]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/reload.c
typo typo fixes fixes
[thirdparty/gcc.git] / gcc / reload.c
CommitLineData
eab89b90 1/* Search an insn for pseudo regs that must be in hard regs and are not.
e5e809f4 2 Copyright (C) 1987, 88, 89, 92-97, 1998 Free Software Foundation, Inc.
eab89b90
RK
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
e99215a3
RK
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
eab89b90
RK
20
21
22/* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
28
29 Before processing the first insn of the function, call `init_reload'.
30
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
37
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
44
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
53
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
56
57NOTE SIDE EFFECTS:
58
59 find_reloads can alter the operands of the instruction it is called on.
60
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
65
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
68
691 happens every time find_reloads is called.
702 happens only when REPLACE is 1, which is only when
71actually doing the reloads, not when just counting them.
72
73
74Using a reload register for several reloads in one insn:
75
76When an insn has reloads, it is considered as having three parts:
77the input reloads, the insn itself after reloading, and the output reloads.
78Reloads of values used in memory addresses are often needed for only one part.
79
80When this is so, reload_when_needed records which part needs the reload.
81Two reloads for different parts of the insn can share the same reload
82register.
83
84When a reload is used for addresses in multiple parts, or when it is
85an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86a register with any other reload. */
87
88#define REG_OK_STRICT
89
90#include "config.h"
670ee920 91#include "system.h"
eab89b90
RK
92#include "rtl.h"
93#include "insn-config.h"
94#include "insn-codes.h"
95#include "recog.h"
96#include "reload.h"
97#include "regs.h"
98#include "hard-reg-set.h"
99#include "flags.h"
100#include "real.h"
8a840ac9 101#include "output.h"
55c22565 102#include "expr.h"
10f0ad3d 103#include "toplev.h"
eab89b90
RK
104
105#ifndef REGISTER_MOVE_COST
106#define REGISTER_MOVE_COST(x, y) 2
107#endif
858c3c8c
ILT
108
109#ifndef REGNO_MODE_OK_FOR_BASE_P
110#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
111#endif
112
113#ifndef REG_MODE_OK_FOR_BASE_P
114#define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
115#endif
eab89b90
RK
116\f
117/* The variables set up by `find_reloads' are:
118
119 n_reloads number of distinct reloads needed; max reload # + 1
120 tables indexed by reload number
121 reload_in rtx for value to reload from
122 reload_out rtx for where to store reload-reg afterward if nec
123 (often the same as reload_in)
124 reload_reg_class enum reg_class, saying what regs to reload into
125 reload_inmode enum machine_mode; mode this operand should have
126 when reloaded, on input.
127 reload_outmode enum machine_mode; mode this operand should have
128 when reloaded, on output.
eab89b90
RK
129 reload_optional char, nonzero for an optional reload.
130 Optional reloads are ignored unless the
131 value is already sitting in a register.
f5963e61
JL
132 reload_nongroup char, nonzero when a reload must use a register
133 not already allocated to a group.
eab89b90
RK
134 reload_inc int, positive amount to increment or decrement by if
135 reload_in is a PRE_DEC, PRE_INC, POST_DEC, POST_INC.
136 Ignored otherwise (don't assume it is zero).
137 reload_in_reg rtx. A reg for which reload_in is the equivalent.
138 If reload_in is a symbol_ref which came from
139 reg_equiv_constant, then this is the pseudo
140 which has that symbol_ref as equivalent.
141 reload_reg_rtx rtx. This is the register to reload into.
142 If it is zero when `find_reloads' returns,
143 you must find a suitable register in the class
144 specified by reload_reg_class, and store here
145 an rtx for that register with mode from
146 reload_inmode or reload_outmode.
147 reload_nocombine char, nonzero if this reload shouldn't be
148 combined with another reload.
a8c9daeb
RK
149 reload_opnum int, operand number being reloaded. This is
150 used to group related reloads and need not always
151 be equal to the actual operand number in the insn,
152 though it current will be; for in-out operands, it
153 is one of the two operand numbers.
154 reload_when_needed enum, classifies reload as needed either for
eab89b90
RK
155 addressing an input reload, addressing an output,
156 for addressing a non-reloaded mem ref,
157 or for unspecified purposes (i.e., more than one
158 of the above).
eab89b90 159 reload_secondary_p int, 1 if this is a secondary register for one
9ec7078b
RK
160 or more reloads.
161 reload_secondary_in_reload
162 reload_secondary_out_reload
163 int, gives the reload number of a secondary
164 reload, when needed; otherwise -1
165 reload_secondary_in_icode
166 reload_secondary_out_icode
167 enum insn_code, if a secondary reload is required,
eab89b90
RK
168 gives the INSN_CODE that uses the secondary
169 reload as a scratch register, or CODE_FOR_nothing
170 if the secondary reload register is to be an
171 intermediate register. */
172int n_reloads;
173
174rtx reload_in[MAX_RELOADS];
175rtx reload_out[MAX_RELOADS];
176enum reg_class reload_reg_class[MAX_RELOADS];
177enum machine_mode reload_inmode[MAX_RELOADS];
178enum machine_mode reload_outmode[MAX_RELOADS];
eab89b90
RK
179rtx reload_reg_rtx[MAX_RELOADS];
180char reload_optional[MAX_RELOADS];
f5963e61 181char reload_nongroup[MAX_RELOADS];
eab89b90
RK
182int reload_inc[MAX_RELOADS];
183rtx reload_in_reg[MAX_RELOADS];
184char reload_nocombine[MAX_RELOADS];
a8c9daeb
RK
185int reload_opnum[MAX_RELOADS];
186enum reload_type reload_when_needed[MAX_RELOADS];
eab89b90 187int reload_secondary_p[MAX_RELOADS];
9ec7078b
RK
188int reload_secondary_in_reload[MAX_RELOADS];
189int reload_secondary_out_reload[MAX_RELOADS];
190enum insn_code reload_secondary_in_icode[MAX_RELOADS];
191enum insn_code reload_secondary_out_icode[MAX_RELOADS];
eab89b90
RK
192
193/* All the "earlyclobber" operands of the current insn
194 are recorded here. */
195int n_earlyclobbers;
196rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
197
a8c9daeb
RK
198int reload_n_operands;
199
eab89b90
RK
200/* Replacing reloads.
201
202 If `replace_reloads' is nonzero, then as each reload is recorded
203 an entry is made for it in the table `replacements'.
204 Then later `subst_reloads' can look through that table and
205 perform all the replacements needed. */
206
207/* Nonzero means record the places to replace. */
208static int replace_reloads;
209
210/* Each replacement is recorded with a structure like this. */
211struct replacement
212{
213 rtx *where; /* Location to store in */
214 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
215 a SUBREG; 0 otherwise. */
216 int what; /* which reload this is for */
217 enum machine_mode mode; /* mode it must have */
218};
219
220static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
221
222/* Number of replacements currently recorded. */
223static int n_replacements;
224
a8c9daeb
RK
225/* Used to track what is modified by an operand. */
226struct decomposition
227{
0f41302f
MS
228 int reg_flag; /* Nonzero if referencing a register. */
229 int safe; /* Nonzero if this can't conflict with anything. */
230 rtx base; /* Base address for MEM. */
231 HOST_WIDE_INT start; /* Starting offset or register number. */
2a6d5ce0 232 HOST_WIDE_INT end; /* Ending offset or register number. */
a8c9daeb
RK
233};
234
eab89b90
RK
235/* MEM-rtx's created for pseudo-regs in stack slots not directly addressable;
236 (see reg_equiv_address). */
237static rtx memlocs[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
238static int n_memlocs;
239
0dadecf6
RK
240#ifdef SECONDARY_MEMORY_NEEDED
241
242/* Save MEMs needed to copy from one class of registers to another. One MEM
243 is used per mode, but normally only one or two modes are ever used.
244
a8c9daeb
RK
245 We keep two versions, before and after register elimination. The one
246 after register elimination is record separately for each operand. This
247 is done in case the address is not valid to be sure that we separately
248 reload each. */
0dadecf6
RK
249
250static rtx secondary_memlocs[NUM_MACHINE_MODES];
77545d45 251static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
0dadecf6
RK
252#endif
253
eab89b90
RK
254/* The instruction we are doing reloads for;
255 so we can test whether a register dies in it. */
256static rtx this_insn;
257
258/* Nonzero if this instruction is a user-specified asm with operands. */
259static int this_insn_is_asm;
260
261/* If hard_regs_live_known is nonzero,
262 we can tell which hard regs are currently live,
263 at least enough to succeed in choosing dummy reloads. */
264static int hard_regs_live_known;
265
266/* Indexed by hard reg number,
956d6950 267 element is nonnegative if hard reg has been spilled.
eab89b90
RK
268 This vector is passed to `find_reloads' as an argument
269 and is not changed here. */
270static short *static_reload_reg_p;
271
272/* Set to 1 in subst_reg_equivs if it changes anything. */
273static int subst_reg_equivs_changed;
274
275/* On return from push_reload, holds the reload-number for the OUT
276 operand, which can be different for that from the input operand. */
277static int output_reloadnum;
278
9ec7078b
RK
279 /* Compare two RTX's. */
280#define MATCHES(x, y) \
281 (x == y || (x != 0 && (GET_CODE (x) == REG \
282 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
283 : rtx_equal_p (x, y) && ! side_effects_p (x))))
284
285 /* Indicates if two reloads purposes are for similar enough things that we
286 can merge their reloads. */
287#define MERGABLE_RELOADS(when1, when2, op1, op2) \
288 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
289 || ((when1) == (when2) && (op1) == (op2)) \
290 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
291 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
292 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
293 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
294 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
295
296 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
297#define MERGE_TO_OTHER(when1, when2, op1, op2) \
298 ((when1) != (when2) \
299 || ! ((op1) == (op2) \
300 || (when1) == RELOAD_FOR_INPUT \
301 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
302 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
303
47c8cf91
ILT
304 /* If we are going to reload an address, compute the reload type to
305 use. */
306#define ADDR_TYPE(type) \
307 ((type) == RELOAD_FOR_INPUT_ADDRESS \
308 ? RELOAD_FOR_INPADDR_ADDRESS \
309 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
310 ? RELOAD_FOR_OUTADDR_ADDRESS \
311 : (type)))
312
56c5d8bf 313#ifdef HAVE_SECONDARY_RELOADS
9ec7078b
RK
314static int push_secondary_reload PROTO((int, rtx, int, int, enum reg_class,
315 enum machine_mode, enum reload_type,
316 enum insn_code *));
56c5d8bf 317#endif
c6716840 318static enum reg_class find_valid_class PROTO((enum machine_mode, int));
a8c9daeb
RK
319static int push_reload PROTO((rtx, rtx, rtx *, rtx *, enum reg_class,
320 enum machine_mode, enum machine_mode,
321 int, int, int, enum reload_type));
322static void push_replacement PROTO((rtx *, int, enum machine_mode));
323static void combine_reloads PROTO((void));
324static rtx find_dummy_reload PROTO((rtx, rtx, rtx *, rtx *,
36b50568 325 enum machine_mode, enum machine_mode,
189086f9 326 enum reg_class, int, int));
4644aad4 327static int earlyclobber_operand_p PROTO((rtx));
a8c9daeb
RK
328static int hard_reg_set_here_p PROTO((int, int, rtx));
329static struct decomposition decompose PROTO((rtx));
330static int immune_p PROTO((rtx, rtx, struct decomposition));
331static int alternative_allows_memconst PROTO((char *, int));
332static rtx find_reloads_toplev PROTO((rtx, int, enum reload_type, int, int));
333static rtx make_memloc PROTO((rtx, int));
334static int find_reloads_address PROTO((enum machine_mode, rtx *, rtx, rtx *,
55c22565 335 int, enum reload_type, int, rtx));
a8c9daeb
RK
336static rtx subst_reg_equivs PROTO((rtx));
337static rtx subst_indexed_address PROTO((rtx));
858c3c8c 338static int find_reloads_address_1 PROTO((enum machine_mode, rtx, int, rtx *,
55c22565 339 int, enum reload_type,int, rtx));
a8c9daeb
RK
340static void find_reloads_address_part PROTO((rtx, rtx *, enum reg_class,
341 enum machine_mode, int,
342 enum reload_type, int));
343static int find_inc_amount PROTO((rtx, rtx));
eab89b90
RK
344\f
345#ifdef HAVE_SECONDARY_RELOADS
346
347/* Determine if any secondary reloads are needed for loading (if IN_P is
348 non-zero) or storing (if IN_P is zero) X to or from a reload register of
9ec7078b
RK
349 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
350 are needed, push them.
351
352 Return the reload number of the secondary reload we made, or -1 if
353 we didn't need one. *PICODE is set to the insn_code to use if we do
354 need a secondary reload. */
355
356static int
357push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
358 type, picode)
359 int in_p;
eab89b90 360 rtx x;
9ec7078b
RK
361 int opnum;
362 int optional;
eab89b90
RK
363 enum reg_class reload_class;
364 enum machine_mode reload_mode;
9ec7078b 365 enum reload_type type;
eab89b90 366 enum insn_code *picode;
eab89b90
RK
367{
368 enum reg_class class = NO_REGS;
369 enum machine_mode mode = reload_mode;
370 enum insn_code icode = CODE_FOR_nothing;
371 enum reg_class t_class = NO_REGS;
372 enum machine_mode t_mode = VOIDmode;
373 enum insn_code t_icode = CODE_FOR_nothing;
d94d2abc 374 enum reload_type secondary_type;
9ec7078b
RK
375 int s_reload, t_reload = -1;
376
47c8cf91
ILT
377 if (type == RELOAD_FOR_INPUT_ADDRESS
378 || type == RELOAD_FOR_OUTPUT_ADDRESS
379 || type == RELOAD_FOR_INPADDR_ADDRESS
380 || type == RELOAD_FOR_OUTADDR_ADDRESS)
d94d2abc
RK
381 secondary_type = type;
382 else
383 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
384
9ec7078b 385 *picode = CODE_FOR_nothing;
eab89b90 386
67340b03
RK
387 /* If X is a paradoxical SUBREG, use the inner value to determine both the
388 mode and object being reloaded. */
389 if (GET_CODE (x) == SUBREG
390 && (GET_MODE_SIZE (GET_MODE (x))
391 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
392 {
393 x = SUBREG_REG (x);
394 reload_mode = GET_MODE (x);
395 }
396
d45cf215
RS
397 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
398 is still a pseudo-register by now, it *must* have an equivalent MEM
399 but we don't want to assume that), use that equivalent when seeing if
400 a secondary reload is needed since whether or not a reload is needed
401 might be sensitive to the form of the MEM. */
402
403 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
404 && reg_equiv_mem[REGNO (x)] != 0)
405 x = reg_equiv_mem[REGNO (x)];
406
eab89b90
RK
407#ifdef SECONDARY_INPUT_RELOAD_CLASS
408 if (in_p)
409 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
410#endif
411
412#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
413 if (! in_p)
414 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
415#endif
416
9ec7078b 417 /* If we don't need any secondary registers, done. */
eab89b90 418 if (class == NO_REGS)
9ec7078b 419 return -1;
eab89b90
RK
420
421 /* Get a possible insn to use. If the predicate doesn't accept X, don't
422 use the insn. */
423
424 icode = (in_p ? reload_in_optab[(int) reload_mode]
425 : reload_out_optab[(int) reload_mode]);
426
427 if (icode != CODE_FOR_nothing
428 && insn_operand_predicate[(int) icode][in_p]
429 && (! (insn_operand_predicate[(int) icode][in_p]) (x, reload_mode)))
430 icode = CODE_FOR_nothing;
431
432 /* If we will be using an insn, see if it can directly handle the reload
433 register we will be using. If it can, the secondary reload is for a
434 scratch register. If it can't, we will use the secondary reload for
435 an intermediate register and require a tertiary reload for the scratch
436 register. */
437
438 if (icode != CODE_FOR_nothing)
439 {
440 /* If IN_P is non-zero, the reload register will be the output in
441 operand 0. If IN_P is zero, the reload register will be the input
442 in operand 1. Outputs should have an initial "=", which we must
443 skip. */
444
d45cf215 445 char insn_letter = insn_operand_constraint[(int) icode][!in_p][in_p];
eab89b90 446 enum reg_class insn_class
d45cf215
RS
447 = (insn_letter == 'r' ? GENERAL_REGS
448 : REG_CLASS_FROM_LETTER (insn_letter));
eab89b90
RK
449
450 if (insn_class == NO_REGS
451 || (in_p && insn_operand_constraint[(int) icode][!in_p][0] != '=')
452 /* The scratch register's constraint must start with "=&". */
453 || insn_operand_constraint[(int) icode][2][0] != '='
454 || insn_operand_constraint[(int) icode][2][1] != '&')
455 abort ();
456
457 if (reg_class_subset_p (reload_class, insn_class))
458 mode = insn_operand_mode[(int) icode][2];
459 else
460 {
d45cf215 461 char t_letter = insn_operand_constraint[(int) icode][2][2];
eab89b90
RK
462 class = insn_class;
463 t_mode = insn_operand_mode[(int) icode][2];
d45cf215
RS
464 t_class = (t_letter == 'r' ? GENERAL_REGS
465 : REG_CLASS_FROM_LETTER (t_letter));
eab89b90
RK
466 t_icode = icode;
467 icode = CODE_FOR_nothing;
468 }
469 }
470
9ec7078b
RK
471 /* This case isn't valid, so fail. Reload is allowed to use the same
472 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
473 in the case of a secondary register, we actually need two different
474 registers for correct code. We fail here to prevent the possibility of
475 silently generating incorrect code later.
476
477 The convention is that secondary input reloads are valid only if the
478 secondary_class is different from class. If you have such a case, you
479 can not use secondary reloads, you must work around the problem some
480 other way.
481
482 Allow this when MODE is not reload_mode and assume that the generated
483 code handles this case (it does on the Alpha, which is the only place
484 this currently happens). */
485
486 if (in_p && class == reload_class && mode == reload_mode)
487 abort ();
488
489 /* If we need a tertiary reload, see if we have one we can reuse or else
490 make a new one. */
491
492 if (t_class != NO_REGS)
493 {
494 for (t_reload = 0; t_reload < n_reloads; t_reload++)
495 if (reload_secondary_p[t_reload]
496 && (reg_class_subset_p (t_class, reload_reg_class[t_reload])
497 || reg_class_subset_p (reload_reg_class[t_reload], t_class))
498 && ((in_p && reload_inmode[t_reload] == t_mode)
499 || (! in_p && reload_outmode[t_reload] == t_mode))
500 && ((in_p && (reload_secondary_in_icode[t_reload]
501 == CODE_FOR_nothing))
502 || (! in_p &&(reload_secondary_out_icode[t_reload]
503 == CODE_FOR_nothing)))
e9a25f70 504 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
9ec7078b
RK
505 && MERGABLE_RELOADS (secondary_type,
506 reload_when_needed[t_reload],
507 opnum, reload_opnum[t_reload]))
508 {
509 if (in_p)
510 reload_inmode[t_reload] = t_mode;
511 if (! in_p)
512 reload_outmode[t_reload] = t_mode;
513
514 if (reg_class_subset_p (t_class, reload_reg_class[t_reload]))
515 reload_reg_class[t_reload] = t_class;
516
517 reload_opnum[t_reload] = MIN (reload_opnum[t_reload], opnum);
518 reload_optional[t_reload] &= optional;
519 reload_secondary_p[t_reload] = 1;
520 if (MERGE_TO_OTHER (secondary_type, reload_when_needed[t_reload],
521 opnum, reload_opnum[t_reload]))
522 reload_when_needed[t_reload] = RELOAD_OTHER;
523 }
524
525 if (t_reload == n_reloads)
526 {
527 /* We need to make a new tertiary reload for this register class. */
528 reload_in[t_reload] = reload_out[t_reload] = 0;
529 reload_reg_class[t_reload] = t_class;
530 reload_inmode[t_reload] = in_p ? t_mode : VOIDmode;
531 reload_outmode[t_reload] = ! in_p ? t_mode : VOIDmode;
532 reload_reg_rtx[t_reload] = 0;
533 reload_optional[t_reload] = optional;
f5963e61 534 reload_nongroup[t_reload] = 0;
9ec7078b
RK
535 reload_inc[t_reload] = 0;
536 /* Maybe we could combine these, but it seems too tricky. */
537 reload_nocombine[t_reload] = 1;
538 reload_in_reg[t_reload] = 0;
539 reload_opnum[t_reload] = opnum;
540 reload_when_needed[t_reload] = secondary_type;
541 reload_secondary_in_reload[t_reload] = -1;
542 reload_secondary_out_reload[t_reload] = -1;
543 reload_secondary_in_icode[t_reload] = CODE_FOR_nothing;
544 reload_secondary_out_icode[t_reload] = CODE_FOR_nothing;
545 reload_secondary_p[t_reload] = 1;
546
547 n_reloads++;
548 }
549 }
550
551 /* See if we can reuse an existing secondary reload. */
552 for (s_reload = 0; s_reload < n_reloads; s_reload++)
553 if (reload_secondary_p[s_reload]
554 && (reg_class_subset_p (class, reload_reg_class[s_reload])
555 || reg_class_subset_p (reload_reg_class[s_reload], class))
556 && ((in_p && reload_inmode[s_reload] == mode)
557 || (! in_p && reload_outmode[s_reload] == mode))
558 && ((in_p && reload_secondary_in_reload[s_reload] == t_reload)
559 || (! in_p && reload_secondary_out_reload[s_reload] == t_reload))
560 && ((in_p && reload_secondary_in_icode[s_reload] == t_icode)
561 || (! in_p && reload_secondary_out_icode[s_reload] == t_icode))
e9a25f70 562 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
9ec7078b
RK
563 && MERGABLE_RELOADS (secondary_type, reload_when_needed[s_reload],
564 opnum, reload_opnum[s_reload]))
565 {
566 if (in_p)
567 reload_inmode[s_reload] = mode;
568 if (! in_p)
569 reload_outmode[s_reload] = mode;
570
571 if (reg_class_subset_p (class, reload_reg_class[s_reload]))
572 reload_reg_class[s_reload] = class;
573
574 reload_opnum[s_reload] = MIN (reload_opnum[s_reload], opnum);
575 reload_optional[s_reload] &= optional;
576 reload_secondary_p[s_reload] = 1;
577 if (MERGE_TO_OTHER (secondary_type, reload_when_needed[s_reload],
578 opnum, reload_opnum[s_reload]))
579 reload_when_needed[s_reload] = RELOAD_OTHER;
580 }
eab89b90 581
9ec7078b
RK
582 if (s_reload == n_reloads)
583 {
e9a25f70
JL
584#ifdef SECONDARY_MEMORY_NEEDED
585 /* If we need a memory location to copy between the two reload regs,
586 set it up now. Note that we do the input case before making
587 the reload and the output case after. This is due to the
588 way reloads are output. */
589
590 if (in_p && icode == CODE_FOR_nothing
591 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
592 get_secondary_mem (x, reload_mode, opnum, type);
593#endif
594
9ec7078b
RK
595 /* We need to make a new secondary reload for this register class. */
596 reload_in[s_reload] = reload_out[s_reload] = 0;
597 reload_reg_class[s_reload] = class;
598
599 reload_inmode[s_reload] = in_p ? mode : VOIDmode;
600 reload_outmode[s_reload] = ! in_p ? mode : VOIDmode;
601 reload_reg_rtx[s_reload] = 0;
602 reload_optional[s_reload] = optional;
f5963e61 603 reload_nongroup[s_reload] = 0;
9ec7078b
RK
604 reload_inc[s_reload] = 0;
605 /* Maybe we could combine these, but it seems too tricky. */
606 reload_nocombine[s_reload] = 1;
607 reload_in_reg[s_reload] = 0;
608 reload_opnum[s_reload] = opnum;
609 reload_when_needed[s_reload] = secondary_type;
610 reload_secondary_in_reload[s_reload] = in_p ? t_reload : -1;
611 reload_secondary_out_reload[s_reload] = ! in_p ? t_reload : -1;
612 reload_secondary_in_icode[s_reload] = in_p ? t_icode : CODE_FOR_nothing;
613 reload_secondary_out_icode[s_reload]
614 = ! in_p ? t_icode : CODE_FOR_nothing;
615 reload_secondary_p[s_reload] = 1;
616
617 n_reloads++;
618
619#ifdef SECONDARY_MEMORY_NEEDED
9ec7078b 620 if (! in_p && icode == CODE_FOR_nothing
f49e4127
JW
621 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
622 get_secondary_mem (x, mode, opnum, type);
9ec7078b
RK
623#endif
624 }
625
626 *picode = icode;
627 return s_reload;
eab89b90
RK
628}
629#endif /* HAVE_SECONDARY_RELOADS */
630\f
0dadecf6
RK
631#ifdef SECONDARY_MEMORY_NEEDED
632
633/* Return a memory location that will be used to copy X in mode MODE.
634 If we haven't already made a location for this mode in this insn,
635 call find_reloads_address on the location being returned. */
636
637rtx
a8c9daeb 638get_secondary_mem (x, mode, opnum, type)
0dadecf6
RK
639 rtx x;
640 enum machine_mode mode;
a8c9daeb
RK
641 int opnum;
642 enum reload_type type;
0dadecf6
RK
643{
644 rtx loc;
645 int mem_valid;
646
64609742
RK
647 /* By default, if MODE is narrower than a word, widen it to a word.
648 This is required because most machines that require these memory
649 locations do not support short load and stores from all registers
650 (e.g., FP registers). */
651
652#ifdef SECONDARY_MEMORY_NEEDED_MODE
653 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
654#else
0dadecf6
RK
655 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
656 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
64609742 657#endif
0dadecf6 658
77545d45
RK
659 /* If we already have made a MEM for this operand in MODE, return it. */
660 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
661 return secondary_memlocs_elim[(int) mode][opnum];
0dadecf6
RK
662
663 /* If this is the first time we've tried to get a MEM for this mode,
664 allocate a new one. `something_changed' in reload will get set
665 by noticing that the frame size has changed. */
666
667 if (secondary_memlocs[(int) mode] == 0)
b24a53d5
JW
668 {
669#ifdef SECONDARY_MEMORY_NEEDED_RTX
670 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
671#else
672 secondary_memlocs[(int) mode]
673 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
674#endif
675 }
0dadecf6
RK
676
677 /* Get a version of the address doing any eliminations needed. If that
678 didn't give us a new MEM, make a new one if it isn't valid. */
679
1914f5da 680 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
0dadecf6
RK
681 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
682
683 if (! mem_valid && loc == secondary_memlocs[(int) mode])
684 loc = copy_rtx (loc);
685
686 /* The only time the call below will do anything is if the stack
687 offset is too large. In that case IND_LEVELS doesn't matter, so we
a8c9daeb
RK
688 can just pass a zero. Adjust the type to be the address of the
689 corresponding object. If the address was valid, save the eliminated
690 address. If it wasn't valid, we need to make a reload each time, so
691 don't save it. */
0dadecf6 692
a8c9daeb
RK
693 if (! mem_valid)
694 {
695 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
696 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
697 : RELOAD_OTHER);
8d618585 698
a8c9daeb 699 find_reloads_address (mode, NULL_PTR, XEXP (loc, 0), &XEXP (loc, 0),
55c22565 700 opnum, type, 0, 0);
a8c9daeb 701 }
0dadecf6 702
77545d45 703 secondary_memlocs_elim[(int) mode][opnum] = loc;
0dadecf6
RK
704 return loc;
705}
706
707/* Clear any secondary memory locations we've made. */
708
709void
710clear_secondary_mem ()
711{
4c9a05bc 712 bzero ((char *) secondary_memlocs, sizeof secondary_memlocs);
0dadecf6
RK
713}
714#endif /* SECONDARY_MEMORY_NEEDED */
715\f
c6716840
RK
716/* Find the largest class for which every register number plus N is valid in
717 M1 (if in range). Abort if no such class exists. */
718
719static enum reg_class
720find_valid_class (m1, n)
721 enum machine_mode m1;
722 int n;
723{
724 int class;
725 int regno;
726 enum reg_class best_class;
727 int best_size = 0;
728
729 for (class = 1; class < N_REG_CLASSES; class++)
730 {
731 int bad = 0;
732 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
733 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
734 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
735 && ! HARD_REGNO_MODE_OK (regno + n, m1))
736 bad = 1;
737
738 if (! bad && reg_class_size[class] > best_size)
739 best_class = class, best_size = reg_class_size[class];
740 }
741
742 if (best_size == 0)
743 abort ();
744
745 return best_class;
746}
747\f
a8c9daeb 748/* Record one reload that needs to be performed.
eab89b90
RK
749 IN is an rtx saying where the data are to be found before this instruction.
750 OUT says where they must be stored after the instruction.
751 (IN is zero for data not read, and OUT is zero for data not written.)
752 INLOC and OUTLOC point to the places in the instructions where
753 IN and OUT were found.
a8c9daeb
RK
754 If IN and OUT are both non-zero, it means the same register must be used
755 to reload both IN and OUT.
756
eab89b90
RK
757 CLASS is a register class required for the reloaded data.
758 INMODE is the machine mode that the instruction requires
759 for the reg that replaces IN and OUTMODE is likewise for OUT.
760
761 If IN is zero, then OUT's location and mode should be passed as
762 INLOC and INMODE.
763
764 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
765
766 OPTIONAL nonzero means this reload does not need to be performed:
767 it can be discarded if that is more convenient.
768
a8c9daeb
RK
769 OPNUM and TYPE say what the purpose of this reload is.
770
eab89b90
RK
771 The return value is the reload-number for this reload.
772
773 If both IN and OUT are nonzero, in some rare cases we might
774 want to make two separate reloads. (Actually we never do this now.)
775 Therefore, the reload-number for OUT is stored in
776 output_reloadnum when we return; the return value applies to IN.
