712db 1408 unsigned char c;
54dac99e 1409
7405d9a1
DE
1410 /* Initially show we know nothing about the register class. */
1411 classes[i] = NO_REGS;
da2c0219 1412 allows_mem[i] = 0;
7405d9a1 1413
a6a2274a 1414 /* If this operand has no constraints at all, we can conclude
e4600702 1415 nothing about it since anything is valid. */
54dac99e 1416
e4600702
RK
1417 if (*p == 0)
1418 {
1419 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
703ad42b 1420 memset (&this_op_costs[i], 0, sizeof this_op_costs[i]);
54dac99e 1421
e4600702
RK
1422 continue;
1423 }
54dac99e 1424
7405d9a1
DE
1425 /* If this alternative is only relevant when this operand
1426 matches a previous operand, we do different things depending
1427 on whether this operand is a pseudo-reg or not. We must process
1428 any modifiers for the operand before we can make this test. */
1429
8c368ee2 1430 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
0eadeb15 1431 p++;
8c368ee2 1432
e4600702
RK
1433 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1434 {
da2c0219
RK
1435 /* Copy class and whether memory is allowed from the matching
1436 alternative. Then perform any needed cost computations
1437 and/or adjustments. */
e4600702
RK
1438 j = p[0] - '0';
1439 classes[i] = classes[j];
da2c0219 1440 allows_mem[i] = allows_mem[j];
e4600702
RK
1441
1442 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1443 {
1444 /* If this matches the other operand, we have no added
dc903608 1445 cost and we win. */
e4600702 1446 if (rtx_equal_p (ops[j], op))
dc903608 1447 win = 1;
e4600702 1448
77e67eac
RK
1449 /* If we can put the other operand into a register, add to
1450 the cost of this alternative the cost to copy this
1451 operand to the register used for the other operand. */
e4600702 1452
dc903608 1453 else if (classes[j] != NO_REGS)
77e67eac 1454 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
e4600702 1455 }
07d8ca2d
RS
1456 else if (GET_CODE (ops[j]) != REG
1457 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1458 {
1459 /* This op is a pseudo but the one it matches is not. */
a6a2274a 1460
07d8ca2d
RS
1461 /* If we can't put the other operand into a register, this
1462 alternative can't be used. */
1463
1464 if (classes[j] == NO_REGS)
1465 alt_fail = 1;
e4600702 1466
07d8ca2d
RS
1467 /* Otherwise, add to the cost of this alternative the cost
1468 to copy the other operand to the register used for this
1469 operand. */
1470
1471 else
1472 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1473 }
e4600702
RK
1474 else
1475 {
da2c0219
RK
1476 /* The costs of this operand are not the same as the other
1477 operand since move costs are not symmetric. Moreover,
1478 if we cannot tie them, this alternative needs to do a
1479 copy, which is one instruction. */
1480
1481 struct costs *pp = &this_op_costs[i];
1482
1483 for (class = 0; class < N_REG_CLASSES; class++)
1484 pp->cost[class]
d5e2075d 1485 = ((recog_data.operand_type[i] != OP_OUT
e56b4594 1486 ? may_move_in_cost[mode][class][(int) classes[i]]
d5e2075d
JH
1487 : 0)
1488 + (recog_data.operand_type[i] != OP_IN
e56b4594 1489 ? may_move_out_cost[mode][(int) classes[i]][class]
d5e2075d 1490 : 0));
a6a2274a 1491
da2c0219
RK
1492 /* If the alternative actually allows memory, make things
1493 a bit cheaper since we won't need an extra insn to
1494 load it. */
1495
1496 pp->mem_cost
d5e2075d
JH
1497 = ((recog_data.operand_type[i] != OP_IN
1498 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1499 : 0)
1500 + (recog_data.operand_type[i] != OP_OUT
1501 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1502 : 0) - allows_mem[i]);
da2c0219
RK
1503
1504 /* If we have assigned a class to this register in our
1505 first pass, add a cost to this alternative corresponding
1506 to what we would add if this register were not in the
1507 appropriate class. */
1508
9ffc5a70 1509 if (reg_pref)
da2c0219 1510 alt_cost
e56b4594
AO
1511 += (may_move_in_cost[mode]
1512 [(unsigned char) reg_pref[REGNO (op)].prefclass]
da2c0219 1513 [(int) classes[i]]);
e4600702 1514
37747c82
RK
1515 if (REGNO (ops[i]) != REGNO (ops[j])
1516 && ! find_reg_note (insn, REG_DEAD, op))
1517 alt_cost += 2;
e4600702 1518
347099d6 1519 /* This is in place of ordinary cost computation
1ddb342a
RK
1520 for this operand, so skip to the end of the
1521 alternative (should be just one character). */
1522 while (*p && *p++ != ',')
1523 ;
1524
1525 constraints[i] = p;
347099d6
RS
1526 continue;
1527 }
e4600702
RK
1528 }
1529
1530 /* Scan all the constraint letters. See if the operand matches
1531 any of the constraints. Collect the valid register classes
1532 and see if this operand accepts memory. */
1533
97488870
R
1534 while ((c = *p))
1535 {
1536 switch (c)
1537 {
1538 case ',':
1539 break;
1540 case '*':
1541 /* Ignore the next letter for this pass. */