777 Usually (presently always), when IN and OUT are nonzero,
778 the two reload-numbers are equal, but the caller should be careful to
779 distinguish them. */
780
781static int
782push_reload (in, out, inloc, outloc, class,
a8c9daeb 783 inmode, outmode, strict_low, optional, opnum, type)
eab89b90
RK
784 register rtx in, out;
785 rtx *inloc, *outloc;
786 enum reg_class class;
787 enum machine_mode inmode, outmode;
788 int strict_low;
789 int optional;
a8c9daeb
RK
790 int opnum;
791 enum reload_type type;
eab89b90
RK
792{
793 register int i;
794 int dont_share = 0;
74347d76 795 int dont_remove_subreg = 0;
eab89b90 796 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
9ec7078b 797 int secondary_in_reload = -1, secondary_out_reload = -1;
a229128d
RK
798 enum insn_code secondary_in_icode = CODE_FOR_nothing;
799 enum insn_code secondary_out_icode = CODE_FOR_nothing;
a8c9daeb 800
eab89b90
RK
801 /* INMODE and/or OUTMODE could be VOIDmode if no mode
802 has been specified for the operand. In that case,
803 use the operand's mode as the mode to reload. */
804 if (inmode == VOIDmode && in != 0)
805 inmode = GET_MODE (in);
806 if (outmode == VOIDmode && out != 0)
807 outmode = GET_MODE (out);
808
809 /* If IN is a pseudo register everywhere-equivalent to a constant, and
810 it is not in a hard register, reload straight from the constant,
811 since we want to get rid of such pseudo registers.
812 Often this is done earlier, but not always in find_reloads_address. */
813 if (in != 0 && GET_CODE (in) == REG)
814 {
815 register int regno = REGNO (in);
816
817 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
818 && reg_equiv_constant[regno] != 0)
819 in = reg_equiv_constant[regno];
820 }
821
822 /* Likewise for OUT. Of course, OUT will never be equivalent to
823 an actual constant, but it might be equivalent to a memory location
824 (in the case of a parameter). */
825 if (out != 0 && GET_CODE (out) == REG)
826 {
827 register int regno = REGNO (out);
828
829 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
830 && reg_equiv_constant[regno] != 0)
831 out = reg_equiv_constant[regno];
832 }
833
834 /* If we have a read-write operand with an address side-effect,
835 change either IN or OUT so the side-effect happens only once. */
836 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
837 {
838 if (GET_CODE (XEXP (in, 0)) == POST_INC
839 || GET_CODE (XEXP (in, 0)) == POST_DEC)
38a448ca 840 in = gen_rtx_MEM (GET_MODE (in), XEXP (XEXP (in, 0), 0));
eab89b90
RK
841 if (GET_CODE (XEXP (in, 0)) == PRE_INC
842 || GET_CODE (XEXP (in, 0)) == PRE_DEC)
38a448ca 843 out = gen_rtx_MEM (GET_MODE (out), XEXP (XEXP (out, 0), 0));
eab89b90
RK
844 }
845
a61c98cf 846 /* If we are reloading a (SUBREG constant ...), really reload just the
ca769828 847 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
a61c98cf
RK
848 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
849 a pseudo and hence will become a MEM) with M1 wider than M2 and the
850 register is a pseudo, also reload the inside expression.
f72ccbe6 851 For machines that extend byte loads, do this for any SUBREG of a pseudo
486d8509
RK
852 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
853 M2 is an integral mode that gets extended when loaded.
86c31b2d 854 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
eab89b90
RK
855 either M1 is not valid for R or M2 is wider than a word but we only
856 need one word to store an M2-sized quantity in R.
86c31b2d
RS
857 (However, if OUT is nonzero, we need to reload the reg *and*
858 the subreg, so do nothing here, and let following statement handle it.)
859
eab89b90
RK
860 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
861 we can't handle it here because CONST_INT does not indicate a mode.
862
863 Similarly, we must reload the inside expression if we have a
df62f951
RK
864 STRICT_LOW_PART (presumably, in == out in the cas).
865
866 Also reload the inner expression if it does not require a secondary
486d8509
RK
867 reload but the SUBREG does.
868
869 Finally, reload the inner expression if it is a register that is in
870 the class whose registers cannot be referenced in a different size
d030f4b2
RK
871 and M1 is not the same size as M2. If SUBREG_WORD is nonzero, we
872 cannot reload just the inside since we might end up with the wrong
0f41302f 873 register class. */
eab89b90 874
d030f4b2 875 if (in != 0 && GET_CODE (in) == SUBREG && SUBREG_WORD (in) == 0
94bafba7
RK
876#ifdef CLASS_CANNOT_CHANGE_SIZE
877 && class != CLASS_CANNOT_CHANGE_SIZE
878#endif
a61c98cf 879 && (CONSTANT_P (SUBREG_REG (in))
ca769828 880 || GET_CODE (SUBREG_REG (in)) == PLUS
eab89b90 881 || strict_low
a61c98cf
RK
882 || (((GET_CODE (SUBREG_REG (in)) == REG
883 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
884 || GET_CODE (SUBREG_REG (in)) == MEM)
03b72c86
RK
885 && ((GET_MODE_SIZE (inmode)
886 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
09bf0250 887#ifdef LOAD_EXTEND_OP
03b72c86
RK
888 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
889 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
890 <= UNITS_PER_WORD)
891 && (GET_MODE_SIZE (inmode)
486d8509
RK
892 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
893 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
894 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
d2c92f5a
R
895#endif
896#ifdef WORD_REGISTER_OPERATIONS
897 || ((GET_MODE_SIZE (inmode)
898 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
899 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
900 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
901 / UNITS_PER_WORD)))
f72ccbe6 902#endif
03b72c86 903 ))
a61c98cf
RK
904 || (GET_CODE (SUBREG_REG (in)) == REG
905 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
86c31b2d
RS
906 /* The case where out is nonzero
907 is handled differently in the following statement. */
908 && (out == 0 || SUBREG_WORD (in) == 0)
f72ccbe6
RK
909 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
910 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
911 > UNITS_PER_WORD)
912 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
913 / UNITS_PER_WORD)
914 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
915 GET_MODE (SUBREG_REG (in)))))
916 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (in))
917 + SUBREG_WORD (in)),
918 inmode)))
df62f951
RK
919#ifdef SECONDARY_INPUT_RELOAD_CLASS
920 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
921 && (SECONDARY_INPUT_RELOAD_CLASS (class,
922 GET_MODE (SUBREG_REG (in)),
923 SUBREG_REG (in))
924 == NO_REGS))
486d8509
RK
925#endif
926#ifdef CLASS_CANNOT_CHANGE_SIZE
927 || (GET_CODE (SUBREG_REG (in)) == REG
928 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
929 && (TEST_HARD_REG_BIT
930 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
931 REGNO (SUBREG_REG (in))))
932 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
933 != GET_MODE_SIZE (inmode)))
df62f951
RK
934#endif
935 ))
eab89b90
RK
936 {
937 in_subreg_loc = inloc;
938 inloc = &SUBREG_REG (in);
939 in = *inloc;
d2c92f5a 940#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
eab89b90
RK
941 if (GET_CODE (in) == MEM)
942 /* This is supposed to happen only for paradoxical subregs made by
943 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
944 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
945 abort ();
e05a9da8 946#endif
eab89b90
RK
947 inmode = GET_MODE (in);
948 }
949
86c31b2d
RS
950 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
951 either M1 is not valid for R or M2 is wider than a word but we only
952 need one word to store an M2-sized quantity in R.
953
954 However, we must reload the inner reg *as well as* the subreg in
955 that case. */
956
6fd5ac08
JW
957 /* Similar issue for (SUBREG constant ...) if it was not handled by the
958 code above. This can happen if SUBREG_WORD != 0. */
959
86c31b2d 960 if (in != 0 && GET_CODE (in) == SUBREG
6fd5ac08
JW
961 && (CONSTANT_P (SUBREG_REG (in))
962 || (GET_CODE (SUBREG_REG (in)) == REG
963 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
964 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (in))
965 + SUBREG_WORD (in),
966 inmode)
967 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
968 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
969 > UNITS_PER_WORD)
970 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
971 / UNITS_PER_WORD)
972 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
973 GET_MODE (SUBREG_REG (in)))))))))
86c31b2d 974 {
c96d01ab
RK
975 /* This relies on the fact that emit_reload_insns outputs the
976 instructions for input reloads of type RELOAD_OTHER in the same
977 order as the reloads. Thus if the outer reload is also of type
978 RELOAD_OTHER, we are guaranteed that this inner reload will be
979 output before the outer reload. */
86c31b2d 980 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), NULL_PTR,
c6716840
RK
981 find_valid_class (inmode, SUBREG_WORD (in)),
982 VOIDmode, VOIDmode, 0, 0, opnum, type);
74347d76 983 dont_remove_subreg = 1;
86c31b2d
RS
984 }
985
eab89b90
RK
986 /* Similarly for paradoxical and problematical SUBREGs on the output.
987 Note that there is no reason we need worry about the previous value
988 of SUBREG_REG (out); even if wider than out,
989 storing in a subreg is entitled to clobber it all
990 (except in the case of STRICT_LOW_PART,
991 and in that case the constraint should label it input-output.) */
d030f4b2 992 if (out != 0 && GET_CODE (out) == SUBREG && SUBREG_WORD (out) == 0
94bafba7
RK
993#ifdef CLASS_CANNOT_CHANGE_SIZE
994 && class != CLASS_CANNOT_CHANGE_SIZE
995#endif
a61c98cf 996 && (CONSTANT_P (SUBREG_REG (out))
eab89b90 997 || strict_low
a61c98cf
RK
998 || (((GET_CODE (SUBREG_REG (out)) == REG
999 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1000 || GET_CODE (SUBREG_REG (out)) == MEM)
03b72c86 1001 && ((GET_MODE_SIZE (outmode)
1914f5da
RH
1002 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1003#ifdef WORD_REGISTER_OPERATIONS
6d49a073
JW
1004 || ((GET_MODE_SIZE (outmode)
1005 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1006 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1007 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1008 / UNITS_PER_WORD)))
1914f5da
RH
1009#endif
1010 ))
eab89b90
RK
1011 || (GET_CODE (SUBREG_REG (out)) == REG
1012 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
f72ccbe6
RK
1013 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1014 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1015 > UNITS_PER_WORD)
1016 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1017 / UNITS_PER_WORD)
1018 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1019 GET_MODE (SUBREG_REG (out)))))
1020 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (out))
1021 + SUBREG_WORD (out)),
1022 outmode)))
df62f951
RK
1023#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1024 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1025 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1026 GET_MODE (SUBREG_REG (out)),
1027 SUBREG_REG (out))
1028 == NO_REGS))
486d8509
RK
1029#endif
1030#ifdef CLASS_CANNOT_CHANGE_SIZE
1031 || (GET_CODE (SUBREG_REG (out)) == REG
1032 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1033 && (TEST_HARD_REG_BIT
1034 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
1035 REGNO (SUBREG_REG (out))))
1036 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1037 != GET_MODE_SIZE (outmode)))
df62f951
RK
1038#endif
1039 ))
eab89b90
RK
1040 {
1041 out_subreg_loc = outloc;
1042 outloc = &SUBREG_REG (out);
e05a9da8 1043 out = *outloc;
d2c92f5a 1044#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
e05a9da8 1045 if (GET_CODE (out) == MEM
eab89b90
RK
1046 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1047 abort ();
e05a9da8 1048#endif
eab89b90
RK
1049 outmode = GET_MODE (out);
1050 }
1051
74347d76
RK
1052 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1053 either M1 is not valid for R or M2 is wider than a word but we only
1054 need one word to store an M2-sized quantity in R.
1055
1056 However, we must reload the inner reg *as well as* the subreg in
1057 that case. In this case, the inner reg is an in-out reload. */
1058
1059 if (out != 0 && GET_CODE (out) == SUBREG
1060 && GET_CODE (SUBREG_REG (out)) == REG
1061 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
c6716840
RK
1062 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (out)) + SUBREG_WORD (out),
1063 outmode)
74347d76
RK
1064 || (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1065 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1066 > UNITS_PER_WORD)
1067 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1068 / UNITS_PER_WORD)
1069 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1070 GET_MODE (SUBREG_REG (out)))))))
1071 {
c96d01ab
RK
1072 /* This relies on the fact that emit_reload_insns outputs the
1073 instructions for output reloads of type RELOAD_OTHER in reverse
1074 order of the reloads. Thus if the outer reload is also of type
1075 RELOAD_OTHER, we are guaranteed that this inner reload will be
1076 output after the outer reload. */
74347d76
RK
1077 dont_remove_subreg = 1;
1078 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
c6716840
RK
1079 &SUBREG_REG (out),
1080 find_valid_class (outmode, SUBREG_WORD (out)),
1081 VOIDmode, VOIDmode, 0, 0,
74347d76
RK
1082 opnum, RELOAD_OTHER);
1083 }
1084
eab89b90
RK
1085 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1086 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1087 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
bfa30b22 1088 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
eab89b90
RK
1089 dont_share = 1;
1090
0dadecf6
RK
1091 /* If IN is a SUBREG of a hard register, make a new REG. This
1092 simplifies some of the cases below. */
1093
1094 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
74347d76
RK
1095 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1096 && ! dont_remove_subreg)
38a448ca
RH
1097 in = gen_rtx_REG (GET_MODE (in),
1098 REGNO (SUBREG_REG (in)) + SUBREG_WORD (in));
0dadecf6
RK
1099
1100 /* Similarly for OUT. */
1101 if (out != 0 && GET_CODE (out) == SUBREG
1102 && GET_CODE (SUBREG_REG (out)) == REG
74347d76
RK
1103 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1104 && ! dont_remove_subreg)
38a448ca
RH
1105 out = gen_rtx_REG (GET_MODE (out),
1106 REGNO (SUBREG_REG (out)) + SUBREG_WORD (out));
0dadecf6 1107
eab89b90
RK
1108 /* Narrow down the class of register wanted if that is
1109 desirable on this machine for efficiency. */
1110 if (in != 0)
1111 class = PREFERRED_RELOAD_CLASS (in, class);
1112
ac2a9454 1113 /* Output reloads may need analogous treatment, different in detail. */
18a53b78
RS
1114#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1115 if (out != 0)
1116 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1117#endif
1118
eab89b90
RK
1119 /* Make sure we use a class that can handle the actual pseudo
1120 inside any subreg. For example, on the 386, QImode regs
1121 can appear within SImode subregs. Although GENERAL_REGS
1122 can handle SImode, QImode needs a smaller class. */
1123#ifdef LIMIT_RELOAD_CLASS
1124 if (in_subreg_loc)
1125 class = LIMIT_RELOAD_CLASS (inmode, class);
1126 else if (in != 0 && GET_CODE (in) == SUBREG)
1127 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1128
1129 if (out_subreg_loc)
1130 class = LIMIT_RELOAD_CLASS (outmode, class);
1131 if (out != 0 && GET_CODE (out) == SUBREG)
1132 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1133#endif
1134
eab89b90
RK
1135 /* Verify that this class is at least possible for the mode that
1136 is specified. */
1137 if (this_insn_is_asm)
1138 {
1139 enum machine_mode mode;
1140 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1141 mode = inmode;
1142 else
1143 mode = outmode;
5488078f
RS
1144 if (mode == VOIDmode)
1145 {
1146 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1147 mode = word_mode;
1148 if (in != 0)
1149 inmode = word_mode;
1150 if (out != 0)
1151 outmode = word_mode;
1152 }
eab89b90
RK
1153 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1154 if (HARD_REGNO_MODE_OK (i, mode)
1155 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1156 {
1157 int nregs = HARD_REGNO_NREGS (i, mode);
1158
1159 int j;
1160 for (j = 1; j < nregs; j++)
1161 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1162 break;
1163 if (j == nregs)
1164 break;
1165 }
1166 if (i == FIRST_PSEUDO_REGISTER)
1167 {
1168 error_for_asm (this_insn, "impossible register constraint in `asm'");
1169 class = ALL_REGS;
1170 }
1171 }
1172
5488078f
RS
1173 if (class == NO_REGS)
1174 abort ();
1175
eab89b90
RK
1176 /* We can use an existing reload if the class is right
1177 and at least one of IN and OUT is a match
1178 and the other is at worst neutral.
a8c9daeb
RK
1179 (A zero compared against anything is neutral.)
1180
1181 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
1182 for the same thing since that can cause us to need more reload registers
1183 than we otherwise would. */
1184
eab89b90
RK
1185 for (i = 0; i < n_reloads; i++)
1186 if ((reg_class_subset_p (class, reload_reg_class[i])
1187 || reg_class_subset_p (reload_reg_class[i], class))
eab89b90
RK
1188 /* If the existing reload has a register, it must fit our class. */
1189 && (reload_reg_rtx[i] == 0
1190 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1191 true_regnum (reload_reg_rtx[i])))
1192 && ((in != 0 && MATCHES (reload_in[i], in) && ! dont_share
1193 && (out == 0 || reload_out[i] == 0 || MATCHES (reload_out[i], out)))
1194 ||
1195 (out != 0 && MATCHES (reload_out[i], out)
a8c9daeb 1196 && (in == 0 || reload_in[i] == 0 || MATCHES (reload_in[i], in))))
e9a25f70 1197 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
a8c9daeb
RK
1198 && MERGABLE_RELOADS (type, reload_when_needed[i],
1199 opnum, reload_opnum[i]))
eab89b90
RK
1200 break;
1201
1202 /* Reloading a plain reg for input can match a reload to postincrement
1203 that reg, since the postincrement's value is the right value.
1204 Likewise, it can match a preincrement reload, since we regard
1205 the preincrementation as happening before any ref in this insn
1206 to that register. */
1207 if (i == n_reloads)
1208 for (i = 0; i < n_reloads; i++)
1209 if ((reg_class_subset_p (class, reload_reg_class[i])
1210 || reg_class_subset_p (reload_reg_class[i], class))
1211 /* If the existing reload has a register, it must fit our class. */
1212 && (reload_reg_rtx[i] == 0
1213 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1214 true_regnum (reload_reg_rtx[i])))
eab89b90
RK
1215 && out == 0 && reload_out[i] == 0 && reload_in[i] != 0
1216 && ((GET_CODE (in) == REG
1217 && (GET_CODE (reload_in[i]) == POST_INC
1218 || GET_CODE (reload_in[i]) == POST_DEC
1219 || GET_CODE (reload_in[i]) == PRE_INC
1220 || GET_CODE (reload_in[i]) == PRE_DEC)
1221 && MATCHES (XEXP (reload_in[i], 0), in))
1222 ||
1223 (GET_CODE (reload_in[i]) == REG
1224 && (GET_CODE (in) == POST_INC
1225 || GET_CODE (in) == POST_DEC
1226 || GET_CODE (in) == PRE_INC
1227 || GET_CODE (in) == PRE_DEC)
a8c9daeb 1228 && MATCHES (XEXP (in, 0), reload_in[i])))
e9a25f70 1229 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
a8c9daeb
RK
1230 && MERGABLE_RELOADS (type, reload_when_needed[i],
1231 opnum, reload_opnum[i]))
eab89b90
RK
1232 {
1233 /* Make sure reload_in ultimately has the increment,
1234 not the plain register. */
1235 if (GET_CODE (in) == REG)
1236 in = reload_in[i];
1237 break;
1238 }
1239
1240 if (i == n_reloads)
1241 {
9ec7078b
RK
1242 /* See if we need a secondary reload register to move between CLASS
1243 and IN or CLASS and OUT. Get the icode and push any required reloads
1244 needed for each of them if so. */
eab89b90
RK
1245
1246#ifdef SECONDARY_INPUT_RELOAD_CLASS
1247 if (in != 0)
9ec7078b
RK
1248 secondary_in_reload
1249 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1250 &secondary_in_icode);
eab89b90
RK
1251#endif
1252
1253#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1254 if (out != 0 && GET_CODE (out) != SCRATCH)
9ec7078b
RK
1255 secondary_out_reload
1256 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1257 type, &secondary_out_icode);
eab89b90
RK
1258#endif
1259
1260 /* We found no existing reload suitable for re-use.
1261 So add an additional reload. */
1262
e9a25f70
JL
1263#ifdef SECONDARY_MEMORY_NEEDED
1264 /* If a memory location is needed for the copy, make one. */
1265 if (in != 0 && GET_CODE (in) == REG
1266 && REGNO (in) < FIRST_PSEUDO_REGISTER
1267 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1268 class, inmode))
1269 get_secondary_mem (in, inmode, opnum, type);
1270#endif
1271
9ec7078b 1272 i = n_reloads;
eab89b90
RK
1273 reload_in[i] = in;
1274 reload_out[i] = out;
1275 reload_reg_class[i] = class;
1276 reload_inmode[i] = inmode;
1277 reload_outmode[i] = outmode;
1278 reload_reg_rtx[i] = 0;
1279 reload_optional[i] = optional;
f5963e61 1280 reload_nongroup[i] = 0;
eab89b90 1281 reload_inc[i] = 0;
eab89b90
RK
1282 reload_nocombine[i] = 0;
1283 reload_in_reg[i] = inloc ? *inloc : 0;
a8c9daeb
RK
1284 reload_opnum[i] = opnum;
1285 reload_when_needed[i] = type;
9ec7078b
RK
1286 reload_secondary_in_reload[i] = secondary_in_reload;
1287 reload_secondary_out_reload[i] = secondary_out_reload;
1288 reload_secondary_in_icode[i] = secondary_in_icode;
1289 reload_secondary_out_icode[i] = secondary_out_icode;
eab89b90
RK
1290 reload_secondary_p[i] = 0;
1291
1292 n_reloads++;
0dadecf6
RK
1293
1294#ifdef SECONDARY_MEMORY_NEEDED
0dadecf6
RK
1295 if (out != 0 && GET_CODE (out) == REG
1296 && REGNO (out) < FIRST_PSEUDO_REGISTER
1297 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1298 outmode))
a8c9daeb 1299 get_secondary_mem (out, outmode, opnum, type);
0dadecf6 1300#endif
eab89b90
RK
1301 }
1302 else
1303 {
1304 /* We are reusing an existing reload,
1305 but we may have additional information for it.
1306 For example, we may now have both IN and OUT
1307 while the old one may have just one of them. */
1308
6fd5ac08
JW
1309 /* The modes can be different. If they are, we want to reload in
1310 the larger mode, so that the value is valid for both modes. */
1311 if (inmode != VOIDmode
1312 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (reload_inmode[i]))
eab89b90 1313 reload_inmode[i] = inmode;
6fd5ac08
JW
1314 if (outmode != VOIDmode
1315 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (reload_outmode[i]))
eab89b90
RK
1316 reload_outmode[i] = outmode;
1317 if (in != 0)
1318 reload_in[i] = in;
1319 if (out != 0)
1320 reload_out[i] = out;
1321 if (reg_class_subset_p (class, reload_reg_class[i]))
1322 reload_reg_class[i] = class;
1323 reload_optional[i] &= optional;
a8c9daeb
RK
1324 if (MERGE_TO_OTHER (type, reload_when_needed[i],
1325 opnum, reload_opnum[i]))
1326 reload_when_needed[i] = RELOAD_OTHER;
1327 reload_opnum[i] = MIN (reload_opnum[i], opnum);
eab89b90
RK
1328 }
1329
1330 /* If the ostensible rtx being reload differs from the rtx found
1331 in the location to substitute, this reload is not safe to combine
1332 because we cannot reliably tell whether it appears in the insn. */
1333
1334 if (in != 0 && in != *inloc)
1335 reload_nocombine[i] = 1;
1336
1337#if 0
1338 /* This was replaced by changes in find_reloads_address_1 and the new
1339 function inc_for_reload, which go with a new meaning of reload_inc. */
1340
1341 /* If this is an IN/OUT reload in an insn that sets the CC,
1342 it must be for an autoincrement. It doesn't work to store
1343 the incremented value after the insn because that would clobber the CC.
1344 So we must do the increment of the value reloaded from,
1345 increment it, store it back, then decrement again. */
1346 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1347 {
1348 out = 0;
1349 reload_out[i] = 0;
1350 reload_inc[i] = find_inc_amount (PATTERN (this_insn), in);
1351 /* If we did not find a nonzero amount-to-increment-by,
1352 that contradicts the belief that IN is being incremented
1353 in an address in this insn. */
1354 if (reload_inc[i] == 0)
1355 abort ();
1356 }
1357#endif
1358
1359 /* If we will replace IN and OUT with the reload-reg,
1360 record where they are located so that substitution need
1361 not do a tree walk. */
1362
1363 if (replace_reloads)
1364 {
1365 if (inloc != 0)
1366 {
1367 register struct replacement *r = &replacements[n_replacements++];
1368 r->what = i;
1369 r->subreg_loc = in_subreg_loc;
1370 r->where = inloc;
1371 r->mode = inmode;
1372 }
1373 if (outloc != 0 && outloc != inloc)
1374 {
1375 register struct replacement *r = &replacements[n_replacements++];
1376 r->what = i;
1377 r->where = outloc;
1378 r->subreg_loc = out_subreg_loc;
1379 r->mode = outmode;
1380 }
1381 }
1382
1383 /* If this reload is just being introduced and it has both
1384 an incoming quantity and an outgoing quantity that are
1385 supposed to be made to match, see if either one of the two
1386 can serve as the place to reload into.
1387
1388 If one of them is acceptable, set reload_reg_rtx[i]
1389 to that one. */
1390
1391 if (in != 0 && out != 0 && in != out && reload_reg_rtx[i] == 0)
1392 {
1393 reload_reg_rtx[i] = find_dummy_reload (in, out, inloc, outloc,
36b50568 1394 inmode, outmode,
189086f9 1395 reload_reg_class[i], i,
31c21e0c 1396 earlyclobber_operand_p (out));
eab89b90
RK
1397
1398 /* If the outgoing register already contains the same value
1399 as the incoming one, we can dispense with loading it.
1400 The easiest way to tell the caller that is to give a phony
1401 value for the incoming operand (same as outgoing one). */
1402 if (reload_reg_rtx[i] == out
1403 && (GET_CODE (in) == REG || CONSTANT_P (in))
1404 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1405 static_reload_reg_p, i, inmode))
1406 reload_in[i] = out;
1407 }
1408
1409 /* If this is an input reload and the operand contains a register that
1410 dies in this insn and is used nowhere else, see if it is the right class
1411 to be used for this reload. Use it if so. (This occurs most commonly
1412 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1413 this if it is also an output reload that mentions the register unless
1414 the output is a SUBREG that clobbers an entire register.
1415
1416 Note that the operand might be one of the spill regs, if it is a
1417 pseudo reg and we are in a block where spilling has not taken place.
1418 But if there is no spilling in this block, that is OK.
1419 An explicitly used hard reg cannot be a spill reg. */
1420
1421 if (reload_reg_rtx[i] == 0 && in != 0)
1422 {
1423 rtx note;
1424 int regno;
1425
1426 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1427 if (REG_NOTE_KIND (note) == REG_DEAD
1428 && GET_CODE (XEXP (note, 0)) == REG
1429 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1430 && reg_mentioned_p (XEXP (note, 0), in)
1431 && ! refers_to_regno_for_reload_p (regno,
1432 (regno
1433 + HARD_REGNO_NREGS (regno,
1434 inmode)),
1435 PATTERN (this_insn), inloc)
05b4ec4f
RS
1436 /* If this is also an output reload, IN cannot be used as
1437 the reload register if it is set in this insn unless IN
1438 is also OUT. */
1439 && (out == 0 || in == out
1440 || ! hard_reg_set_here_p (regno,
1441 (regno
1442 + HARD_REGNO_NREGS (regno,
1443 inmode)),
1444 PATTERN (this_insn)))
1445 /* ??? Why is this code so different from the previous?
1446 Is there any simple coherent way to describe the two together?
1447 What's going on here. */
eab89b90
RK
1448 && (in != out
1449 || (GET_CODE (in) == SUBREG
1450 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1451 / UNITS_PER_WORD)
1452 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1453 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1454 /* Make sure the operand fits in the reg that dies. */
1455 && GET_MODE_SIZE (inmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1456 && HARD_REGNO_MODE_OK (regno, inmode)
1457 && GET_MODE_SIZE (outmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1458 && HARD_REGNO_MODE_OK (regno, outmode)
1459 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)
1460 && !fixed_regs[regno])
1461 {
38a448ca 1462 reload_reg_rtx[i] = gen_rtx_REG (inmode, regno);
eab89b90
RK
1463 break;
1464 }
1465 }
1466
1467 if (out)
1468 output_reloadnum = i;
1469
1470 return i;
1471}
1472
1473/* Record an additional place we must replace a value
1474 for which we have already recorded a reload.
1475 RELOADNUM is the value returned by push_reload
1476 when the reload was recorded.
1477 This is used in insn patterns that use match_dup. */
1478
1479static void
1480push_replacement (loc, reloadnum, mode)
1481 rtx *loc;
1482 int reloadnum;
1483 enum machine_mode mode;
1484{
1485 if (replace_reloads)
1486 {
1487 register struct replacement *r = &replacements[n_replacements++];
1488 r->what = reloadnum;
1489 r->where = loc;
1490 r->subreg_loc = 0;
1491 r->mode = mode;
1492 }
1493}
1494\f
a8c9daeb
RK
1495/* Transfer all replacements that used to be in reload FROM to be in
1496 reload TO. */
1497
1498void
1499transfer_replacements (to, from)
1500 int to, from;
1501{
1502 int i;
1503
1504 for (i = 0; i < n_replacements; i++)
1505 if (replacements[i].what == from)
1506 replacements[i].what = to;
1507}
1508\f
eab89b90
RK
1509/* If there is only one output reload, and it is not for an earlyclobber
1510 operand, try to combine it with a (logically unrelated) input reload
1511 to reduce the number of reload registers needed.
1512
1513 This is safe if the input reload does not appear in
1514 the value being output-reloaded, because this implies
1515 it is not needed any more once the original insn completes.
1516
1517 If that doesn't work, see we can use any of the registers that
1518 die in this insn as a reload register. We can if it is of the right
1519 class and does not appear in the value being output-reloaded. */
1520
1521static void
1522combine_reloads ()
1523{
1524 int i;
1525 int output_reload = -1;
8922eb5b 1526 int secondary_out = -1;
eab89b90
RK
1527 rtx note;
1528
1529 /* Find the output reload; return unless there is exactly one
1530 and that one is mandatory. */
1531
1532 for (i = 0; i < n_reloads; i++)
1533 if (reload_out[i] != 0)
1534 {
1535 if (output_reload >= 0)
1536 return;
1537 output_reload = i;
1538 }
1539
1540 if (output_reload < 0 || reload_optional[output_reload])
1541 return;
1542
1543 /* An input-output reload isn't combinable. */
1544
1545 if (reload_in[output_reload] != 0)
1546 return;
1547
6dc42e49 1548 /* If this reload is for an earlyclobber operand, we can't do anything. */
4644aad4
RK
1549 if (earlyclobber_operand_p (reload_out[output_reload]))
1550 return;
eab89b90
RK
1551
1552 /* Check each input reload; can we combine it? */
1553
1554 for (i = 0; i < n_reloads; i++)
1555 if (reload_in[i] && ! reload_optional[i] && ! reload_nocombine[i]
1556 /* Life span of this reload must not extend past main insn. */
a8c9daeb 1557 && reload_when_needed[i] != RELOAD_FOR_OUTPUT_ADDRESS
47c8cf91 1558 && reload_when_needed[i] != RELOAD_FOR_OUTADDR_ADDRESS
a8c9daeb
RK
1559 && reload_when_needed[i] != RELOAD_OTHER
1560 && (CLASS_MAX_NREGS (reload_reg_class[i], reload_inmode[i])
1561 == CLASS_MAX_NREGS (reload_reg_class[output_reload],
1562 reload_outmode[output_reload]))
eab89b90
RK
1563 && reload_inc[i] == 0
1564 && reload_reg_rtx[i] == 0
a8c9daeb 1565#ifdef SECONDARY_MEMORY_NEEDED
9ec7078b
RK
1566 /* Don't combine two reloads with different secondary
1567 memory locations. */
77545d45
RK
1568 && (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]] == 0
1569 || secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] == 0
1570 || rtx_equal_p (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]],
1571 secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]]))
a8c9daeb 1572#endif
e9a25f70
JL
1573 && (SMALL_REGISTER_CLASSES
1574 ? (reload_reg_class[i] == reload_reg_class[output_reload])
1575 : (reg_class_subset_p (reload_reg_class[i],
1576 reload_reg_class[output_reload])
1577 || reg_class_subset_p (reload_reg_class[output_reload],
1578 reload_reg_class[i])))
eab89b90
RK
1579 && (MATCHES (reload_in[i], reload_out[output_reload])
1580 /* Args reversed because the first arg seems to be
1581 the one that we imagine being modified
1582 while the second is the one that might be affected. */
bfa30b22
RK
1583 || (! reg_overlap_mentioned_for_reload_p (reload_out[output_reload],
1584 reload_in[i])
eab89b90
RK
1585 /* However, if the input is a register that appears inside
1586 the output, then we also can't share.
1587 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1588 If the same reload reg is used for both reg 69 and the
1589 result to be stored in memory, then that result
1590 will clobber the address of the memory ref. */
1591 && ! (GET_CODE (reload_in[i]) == REG
bfa30b22 1592 && reg_overlap_mentioned_for_reload_p (reload_in[i],
a8c9daeb
RK
1593 reload_out[output_reload]))))
1594 && (reg_class_size[(int) reload_reg_class[i]]
e9a25f70 1595 || SMALL_REGISTER_CLASSES)
a8c9daeb
RK
1596 /* We will allow making things slightly worse by combining an
1597 input and an output, but no worse than that. */
1598 && (reload_when_needed[i] == RELOAD_FOR_INPUT
1599 || reload_when_needed[i] == RELOAD_FOR_OUTPUT))
eab89b90
RK
1600 {
1601 int j;
1602
1603 /* We have found a reload to combine with! */
1604 reload_out[i] = reload_out[output_reload];
1605 reload_outmode[i] = reload_outmode[output_reload];
1606 /* Mark the old output reload as inoperative. */
1607 reload_out[output_reload] = 0;
1608 /* The combined reload is needed for the entire insn. */
eab89b90 1609 reload_when_needed[i] = RELOAD_OTHER;
0f41302f 1610 /* If the output reload had a secondary reload, copy it. */
9ec7078b
RK
1611 if (reload_secondary_out_reload[output_reload] != -1)
1612 {
1613 reload_secondary_out_reload[i]
1614 = reload_secondary_out_reload[output_reload];
1615 reload_secondary_out_icode[i]
1616 = reload_secondary_out_icode[output_reload];
1617 }
1618
a8c9daeb
RK
1619#ifdef SECONDARY_MEMORY_NEEDED
1620 /* Copy any secondary MEM. */
77545d45
RK
1621 if (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] != 0)
1622 secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]]
1623 = secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]];
a8c9daeb 1624#endif
0f41302f 1625 /* If required, minimize the register class. */
eab89b90
RK
1626 if (reg_class_subset_p (reload_reg_class[output_reload],
1627 reload_reg_class[i]))
1628 reload_reg_class[i] = reload_reg_class[output_reload];
1629
1630 /* Transfer all replacements from the old reload to the combined. */
1631 for (j = 0; j < n_replacements; j++)
1632 if (replacements[j].what == output_reload)
1633 replacements[j].what = i;
1634
1635 return;
1636 }
1637
1638 /* If this insn has only one operand that is modified or written (assumed
1639 to be the first), it must be the one corresponding to this reload. It
1640 is safe to use anything that dies in this insn for that output provided
1641 that it does not occur in the output (we already know it isn't an
1642 earlyclobber. If this is an asm insn, give up. */
1643
1644 if (INSN_CODE (this_insn) == -1)
1645 return;
1646
1647 for (i = 1; i < insn_n_operands[INSN_CODE (this_insn)]; i++)
1648 if (insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '='
1649 || insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '+')
1650 return;
1651
1652 /* See if some hard register that dies in this insn and is not used in
1653 the output is the right class. Only works if the register we pick
1654 up can fully hold our output reload. */
1655 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1656 if (REG_NOTE_KIND (note) == REG_DEAD
1657 && GET_CODE (XEXP (note, 0)) == REG
bfa30b22
RK
1658 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1659 reload_out[output_reload])
eab89b90
RK
1660 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1661 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
1662 && TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[output_reload]],
1663 REGNO (XEXP (note, 0)))
1664 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
1665 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
8922eb5b
RK
1666 /* Ensure that a secondary or tertiary reload for this output
1667 won't want this register. */
1668 && ((secondary_out = reload_secondary_out_reload[output_reload]) == -1
1669 || (! (TEST_HARD_REG_BIT
1670 (reg_class_contents[(int) reload_reg_class[secondary_out]],
1671 REGNO (XEXP (note, 0))))
1672 && ((secondary_out = reload_secondary_out_reload[secondary_out]) == -1
1673 || ! (TEST_HARD_REG_BIT
1674 (reg_class_contents[(int) reload_reg_class[secondary_out]],
1675 REGNO (XEXP (note, 0)))))))
eab89b90
RK
1676 && ! fixed_regs[REGNO (XEXP (note, 0))])
1677 {
38a448ca
RH
1678 reload_reg_rtx[output_reload]
1679 = gen_rtx_REG (reload_outmode[output_reload],
1680 REGNO (XEXP (note, 0)));
eab89b90
RK
1681 return;
1682 }
1683}
1684\f
1685/* Try to find a reload register for an in-out reload (expressions IN and OUT).
1686 See if one of IN and OUT is a register that may be used;
1687 this is desirable since a spill-register won't be needed.
1688 If so, return the register rtx that proves acceptable.
1689
1690 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1691 CLASS is the register class required for the reload.
1692
1693 If FOR_REAL is >= 0, it is the number of the reload,
1694 and in some cases when it can be discovered that OUT doesn't need
1695 to be computed, clear out reload_out[FOR_REAL].
1696
1697 If FOR_REAL is -1, this should not be done, because this call
189086f9
RK
1698 is just to see if a register can be found, not to find and install it.
1699
1700 EARLYCLOBBER is non-zero if OUT is an earlyclobber operand. This
1701 puts an additional constraint on being able to use IN for OUT since
1702 IN must not appear elsewhere in the insn (it is assumed that IN itself
1703 is safe from the earlyclobber). */
eab89b90
RK
1704
1705static rtx
36b50568 1706find_dummy_reload (real_in, real_out, inloc, outloc,
189086f9 1707 inmode, outmode, class, for_real, earlyclobber)
eab89b90
RK
1708 rtx real_in, real_out;
1709 rtx *inloc, *outloc;
36b50568 1710 enum machine_mode inmode, outmode;
eab89b90
RK
1711 enum reg_class class;
1712 int for_real;
189086f9 1713 int earlyclobber;
eab89b90
RK
1714{
1715 rtx in = real_in;
1716 rtx out = real_out;
1717 int in_offset = 0;
1718 int out_offset = 0;
1719 rtx value = 0;
1720
1721 /* If operands exceed a word, we can't use either of them
1722 unless they have the same size. */
36b50568
RS
1723 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1724 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1725 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
eab89b90
RK
1726 return 0;
1727
1728 /* Find the inside of any subregs. */
1729 while (GET_CODE (out) == SUBREG)
1730 {
1731 out_offset = SUBREG_WORD (out);
1732 out = SUBREG_REG (out);
1733 }
1734 while (GET_CODE (in) == SUBREG)
1735 {
1736 in_offset = SUBREG_WORD (in);
1737 in = SUBREG_REG (in);
1738 }
1739
1740 /* Narrow down the reg class, the same way push_reload will;
1741 otherwise we might find a dummy now, but push_reload won't. */
1742 class = PREFERRED_RELOAD_CLASS (in, class);
1743
1744 /* See if OUT will do. */
1745 if (GET_CODE (out) == REG
1746 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1747 {
1748 register int regno = REGNO (out) + out_offset;
36b50568 1749 int nwords = HARD_REGNO_NREGS (regno, outmode);
d3b9996a 1750 rtx saved_rtx;
eab89b90
RK
1751
1752 /* When we consider whether the insn uses OUT,
1753 ignore references within IN. They don't prevent us
1754 from copying IN into OUT, because those refs would
1755 move into the insn that reloads IN.
1756
1757 However, we only ignore IN in its role as this reload.
1758 If the insn uses IN elsewhere and it contains OUT,
1759 that counts. We can't be sure it's the "same" operand
1760 so it might not go through this reload. */
d3b9996a 1761 saved_rtx = *inloc;
eab89b90
RK
1762 *inloc = const0_rtx;
1763
1764 if (regno < FIRST_PSEUDO_REGISTER
1765 /* A fixed reg that can overlap other regs better not be used
1766 for reloading in any way. */
1767#ifdef OVERLAPPING_REGNO_P
1768 && ! (fixed_regs[regno] && OVERLAPPING_REGNO_P (regno))
1769#endif
1770 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1771 PATTERN (this_insn), outloc))
1772 {
1773 int i;
1774 for (i = 0; i < nwords; i++)
1775 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1776 regno + i))
1777 break;
1778
1779 if (i == nwords)
1780 {
1781 if (GET_CODE (real_out) == REG)
1782 value = real_out;
1783 else
38a448ca 1784 value = gen_rtx_REG (outmode, regno);
eab89b90
RK
1785 }
1786 }
1787
d3b9996a 1788 *inloc = saved_rtx;
eab89b90
RK
1789 }
1790
1791 /* Consider using IN if OUT was not acceptable
1792 or if OUT dies in this insn (like the quotient in a divmod insn).
1793 We can't use IN unless it is dies in this insn,
1794 which means we must know accurately which hard regs are live.
189086f9
RK
1795 Also, the result can't go in IN if IN is used within OUT,
1796 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
eab89b90
RK
1797 if (hard_regs_live_known
1798 && GET_CODE (in) == REG
1799 && REGNO (in) < FIRST_PSEUDO_REGISTER
1800 && (value == 0
1801 || find_reg_note (this_insn, REG_UNUSED, real_out))
1802 && find_reg_note (this_insn, REG_DEAD, real_in)
1803 && !fixed_regs[REGNO (in)]
36b50568
RS
1804 && HARD_REGNO_MODE_OK (REGNO (in),
1805 /* The only case where out and real_out might
1806 have different modes is where real_out
1807 is a subreg, and in that case, out
1808 has a real mode. */
1809 (GET_MODE (out) != VOIDmode
1810 ? GET_MODE (out) : outmode)))
eab89b90
RK
1811 {
1812 register int regno = REGNO (in) + in_offset;
36b50568 1813 int nwords = HARD_REGNO_NREGS (regno, inmode);
eab89b90 1814
fb3821f7 1815 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, NULL_PTR)
eab89b90 1816 && ! hard_reg_set_here_p (regno, regno + nwords,
189086f9
RK
1817 PATTERN (this_insn))
1818 && (! earlyclobber
1819 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1820 PATTERN (this_insn), inloc)))
eab89b90
RK
1821 {
1822 int i;
1823 for (i = 0; i < nwords; i++)
1824 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1825 regno + i))
1826 break;
1827
1828 if (i == nwords)
1829 {
1830 /* If we were going to use OUT as the reload reg
1831 and changed our mind, it means OUT is a dummy that
1832 dies here. So don't bother copying value to it. */
1833 if (for_real >= 0 && value == real_out)
1834 reload_out[for_real] = 0;
1835 if (GET_CODE (real_in) == REG)
1836 value = real_in;
1837 else
38a448ca 1838 value = gen_rtx_REG (inmode, regno);
eab89b90
RK
1839 }
1840 }
1841 }
1842
1843 return value;
1844}
1845\f
1846/* This page contains subroutines used mainly for determining
1847 whether the IN or an OUT of a reload can serve as the
1848 reload register. */
1849
4644aad4
RK
1850/* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1851
1852static int
1853earlyclobber_operand_p (x)
1854 rtx x;
1855{
1856 int i;
1857
1858 for (i = 0; i < n_earlyclobbers; i++)
1859 if (reload_earlyclobbers[i] == x)
1860 return 1;
1861
1862 return 0;
1863}
1864
eab89b90
RK
1865/* Return 1 if expression X alters a hard reg in the range
1866 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1867 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1868 X should be the body of an instruction. */
1869
1870static int
1871hard_reg_set_here_p (beg_regno, end_regno, x)
1872 register int beg_regno, end_regno;
1873 rtx x;
1874{
1875 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1876 {
1877 register rtx op0 = SET_DEST (x);
1878 while (GET_CODE (op0) == SUBREG)
1879 op0 = SUBREG_REG (op0);
1880 if (GET_CODE (op0) == REG)
1881 {
1882 register int r = REGNO (op0);
1883 /* See if this reg overlaps range under consideration. */
1884 if (r < end_regno
1885 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
1886 return 1;
1887 }
1888 }
1889 else if (GET_CODE (x) == PARALLEL)
1890 {
1891 register int i = XVECLEN (x, 0) - 1;
1892 for (; i >= 0; i--)
1893 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
1894 return 1;
1895 }
1896
1897 return 0;
1898}
1899
1900/* Return 1 if ADDR is a valid memory address for mode MODE,
1901 and check that each pseudo reg has the proper kind of
1902 hard reg. */
1903
1904int
1905strict_memory_address_p (mode, addr)
1906 enum machine_mode mode;
1907 register rtx addr;
1908{
1909 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1910 return 0;
1911
1912 win:
1913 return 1;
1914}
eab89b90
RK
1915\f
1916/* Like rtx_equal_p except that it allows a REG and a SUBREG to match
1917 if they are the same hard reg, and has special hacks for
1918 autoincrement and autodecrement.
1919 This is specifically intended for find_reloads to use
1920 in determining whether two operands match.
1921 X is the operand whose number is the lower of the two.
1922
1923 The value is 2 if Y contains a pre-increment that matches
1924 a non-incrementing address in X. */
1925
1926/* ??? To be completely correct, we should arrange to pass
1927 for X the output operand and for Y the input operand.
1928 For now, we assume that the output operand has the lower number
1929 because that is natural in (SET output (... input ...)). */
1930
1931int
1932operands_match_p (x, y)
1933 register rtx x, y;
1934{
1935 register int i;
1936 register RTX_CODE code = GET_CODE (x);
1937 register char *fmt;
1938 int success_2;
1939
1940 if (x == y)
1941 return 1;
1942 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
1943 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
1944 && GET_CODE (SUBREG_REG (y)) == REG)))
1945 {
1946 register int j;
1947
1948 if (code == SUBREG)
1949 {
1950 i = REGNO (SUBREG_REG (x));
1951 if (i >= FIRST_PSEUDO_REGISTER)
1952 goto slow;
1953 i += SUBREG_WORD (x);
1954 }
1955 else
1956 i = REGNO (x);
1957
1958 if (GET_CODE (y) == SUBREG)
1959 {
1960 j = REGNO (SUBREG_REG (y));
1961 if (j >= FIRST_PSEUDO_REGISTER)
1962 goto slow;
1963 j += SUBREG_WORD (y);
1964 }
1965 else
1966 j = REGNO (y);
1967
dca52d80
JW
1968 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
1969 multiple hard register group, so that for example (reg:DI 0) and
1970 (reg:SI 1) will be considered the same register. */
1971 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
1972 && i < FIRST_PSEUDO_REGISTER)
1973 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
1974 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
1975 && j < FIRST_PSEUDO_REGISTER)
1976 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
1977
eab89b90
RK
1978 return i == j;
1979 }
1980 /* If two operands must match, because they are really a single
1981 operand of an assembler insn, then two postincrements are invalid
1982 because the assembler insn would increment only once.
1983 On the other hand, an postincrement matches ordinary indexing
1984 if the postincrement is the output operand. */
1985 if (code == POST_DEC || code == POST_INC)
1986 return operands_match_p (XEXP (x, 0), y);
1987 /* Two preincrements are invalid
1988 because the assembler insn would increment only once.
1989 On the other hand, an preincrement matches ordinary indexing
1990 if the preincrement is the input operand.
1991 In this case, return 2, since some callers need to do special
1992 things when this happens. */
1993 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC)
1994 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
1995
1996 slow:
1997
1998 /* Now we have disposed of all the cases
1999 in which different rtx codes can match. */
2000 if (code != GET_CODE (y))
2001 return 0;
2002 if (code == LABEL_REF)
2003 return XEXP (x, 0) == XEXP (y, 0);
2004 if (code == SYMBOL_REF)
2005 return XSTR (x, 0) == XSTR (y, 0);
2006
2007 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2008
2009 if (GET_MODE (x) != GET_MODE (y))
2010 return 0;
2011
2012 /* Compare the elements. If any pair of corresponding elements
2013 fail to match, return 0 for the whole things. */
2014
2015 success_2 = 0;
2016 fmt = GET_RTX_FORMAT (code);
2017 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2018 {
2019 int val;
2020 switch (fmt[i])
2021 {
fb3821f7
CH
2022 case 'w':
2023 if (XWINT (x, i) != XWINT (y, i))
2024 return 0;
2025 break;
2026
eab89b90
RK
2027 case 'i':
2028 if (XINT (x, i) != XINT (y, i))
2029 return 0;
2030 break;
2031
2032 case 'e':
2033 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2034 if (val == 0)
2035 return 0;
2036 /* If any subexpression returns 2,
2037 we should return 2 if we are successful. */
2038 if (val == 2)
2039 success_2 = 1;
2040 break;
2041
2042 case '0':
2043 break;
2044
2045 /* It is believed that rtx's at this level will never
2046 contain anything but integers and other rtx's,
2047 except for within LABEL_REFs and SYMBOL_REFs. */
2048 default:
2049 abort ();
2050 }
2051 }
2052 return 1 + success_2;
2053}
2054\f
2055/* Return the number of times character C occurs in string S. */
2056
e4600702 2057int
eab89b90 2058n_occurrences (c, s)
d149d5f5 2059 int c;
eab89b90
RK
2060 char *s;
2061{
2062 int n = 0;
2063 while (*s)
2064 n += (*s++ == c);
2065 return n;
2066}
2067\f
eab89b90
RK
2068/* Describe the range of registers or memory referenced by X.
2069 If X is a register, set REG_FLAG and put the first register
2070 number into START and the last plus one into END.
2071 If X is a memory reference, put a base address into BASE
2072 and a range of integer offsets into START and END.
2073 If X is pushing on the stack, we can assume it causes no trouble,
2074 so we set the SAFE field. */
2075
2076static struct decomposition
2077decompose (x)
2078 rtx x;
2079{
2080 struct decomposition val;
2081 int all_const = 0;
2082
2083 val.reg_flag = 0;
2084 val.safe = 0;
43984e29 2085 val.base = 0;
eab89b90
RK
2086 if (GET_CODE (x) == MEM)
2087 {
2088 rtx base, offset = 0;
2089 rtx addr = XEXP (x, 0);
2090
2091 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2092 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2093 {
2094 val.base = XEXP (addr, 0);
2095 val.start = - GET_MODE_SIZE (GET_MODE (x));
2096 val.end = GET_MODE_SIZE (GET_MODE (x));
2097 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2098 return val;
2099 }
2100
2101 if (GET_CODE (addr) == CONST)
2102 {
2103 addr = XEXP (addr, 0);
2104 all_const = 1;
2105 }
2106 if (GET_CODE (addr) == PLUS)
2107 {
2108 if (CONSTANT_P (XEXP (addr, 0)))
2109 {
2110 base = XEXP (addr, 1);
2111 offset = XEXP (addr, 0);
2112 }
2113 else if (CONSTANT_P (XEXP (addr, 1)))
2114 {
2115 base = XEXP (addr, 0);
2116 offset = XEXP (addr, 1);
2117 }
2118 }
2119
2120 if (offset == 0)
2121 {
2122 base = addr;
2123 offset = const0_rtx;
2124 }
2125 if (GET_CODE (offset) == CONST)
2126 offset = XEXP (offset, 0);
2127 if (GET_CODE (offset) == PLUS)
2128 {
2129 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2130 {
38a448ca 2131 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
eab89b90
RK
2132 offset = XEXP (offset, 0);
2133 }
2134 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2135 {
38a448ca 2136 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
eab89b90
RK
2137 offset = XEXP (offset, 1);
2138 }
2139 else
2140 {
38a448ca 2141 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
eab89b90
RK
2142 offset = const0_rtx;
2143 }
2144 }
2145 else if (GET_CODE (offset) != CONST_INT)
2146 {
38a448ca 2147 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
eab89b90
RK
2148 offset = const0_rtx;
2149 }
2150
2151 if (all_const && GET_CODE (base) == PLUS)
38a448ca 2152 base = gen_rtx_CONST (GET_MODE (base), base);
eab89b90
RK
2153
2154 if (GET_CODE (offset) != CONST_INT)
2155 abort ();
2156
2157 val.start = INTVAL (offset);
2158 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2159 val.base = base;
2160 return val;
2161 }
2162 else if (GET_CODE (x) == REG)
2163 {
2164 val.reg_flag = 1;
2165 val.start = true_regnum (x);
2166 if (val.start < 0)
2167 {
2168 /* A pseudo with no hard reg. */
2169 val.start = REGNO (x);
2170 val.end = val.start + 1;
2171 }
2172 else
2173 /* A hard reg. */
2174 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2175 }
2176 else if (GET_CODE (x) == SUBREG)
2177 {
2178 if (GET_CODE (SUBREG_REG (x)) != REG)
2179 /* This could be more precise, but it's good enough. */
2180 return decompose (SUBREG_REG (x));
2181 val.reg_flag = 1;
2182 val.start = true_regnum (x);
2183 if (val.start < 0)
2184 return decompose (SUBREG_REG (x));
2185 else
2186 /* A hard reg. */
2187 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2188 }
2189 else if (CONSTANT_P (x)
2190 /* This hasn't been assigned yet, so it can't conflict yet. */
2191 || GET_CODE (x) == SCRATCH)
2192 val.safe = 1;
2193 else
2194 abort ();
2195 return val;
2196}
2197
2198/* Return 1 if altering Y will not modify the value of X.
2199 Y is also described by YDATA, which should be decompose (Y). */
2200
2201static int
2202immune_p (x, y, ydata)
2203 rtx x, y;
2204 struct decomposition ydata;
2205{
2206 struct decomposition xdata;
2207
2208 if (ydata.reg_flag)
fb3821f7 2209 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, NULL_PTR);
eab89b90
RK
2210 if (ydata.safe)
2211 return 1;
2212
2213 if (GET_CODE (y) != MEM)
2214 abort ();
2215 /* If Y is memory and X is not, Y can't affect X. */
2216 if (GET_CODE (x) != MEM)
2217 return 1;
2218
2219 xdata = decompose (x);
2220
2221 if (! rtx_equal_p (xdata.base, ydata.base))
2222 {
2223 /* If bases are distinct symbolic constants, there is no overlap. */
2224 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2225 return 1;
2226 /* Constants and stack slots never overlap. */
2227 if (CONSTANT_P (xdata.base)
2228 && (ydata.base == frame_pointer_rtx
a36d4c62 2229 || ydata.base == hard_frame_pointer_rtx
eab89b90
RK
2230 || ydata.base == stack_pointer_rtx))
2231 return 1;
2232 if (CONSTANT_P (ydata.base)
2233 && (xdata.base == frame_pointer_rtx
a36d4c62 2234 || xdata.base == hard_frame_pointer_rtx
eab89b90
RK
2235 || xdata.base == stack_pointer_rtx))
2236 return 1;
2237 /* If either base is variable, we don't know anything. */
2238 return 0;
2239 }
2240
2241
2242 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2243}
44ace968 2244
f72aed24 2245/* Similar, but calls decompose. */
44ace968
JW
2246
2247int
2248safe_from_earlyclobber (op, clobber)
2249 rtx op, clobber;
2250{
2251 struct decomposition early_data;
2252
2253 early_data = decompose (clobber);
2254 return immune_p (op, clobber, early_data);
2255}
eab89b90
RK
2256\f
2257/* Main entry point of this file: search the body of INSN
2258 for values that need reloading and record them with push_reload.
2259 REPLACE nonzero means record also where the values occur
2260 so that subst_reloads can be used.
2261
2262 IND_LEVELS says how many levels of indirection are supported by this
2263 machine; a value of zero means that a memory reference is not a valid
2264 memory address.
2265
2266 LIVE_KNOWN says we have valid information about which hard
2267 regs are live at each point in the program; this is true when
2268 we are called from global_alloc but false when stupid register
2269 allocation has been done.
2270
2271 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2272 which is nonnegative if the reg has been commandeered for reloading into.
2273 It is copied into STATIC_RELOAD_REG_P and referenced from there
2274 by various subroutines. */
2275
2276void
2277find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2278 rtx insn;
2279 int replace, ind_levels;
2280 int live_known;
2281 short *reload_reg_p;
2282{
eab89b90
RK
2283#ifdef REGISTER_CONSTRAINTS
2284
eab89b90 2285 register int insn_code_number;
a8c9daeb 2286 register int i, j;
eab89b90
RK
2287 int noperands;
2288 /* These are the constraints for the insn. We don't change them. */
2289 char *constraints1[MAX_RECOG_OPERANDS];
2290 /* These start out as the constraints for the insn
2291 and they are chewed up as we consider alternatives. */
2292 char *constraints[MAX_RECOG_OPERANDS];
2293 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2294 a register. */
2295 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2296 char pref_or_nothing[MAX_RECOG_OPERANDS];
2297 /* Nonzero for a MEM operand whose entire address needs a reload. */
2298 int address_reloaded[MAX_RECOG_OPERANDS];
a8c9daeb
RK
2299 /* Value of enum reload_type to use for operand. */
2300 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2301 /* Value of enum reload_type to use within address of operand. */
2302 enum reload_type address_type[MAX_RECOG_OPERANDS];
2303 /* Save the usage of each operand. */
2304 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
eab89b90
RK
2305 int no_input_reloads = 0, no_output_reloads = 0;
2306 int n_alternatives;
2307 int this_alternative[MAX_RECOG_OPERANDS];
2308 char this_alternative_win[MAX_RECOG_OPERANDS];
2309 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2310 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2311 int this_alternative_matches[MAX_RECOG_OPERANDS];
2312 int swapped;
2313 int goal_alternative[MAX_RECOG_OPERANDS];
2314 int this_alternative_number;
2315 int goal_alternative_number;
2316 int operand_reloadnum[MAX_RECOG_OPERANDS];
2317 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2318 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2319 char goal_alternative_win[MAX_RECOG_OPERANDS];
2320 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2321 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2322 int goal_alternative_swapped;
eab89b90
RK
2323 int best;
2324 int commutative;
f5963e61 2325 int changed;
eab89b90
RK
2326 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2327 rtx substed_operand[MAX_RECOG_OPERANDS];
2328 rtx body = PATTERN (insn);
2329 rtx set = single_set (insn);
2330 int goal_earlyclobber, this_earlyclobber;
2331 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2332
2333 this_insn = insn;
2334 this_insn_is_asm = 0; /* Tentative. */
2335 n_reloads = 0;
2336 n_replacements = 0;
2337 n_memlocs = 0;
2338 n_earlyclobbers = 0;
2339 replace_reloads = replace;
2340 hard_regs_live_known = live_known;
2341 static_reload_reg_p = reload_reg_p;
2342
2343 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2344 neither are insns that SET cc0. Insns that use CC0 are not allowed
2345 to have any input reloads. */
2346 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2347 no_output_reloads = 1;
2348
2349#ifdef HAVE_cc0
2350 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2351 no_input_reloads = 1;
2352 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2353 no_output_reloads = 1;
2354#endif
2355
0dadecf6
RK
2356#ifdef SECONDARY_MEMORY_NEEDED
2357 /* The eliminated forms of any secondary memory locations are per-insn, so
2358 clear them out here. */
2359
4c9a05bc 2360 bzero ((char *) secondary_memlocs_elim, sizeof secondary_memlocs_elim);
0dadecf6
RK
2361#endif
2362
eab89b90
RK
2363 /* Find what kind of insn this is. NOPERANDS gets number of operands.
2364 Make OPERANDS point to a vector of operand values.
2365 Make OPERAND_LOCS point to a vector of pointers to
2366 where the operands were found.
2367 Fill CONSTRAINTS and CONSTRAINTS1 with pointers to the
2368 constraint-strings for this insn.