1542 c = *++p;
1543 break;
94e6f783 1544
97488870
R
1545 case '?':
1546 alt_cost += 2;
1547 case '!': case '#': case '&':
1548 case '0': case '1': case '2': case '3': case '4':
1549 case '5': case '6': case '7': case '8': case '9':
1550 break;
e4600702 1551
97488870
R
1552 case 'p':
1553 allows_addr = 1;
1554 win = address_operand (op, GET_MODE (op));
1555 /* We know this operand is an address, so we want it to be
1556 allocated to a register that can be the base of an
1557 address, ie BASE_REG_CLASS. */
1558 classes[i]
1559 = reg_class_subunion[(int) classes[i]]
1560 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1561 break;
e4600702 1562
97488870
R
1563 case 'm': case 'o': case 'V':
1564 /* It doesn't seem worth distinguishing between offsettable
1565 and non-offsettable addresses here. */
1566 allows_mem[i] = 1;
1567 if (GET_CODE (op) == MEM)
1568 win = 1;
1569 break;
e4600702 1570
97488870
R
1571 case '<':
1572 if (GET_CODE (op) == MEM
1573 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1574 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1575 win = 1;
1576 break;
e4600702 1577
97488870
R
1578 case '>':
1579 if (GET_CODE (op) == MEM
1580 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1581 || GET_CODE (XEXP (op, 0)) == POST_INC))
1582 win = 1;
1583 break;
e4600702 1584
97488870
R
1585 case 'E':
1586 case 'F':
1587 if (GET_CODE (op) == CONST_DOUBLE
1588 || (GET_CODE (op) == CONST_VECTOR
1589 && (GET_MODE_CLASS (GET_MODE (op))
1590 == MODE_VECTOR_FLOAT)))
1591 win = 1;
1592 break;
e4600702 1593
97488870
R
1594 case 'G':
1595 case 'H':
1596 if (GET_CODE (op) == CONST_DOUBLE
1597 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1598 win = 1;
e4600702 1599 break;
97488870
R
1600
1601 case 's':
1602 if (GET_CODE (op) == CONST_INT
1603 || (GET_CODE (op) == CONST_DOUBLE
1604 && GET_MODE (op) == VOIDmode))
1605 break;
1606 case 'i':
1607 if (CONSTANT_P (op)
e4600702 1608#ifdef LEGITIMATE_PIC_OPERAND_P
97488870 1609 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
e4600702 1610#endif
97488870
R
1611 )
1612 win = 1;
1613 break;
e4600702 1614
97488870
R
1615 case 'n':
1616 if (GET_CODE (op) == CONST_INT
1617 || (GET_CODE (op) == CONST_DOUBLE
1618 && GET_MODE (op) == VOIDmode))
1619 win = 1;
1620 break;
e4600702 1621
97488870
R
1622 case 'I':
1623 case 'J':
1624 case 'K':
1625 case 'L':
1626 case 'M':
1627 case 'N':
1628 case 'O':
1629 case 'P':
1630 if (GET_CODE (op) == CONST_INT
1631 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1632 win = 1;
1633 break;
e4600702 1634
97488870
R
1635 case 'X':
1636 win = 1;
1637 break;
54dac99e 1638
97488870
R
1639 case 'g':
1640 if (GET_CODE (op) == MEM
1641 || (CONSTANT_P (op)
e4600702 1642#ifdef LEGITIMATE_PIC_OPERAND_P
97488870 1643 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
54dac99e 1644#endif
97488870
R
1645 ))
1646 win = 1;
1647 allows_mem[i] = 1;
1648 case 'r':
c2cba7a9 1649 classes[i]
97488870
R
1650 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1651 break;
ccfc6cc8 1652
97488870
R
1653 default:
1654 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
ccfc6cc8
UW
1655 classes[i]
1656 = reg_class_subunion[(int) classes[i]]
97488870
R
1657 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1658#ifdef EXTRA_CONSTRAINT_STR
1659 else if (EXTRA_CONSTRAINT_STR (op, c, p))
1660 win = 1;
1661
1662 if (EXTRA_MEMORY_CONSTRAINT (c, p))
1663 {
1664 /* Every MEM can be reloaded to fit. */
1665 allows_mem[i] = 1;
1666 if (GET_CODE (op) == MEM)
1667 win = 1;
1668 }
1669 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1670 {
1671 /* Every address can be reloaded to fit. */
1672 allows_addr = 1;
1673 if (address_operand (op, GET_MODE (op)))
1674 win = 1;
1675 /* We know this operand is an address, so we want it to
1676 be allocated to a register that can be the base of an
1677 address, ie BASE_REG_CLASS. */
1678 classes[i]
1679 = reg_class_subunion[(int) classes[i]]
1680 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1681 }
c2cba7a9 1682#endif
97488870
R
1683 break;
1684 }
1685 p += CONSTRAINT_LEN (c, p);
1686 if (c == ',')
c2cba7a9 1687 break;
97488870 1688 }
e4600702
RK
1689
1690 constraints[i] = p;
1691
1692 /* How we account for this operand now depends on whether it is a
1693 pseudo register or not. If it is, we first check if any
1694 register classes are valid. If not, we ignore this alternative,
1695 since we want to assume that all pseudos get allocated for
1696 register preferencing. If some register class is valid, compute
1697 the costs of moving the pseudo into that class. */
1698
1699 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
4db18574 1700 {
e4600702 1701 if (classes[i] == NO_REGS)
94e6f783 1702 {
e79f71f7
GK
1703 /* We must always fail if the operand is a REG, but
1704 we did not find a suitable class.
a6a2274a 1705
e79f71f7
GK
1706 Otherwise we may perform an uninitialized read
1707 from this_op_costs after the `continue' statement
1708 below. */
1709 alt_fail = 1;
94e6f783 1710 }
e4600702
RK
1711 else
1712 {
1713 struct costs *pp = &this_op_costs[i];
1714
1715 for (class = 0; class < N_REG_CLASSES; class++)
14a774a9 1716 pp->cost[class]
d5e2075d 1717 = ((recog_data.operand_type[i] != OP_OUT
e56b4594 1718 ? may_move_in_cost[mode][class][(int) classes[i]]
d5e2075d
JH
1719 : 0)
1720 + (recog_data.operand_type[i] != OP_IN
e56b4594 1721 ? may_move_out_cost[mode][(int) classes[i]][class]
d5e2075d 1722 : 0));
e4600702
RK
1723
1724 /* If the alternative actually allows memory, make things
1725 a bit cheaper since we won't need an extra insn to
1726 load it. */
1727
14a774a9 1728 pp->mem_cost
d5e2075d
JH
1729 = ((recog_data.operand_type[i] != OP_IN
1730 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1731 : 0)
1732 + (recog_data.operand_type[i] != OP_OUT
1733 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1734 : 0) - allows_mem[i]);
e4600702
RK
1735
1736 /* If we have assigned a class to this register in our
1737 first pass, add a cost to this alternative corresponding
1738 to what we would add if this register were not in the
1739 appropriate class. */
1740
9ffc5a70 1741 if (reg_pref)
e4600702 1742 alt_cost
e56b4594
AO
1743 += (may_move_in_cost[mode]
1744 [(unsigned char) reg_pref[REGNO (op)].prefclass]
14a774a9 1745 [(int) classes[i]]);
e4600702 1746 }
4db18574 1747 }
54dac99e 1748
e4600702
RK
1749 /* Otherwise, if this alternative wins, either because we
1750 have already determined that or if we have a hard register of
1751 the proper class, there is no cost for this alternative. */
54dac99e 1752
e4600702
RK
1753 else if (win
1754 || (GET_CODE (op) == REG
6f654776 1755 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
e4600702 1756 ;
54dac99e 1757
e4600702
RK
1758 /* If registers are valid, the cost of this alternative includes
1759 copying the object to and/or from a register. */
54dac99e 1760
e4600702
RK
1761 else if (classes[i] != NO_REGS)
1762 {
1ccbefce 1763 if (recog_data.operand_type[i] != OP_OUT)
e4600702 1764 alt_cost += copy_cost (op, mode, classes[i], 1);
54dac99e 1765
1ccbefce 1766 if (recog_data.operand_type[i] != OP_IN)
e4600702
RK
1767 alt_cost += copy_cost (op, mode, classes[i], 0);
1768 }
54dac99e 1769
e4600702
RK
1770 /* The only other way this alternative can be used is if this is a
1771 constant that could be placed into memory. */
1772
da2c0219 1773 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
cbd5b9a2 1774 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
e4600702
RK
1775 else
1776 alt_fail = 1;
1777 }
1778
1779 if (alt_fail)
1780 continue;
1781
1782 /* Finally, update the costs with the information we've calculated
1783 about this alternative. */
1784
1785 for (i = 0; i < n_ops; i++)
1786 if (GET_CODE (ops[i]) == REG
1787 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
54dac99e 1788 {
e4600702 1789 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1ccbefce 1790 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
54dac99e 1791
e4600702
RK
1792 pp->mem_cost = MIN (pp->mem_cost,
1793 (qq->mem_cost + alt_cost) * scale);
54dac99e 1794
e4600702
RK
1795 for (class = 0; class < N_REG_CLASSES; class++)
1796 pp->cost[class] = MIN (pp->cost[class],
1797 (qq->cost[class] + alt_cost) * scale);
1798 }
1799 }
ec2d92af
RK
1800
1801 /* If this insn is a single set copying operand 1 to operand 0
accef103
JL
1802 and one operand is a pseudo with the other a hard reg or a pseudo
1803 that prefers a register that is in its own register class then
1804 we may want to adjust the cost of that register class to -1.
a6a2274a 1805
accef103 1806 Avoid the adjustment if the source does not die to avoid stressing of
4d6922ee 1807 register allocator by preferrencing two colliding registers into single
accef103
JL
1808 class.
1809
1810 Also avoid the adjustment if a copy between registers of the class
1811 is expensive (ten times the cost of a default copy is considered
1812 arbitrarily expensive). This avoids losing when the preferred class
1813 is very expensive as the source of a copy instruction. */
ec2d92af
RK
1814
1815 if ((set = single_set (insn)) != 0
1816 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
0dc0641b
JH
1817 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1818 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
ec2d92af
RK
1819 for (i = 0; i <= 1; i++)
1820 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1821 {
770ae6cc 1822 unsigned int regno = REGNO (ops[!i]);
ec2d92af
RK
1823 enum machine_mode mode = GET_MODE (ops[!i]);
1824 int class;
770ae6cc 1825 unsigned int nr;
ec2d92af 1826
accef103
JL
1827 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1828 {
1829 enum reg_class pref = reg_pref[regno].prefclass;
1830
1831 if ((reg_class_size[(unsigned char) pref]
f7043461 1832 == (unsigned) CLASS_MAX_NREGS (pref, mode))
e56b4594 1833 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
accef103
JL
1834 op_costs[i].cost[(unsigned char) pref] = -1;
1835 }
ec2d92af
RK
1836 else if (regno < FIRST_PSEUDO_REGISTER)
1837 for (class = 0; class < N_REG_CLASSES; class++)
1838 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
f7043461 1839 && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
4841ba4b
RK
1840 {
1841 if (reg_class_size[class] == 1)
1842 op_costs[i].cost[class] = -1;
1843 else
1844 {
f7043461 1845 for (nr = 0; nr < (unsigned) HARD_REGNO_NREGS (regno, mode); nr++)
4841ba4b 1846 {
770ae6cc
RK
1847 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1848 regno + nr))
4841ba4b
RK
1849 break;
1850 }
1851
f7043461 1852 if (nr == (unsigned) HARD_REGNO_NREGS (regno,mode))
4841ba4b
RK
1853 op_costs[i].cost[class] = -1;
1854 }
1855 }
ec2d92af 1856 }
54dac99e 1857}
e4600702 1858\f
40f03658 1859/* Compute the cost of loading X into (if TO_P is nonzero) or from (if