2369 Return if the insn needs no reload processing. */
2370
2371 switch (GET_CODE (body))
2372 {
2373 case USE:
2374 case CLOBBER:
2375 case ASM_INPUT:
2376 case ADDR_VEC:
2377 case ADDR_DIFF_VEC:
2378 return;
2379
2380 case SET:
2381 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2382 is cheap to move between them. If it is not, there may not be an insn
2383 to do the copy, so we may need a reload. */
2384 if (GET_CODE (SET_DEST (body)) == REG
2385 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2386 && GET_CODE (SET_SRC (body)) == REG
2387 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2388 && REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2389 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2390 return;
2391 case PARALLEL:
2392 case ASM_OPERANDS:
a8c9daeb 2393 reload_n_operands = noperands = asm_noperands (body);
eab89b90
RK
2394 if (noperands >= 0)
2395 {
2396 /* This insn is an `asm' with operands. */
2397
2398 insn_code_number = -1;
2399 this_insn_is_asm = 1;
2400
2401 /* expand_asm_operands makes sure there aren't too many operands. */
2402 if (noperands > MAX_RECOG_OPERANDS)
2403 abort ();
2404
2405 /* Now get the operand values and constraints out of the insn. */
2406
2407 decode_asm_operands (body, recog_operand, recog_operand_loc,
2408 constraints, operand_mode);
2409 if (noperands > 0)
2410 {
4c9a05bc
RK
2411 bcopy ((char *) constraints, (char *) constraints1,
2412 noperands * sizeof (char *));
eab89b90
RK
2413 n_alternatives = n_occurrences (',', constraints[0]) + 1;
2414 for (i = 1; i < noperands; i++)
d45cf215 2415 if (n_alternatives != n_occurrences (',', constraints[i]) + 1)
eab89b90
RK
2416 {
2417 error_for_asm (insn, "operand constraints differ in number of alternatives");
2418 /* Avoid further trouble with this insn. */
38a448ca 2419 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
eab89b90
RK
2420 n_reloads = 0;
2421 return;
2422 }
2423 }
2424 break;
2425 }
2426
2427 default:
2428 /* Ordinary insn: recognize it, get the operands via insn_extract
2429 and get the constraints. */
2430
2431 insn_code_number = recog_memoized (insn);
2432 if (insn_code_number < 0)
2433 fatal_insn_not_found (insn);
2434
a8c9daeb 2435 reload_n_operands = noperands = insn_n_operands[insn_code_number];
eab89b90
RK
2436 n_alternatives = insn_n_alternatives[insn_code_number];
2437 /* Just return "no reloads" if insn has no operands with constraints. */
2438 if (n_alternatives == 0)
2439 return;
2440 insn_extract (insn);
2441 for (i = 0; i < noperands; i++)
2442 {
2443 constraints[i] = constraints1[i]
2444 = insn_operand_constraint[insn_code_number][i];
2445 operand_mode[i] = insn_operand_mode[insn_code_number][i];
2446 }
2447 }
2448
2449 if (noperands == 0)
2450 return;
2451
2452 commutative = -1;
2453
2454 /* If we will need to know, later, whether some pair of operands
2455 are the same, we must compare them now and save the result.
2456 Reloading the base and index registers will clobber them
2457 and afterward they will fail to match. */
2458
2459 for (i = 0; i < noperands; i++)
2460 {
2461 register char *p;
2462 register int c;
2463
2464 substed_operand[i] = recog_operand[i];
2465 p = constraints[i];
2466
a8c9daeb
RK
2467 modified[i] = RELOAD_READ;
2468
2469 /* Scan this operand's constraint to see if it is an output operand,
2470 an in-out operand, is commutative, or should match another. */
eab89b90 2471
51723711 2472 while ((c = *p++))
a8c9daeb
RK
2473 {
2474 if (c == '=')
2475 modified[i] = RELOAD_WRITE;
2476 else if (c == '+')
2477 modified[i] = RELOAD_READ_WRITE;
2478 else if (c == '%')
2479 {
2480 /* The last operand should not be marked commutative. */
2481 if (i == noperands - 1)
2482 {
2483 if (this_insn_is_asm)
2484 warning_for_asm (this_insn,
2485 "`%%' constraint used with last operand");
2486 else
2487 abort ();
2488 }
2489 else
2490 commutative = i;
2491 }
2492 else if (c >= '0' && c <= '9')
2493 {
2494 c -= '0';
2495 operands_match[c][i]
2496 = operands_match_p (recog_operand[c], recog_operand[i]);
ea9c5b9e 2497
a8c9daeb
RK
2498 /* An operand may not match itself. */
2499 if (c == i)
2500 {
2501 if (this_insn_is_asm)
2502 warning_for_asm (this_insn,
2503 "operand %d has constraint %d", i, c);
2504 else
2505 abort ();
2506 }
ea9c5b9e 2507
a8c9daeb
RK
2508 /* If C can be commuted with C+1, and C might need to match I,
2509 then C+1 might also need to match I. */
2510 if (commutative >= 0)
2511 {
2512 if (c == commutative || c == commutative + 1)
2513 {
2514 int other = c + (c == commutative ? 1 : -1);
2515 operands_match[other][i]
2516 = operands_match_p (recog_operand[other], recog_operand[i]);
2517 }
2518 if (i == commutative || i == commutative + 1)
2519 {
2520 int other = i + (i == commutative ? 1 : -1);
2521 operands_match[c][other]
2522 = operands_match_p (recog_operand[c], recog_operand[other]);
2523 }
2524 /* Note that C is supposed to be less than I.
2525 No need to consider altering both C and I because in
2526 that case we would alter one into the other. */
2527 }
2528 }
2529 }
eab89b90
RK
2530 }
2531
2532 /* Examine each operand that is a memory reference or memory address
2533 and reload parts of the addresses into index registers.
eab89b90
RK
2534 Also here any references to pseudo regs that didn't get hard regs
2535 but are equivalent to constants get replaced in the insn itself
2536 with those constants. Nobody will ever see them again.
2537
2538 Finally, set up the preferred classes of each operand. */
2539
2540 for (i = 0; i < noperands; i++)
2541 {
2542 register RTX_CODE code = GET_CODE (recog_operand[i]);
a8c9daeb 2543
eab89b90 2544 address_reloaded[i] = 0;
a8c9daeb
RK
2545 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2546 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2547 : RELOAD_OTHER);
2548 address_type[i]
2549 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2550 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2551 : RELOAD_OTHER);
eab89b90 2552
0d38001f
RS
2553 if (*constraints[i] == 0)
2554 /* Ignore things like match_operator operands. */
2555 ;
2556 else if (constraints[i][0] == 'p')
eab89b90 2557 {
fb3821f7 2558 find_reloads_address (VOIDmode, NULL_PTR,
eab89b90 2559 recog_operand[i], recog_operand_loc[i],
55c22565 2560 i, operand_type[i], ind_levels, insn);
b685dbae
RK
2561
2562 /* If we now have a simple operand where we used to have a
2563 PLUS or MULT, re-recognize and try again. */
2564 if ((GET_RTX_CLASS (GET_CODE (*recog_operand_loc[i])) == 'o'
2565 || GET_CODE (*recog_operand_loc[i]) == SUBREG)
2566 && (GET_CODE (recog_operand[i]) == MULT
2567 || GET_CODE (recog_operand[i]) == PLUS))
2568 {
2569 INSN_CODE (insn) = -1;
2570 find_reloads (insn, replace, ind_levels, live_known,
2571 reload_reg_p);
2572 return;
2573 }
2574
eab89b90
RK
2575 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2576 }
2577 else if (code == MEM)
2578 {
2579 if (find_reloads_address (GET_MODE (recog_operand[i]),
2580 recog_operand_loc[i],
2581 XEXP (recog_operand[i], 0),
2582 &XEXP (recog_operand[i], 0),
55c22565 2583 i, address_type[i], ind_levels, insn))
eab89b90
RK
2584 address_reloaded[i] = 1;
2585 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2586 }
2587 else if (code == SUBREG)
b60a8416
R
2588 {
2589 rtx reg = SUBREG_REG (recog_operand[i]);
2590 rtx op
2591 = find_reloads_toplev (recog_operand[i], i, address_type[i],
2592 ind_levels,
2593 set != 0
2594 && &SET_DEST (set) == recog_operand_loc[i]);
2595
2596 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2597 that didn't get a hard register, emit a USE with a REG_EQUAL
2598 note in front so that we might inherit a previous, possibly
2599 wider reload. */
2600
2601 if (GET_CODE (op) == MEM
2602 && GET_CODE (reg) == REG
2603 && (GET_MODE_SIZE (GET_MODE (reg))
2604 >= GET_MODE_SIZE (GET_MODE (op))))
2605 REG_NOTES (emit_insn_before (gen_rtx_USE (VOIDmode, reg), insn))
2606 = gen_rtx_EXPR_LIST (REG_EQUAL,
2607 reg_equiv_memory_loc[REGNO (reg)], NULL_RTX);
2608
2609 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i] = op;
2610 }
ff428c90
ILT
2611 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2612 /* We can get a PLUS as an "operand" as a result of register
2613 elimination. See eliminate_regs and gen_reload. We handle
2614 a unary operator by reloading the operand. */
944d7b14
RS
2615 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i]
2616 = find_reloads_toplev (recog_operand[i], i, address_type[i],
2617 ind_levels, 0);
eab89b90
RK
2618 else if (code == REG)
2619 {
2620 /* This is equivalent to calling find_reloads_toplev.
2621 The code is duplicated for speed.
2622 When we find a pseudo always equivalent to a constant,
2623 we replace it by the constant. We must be sure, however,
2624 that we don't try to replace it in the insn in which it
2625 is being set. */
2626 register int regno = REGNO (recog_operand[i]);
2627 if (reg_equiv_constant[regno] != 0
2628 && (set == 0 || &SET_DEST (set) != recog_operand_loc[i]))
2629 substed_operand[i] = recog_operand[i]
2630 = reg_equiv_constant[regno];
2631#if 0 /* This might screw code in reload1.c to delete prior output-reload
2632 that feeds this insn. */
2633 if (reg_equiv_mem[regno] != 0)
2634 substed_operand[i] = recog_operand[i]
2635 = reg_equiv_mem[regno];
2636#endif
2637 if (reg_equiv_address[regno] != 0)
2638 {
2639 /* If reg_equiv_address is not a constant address, copy it,
2640 since it may be shared. */
4ffeab02
JW
2641 /* We must rerun eliminate_regs, in case the elimination
2642 offsets have changed. */
2643 rtx address = XEXP (eliminate_regs (reg_equiv_memory_loc[regno],
1914f5da 2644 0, NULL_RTX),
4ffeab02 2645 0);
eab89b90
RK
2646
2647 if (rtx_varies_p (address))
2648 address = copy_rtx (address);
2649
b60a8416
R
2650 /* Emit a USE that shows what register is being used/modified. */
2651 REG_NOTES (emit_insn_before (gen_rtx_USE (VOIDmode,
2652 recog_operand[i]),
2653 insn))
2654 = gen_rtx_EXPR_LIST (REG_EQUAL,
2655 reg_equiv_memory_loc[regno],
2656 NULL_RTX);
eab89b90
RK
2657
2658 *recog_operand_loc[i] = recog_operand[i]
38a448ca 2659 = gen_rtx_MEM (GET_MODE (recog_operand[i]), address);
eab89b90
RK
2660 RTX_UNCHANGING_P (recog_operand[i])
2661 = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
2662 find_reloads_address (GET_MODE (recog_operand[i]),
130659a4 2663 recog_operand_loc[i],
eab89b90
RK
2664 XEXP (recog_operand[i], 0),
2665 &XEXP (recog_operand[i], 0),
55c22565 2666 i, address_type[i], ind_levels, insn);
eab89b90
RK
2667 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2668 }
2669 }
aaf9712e
RS
2670 /* If the operand is still a register (we didn't replace it with an
2671 equivalent), get the preferred class to reload it into. */
2672 code = GET_CODE (recog_operand[i]);
2673 preferred_class[i]
91f9a6ed 2674 = ((code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER)
aaf9712e
RS
2675 ? reg_preferred_class (REGNO (recog_operand[i])) : NO_REGS);
2676 pref_or_nothing[i]
91f9a6ed 2677 = (code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER
e4600702 2678 && reg_alternate_class (REGNO (recog_operand[i])) == NO_REGS);
eab89b90
RK
2679 }
2680
2681 /* If this is simply a copy from operand 1 to operand 0, merge the
2682 preferred classes for the operands. */
2683 if (set != 0 && noperands >= 2 && recog_operand[0] == SET_DEST (set)
2684 && recog_operand[1] == SET_SRC (set))
2685 {
2686 preferred_class[0] = preferred_class[1]
2687 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2688 pref_or_nothing[0] |= pref_or_nothing[1];
2689 pref_or_nothing[1] |= pref_or_nothing[0];
2690 }
2691
2692 /* Now see what we need for pseudo-regs that didn't get hard regs
2693 or got the wrong kind of hard reg. For this, we must consider
2694 all the operands together against the register constraints. */
2695
812f2051 2696 best = MAX_RECOG_OPERANDS * 2 + 600;
eab89b90
RK
2697
2698 swapped = 0;
2699 goal_alternative_swapped = 0;
2700 try_swapped:
2701
2702 /* The constraints are made of several alternatives.
2703 Each operand's constraint looks like foo,bar,... with commas
2704 separating the alternatives. The first alternatives for all
2705 operands go together, the second alternatives go together, etc.
2706
2707 First loop over alternatives. */
2708
2709 for (this_alternative_number = 0;
2710 this_alternative_number < n_alternatives;
2711 this_alternative_number++)
2712 {
2713 /* Loop over operands for one constraint alternative. */
2714 /* LOSERS counts those that don't fit this alternative
2715 and would require loading. */
2716 int losers = 0;
2717 /* BAD is set to 1 if it some operand can't fit this alternative
2718 even after reloading. */
2719 int bad = 0;
2720 /* REJECT is a count of how undesirable this alternative says it is
2721 if any reloading is required. If the alternative matches exactly
2722 then REJECT is ignored, but otherwise it gets this much
2723 counted against it in addition to the reloading needed. Each
2724 ? counts three times here since we want the disparaging caused by
2725 a bad register class to only count 1/3 as much. */
2726 int reject = 0;
2727
2728 this_earlyclobber = 0;
2729
2730 for (i = 0; i < noperands; i++)
2731 {
2732 register char *p = constraints[i];
2733 register int win = 0;
2734 /* 0 => this operand can be reloaded somehow for this alternative */
2735 int badop = 1;
2736 /* 0 => this operand can be reloaded if the alternative allows regs. */
2737 int winreg = 0;
2738 int c;
2739 register rtx operand = recog_operand[i];
2740 int offset = 0;
2741 /* Nonzero means this is a MEM that must be reloaded into a reg
2742 regardless of what the constraint says. */
2743 int force_reload = 0;
2744 int offmemok = 0;
9d926da5
RK
2745 /* Nonzero if a constant forced into memory would be OK for this
2746 operand. */
2747 int constmemok = 0;
eab89b90
RK
2748 int earlyclobber = 0;
2749
ff428c90
ILT
2750 /* If the predicate accepts a unary operator, it means that
2751 we need to reload the operand. */
2752 if (GET_RTX_CLASS (GET_CODE (operand)) == '1')
2753 operand = XEXP (operand, 0);
2754
eab89b90
RK
2755 /* If the operand is a SUBREG, extract
2756 the REG or MEM (or maybe even a constant) within.
2757 (Constants can occur as a result of reg_equiv_constant.) */
2758
2759 while (GET_CODE (operand) == SUBREG)
2760 {
2761 offset += SUBREG_WORD (operand);
2762 operand = SUBREG_REG (operand);
38e01259 2763 /* Force reload if this is a constant or PLUS or if there may
a61c98cf
RK
2764 be a problem accessing OPERAND in the outer mode. */
2765 if (CONSTANT_P (operand)
ca769828 2766 || GET_CODE (operand) == PLUS
03b72c86
RK
2767 /* We must force a reload of paradoxical SUBREGs
2768 of a MEM because the alignment of the inner value
beb5a9b8
RK
2769 may not be enough to do the outer reference. On
2770 big-endian machines, it may also reference outside
2771 the object.
03b72c86
RK
2772
2773 On machines that extend byte operations and we have a
486d8509
RK
2774 SUBREG where both the inner and outer modes are no wider
2775 than a word and the inner mode is narrower, is integral,
2776 and gets extended when loaded from memory, combine.c has
2777 made assumptions about the behavior of the machine in such
03b72c86
RK
2778 register access. If the data is, in fact, in memory we
2779 must always load using the size assumed to be in the
2780 register and let the insn do the different-sized
5ec105cd
RH
2781 accesses.
2782
2783 This is doubly true if WORD_REGISTER_OPERATIONS. In
2784 this case eliminate_regs has left non-paradoxical
2785 subregs for push_reloads to see. Make sure it does
2786 by forcing the reload.
2787
2788 ??? When is it right at this stage to have a subreg
2789 of a mem that is _not_ to be handled specialy? IMO
2790 those should have been reduced to just a mem. */
a61c98cf
RK
2791 || ((GET_CODE (operand) == MEM
2792 || (GET_CODE (operand)== REG
2793 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
5ec105cd 2794#ifndef WORD_REGISTER_OPERATIONS
03b72c86
RK
2795 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2796 < BIGGEST_ALIGNMENT)
2797 && (GET_MODE_SIZE (operand_mode[i])
2798 > GET_MODE_SIZE (GET_MODE (operand))))
beb5a9b8 2799 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
03b72c86
RK
2800#ifdef LOAD_EXTEND_OP
2801 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2802 && (GET_MODE_SIZE (GET_MODE (operand))
2803 <= UNITS_PER_WORD)
2804 && (GET_MODE_SIZE (operand_mode[i])
486d8509
RK
2805 > GET_MODE_SIZE (GET_MODE (operand)))
2806 && INTEGRAL_MODE_P (GET_MODE (operand))
2807 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
46da6b3a 2808#endif
5ec105cd
RH
2809 )
2810#endif
2811 )
eab89b90
RK
2812 /* Subreg of a hard reg which can't handle the subreg's mode
2813 or which would handle that mode in the wrong number of
2814 registers for subregging to work. */
a61c98cf
RK
2815 || (GET_CODE (operand) == REG
2816 && REGNO (operand) < FIRST_PSEUDO_REGISTER
f72ccbe6
RK
2817 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2818 && (GET_MODE_SIZE (GET_MODE (operand))
2819 > UNITS_PER_WORD)
2820 && ((GET_MODE_SIZE (GET_MODE (operand))
2821 / UNITS_PER_WORD)
2822 != HARD_REGNO_NREGS (REGNO (operand),
2823 GET_MODE (operand))))
2824 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2825 operand_mode[i]))))
eab89b90
RK
2826 force_reload = 1;
2827 }
2828
2829 this_alternative[i] = (int) NO_REGS;
2830 this_alternative_win[i] = 0;
2831 this_alternative_offmemok[i] = 0;
2832 this_alternative_earlyclobber[i] = 0;
2833 this_alternative_matches[i] = -1;
2834
2835 /* An empty constraint or empty alternative
2836 allows anything which matched the pattern. */
2837 if (*p == 0 || *p == ',')
2838 win = 1, badop = 0;
2839
2840 /* Scan this alternative's specs for this operand;
2841 set WIN if the operand fits any letter in this alternative.
2842 Otherwise, clear BADOP if this operand could
2843 fit some letter after reloads,
2844 or set WINREG if this operand could fit after reloads
2845 provided the constraint allows some registers. */
2846
2847 while (*p && (c = *p++) != ',')
2848 switch (c)
2849 {
2850 case '=':
eab89b90 2851 case '+':
eab89b90
RK
2852 case '*':
2853 break;
2854
2855 case '%':
42add480
TW
2856 /* The last operand should not be marked commutative. */
2857 if (i != noperands - 1)
2858 commutative = i;
eab89b90
RK
2859 break;
2860
2861 case '?':
812f2051 2862 reject += 6;
eab89b90
RK
2863 break;
2864
2865 case '!':
812f2051 2866 reject = 600;
eab89b90
RK
2867 break;
2868
2869 case '#':
2870 /* Ignore rest of this alternative as far as
2871 reloading is concerned. */
2872 while (*p && *p != ',') p++;
2873 break;
2874
2875 case '0':
2876 case '1':
2877 case '2':
2878 case '3':
2879 case '4':
2880 c -= '0';
2881 this_alternative_matches[i] = c;
2882 /* We are supposed to match a previous operand.
2883 If we do, we win if that one did.
2884 If we do not, count both of the operands as losers.
2885 (This is too conservative, since most of the time
2886 only a single reload insn will be needed to make
2887 the two operands win. As a result, this alternative
2888 may be rejected when it is actually desirable.) */
2889 if ((swapped && (c != commutative || i != commutative + 1))
2890 /* If we are matching as if two operands were swapped,
2891 also pretend that operands_match had been computed
2892 with swapped.
2893 But if I is the second of those and C is the first,
2894 don't exchange them, because operands_match is valid
2895 only on one side of its diagonal. */
2896 ? (operands_match
2897 [(c == commutative || c == commutative + 1)
2898 ? 2*commutative + 1 - c : c]
2899 [(i == commutative || i == commutative + 1)
2900 ? 2*commutative + 1 - i : i])
2901 : operands_match[c][i])
fc79eafe
JW
2902 {
2903 /* If we are matching a non-offsettable address where an
2904 offsettable address was expected, then we must reject
2905 this combination, because we can't reload it. */
2906 if (this_alternative_offmemok[c]
2907 && GET_CODE (recog_operand[c]) == MEM
2908 && this_alternative[c] == (int) NO_REGS
2909 && ! this_alternative_win[c])
2910 bad = 1;
2911
2912 win = this_alternative_win[c];
2913 }
eab89b90
RK
2914 else
2915 {
2916 /* Operands don't match. */
2917 rtx value;
2918 /* Retroactively mark the operand we had to match
2919 as a loser, if it wasn't already. */
2920 if (this_alternative_win[c])
2921 losers++;
2922 this_alternative_win[c] = 0;
2923 if (this_alternative[c] == (int) NO_REGS)
2924 bad = 1;
2925 /* But count the pair only once in the total badness of
2926 this alternative, if the pair can be a dummy reload. */
2927 value
2928 = find_dummy_reload (recog_operand[i], recog_operand[c],
2929 recog_operand_loc[i], recog_operand_loc[c],
adb44af8 2930 operand_mode[i], operand_mode[c],
189086f9
RK
2931 this_alternative[c], -1,
2932 this_alternative_earlyclobber[c]);
eab89b90
RK
2933
2934 if (value != 0)
2935 losers--;
2936 }
2937 /* This can be fixed with reloads if the operand
2938 we are supposed to match can be fixed with reloads. */
2939 badop = 0;
2940 this_alternative[i] = this_alternative[c];
e64c4f9e
RK
2941
2942 /* If we have to reload this operand and some previous
2943 operand also had to match the same thing as this
2944 operand, we don't know how to do that. So reject this
2945 alternative. */
2946 if (! win || force_reload)
2947 for (j = 0; j < i; j++)
2948 if (this_alternative_matches[j]
2949 == this_alternative_matches[i])
2950 badop = 1;
2951
eab89b90
RK
2952 break;
2953
2954 case 'p':
2955 /* All necessary reloads for an address_operand
2956 were handled in find_reloads_address. */
5c73e847 2957 this_alternative[i] = (int) BASE_REG_CLASS;
eab89b90
RK
2958 win = 1;
2959 break;
2960
2961 case 'm':
2962 if (force_reload)
2963 break;
2964 if (GET_CODE (operand) == MEM
2965 || (GET_CODE (operand) == REG
2966 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
2967 && reg_renumber[REGNO (operand)] < 0))
2968 win = 1;
3feffdfe
JW
2969 if (CONSTANT_P (operand)
2970 /* force_const_mem does not accept HIGH. */
2971 && GET_CODE (operand) != HIGH)
eab89b90 2972 badop = 0;
9d926da5 2973 constmemok = 1;
eab89b90
RK
2974 break;
2975
2976 case '<':
2977 if (GET_CODE (operand) == MEM
2978 && ! address_reloaded[i]
2979 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
2980 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
2981 win = 1;
2982 break;
2983
2984 case '>':
2985 if (GET_CODE (operand) == MEM
2986 && ! address_reloaded[i]
2987 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
2988 || GET_CODE (XEXP (operand, 0)) == POST_INC))
2989 win = 1;
2990 break;
2991
2992 /* Memory operand whose address is not offsettable. */
2993 case 'V':
2994 if (force_reload)
2995 break;
2996 if (GET_CODE (operand) == MEM
2997 && ! (ind_levels ? offsettable_memref_p (operand)
2998 : offsettable_nonstrict_memref_p (operand))
2999 /* Certain mem addresses will become offsettable
3000 after they themselves are reloaded. This is important;
3001 we don't want our own handling of unoffsettables
3002 to override the handling of reg_equiv_address. */
3003 && !(GET_CODE (XEXP (operand, 0)) == REG
3004 && (ind_levels == 0
3005 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3006 win = 1;
3007 break;
3008
3009 /* Memory operand whose address is offsettable. */
3010 case 'o':
3011 if (force_reload)
3012 break;
3013 if ((GET_CODE (operand) == MEM
3014 /* If IND_LEVELS, find_reloads_address won't reload a
3015 pseudo that didn't get a hard reg, so we have to
3016 reject that case. */
3017 && (ind_levels ? offsettable_memref_p (operand)
3018 : offsettable_nonstrict_memref_p (operand)))
26ba4aee
JW
3019 /* A reloaded auto-increment address is offsettable,
3020 because it is now just a simple register indirect. */
3021 || (GET_CODE (operand) == MEM
3022 && address_reloaded[i]
3023 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3024 || GET_CODE (XEXP (operand, 0)) == PRE_DEC
3025 || GET_CODE (XEXP (operand, 0)) == POST_INC
3026 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
eab89b90
RK
3027 /* Certain mem addresses will become offsettable
3028 after they themselves are reloaded. This is important;
3029 we don't want our own handling of unoffsettables
3030 to override the handling of reg_equiv_address. */
3031 || (GET_CODE (operand) == MEM
3032 && GET_CODE (XEXP (operand, 0)) == REG
3033 && (ind_levels == 0
3034 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0))
3035 || (GET_CODE (operand) == REG
3036 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3a322c50
RK
3037 && reg_renumber[REGNO (operand)] < 0
3038 /* If reg_equiv_address is nonzero, we will be
3039 loading it into a register; hence it will be
3040 offsettable, but we cannot say that reg_equiv_mem
3041 is offsettable without checking. */
3042 && ((reg_equiv_mem[REGNO (operand)] != 0
3043 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3044 || (reg_equiv_address[REGNO (operand)] != 0))))
eab89b90 3045 win = 1;
3feffdfe
JW
3046 /* force_const_mem does not accept HIGH. */
3047 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3048 || GET_CODE (operand) == MEM)
eab89b90 3049 badop = 0;
9d926da5 3050 constmemok = 1;
eab89b90
RK
3051 offmemok = 1;
3052 break;
3053
3054 case '&':
3055 /* Output operand that is stored before the need for the
3056 input operands (and their index registers) is over. */
3057 earlyclobber = 1, this_earlyclobber = 1;
3058 break;
3059
3060 case 'E':
293166be 3061#ifndef REAL_ARITHMETIC
eab89b90
RK
3062 /* Match any floating double constant, but only if
3063 we can examine the bits of it reliably. */
3064 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
fb3821f7 3065 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
eab89b90
RK
3066 && GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
3067 break;
293166be 3068#endif
eab89b90
RK
3069 if (GET_CODE (operand) == CONST_DOUBLE)
3070 win = 1;
3071 break;
3072
3073 case 'F':
3074 if (GET_CODE (operand) == CONST_DOUBLE)
3075 win = 1;
3076 break;
3077
3078 case 'G':
3079 case 'H':
3080 if (GET_CODE (operand) == CONST_DOUBLE
3081 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3082 win = 1;
3083 break;
3084
3085 case 's':
3086 if (GET_CODE (operand) == CONST_INT
3087 || (GET_CODE (operand) == CONST_DOUBLE
3088 && GET_MODE (operand) == VOIDmode))
3089 break;
3090 case 'i':
3091 if (CONSTANT_P (operand)
3092#ifdef LEGITIMATE_PIC_OPERAND_P
3093 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3094#endif
3095 )
3096 win = 1;
3097 break;
3098
3099 case 'n':
3100 if (GET_CODE (operand) == CONST_INT
3101 || (GET_CODE (operand) == CONST_DOUBLE
3102 && GET_MODE (operand) == VOIDmode))
3103 win = 1;
3104 break;
3105
3106 case 'I':
3107 case 'J':
3108 case 'K':
3109 case 'L':
3110 case 'M':
3111 case 'N':
3112 case 'O':
3113 case 'P':
3114 if (GET_CODE (operand) == CONST_INT
3115 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3116 win = 1;
3117 break;
3118
3119 case 'X':
3120 win = 1;
3121 break;
3122
3123 case 'g':
3124 if (! force_reload
3125 /* A PLUS is never a valid operand, but reload can make
3126 it from a register when eliminating registers. */
3127 && GET_CODE (operand) != PLUS
3128 /* A SCRATCH is not a valid operand. */
3129 && GET_CODE (operand) != SCRATCH
3130#ifdef LEGITIMATE_PIC_OPERAND_P
3131 && (! CONSTANT_P (operand)
3132 || ! flag_pic
3133 || LEGITIMATE_PIC_OPERAND_P (operand))
3134#endif
3135 && (GENERAL_REGS == ALL_REGS
3136 || GET_CODE (operand) != REG
3137 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3138 && reg_renumber[REGNO (operand)] < 0)))
3139 win = 1;
3140 /* Drop through into 'r' case */
3141
3142 case 'r':
3143 this_alternative[i]
3144 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3145 goto reg;
3146
3147#ifdef EXTRA_CONSTRAINT
3148 case 'Q':
3149 case 'R':
3150 case 'S':
3151 case 'T':
3152 case 'U':
3153 if (EXTRA_CONSTRAINT (operand, c))
3154 win = 1;
3155 break;
3156#endif
3157
3158 default:
3159 this_alternative[i]
3160 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3161
3162 reg:
3163 if (GET_MODE (operand) == BLKmode)
3164 break;
3165 winreg = 1;
3166 if (GET_CODE (operand) == REG
3167 && reg_fits_class_p (operand, this_alternative[i],
3168 offset, GET_MODE (recog_operand[i])))
3169 win = 1;
3170 break;
3171 }
3172
3173 constraints[i] = p;
3174
3175 /* If this operand could be handled with a reg,
3176 and some reg is allowed, then this operand can be handled. */
3177 if (winreg && this_alternative[i] != (int) NO_REGS)
3178 badop = 0;
3179
3180 /* Record which operands fit this alternative. */
3181 this_alternative_earlyclobber[i] = earlyclobber;
3182 if (win && ! force_reload)
3183 this_alternative_win[i] = 1;
3184 else
3185 {
9d926da5
RK
3186 int const_to_mem = 0;
3187
eab89b90
RK
3188 this_alternative_offmemok[i] = offmemok;
3189 losers++;
3190 if (badop)
3191 bad = 1;
3192 /* Alternative loses if it has no regs for a reg operand. */
3193 if (GET_CODE (operand) == REG
3194 && this_alternative[i] == (int) NO_REGS
3195 && this_alternative_matches[i] < 0)
3196 bad = 1;
3197
3a322c50
RK
3198 /* If this is a constant that is reloaded into the desired
3199 class by copying it to memory first, count that as another
3200 reload. This is consistent with other code and is
293166be 3201 required to avoid choosing another alternative when
3a322c50
RK
3202 the constant is moved into memory by this function on
3203 an early reload pass. Note that the test here is
3204 precisely the same as in the code below that calls
3205 force_const_mem. */
3206 if (CONSTANT_P (operand)
59f25cf9
RK
3207 /* force_const_mem does not accept HIGH. */
3208 && GET_CODE (operand) != HIGH
e5e809f4 3209 && ((PREFERRED_RELOAD_CLASS (operand,
3a322c50 3210 (enum reg_class) this_alternative[i])
e5e809f4
JL
3211 == NO_REGS)
3212 || no_input_reloads)
3a322c50 3213 && operand_mode[i] != VOIDmode)
9d926da5
RK
3214 {
3215 const_to_mem = 1;
3216 if (this_alternative[i] != (int) NO_REGS)
3217 losers++;
3218 }
3a322c50 3219
5e6aa513
RK
3220 /* If we can't reload this value at all, reject this
3221 alternative. Note that we could also lose due to
3222 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3223 here. */
3224
3225 if (! CONSTANT_P (operand)
73b236b5 3226 && (enum reg_class) this_alternative[i] != NO_REGS
5e6aa513
RK
3227 && (PREFERRED_RELOAD_CLASS (operand,
3228 (enum reg_class) this_alternative[i])
3229 == NO_REGS))
3230 bad = 1;
3231
e5e809f4
JL
3232 /* Alternative loses if it requires a type of reload not
3233 permitted for this insn. We can always reload SCRATCH
3234 and objects with a REG_UNUSED note. */
3235 else if (GET_CODE (operand) != SCRATCH
3236 && modified[i] != RELOAD_READ && no_output_reloads
3237 && ! find_reg_note (insn, REG_UNUSED, operand))
3238 bad = 1;
3239 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3240 && ! const_to_mem)
3241 bad = 1;
3242
3243
eab89b90
RK
3244 /* We prefer to reload pseudos over reloading other things,
3245 since such reloads may be able to be eliminated later.