e4600702
RK
1860 TO_P is zero) a register of class CLASS in mode MODE.
1861
1862 X must not be a pseudo. */
1863
1864static int
0c20a65f
AJ
1865copy_cost (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1866 enum reg_class class, int to_p ATTRIBUTE_UNUSED)
e4600702 1867{
29a82058 1868#ifdef HAVE_SECONDARY_RELOADS
e4600702 1869 enum reg_class secondary_class = NO_REGS;
29a82058 1870#endif
e4600702
RK
1871
1872 /* If X is a SCRATCH, there is actually nothing to move since we are
1873 assuming optimal allocation. */
1874
1875 if (GET_CODE (x) == SCRATCH)
1876 return 0;
1877
1878 /* Get the class we will actually use for a reload. */
1879 class = PREFERRED_RELOAD_CLASS (x, class);
1880
1881#ifdef HAVE_SECONDARY_RELOADS
a6a2274a 1882 /* If we need a secondary reload (we assume here that we are using
e4600702
RK
1883 the secondary reload as an intermediate, not a scratch register), the
1884 cost is that to load the input into the intermediate register, then
1885 to copy them. We use a special value of TO_P to avoid recursion. */
1886
1887#ifdef SECONDARY_INPUT_RELOAD_CLASS
1888 if (to_p == 1)
1889 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1890#endif
1891
dd9f0e8f 1892#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
e4600702
RK
1893 if (! to_p)
1894 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1895#endif
1896
1897 if (secondary_class != NO_REGS)
e56b4594 1898 return (move_cost[mode][(int) secondary_class][(int) class]
e4600702 1899 + copy_cost (x, mode, secondary_class, 2));
dd9f0e8f 1900#endif /* HAVE_SECONDARY_RELOADS */
e4600702
RK
1901
1902 /* For memory, use the memory move cost, for (hard) registers, use the
1903 cost to move between the register classes, and use 2 for everything
1904 else (constants). */
1905
1906 if (GET_CODE (x) == MEM || class == NO_REGS)
cbd5b9a2 1907 return MEMORY_MOVE_COST (mode, class, to_p);
54dac99e 1908
e4600702 1909 else if (GET_CODE (x) == REG)
e56b4594 1910 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
e4600702
RK
1911
1912 else
1913 /* If this is a constant, we may eventually want to call rtx_cost here. */
b437f1a7 1914 return COSTS_N_INSNS (1);
e4600702
RK
1915}
1916\f
54dac99e
RK
1917/* Record the pseudo registers we must reload into hard registers
1918 in a subexpression of a memory address, X.
e4600702
RK
1919
1920 CLASS is the class that the register needs to be in and is either
1921 BASE_REG_CLASS or INDEX_REG_CLASS.
1922
1923 SCALE is twice the amount to multiply the cost by (it is twice so we
1924 can represent half-cost adjustments). */
54dac99e 1925
197d6480 1926static void
0c20a65f 1927record_address_regs (rtx x, enum reg_class class, int scale)
54dac99e 1928{
b3694847 1929 enum rtx_code code = GET_CODE (x);
54dac99e
RK
1930
1931 switch (code)
1932 {
1933 case CONST_INT:
1934 case CONST:
1935 case CC0:
1936 case PC:
1937 case SYMBOL_REF:
1938 case LABEL_REF:
1939 return;
1940
1941 case PLUS:
1942 /* When we have an address that is a sum,
1943 we must determine whether registers are "base" or "index" regs.
1944 If there is a sum of two registers, we must choose one to be
3502dc9c
JDA
1945 the "base". Luckily, we can use the REG_POINTER to make a good
1946 choice most of the time. We only need to do this on machines
1947 that can have two registers in an address and where the base
1948 and index register classes are different.
e4600702
RK
1949
1950 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1951 that seems bogus since it should only be set when we are sure
1952 the register is being used as a pointer. */
1953
54dac99e
RK
1954 {
1955 rtx arg0 = XEXP (x, 0);
1956 rtx arg1 = XEXP (x, 1);
b3694847
SS
1957 enum rtx_code code0 = GET_CODE (arg0);
1958 enum rtx_code code1 = GET_CODE (arg1);
54dac99e
RK
1959
1960 /* Look inside subregs. */
e4600702 1961 if (code0 == SUBREG)
54dac99e 1962 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
e4600702 1963 if (code1 == SUBREG)
54dac99e
RK
1964 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1965
e4600702
RK
1966 /* If this machine only allows one register per address, it must
1967 be in the first operand. */
1968
1969 if (MAX_REGS_PER_ADDRESS == 1)
1970 record_address_regs (arg0, class, scale);
1971
1972 /* If index and base registers are the same on this machine, just
1973 record registers in any non-constant operands. We assume here,
a6a2274a 1974 as well as in the tests below, that all addresses are in
e4600702
RK
1975 canonical form. */
1976
3dcc68a4 1977 else if (INDEX_REG_CLASS == MODE_BASE_REG_CLASS (VOIDmode))
54dac99e 1978 {
e4600702
RK
1979 record_address_regs (arg0, class, scale);
1980 if (! CONSTANT_P (arg1))
1981 record_address_regs (arg1, class, scale);
54dac99e 1982 }
e4600702
RK
1983
1984 /* If the second operand is a constant integer, it doesn't change
1985 what class the first operand must be. */
1986
1987 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1988 record_address_regs (arg0, class, scale);
1989
1990 /* If the second operand is a symbolic constant, the first operand
1991 must be an index register. */
1992
1993 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1994 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1995
956d6950
JL
1996 /* If both operands are registers but one is already a hard register
1997 of index or base class, give the other the class that the hard
1998 register is not. */
1999
3f9e9508 2000#ifdef REG_OK_FOR_BASE_P
956d6950
JL
2001 else if (code0 == REG && code1 == REG
2002 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2003 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
2004 record_address_regs (arg1,
2005 REG_OK_FOR_BASE_P (arg0)
3dcc68a4 2006 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
956d6950
JL
2007 scale);
2008 else if (code0 == REG && code1 == REG
2009 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2010 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
2011 record_address_regs (arg0,
2012 REG_OK_FOR_BASE_P (arg1)
3dcc68a4 2013 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
956d6950 2014 scale);
3f9e9508 2015#endif
956d6950 2016
e9a25f70
JL
2017 /* If one operand is known to be a pointer, it must be the base
2018 with the other operand the index. Likewise if the other operand
2019 is a MULT. */
f22376c7 2020
3502dc9c 2021 else if ((code0 == REG && REG_POINTER (arg0))
e9a25f70 2022 || code1 == MULT)
f22376c7 2023 {
3dcc68a4 2024 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode), scale);
f22376c7
CI
2025 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2026 }
3502dc9c 2027 else if ((code1 == REG && REG_POINTER (arg1))
e9a25f70 2028 || code0 == MULT)
f22376c7
CI
2029 {
2030 record_address_regs (arg0, INDEX_REG_CLASS, scale);
3dcc68a4 2031 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode), scale);
f22376c7
CI
2032 }
2033
e9a25f70 2034 /* Otherwise, count equal chances that each might be a base
e4600702
RK
2035 or index register. This case should be rare. */
2036
e9a25f70 2037 else
54dac99e 2038 {
3dcc68a4
NC
2039 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode),
2040 scale / 2);
e4600702 2041 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
3dcc68a4
NC
2042 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode),
2043 scale / 2);
e4600702 2044 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
54dac99e 2045 }
54dac99e
RK
2046 }
2047 break;
2048
4b983fdc
RH
2049 /* Double the importance of a pseudo register that is incremented
2050 or decremented, since it would take two extra insns
2051 if it ends up in the wrong place. */
2052 case POST_MODIFY:
2053 case PRE_MODIFY:
3dcc68a4
NC
2054 record_address_regs (XEXP (x, 0), MODE_BASE_REG_CLASS (VOIDmode),
2055 2 * scale);
4b983fdc
RH
2056 if (REG_P (XEXP (XEXP (x, 1), 1)))
2057 record_address_regs (XEXP (XEXP (x, 1), 1),
2058 INDEX_REG_CLASS, 2 * scale);
2059 break;
2060
54dac99e
RK
2061 case POST_INC:
2062 case PRE_INC:
2063 case POST_DEC:
2064 case PRE_DEC:
2065 /* Double the importance of a pseudo register that is incremented
2066 or decremented, since it would take two extra insns
533d0835
RK
2067 if it ends up in the wrong place. If the operand is a pseudo,
2068 show it is being used in an INC_DEC context. */
2069
2070#ifdef FORBIDDEN_INC_DEC_CLASSES
2071 if (GET_CODE (XEXP (x, 0)) == REG
2072 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2073 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2074#endif
e4600702
RK
2075
2076 record_address_regs (XEXP (x, 0), class, 2 * scale);
54dac99e
RK
2077 break;
2078
2079 case REG:
2080 {
b3694847
SS
2081 struct costs *pp = &costs[REGNO (x)];
2082 int i;
54dac99e 2083
cbd5b9a2 2084 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
54dac99e 2085
e4600702 2086 for (i = 0; i < N_REG_CLASSES; i++)
e56b4594 2087 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
54dac99e
RK
2088 }
2089 break;
2090
2091 default:
2092 {
b3694847
SS
2093 const char *fmt = GET_RTX_FORMAT (code);
2094 int i;
54dac99e
RK
2095 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2096 if (fmt[i] == 'e')
e4600702 2097 record_address_regs (XEXP (x, i), class, scale);
54dac99e
RK
2098 }
2099 }
2100}
08d95f91
RK
2101\f
2102#ifdef FORBIDDEN_INC_DEC_CLASSES
2103
2104/* Return 1 if REG is valid as an auto-increment memory reference
2105 to an object of MODE. */
2106
1d300e19 2107static int
0c20a65f 2108auto_inc_dec_reg_p (rtx reg, enum machine_mode mode)
08d95f91 2109{
940da324
JL
2110 if (HAVE_POST_INCREMENT
2111 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
08d95f91 2112 return 1;
08d95f91 2113
940da324
JL
2114 if (HAVE_POST_DECREMENT
2115 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
08d95f91 2116 return 1;
08d95f91 2117
940da324
JL
2118 if (HAVE_PRE_INCREMENT
2119 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
08d95f91 2120 return 1;
08d95f91 2121
940da324
JL
2122 if (HAVE_PRE_DECREMENT
2123 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
08d95f91 2124 return 1;
08d95f91
RK
2125
2126 return 0;
2127}
2128#endif
b1f21e0a 2129\f
da668e9c
MM
2130static short *renumber;
2131static size_t regno_allocated;
2132static unsigned int reg_n_max;
ed396e68 2133
b1f21e0a
MM
2134/* Allocate enough space to hold NUM_REGS registers for the tables used for
2135 reg_scan and flow_analysis that are indexed by the register number. If
88cad84b 2136 NEW_P is nonzero, initialize all of the registers, otherwise only