3246 If we are reloading a SCRATCH, we won't be generating any
3247 insns, just using a register, so it is also preferred.
9d926da5
RK
3248 So bump REJECT in other cases. Don't do this in the
3249 case where we are forcing a constant into memory and
3250 it will then win since we don't want to have a different
3251 alternative match then. */
915bb763
RK
3252 if (! (GET_CODE (operand) == REG
3253 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
9d926da5
RK
3254 && GET_CODE (operand) != SCRATCH
3255 && ! (const_to_mem && constmemok))
812f2051
R
3256 reject += 2;
3257
3258 /* Input reloads can be inherited more often than output
3259 reloads can be removed, so penalize output reloads. */
3260 if (operand_type[i] != RELOAD_FOR_INPUT)
eab89b90
RK
3261 reject++;
3262 }
3263
3264 /* If this operand is a pseudo register that didn't get a hard
3265 reg and this alternative accepts some register, see if the
3266 class that we want is a subset of the preferred class for this
3267 register. If not, but it intersects that class, use the
3268 preferred class instead. If it does not intersect the preferred
3269 class, show that usage of this alternative should be discouraged;
3270 it will be discouraged more still if the register is `preferred
3271 or nothing'. We do this because it increases the chance of
3272 reusing our spill register in a later insn and avoiding a pair
3273 of memory stores and loads.
3274
3275 Don't bother with this if this alternative will accept this
3276 operand.
3277
a2d353e5
RK
3278 Don't do this for a multiword operand, since it is only a
3279 small win and has the risk of requiring more spill registers,
3280 which could cause a large loss.
5aa14fee 3281
eab89b90
RK
3282 Don't do this if the preferred class has only one register
3283 because we might otherwise exhaust the class. */
3284
3285
3286 if (! win && this_alternative[i] != (int) NO_REGS
5aa14fee 3287 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
eab89b90
RK
3288 && reg_class_size[(int) preferred_class[i]] > 1)
3289 {
3290 if (! reg_class_subset_p (this_alternative[i],
3291 preferred_class[i]))
3292 {
3293 /* Since we don't have a way of forming the intersection,
3294 we just do something special if the preferred class
3295 is a subset of the class we have; that's the most
3296 common case anyway. */
3297 if (reg_class_subset_p (preferred_class[i],
3298 this_alternative[i]))
3299 this_alternative[i] = (int) preferred_class[i];
3300 else
812f2051 3301 reject += (2 + 2 * pref_or_nothing[i]);
eab89b90
RK
3302 }
3303 }
3304 }
3305
3306 /* Now see if any output operands that are marked "earlyclobber"
3307 in this alternative conflict with any input operands
3308 or any memory addresses. */
3309
3310 for (i = 0; i < noperands; i++)
3311 if (this_alternative_earlyclobber[i]
3312 && this_alternative_win[i])
3313 {
3314 struct decomposition early_data;
eab89b90
RK
3315
3316 early_data = decompose (recog_operand[i]);
3317
3318 if (modified[i] == RELOAD_READ)
3319 {
3320 if (this_insn_is_asm)
3321 warning_for_asm (this_insn,
3322 "`&' constraint used with input operand");
3323 else
3324 abort ();
3325 continue;
3326 }
3327
3328 if (this_alternative[i] == NO_REGS)
3329 {
3330 this_alternative_earlyclobber[i] = 0;
3331 if (this_insn_is_asm)
3332 error_for_asm (this_insn,
3333 "`&' constraint used with no register class");
3334 else
3335 abort ();
3336 }
3337
3338 for (j = 0; j < noperands; j++)
3339 /* Is this an input operand or a memory ref? */
3340 if ((GET_CODE (recog_operand[j]) == MEM
3341 || modified[j] != RELOAD_WRITE)
3342 && j != i
3343 /* Ignore things like match_operator operands. */
3344 && *constraints1[j] != 0
3345 /* Don't count an input operand that is constrained to match
3346 the early clobber operand. */
3347 && ! (this_alternative_matches[j] == i
3348 && rtx_equal_p (recog_operand[i], recog_operand[j]))
3349 /* Is it altered by storing the earlyclobber operand? */
3350 && !immune_p (recog_operand[j], recog_operand[i], early_data))
3351 {
3352 /* If the output is in a single-reg class,
3353 it's costly to reload it, so reload the input instead. */
3354 if (reg_class_size[this_alternative[i]] == 1
3355 && (GET_CODE (recog_operand[j]) == REG
3356 || GET_CODE (recog_operand[j]) == SUBREG))
3357 {
3358 losers++;
3359 this_alternative_win[j] = 0;
3360 }
3361 else
3362 break;
3363 }
3364 /* If an earlyclobber operand conflicts with something,
3365 it must be reloaded, so request this and count the cost. */
3366 if (j != noperands)
3367 {
3368 losers++;
3369 this_alternative_win[i] = 0;
3370 for (j = 0; j < noperands; j++)
3371 if (this_alternative_matches[j] == i
3372 && this_alternative_win[j])
3373 {
3374 this_alternative_win[j] = 0;
3375 losers++;
3376 }
3377 }
3378 }
3379
3380 /* If one alternative accepts all the operands, no reload required,
3381 choose that alternative; don't consider the remaining ones. */
3382 if (losers == 0)
3383 {
3384 /* Unswap these so that they are never swapped at `finish'. */
3385 if (commutative >= 0)
3386 {
3387 recog_operand[commutative] = substed_operand[commutative];
3388 recog_operand[commutative + 1]
3389 = substed_operand[commutative + 1];
3390 }
3391 for (i = 0; i < noperands; i++)
3392 {
3393 goal_alternative_win[i] = 1;
3394 goal_alternative[i] = this_alternative[i];
3395 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3396 goal_alternative_matches[i] = this_alternative_matches[i];
3397 goal_alternative_earlyclobber[i]
3398 = this_alternative_earlyclobber[i];
3399 }
3400 goal_alternative_number = this_alternative_number;
3401 goal_alternative_swapped = swapped;
3402 goal_earlyclobber = this_earlyclobber;
3403 goto finish;
3404 }
3405
3406 /* REJECT, set by the ! and ? constraint characters and when a register
3407 would be reloaded into a non-preferred class, discourages the use of
812f2051
R
3408 this alternative for a reload goal. REJECT is incremented by six
3409 for each ? and two for each non-preferred class. */
3410 losers = losers * 6 + reject;
eab89b90
RK
3411
3412 /* If this alternative can be made to work by reloading,
3413 and it needs less reloading than the others checked so far,
3414 record it as the chosen goal for reloading. */
3415 if (! bad && best > losers)
3416 {
3417 for (i = 0; i < noperands; i++)
3418 {
3419 goal_alternative[i] = this_alternative[i];
3420 goal_alternative_win[i] = this_alternative_win[i];
3421 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3422 goal_alternative_matches[i] = this_alternative_matches[i];
3423 goal_alternative_earlyclobber[i]
3424 = this_alternative_earlyclobber[i];
3425 }
3426 goal_alternative_swapped = swapped;
3427 best = losers;
3428 goal_alternative_number = this_alternative_number;
3429 goal_earlyclobber = this_earlyclobber;
3430 }
3431 }
3432
3433 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3434 then we need to try each alternative twice,
3435 the second time matching those two operands
3436 as if we had exchanged them.
3437 To do this, really exchange them in operands.
3438
3439 If we have just tried the alternatives the second time,
3440 return operands to normal and drop through. */
3441
3442 if (commutative >= 0)
3443 {
3444 swapped = !swapped;
3445 if (swapped)
3446 {
3447 register enum reg_class tclass;
3448 register int t;
3449
3450 recog_operand[commutative] = substed_operand[commutative + 1];
3451 recog_operand[commutative + 1] = substed_operand[commutative];
3452
3453 tclass = preferred_class[commutative];
3454 preferred_class[commutative] = preferred_class[commutative + 1];
3455 preferred_class[commutative + 1] = tclass;
3456
3457 t = pref_or_nothing[commutative];
3458 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3459 pref_or_nothing[commutative + 1] = t;
3460
4c9a05bc
RK
3461 bcopy ((char *) constraints1, (char *) constraints,
3462 noperands * sizeof (char *));
eab89b90
RK
3463 goto try_swapped;
3464 }
3465 else
3466 {
3467 recog_operand[commutative] = substed_operand[commutative];
3468 recog_operand[commutative + 1] = substed_operand[commutative + 1];
3469 }
3470 }
3471
3472 /* The operands don't meet the constraints.
3473 goal_alternative describes the alternative
3474 that we could reach by reloading the fewest operands.
3475 Reload so as to fit it. */
3476
3477 if (best == MAX_RECOG_OPERANDS + 300)
3478 {
3479 /* No alternative works with reloads?? */
3480 if (insn_code_number >= 0)
3481 abort ();
3482 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3483 /* Avoid further trouble with this insn. */
38a448ca 3484 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
eab89b90
RK
3485 n_reloads = 0;
3486 return;
3487 }
3488
3489 /* Jump to `finish' from above if all operands are valid already.
3490 In that case, goal_alternative_win is all 1. */
3491 finish:
3492
3493 /* Right now, for any pair of operands I and J that are required to match,
3494 with I < J,
3495 goal_alternative_matches[J] is I.
3496 Set up goal_alternative_matched as the inverse function:
3497 goal_alternative_matched[I] = J. */
3498
3499 for (i = 0; i < noperands; i++)
3500 goal_alternative_matched[i] = -1;
3501
3502 for (i = 0; i < noperands; i++)
3503 if (! goal_alternative_win[i]
3504 && goal_alternative_matches[i] >= 0)
3505 goal_alternative_matched[goal_alternative_matches[i]] = i;
3506
3507 /* If the best alternative is with operands 1 and 2 swapped,
a8c9daeb
RK
3508 consider them swapped before reporting the reloads. Update the
3509 operand numbers of any reloads already pushed. */
eab89b90
RK
3510
3511 if (goal_alternative_swapped)
3512 {
3513 register rtx tem;
3514
3515 tem = substed_operand[commutative];
3516 substed_operand[commutative] = substed_operand[commutative + 1];
3517 substed_operand[commutative + 1] = tem;
3518 tem = recog_operand[commutative];
3519 recog_operand[commutative] = recog_operand[commutative + 1];
3520 recog_operand[commutative + 1] = tem;
a8c9daeb
RK
3521
3522 for (i = 0; i < n_reloads; i++)
3523 {
3524 if (reload_opnum[i] == commutative)
3525 reload_opnum[i] = commutative + 1;
3526 else if (reload_opnum[i] == commutative + 1)
3527 reload_opnum[i] = commutative;
3528 }
eab89b90
RK
3529 }
3530
3531 /* Perform whatever substitutions on the operands we are supposed
3532 to make due to commutativity or replacement of registers
3533 with equivalent constants or memory slots. */
3534
3535 for (i = 0; i < noperands; i++)
3536 {
3537 *recog_operand_loc[i] = substed_operand[i];
3538 /* While we are looping on operands, initialize this. */
3539 operand_reloadnum[i] = -1;
a8c9daeb
RK
3540
3541 /* If this is an earlyclobber operand, we need to widen the scope.
3542 The reload must remain valid from the start of the insn being
3543 reloaded until after the operand is stored into its destination.
3544 We approximate this with RELOAD_OTHER even though we know that we
3545 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3546
3547 One special case that is worth checking is when we have an
3548 output that is earlyclobber but isn't used past the insn (typically
3549 a SCRATCH). In this case, we only need have the reload live
3550 through the insn itself, but not for any of our input or output
3551 reloads.
3552
3553 In any case, anything needed to address this operand can remain
3554 however they were previously categorized. */
3555
3556 if (goal_alternative_earlyclobber[i])
3557 operand_type[i]
3558 = (find_reg_note (insn, REG_UNUSED, recog_operand[i])
3559 ? RELOAD_FOR_INSN : RELOAD_OTHER);
eab89b90
RK
3560 }
3561
3562 /* Any constants that aren't allowed and can't be reloaded
3563 into registers are here changed into memory references. */
3564 for (i = 0; i < noperands; i++)
3565 if (! goal_alternative_win[i]
3566 && CONSTANT_P (recog_operand[i])
59f25cf9
RK
3567 /* force_const_mem does not accept HIGH. */
3568 && GET_CODE (recog_operand[i]) != HIGH
e5e809f4 3569 && ((PREFERRED_RELOAD_CLASS (recog_operand[i],
eab89b90 3570 (enum reg_class) goal_alternative[i])
e5e809f4
JL
3571 == NO_REGS)
3572 || no_input_reloads)
eab89b90
RK
3573 && operand_mode[i] != VOIDmode)
3574 {
3575 *recog_operand_loc[i] = recog_operand[i]
3576 = find_reloads_toplev (force_const_mem (operand_mode[i],
3577 recog_operand[i]),
a8c9daeb 3578 i, address_type[i], ind_levels, 0);
eab89b90
RK
3579 if (alternative_allows_memconst (constraints1[i],
3580 goal_alternative_number))
3581 goal_alternative_win[i] = 1;
3582 }
3583
4644aad4
RK
3584 /* Record the values of the earlyclobber operands for the caller. */
3585 if (goal_earlyclobber)
3586 for (i = 0; i < noperands; i++)
3587 if (goal_alternative_earlyclobber[i])
3588 reload_earlyclobbers[n_earlyclobbers++] = recog_operand[i];
3589
eab89b90
RK
3590 /* Now record reloads for all the operands that need them. */
3591 for (i = 0; i < noperands; i++)
3592 if (! goal_alternative_win[i])
3593 {
3594 /* Operands that match previous ones have already been handled. */
3595 if (goal_alternative_matches[i] >= 0)
3596 ;
3597 /* Handle an operand with a nonoffsettable address
3598 appearing where an offsettable address will do
3a322c50
RK
3599 by reloading the address into a base register.
3600
3601 ??? We can also do this when the operand is a register and
3602 reg_equiv_mem is not offsettable, but this is a bit tricky,
3603 so we don't bother with it. It may not be worth doing. */
eab89b90
RK
3604 else if (goal_alternative_matched[i] == -1
3605 && goal_alternative_offmemok[i]
3606 && GET_CODE (recog_operand[i]) == MEM)
3607 {
3608 operand_reloadnum[i]
fb3821f7
CH
3609 = push_reload (XEXP (recog_operand[i], 0), NULL_RTX,
3610 &XEXP (recog_operand[i], 0), NULL_PTR,
eab89b90 3611 BASE_REG_CLASS, GET_MODE (XEXP (recog_operand[i], 0)),
a8c9daeb 3612 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
eab89b90
RK
3613 reload_inc[operand_reloadnum[i]]
3614 = GET_MODE_SIZE (GET_MODE (recog_operand[i]));
a8c9daeb
RK
3615
3616 /* If this operand is an output, we will have made any
3617 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3618 now we are treating part of the operand as an input, so
3619 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3620
2d55b7e8 3621 if (modified[i] == RELOAD_WRITE)
47c8cf91
ILT
3622 {
3623 for (j = 0; j < n_reloads; j++)
3624 {
3625 if (reload_opnum[j] == i)
3626 {
3627 if (reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS)
3628 reload_when_needed[j] = RELOAD_FOR_INPUT_ADDRESS;
3629 else if (reload_when_needed[j]
3630 == RELOAD_FOR_OUTADDR_ADDRESS)
3631 reload_when_needed[j] = RELOAD_FOR_INPADDR_ADDRESS;
3632 }
3633 }
3634 }
eab89b90
RK
3635 }
3636 else if (goal_alternative_matched[i] == -1)
db3cf6fb
MS
3637 operand_reloadnum[i]
3638 = push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
3639 modified[i] != RELOAD_READ ? recog_operand[i] : 0,
3640 (modified[i] != RELOAD_WRITE
3641 ? recog_operand_loc[i] : 0),
3642 modified[i] != RELOAD_READ ? recog_operand_loc[i] : 0,
3643 (enum reg_class) goal_alternative[i],
3644 (modified[i] == RELOAD_WRITE
3645 ? VOIDmode : operand_mode[i]),
3646 (modified[i] == RELOAD_READ
3647 ? VOIDmode : operand_mode[i]),
3648 (insn_code_number < 0 ? 0
3649 : insn_operand_strict_low[insn_code_number][i]),
3650 0, i, operand_type[i]);
eab89b90
RK
3651 /* In a matching pair of operands, one must be input only
3652 and the other must be output only.
3653 Pass the input operand as IN and the other as OUT. */
3654 else if (modified[i] == RELOAD_READ
3655 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3656 {
3657 operand_reloadnum[i]
3658 = push_reload (recog_operand[i],
3659 recog_operand[goal_alternative_matched[i]],
3660 recog_operand_loc[i],
3661 recog_operand_loc[goal_alternative_matched[i]],
3662 (enum reg_class) goal_alternative[i],
3663 operand_mode[i],
3664 operand_mode[goal_alternative_matched[i]],
a8c9daeb 3665 0, 0, i, RELOAD_OTHER);
eab89b90
RK
3666 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3667 }
3668 else if (modified[i] == RELOAD_WRITE
3669 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3670 {
3671 operand_reloadnum[goal_alternative_matched[i]]
3672 = push_reload (recog_operand[goal_alternative_matched[i]],
3673 recog_operand[i],
3674 recog_operand_loc[goal_alternative_matched[i]],
3675 recog_operand_loc[i],
3676 (enum reg_class) goal_alternative[i],
3677 operand_mode[goal_alternative_matched[i]],
3678 operand_mode[i],
a8c9daeb 3679 0, 0, i, RELOAD_OTHER);
eab89b90
RK
3680 operand_reloadnum[i] = output_reloadnum;
3681 }
3682 else if (insn_code_number >= 0)
3683 abort ();
3684 else
3685 {
3686 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3687 /* Avoid further trouble with this insn. */
38a448ca 3688 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
eab89b90
RK
3689 n_reloads = 0;
3690 return;
3691 }
3692 }
3693 else if (goal_alternative_matched[i] < 0
3694 && goal_alternative_matches[i] < 0
3695 && optimize)
3696 {
a8c9daeb 3697 /* For each non-matching operand that's a MEM or a pseudo-register
eab89b90
RK
3698 that didn't get a hard register, make an optional reload.
3699 This may get done even if the insn needs no reloads otherwise. */
a8c9daeb
RK
3700
3701 rtx operand = recog_operand[i];
3702
eab89b90
RK
3703 while (GET_CODE (operand) == SUBREG)
3704 operand = XEXP (operand, 0);
a8c9daeb
RK
3705 if ((GET_CODE (operand) == MEM
3706 || (GET_CODE (operand) == REG
3707 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
eab89b90 3708 && (enum reg_class) goal_alternative[i] != NO_REGS
a8c9daeb
RK
3709 && ! no_input_reloads
3710 /* Optional output reloads don't do anything and we mustn't
3711 make in-out reloads on insns that are not permitted output
3712 reloads. */
eab89b90 3713 && (modified[i] == RELOAD_READ
a8c9daeb 3714 || (modified[i] == RELOAD_READ_WRITE && ! no_output_reloads)))
eab89b90
RK
3715 operand_reloadnum[i]
3716 = push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
3717 modified[i] != RELOAD_READ ? recog_operand[i] : 0,
a8c9daeb
RK
3718 (modified[i] != RELOAD_WRITE
3719 ? recog_operand_loc[i] : 0),
3720 (modified[i] != RELOAD_READ
3721 ? recog_operand_loc[i] : 0),
eab89b90 3722 (enum reg_class) goal_alternative[i],
a8c9daeb
RK
3723 (modified[i] == RELOAD_WRITE
3724 ? VOIDmode : operand_mode[i]),
3725 (modified[i] == RELOAD_READ
3726 ? VOIDmode : operand_mode[i]),
eab89b90
RK
3727 (insn_code_number < 0 ? 0
3728 : insn_operand_strict_low[insn_code_number][i]),
a8c9daeb 3729 1, i, operand_type[i]);
eab89b90 3730 }
a8c9daeb
RK
3731 else if (goal_alternative_matches[i] >= 0
3732 && goal_alternative_win[goal_alternative_matches[i]]
3733 && modified[i] == RELOAD_READ
3734 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3735 && ! no_input_reloads && ! no_output_reloads
3736 && optimize)
3737 {
3738 /* Similarly, make an optional reload for a pair of matching
3739 objects that are in MEM or a pseudo that didn't get a hard reg. */
eab89b90 3740
a8c9daeb
RK
3741 rtx operand = recog_operand[i];
3742
3743 while (GET_CODE (operand) == SUBREG)
3744 operand = XEXP (operand, 0);
3745 if ((GET_CODE (operand) == MEM
3746 || (GET_CODE (operand) == REG
3747 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3748 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3749 != NO_REGS))
3750 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3751 = push_reload (recog_operand[goal_alternative_matches[i]],
3752 recog_operand[i],
3753 recog_operand_loc[goal_alternative_matches[i]],
3754 recog_operand_loc[i],
3755 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3756 operand_mode[goal_alternative_matches[i]],
3757 operand_mode[i],
3758 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3759 }
3760
eab89b90
RK
3761 /* If this insn pattern contains any MATCH_DUP's, make sure that
3762 they will be substituted if the operands they match are substituted.
3763 Also do now any substitutions we already did on the operands.
3764
3765 Don't do this if we aren't making replacements because we might be
3766 propagating things allocated by frame pointer elimination into places
3767 it doesn't expect. */
3768
3769 if (insn_code_number >= 0 && replace)
3770 for (i = insn_n_dups[insn_code_number] - 1; i >= 0; i--)
3771 {
3772 int opno = recog_dup_num[i];
3773 *recog_dup_loc[i] = *recog_operand_loc[opno];
3774 if (operand_reloadnum[opno] >= 0)
3775 push_replacement (recog_dup_loc[i], operand_reloadnum[opno],
3776 insn_operand_mode[insn_code_number][opno]);
3777 }
3778
3779#if 0
3780 /* This loses because reloading of prior insns can invalidate the equivalence
3781 (or at least find_equiv_reg isn't smart enough to find it any more),
3782 causing this insn to need more reload regs than it needed before.
3783 It may be too late to make the reload regs available.
3784 Now this optimization is done safely in choose_reload_regs. */
3785
3786 /* For each reload of a reg into some other class of reg,
3787 search for an existing equivalent reg (same value now) in the right class.
3788 We can use it as long as we don't need to change its contents. */
3789 for (i = 0; i < n_reloads; i++)
3790 if (reload_reg_rtx[i] == 0
3791 && reload_in[i] != 0
3792 && GET_CODE (reload_in[i]) == REG
3793 && reload_out[i] == 0)
3794 {
3795 reload_reg_rtx[i]
3796 = find_equiv_reg (reload_in[i], insn, reload_reg_class[i], -1,
3797 static_reload_reg_p, 0, reload_inmode[i]);
3798 /* Prevent generation of insn to load the value
3799 because the one we found already has the value. */
3800 if (reload_reg_rtx[i])
3801 reload_in[i] = reload_reg_rtx[i];
3802 }
3803#endif
3804
a8c9daeb
RK
3805 /* Perhaps an output reload can be combined with another
3806 to reduce needs by one. */
3807 if (!goal_earlyclobber)
3808 combine_reloads ();
3809
3810 /* If we have a pair of reloads for parts of an address, they are reloading
3811 the same object, the operands themselves were not reloaded, and they
3812 are for two operands that are supposed to match, merge the reloads and
0f41302f 3813 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
a8c9daeb
RK
3814
3815 for (i = 0; i < n_reloads; i++)
3816 {
3817 int k;
3818
3819 for (j = i + 1; j < n_reloads; j++)
3820 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
47c8cf91
ILT
3821 || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3822 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3823 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
a8c9daeb 3824 && (reload_when_needed[j] == RELOAD_FOR_INPUT_ADDRESS
47c8cf91
ILT
3825 || reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS
3826 || reload_when_needed[j] == RELOAD_FOR_INPADDR_ADDRESS
3827 || reload_when_needed[j] == RELOAD_FOR_OUTADDR_ADDRESS)
a8c9daeb
RK
3828 && rtx_equal_p (reload_in[i], reload_in[j])
3829 && (operand_reloadnum[reload_opnum[i]] < 0
3830 || reload_optional[operand_reloadnum[reload_opnum[i]]])
3831 && (operand_reloadnum[reload_opnum[j]] < 0
3832 || reload_optional[operand_reloadnum[reload_opnum[j]]])
3833 && (goal_alternative_matches[reload_opnum[i]] == reload_opnum[j]
3834 || (goal_alternative_matches[reload_opnum[j]]
3835 == reload_opnum[i])))
3836 {
3837 for (k = 0; k < n_replacements; k++)
3838 if (replacements[k].what == j)
3839 replacements[k].what = i;
3840
47c8cf91
ILT
3841 if (reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3842 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3843 reload_when_needed[i] = RELOAD_FOR_OPADDR_ADDR;
3844 else
3845 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
a8c9daeb
RK
3846 reload_in[j] = 0;
3847 }
3848 }
3849
3850 /* Scan all the reloads and update their type.
3851 If a reload is for the address of an operand and we didn't reload
3852 that operand, change the type. Similarly, change the operand number
3853 of a reload when two operands match. If a reload is optional, treat it
3854 as though the operand isn't reloaded.
3855
3856 ??? This latter case is somewhat odd because if we do the optional
3857 reload, it means the object is hanging around. Thus we need only
3858 do the address reload if the optional reload was NOT done.
3859
3860 Change secondary reloads to be the address type of their operand, not
3861 the normal type.