39379e67
MM
2137 initialize the new registers allocated. The same table is kept from
2138 function to function, only reallocating it when we need more room. If
88cad84b 2139 RENUMBER_P is nonzero, allocate the reg_renumber array also. */
b1f21e0a
MM
2140
2141void
0c20a65f 2142allocate_reg_info (size_t num_regs, int new_p, int renumber_p)
b1f21e0a 2143{
6feacd09
MM
2144 size_t size_info;
2145 size_t size_renumber;
2146 size_t min = (new_p) ? 0 : reg_n_max;
2147 struct reg_info_data *reg_data;
39379e67 2148
b1f21e0a
MM
2149 if (num_regs > regno_allocated)
2150 {
6feacd09
MM
2151 size_t old_allocated = regno_allocated;
2152
938d968e 2153 regno_allocated = num_regs + (num_regs / 20); /* Add some slop space. */
39379e67
MM
2154 size_renumber = regno_allocated * sizeof (short);
2155
2156 if (!reg_n_info)
2157 {
6feacd09 2158 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
703ad42b
KG
2159 renumber = xmalloc (size_renumber);
2160 reg_pref_buffer = xmalloc (regno_allocated
2161 * sizeof (struct reg_pref));
39379e67
MM
2162 }
2163
2164 else
2165 {
6feacd09
MM
2166 VARRAY_GROW (reg_n_info, regno_allocated);
2167
938d968e 2168 if (new_p) /* If we're zapping everything, no need to realloc. */
6feacd09 2169 {
8e2e89f7
KH
2170 free ((char *) renumber);
2171 free ((char *) reg_pref);
703ad42b
KG
2172 renumber = xmalloc (size_renumber);
2173 reg_pref_buffer = xmalloc (regno_allocated
2174 * sizeof (struct reg_pref));
6feacd09
MM
2175 }
2176
2177 else
2178 {
703ad42b
KG
2179 renumber = xrealloc (renumber, size_renumber);
2180 reg_pref_buffer = xrealloc (reg_pref_buffer,
2181 regno_allocated
2182 * sizeof (struct reg_pref));
6feacd09 2183 }
39379e67 2184 }
6feacd09
MM
2185
2186 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2187 + sizeof (struct reg_info_data) - sizeof (reg_info);
703ad42b 2188 reg_data = xcalloc (size_info, 1);
6feacd09
MM
2189 reg_data->min_index = old_allocated;
2190 reg_data->max_index = regno_allocated - 1;
2191 reg_data->next = reg_info_head;
2192 reg_info_head = reg_data;
b1f21e0a
MM
2193 }
2194
6feacd09 2195 reg_n_max = num_regs;
b1f21e0a
MM
2196 if (min < num_regs)
2197 {
6feacd09
MM
2198 /* Loop through each of the segments allocated for the actual
2199 reg_info pages, and set up the pointers, zero the pages, etc. */
a6a2274a 2200 for (reg_data = reg_info_head;
da668e9c
MM
2201 reg_data && reg_data->max_index >= min;
2202 reg_data = reg_data->next)
39379e67 2203 {
6feacd09
MM
2204 size_t min_index = reg_data->min_index;
2205 size_t max_index = reg_data->max_index;
da668e9c
MM
2206 size_t max = MIN (max_index, num_regs);
2207 size_t local_min = min - min_index;
2208 size_t i;
6feacd09 2209
da668e9c
MM
2210 if (reg_data->min_index > num_regs)
2211 continue;
6feacd09 2212
da668e9c
MM
2213 if (min < min_index)
2214 local_min = 0;
2215 if (!reg_data->used_p) /* page just allocated with calloc */
2216 reg_data->used_p = 1; /* no need to zero */
2217 else
703ad42b
KG
2218 memset (&reg_data->data[local_min], 0,
2219 sizeof (reg_info) * (max - min_index - local_min + 1));
da668e9c
MM
2220
2221 for (i = min_index+local_min; i <= max; i++)
2222 {
2223 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2224 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2225 renumber[i] = -1;
2226 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2227 reg_pref_buffer[i].altclass = (char) NO_REGS;
6feacd09 2228 }
39379e67 2229 }
b1f21e0a
MM
2230 }
2231
6feacd09
MM
2232 /* If {pref,alt}class have already been allocated, update the pointers to
2233 the newly realloced ones. */
9ffc5a70
JH
2234 if (reg_pref)
2235 reg_pref = reg_pref_buffer;
6feacd09 2236
39379e67
MM
2237 if (renumber_p)
2238 reg_renumber = renumber;
2239
3eae4643 2240 /* Tell the regset code about the new number of registers. */
73b76448 2241 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
b1f21e0a
MM
2242}
2243
ed396e68
BS
2244/* Free up the space allocated by allocate_reg_info. */
2245void
0c20a65f 2246free_reg_info (void)
ed396e68
BS
2247{
2248 if (reg_n_info)
2249 {
2250 struct reg_info_data *reg_data;
2251 struct reg_info_data *reg_next;
2252
2253 VARRAY_FREE (reg_n_info);
2254 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2255 {
2256 reg_next = reg_data->next;
8e2e89f7 2257 free ((char *) reg_data);
ed396e68
BS
2258 }
2259
9ffc5a70 2260 free (reg_pref_buffer);
f4f4d0f8
KH
2261 reg_pref_buffer = (struct reg_pref *) 0;
2262 reg_info_head = (struct reg_info_data *) 0;
2263 renumber = (short *) 0;
ed396e68
BS
2264 }
2265 regno_allocated = 0;
2266 reg_n_max = 0;
2267}
54dac99e
RK
2268\f
2269/* This is the `regscan' pass of the compiler, run just before cse
2270 and again just before loop.
2271
2272 It finds the first and last use of each pseudo-register
2273 and records them in the vectors regno_first_uid, regno_last_uid
2274 and counts the number of sets in the vector reg_n_sets.
2275
2276 REPEAT is nonzero the second time this is called. */
2277
54dac99e 2278/* Maximum number of parallel sets and clobbers in any insn in this fn.
d22d5f34 2279 Always at least 3, since the combiner could put that many together
79b9ec0d
RK
2280 and we want this to remain correct for all the remaining passes.