3862
3863 If an operand's reload is now RELOAD_OTHER, change any
3864 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
3865 RELOAD_FOR_OTHER_ADDRESS. */
3866
3867 for (i = 0; i < n_reloads; i++)
3868 {
3869 if (reload_secondary_p[i]
3870 && reload_when_needed[i] == operand_type[reload_opnum[i]])
3871 reload_when_needed[i] = address_type[reload_opnum[i]];
3872
3873 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
47c8cf91
ILT
3874 || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3875 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3876 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
a8c9daeb 3877 && (operand_reloadnum[reload_opnum[i]] < 0
6ded3228 3878 || reload_optional[operand_reloadnum[reload_opnum[i]]]))
f98bb7d3
RK
3879 {
3880 /* If we have a secondary reload to go along with this reload,
0f41302f 3881 change its type to RELOAD_FOR_OPADDR_ADDR. */
f98bb7d3 3882
47c8cf91
ILT
3883 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3884 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS)
f98bb7d3
RK
3885 && reload_secondary_in_reload[i] != -1)
3886 {
3887 int secondary_in_reload = reload_secondary_in_reload[i];
3888
db3cf6fb
MS
3889 reload_when_needed[secondary_in_reload]
3890 = RELOAD_FOR_OPADDR_ADDR;
f98bb7d3 3891
0f41302f 3892 /* If there's a tertiary reload we have to change it also. */
f98bb7d3
RK
3893 if (secondary_in_reload > 0
3894 && reload_secondary_in_reload[secondary_in_reload] != -1)
3895 reload_when_needed[reload_secondary_in_reload[secondary_in_reload]]
3896 = RELOAD_FOR_OPADDR_ADDR;
3897 }
3898
47c8cf91
ILT
3899 if ((reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3900 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
f98bb7d3
RK
3901 && reload_secondary_out_reload[i] != -1)
3902 {
3903 int secondary_out_reload = reload_secondary_out_reload[i];
3904
db3cf6fb
MS
3905 reload_when_needed[secondary_out_reload]
3906 = RELOAD_FOR_OPADDR_ADDR;
f98bb7d3 3907
0f41302f 3908 /* If there's a tertiary reload we have to change it also. */
f98bb7d3
RK
3909 if (secondary_out_reload
3910 && reload_secondary_out_reload[secondary_out_reload] != -1)
3911 reload_when_needed[reload_secondary_out_reload[secondary_out_reload]]
3912 = RELOAD_FOR_OPADDR_ADDR;
3913 }
e5e809f4
JL
3914
3915 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
f98bb7d3 3916 }
a8c9daeb 3917
47c8cf91
ILT
3918 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3919 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS)
a8c9daeb
RK
3920 && operand_reloadnum[reload_opnum[i]] >= 0
3921 && (reload_when_needed[operand_reloadnum[reload_opnum[i]]]
3922 == RELOAD_OTHER))
3923 reload_when_needed[i] = RELOAD_FOR_OTHER_ADDRESS;
3924
3925 if (goal_alternative_matches[reload_opnum[i]] >= 0)
3926 reload_opnum[i] = goal_alternative_matches[reload_opnum[i]];
3927 }
3928
a94ce333
JW
3929 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
3930 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
3931 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
3932
3933 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
3934 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
3935 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
3936 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
3937 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
3938 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
3939 This is complicated by the fact that a single operand can have more
3940 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
3941 choose_reload_regs without affecting code quality, and cases that
3942 actually fail are extremely rare, so it turns out to be better to fix
3943 the problem here by not generating cases that choose_reload_regs will
3944 fail for. */
3945
3946 {
3947 int op_addr_reloads = 0;
3948 for (i = 0; i < n_reloads; i++)
3949 if (reload_when_needed[i] == RELOAD_FOR_OPERAND_ADDRESS)
3950 op_addr_reloads++;
3951
3952 if (op_addr_reloads > 1)
3953 for (i = 0; i < n_reloads; i++)
3954 if (reload_when_needed[i] == RELOAD_FOR_OPADDR_ADDR)
3955 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
3956 }
3957
a8c9daeb
RK
3958 /* See if we have any reloads that are now allowed to be merged
3959 because we've changed when the reload is needed to
3960 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
3961 check for the most common cases. */
3962
3963 for (i = 0; i < n_reloads; i++)
3964 if (reload_in[i] != 0 && reload_out[i] == 0
3965 && (reload_when_needed[i] == RELOAD_FOR_OPERAND_ADDRESS
47c8cf91 3966 || reload_when_needed[i] == RELOAD_FOR_OPADDR_ADDR
a8c9daeb
RK
3967 || reload_when_needed[i] == RELOAD_FOR_OTHER_ADDRESS))
3968 for (j = 0; j < n_reloads; j++)
3969 if (i != j && reload_in[j] != 0 && reload_out[j] == 0
3970 && reload_when_needed[j] == reload_when_needed[i]
73f67895
RS
3971 && MATCHES (reload_in[i], reload_in[j])
3972 && reload_reg_class[i] == reload_reg_class[j]
92b37691
RK
3973 && !reload_nocombine[i] && !reload_nocombine[j]
3974 && reload_reg_rtx[i] == reload_reg_rtx[j])
a8c9daeb
RK
3975 {
3976 reload_opnum[i] = MIN (reload_opnum[i], reload_opnum[j]);
3977 transfer_replacements (i, j);
3978 reload_in[j] = 0;
3979 }
3980
f5963e61
JL
3981 /* Set which reloads must use registers not used in any group. Start
3982 with those that conflict with a group and then include ones that
3983 conflict with ones that are already known to conflict with a group. */
3984
3985 changed = 0;
3986 for (i = 0; i < n_reloads; i++)
3987 {
3988 enum machine_mode mode = reload_inmode[i];
3989 enum reg_class class = reload_reg_class[i];
3990 int size;
3991
3992 if (GET_MODE_SIZE (reload_outmode[i]) > GET_MODE_SIZE (mode))
3993 mode = reload_outmode[i];
3994 size = CLASS_MAX_NREGS (class, mode);
3995
3996 if (size == 1)
3997 for (j = 0; j < n_reloads; j++)
3998 if ((CLASS_MAX_NREGS (reload_reg_class[j],
3999 (GET_MODE_SIZE (reload_outmode[j])
4000 > GET_MODE_SIZE (reload_inmode[j]))
4001 ? reload_outmode[j] : reload_inmode[j])
4002 > 1)
4003 && !reload_optional[j]
4004 && (reload_in[j] != 0 || reload_out[j] != 0
4005 || reload_secondary_p[j])
4006 && reloads_conflict (i, j)
4007 && reg_classes_intersect_p (class, reload_reg_class[j]))
4008 {
4009 reload_nongroup[i] = 1;
4010 changed = 1;
4011 break;
4012 }
4013 }
4014
4015 while (changed)
4016 {
4017 changed = 0;
4018
4019 for (i = 0; i < n_reloads; i++)
4020 {
4021 enum machine_mode mode = reload_inmode[i];
4022 enum reg_class class = reload_reg_class[i];
4023 int size;
4024
4025 if (GET_MODE_SIZE (reload_outmode[i]) > GET_MODE_SIZE (mode))
4026 mode = reload_outmode[i];
4027 size = CLASS_MAX_NREGS (class, mode);
4028
4029 if (! reload_nongroup[i] && size == 1)
4030 for (j = 0; j < n_reloads; j++)
4031 if (reload_nongroup[j]
4032 && reloads_conflict (i, j)
4033 && reg_classes_intersect_p (class, reload_reg_class[j]))
4034 {
4035 reload_nongroup[i] = 1;
4036 changed = 1;
4037 break;
4038 }
4039 }
4040 }
4041
eab89b90
RK
4042#else /* no REGISTER_CONSTRAINTS */
4043 int noperands;
4044 int insn_code_number;
4045 int goal_earlyclobber = 0; /* Always 0, to make combine_reloads happen. */
4046 register int i;
4047 rtx body = PATTERN (insn);
4048
4049 n_reloads = 0;
4050 n_replacements = 0;
4051 n_earlyclobbers = 0;
4052 replace_reloads = replace;
4053 this_insn = insn;
4054
4055 /* Find what kind of insn this is. NOPERANDS gets number of operands.
4056 Store the operand values in RECOG_OPERAND and the locations
4057 of the words in the insn that point to them in RECOG_OPERAND_LOC.
4058 Return if the insn needs no reload processing. */
4059
4060 switch (GET_CODE (body))
4061 {
4062 case USE:
4063 case CLOBBER:
4064 case ASM_INPUT:
4065 case ADDR_VEC:
4066 case ADDR_DIFF_VEC:
4067 return;
4068
4069 case PARALLEL:
4070 case SET:
4071 noperands = asm_noperands (body);
4072 if (noperands >= 0)
4073 {
4074 /* This insn is an `asm' with operands.
4075 First, find out how many operands, and allocate space. */
4076
4077 insn_code_number = -1;
4078 /* ??? This is a bug! ???
4079 Give up and delete this insn if it has too many operands. */
4080 if (noperands > MAX_RECOG_OPERANDS)
4081 abort ();
4082
4083 /* Now get the operand values out of the insn. */
4084
fb3821f7
CH
4085 decode_asm_operands (body, recog_operand, recog_operand_loc,
4086 NULL_PTR, NULL_PTR);
eab89b90
RK
4087 break;
4088 }
4089
4090 default:
4091 /* Ordinary insn: recognize it, allocate space for operands and
4092 constraints, and get them out via insn_extract. */
4093
4094 insn_code_number = recog_memoized (insn);
4095 noperands = insn_n_operands[insn_code_number];
4096 insn_extract (insn);
4097 }
4098
4099 if (noperands == 0)
4100 return;
4101
4102 for (i = 0; i < noperands; i++)
4103 {
4104 register RTX_CODE code = GET_CODE (recog_operand[i]);
4105 int is_set_dest = GET_CODE (body) == SET && (i == 0);
4106
4107 if (insn_code_number >= 0)
4108 if (insn_operand_address_p[insn_code_number][i])
fb3821f7 4109 find_reloads_address (VOIDmode, NULL_PTR,
eab89b90 4110 recog_operand[i], recog_operand_loc[i],
55c22565 4111 i, RELOAD_FOR_INPUT, ind_levels, insn);
a8c9daeb
RK
4112
4113 /* In these cases, we can't tell if the operand is an input
4114 or an output, so be conservative. In practice it won't be
4115 problem. */
4116
eab89b90
RK
4117 if (code == MEM)
4118 find_reloads_address (GET_MODE (recog_operand[i]),
4119 recog_operand_loc[i],
4120 XEXP (recog_operand[i], 0),
4121 &XEXP (recog_operand[i], 0),
55c22565 4122 i, RELOAD_OTHER, ind_levels, insn);
eab89b90
RK
4123 if (code == SUBREG)
4124 recog_operand[i] = *recog_operand_loc[i]
a8c9daeb
RK
4125 = find_reloads_toplev (recog_operand[i], i, RELOAD_OTHER,
4126 ind_levels, is_set_dest);
eab89b90
RK
4127 if (code == REG)
4128 {
4129 register int regno = REGNO (recog_operand[i]);
4130 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4131 recog_operand[i] = *recog_operand_loc[i]
4132 = reg_equiv_constant[regno];
4133#if 0 /* This might screw code in reload1.c to delete prior output-reload
4134 that feeds this insn. */
4135 if (reg_equiv_mem[regno] != 0)
4136 recog_operand[i] = *recog_operand_loc[i]
4137 = reg_equiv_mem[regno];
4138#endif
4139 }
eab89b90
RK
4140 }
4141
4142 /* Perhaps an output reload can be combined with another
4143 to reduce needs by one. */
4144 if (!goal_earlyclobber)
4145 combine_reloads ();
a8c9daeb 4146#endif /* no REGISTER_CONSTRAINTS */
eab89b90
RK
4147}
4148
4149/* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4150 accepts a memory operand with constant address. */
4151
4152static int
4153alternative_allows_memconst (constraint, altnum)
4154 char *constraint;
4155 int altnum;
4156{
4157 register int c;
4158 /* Skip alternatives before the one requested. */
4159 while (altnum > 0)
4160 {
4161 while (*constraint++ != ',');
4162 altnum--;
4163 }
4164 /* Scan the requested alternative for 'm' or 'o'.
4165 If one of them is present, this alternative accepts memory constants. */
4166 while ((c = *constraint++) && c != ',' && c != '#')
4167 if (c == 'm' || c == 'o')
4168 return 1;
4169 return 0;
4170}
4171\f
4172/* Scan X for memory references and scan the addresses for reloading.
4173 Also checks for references to "constant" regs that we want to eliminate
4174 and replaces them with the values they stand for.
6dc42e49 4175 We may alter X destructively if it contains a reference to such.
eab89b90
RK
4176 If X is just a constant reg, we return the equivalent value
4177 instead of X.
4178
4179 IND_LEVELS says how many levels of indirect addressing this machine
4180 supports.
4181
a8c9daeb
RK
4182 OPNUM and TYPE identify the purpose of the reload.
4183
eab89b90
RK
4184 IS_SET_DEST is true if X is the destination of a SET, which is not
4185 appropriate to be replaced by a constant. */
4186
4187static rtx
a8c9daeb 4188find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest)
eab89b90 4189 rtx x;
a8c9daeb
RK
4190 int opnum;
4191 enum reload_type type;
eab89b90
RK
4192 int ind_levels;
4193 int is_set_dest;
4194{
4195 register RTX_CODE code = GET_CODE (x);
4196
4197 register char *fmt = GET_RTX_FORMAT (code);
4198 register int i;
4199
4200 if (code == REG)
4201 {
4202 /* This code is duplicated for speed in find_reloads. */
4203 register int regno = REGNO (x);
4204 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4205 x = reg_equiv_constant[regno];
4206#if 0
4207/* This creates (subreg (mem...)) which would cause an unnecessary
4208 reload of the mem. */
4209 else if (reg_equiv_mem[regno] != 0)
4210 x = reg_equiv_mem[regno];
4211#endif
4212 else if (reg_equiv_address[regno] != 0)
4213 {
4214 /* If reg_equiv_address varies, it may be shared, so copy it. */
4ffeab02
JW
4215 /* We must rerun eliminate_regs, in case the elimination
4216 offsets have changed. */
4217 rtx addr = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0,
1914f5da 4218 NULL_RTX),
4ffeab02 4219 0);
eab89b90
RK
4220
4221 if (rtx_varies_p (addr))
4222 addr = copy_rtx (addr);
4223
38a448ca 4224 x = gen_rtx_MEM (GET_MODE (x), addr);
eab89b90 4225 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
fb3821f7 4226 find_reloads_address (GET_MODE (x), NULL_PTR,
eab89b90 4227 XEXP (x, 0),
55c22565 4228 &XEXP (x, 0), opnum, type, ind_levels, 0);
eab89b90
RK
4229 }
4230 return x;
4231 }
4232 if (code == MEM)
4233 {
4234 rtx tem = x;
4235 find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
55c22565 4236 opnum, type, ind_levels, 0);
eab89b90
RK
4237 return tem;
4238 }
4239
4240 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4241 {
4242 /* Check for SUBREG containing a REG that's equivalent to a constant.
4243 If the constant has a known value, truncate it right now.
4244 Similarly if we are extracting a single-word of a multi-word
4245 constant. If the constant is symbolic, allow it to be substituted
4246 normally. push_reload will strip the subreg later. If the
4247 constant is VOIDmode, abort because we will lose the mode of
4248 the register (this should never happen because one of the cases
4249 above should handle it). */
4250
4251 register int regno = REGNO (SUBREG_REG (x));
4252 rtx tem;
4253
4254 if (subreg_lowpart_p (x)
4255 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4256 && reg_equiv_constant[regno] != 0
4257 && (tem = gen_lowpart_common (GET_MODE (x),
4258 reg_equiv_constant[regno])) != 0)
4259 return tem;
4260
4261 if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
4262 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4263 && reg_equiv_constant[regno] != 0
4264 && (tem = operand_subword (reg_equiv_constant[regno],
4265 SUBREG_WORD (x), 0,
4266 GET_MODE (SUBREG_REG (x)))) != 0)
4267 return tem;
4268
2fd0af53
R
4269 /* If the SUBREG is wider than a word, the above test will fail.
4270 For example, we might have a SImode SUBREG of a DImode SUBREG_REG
4271 for a 16 bit target, or a DImode SUBREG of a TImode SUBREG_REG for
4272 a 32 bit target. We still can - and have to - handle this
4273 for non-paradoxical subregs of CONST_INTs. */
4274 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4275 && reg_equiv_constant[regno] != 0
4276 && GET_CODE (reg_equiv_constant[regno]) == CONST_INT
4277 && (GET_MODE_SIZE (GET_MODE (x))
4278 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
4279 {
4280 int shift = SUBREG_WORD (x) * BITS_PER_WORD;
4281 if (WORDS_BIG_ENDIAN)
4282 shift = (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4283 - GET_MODE_BITSIZE (GET_MODE (x))
4284 - shift);
4285 /* Here we use the knowledge that CONST_INTs have a
4286 HOST_WIDE_INT field. */
4287 if (shift >= HOST_BITS_PER_WIDE_INT)
4288 shift = HOST_BITS_PER_WIDE_INT - 1;
4289 return GEN_INT (INTVAL (reg_equiv_constant[regno]) >> shift);
4290 }
4291
eab89b90
RK
4292 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4293 && reg_equiv_constant[regno] != 0
4294 && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
4295 abort ();
4296
4297 /* If the subreg contains a reg that will be converted to a mem,
4298 convert the subreg to a narrower memref now.
4299 Otherwise, we would get (subreg (mem ...) ...),
4300 which would force reload of the mem.
4301
4302 We also need to do this if there is an equivalent MEM that is
4303 not offsettable. In that case, alter_subreg would produce an
4304 invalid address on big-endian machines.
4305
46da6b3a 4306 For machines that extend byte loads, we must not reload using
eab89b90
RK
4307 a wider mode if we have a paradoxical SUBREG. find_reloads will
4308 force a reload in that case. So we should not do anything here. */
4309
4310 else if (regno >= FIRST_PSEUDO_REGISTER
fd72420f 4311#ifdef LOAD_EXTEND_OP
eab89b90
RK
4312 && (GET_MODE_SIZE (GET_MODE (x))
4313 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4314#endif
4315 && (reg_equiv_address[regno] != 0
4316 || (reg_equiv_mem[regno] != 0
f2fbfe92
JL
4317 && (! strict_memory_address_p (GET_MODE (x),
4318 XEXP (reg_equiv_mem[regno], 0))
4319 || ! offsettable_memref_p (reg_equiv_mem[regno])))))
eab89b90
RK
4320 {
4321 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
4ffeab02
JW
4322 /* We must rerun eliminate_regs, in case the elimination
4323 offsets have changed. */
4324 rtx addr = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0,
1914f5da 4325 NULL_RTX),
4ffeab02 4326 0);
f76b9db2
ILT
4327 if (BYTES_BIG_ENDIAN)
4328 {
4329 int size;
4330 size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
4331 offset += MIN (size, UNITS_PER_WORD);
4332 size = GET_MODE_SIZE (GET_MODE (x));
4333 offset -= MIN (size, UNITS_PER_WORD);
4334 }
eab89b90 4335 addr = plus_constant (addr, offset);
38a448ca 4336 x = gen_rtx_MEM (GET_MODE (x), addr);
eab89b90 4337 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
fb3821f7 4338 find_reloads_address (GET_MODE (x), NULL_PTR,
eab89b90 4339 XEXP (x, 0),
55c22565 4340 &XEXP (x, 0), opnum, type, ind_levels, 0);
eab89b90
RK
4341 }
4342
4343 }
4344
4345 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4346 {
4347 if (fmt[i] == 'e')
a8c9daeb 4348 XEXP (x, i) = find_reloads_toplev (XEXP (x, i), opnum, type,
eab89b90
RK
4349 ind_levels, is_set_dest);
4350 }
4351 return x;
4352}
4353
dbf85761
RS
4354/* Return a mem ref for the memory equivalent of reg REGNO.
4355 This mem ref is not shared with anything. */
4356
eab89b90
RK
4357static rtx
4358make_memloc (ad, regno)
4359 rtx ad;
4360 int regno;
4361{
29a82058 4362#if 0
eab89b90 4363 register int i;
29a82058 4364#endif
4ffeab02
JW
4365 /* We must rerun eliminate_regs, in case the elimination
4366 offsets have changed. */
1914f5da 4367 rtx tem = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
dbf85761
RS
4368
4369#if 0 /* We cannot safely reuse a memloc made here;
4370 if the pseudo appears twice, and its mem needs a reload,
4371 it gets two separate reloads assigned, but it only
4372 gets substituted with the second of them;
4373 then it can get used before that reload reg gets loaded up. */
eab89b90
RK
4374 for (i = 0; i < n_memlocs; i++)
4375 if (rtx_equal_p (tem, XEXP (memlocs[i], 0)))
4376 return memlocs[i];
dbf85761 4377#endif
eab89b90
RK
4378
4379 /* If TEM might contain a pseudo, we must copy it to avoid
4380 modifying it when we do the substitution for the reload. */
4381 if (rtx_varies_p (tem))
4382 tem = copy_rtx (tem);
4383
38a448ca 4384 tem = gen_rtx_MEM (GET_MODE (ad), tem);
eab89b90
RK
4385 RTX_UNCHANGING_P (tem) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
4386 memlocs[n_memlocs++] = tem;
4387 return tem;
4388}
4389
4390/* Record all reloads needed for handling memory address AD
4391 which appears in *LOC in a memory reference to mode MODE
4392 which itself is found in location *MEMREFLOC.
4393 Note that we take shortcuts assuming that no multi-reg machine mode
4394 occurs as part of an address.
4395
a8c9daeb 4396 OPNUM and TYPE specify the purpose of this reload.
eab89b90
RK
4397
4398 IND_LEVELS says how many levels of indirect addressing this machine
4399 supports.
4400
55c22565
RK
4401 INSN, if nonzero, is the insn in which we do the reload. It is used
4402 to determine if we may generate output reloads.
4403
eab89b90
RK
4404 Value is nonzero if this address is reloaded or replaced as a whole.
4405 This is interesting to the caller if the address is an autoincrement.
4406
4407 Note that there is no verification that the address will be valid after
4408 this routine does its work. Instead, we rely on the fact that the address
4409 was valid when reload started. So we need only undo things that reload
4410 could have broken. These are wrong register types, pseudos not allocated
4411 to a hard register, and frame pointer elimination. */
4412
4413static int
55c22565 4414find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
eab89b90
RK
4415 enum machine_mode mode;
4416 rtx *memrefloc;
4417 rtx ad;
4418 rtx *loc;
a8c9daeb
RK
4419 int opnum;
4420 enum reload_type type;
eab89b90 4421 int ind_levels;
55c22565 4422 rtx insn;
eab89b90
RK
4423{
4424 register int regno;
4425 rtx tem;
4426
4427 /* If the address is a register, see if it is a legitimate address and
4428 reload if not. We first handle the cases where we need not reload
4429 or where we must reload in a non-standard way. */
4430
4431 if (GET_CODE (ad) == REG)
4432 {
4433 regno = REGNO (ad);
4434
4435 if (reg_equiv_constant[regno] != 0
4436 && strict_memory_address_p (mode, reg_equiv_constant[regno]))
4437 {
4438 *loc = ad = reg_equiv_constant[regno];
4439 return 1;
4440 }
4441
4442 else if (reg_equiv_address[regno] != 0)
4443 {
4444 tem = make_memloc (ad, regno);
fb3821f7 4445 find_reloads_address (GET_MODE (tem), NULL_PTR, XEXP (tem, 0),
47c8cf91 4446 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
55c22565 4447 ind_levels, insn);
1ba61f4e
ILT
4448 push_reload (tem, NULL_RTX, loc, NULL_PTR,
4449 reload_address_base_reg_class,
eab89b90 4450 GET_MODE (ad), VOIDmode, 0, 0,
a8c9daeb 4451 opnum, type);
eab89b90
RK
4452 return 1;
4453 }
4454
b39555b4 4455 /* We can avoid a reload if the register's equivalent memory expression
c1875d66
RS
4456 is valid as an indirect memory address.
4457 But not all addresses are valid in a mem used as an indirect address:
4458 only reg or reg+constant. */
b39555b4
RS
4459
4460 else if (reg_equiv_mem[regno] != 0 && ind_levels > 0
c1875d66
RS
4461 && strict_memory_address_p (mode, reg_equiv_mem[regno])
4462 && (GET_CODE (XEXP (reg_equiv_mem[regno], 0)) == REG
4463 || (GET_CODE (XEXP (reg_equiv_mem[regno], 0)) == PLUS
4464 && GET_CODE (XEXP (XEXP (reg_equiv_mem[regno], 0), 0)) == REG
75301d68 4465 && CONSTANT_P (XEXP (XEXP (reg_equiv_mem[regno], 0), 1)))))
b39555b4 4466 return 0;
eab89b90
RK
4467
4468 /* The only remaining case where we can avoid a reload is if this is a
4469 hard register that is valid as a base register and which is not the
4470 subject of a CLOBBER in this insn. */
4471
858c3c8c
ILT
4472 else if (regno < FIRST_PSEUDO_REGISTER
4473 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
eab89b90
RK
4474 && ! regno_clobbered_p (regno, this_insn))
4475 return 0;
4476
4477 /* If we do not have one of the cases above, we must do the reload. */
1ba61f4e 4478 push_reload (ad, NULL_RTX, loc, NULL_PTR, reload_address_base_reg_class,
a8c9daeb 4479 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
eab89b90
RK
4480 return 1;
4481 }
4482
4483 if (strict_memory_address_p (mode, ad))
4484 {
4485 /* The address appears valid, so reloads are not needed.
4486 But the address may contain an eliminable register.
4487 This can happen because a machine with indirect addressing
4488 may consider a pseudo register by itself a valid address even when
4489 it has failed to get a hard reg.
4490 So do a tree-walk to find and eliminate all such regs. */
4491
4492 /* But first quickly dispose of a common case. */
4493 if (GET_CODE (ad) == PLUS
4494 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4495 && GET_CODE (XEXP (ad, 0)) == REG
4496 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4497 return 0;
4498
4499 subst_reg_equivs_changed = 0;
4500 *loc = subst_reg_equivs (ad);
4501
4502 if (! subst_reg_equivs_changed)
4503 return 0;
4504
4505 /* Check result for validity after substitution. */
4506 if (strict_memory_address_p (mode, ad))
4507 return 0;
4508 }
4509
a9a2595b
JR
4510#ifdef LEGITIMIZE_RELOAD_ADDRESS
4511 do
4512 {
4513 if (memrefloc)
4514 {
4515 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4516 ind_levels, win);
4517 }
4518 break;
4519 win:
4520 *memrefloc = copy_rtx (*memrefloc);
4521 XEXP (*memrefloc, 0) = ad;
4522 move_replacements (&ad, &XEXP (*memrefloc, 0));
4523 return 1;
4524 }
4525 while (0);
4526#endif
4527
eab89b90
RK
4528 /* The address is not valid. We have to figure out why. One possibility
4529 is that it is itself a MEM. This can happen when the frame pointer is
4530 being eliminated, a pseudo is not allocated to a hard register, and the
4531 offset between the frame and stack pointers is not its initial value.
d45cf215 4532 In that case the pseudo will have been replaced by a MEM referring to
eab89b90
RK
4533 the stack pointer. */
4534 if (GET_CODE (ad) == MEM)
4535 {
4536 /* First ensure that the address in this MEM is valid. Then, unless
4537 indirect addresses are valid, reload the MEM into a register. */
4538 tem = ad;
4539 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
47c8cf91 4540 opnum, ADDR_TYPE (type),
55c22565 4541 ind_levels == 0 ? 0 : ind_levels - 1, insn);
d2555454
RS
4542
4543 /* If tem was changed, then we must create a new memory reference to
4544 hold it and store it back into memrefloc. */
4545 if (tem != ad && memrefloc)
ca3e4a2f 4546 {
ca3e4a2f 4547 *memrefloc = copy_rtx (*memrefloc);
3c80f7ed 4548 copy_replacements (tem, XEXP (*memrefloc, 0));
ca3e4a2f 4549 loc = &XEXP (*memrefloc, 0);
ca3e4a2f 4550 }
d2555454 4551
eab89b90
RK
4552 /* Check similar cases as for indirect addresses as above except
4553 that we can allow pseudos and a MEM since they should have been
4554 taken care of above. */
4555
4556 if (ind_levels == 0
4557 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4558 || GET_CODE (XEXP (tem, 0)) == MEM
4559 || ! (GET_CODE (XEXP (tem, 0)) == REG
4560 || (GET_CODE (XEXP (tem, 0)) == PLUS
4561 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4562 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4563 {
4564 /* Must use TEM here, not AD, since it is the one that will
4565 have any subexpressions reloaded, if needed. */
fb3821f7 4566 push_reload (tem, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
4567 reload_address_base_reg_class, GET_MODE (tem),
4568 VOIDmode, 0,
a8c9daeb 4569 0, opnum, type);
eab89b90
RK
4570 return 1;
4571 }
4572 else
4573 return 0;
4574 }
4575
1b4d2764
RK
4576 /* If we have address of a stack slot but it's not valid because the
4577 displacement is too large, compute the sum in a register.
4578 Handle all base registers here, not just fp/ap/sp, because on some
4579 targets (namely SH) we can also get too large displacements from
4580 big-endian corrections. */
eab89b90 4581 else if (GET_CODE (ad) == PLUS
1b4d2764
RK
4582 && GET_CODE (XEXP (ad, 0)) == REG
4583 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
858c3c8c 4584 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
eab89b90
RK
4585 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4586 {
4587 /* Unshare the MEM rtx so we can safely alter it. */
4588 if (memrefloc)
4589 {
eab89b90
RK
4590 *memrefloc = copy_rtx (*memrefloc);
4591 loc = &XEXP (*memrefloc, 0);
eab89b90
RK
4592 }
4593 if (double_reg_address_ok)
4594 {
4595 /* Unshare the sum as well. */
4596 *loc = ad = copy_rtx (ad);
4597 /* Reload the displacement into an index reg.
4598 We assume the frame pointer or arg pointer is a base reg. */
4599 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
1ba61f4e
ILT
4600 reload_address_index_reg_class,
4601 GET_MODE (ad), opnum, type, ind_levels);
eab89b90
RK
4602 }
4603 else
4604 {
4605 /* If the sum of two regs is not necessarily valid,
4606 reload the sum into a base reg.
4607 That will at least work. */
1ba61f4e
ILT
4608 find_reloads_address_part (ad, loc, reload_address_base_reg_class,
4609 Pmode, opnum, type, ind_levels);
eab89b90
RK
4610 }
4611 return 1;
4612 }
4613
4614 /* If we have an indexed stack slot, there are three possible reasons why
4615 it might be invalid: The index might need to be reloaded, the address
4616 might have been made by frame pointer elimination and hence have a
f302eea3 4617 constant out of range, or both reasons might apply.
eab89b90
RK
4618
4619 We can easily check for an index needing reload, but even if that is the
4620 case, we might also have an invalid constant. To avoid making the
4621 conservative assumption and requiring two reloads, we see if this address
4622 is valid when not interpreted strictly. If it is, the only problem is
4623 that the index needs a reload and find_reloads_address_1 will take care
4624 of it.
4625
4626 There is still a case when we might generate an extra reload,
4627 however. In certain cases eliminate_regs will return a MEM for a REG
4628 (see the code there for details). In those cases, memory_address_p
4629 applied to our address will return 0 so we will think that our offset
4630 must be too large. But it might indeed be valid and the only problem
4631 is that a MEM is present where a REG should be. This case should be
4632 very rare and there doesn't seem to be any way to avoid it.
4633
4634 If we decide to do something here, it must be that
4635 `double_reg_address_ok' is true and that this address rtl was made by
4636 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4637 rework the sum so that the reload register will be added to the index.
4638 This is safe because we know the address isn't shared.
4639
4640 We check for fp/ap/sp as both the first and second operand of the
4641 innermost PLUS. */
4642
4643 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
f302eea3 4644 && GET_CODE (XEXP (ad, 0)) == PLUS
eab89b90 4645 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
a36d4c62
DE
4646#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4647 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4648#endif
eab89b90
RK
4649#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4650 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4651#endif
4652 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4653 && ! memory_address_p (mode, ad))
4654 {
38a448ca
RH
4655 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4656 plus_constant (XEXP (XEXP (ad, 0), 0),
4657 INTVAL (XEXP (ad, 1))),
eab89b90 4658 XEXP (XEXP (ad, 0), 1));
1ba61f4e
ILT
4659 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4660 reload_address_base_reg_class,
a8c9daeb 4661 GET_MODE (ad), opnum, type, ind_levels);
858c3c8c 4662 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
55c22565 4663 type, 0, insn);
eab89b90
RK
4664
4665 return 1;
4666 }
4667
4668 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4669 && GET_CODE (XEXP (ad, 0)) == PLUS
4670 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
a36d4c62
DE
4671#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4672 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4673#endif
eab89b90
RK
4674#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4675 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4676#endif
4677 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4678 && ! memory_address_p (mode, ad))
4679 {
38a448ca
RH
4680 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4681 XEXP (XEXP (ad, 0), 0),
4682 plus_constant (XEXP (XEXP (ad, 0), 1),
4683 INTVAL (XEXP (ad, 1))));
1ba61f4e
ILT
4684 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4685 reload_address_base_reg_class,
a8c9daeb 4686 GET_MODE (ad), opnum, type, ind_levels);
858c3c8c 4687 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
55c22565 4688 type, 0, insn);
eab89b90
RK
4689
4690 return 1;
4691 }
4692
4693 /* See if address becomes valid when an eliminable register
4694 in a sum is replaced. */
4695
4696 tem = ad;
4697 if (GET_CODE (ad) == PLUS)
4698 tem = subst_indexed_address (ad);
4699 if (tem != ad && strict_memory_address_p (mode, tem))
4700 {
4701 /* Ok, we win that way. Replace any additional eliminable
4702 registers. */
4703
4704 subst_reg_equivs_changed = 0;
4705 tem = subst_reg_equivs (tem);
4706
4707 /* Make sure that didn't make the address invalid again. */
4708
4709 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4710 {
4711 *loc = tem;
4712 return 0;
4713 }
4714 }
4715
4716 /* If constants aren't valid addresses, reload the constant address
4717 into a register. */
191b18e9 4718 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
eab89b90
RK
4719 {
4720 /* If AD is in address in the constant pool, the MEM rtx may be shared.
4721 Unshare it so we can safely alter it. */
4722 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4723 && CONSTANT_POOL_ADDRESS_P (ad))
4724 {
eab89b90
RK
4725 *memrefloc = copy_rtx (*memrefloc);
4726 loc = &XEXP (*memrefloc, 0);
eab89b90
RK
4727 }
4728
1ba61f4e
ILT
4729 find_reloads_address_part (ad, loc, reload_address_base_reg_class,
4730 Pmode, opnum, type,
eab89b90
RK
4731 ind_levels);
4732 return 1;
4733 }
4734
55c22565
RK
4735 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4736 insn);
eab89b90
RK
4737}
4738\f
4739/* Find all pseudo regs appearing in AD
4740 that are eliminable in favor of equivalent values
4741 and do not have hard regs; replace them by their equivalents. */
4742
4743static rtx
4744subst_reg_equivs (ad)
4745 rtx ad;
4746{
4747 register RTX_CODE code = GET_CODE (ad);
4748 register int i;
4749 register char *fmt;
4750
4751 switch (code)
4752 {
4753 case HIGH:
4754 case CONST_INT:
4755 case CONST:
4756 case CONST_DOUBLE:
4757 case SYMBOL_REF:
4758 case LABEL_REF:
4759 case PC:
4760 case CC0:
4761 return ad;
4762
4763 case REG:
4764 {
4765 register int regno = REGNO (ad);
4766
4767 if (reg_equiv_constant[regno] != 0)
4768 {
4769 subst_reg_equivs_changed = 1;
4770 return reg_equiv_constant[regno];
4771 }
4772 }
4773 return ad;
4774
4775 case PLUS:
4776 /* Quickly dispose of a common case. */
4777 if (XEXP (ad, 0) == frame_pointer_rtx
4778 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4779 return ad;
e9a25f70
JL
4780 break;
4781
4782 default:
4783 break;
eab89b90
RK
4784 }
4785
4786 fmt = GET_RTX_FORMAT (code);
4787 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4788 if (fmt[i] == 'e')
4789 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i));
4790 return ad;
4791}
4792\f
4793/* Compute the sum of X and Y, making canonicalizations assumed in an
4794 address, namely: sum constant integers, surround the sum of two
4795 constants with a CONST, put the constant as the second operand, and
4796 group the constant on the outermost sum.
4797
4798 This routine assumes both inputs are already in canonical form. */
4799
4800rtx
4801form_sum (x, y)
4802 rtx x, y;
4803{
4804 rtx tem;
2c0623e8
RK
4805 enum machine_mode mode = GET_MODE (x);
4806
4807 if (mode == VOIDmode)
4808 mode = GET_MODE (y);
4809
4810 if (mode == VOIDmode)
4811 mode = Pmode;
eab89b90
RK
4812
4813 if (GET_CODE (x) == CONST_INT)
4814 return plus_constant (y, INTVAL (x));
4815 else if (GET_CODE (y) == CONST_INT)
4816 return plus_constant (x, INTVAL (y));
4817 else if (CONSTANT_P (x))
4818 tem = x, x = y, y = tem;
4819
4820 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
4821 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
4822
4823 /* Note that if the operands of Y are specified in the opposite
4824 order in the recursive calls below, infinite recursion will occur. */
d9771f62 4825 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
eab89b90
RK
4826 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
4827
4828 /* If both constant, encapsulate sum. Otherwise, just form sum. A
4829 constant will have been placed second. */
4830 if (CONSTANT_P (x) && CONSTANT_P (y))
4831 {
4832 if (GET_CODE (x) == CONST)
4833 x = XEXP (x, 0);
4834 if (GET_CODE (y) == CONST)
4835 y = XEXP (y, 0);
4836
38a448ca 4837 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
eab89b90
RK
4838 }
4839
38a448ca 4840 return gen_rtx_PLUS (mode, x, y);
eab89b90
RK
4841}
4842\f
4843/* If ADDR is a sum containing a pseudo register that should be
4844 replaced with a constant (from reg_equiv_constant),
4845 return the result of doing so, and also apply the associative
4846 law so that the result is more likely to be a valid address.
4847 (But it is not guaranteed to be one.)
4848
4849 Note that at most one register is replaced, even if more are
4850 replaceable. Also, we try to put the result into a canonical form
4851 so it is more likely to be a valid address.
4852
4853 In all other cases, return ADDR. */
4854
4855static rtx
4856subst_indexed_address (addr)
4857 rtx addr;
4858{
4859 rtx op0 = 0, op1 = 0, op2 = 0;
4860 rtx tem;
4861 int regno;
4862
4863 if (GET_CODE (addr) == PLUS)
4864 {
4865 /* Try to find a register to replace. */
4866 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
4867 if (GET_CODE (op0) == REG
4868 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
4869 && reg_renumber[regno] < 0
4870 && reg_equiv_constant[regno] != 0)
4871 op0 = reg_equiv_constant[regno];
4872 else if (GET_CODE (op1) == REG
4873 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
4874 && reg_renumber[regno] < 0
4875 && reg_equiv_constant[regno] != 0)
4876 op1 = reg_equiv_constant[regno];
4877 else if (GET_CODE (op0) == PLUS
4878 && (tem = subst_indexed_address (op0)) != op0)
4879 op0 = tem;
4880 else if (GET_CODE (op1) == PLUS
4881 && (tem = subst_indexed_address (op1)) != op1)
4882 op1 = tem;
4883 else
4884 return addr;
4885
4886 /* Pick out up to three things to add. */
4887 if (GET_CODE (op1) == PLUS)
4888 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
4889 else if (GET_CODE (op0) == PLUS)
4890 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4891
4892 /* Compute the sum. */
4893 if (op2 != 0)
4894 op1 = form_sum (op1, op2);
4895 if (op1 != 0)
4896 op0 = form_sum (op0, op1);
4897
4898 return op0;
4899 }
4900 return addr;
4901}
4902\f
858c3c8c
ILT
4903/* Record the pseudo registers we must reload into hard registers in a
4904 subexpression of a would-be memory address, X referring to a value
4905 in mode MODE. (This function is not called if the address we find
4906 is strictly valid.)
4907
eab89b90
RK
4908 CONTEXT = 1 means we are considering regs as index regs,
4909 = 0 means we are considering them as base regs.
4910
a8c9daeb 4911 OPNUM and TYPE specify the purpose of any reloads made.
eab89b90
RK
4912
4913 IND_LEVELS says how many levels of indirect addressing are
4914 supported at this point in the address.
4915
55c22565
RK
4916 INSN, if nonzero, is the insn in which we do the reload. It is used
4917 to determine if we may generate output reloads.
4918
eab89b90
RK
4919 We return nonzero if X, as a whole, is reloaded or replaced. */
4920
4921/* Note that we take shortcuts assuming that no multi-reg machine mode
4922 occurs as part of an address.
4923 Also, this is not fully machine-customizable; it works for machines
4924 such as vaxes and 68000's and 32000's, but other possible machines
4925 could have addressing modes that this does not handle right. */
4926
4927static int
55c22565 4928find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
858c3c8c 4929 enum machine_mode mode;
eab89b90
RK
4930 rtx x;
4931 int context;
4932 rtx *loc;
a8c9daeb
RK
4933 int opnum;
4934 enum reload_type type;
eab89b90 4935 int ind_levels;
55c22565 4936 rtx insn;
eab89b90
RK
4937{
4938 register RTX_CODE code = GET_CODE (x);
4939
a2d353e5 4940 switch (code)
eab89b90 4941 {
a2d353e5
RK
4942 case PLUS:
4943 {
4944 register rtx orig_op0 = XEXP (x, 0);
4945 register rtx orig_op1 = XEXP (x, 1);
4946 register RTX_CODE code0 = GET_CODE (orig_op0);
4947 register RTX_CODE code1 = GET_CODE (orig_op1);
4948 register rtx op0 = orig_op0;
4949 register rtx op1 = orig_op1;
4950
4951 if (GET_CODE (op0) == SUBREG)
4952 {
4953 op0 = SUBREG_REG (op0);
4954 code0 = GET_CODE (op0);
922db4bb 4955 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
38a448ca
RH
4956 op0 = gen_rtx_REG (word_mode,
4957 REGNO (op0) + SUBREG_WORD (orig_op0));
a2d353e5 4958 }
87935f60 4959
a2d353e5
RK
4960 if (GET_CODE (op1) == SUBREG)
4961 {
4962 op1 = SUBREG_REG (op1);
4963 code1 = GET_CODE (op1);
922db4bb 4964 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
38a448ca
RH
4965 op1 = gen_rtx_REG (GET_MODE (op1),
4966 REGNO (op1) + SUBREG_WORD (orig_op1));
a2d353e5
RK
4967 }
4968
5f8997b9
SC
4969 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
4970 || code0 == ZERO_EXTEND || code1 == MEM)
a2d353e5 4971 {
858c3c8c 4972 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
55c22565 4973 type, ind_levels, insn);
858c3c8c 4974 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
55c22565 4975 type, ind_levels, insn);
a2d353e5
RK
4976 }
4977
5f8997b9
SC
4978 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
4979 || code1 == ZERO_EXTEND || code0 == MEM)
a2d353e5 4980 {
858c3c8c 4981 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
55c22565 4982 type, ind_levels, insn);
858c3c8c 4983 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
55c22565 4984 type, ind_levels, insn);
a2d353e5
RK
4985 }
4986
4987 else if (code0 == CONST_INT || code0 == CONST
4988 || code0 == SYMBOL_REF || code0 == LABEL_REF)
858c3c8c 4989 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
55c22565 4990 type, ind_levels, insn);
a2d353e5
RK
4991
4992 else if (code1 == CONST_INT || code1 == CONST
4993 || code1 == SYMBOL_REF || code1 == LABEL_REF)
858c3c8c 4994 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
55c22565 4995 type, ind_levels, insn);
a2d353e5
RK
4996
4997 else if (code0 == REG && code1 == REG)
4998 {
4999 if (REG_OK_FOR_INDEX_P (op0)
858c3c8c 5000 && REG_MODE_OK_FOR_BASE_P (op1, mode))
a2d353e5
RK
5001 return 0;
5002 else if (REG_OK_FOR_INDEX_P (op1)
858c3c8c 5003 && REG_MODE_OK_FOR_BASE_P (op0, mode))
a2d353e5 5004 return 0;
858c3c8c
ILT
5005 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5006 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
55c22565 5007 type, ind_levels, insn);
858c3c8c
ILT
5008 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5009 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
55c22565 5010 type, ind_levels, insn);
a2d353e5 5011 else if (REG_OK_FOR_INDEX_P (op1))
858c3c8c 5012 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
55c22565 5013 type, ind_levels, insn);
a2d353e5 5014 else if (REG_OK_FOR_INDEX_P (op0))
858c3c8c 5015 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
55c22565 5016 type, ind_levels, insn);
a2d353e5
RK
5017 else
5018 {
858c3c8c 5019 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
55c22565 5020 type, ind_levels, insn);
858c3c8c 5021 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
55c22565 5022 type, ind_levels, insn);
a2d353e5
RK
5023 }
5024 }
5025
5026 else if (code0 == REG)
5027 {
858c3c8c 5028 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
55c22565 5029 type, ind_levels, insn);
858c3c8c 5030 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
55c22565 5031 type, ind_levels, insn);
a2d353e5
RK
5032 }
5033
5034 else if (code1 == REG)
5035 {
858c3c8c 5036 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
55c22565 5037 type, ind_levels, insn);
858c3c8c 5038 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
55c22565 5039 type, ind_levels, insn);
a2d353e5
RK
5040 }
5041 }
5042
5043 return 0;
5044
5045 case POST_INC:
5046 case POST_DEC:
5047 case PRE_INC:
5048 case PRE_DEC:
eab89b90
RK
5049 if (GET_CODE (XEXP (x, 0)) == REG)
5050 {
5051 register int regno = REGNO (XEXP (x, 0));
5052 int value = 0;
5053 rtx x_orig = x;
5054
5055 /* A register that is incremented cannot be constant! */
5056 if (regno >= FIRST_PSEUDO_REGISTER
5057 && reg_equiv_constant[regno] != 0)
5058 abort ();
5059
5060 /* Handle a register that is equivalent to a memory location
5061 which cannot be addressed directly. */
5062 if (reg_equiv_address[regno] != 0)
5063 {
5064 rtx tem = make_memloc (XEXP (x, 0), regno);
4757e6a4
JW
5065 /* First reload the memory location's address.
5066 We can't use ADDR_TYPE (type) here, because we need to
5067 write back the value after reading it, hence we actually
5068 need two registers. */
eab89b90 5069 find_reloads_address (GET_MODE (tem), 0, XEXP (tem, 0),
4757e6a4 5070 &XEXP (tem, 0), opnum, type,
55c22565 5071 ind_levels, insn);
eab89b90 5072 /* Put this inside a new increment-expression. */
38a448ca 5073 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
eab89b90
RK
5074 /* Proceed to reload that, as if it contained a register. */
5075 }
5076
5077 /* If we have a hard register that is ok as an index,
5078 don't make a reload. If an autoincrement of a nice register
5079 isn't "valid", it must be that no autoincrement is "valid".
5080 If that is true and something made an autoincrement anyway,
5081 this must be a special context where one is allowed.
5082 (For example, a "push" instruction.)
5083 We can't improve this address, so leave it alone. */
5084
5085 /* Otherwise, reload the autoincrement into a suitable hard reg
5086 and record how much to increment by. */
5087
5088 if (reg_renumber[regno] >= 0)
5089 regno = reg_renumber[regno];
5090 if ((regno >= FIRST_PSEUDO_REGISTER
5091 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
858c3c8c 5092 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
eab89b90 5093 {
29a82058 5094#ifdef AUTO_INC_DEC
eab89b90 5095 register rtx link;
29a82058 5096#endif
55c22565
RK
5097 int reloadnum;
5098
5099 /* If we can output the register afterwards, do so, this
5100 saves the extra update.
5101 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5102 CALL_INSN - and it does not set CC0.
5103 But don't do this if we cannot directly address the
5104 memory location, since this will make it harder to
956d6950 5105 reuse address reloads, and increases register pressure.
55c22565
RK
5106 Also don't do this if we can probably update x directly. */
5107 rtx equiv = reg_equiv_mem[regno];
5108 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5109 if (insn && GET_CODE (insn) == INSN && equiv
5110#ifdef HAVE_cc0
5111 && ! sets_cc0_p (PATTERN (insn))
5112#endif
5113 && ! (icode != CODE_FOR_nothing
5114 && (*insn_operand_predicate[icode][0]) (equiv, Pmode)
5115 && (*insn_operand_predicate[icode][1]) (equiv, Pmode)))
5116 {
5117 loc = &XEXP (x, 0);
5118 x = XEXP (x, 0);
5119 reloadnum
5120 = push_reload (x, x, loc, loc,
5121 (context
5122 ? reload_address_index_reg_class
5123 : reload_address_base_reg_class),
e9a25f70 5124 GET_MODE (x), GET_MODE (x), 0, 0,
55c22565
RK
5125 opnum, RELOAD_OTHER);
5126 }
5127 else
5128 {
5129 reloadnum
5130 = push_reload (x, NULL_RTX, loc, NULL_PTR,
5131 (context
5132 ? reload_address_index_reg_class
5133 : reload_address_base_reg_class),
e9a25f70 5134 GET_MODE (x), GET_MODE (x), 0, 0,
55c22565
RK
5135 opnum, type);
5136 reload_inc[reloadnum]
5137 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5138
5139 value = 1;
5140 }
eab89b90
RK
5141
5142#ifdef AUTO_INC_DEC
5143 /* Update the REG_INC notes. */
5144
5145 for (link = REG_NOTES (this_insn);
5146 link; link = XEXP (link, 1))
5147 if (REG_NOTE_KIND (link) == REG_INC
5148 && REGNO (XEXP (link, 0)) == REGNO (XEXP (x_orig, 0)))
5149 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5150#endif
5151 }
5152 return value;
5153 }
a2d353e5 5154
eab89b90
RK
5155 else if (GET_CODE (XEXP (x, 0)) == MEM)
5156 {
5157 /* This is probably the result of a substitution, by eliminate_regs,
5158 of an equivalent address for a pseudo that was not allocated to a
5159 hard register. Verify that the specified address is valid and
5160 reload it into a register. */
5161 rtx tem = XEXP (x, 0);
5162 register rtx link;
5163 int reloadnum;
5164
5165 /* Since we know we are going to reload this item, don't decrement
5166 for the indirection level.
5167
5168 Note that this is actually conservative: it would be slightly
5169 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5170 reload1.c here. */
4757e6a4
JW
5171 /* We can't use ADDR_TYPE (type) here, because we need to
5172 write back the value after reading it, hence we actually
5173 need two registers. */
eab89b90
RK
5174 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5175 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
55c22565 5176 opnum, type, ind_levels, insn);
eab89b90 5177
fb3821f7 5178 reloadnum = push_reload (x, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5179 (context
5180 ? reload_address_index_reg_class
5181 : reload_address_base_reg_class),
a8c9daeb 5182 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
eab89b90
RK
5183 reload_inc[reloadnum]
5184 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5185
5186 link = FIND_REG_INC_NOTE (this_insn, tem);
5187 if (link != 0)
5188 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5189
5190 return 1;
5191 }
a2d353e5
RK
5192 return 0;
5193
5194 case MEM:
5195 /* This is probably the result of a substitution, by eliminate_regs, of
5196 an equivalent address for a pseudo that was not allocated to a hard
5197 register. Verify that the specified address is valid and reload it
5198 into a register.
eab89b90 5199
a2d353e5
RK
5200 Since we know we are going to reload this item, don't decrement for
5201 the indirection level.
eab89b90
RK
5202
5203 Note that this is actually conservative: it would be slightly more
5204 efficient to use the value of SPILL_INDIRECT_LEVELS from
5205 reload1.c here. */
5206
5207 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
55c22565 5208 opnum, ADDR_TYPE (type), ind_levels, insn);
fb3821f7 5209 push_reload (*loc, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5210 (context ? reload_address_index_reg_class
5211 : reload_address_base_reg_class),
a8c9daeb 5212 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
eab89b90 5213 return 1;
eab89b90 5214
a2d353e5
RK
5215 case REG:
5216 {
5217 register int regno = REGNO (x);
5218
5219 if (reg_equiv_constant[regno] != 0)
5220 {
5221 find_reloads_address_part (reg_equiv_constant[regno], loc,
1ba61f4e
ILT
5222 (context
5223 ? reload_address_index_reg_class
5224 : reload_address_base_reg_class),
a2d353e5
RK
5225 GET_MODE (x), opnum, type, ind_levels);
5226 return 1;
5227 }
eab89b90
RK
5228
5229#if 0 /* This might screw code in reload1.c to delete prior output-reload
5230 that feeds this insn. */
a2d353e5
RK
5231 if (reg_equiv_mem[regno] != 0)
5232 {
5233 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5234 (context
5235 ? reload_address_index_reg_class
5236 : reload_address_base_reg_class),
a2d353e5
RK
5237 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5238 return 1;
5239 }
eab89b90 5240#endif
eab89b90 5241
a2d353e5
RK
5242 if (reg_equiv_address[regno] != 0)
5243 {
5244 x = make_memloc (x, regno);
5245 find_reloads_address (GET_MODE (x), 0, XEXP (x, 0), &XEXP (x, 0),
55c22565 5246 opnum, ADDR_TYPE (type), ind_levels, insn);
a2d353e5 5247 }
eab89b90 5248
a2d353e5
RK
5249 if (reg_renumber[regno] >= 0)
5250 regno = reg_renumber[regno];
5251
5252 if ((regno >= FIRST_PSEUDO_REGISTER
5253 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
858c3c8c 5254 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
a2d353e5
RK
5255 {
5256 push_reload (x, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5257 (context
5258 ? reload_address_index_reg_class
5259 : reload_address_base_reg_class),
a2d353e5
RK
5260 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5261 return 1;
5262 }
5263
5264 /* If a register appearing in an address is the subject of a CLOBBER
5265 in this insn, reload it into some other register to be safe.
5266 The CLOBBER is supposed to make the register unavailable
5267 from before this insn to after it. */
5268 if (regno_clobbered_p (regno, this_insn))
5269 {
5270 push_reload (x, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5271 (context
5272 ? reload_address_index_reg_class
5273 : reload_address_base_reg_class),
a2d353e5
RK
5274 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5275 return 1;
5276 }
5277 }
5278 return 0;
5279
5280 case SUBREG:
922db4bb 5281 if (GET_CODE (SUBREG_REG (x)) == REG)
eab89b90 5282 {
922db4bb
RK
5283 /* If this is a SUBREG of a hard register and the resulting register
5284 is of the wrong class, reload the whole SUBREG. This avoids
5285 needless copies if SUBREG_REG is multi-word. */
5286 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5287 {
5288 int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
a2d353e5 5289
922db4bb 5290 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
858c3c8c 5291 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
922db4bb
RK
5292 {
5293 push_reload (x, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5294 (context
5295 ? reload_address_index_reg_class
5296 : reload_address_base_reg_class),
922db4bb
RK
5297 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5298 return 1;
5299 }
5300 }
abc95ed3 5301 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
922db4bb
RK
5302 is larger than the class size, then reload the whole SUBREG. */
5303 else
a2d353e5 5304 {
922db4bb 5305 enum reg_class class = (context
1ba61f4e
ILT
5306 ? reload_address_index_reg_class
5307 : reload_address_base_reg_class);
922db4bb
RK
5308 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5309 > reg_class_size[class])
5310 {
5311 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5312 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5313 return 1;
5314 }
a2d353e5 5315 }
eab89b90 5316 }
a2d353e5 5317 break;
e9a25f70
JL
5318
5319 default:
5320 break;
eab89b90
RK
5321 }
5322
a2d353e5
RK
5323 {
5324 register char *fmt = GET_RTX_FORMAT (code);
5325 register int i;
5326
5327 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5328 {
5329 if (fmt[i] == 'e')
858c3c8c 5330 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
55c22565 5331 opnum, type, ind_levels, insn);
a2d353e5
RK
5332 }
5333 }
5334
eab89b90
RK
5335 return 0;
5336}
5337\f
5338/* X, which is found at *LOC, is a part of an address that needs to be
5339 reloaded into a register of class CLASS. If X is a constant, or if
5340 X is a PLUS that contains a constant, check that the constant is a
5341 legitimate operand and that we are supposed to be able to load
5342 it into the register.
5343
5344 If not, force the constant into memory and reload the MEM instead.
5345
5346 MODE is the mode to use, in case X is an integer constant.
5347
a8c9daeb 5348 OPNUM and TYPE describe the purpose of any reloads made.
eab89b90
RK
5349
5350 IND_LEVELS says how many levels of indirect addressing this machine
5351 supports. */
5352
5353static void
a8c9daeb 5354find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
eab89b90
RK
5355 rtx x;
5356 rtx *loc;
5357 enum reg_class class;
5358 enum machine_mode mode;
a8c9daeb
RK
5359 int opnum;
5360 enum reload_type type;
eab89b90
RK
5361 int ind_levels;
5362{
5363 if (CONSTANT_P (x)
5364 && (! LEGITIMATE_CONSTANT_P (x)
5365 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5366 {
5367 rtx tem = x = force_const_mem (mode, x);
5368 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
55c22565 5369 opnum, type, ind_levels, 0);
eab89b90
RK
5370 }
5371
5372 else if (GET_CODE (x) == PLUS
5373 && CONSTANT_P (XEXP (x, 1))
5374 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5375 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5376 {
5377 rtx tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5378
38a448ca 5379 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
eab89b90 5380 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
55c22565 5381 opnum, type, ind_levels, 0);
eab89b90
RK
5382 }
5383
fb3821f7 5384 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
a8c9daeb 5385 mode, VOIDmode, 0, 0, opnum, type);
eab89b90
RK
5386}
5387\f
a8c9daeb 5388/* Substitute into the current INSN the registers into which we have reloaded
eab89b90
RK
5389 the things that need reloading. The array `replacements'
5390 says contains the locations of all pointers that must be changed
5391 and says what to replace them with.
5392
5393 Return the rtx that X translates into; usually X, but modified. */
5394
5395void
5396subst_reloads ()
5397{
5398 register int i;
5399
5400 for (i = 0; i < n_replacements; i++)
5401 {
5402 register struct replacement *r = &replacements[i];
5403 register rtx reloadreg = reload_reg_rtx[r->what];
5404 if (reloadreg)
5405 {
5406 /* Encapsulate RELOADREG so its machine mode matches what
26f1a00e
RK
5407 used to be there. Note that gen_lowpart_common will
5408 do the wrong thing if RELOADREG is multi-word. RELOADREG
5409 will always be a REG here. */
eab89b90 5410 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
38a448ca 5411 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
eab89b90
RK
5412
5413 /* If we are putting this into a SUBREG and RELOADREG is a
5414 SUBREG, we would be making nested SUBREGs, so we have to fix
5415 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5416
5417 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5418 {
5419 if (GET_MODE (*r->subreg_loc)
5420 == GET_MODE (SUBREG_REG (reloadreg)))
5421 *r->subreg_loc = SUBREG_REG (reloadreg);
5422 else
5423 {
5424 *r->where = SUBREG_REG (reloadreg);
5425 SUBREG_WORD (*r->subreg_loc) += SUBREG_WORD (reloadreg);
5426 }
5427 }
5428 else
5429 *r->where = reloadreg;
5430 }
5431 /* If reload got no reg and isn't optional, something's wrong. */
5432 else if (! reload_optional[r->what])
5433 abort ();
5434 }
5435}
5436\f
5437/* Make a copy of any replacements being done into X and move those copies
5438 to locations in Y, a copy of X. We only look at the highest level of
5439 the RTL. */
5440
5441void
5442copy_replacements (x, y)
5443 rtx x;
5444 rtx y;
5445{
5446 int i, j;
5447 enum rtx_code code = GET_CODE (x);
5448 char *fmt = GET_RTX_FORMAT (code);
5449 struct replacement *r;
5450
5451 /* We can't support X being a SUBREG because we might then need to know its
5452 location if something inside it was replaced. */
5453 if (code == SUBREG)
5454 abort ();
5455
5456 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5457 if (fmt[i] == 'e')
5458 for (j = 0; j < n_replacements; j++)
5459 {
5460 if (replacements[j].subreg_loc == &XEXP (x, i))
5461 {
5462 r = &replacements[n_replacements++];
5463 r->where = replacements[j].where;
5464 r->subreg_loc = &XEXP (y, i);
5465 r->what = replacements[j].what;
5466 r->mode = replacements[j].mode;
5467 }
5468 else if (replacements[j].where == &XEXP (x, i))
5469 {
5470 r = &replacements[n_replacements++];
5471 r->where = &XEXP (y, i);
5472 r->subreg_loc = 0;
5473 r->what = replacements[j].what;
5474 r->mode = replacements[j].mode;
5475 }
5476 }
5477}
a9a2595b
JR
5478
5479/* Change any replacements being done to *X to be done to *Y */
5480
5481void
5482move_replacements (x, y)
5483 rtx *x;
5484 rtx *y;
5485{
5486 int i;
5487
5488 for (i = 0; i < n_replacements; i++)
5489 if (replacements[i].subreg_loc == x)
5490 replacements[i].subreg_loc = y;
5491 else if (replacements[i].where == x)
5492 {
5493 replacements[i].where = y;
5494 replacements[i].subreg_loc = 0;
5495 }
5496}
eab89b90 5497\f
af929c62
RK
5498/* If LOC was scheduled to be replaced by something, return the replacement.
5499 Otherwise, return *LOC. */
5500
5501rtx
5502find_replacement (loc)
5503 rtx *loc;
5504{
5505 struct replacement *r;
5506
5507 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
5508 {
5509 rtx reloadreg = reload_reg_rtx[r->what];
5510
5511 if (reloadreg && r->where == loc)
5512 {
5513 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
38a448ca 5514 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
af929c62
RK
5515
5516 return reloadreg;
5517 }
5518 else if (reloadreg && r->subreg_loc == loc)
5519 {
5520 /* RELOADREG must be either a REG or a SUBREG.
5521
5522 ??? Is it actually still ever a SUBREG? If so, why? */
5523
5524 if (GET_CODE (reloadreg) == REG)
38a448ca
RH
5525 return gen_rtx_REG (GET_MODE (*loc),
5526 REGNO (reloadreg) + SUBREG_WORD (*loc));
af929c62
RK
5527 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
5528 return reloadreg;
5529 else
38a448ca
RH
5530 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
5531 SUBREG_WORD (reloadreg) + SUBREG_WORD (*loc));
af929c62
RK
5532 }
5533 }
5534
956d6950
JL
5535 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
5536 what's inside and make a new rtl if so. */
5537 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
5538 || GET_CODE (*loc) == MULT)
5539 {
5540 rtx x = find_replacement (&XEXP (*loc, 0));
5541 rtx y = find_replacement (&XEXP (*loc, 1));
5542
5543 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
38a448ca 5544 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
956d6950
JL
5545 }
5546
af929c62
RK
5547 return *loc;
5548}
5549\f
eab89b90
RK
5550/* Return nonzero if register in range [REGNO, ENDREGNO)
5551 appears either explicitly or implicitly in X
4644aad4 5552 other than being stored into (except for earlyclobber operands).
eab89b90
RK
5553
5554 References contained within the substructure at LOC do not count.
5555 LOC may be zero, meaning don't ignore anything.
5556
5557 This is similar to refers_to_regno_p in rtlanal.c except that we
5558 look at equivalences for pseudos that didn't get hard registers. */
5559
5560int
5561refers_to_regno_for_reload_p (regno, endregno, x, loc)
5562 int regno, endregno;
5563 rtx x;
5564 rtx *loc;
5565{
5566 register int i;
5567 register RTX_CODE code;
5568 register char *fmt;
5569
5570 if (x == 0)
5571 return 0;
5572
5573 repeat:
5574 code = GET_CODE (x);
5575
5576 switch (code)
5577 {
5578 case REG:
5579 i = REGNO (x);
5580
4803a34a
RK
5581 /* If this is a pseudo, a hard register must not have been allocated.