2281 This corresponds to the maximum number of times note_stores will call
2282 a function for any insn. */
54dac99e
RK
2283
2284int max_parallel;
2285
a6a2274a 2286/* Used as a temporary to record the largest number of registers in
79b9ec0d
RK
2287 PARALLEL in a SET_DEST. This is added to max_parallel. */
2288
2289static int max_set_parallel;
2290
54dac99e 2291void
0c20a65f 2292reg_scan (rtx f, unsigned int nregs, int repeat ATTRIBUTE_UNUSED)
54dac99e 2293{
b3694847 2294 rtx insn;
54dac99e 2295
28cb2b14
RS
2296 timevar_push (TV_REG_SCAN);
2297
39379e67 2298 allocate_reg_info (nregs, TRUE, FALSE);
54dac99e 2299 max_parallel = 3;
79b9ec0d 2300 max_set_parallel = 0;
54dac99e
RK
2301
2302 for (insn = f; insn; insn = NEXT_INSN (insn))
28cb2b14 2303 if (INSN_P (insn))
54dac99e 2304 {
28cb2b14
RS
2305 rtx pat = PATTERN (insn);
2306 if (GET_CODE (pat) == PARALLEL
2307 && XVECLEN (pat, 0) > max_parallel)
2308 max_parallel = XVECLEN (pat, 0);
2309 reg_scan_mark_refs (pat, insn, 0, 0);
01565a55
RK
2310
2311 if (REG_NOTES (insn))
f903b91f
DM
2312 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2313 }
79b9ec0d
RK
2314
2315 max_parallel += max_set_parallel;
0d446150
JH
2316
2317 timevar_pop (TV_REG_SCAN);
f903b91f
DM
2318}
2319
2320/* Update 'regscan' information by looking at the insns
2321 from FIRST to LAST. Some new REGs have been created,
2322 and any REG with number greater than OLD_MAX_REGNO is
2323 such a REG. We only update information for those. */
2324
2325void
0c20a65f 2326reg_scan_update (rtx first, rtx last, unsigned int old_max_regno)
f903b91f 2327{
b3694847 2328 rtx insn;
f903b91f
DM
2329
2330 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2331
2332 for (insn = first; insn != last; insn = NEXT_INSN (insn))
28cb2b14 2333 if (INSN_P (insn))
f903b91f 2334 {
28cb2b14
RS
2335 rtx pat = PATTERN (insn);
2336 if (GET_CODE (pat) == PARALLEL
2337 && XVECLEN (pat, 0) > max_parallel)
2338 max_parallel = XVECLEN (pat, 0);
2339 reg_scan_mark_refs (pat, insn, 0, old_max_regno);
f903b91f
DM
2340
2341 if (REG_NOTES (insn))
2342 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
54dac99e
RK
2343 }
2344}
2345
1ebecb64 2346/* X is the expression to scan. INSN is the insn it appears in.
f903b91f
DM
2347 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2348 We should only record information for REGs with numbers
2349 greater than or equal to MIN_REGNO. */
1ebecb64 2350
08d95f91 2351static void
0c20a65f 2352reg_scan_mark_refs (rtx x, rtx insn, int note_flag, unsigned int min_regno)
54dac99e 2353{
b3694847
SS
2354 enum rtx_code code;
2355 rtx dest;
2356 rtx note;
54dac99e 2357
ed8d2920
MM
2358 if (!x)
2359 return;
fa23c636 2360 code = GET_CODE (x);
54dac99e
RK
2361 switch (code)
2362 {
54dac99e 2363 case CONST:
185ebd6c 2364 case CONST_INT:
54dac99e 2365 case CONST_DOUBLE:
69ef87e2 2366 case CONST_VECTOR:
54dac99e
RK
2367 case CC0:
2368 case PC:
2369 case SYMBOL_REF:
2370 case LABEL_REF:
2371 case ADDR_VEC:
2372 case ADDR_DIFF_VEC:
2373 return;
2374
2375 case REG:
2376 {
770ae6cc 2377 unsigned int regno = REGNO (x);
54dac99e 2378
f903b91f
DM
2379 if (regno >= min_regno)
2380 {
2381 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2382 if (!note_flag)
2383 REGNO_LAST_UID (regno) = INSN_UID (insn);
2384 if (REGNO_FIRST_UID (regno) == 0)
2385 REGNO_FIRST_UID (regno) = INSN_UID (insn);
ed8d2920
MM
2386 /* If we are called by reg_scan_update() (indicated by min_regno
2387 being set), we also need to update the reference count. */
2388 if (min_regno)
2389 REG_N_REFS (regno)++;
f903b91f 2390 }
54dac99e
RK
2391 }
2392 break;
2393
01565a55 2394 case EXPR_LIST:
7b18c3db 2395 if (XEXP (x, 0))
f903b91f 2396 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
01565a55 2397 if (XEXP (x, 1))
f903b91f 2398 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
01565a55
RK
2399 break;
2400
2401 case INSN_LIST:
2402 if (XEXP (x, 1))
f903b91f 2403 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
01565a55
RK
2404 break;
2405
ed8d2920
MM
2406 case CLOBBER:
2407 {
2408 rtx reg = XEXP (x, 0);
2409 if (REG_P (reg)
2410 && REGNO (reg) >= min_regno)
2411 {
2412 REG_N_SETS (REGNO (reg))++;
2413 REG_N_REFS (REGNO (reg))++;
2414 }
2415 }
2416 break;
2417
54dac99e
RK
2418 case SET:
2419 /* Count a set of the destination if it is a register. */
2420 for (dest = SET_DEST (x);
2421 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2422 || GET_CODE (dest) == ZERO_EXTEND;
2423 dest = XEXP (dest, 0))
2424 ;
2425
79b9ec0d
RK
2426 /* For a PARALLEL, record the number of things (less the usual one for a
2427 SET) that are set. */
2428 if (GET_CODE (dest) == PARALLEL)
2429 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2430
f903b91f
DM
2431 if (GET_CODE (dest) == REG
2432 && REGNO (dest) >= min_regno)
b2d57793
DB
2433 {
2434 REG_N_SETS (REGNO (dest))++;
2435 REG_N_REFS (REGNO (dest))++;
2436 }
54dac99e 2437
be8dcd74
RK
2438 /* If this is setting a pseudo from another pseudo or the sum of a
2439 pseudo and a constant integer and the other pseudo is known to be
2440 a pointer, set the destination to be a pointer as well.