5582 X must therefore either be a constant or be in memory. */
5583 if (i >= FIRST_PSEUDO_REGISTER)
5584 {
5585 if (reg_equiv_memory_loc[i])
5586 return refers_to_regno_for_reload_p (regno, endregno,
fb3821f7
CH
5587 reg_equiv_memory_loc[i],
5588 NULL_PTR);
4803a34a
RK
5589
5590 if (reg_equiv_constant[i])
5591 return 0;
5592
5593 abort ();
5594 }
eab89b90
RK
5595
5596 return (endregno > i
5597 && regno < i + (i < FIRST_PSEUDO_REGISTER
5598 ? HARD_REGNO_NREGS (i, GET_MODE (x))
5599 : 1));
5600
5601 case SUBREG:
5602 /* If this is a SUBREG of a hard reg, we can see exactly which
5603 registers are being modified. Otherwise, handle normally. */
5604 if (GET_CODE (SUBREG_REG (x)) == REG
5605 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5606 {
5607 int inner_regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
5608 int inner_endregno
5609 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
5610 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5611
5612 return endregno > inner_regno && regno < inner_endregno;
5613 }
5614 break;
5615
5616 case CLOBBER:
5617 case SET:
5618 if (&SET_DEST (x) != loc
5619 /* Note setting a SUBREG counts as referring to the REG it is in for
5620 a pseudo but not for hard registers since we can
5621 treat each word individually. */
5622 && ((GET_CODE (SET_DEST (x)) == SUBREG
5623 && loc != &SUBREG_REG (SET_DEST (x))
5624 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
5625 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
5626 && refers_to_regno_for_reload_p (regno, endregno,
5627 SUBREG_REG (SET_DEST (x)),
5628 loc))
abc95ed3 5629 /* If the output is an earlyclobber operand, this is
4644aad4
RK
5630 a conflict. */
5631 || ((GET_CODE (SET_DEST (x)) != REG
5632 || earlyclobber_operand_p (SET_DEST (x)))
eab89b90
RK
5633 && refers_to_regno_for_reload_p (regno, endregno,
5634 SET_DEST (x), loc))))
5635 return 1;
5636
5637 if (code == CLOBBER || loc == &SET_SRC (x))
5638 return 0;
5639 x = SET_SRC (x);
5640 goto repeat;
e9a25f70
JL
5641
5642 default:
5643 break;
eab89b90
RK
5644 }
5645
5646 /* X does not match, so try its subexpressions. */
5647
5648 fmt = GET_RTX_FORMAT (code);
5649 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5650 {
5651 if (fmt[i] == 'e' && loc != &XEXP (x, i))
5652 {
5653 if (i == 0)
5654 {
5655 x = XEXP (x, 0);
5656 goto repeat;
5657 }
5658 else
5659 if (refers_to_regno_for_reload_p (regno, endregno,
5660 XEXP (x, i), loc))
5661 return 1;
5662 }
5663 else if (fmt[i] == 'E')
5664 {
5665 register int j;
5666 for (j = XVECLEN (x, i) - 1; j >=0; j--)
5667 if (loc != &XVECEXP (x, i, j)
5668 && refers_to_regno_for_reload_p (regno, endregno,
5669 XVECEXP (x, i, j), loc))
5670 return 1;
5671 }
5672 }
5673 return 0;
5674}
bfa30b22
RK
5675
5676/* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
5677 we check if any register number in X conflicts with the relevant register
5678 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
5679 contains a MEM (we don't bother checking for memory addresses that can't
5680 conflict because we expect this to be a rare case.
5681
5682 This function is similar to reg_overlap_mention_p in rtlanal.c except
5683 that we look at equivalences for pseudos that didn't get hard registers. */
5684
5685int
5686reg_overlap_mentioned_for_reload_p (x, in)
5687 rtx x, in;
5688{
5689 int regno, endregno;
5690
5691 if (GET_CODE (x) == SUBREG)
5692 {
5693 regno = REGNO (SUBREG_REG (x));
5694 if (regno < FIRST_PSEUDO_REGISTER)
5695 regno += SUBREG_WORD (x);
5696 }
5697 else if (GET_CODE (x) == REG)
5698 {
5699 regno = REGNO (x);
4803a34a
RK
5700
5701 /* If this is a pseudo, it must not have been assigned a hard register.
5702 Therefore, it must either be in memory or be a constant. */
5703
5704 if (regno >= FIRST_PSEUDO_REGISTER)
5705 {
5706 if (reg_equiv_memory_loc[regno])
5707 return refers_to_mem_for_reload_p (in);
5708 else if (reg_equiv_constant[regno])
5709 return 0;
5710 abort ();
5711 }
bfa30b22
RK
5712 }
5713 else if (CONSTANT_P (x))
5714 return 0;
5715 else if (GET_CODE (x) == MEM)
4803a34a 5716 return refers_to_mem_for_reload_p (in);
bfa30b22
RK
5717 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
5718 || GET_CODE (x) == CC0)
5719 return reg_mentioned_p (x, in);
5720 else
5721 abort ();
5722
5723 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
5724 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5725
fb3821f7 5726 return refers_to_regno_for_reload_p (regno, endregno, in, NULL_PTR);
bfa30b22 5727}
4803a34a
RK
5728
5729/* Return nonzero if anything in X contains a MEM. Look also for pseudo
5730 registers. */
5731
5732int
5733refers_to_mem_for_reload_p (x)
5734 rtx x;
5735{
5736 char *fmt;
5737 int i;
5738
5739 if (GET_CODE (x) == MEM)
5740 return 1;
5741
5742 if (GET_CODE (x) == REG)
5743 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
5744 && reg_equiv_memory_loc[REGNO (x)]);
5745
5746 fmt = GET_RTX_FORMAT (GET_CODE (x));
5747 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5748 if (fmt[i] == 'e'
5749 && (GET_CODE (XEXP (x, i)) == MEM
5750 || refers_to_mem_for_reload_p (XEXP (x, i))))
5751 return 1;
5752
5753 return 0;
5754}
eab89b90 5755\f
eab89b90
RK
5756/* Check the insns before INSN to see if there is a suitable register
5757 containing the same value as GOAL.
5758 If OTHER is -1, look for a register in class CLASS.
5759 Otherwise, just see if register number OTHER shares GOAL's value.
5760
5761 Return an rtx for the register found, or zero if none is found.
5762
5763 If RELOAD_REG_P is (short *)1,
5764 we reject any hard reg that appears in reload_reg_rtx
5765 because such a hard reg is also needed coming into this insn.
5766
5767 If RELOAD_REG_P is any other nonzero value,
5768 it is a vector indexed by hard reg number
5769 and we reject any hard reg whose element in the vector is nonnegative
5770 as well as any that appears in reload_reg_rtx.
5771
5772 If GOAL is zero, then GOALREG is a register number; we look
5773 for an equivalent for that register.
5774
5775 MODE is the machine mode of the value we want an equivalence for.
5776 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
5777
5778 This function is used by jump.c as well as in the reload pass.
5779
5780 If GOAL is the sum of the stack pointer and a constant, we treat it
5781 as if it were a constant except that sp is required to be unchanging. */
5782
5783rtx
5784find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
5785 register rtx goal;
5786 rtx insn;
5787 enum reg_class class;
5788 register int other;
5789 short *reload_reg_p;
5790 int goalreg;
5791 enum machine_mode mode;
5792{
5793 register rtx p = insn;
f55b1d97 5794 rtx goaltry, valtry, value, where;
eab89b90
RK
5795 register rtx pat;
5796 register int regno = -1;
5797 int valueno;
5798 int goal_mem = 0;
5799 int goal_const = 0;
5800 int goal_mem_addr_varies = 0;
5801 int need_stable_sp = 0;
5802 int nregs;
5803 int valuenregs;
5804
5805 if (goal == 0)
5806 regno = goalreg;
5807 else if (GET_CODE (goal) == REG)
5808 regno = REGNO (goal);
5809 else if (GET_CODE (goal) == MEM)
5810 {
5811 enum rtx_code code = GET_CODE (XEXP (goal, 0));
5812 if (MEM_VOLATILE_P (goal))
5813 return 0;
5814 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
5815 return 0;
5816 /* An address with side effects must be reexecuted. */
5817 switch (code)
5818 {
5819 case POST_INC:
5820 case PRE_INC:
5821 case POST_DEC:
5822 case PRE_DEC:
5823 return 0;
e9a25f70
JL
5824 default:
5825 break;
eab89b90
RK
5826 }
5827 goal_mem = 1;
5828 }
5829 else if (CONSTANT_P (goal))
5830 goal_const = 1;
5831 else if (GET_CODE (goal) == PLUS
5832 && XEXP (goal, 0) == stack_pointer_rtx
5833 && CONSTANT_P (XEXP (goal, 1)))
5834 goal_const = need_stable_sp = 1;
812f2051
R
5835 else if (GET_CODE (goal) == PLUS
5836 && XEXP (goal, 0) == frame_pointer_rtx
5837 && CONSTANT_P (XEXP (goal, 1)))
5838 goal_const = 1;
eab89b90
RK
5839 else
5840 return 0;
5841
5842 /* On some machines, certain regs must always be rejected
5843 because they don't behave the way ordinary registers do. */
5844
5845#ifdef OVERLAPPING_REGNO_P
5846 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5847 && OVERLAPPING_REGNO_P (regno))
5848 return 0;
5849#endif
5850
5851 /* Scan insns back from INSN, looking for one that copies
5852 a value into or out of GOAL.
5853 Stop and give up if we reach a label. */
5854
5855 while (1)
5856 {
5857 p = PREV_INSN (p);
5858 if (p == 0 || GET_CODE (p) == CODE_LABEL)
5859 return 0;
5860 if (GET_CODE (p) == INSN
0f41302f 5861 /* If we don't want spill regs ... */
a8c9daeb
RK
5862 && (! (reload_reg_p != 0
5863 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
eab89b90
RK
5864 /* ... then ignore insns introduced by reload; they aren't useful
5865 and can cause results in reload_as_needed to be different
5866 from what they were when calculating the need for spills.
5867 If we notice an input-reload insn here, we will reject it below,
5868 but it might hide a usable equivalent. That makes bad code.
5869 It may even abort: perhaps no reg was spilled for this insn
5870 because it was assumed we would find that equivalent. */
5871 || INSN_UID (p) < reload_first_uid))
5872 {
e8094962 5873 rtx tem;
eab89b90
RK
5874 pat = single_set (p);
5875 /* First check for something that sets some reg equal to GOAL. */
5876 if (pat != 0
5877 && ((regno >= 0
5878 && true_regnum (SET_SRC (pat)) == regno
5879 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5880 ||
5881 (regno >= 0
5882 && true_regnum (SET_DEST (pat)) == regno
5883 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
5884 ||
5885 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
5886 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5887 || (goal_mem
5888 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
5889 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
5890 || (goal_mem
5891 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
e8094962
RK
5892 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
5893 /* If we are looking for a constant,
5894 and something equivalent to that constant was copied
5895 into a reg, we can use that reg. */
fb3821f7
CH
5896 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5897 NULL_RTX))
e8094962 5898 && rtx_equal_p (XEXP (tem, 0), goal)
95d3562b 5899 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
fb3821f7
CH
5900 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5901 NULL_RTX))
e8094962
RK
5902 && GET_CODE (SET_DEST (pat)) == REG
5903 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
5904 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
5905 && GET_CODE (goal) == CONST_INT
f55b1d97
RK
5906 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 0, 0,
5907 VOIDmode))
5908 && rtx_equal_p (goal, goaltry)
e8094962
RK
5909 && (valtry = operand_subword (SET_DEST (pat), 0, 0,
5910 VOIDmode))
95d3562b 5911 && (valueno = true_regnum (valtry)) >= 0)
fb3821f7
CH
5912 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5913 NULL_RTX))
e8094962
RK
5914 && GET_CODE (SET_DEST (pat)) == REG
5915 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
5916 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
5917 && GET_CODE (goal) == CONST_INT
f55b1d97
RK
5918 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
5919 VOIDmode))
5920 && rtx_equal_p (goal, goaltry)
e8094962
RK
5921 && (valtry
5922 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
95d3562b 5923 && (valueno = true_regnum (valtry)) >= 0)))
eab89b90
RK
5924 if (other >= 0
5925 ? valueno == other
5926 : ((unsigned) valueno < FIRST_PSEUDO_REGISTER
5927 && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
5928 valueno)))
5929 {
5930 value = valtry;
5931 where = p;
5932 break;
5933 }
5934 }
5935 }
5936
5937 /* We found a previous insn copying GOAL into a suitable other reg VALUE
5938 (or copying VALUE into GOAL, if GOAL is also a register).
5939 Now verify that VALUE is really valid. */
5940
5941 /* VALUENO is the register number of VALUE; a hard register. */
5942
5943 /* Don't try to re-use something that is killed in this insn. We want
5944 to be able to trust REG_UNUSED notes. */
5945 if (find_reg_note (where, REG_UNUSED, value))
5946 return 0;
5947
5948 /* If we propose to get the value from the stack pointer or if GOAL is
5949 a MEM based on the stack pointer, we need a stable SP. */
d5a1d1c7 5950 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
bfa30b22
RK
5951 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
5952 goal)))
eab89b90
RK
5953 need_stable_sp = 1;
5954
5955 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
5956 if (GET_MODE (value) != mode)
5957 return 0;
5958
5959 /* Reject VALUE if it was loaded from GOAL
5960 and is also a register that appears in the address of GOAL. */
5961
bd5f6d44 5962 if (goal_mem && value == SET_DEST (single_set (where))
bfa30b22
RK
5963 && refers_to_regno_for_reload_p (valueno,
5964 (valueno
5965 + HARD_REGNO_NREGS (valueno, mode)),
fb3821f7 5966 goal, NULL_PTR))
eab89b90
RK
5967 return 0;
5968
5969 /* Reject registers that overlap GOAL. */
5970
5971 if (!goal_mem && !goal_const
5972 && regno + HARD_REGNO_NREGS (regno, mode) > valueno
5973 && regno < valueno + HARD_REGNO_NREGS (valueno, mode))
5974 return 0;
5975
5976 /* Reject VALUE if it is one of the regs reserved for reloads.
5977 Reload1 knows how to reuse them anyway, and it would get
5978 confused if we allocated one without its knowledge.
5979 (Now that insns introduced by reload are ignored above,
5980 this case shouldn't happen, but I'm not positive.) */
5981
a8c9daeb 5982 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1
eab89b90
RK
5983 && reload_reg_p[valueno] >= 0)
5984 return 0;
5985
5986 /* On some machines, certain regs must always be rejected
5987 because they don't behave the way ordinary registers do. */
5988
5989#ifdef OVERLAPPING_REGNO_P
5990 if (OVERLAPPING_REGNO_P (valueno))
5991 return 0;
5992#endif
5993
5994 nregs = HARD_REGNO_NREGS (regno, mode);
5995 valuenregs = HARD_REGNO_NREGS (valueno, mode);
5996
5997 /* Reject VALUE if it is a register being used for an input reload
5998 even if it is not one of those reserved. */
5999
6000 if (reload_reg_p != 0)
6001 {
6002 int i;
6003 for (i = 0; i < n_reloads; i++)
6004 if (reload_reg_rtx[i] != 0 && reload_in[i])
6005 {
6006 int regno1 = REGNO (reload_reg_rtx[i]);
6007 int nregs1 = HARD_REGNO_NREGS (regno1,
6008 GET_MODE (reload_reg_rtx[i]));
6009 if (regno1 < valueno + valuenregs
6010 && regno1 + nregs1 > valueno)
6011 return 0;
6012 }
6013 }
6014
6015 if (goal_mem)
54b5ffe9
RS
6016 /* We must treat frame pointer as varying here,
6017 since it can vary--in a nonlocal goto as generated by expand_goto. */
6018 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
eab89b90
RK
6019
6020 /* Now verify that the values of GOAL and VALUE remain unaltered
6021 until INSN is reached. */
6022
6023 p = insn;
6024 while (1)
6025 {
6026 p = PREV_INSN (p);
6027 if (p == where)
6028 return value;
6029
6030 /* Don't trust the conversion past a function call
6031 if either of the two is in a call-clobbered register, or memory. */
6032 if (GET_CODE (p) == CALL_INSN
6033 && ((regno >= 0 && regno < FIRST_PSEUDO_REGISTER
6034 && call_used_regs[regno])
6035 ||
6036 (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
6037 && call_used_regs[valueno])
6038 ||
6039 goal_mem
6040 || need_stable_sp))
6041 return 0;
6042
41fe17ab
RK
6043#ifdef NON_SAVING_SETJMP
6044 if (NON_SAVING_SETJMP && GET_CODE (p) == NOTE
6045 && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
6046 return 0;
6047#endif
6048
eab89b90
RK
6049#ifdef INSN_CLOBBERS_REGNO_P
6050 if ((valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
6051 && INSN_CLOBBERS_REGNO_P (p, valueno))
6052 || (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
6053 && INSN_CLOBBERS_REGNO_P (p, regno)))
6054 return 0;
6055#endif
6056
6057 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6058 {
6059 /* If this insn P stores in either GOAL or VALUE, return 0.
6060 If GOAL is a memory ref and this insn writes memory, return 0.
6061 If GOAL is a memory ref and its address is not constant,
6062 and this insn P changes a register used in GOAL, return 0. */
6063
6064 pat = PATTERN (p);
6065 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6066 {
6067 register rtx dest = SET_DEST (pat);
6068 while (GET_CODE (dest) == SUBREG
6069 || GET_CODE (dest) == ZERO_EXTRACT
6070 || GET_CODE (dest) == SIGN_EXTRACT
6071 || GET_CODE (dest) == STRICT_LOW_PART)
6072 dest = XEXP (dest, 0);
6073 if (GET_CODE (dest) == REG)
6074 {
6075 register int xregno = REGNO (dest);
6076 int xnregs;
6077 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6078 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6079 else
6080 xnregs = 1;
6081 if (xregno < regno + nregs && xregno + xnregs > regno)
6082 return 0;
6083 if (xregno < valueno + valuenregs
6084 && xregno + xnregs > valueno)
6085 return 0;
6086 if (goal_mem_addr_varies
bfa30b22 6087 && reg_overlap_mentioned_for_reload_p (dest, goal))
eab89b90
RK
6088 return 0;
6089 }
6090 else if (goal_mem && GET_CODE (dest) == MEM
6091 && ! push_operand (dest, GET_MODE (dest)))
6092 return 0;
9fac9680
RK
6093 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6094 && reg_equiv_memory_loc[regno] != 0)
6095 return 0;
eab89b90
RK
6096 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6097 return 0;
6098 }
6099 else if (GET_CODE (pat) == PARALLEL)
6100 {
6101 register int i;
6102 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6103 {
6104 register rtx v1 = XVECEXP (pat, 0, i);
6105 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6106 {
6107 register rtx dest = SET_DEST (v1);
6108 while (GET_CODE (dest) == SUBREG
6109 || GET_CODE (dest) == ZERO_EXTRACT
6110 || GET_CODE (dest) == SIGN_EXTRACT
6111 || GET_CODE (dest) == STRICT_LOW_PART)
6112 dest = XEXP (dest, 0);
6113 if (GET_CODE (dest) == REG)
6114 {
6115 register int xregno = REGNO (dest);
6116 int xnregs;
6117 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6118 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6119 else
6120 xnregs = 1;
6121 if (xregno < regno + nregs
6122 && xregno + xnregs > regno)
6123 return 0;
6124 if (xregno < valueno + valuenregs
6125 && xregno + xnregs > valueno)
6126 return 0;
6127 if (goal_mem_addr_varies
bfa30b22
RK
6128 && reg_overlap_mentioned_for_reload_p (dest,
6129 goal))
eab89b90
RK
6130 return 0;
6131 }
6132 else if (goal_mem && GET_CODE (dest) == MEM
6133 && ! push_operand (dest, GET_MODE (dest)))
6134 return 0;
e9a25f70
JL
6135 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6136 && reg_equiv_memory_loc[regno] != 0)
6137 return 0;
369c7ab6
JW
6138 else if (need_stable_sp
6139 && push_operand (dest, GET_MODE (dest)))
6140 return 0;
6141 }
6142 }
6143 }
6144
6145 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6146 {
6147 rtx link;
6148
6149 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6150 link = XEXP (link, 1))
6151 {
6152 pat = XEXP (link, 0);
6153 if (GET_CODE (pat) == CLOBBER)
6154 {
6155 register rtx dest = SET_DEST (pat);
6156 while (GET_CODE (dest) == SUBREG
6157 || GET_CODE (dest) == ZERO_EXTRACT
6158 || GET_CODE (dest) == SIGN_EXTRACT
6159 || GET_CODE (dest) == STRICT_LOW_PART)
6160 dest = XEXP (dest, 0);
6161 if (GET_CODE (dest) == REG)
6162 {
6163 register int xregno = REGNO (dest);
6164 int xnregs;
6165 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6166 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6167 else
6168 xnregs = 1;
6169 if (xregno < regno + nregs
6170 && xregno + xnregs > regno)
6171 return 0;
6172 if (xregno < valueno + valuenregs
6173 && xregno + xnregs > valueno)
6174 return 0;
6175 if (goal_mem_addr_varies
6176 && reg_overlap_mentioned_for_reload_p (dest,
6177 goal))
6178 return 0;
6179 }
6180 else if (goal_mem && GET_CODE (dest) == MEM
6181 && ! push_operand (dest, GET_MODE (dest)))
6182 return 0;
eab89b90
RK
6183 else if (need_stable_sp
6184 && push_operand (dest, GET_MODE (dest)))
6185 return 0;
6186 }
6187 }
6188 }
6189
6190#ifdef AUTO_INC_DEC
6191 /* If this insn auto-increments or auto-decrements
6192 either regno or valueno, return 0 now.
6193 If GOAL is a memory ref and its address is not constant,
6194 and this insn P increments a register used in GOAL, return 0. */
6195 {
6196 register rtx link;
6197
6198 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6199 if (REG_NOTE_KIND (link) == REG_INC
6200 && GET_CODE (XEXP (link, 0)) == REG)
6201 {
6202 register int incno = REGNO (XEXP (link, 0));
6203 if (incno < regno + nregs && incno >= regno)
6204 return 0;
6205 if (incno < valueno + valuenregs && incno >= valueno)
6206 return 0;
6207 if (goal_mem_addr_varies
bfa30b22
RK
6208 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6209 goal))
eab89b90
RK
6210 return 0;
6211 }
6212 }
6213#endif
6214 }
6215 }
6216}
6217\f
6218/* Find a place where INCED appears in an increment or decrement operator
6219 within X, and return the amount INCED is incremented or decremented by.
6220 The value is always positive. */
6221
6222static int
6223find_inc_amount (x, inced)
6224 rtx x, inced;
6225{
6226 register enum rtx_code code = GET_CODE (x);
6227 register char *fmt;
6228 register int i;
6229
6230 if (code == MEM)
6231 {
6232 register rtx addr = XEXP (x, 0);
6233 if ((GET_CODE (addr) == PRE_DEC
6234 || GET_CODE (addr) == POST_DEC
6235 || GET_CODE (addr) == PRE_INC
6236 || GET_CODE (addr) == POST_INC)
6237 && XEXP (addr, 0) == inced)
6238 return GET_MODE_SIZE (GET_MODE (x));
6239 }
6240
6241 fmt = GET_RTX_FORMAT (code);
6242 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6243 {
6244 if (fmt[i] == 'e')
6245 {
6246 register int tem = find_inc_amount (XEXP (x, i), inced);
6247 if (tem != 0)
6248 return tem;
6249 }
6250 if (fmt[i] == 'E')
6251 {
6252 register int j;
6253 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6254 {
6255 register int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6256 if (tem != 0)
6257 return tem;
6258 }
6259 }
6260 }
6261
6262 return 0;
6263}
6264\f
6265/* Return 1 if register REGNO is the subject of a clobber in insn INSN. */
6266
6267int
6268regno_clobbered_p (regno, insn)
6269 int regno;
6270 rtx insn;
6271{
6272 if (GET_CODE (PATTERN (insn)) == CLOBBER
6273 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6274 return REGNO (XEXP (PATTERN (insn), 0)) == regno;
6275
6276 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6277 {
6278 int i = XVECLEN (PATTERN (insn), 0) - 1;
6279
6280 for (; i >= 0; i--)
6281 {
6282 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6283 if (GET_CODE (elt) == CLOBBER && GET_CODE (XEXP (elt, 0)) == REG
6284 && REGNO (XEXP (elt, 0)) == regno)
6285 return 1;
6286 }
6287 }
6288
6289 return 0;
6290}
10bcde0d
RK
6291
6292static char *reload_when_needed_name[] =
6293{
6294 "RELOAD_FOR_INPUT",
6295 "RELOAD_FOR_OUTPUT",
6296 "RELOAD_FOR_INSN",
47c8cf91
ILT
6297 "RELOAD_FOR_INPUT_ADDRESS",
6298 "RELOAD_FOR_INPADDR_ADDRESS",
10bcde0d 6299 "RELOAD_FOR_OUTPUT_ADDRESS",
47c8cf91 6300 "RELOAD_FOR_OUTADDR_ADDRESS",
10bcde0d
RK
6301 "RELOAD_FOR_OPERAND_ADDRESS",
6302 "RELOAD_FOR_OPADDR_ADDR",
6303 "RELOAD_OTHER",
6304 "RELOAD_FOR_OTHER_ADDRESS"
6305};
6306
6307static char *reg_class_names[] = REG_CLASS_NAMES;
6308
b8fb2d72 6309/* These functions are used to print the variables set by 'find_reloads' */
10bcde0d
RK
6310
6311void
b8fb2d72
CI
6312debug_reload_to_stream (f)
6313 FILE *f;
10bcde0d
RK
6314{
6315 int r;
505923a0 6316 char *prefix;
10bcde0d 6317
b8fb2d72
CI
6318 if (! f)
6319 f = stderr;
10bcde0d
RK
6320 for (r = 0; r < n_reloads; r++)
6321 {
b8fb2d72 6322 fprintf (f, "Reload %d: ", r);
10bcde0d 6323
505923a0 6324 if (reload_in[r] != 0)
10bcde0d 6325 {
b8fb2d72 6326 fprintf (f, "reload_in (%s) = ",
f7393e85 6327 GET_MODE_NAME (reload_inmode[r]));
b8fb2d72
CI
6328 print_inline_rtx (f, reload_in[r], 24);
6329 fprintf (f, "\n\t");
10bcde0d
RK
6330 }
6331
505923a0 6332 if (reload_out[r] != 0)
10bcde0d 6333 {
b8fb2d72 6334 fprintf (f, "reload_out (%s) = ",
f7393e85 6335 GET_MODE_NAME (reload_outmode[r]));
b8fb2d72
CI
6336 print_inline_rtx (f, reload_out[r], 24);
6337 fprintf (f, "\n\t");
10bcde0d
RK
6338 }
6339
b8fb2d72 6340 fprintf (f, "%s, ", reg_class_names[(int) reload_reg_class[r]]);
10bcde0d 6341
b8fb2d72 6342 fprintf (f, "%s (opnum = %d)",
505923a0 6343 reload_when_needed_name[(int) reload_when_needed[r]],
10bcde0d
RK
6344 reload_opnum[r]);
6345
6346 if (reload_optional[r])
b8fb2d72 6347 fprintf (f, ", optional");
10bcde0d 6348
f5963e61
JL
6349 if (reload_nongroup[r])
6350 fprintf (stderr, ", nongroup");
6351
505923a0 6352 if (reload_inc[r] != 0)
b8fb2d72 6353 fprintf (f, ", inc by %d", reload_inc[r]);
10bcde0d
RK
6354
6355 if (reload_nocombine[r])
b8fb2d72 6356 fprintf (f, ", can't combine");
10bcde0d
RK
6357
6358 if (reload_secondary_p[r])
b8fb2d72 6359 fprintf (f, ", secondary_reload_p");
10bcde0d 6360
505923a0 6361 if (reload_in_reg[r] != 0)
10bcde0d 6362 {
b8fb2d72
CI
6363 fprintf (f, "\n\treload_in_reg: ");
6364 print_inline_rtx (f, reload_in_reg[r], 24);
10bcde0d
RK
6365 }
6366
505923a0 6367 if (reload_reg_rtx[r] != 0)
10bcde0d 6368 {
b8fb2d72
CI
6369 fprintf (f, "\n\treload_reg_rtx: ");
6370 print_inline_rtx (f, reload_reg_rtx[r], 24);
10bcde0d
RK
6371 }
6372
505923a0 6373 prefix = "\n\t";
10bcde0d
RK
6374 if (reload_secondary_in_reload[r] != -1)
6375 {
b8fb2d72 6376 fprintf (f, "%ssecondary_in_reload = %d",
505923a0
RK
6377 prefix, reload_secondary_in_reload[r]);
6378 prefix = ", ";
10bcde0d
RK
6379 }
6380
6381 if (reload_secondary_out_reload[r] != -1)
b8fb2d72 6382 fprintf (f, "%ssecondary_out_reload = %d\n",
505923a0 6383 prefix, reload_secondary_out_reload[r]);
10bcde0d 6384
505923a0 6385 prefix = "\n\t";
10bcde0d
RK
6386 if (reload_secondary_in_icode[r] != CODE_FOR_nothing)
6387 {
e5e809f4
JL
6388 fprintf (stderr, "%ssecondary_in_icode = %s", prefix,
6389 insn_name[reload_secondary_in_icode[r]]);
505923a0 6390 prefix = ", ";
10bcde0d
RK
6391 }
6392
6393 if (reload_secondary_out_icode[r] != CODE_FOR_nothing)
e5e809f4
JL
6394 fprintf (stderr, "%ssecondary_out_icode = %s", prefix,
6395 insn_name[reload_secondary_out_icode[r]]);
10bcde0d 6396
b8fb2d72 6397 fprintf (f, "\n");
10bcde0d 6398 }
10bcde0d 6399}
b8fb2d72
CI
6400
6401void
6402debug_reload ()
6403{
6404 debug_reload_to_stream (stderr);
6405}