2441
2442 Likewise if it is setting the destination from an address or from a
2443 value equivalent to an address or to the sum of an address and
2444 something else.
a6a2274a 2445
be8dcd74
RK
2446 But don't do any of this if the pseudo corresponds to a user
2447 variable since it should have already been set as a pointer based
2448 on the type. */
2449
2450 if (GET_CODE (SET_DEST (x)) == REG
2451 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
f903b91f 2452 && REGNO (SET_DEST (x)) >= min_regno
64d3b4ca
JL
2453 /* If the destination pseudo is set more than once, then other
2454 sets might not be to a pointer value (consider access to a
d55d8fc7 2455 union in two threads of control in the presence of global
3502dc9c 2456 optimizations). So only set REG_POINTER on the destination
64d3b4ca
JL
2457 pseudo if this is the only set of that pseudo. */
2458 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
be8dcd74 2459 && ! REG_USERVAR_P (SET_DEST (x))
3502dc9c 2460 && ! REG_POINTER (SET_DEST (x))
be8dcd74 2461 && ((GET_CODE (SET_SRC (x)) == REG
3502dc9c 2462 && REG_POINTER (SET_SRC (x)))
be8dcd74
RK
2463 || ((GET_CODE (SET_SRC (x)) == PLUS
2464 || GET_CODE (SET_SRC (x)) == LO_SUM)
2465 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2466 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3502dc9c 2467 && REG_POINTER (XEXP (SET_SRC (x), 0)))
be8dcd74
RK
2468 || GET_CODE (SET_SRC (x)) == CONST
2469 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2470 || GET_CODE (SET_SRC (x)) == LABEL_REF
2471 || (GET_CODE (SET_SRC (x)) == HIGH
2472 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2473 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2474 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2475 || ((GET_CODE (SET_SRC (x)) == PLUS
2476 || GET_CODE (SET_SRC (x)) == LO_SUM)
2477 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2478 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2479 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2480 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2481 && (GET_CODE (XEXP (note, 0)) == CONST
2482 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2483 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
3502dc9c 2484 REG_POINTER (SET_DEST (x)) = 1;
be8dcd74 2485
0d4903b8 2486 /* If this is setting a register from a register or from a simple
a560d4d4 2487 conversion of a register, propagate REG_EXPR. */
0d4903b8
RK
2488 if (GET_CODE (dest) == REG)
2489 {
2490 rtx src = SET_SRC (x);
2491
2492 while (GET_CODE (src) == SIGN_EXTEND
2493 || GET_CODE (src) == ZERO_EXTEND
2494 || GET_CODE (src) == TRUNCATE
2495 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2496 src = XEXP (src, 0);
2497
a560d4d4
JH
2498 if (!REG_ATTRS (dest) && REG_P (src))
2499 REG_ATTRS (dest) = REG_ATTRS (src);
2500 if (!REG_ATTRS (dest) && GET_CODE (src) == MEM)
2501 set_reg_attrs_from_mem (dest, src);
0d4903b8
RK
2502 }
2503
0f41302f 2504 /* ... fall through ... */
54dac99e
RK
2505
2506 default:
2507 {
b3694847
SS
2508 const char *fmt = GET_RTX_FORMAT (code);
2509 int i;
54dac99e
RK
2510 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2511 {
2512 if (fmt[i] == 'e')
f903b91f 2513 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
54dac99e
RK
2514 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2515 {
b3694847 2516 int j;
54dac99e 2517 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
f903b91f 2518 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
54dac99e
RK
2519 }
2520 }
2521 }
2522 }
2523}
2524\f
2525/* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2526 is also in C2. */
2527
2528int
0c20a65f 2529reg_class_subset_p (enum reg_class c1, enum reg_class c2)
54dac99e
RK
2530{
2531 if (c1 == c2) return 1;
2532
2533 if (c2 == ALL_REGS)
2534 win:
2535 return 1;
8e2e89f7
KH
2536 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2537 reg_class_contents[(int) c2],
54dac99e
RK
2538 win);
2539 return 0;
2540}
2541
2542/* Return nonzero if there is a register that is in both C1 and C2. */
2543
2544int
0c20a65f 2545reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
54dac99e
RK
2546{
2547#ifdef HARD_REG_SET
2548 register
2549#endif
2550 HARD_REG_SET c;
2551
2552 if (c1 == c2) return 1;
2553
2554 if (c1 == ALL_REGS || c2 == ALL_REGS)
2555 return 1;
2556
2557 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2558 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2559
2560 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2561 return 1;
2562
2563 lose:
2564 return 0;
2565}
2566
73b76448
RK
2567/* Release any memory allocated by register sets. */
2568
2569void
0c20a65f 2570regset_release_memory (void)
73b76448 2571{
73b76448
RK
2572 bitmap_release_memory ();
2573}
e2500fed 2574
cff9f8d5
AH
2575#ifdef CANNOT_CHANGE_MODE_CLASS
2576/* Set bits in *USED which correspond to registers which can't change
2577 their mode from FROM to any mode in which REGNO was encountered. */
2578
2579void
0c20a65f
AJ
2580cannot_change_mode_set_regs (HARD_REG_SET *used, enum machine_mode from,
2581 unsigned int regno)
cff9f8d5
AH
2582{
2583 enum machine_mode to;
10a3fdd9
JH
2584 int n, i;
2585 int start = regno * MAX_MACHINE_MODE;
cff9f8d5 2586
10a3fdd9
JH
2587 EXECUTE_IF_SET_IN_BITMAP (&subregs_of_mode, start, n,
2588 if (n >= MAX_MACHINE_MODE + start)
2589 return;
2590 to = n - start;
2591 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2592 if (! TEST_HARD_REG_BIT (*used, i)
2593 && REG_CANNOT_CHANGE_MODE_P (i, from, to))
2594 SET_HARD_REG_BIT (*used, i);
2595 );
cff9f8d5
AH
2596}
2597
2598/* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2599 mode. */
2600
2601bool
0c20a65f
AJ
2602invalid_mode_change_p (unsigned int regno, enum reg_class class,
2603 enum machine_mode from_mode)
cff9f8d5
AH
2604{
2605 enum machine_mode to_mode;
10a3fdd9
JH
2606 int n;
2607 int start = regno * MAX_MACHINE_MODE;
2608
2609 EXECUTE_IF_SET_IN_BITMAP (&subregs_of_mode, start, n,
2610 if (n >= MAX_MACHINE_MODE + start)
2611 return 0;
2612 to_mode = n - start;
2613 if (CANNOT_CHANGE_MODE_CLASS (from_mode, to_mode, class))
cff9f8d5 2614 return 1;
10a3fdd9 2615 );
cff9f8d5
AH
2616 return 0;
2617}
2618#endif /* CANNOT_CHANGE_MODE_CLASS */
2619
e2500fed 2620#include "gt-regclass.h"